HipMCL is a high-performance parallel algorithm for large-scale network clustering. HipMCL parallelizes popular Markov Cluster (MCL) algorithm that has been shown to be one of the most successful and widely used algorithms for network clustering. It is based on random walks and was initially designed to detect families in protein-protein interaction networks. Despite MCL's efficiency and multi-threading support, scalability remains a bottleneck as it fails to process networks of several hundred million nodes and billion edges in an affordable running time. HipMCL overcomes all of these challenges by developing massively-parallel algorithms for all components of MCL. HipMCL can be 1000 times faster than the original MCL without any information loss. It can easily cluster a network of ~75 million nodes with ~68 billion edges in ~2.4 hours using ~2000 nodes of Cori supercomputer at NERSC. HipMCL is developed in C++ language and uses standard OpenMP and MPI libraries for shared- and distributed-memory parallelization. WWW: https://bitbucket.org/azadcse/hipmcl/wiki/Home