Chris Shumway Umgeschrieben von Uwe Pierau Übersetzt von Grundlagen des UNIX Betriebssystems Übersicht Das folgende Kapitel umfasst die grundlegenden Kommandos und Funktionsweisen des Betriebssystems FreeBSD. Viel von dem folgenden Material gilt auch für jedes andere &unix;-artige System. Falls Sie mit dem Material schon vertraut sind, können Sie dieses Kapitel überlesen. Wenn FreeBSD neu für Sie ist, dann sollten Sie dieses Kapitel auf jeden Fall aufmerksam lesen. Dieser Abschnitt behandelt die folgenden Themen: virtuelle Konsolen, Zugriffsrechte unter &unix; sowie Datei-Flags unter &os;, Zugriffskontrolllisten für Dateisysteme, die Verzeichnisstruktur von &os;, Organisation von Dateisystemen unter &os;, Ein- und Abhängen von Dateisystemen, Prozesse, Dämonen und Signale, Shells und die Login-Umgebung, Texteditoren, Geräte und Gerätedateien, Binärformate unter &os; und wie Sie in den Manualpages nach weiteren Informationen suchen können. Virtuelle Konsolen und Terminals virtuelle Konsole Terminals Sie können FreeBSD mit einem Terminal benutzen, der nur Text darstellen kann. Wenn Sie FreeBSD auf diese Weise benutzen, stehen Ihnen alle Möglichkeiten eines &unix; Betriebssystems zur Verfügung. Dieser Abschnitt beschreibt was Terminals und Konsolen sind und wie sie unter FreeBSD eingesetzt werden. Die Konsole Konsole Wenn Ihr FreeBSD-System ohne eine graphische Benutzeroberfläche startet, wird am Ende des Systemstarts, nachdem die Startskripten gelaufen sind, ein Anmeldeprompt ausgegeben. Die letzten Startmeldungen sollten ähnlich wie die Folgenden aussehen: Additional ABI support:. Local package initialization:. Additional TCP options:. Fri Sep 20 13:01:06 EEST 2002 FreeBSD/i386 (pc3.example.org) (ttyv0) login: Beachten Sie die letzten beiden Zeilen der Ausgabe, die vorletzte lautet: FreeBSD/i386 (pc3.example.org) (ttyv0) Diese Zeile enthält einige Informationen über das gerade gestartete System. Die Ausgabe stammt von der FreeBSD-Konsole einer Maschine mit einem Intel oder Intel-kompatiblen Prozessor der x86-Architektur Genau das ist mit i386 gemeint. Auch wenn Ihr System keine Intel 386 CPU besitzt, wird i386 ausgegeben. Es wird immer die Architektur und nicht der Typ des Prozessors ausgegeben. . Der Name des Systems (jedes &unix; System besitzt einen Namen) ist pc3.example.org und die Ausgabe stammt von der Systemkonsole, dem Terminal ttyv0. Das Ende der Ausgabe ist immer die Aufforderung zur Eingabe eines Benutzernamens: login: Der Anmeldevorgang wird im nächsten Abschnitt erläutert. Der Anmeldevorgang FreeBSD ist ein Mehrbenutzersystem, das Multitasking unterstützt. Das heißt mehrere Benutzer können gleichzeitig viele Programme auf einem System laufen lassen. Jedes Mehrbenutzersystem muss die Benutzer voneinander unterscheiden können. Bei FreeBSD und allen anderen &unix;-artigen Betriebssystemen wird dies dadurch erreicht, dass sich die Benutzer anmelden müssen, bevor sie Programme laufen lassen können. Jeder Benutzer besitzt einen eindeutigen Namen (den Account) und ein dazugehörendes Passwort, die beide bei der Anmeldung abgefragt werden. Startskripten Nachdem FreeBSD gestartet ist und die Startskripten Startskripten sind Programme, die FreeBSD automatisch bei jedem Startvorgang ausführt. Der Zweck der Skripte besteht darin, das System zu konfigurieren und nützliche Dienste im Hintergrund zu starten. , gelaufen sind, erscheint eine Aufforderung zur Eingabe des Benutzernamens: login: Wenn Ihr Benutzername beispielsweise john ist, geben Sie jetzt john gefolgt von Enter ein. Sie sollten dann eine Aufforderung zur Eingabe des Passworts erhalten: login: john Password: Geben Sie jetzt das Passwort von john gefolgt von Enter ein. Das Passwort wird aus Sicherheitsgründen nicht auf dem Bildschirm angezeigt. Wenn Sie das richtige Passwort eingegeben haben, sind Sie am System angemeldet und können nun alle verfügbaren Kommandos absetzen. Anmgemeldet sind Sie, wenn Sie die Tagesmeldungen (message of today) gefolgt von einer Eingabeaufforderung (dem Zeichen #, $ oder %) gesehen haben. Virtuelle Konsolen Da FreeBSD mehrere Programme gleichzeitig laufen lassen kann, ist eine einzige Konsole, an der Kommandos abgesetzt werden können, zu wenig. Abhilfe schaffen virtuelle Konsolen, die mehrere Konsolen zur Verfügung stellen. Die Anzahl der virtuellen Konsolen unter FreeBSD können Sie einstellen. Zwischen den einzelnen Konsolen können Sie mit speziellen Tastenkombinationen wechseln. Jede Konsole verfügt über einen eigenen Ausgabekanal und FreeBSD ordnet die Tastatureingaben und Monitorausgaben der richtigen Konsole zu, wenn Sie zwischen den Konsolen wechseln. Zum Umschalten der Konsolen stellt FreeBSD spezielle Tastenkombinationen bereit Eine recht technische und genaue Beschreibung der FreeBSD-Konsole und der Tastatur-Treiber finden Sie in den Hilfeseiten &man.syscons.4;, &man.atkbd.4;, &man.vidcontrol.1; und &man.kbdcontrol.1;. Lesen Sie diese Seiten, wenn Sie an den Einzelheiten interessiert sind. . Benutzen Sie AltF1, AltF2 bis AltF8, um zwischen den verschiedenen Konsolen umzuschalten. Wenn Sie zu einer anderen Konsole wechseln, sichert FreeBSD den Bildschirminhalt und gibt den Bildschirminhalt der neuen Konsole aus. Dies erzeugt die Illusion mehrerer Bildschirme und Tastaturen, an denen Sie Kommandos absetzen können. Wenn eine Konsole nicht sichtbar ist, weil Sie auf eine andere Konsole gewechselt haben, laufen die dort abgesetzten Kommandos weiter. <filename>/etc/ttys</filename> In der Voreinstellung stehen unter FreeBSD acht virtuelle Konsolen zur Verfügung, deren Anzahl Sie leicht erhöhen oder verringern können. Die Anzahl und Art der Konsolen wird in /etc/ttys eingestellt. Jede Zeile in /etc/ttys, die nicht mit # anfängt, konfiguriert einen Terminal oder eine virtuelle Konsole. In der Voreinstellung werden in dieser Datei neun virtuelle Konsolen definiert, von denen acht aktiviert sind. Die Konsolen sind in den Zeilen, die mit ttyv beginnen, definiert: # name getty type status comments # ttyv0 "/usr/libexec/getty Pc" cons25 on secure # Virtual terminals ttyv1 "/usr/libexec/getty Pc" cons25 on secure ttyv2 "/usr/libexec/getty Pc" cons25 on secure ttyv3 "/usr/libexec/getty Pc" cons25 on secure ttyv4 "/usr/libexec/getty Pc" cons25 on secure ttyv5 "/usr/libexec/getty Pc" cons25 on secure ttyv6 "/usr/libexec/getty Pc" cons25 on secure ttyv7 "/usr/libexec/getty Pc" cons25 on secure ttyv8 "/usr/X11R6/bin/xdm -nodaemon" xterm off secure Die Hilfeseite &man.ttys.5; enthält eine ausführliche Beschreibung der Spalten dieser Datei und der Optionen, die Sie zum Konfigurieren der virtuellen Konsolen benutzen können. Die Konsole im Single-User-Modus Eine eingehende Beschreibung des Single-User-Modus finden Sie in . Im Single-User-Modus steht Ihnen nur eine Konsole zur Verfügung. Die Definition dieser Konsole befindet sich ebenfalls in /etc/ttys. Suchen Sie nach einer Zeile, die mit console beginnt: # name getty type status comments # # If console is marked "insecure", then init will ask for the root password # when going to single-user mode. console none unknown off secure In der Zeile, die mit console beginnt, können Sie secure durch insecure ersetzen. Wenn Sie danach in den Single-User-Modus booten, verlangt das System ebenfalls die Eingabe des root-Passworts. Setzen Sie insecure nicht leichtfertig ein. Wenn Sie das Passwort von root vergessen, wird es schwierig, in den Single-User-Modus zu gelangen, wenn Sie den FreeBSD-Boot-Prozess nicht genau verstehen. Zugriffsrechte UNIX FreeBSD, das ein direkter Abkömmling von BSD &unix; ist, stützt sich auf mehrere Grundkonzepte von &unix; Systemen. Das erste und ausgeprägteste: FreeBSD ist ein Mehrbenutzer-Betriebssystem. Das System ermöglicht, dass mehrere Benutzer gleichzeitig an völlig verschiedenen und unabhängigen Aufgaben arbeiten können. Es ist verantwortlich für eine gerechte Auf- und Zuteilung von Nachfragen nach Hardware- und Peripheriegeräten, Speicher und CPU-Zeit unter den Benutzern. Da das System mehrere Benutzer unterstützt, hat alles, was das System verwaltet, einen Satz von Rechten, die bestimmen, wer die jeweilige Ressource lesen, schreiben oder ausführen darf. Diese Zugriffsrechte stehen in drei Achtergruppen, die in drei Teile unterteilt sind: einen für den Besitzer der Datei, einen für die Gruppe, zu der die Datei gehört und einen für alle anderen. Die numerische Darstellung sieht wie folgt aus: Zugriffsrechte Dateizugriffsrechte Wert Zugriffsrechte Auflistung im Verzeichnis 0 Kein Lesen, Kein Schreiben, Kein Ausführen --- 1 Kein Lesen, Kein Schreiben, Ausführen --x 2 Kein Lesen, Schreiben, Kein Ausführen -w- 3 Kein Lesen, Schreiben, Ausführen -wx 4 Lesen, Kein Schreiben, Kein Ausführen r-- 5 Lesen, Kein Schreiben, Ausführen r-x 6 Lesen, Schreiben, Kein Ausführen rw- 7 Lesen, Schreiben, Ausführen rwx ls Verzeichnisse Sie können auf der Kommandozeile von &man.ls.1; angeben, um eine ausführliche Verzeichnisauflistung zu sehen, die in einer Spalte die Zugriffsrechte für den Besitzer, die Gruppe und alle anderen enthält. Die Ausgabe von ls -l könnte wie folgt aussehen: &prompt.user; ls -l total 530 -rw-r--r-- 1 root wheel 512 Sep 5 12:31 myfile -rw-r--r-- 1 root wheel 512 Sep 5 12:31 otherfile -rw-r--r-- 1 root wheel 7680 Sep 5 12:31 email.txt ... Die erste Spalte der Ausgabe enthält die Zugriffsrechte: -rw-r--r-- Das erste Zeichen von links ist ein Symbol, welches angibt, ob es sich um eine normale Datei, ein Verzeichnis, ein zeichenorientiertes Gerät, ein Socket oder irgendeine andere Pseudo-Datei handelt. In diesem Beispiel zeigt - eine normale Datei an. Die nächsten drei Zeichen, dargestellt als rw-, ergeben die Rechte für den Datei-Besitzer. Die drei Zeichen danach r-- die Rechte der Gruppe, zu der die Datei gehört. Die letzten drei Zeichen, r--, geben die Rechte für den Rest der Welt an. Ein Minus bedeutet, dass das Recht nicht gegeben ist. In diesem Fall sind die Zugriffsrechte also: der Eigentümer kann die Datei lesen und schreiben, die Gruppe kann lesen und alle anderen können auch nur lesen. Entsprechend obiger Tabelle wären die Zugriffsrechte für diese Datei 644, worin jede Ziffer die drei Teile der Zugriffsrechte dieser Datei verkörpert. Das ist alles schön und gut, aber wie kontrolliert das System die Rechte von Hardware-Geräten? FreeBSD behandelt die meisten Hardware-Geräte als Dateien, welche Programme öffnen, lesen und mit Daten beschreiben können wie alle anderen Dateien auch. Diese Spezial-Dateien sind im Verzeichnis /dev gespeichert. Verzeichnisse werden ebenfalls wie Dateien behandelt. Sie haben Lese-, Schreib- und Ausführ-Rechte. Das Ausführungs-Bit hat eine etwas andere Bedeutung für ein Verzeichnis als für eine Datei. Die Ausführbarkeit eines Verzeichnisses bedeutet, dass in das Verzeichnis zum Beispiel mit cd gewechselt werden kann. Das bedeutet auch, dass in dem Verzeichnis auf Dateien, deren Namen bekannt sind, zugegriffen werden kann, vorausgesetzt die Zugriffsrechte der Dateien lassen dies zu. Das Leserecht auf einem Verzeichnis erlaubt es, sich den Inhalt des Verzeichnisses anzeigen zu lassen. Um eine Datei mit bekanntem Namen in einem Verzeichnis zu löschen, müssen auf dem Verzeichnis Schreib- und Ausführ-Rechte gesetzt sein. Es gibt noch mehr Rechte, aber die werden vor allem in speziellen Umständen benutzt, wie zum Beispiel bei SetUID-Binaries und Verzeichnissen mit gesetztem Sticky-Bit. Mehr über Zugriffsrechte von Dateien und wie sie gesetzt werden, finden Sie in &man.chmod.1;. Tom Rhodes Beigesteuert von Symbolische Zugriffsrechte Zugriffsrechte symbolische Die Zugriffsrechte lassen sich auch über Symbole anstelle von oktalen Werten festlegen. Symbolische Zugriffsrechte werden in der Reihenfolge Wer, Aktion und Berechtigung angegeben. Die folgenden Symbole stehen zur Auswahl: Option Symbol Bedeutung Wer u Benutzer (user) Wer g Gruppe (group) Wer o Andere (other) Wer a Alle Aktion + Berechtigungen hinzufügen Aktion - Berechtigungen entziehen Aktion = Berechtigungen explizit setzen Berechtigung r lesen (read) Berechtigung w schreiben (write) Berechtigung x ausführen (execute) Berechtigung t Sticky-Bit Berechtigung s Set-UID oder Set-GID Symbolische Zugriffsrechte werden wie die numerischen mit dem Kommando &man.chmod.1; vergeben. Wenn Sie beispielsweise allen anderen Benutzern den Zugriff auf die Datei FILE verbieten wollen, benutzen Sie den nachstehenden Befehl: &prompt.user; chmod go= FILE Wenn Sie mehr als eine Änderung der Rechte einer Datei vornehmen wollen, können Sie eine durch Kommata getrennte Liste der Rechte angeben. Das folgende Beispiel entzieht der Gruppe und der Welt (den anderen) die Schreibberechtigung auf die Datei FILE und fügt dann für alle Ausführungsrechte hinzu: &prompt.user; chmod go-w,a+x FILE Tom Rhodes Beigetragen von &os; Datei-Flags Zusätzlich zu den vorhin diskutierten Zugriffsrechten unterstützt &os; auch die sogenannten Datei-Flags. Diese erhöhen die Sicherheit Ihres Systems, indem sie eine verbesserte Kontrolle von Dateien erlauben. Verzeichnisse werden allerdings nicht unterstützt. Diese verbesserte Sicherheit führt dazu, dass manche Dateien nicht einmal von root gelöscht oder bearbeitet werden können. Datei-Flags können über &man.chflags.1; gesetzt oder gelöscht werden. Um beispielsweise die Datei file1 mit dem unlöschbar-Flag zu sichern, geben Sie folgenden Befehl ein: &prompt.root; chflags sunlink file1 Um dieses Flag wieder zu löschen, geben Sie den Befehl erneut ein. Allerdings setzen Sie ein no vor : &prompt.root; chflags nosunlink file1 Um die Flags dieser Datei anzuzeigen, verwenden Sie &man.ls.1; zusammen mit der Option : &prompt.root; ls -lo file1 Dadurch erhalten Sie eine Ausgabe ähnlich der folgenden: -rw-r--r-- 1 trhodes trhodes sunlnk 0 Mar 1 05:54 file1 Viele Flags können nur von root gesetzt oder gelöscht werden. Andere wiederum können auch vom Eigentümer der Datei gesetzt werden. Weitere Informationen zu Datei-Flags finden sich in den Manualpages &man.chflags.1; und &man.chflags.2;. Verzeichnis-Strukturen Verzeichnis Hierarchien Die FreeBSD-Verzeichnishierarchie ist die Grundlage, um ein umfassendes Verständnis des Systems zu erlangen. Das wichtigste Konzept, das Sie verstehen sollten, ist das Root-Verzeichnis /. Dieses Verzeichnis ist das erste, das während des Bootens eingehangen wird. Es enthält das notwendige Basissystem, um das System in den Mehrbenutzerbetrieb zu bringen. Das Root-Verzeichnis enthält auch die Mountpunkte anderer Dateisysteme, die später eingehangen werden. Ein Mountpunkt ist ein Verzeichnis, in das zusätzliche Dateisysteme in das /-Dateisystem eingehängt werden können. Dieser Vorgang wird in ausführlich beschrieben. Standard-Mountpunkte sind /usr, /var, /tmp, /mnt sowie /cdrom. Auf diese Verzeichnisse verweisen üblicherweise Einträge in der Datei /etc/fstab. /etc/fstab ist eine Tabelle mit verschiedenen Dateisystemen und Mountpunkten als Referenz des Systems. Die meisten der Dateisysteme in /etc/fstab werden beim Booten automatisch durch das Skript &man.rc.8; gemountet, wenn die zugehörigen Einträge nicht mit der Option versehen sind. Weitere Informationen zu diesem Thema finden Sie im . Eine vollständige Beschreibung der Dateisystem-Hierarchie finden Sie in &man.hier.7;. Als Beispiel sei eine kurze Übersicht über die am häufigsten verwendeten Verzeichnisse gegeben: Verzeichnis Beschreibung / Wurzelverzeichnis des Dateisystems. /bin/ Grundlegende Werkzeuge für den Single-User-Modus sowie den Mehrbenutzerbetrieb. /boot/ Programme und Konfigurationsdateien, die während des Bootens benutzt werden. /boot/defaults/ Vorgaben für die Boot-Konfiguration, siehe &man.loader.conf.5;. /dev/ Gerätedateien, siehe &man.intro.4;. /etc/ Konfigurationsdateien und Skripten des Systems. /etc/defaults/ Vorgaben für die System Konfigurationsdateien, siehe &man.rc.8;. /etc/mail/ Konfigurationsdateien von MTAs wie &man.sendmail.8;. /etc/namedb/ Konfigurationsdateien von named, siehe &man.named.8;. /etc/periodic/ Täglich, wöchentlich oder monatlich ablaufende Skripte, die von &man.cron.8; gestartet werden. Siehe &man.periodic.8;. /etc/ppp/ Konfigurationsdateien von ppp, siehe &man.ppp.8;. /mnt/ Ein leeres Verzeichnis, das von Systemadministratoren häufig als temporärer Mountpunkt genutzt wird. /proc/ Prozess Dateisystem, siehe &man.procfs.5; und &man.mount.procfs.8;. /rescue/ Statisch gelinkte Programme zur Wiederherstellung des Systems, lesen Sie dazu auch &man.rescue.8;. /root/ Home Verzeichnis von root. /sbin/ Systemprogramme und administrative Werkzeuge, die grundlegend für den Single-User-Modus und den Mehrbenutzerbetrieb sind. /stand/ Programme, die ohne andere Programme oder Bibliotheken laufen. /tmp/ Temporäre Dateien, die für gewöhnlich bei einem Neustart des Systems verloren gehen. Häufig wird ein speicherbasiertes Dateisystem unter /tmp eingehängt. Dieser Vorgang kann automatisiert werden, wenn Sie die tmpmfs-bezogenen Variablen von &man.rc.conf.5; verwenden. Alternativ können Sie auch einen entsprechenden Eintrag in /etc/fstab aufnehmen. Weitere Informationen finden Sie in &man.mdmfs.8; sowie in &man.mfs.8; (für FreeBSD 4.X). /usr/ Der Großteil der Benutzerprogramme und Anwendungen. /usr/bin/ Gebräuchliche Werkzeuge, Programmierhilfen und Anwendungen. /usr/include/ Standard C include-Dateien. /usr/lib/ Bibliotheken. /usr/libdata/ Daten verschiedener Werkzeuge. /usr/libexec/ System-Dämonen und System-Werkzeuge, die von anderen Programmen ausgeführt werden. /usr/local/ Lokale Programme, Bibliotheken usw. Die Ports-Sammlung benutzt dieses Verzeichnis als Zielverzeichnis für zu installierende Anwendungen. Innerhalb von /usr/local sollte das von &man.hier.7; beschriebene Layout für /usr benutzt werden. Das man Verzeichnis wird direkt unter /usr/local anstelle unter /usr/local/share angelegt. Die Dokumentation der Ports findet sich in share/doc/port. /usr/obj/ Von der Architektur abhängiger Verzeichnisbaum, der durch das Bauen von /usr/src entsteht. /usr/ports Die FreeBSD-Ports-Sammlung (optional). /usr/sbin/ System-Dämonen und System-Werkzeuge, die von Benutzern ausgeführt werden. /usr/share/ Von der Architektur unabhängige Dateien. /usr/src/ Quelldateien von BSD und/oder lokalen Ergänzungen. /usr/X11R6/ Optionale X11R6-Programme und Bibliotheken. /var/ Wird für mehrere Zwecke genutzt und enthält Logdateien, temporäre Daten und Spooldateien. /var/log/ Verschiedene Logdateien des Systems. /var/mail/ Postfächer der Benutzer. /var/spool/ Verschiedene Spool-Verzeichnisse der Drucker- und Mailsysteme. /var/tmp/ Temporäre Dateien. Dateien in diesem Verzeichnis bleiben in der Regel auch bei einem Neustart des Systems erhalten, es sei denn, bei /var handelt es sich um ein speicherbasiertes Dateisystem. /var/yp NIS maps. Festplatten, Slices und Partitionen &os; identifiziert Dateien anhand eines Dateinamens. In Dateinamen wird zwischen Groß- und Kleinschreibung unterschieden: readme.txt und README.TXT bezeichnen daher zwei verschiedene Dateien. &os; benutzt keine Dateiendungen wie .txt, um den Typ der Datei (ein Programm, ein Dokument oder andere Daten) zu bestimmen. Dateien werden in Verzeichnissen gespeichert. In einem Verzeichnis können sich keine oder hunderte Dateien befinden. Ein Verzeichnis kann auch andere Verzeichnisse enthalten und so eine Hierarchie von Verzeichnissen aufbauen, die Ihnen die Ablage von Daten erleichtert. In Dateinamen werden Verzeichnisse durch einen Schrägstrich (/, Slash) getrennt. Wenn das Verzeichnis foo ein Verzeichnis bar enthält, in dem sich die Datei readme.txt befindet, lautet der vollständige Name der Datei (oder der Pfad zur Datei) foo/bar/readme.txt. Verzeichnisse und Dateien werden in einem Dateisystem gespeichert. Jedes Dateisystem besitzt ein Wurzelverzeichnis (Root-Directory), das weitere Verzeichnisse enthalten kann. Dieses Konzept kennen Sie vielleicht von anderen Betriebssystemen, aber es gibt einige Unterschiede: In &ms-dos; werden Datei- und Verzeichnisnamen mit dem Zeichen \ getrennt, &macos; benutzt dazu das Zeichen :. &os; kennt keine Laufwerksbuchstaben und in Pfaden werden keine Bezeichnungen für Laufwerke benutzt. Die Pfadangabe c:/foo/bar/readme.txt gibt es in &os; nicht. Stattdessen wird ein Dateisystem als Wurzeldateisystem (root file system) ausgewählt. Das Wurzelverzeichnis dieses Dateisystems wird / genannt. Jedes andere Dateisystem wird unter dem Wurzeldateisystem eingehangen (mount). Daher scheint jedes Verzeichnis, unabhängig von der Anzahl der Platten, auf derselben Platte zu liegen. Betrachten wir drei Dateisysteme A, B und C. Jedes Dateisystem besitzt ein eigenes Wurzelverzeichnis, das zwei andere Verzeichnisse enthält: A1, A2, B1, B2, C1 und C2. Das Wurzeldateisystem soll A sein. Das Kommando ls zeigt darin die beiden Verzeichnisse A1 und A2 an. Der Verzeichnisbaum sieht wie folgt aus: / | +--- A1 | `--- A2 Ein Dateisystem wird in einem Verzeichnis eines anderen Dateisystems eingehangen. Wir hängen nun das Dateisystem B in das Verzeichnis A1 ein. Das Wurzelverzeichnis von B ersetzt nun das Verzeichnis A1 und die Verzeichnisse des Dateisystems B werden sichtbar: / | +--- A1 | | | +--- B1 | | | `--- B2 | `--- A2 Jede Datei in den Verzeichnissen B1 oder B2 kann über den Pfad /A1/B1 oder /A1/B2 erreicht werden. Dateien aus dem Verzeichnis /A1 sind jetzt verborgen. Wenn das Dateisystem B wieder abgehangen wird (umount), erscheinen die verborgenen Dateien wieder. Wenn das Dateisystem B unter dem Verzeichnis A2 eingehangen würde, sähe der Verzeichnisbaum so aus: / | +--- A1 | `--- A2 | +--- B1 | `--- B2 Die Dateien des Dateisystems B wären unter den Pfaden /A2/B1 und /A2/B2 erreichbar. Dateisysteme können übereinander eingehangen werden. Der folgende Baum entsteht, wenn im letzten Beispiel das Dateisystem C in das Verzeichnis B1 des Dateisystems B eingehangen wird: / | +--- A1 | `--- A2 | +--- B1 | | | +--- C1 | | | `--- C2 | `--- B2 C könnte auch im Verzeichnis A1 eingehangen werden: / | +--- A1 | | | +--- C1 | | | `--- C2 | `--- A2 | +--- B1 | `--- B2 Der &ms-dos;-Befehl join kann Ähnliches bewirken. Normalerweise müssen Sie sich nicht mit Dateisystemen beschäftigen. Während der Installation werden die Dateisysteme und die Stellen, in der sie eingehangen werden, festgelegt. Dateisysteme müssen Sie erst wieder anlegen, wenn Sie eine neue Platte hinzufügen. Sie können sogar mit nur einem großen Dateisystem auskommen. Dies hat mehrere Nachteile und einen Vorteil. Vorteile mehrerer Dateisysteme Die Dateisysteme können mit unterschiedlichen Optionen (mount options) eingehangen werden. Bei sorgfältiger Planung können Sie beispielsweise das Wurzeldateisystem nur lesbar einhängen. Damit schützen Sie sich vor dem unabsichtlichen Löschen oder Editieren kritischer Dateien. Von Benutzern beschreibbare Dateisysteme wie /home können Sie mit der Option nosuid einhängen, wenn sie von anderen Dateisystemen getrennt sind. Die SUID- und GUID-Bits verlieren auf solchen Dateisystemen ihre Wirkung und die Sicherheit des Systems kann dadurch erhöht werden. Die Lage von Dateien im Dateisystem wird, abhängig vom Gebrauch des Dateisystems, automatisch von &os; optimiert. Ein Dateisystem mit vielen kleinen Dateien, die häufig geschrieben werden, wird anders behandelt als ein Dateisystem mit wenigen großen Dateien. Mit nur einem Dateisystem ist diese Optimierung unmöglich. In der Regel übersteht ein &os;-Dateisystem auch einen Stromausfall. Allerdings kann ein Stromausfall zu einem kritischen Zeitpunkt das Dateisystem beschädigen. Wenn die Daten über mehrere Dateisysteme verteilt sind, lässt sich das System mit hoher Wahrscheinlichkeit noch starten. Dies erleichtert das Zurückspielen von Datensicherungen. Vorteil eines einzelnen Dateisystems Die Größe von Dateisystemen liegt fest. Es kann passieren, dass Sie eine Partition vergrößern müssen. Dies ist nicht leicht: Sie müssen die Daten sichern, das Dateisystem vergrößert anlegen und die gesicherten Daten zurückspielen. Ab &os; 4.4 existiert diese Beschränkung nicht mehr: Das Kommando &man.growfs.8; kann Dateisysteme im laufenden Betrieb vergrößern. Dateisysteme befinden sich in Partitionen (damit sind nicht die normalen &ms-dos;-Partitionen gemeint). Jede Partition wird mit einem Buchstaben von a bis h bezeichnet und kann nur ein Dateisystem enthalten. Dateisysteme können daher über ihren Mount-Point, den Punkt an dem sie eingehangen sind, oder den Buchstaben der Partition, in der sie liegen, identifiziert werden. &os; benutzt einen Teil der Platte für den Swap-Bereich, der dem Rechner virtuellen Speicher zur Verfügung stellt. Dadurch kann der Rechner Anwendungen mehr Speicher zur Verfügung stellen als tatsächlich eingebaut ist. Wenn der Speicher knapp wird, kann &os; nicht benutzte Daten in den Swap-Bereich auslagern. Die ausgelagerten Daten können später wieder in den Speicher geholt werden (dafür werden dann andere Daten ausgelagert). Für einige Partitionen gelten besondere Konventionen: Partition Konvention a Enthält normalerweise das Wurzeldateisystem b Enthält normalerweise den Swap-Bereich c Ist normalerweise genauso groß wie die Slice in der die Partition liegt. Werkzeuge, die auf der kompletten Slice arbeiten, wie ein Bad-Block-Scanner, können so die c-Partition benutzen. Für gewöhnlich legen Sie in dieser Partition kein Dateisystem an. d Früher hatte die d-Partition eine besondere Bedeutung. Bis heute haben einige Werkzeuge Schwierigkeiten mit der d-Partition, sodass sysinstall normalerweise keine d-Partition anlegt. Jede Partition, die ein Dateisystem enthält, wird in einer Slice angelegt. Slice ist der Begriff, den &os; für &ms-dos;-Partitionen verwendet. Slices werden von eins bis vier durchnummeriert. Slices Partitionen dangerously dedicated Die Slice-Nummern werden mit vorgestelltem s hinter den Gerätenamen gestellt: da0s1 ist die erste Slice auf dem ersten SCSI-Laufwerk. Auf einer Festplatte gibt es höchstens vier Slices. In einer Slice des passenden Typs kann es weitere logische Slices geben. Diese erweiterten Slices werden ab fünf durchnummeriert: ad0s5 ist die erste erweiterte Slice auf einer IDE-Platte. Diese Geräte werden von Dateisystemen benutzt, die sich in einer kompletten Slice befinden müssen. Slices, dangerously dedicated-Festplatten und andere Platten enthalten Partitionen, die mit Buchstaben von a bis h bezeichnet werden. Der Buchstabe wird an den Gerätenamen gehangen: da0a ist die a-Partition des ersten da-Laufwerks. Dieses Laufwerk ist dangerously dedicated. ad1s3e ist die fünfte Partition in der dritten Slice der zweiten IDE-Platte. Schließlich wird noch jede Festplatte des Systems eindeutig bezeichnet. Der Name einer Festplatte beginnt mit einem Code, der den Typ der Platte bezeichnet. Es folgt eine Nummer, die angibt, um welche Festplatte es sich handelt. Anders als bei Slices werden Festplatten von Null beginnend durchnummeriert. Gängige Festplatten-Namen sind in zusammengestellt. Wenn Sie eine Partition angeben, erwartet &os; dass Sie auch die Slice und die Platte angeben, in denen sich die Partition befindet. Wenn Sie eine Slice angeben, müssen Sie auch die Platte der Slice angeben. Setzen Sie den Namen aus dem Plattennamen gefolgt von einem s, der Slice-Nummer und dem Buchstaben der Partition zusammen. Einige Beispiele finden Sie in . Der Aufbau einer Festplatte wird in dargestellt. Um &os; zu installieren, müssen Sie zuerst Slices auf den Festplatten anlegen. Innerhalb der Slices, die Sie für &os; verwenden wollen, müssen Sie dann Partitionen anlegen. In den Partitionen wiederum werden die Dateisysteme (oder der Auslagerungsbereich) angelegt. Für Dateisysteme müssen Sie schließlich noch festlegen, wo diese eingehangen werden (Mount-Point). Laufwerk-Codes Code Bedeutung ad ATAPI (IDE) Festplatte da SCSI-Festplatte acd ATAPI (IDE) CD-ROM cd SCSI-CD-ROM fd Disketten-Laufwerk
Namen von Platten, Slices und Partitionen Name Bedeutung ad0s1a Die erste Partition (a) in der ersten Slice (s1) der ersten IDE-Festplatte (ad0). da1s2e Die fünfte Partition (e) der zweiten Slice (s2) auf der zweiten SCSI-Festplatte (da1). Aufteilung einer Festplatte Das folgende Diagramm zeigt die Sicht von &os; auf die erste IDE-Festplatte eines Rechners. Die Platte soll 4 GB groß sein und zwei Slices (&ms-dos;-Partitionen) mit je 2 GB besitzen. Die erste Slice enthält ein &ms-dos;-Laufwerk (C:), die zweite Slice wird von &os; benutzt. Im Beispiel verwendet die &os;-Installationen drei Partitionen und einen Auslagerungsbereich. Jede der drei Partitionen enthält ein Dateisystem. Das Wurzeldateisystem ist die a-Partition. In der e-Partition befindet sich der /var-Verzeichnisbaum und in der f-Partition befindet sich der Verzeichnisbaum unterhalb von /usr. .-----------------. --. | | | | DOS / Windows | | : : > First slice, ad0s1 : : | | | | :=================: ==: --. | | | Partition a, mounted as / | | | > referred to as ad0s2a | | | | | :-----------------: ==: | | | | Partition b, used as swap | | | > referred to as ad0s2b | | | | | :-----------------: ==: | Partition c, no | | | Partition e, used as /var > file system, all | | > referred to as ad0s2e | of FreeBSD slice, | | | | ad0s2c :-----------------: ==: | | | | | : : | Partition f, used as /usr | : : > referred to as ad0s2f | : : | | | | | | | | --' | `-----------------' --'
Anhängen und Abhängen von Dateisystemen Ein Dateisystem wird am besten als ein Baum mit der Wurzel / veranschaulicht. /dev, /usr, und die anderen Verzeichnisse im Rootverzeichnis sind Zweige, die wiederum eigene Zweige wie /usr/local haben können. Root-Dateisystem Es gibt verschiedene Gründe, bestimmte dieser Verzeichnisse auf eigenen Dateisystemen anzulegen. /var enthält log/, spool/ sowie verschiedene andere temporäre Dateien und kann sich daher schnell füllen. Es empfiehlt sich, /var von / zu trennen, da es schlecht ist, wenn das Root-Dateisystem voll läuft. Ein weiterer Grund bestimmte Verzeichnisbäume auf andere Dateisysteme zu legen, ist gegeben, wenn sich die Verzeichnisbäume auf gesonderten physikalischen oder virtuellen Platten, wie Network File System oder CD-ROM-Laufwerken, befinden. Die <filename>fstab</filename> Datei Dateisysteme fstab Während des Boot-Prozesses werden in /etc/fstab aufgeführte Verzeichnisse, sofern sie nicht mit der Option versehen sind, automatisch angehangen. Die Zeilen in /etc/fstab haben das folgende Format: device /mount-point fstype options dumpfreq passno device Ein existierender Gerätename wie in beschrieben. mount-point Ein existierendes Verzeichnis, an das das Dateisystem angehangen wird. fstype Der Typ des Dateisystems, der an &man.mount.8; weitergegeben wird. FreeBSDs Standarddateisystem ist ufs. options Entweder für beschreibbare Dateisysteme oder für schreibgeschützte Dateisysteme, gefolgt von weiteren benötigten Optionen. Eine häufig verwendete Option ist für Dateisysteme, die während der normalen Bootsequenz nicht angehangen werden sollen. Weitere Optionen finden sich in &man.mount.8;. dumpfreq Gibt die Anzahl der Tage an, nachdem das Dateisystem gesichert werden soll. Fehlt der Wert, wird 0 angenommen. passno Bestimmt die Reihenfolge, in der die Dateisysteme überprüft werden sollen. Für Dateisysteme, die übersprungen werden sollen, ist passno auf null zu setzen. Für das Root-Dateisystem, das vor allen anderen überprüft werden muss, sollte der Wert von passno eins betragen. Allen anderen Dateisystemen sollten Werte größer eins zugewiesen werden. Wenn mehrere Dateisysteme den gleichen Wert besitzen, wird &man.fsck.8; versuchen, diese parallel zu überprüfen. Das <command>mount</command> Kommando Dateisysteme anhängen &man.mount.8; hängt schließlich Dateisysteme an. In der grundlegenden Form wird es wie folgt benutzt: &prompt.root; mount device mountpoint Viele Optionen werden in &man.mount.8; beschrieben, die am häufigsten verwendeten sind: Optionen von <command>mount</command> Hängt alle Dateisysteme aus /etc/fstab an. Davon ausgenommen sind Dateisysteme, die mit noauto markiert sind, die mit der Option ausgeschlossen wurden und Dateisysteme, die schon angehangen sind. Führt alles bis auf den mount-Systemaufruf aus. Nützlich ist diese Option in Verbindung mit . Damit wird angezeigt, was &man.mount.8; tatsächlich versuchen würde, um das Dateisystem anzuhängen. Erzwingt das Anhängen eines unsauberen Dateisystems oder erzwingt die Rücknahme des Schreibzugriffs, wenn der Status des Dateisystems von beschreibbar auf schreibgeschützt geändert wird. Hängt das Dateisystem schreibgeschützt ein. Das kann auch durch Angabe von als Argument ( vor FreeBSD 5.2) der Option erreicht werden. fstype Hängt das Dateisystem mit dem angegebenen Typ an, oder hängt nur Dateisysteme mit dem angegebenen Typ an, wenn auch angegeben wurde. Die Voreinstellung für den Typ des Dateisystems ist ufs. Aktualisiert die Mountoptionen des Dateisystems. Geschwätzig sein. Hängt das Dateisystem beschreibbar an. erwartet eine durch Kommata separierte Liste von Optionen, unter anderem die folgenden: nodev Beachtet keine Gerätedateien auf dem Dateisystem. Dies ist eine nützliche Sicherheitsfunktion. noexec Verbietet das Ausführen von binären Dateien auf dem Dateisystem. Dies ist eine nützliche Sicherheitsfunktion. nosuid SetUID und SetGID Bits werden auf dem Dateisystem nicht beachtet. Dies ist eine nützliche Sicherheitsfunktion. Das <command>umount</command> Kommando Dateisysteme abhängen &man.umount.8; akzeptiert als Parameter entweder einen Mountpoint, einen Gerätenamen, oder die Optionen oder . Jede Form akzeptiert , um das Abhängen zu erzwingen, und , um etwas geschwätziger zu sein. Seien Sie bitte vorsichtig mit : Ihr Computer kann abstürzen oder es können Daten auf dem Dateisystem beschädigt werden, wenn Sie das Abhängen erzwingen. und werden benutzt um alle Dateisysteme, deren Typ durch modifiziert werden kann, abzuhängen. hängt das Rootdateisystem nicht ab. Prozesse Da FreeBSD ein Multitasking-Betriebssystem ist, sieht es so aus, als ob mehrere Prozesse zur gleichen Zeit laufen. Jedes Programm, das zu irgendeiner Zeit läuft, wird Prozess genannt. Jedes Kommando startet mindestens einen Prozess. Einige Systemprozesse laufen ständig und stellen die Funktion des Systems sicher. Jeder Prozess wird durch eine eindeutige Nummer identifiziert, die Prozess-ID oder PID genannt wird. Prozesse haben ebenso wie Dateien einen Besitzer und eine Gruppe, die festlegen, welche Dateien und Geräte der Prozess benutzen kann. Dabei finden die vorher beschriebenen Zugriffsrechte Anwendung. Die meisten Prozesse haben auch einen Elternprozess, der sie gestartet hat. Wenn Sie in der Shell Kommandos eingeben, dann ist die Shell ein Prozess und jedes Kommando, das Sie starten, ist auch ein Prozess. Jeder Prozess, den Sie auf diese Weise starten, besitzt den Shell-Prozess als Elternprozess. Die Ausnahme hiervon ist ein spezieller Prozess, der &man.init.8; heißt. init ist immer der erste Prozess und hat somit die PID 1. init wird vom Kernel beim Booten von FreeBSD gestartet. Die Kommandos &man.ps.1; und &man.top.1; sind besonders nützlich, um sich die Prozesse auf einem System anzusehen. ps zeigt eine statische Liste der laufenden Prozesse und kann deren PID, Speicherverbrauch und die Kommandozeile, mit der sie gestartet wurden und vieles mehr anzeigen. top zeigt alle laufenden Prozesse an und aktualisiert die Anzeige, so dass Sie Ihrem Computer bei der Arbeit zuschauen können. Normal zeigt Ihnen ps nur die laufenden Prozesse, die Ihnen gehören. Zum Beispiel: &prompt.user; ps PID TT STAT TIME COMMAND 298 p0 Ss 0:01.10 tcsh 7078 p0 S 2:40.88 xemacs mdoc.xsl (xemacs-21.1.14) 37393 p0 I 0:03.11 xemacs freebsd.dsl (xemacs-21.1.14) 48630 p0 S 2:50.89 /usr/local/lib/netscape-linux/navigator-linux-4.77.bi 48730 p0 IW 0:00.00 (dns helper) (navigator-linux-) 72210 p0 R+ 0:00.00 ps 390 p1 Is 0:01.14 tcsh 7059 p2 Is+ 1:36.18 /usr/local/bin/mutt -y 6688 p3 IWs 0:00.00 tcsh 10735 p4 IWs 0:00.00 tcsh 20256 p5 IWs 0:00.00 tcsh 262 v0 IWs 0:00.00 -tcsh (tcsh) 270 v0 IW+ 0:00.00 /bin/sh /usr/X11R6/bin/startx -- -bpp 16 280 v0 IW+ 0:00.00 xinit /home/nik/.xinitrc -- -bpp 16 284 v0 IW 0:00.00 /bin/sh /home/nik/.xinitrc 285 v0 S 0:38.45 /usr/X11R6/bin/sawfish Wie Sie sehen, gibt &man.ps.1; mehrere Spalten aus. In der PID Spalte findet sich die vorher besprochene Prozess-ID. PIDs werden von 1 beginnend bis 99999 zugewiesen und fangen wieder von vorne an, wenn die Grenze überschritten wird. Die Spalte TT zeigt den Terminal, auf dem das Programm läuft. STAT zeigt den Status des Programms an und kann für die Zwecke dieser Diskussion ebenso wie TT ignoriert werden. TIME gibt die Zeit an, die das Programm auf der CPU gelaufen ist – dies ist nicht unbedingt die Zeit, die seit dem Start des Programms vergangen ist, da die meisten Programme hauptsächlich auf bestimmte Dinge warten, bevor sie wirklich CPU-Zeit verbrauchen. Unter der Spalte COMMAND finden Sie schließlich die Kommandozeile, mit der das Programm gestartet wurde. &man.ps.1; besitzt viele Optionen, um die angezeigten Informationen zu beeinflussen. Eine nützliche Kombination ist auxww. Mit werden Information über alle laufenden Prozesse und nicht nur Ihrer eigenen angezeigt. Der Name des Besitzers des Prozesses, sowie Informationen über den Speicherverbrauch werden mit angezeigt. zeigt auch Dämonen-Prozesse an, und veranlasst &man.ps.1; die komplette Kommandozeile anzuzeigen, anstatt sie abzuschneiden, wenn sie zu lang für die Bildschirmausgabe wird. Die Ausgabe von &man.top.1; sieht ähnlich aus: &prompt.user; top last pid: 72257; load averages: 0.13, 0.09, 0.03 up 0+13:38:33 22:39:10 47 processes: 1 running, 46 sleeping CPU states: 12.6% user, 0.0% nice, 7.8% system, 0.0% interrupt, 79.7% idle Mem: 36M Active, 5256K Inact, 13M Wired, 6312K Cache, 15M Buf, 408K Free Swap: 256M Total, 38M Used, 217M Free, 15% Inuse PID USERNAME PRI NICE SIZE RES STATE TIME WCPU CPU COMMAND 72257 nik 28 0 1960K 1044K RUN 0:00 14.86% 1.42% top 7078 nik 2 0 15280K 10960K select 2:54 0.88% 0.88% xemacs-21.1.14 281 nik 2 0 18636K 7112K select 5:36 0.73% 0.73% XF86_SVGA 296 nik 2 0 3240K 1644K select 0:12 0.05% 0.05% xterm 48630 nik 2 0 29816K 9148K select 3:18 0.00% 0.00% navigator-linu 175 root 2 0 924K 252K select 1:41 0.00% 0.00% syslogd 7059 nik 2 0 7260K 4644K poll 1:38 0.00% 0.00% mutt ... Die Ausgabe ist in zwei Abschnitte geteilt. In den ersten fünf Kopfzeilen finden sich die zuletzt zugeteilte PID, die Systemauslastung (engl. load average), die Systemlaufzeit (die Zeit seit dem letzten Reboot) und die momentane Zeit. Die weiteren Zahlen im Kopf beschreiben wie viele Prozesse momentan laufen (im Beispiel 47), wie viel Speicher und Swap verbraucht wurde und wie viel Zeit das System in den verschiedenen CPU-Modi verbringt. Darunter befinden sich einige Spalten mit ähnlichen Informationen wie in der Ausgabe von &man.ps.1;. Wie im vorigen Beispiel können Sie die PID, den Besitzer, die verbrauchte CPU-Zeit und das Kommando erkennen. &man.top.1; zeigt auch den Speicherverbrauch des Prozesses an, der in zwei Spalten aufgeteilt ist. Die erste Spalte gibt den gesamten Speicherverbrauch des Prozesses an, in der zweiten Spalte wird der aktuelle Verbrauch angegeben. &netscape; hat im gezeigten Beispiel insgesamt 30 MB Speicher verbraucht. Momentan benutzt es allerdings nur 9 MB. Die Anzeige wird von &man.top.1; automatisch alle zwei Sekunden aktualisiert. Der Zeitraum kann mit eingestellt werden. Dämonen, Signale und Stoppen von Prozessen Wenn Sie einen Editor starten, können Sie ihn leicht bedienen und Dateien laden. Sie können das, weil der Editor dafür Vorsorge getroffen hat und auf einem Terminal läuft. Manche Programme erwarten keine Eingaben von einem Benutzer und lösen sich bei erster Gelegenheit von ihrem Terminal. Ein Web-Server zum Beispiel verbringt den ganzen Tag damit, auf Anfragen zu antworten und erwartet keine Eingaben von Ihnen. Programme, die E-Mail von einem Ort zu einem anderen Ort transportieren sind ein weiteres Beispiel für diesen Typ von Anwendungen. Wir nennen diese Programme Dämonen. Dämonen stammen aus der griechischen Mythologie und waren weder gut noch böse. Sie waren kleine dienstbare Geister, die meistens nützliche Sachen für die Menschheit vollbrachten. Ähnlich wie heutzutage Web-Server und Mail-Server nützliche Dienste verrichten. Seit langer Zeit ist daher das BSD Maskottchen dieser fröhlich aussehende Dämon mit Turnschuhen und Dreizack. Programme, die als Dämon laufen, werden entsprechend einer Konvention mit einem d am Ende benannt. BIND ist der Berkeley Internet Name Daemon und das tatsächlich laufende Programm heißt named. Der Apache Webserver wird httpd genannt, der Druckerspool-Dämon heißt lpd usw. Dies ist allerdings eine Konvention und keine unumstößliche Regel: Der Dämon der Anwendung sendmail heißt sendmail und nicht maild, wie Sie vielleicht gedacht hatten. Manchmal müssen Sie mit einem Dämon kommunizieren und dazu benutzen Sie Signale. Sie können mit einem Dämonen oder jedem anderen laufenden Prozess kommunizieren, indem Sie diesem ein Signal schicken. Sie können verschiedene Signale verschicken – manche haben eine festgelegte Bedeutung, andere werden von der Anwendung interpretiert. Die Dokumentation zur fraglichen Anwendung wird erklären, wie die Anwendung Signale interpretiert. Sie können nur Signale zu Prozessen senden, die Ihnen gehören. Normale Benutzer haben nicht die Berechtigung, Prozessen anderer Benutzer mit &man.kill.1; oder &man.kill.2; Signale zu schicken. Der Benutzer root darf jedem Prozess Signale schicken. In manchen Fällen wird FreeBSD Signale senden. Wenn eine Anwendung schlecht geschrieben ist und auf Speicher zugreift, auf den sie nicht zugreifen soll, so sendet FreeBSD dem Prozess das Segmentation Violation Signal (SIGSEGV). Wenn eine Anwendung den &man.alarm.3; Systemaufruf benutzt hat, um nach einiger Zeit benachrichtigt zu werden, bekommt sie das Alarm Signal (SIGALRM) gesendet. Zwei Signale können benutzt werden, um Prozesse zu stoppen: SIGTERM und SIGKILL. Mit SIGTERM fordern Sie den Prozess höflich zum Beenden auf. Der Prozess kann das Signal abfangen und merken, dass er sich beenden soll. Er hat dann Gelegenheit Logdateien zu schließen und die Aktion, die er vor der Aufforderung sich zu beenden durchführte, abzuschließen. Er kann sogar SIGTERM ignorieren, wenn er eine Aktion durchführt, die nicht unterbrochen werden darf. SIGKILL kann von keinem Prozess ignoriert werden. Das Signal lässt sich mit Mich interessiert nicht, was du gerade machst, hör sofort auf damit! umschreiben. Wenn Sie einem Prozess SIGKILL schicken, dann wird FreeBSD diesen sofort beenden Das stimmt nicht ganz: Es gibt Fälle, in denen ein Prozess nicht unterbrochen werden kann. Wenn der Prozesss zum Beispiel eine Datei von einem anderen Rechner auf dem Netzwerk liest und dieser Rechner aus irgendwelchen Gründen nicht erreichbar ist (ausgeschaltet, oder ein Netzwerkfehler), dann ist der Prozess nicht zu unterbrechen. Wenn der Prozess den Lesezugriff nach einem Timeout von typischerweise zwei Minuten aufgibt, dann wir er beendet. . Andere Signale, die Sie vielleicht verschicken wollen, sind SIGHUP, SIGUSR1 und SIGUSR2. Diese Signale sind für allgemeine Zwecke vorgesehen und verschiedene Anwendungen werden unterschiedlich auf diese Signale reagieren. Nehmen wir an, Sie haben die Konfiguration Ihres Webservers verändert und möchten dies dem Server mitteilen. Sie könnten den Server natürlich stoppen und httpd wieder starten. Die Folge wäre eine kurze Zeit, in der der Server nicht erreichbar ist. Die meisten Dämonen lesen Ihre Konfigurationsdatei beim Empfang eines SIGHUP neu ein. Da es keinen Standard gibt, der vorschreibt, wie auf diese Signale zu reagieren ist, lesen Sie bitte die Dokumentation zu dem in Frage kommenden Dämon. Mit &man.kill.1; können Sie, wie unten gezeigt, Signale verschicken. Verschicken von Signalen Das folgende Beispiel zeigt, wie Sie &man.inetd.8; ein Signal schicken. Die Konfigurationsdatei von inetd ist /etc/inetd.conf. Diese Konfigurationsdatei liest inetd ein, wenn er ein SIGHUP empfängt. Suchen Sie die Prozess-ID des Prozesses, dem Sie ein Signal schicken wollen. Benutzen Sie dazu &man.ps.1; und &man.grep.1;. Mit &man.grep.1; können Sie in einer Ausgabe nach einem String suchen. Da &man.inetd.8; unter dem Benutzer root läuft und Sie das Kommando als normaler Benutzer absetzen, müssen Sie &man.ps.1; mit aufrufen: &prompt.user; ps -ax | grep inetd 198 ?? IWs 0:00.00 inetd -wW Die Prozess-ID von &man.inetd.8; ist 198. In einigen Fällen werden Sie auch das grep inetd Kommando in der Ausgabe sehen. Dies hat damit zu tun, wie &man.ps.1; die Liste der laufenden Prozesse untersucht. Senden Sie das Signal mit &man.kill.1;. Da &man.inetd.8; unter dem Benutzer root läuft, müssen Sie zuerst mit &man.su.1; root werden: &prompt.user; su Password: &prompt.root; /bin/kill -s HUP 198 &man.kill.1; wird, wie andere Kommandos von &unix; Systemen auch, keine Ausgabe erzeugen, wenn das Kommando erfolgreich war. Wenn Sie versuchen, einem Prozess, der nicht Ihnen gehört, ein Signal zu senden, dann werden Sie die Meldung kill: PID: Operation not permitted sehen. Wenn Sie sich bei der Eingabe der PID vertippen, werden Sie das Signal dem falschen Prozess schicken, was schlecht sein kann. Wenn Sie Glück haben, existiert der Prozess nicht und Sie werden mit der Ausgabe kill: PID: No such process belohnt. Warum soll ich <command>/bin/kill</command> benutzen? Viele Shells stellen kill als internes Kommando zur Verfügung, das heißt die Shell sendet das Signal direkt, anstatt /bin/kill zu starten. Das kann nützlich sein, aber die unterschiedlichen Shells benutzen eine verschiedene Syntax, um die Namen der Signale anzugeben. Anstatt jede Syntax zu lernen, kann es einfacher sein, /bin/kill ... direkt aufzurufen. Andere Signale senden Sie auf die gleiche Weise, ersetzen Sie nur TERM oder KILL entsprechend. Es kann gravierende Auswirkungen haben, wenn Sie zufällig Prozesse beenden. Insbesondere &man.init.8; mit der Prozess-ID ist ein Spezialfall. Mit /bin/kill -s KILL 1 können Sie Ihr System schnell herunterfahren. Überprüfen Sie die Argumente von &man.kill.1; immer zweimal bevor Sie Return drücken. Shells Shells Kommandozeile Von der tagtäglichen Arbeit mit FreeBSD wird eine Menge mit der Kommandozeilen Schnittstelle der Shell erledigt. Die Hauptaufgabe einer Shell besteht darin, Kommandos der Eingabe anzunehmen und diese auszuführen. Viele Shells haben außerdem eingebaute Funktionen, die die tägliche Arbeit erleichtern, beispielsweise eine Dateiverwaltung, die Vervollständigung von Dateinamen (Globbing), einen Kommandozeileneditor, sowie Makros und Umgebungsvariablen. FreeBSD enthält die Shells sh (die Bourne Shell) und tcsh (die verbesserte C-Shell) im Basissystem. Viele andere Shells, wie zsh oder bash, befinden sich in der Ports-Sammlung. Welche Shell soll ich benutzen? Das ist wirklich eine Geschmacksfrage. Sind Sie ein C-Programmierer, finden Sie vielleicht eine C-artige Shell wie die tcsh angenehmer. Kommen Sie von Linux oder ist Ihnen der Umgang mit &unix; Systemen neu, so könnten Sie die bash probieren. Der Punkt ist, dass jede Shell ihre speziellen Eigenschaften hat, die mit Ihrer bevorzugten Arbeitsumgebung harmonieren können oder nicht. Sie müssen sich eine Shell aussuchen. Ein verbreitetes Merkmal in Shells ist die Dateinamen-Vervollständigung. Sie müssen nur einige Buchstaben eines Kommandos oder eines Dateinamen eingeben und die Shell vervollständigt den Rest automatisch durch drücken der Tab-Taste. Hier ist ein Beispiel. Angenommen, Sie haben zwei Dateien foobar und foo.bar. Die Datei foo.bar möchten Sie löschen. Nun würden Sie an der Tastatur eingeben: rm fo[Tab]. [Tab]. Die Shell würde dann rm foo[BEEP].bar ausgeben. [BEEP] meint den Rechner-Piepser. Diesen gibt die Shell aus, um anzuzeigen, dass es den Dateinamen nicht vervollständigen konnte, da es mehrere Möglichkeiten gibt. Beide Dateien foobar und foo.bar beginnen mit fo, so konnte nur bis foo ergänzt werden. Nachdem Sie . eingaben und dann die Tab-Taste drückten, konnte die Shell den Rest für Sie ausfüllen. Umgebungsvariablen Ein weiteres Merkmal der Shell ist der Gebrauch von Umgebungsvariablen. Dies sind veränderbare Schlüsselpaare im Umgebungsraum der Shell, die jedes von der Shell aufgerufene Programm lesen kann. Daher enthält der Umgebungsraum viele Konfigurationsdaten für Programme. Die folgende Liste zeigt verbreitete Umgebungsvariablen und was sie bedeuten: Umgebungsvariablen Variable Beschreibung USER Name des angemeldeten Benutzers. PATH Liste mit Verzeichnissen (getrennt durch Doppelpunkt) zum Suchen nach Programmen. DISPLAY Der Name des X11-Bildschirms, auf dem Ausgaben erfolgen sollen. SHELL Die aktuelle Shell. TERM Name des Terminals des Benutzers. Benutzt, um die Fähigkeiten des Terminals zu bestimmen. TERMCAP Datenbankeintrag der Terminal Escape Codes, benötigt um verschieden Terminalfunktionen auszuführen. OSTYPE Typ des Betriebsystems, beispielsweise FreeBSD. MACHTYPE Die CPU Architektur auf dem das System läuft. EDITOR Vom Benutzer bevorzugter Text-Editor. PAGER Vom Benutzer bevorzugter Text-Betrachter. MANPATH Liste mit Verzeichnissen (getrennt durch Doppelpunkt) zum Suchen nach Manualpages. Shells Bourne Shell Das Setzen von Umgebungsvariablen funktioniert von Shell zu Shell unterschiedlich. Zum Beispiel benutzt man in C-artigen Shells wie der tcsh dazu setenv. Unter Bourne-Shells wie sh oder bash benutzen Sie zum Setzen von Umgebungsvariablen export. Um beispielsweise die Variable EDITOR mit csh oder tcsh auf /usr/local/bin/emacs zu setzen, setzen Sie das folgende Kommando ab: &prompt.user; setenv EDITOR /usr/local/bin/emacs Unter Bourne-Shells: &prompt.user; export EDITOR="/usr/local/bin/emacs" Sie können die meisten Shells Umgebungsvariablen expandieren lassen, in dem Sie in der Kommandozeile ein $ davor eingeben. Zum Beispiel gibt echo $TERM aus, worauf $TERM gesetzt ist, weil die Shell $TERM expandiert und das Ergebnis an echo gibt. Shells behandeln viele Spezialzeichen, so genannte Metazeichen, als besondere Darstellungen für Daten. Das allgemeinste ist das Zeichen *, das eine beliebige Anzahl Zeichen in einem Dateinamen repräsentiert. Diese Metazeichen können zum Vervollständigen von Dateinamen (Globbing) benutzt werden. Beispielsweise liefert das Kommando echo * nahezu das gleiche wie die Eingabe von ls, da die Shell alle Dateinamen die mit * übereinstimmen, an echo weitergibt. Um zu verhindern, dass die Shell diese Sonderzeichen interpretiert, kann man sie schützen, indem man ihnen einen Backslash (\) voranstellt. echo $TERM gibt aus, auf was auch immer Ihr Terminal gesetzt ist. echo \$TERM gibt $TERM genauso aus, wie es hier steht. Ändern der Shell Der einfachste Weg Ihre Shell zu ändern, ist das Kommando chsh zu benutzen. chsh platziert Sie im Editor, welcher durch Ihre Umgebungsvariable EDITOR gesetzt ist, im vi wenn die Variable nicht gesetzt ist. Ändern Sie die Zeile mit Shell: entsprechend Ihren Wünschen. Sie können auch chsh mit der Option aufrufen, dann wird Ihre Shell gesetzt, ohne dass Sie in einen Editor gelangen. Um Ihre Shell zum Beispiel auf die bash zu ändern, geben Sie das folgende Kommando ein: &prompt.user; chsh -s /usr/local/bin/bash Die von Ihnen gewünschte Shell muss in /etc/shells aufgeführt sein. Haben Sie eine Shell aus der Ports-Sammlung installiert, sollte das schon automatisch erledigt werden. Installierten Sie die Shell von Hand, so müssen Sie sie dort eintragen. Haben Sie beispielsweise die bash nach /usr/local/bin installiert, geben Sie Folgendes ein: &prompt.root; echo "/usr/local/bin/bash" >> /etc/shells Danach können Sie chsh aufrufen. Text-Editoren Text Editoren Editoren Eine großer Teil der Konfiguration wird bei FreeBSD durch das Editieren von Textdateien erledigt. Deshalb ist es eine gute Idee, mit einem Texteditor vertraut zu werden. FreeBSD hat ein paar davon im Basissystem und sehr viel mehr in der Ports-Sammlung. ee Text Editoren ee Der am leichtesten und einfachsten zu erlernende Editor nennt sich ee, was für easy editor steht. Um ee zu starten, gibt man in der Kommandozeile ee filename ein, wobei filename den Namen der zu editierenden Datei darstellt. Um zum Beispiel /etc/rc.conf zu editieren, tippen Sie ee /etc/rc.conf ein. Einmal im Editor, finden Sie alle Editor-Funktionen oben im Display aufgelistet. Das Einschaltungszeichen ^ steht für die Ctrl (oder Strg) Taste, mit ^e ist also die Tastenkombination Ctrle gemeint. Um ee zu verlassen, drücken Sie Esc und wählen dann aus. Der Editor fragt nach, ob Sie speichern möchten, wenn die Datei verändert wurde. vi Text Editoren vi emacs Text Editoren emacs FreeBSD verfügt über leistungsfähigere Editoren wie vi als Teil des Basissystems, andere Editoren wie emacs oder vim sind Teil der Ports-Sammlung. Diese Editoren bieten höhere Funktionalität und Leistungsfähigkeit, jedoch auf Kosten einer etwas schwierigeren Erlernbarkeit. Wenn Sie viele Textdateien editieren, sparen Sie auf lange Sicht mehr Zeit durch das Erlernen von Editoren wie vim oder emacs ein. Geräte und Gerätedateien Der Begriff Gerät wird meist in Verbindung mit Hardware wie Laufwerken, Druckern, Grafikkarten oder Tastaturen gebraucht. Der Großteil der Meldungen, die beim Booten von FreeBSD angezeigt werden, beziehen sich auf gefundene Geräte. Sie können sich die Bootmeldungen später in /var/run/dmesg.boot ansehen. Gerätenamen, die Sie wahrscheinlich in den Bootmeldungen sehen werden, sind zum Beispiel acd0, das erste IDE CD-ROM oder kbd0, die Tastatur. Auf die meisten Geräte wird unter &unix; Systemen über spezielle Gerätedateien im /dev Verzeichnis zugegriffen. Anlegen von Gerätedateien Wenn sie ein neues Gerät zu Ihrem System hinzufügen, oder die Unterstützung für zusätzliche Geräte kompilieren, müssen oft ein oder mehrere Gerätedateien erstellt werden. MAKEDEV Skript Auf Systemen ohne DEVFS (das sind alle Systeme vor FreeBSD 5.0) müssen Gerätedateien mit &man.MAKEDEV.8; wie unten gezeigt angelegt werden: &prompt.root; cd /dev &prompt.root; sh MAKEDEV ad1 Im Beispiel werden alle Gerätedateien für das zweite IDE Laufwerk angelegt. <literal>DEVFS</literal> (Gerätedateisystem) Das Gerätedateisystem DEVFS ermöglicht durch den Namensraum des Dateisystems Zugriff auf den Namensraum der Geräte im Kernel. Damit müssen Gerätedateien nicht mehr extra angelegt werden, sondern werden von DEVFS verwaltet. Weitere Informationen finden Sie in &man.devfs.5;. DEVFS ist ab &os; 5.0 in der Grundeinstellung aktiviert. Binärformate Um zu verstehen, warum &os; das Format &man.elf.5; benutzt, müssen Sie zunächst etwas über die drei gegenwärtig dominanten ausführbaren Formate für &unix; Systeme wissen: &man.a.out.5; Das älteste und klassische Objektformat von &unix; Systemen. Es benutzt einen kurzen, kompakten Header mit einer magischen Nummer am Anfang, die oft benutzt wird, um das Format zu charakterisieren (weitere Details finden Sie unter &man.a.out.5;). Es enthält drei geladene Segmente: .text, .data und .bss, sowie eine Symboltabelle und eine Stringtabelle. COFF Das Objektformat von SVR3. Der Header enthält nun eine Sectiontable. Man kann also mit mehr als nur den Sections .text, .data und .bss arbeiten. &man.elf.5; Der Nachfolger von COFF. Kennzeichnend sind mehrere Sections und mögliche 32-Bit- oder 64-Bit-Werte. Ein wesentlicher Nachteil: ELF wurde auch unter der Annahme entworfen, dass es nur eine ABI (Application Binary Interface) pro Systemarchitektur geben wird. Tatsächlich ist diese Annahme falsch – nicht einmal für die kommerzielle SYSV-Welt (in der es mindestens drei ABIs gibt: SVR4, Solaris, SCO) trifft sie zu. FreeBSD versucht, dieses Problem zu umgehen, indem ein Werkzeug bereitgestellt wird, um ausführbare Dateien im ELF-Format mit Informationen über die ABI zu versehen, zu der sie passen. Weitere Informationen finden Sie in der Manualpage &man.brandelf.1;. FreeBSD kommt aus dem klassischen Lager und verwendete traditionell das Format &man.a.out.5;, eine Technik, die bereits über viele BSD-Releases hinweg eingesetzt und geprüft worden ist. Obwohl es bereits seit einiger Zeit möglich war, auf einem FreeBSD-System auch Binaries (und Kernel) im ELF-Format zu erstellen und auszuführen, widersetzte FreeBSD sich anfangs dem Druck, auf ELF als Standardformat umzusteigen. Warum? Nun, als das Linux-Lager die schmerzhafte Umstellung auf ELF durchführte, ging es nicht so sehr darum, dem ausführbaren Format a.out zu entkommen, als dem unflexiblen, auf Sprungtabellen basierten Mechanismus für Shared-Libraries der die Konstruktion von Shared-Libraries für Hersteller und Entwickler gleichermaßen sehr kompliziert machte. Da die verfügbaren ELF-Werkzeuge eine Lösung für das Problem mit den Shared-Libraries anboten und ohnehin generell als ein Schritt vorwärts angesehen wurden, wurde der Aufwand für die Umstellung als notwendig akzeptiert und die Umstellung wurde durchgeführt. Unter FreeBSD ist der Mechanismus von Shared-Libraries enger an den Stil des Shared-Library-Mechanismus von Suns &sunos; angelehnt und von daher sehr einfach zu verwenden. Ja, aber warum gibt es so viele unterschiedliche Formate? In alter, grauer Vorzeit gab es simple Hardware. Diese simple Hardware unterstützte ein einfaches, kleines System. a.out war absolut passend für die Aufgabe, Binaries auf diesem simplen System (eine PDP-11) darzustellen. Als &unix; von diesem simplen System portiert wurde, wurde auch das a.out-Format beibehalten, weil es für die frühen Portierungen auf Architekturen wie den Motorola 68000 und VAX ausreichte. Dann dachte sich ein schlauer Hardware-Ingenieur, dass, wenn er Software zwingen könnte, einige Tricks anzustellen, es ihm möglich wäre, ein paar Gatter im Design zu sparen, und seinen CPU-Kern schneller zu machen. Obgleich es dazu gebracht wurde, mit dieser neuen Art von Hardware (heute als RISC bekannt) zu arbeiten, war a.out für diese Hardware schlecht geeignet. Deshalb wurden viele neue Formate entwickelt, um eine bessere Leistung auf dieser Hardware zu erreichen, als mit dem begrenzten, simplen a.out-Format. Dinge wie COFF, ECOFF und einige andere obskure wurden erdacht und ihre Grenzen untersucht, bevor die Dinge sich in Richtung ELF entwickelten. Hinzu kam, dass die Größe von Programmen gewaltig wurde und Festplatten sowie physikalischer Speicher immer noch relativ klein waren. Also wurde das Konzept von Shared-Libraries geboren. Das VM-System wurde auch immer fortgeschrittener. Obwohl bei jedem dieser Fortschritte das a.out-Format benutzt worden ist, wurde sein Nutzen mit jedem neuen Merkmal mehr und mehr gedehnt. Zusätzlich wollte man Dinge dynamisch zur Ausführungszeit laden, oder Teile ihres Programms nach der Initialisierung wegwerfen, um Hauptspeicher oder Swap-Speicher zu sparen. Programmiersprachen wurden immer fortschrittlicher und man wollte, dass Code automatisch vor der main-Funktion aufgerufen wird. Das a.out-Format wurde oft überarbeitet, um alle diese Dinge zu ermöglichen und sie funktionierten auch für einige Zeit. a.out konnte diese Probleme nicht ohne ein ständiges Ansteigen eines Overheads im Code und in der Komplexität handhaben. Obwohl ELF viele dieser Probleme löste, wäre es sehr aufwändig, ein System umzustellen, das im Grunde genommen funktionierte. Also musste ELF warten, bis es aufwändiger war, bei a.out zu bleiben, als zu ELF überzugehen. Im Laufe der Zeit haben sich die Erstellungswerkzeuge, von denen FreeBSD seine Erstellungswerkzeuge abgeleitet hat (speziell der Assembler und der Loader), in zwei parallele Zweige entwickelt. Im FreeBSD-Zweig wurden Shared-Libraries hinzugefügt und einige Fehler behoben. Das GNU-Team, das diese Programme ursprünglich geschrieben hat, hat sie umgeschrieben und eine simplere Unterstützung zur Erstellung von Cross-Compilern durch beliebiges Einschalten verschiedener Formate usw. hinzugefügt. Viele Leute wollten Cross-Compiler für FreeBSD erstellen, aber sie hatten kein Glück, denn FreeBSD's ältere Sourcen für as und ld waren hierzu nicht geeignet. Die neuen GNU-Werkzeuge (binutils) unterstützen Cross-Compilierung, ELF, Shared-Libraries, C++-Erweiterungen und mehr. Weiterhin geben viele Hersteller ELF-Binaries heraus und es ist gut, wenn FreeBSD sie ausführen kann. ELF ist ausdrucksfähiger als a.out und gestattet eine bessere Erweiterbarkeit des Basissystems. Die ELF-Werkzeuge werden besser gewartet und bieten Unterstützung von Cross-Compilierung, was für viele Leute wichtig ist. ELF mag etwas langsamer sein, als a.out, aber zu versuchen, das zu messen, könnte schwierig werden. Es gibt unzählige Details, in denen sich die beiden Formate unterscheiden, wie sie Pages abbilden, Initialisierungscode handhaben usw. Keins davon ist sehr wichtig, aber es sind Unterschiede. Irgendwann wird die Unterstützung für Programme im a.out-Format aus dem GENERIC-Kernel entfernt werden. Wenn es dann keinen oder kaum noch Bedarf für die Unterstützung dieses Formates gibt, werden die entsprechenden Routinen ganz entfernt werden. Weitere Informationen Manualpages Manualpages Die umfassendste Dokumentation rund um FreeBSD gibt es in Form von Manualpages. Annähernd jedes Programm im System bringt eine kurze Referenzdokumentation mit, die die grundsätzliche Funktion und verschiedene Parameter erklärt. Diese Dokumentationen kann man mit dem man Kommando benutzen. Die Benutzung des man Kommandos ist einfach: &prompt.user; man Kommando Kommando ist der Name des Kommandos, über das Sie etwas erfahren wollen. Um beispielsweise mehr über das Kommando ls zu lernen, geben Sie ein: &prompt.user; man ls Die Online-Dokumentation ist in nummerierte Sektionen unterteilt: Benutzerkommandos. Systemaufrufe und Fehlernummern. Funktionen der C Bibliothek. Gerätetreiber. Dateiformate. Spiele und andere Unterhaltung. Verschiedene Informationen. Systemverwaltung und -Kommandos. Kernel Entwickler. In einigen Fällen kann dasselbe Thema in mehreren Sektionen auftauchen. Es gibt zum Beispiel ein chmod Benutzerkommando und einen chmod() Systemaufruf. In diesem Fall können Sie dem man Kommando sagen, aus welcher Sektion Sie die Information erhalten möchten, indem Sie die Sektion mit angeben: &prompt.user; man 1 chmod Dies wird Ihnen die Manualpage für das Benutzerkommando chmod zeigen. Verweise auf eine Sektion der Manualpages werden traditionell in Klammern gesetzt. So bezieht sich &man.chmod.1; auf das Benutzerkommando chmod und mit &man.chmod.2; ist der Systemaufruf gemeint. Das ist nett, wenn Sie den Namen eines Kommandos wissen, und lediglich wissen wollen, wie es zu benutzen ist. Aber was tun Sie, wenn Sie Sich nicht an den Namen des Kommandos erinnern können? Sie können mit man nach Schlüsselbegriffen in den Kommandobeschreibungen zu suchen, indem Sie den Parameter benutzen: &prompt.user; man -k mail Mit diesem Kommando bekommen Sie eine Liste der Kommandos, deren Beschreibung das Schlüsselwort mail enthält. Diese Funktionalität erhalten Sie auch, wenn Sie das Kommando apropos benutzen. Nun, Sie schauen Sich alle die geheimnisvollen Kommandos in /usr/bin an, haben aber nicht den blassesten Schimmer, wozu die meisten davon gut sind? Dann rufen Sie doch einfach das folgende Kommando auf: &prompt.user; cd /usr/bin &prompt.user; man -f * Dasselbe erreichen Sie durch Eingabe von: &prompt.user; cd /usr/bin &prompt.user; whatis * GNU Info Dateien FreeBSD enthält viele Anwendungen und Utilities der Free Software Foundation (FSF). Zusätzlich zu den Manualpages bringen diese Programme ausführlichere Hypertext-Dokumente (info genannt) mit, welche man sich mit dem Kommando info ansehen kann. Wenn Sie emacs installiert haben, können Sie auch dessen info-Modus benutzen. Um das Kommando &man.info.1; zu benutzen, geben Sie einfach ein: &prompt.user; info Eine kurze Einführung gibt es mit h; eine Befehlsreferenz erhalten Sie durch Eingabe von: ?.