aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--science/Makefile1
-rw-r--r--science/R-cran-bayesm/Makefile20
-rw-r--r--science/R-cran-bayesm/distinfo2
-rw-r--r--science/R-cran-bayesm/pkg-descr16
4 files changed, 39 insertions, 0 deletions
diff --git a/science/Makefile b/science/Makefile
index 7fddc0c0642e..0e190b2b4bba 100644
--- a/science/Makefile
+++ b/science/Makefile
@@ -7,6 +7,7 @@
SUBDIR += 2dhf
SUBDIR += InsightToolkit
SUBDIR += R-cran-AMORE
+ SUBDIR += R-cran-bayesm
SUBDIR += abinit
SUBDIR += afni
SUBDIR += at
diff --git a/science/R-cran-bayesm/Makefile b/science/R-cran-bayesm/Makefile
new file mode 100644
index 000000000000..7665ad0f9fe7
--- /dev/null
+++ b/science/R-cran-bayesm/Makefile
@@ -0,0 +1,20 @@
+# New ports collection makefile for: R-cran-bayesm
+# Date created: March 07, 2011
+# Whom: Wen Heping <wenheping@gmail.com>
+#
+# $FreeBSD$
+#
+
+PORTNAME= bayesm
+PORTVERSION= 2.2.4
+CATEGORIES= science
+PKGNAMEPREFIX= R-cran-
+DISTNAME= ${PORTNAME}_${PORTVERSION:C/\./-/g:C/-/\./1}
+
+MAINTAINER= wen@FreeBSD.org
+COMMENT= Bayesian Inference for Marketing/Micro-econometrics
+
+USE_R_MOD= yes
+R_MOD_AUTOPLIST= yes
+
+.include <bsd.port.mk>
diff --git a/science/R-cran-bayesm/distinfo b/science/R-cran-bayesm/distinfo
new file mode 100644
index 000000000000..ddf8de6c5a85
--- /dev/null
+++ b/science/R-cran-bayesm/distinfo
@@ -0,0 +1,2 @@
+SHA256 (bayesm_2.2-4.tar.gz) = 93bfcd6652106c159fa4bc12552d34dcfee7a28597c8bf64f8ca7af65b834ce4
+SIZE (bayesm_2.2-4.tar.gz) = 1766401
diff --git a/science/R-cran-bayesm/pkg-descr b/science/R-cran-bayesm/pkg-descr
new file mode 100644
index 000000000000..681ddd86a291
--- /dev/null
+++ b/science/R-cran-bayesm/pkg-descr
@@ -0,0 +1,16 @@
+bayesm covers many important models used in marketing and micro-econometrics
+applications. The package includes: Bayes Regression (univariate or
+multivariate dep var), Bayes Seemingly Unrelated Regression (SUR), Binary and
+Ordinal Probit, Multinomial Logit (MNL) and Multinomial Probit (MNP),
+Multivariate Probit, Negative Binomial (Poisson) Regression, Multivariate
+Mixtures of Normals (including clustering), Dirichlet Process Prior Density
+Estimation with normal base, Hierarchical Linear Models with normal prior and
+covariates, Hierarchical Linear Models with a mixture of normals prior and
+covariates, Hierarchical Multinomial Logits with a mixture of normals prior
+and covariates, Hierarchical Multinomial Logits with a Dirichlet Process
+prior and covariates, Hierarchical Negative Binomial Regression Models,
+Bayesian analysis of choice-based conjoint data, Bayesian treatment of linear
+instrumental variables models, and Analysis of Multivariate Ordinal survey
+data with scale usage heterogeneity (as in Rossi et al, JASA (01)).
+
+WWW: http://www.perossi.org/home/bsm-1