diff options
| author | Ed Schouten <ed@FreeBSD.org> | 2009-06-02 17:52:33 +0000 | 
|---|---|---|
| committer | Ed Schouten <ed@FreeBSD.org> | 2009-06-02 17:52:33 +0000 | 
| commit | 009b1c42aa6266385f2c37e227516b24077e6dd7 (patch) | |
| tree | 64ba909838c23261cace781ece27d106134ea451 /lib/Bitcode/Writer/BitcodeWriter.cpp | |
Notes
Diffstat (limited to 'lib/Bitcode/Writer/BitcodeWriter.cpp')
| -rw-r--r-- | lib/Bitcode/Writer/BitcodeWriter.cpp | 1449 | 
1 files changed, 1449 insertions, 0 deletions
| diff --git a/lib/Bitcode/Writer/BitcodeWriter.cpp b/lib/Bitcode/Writer/BitcodeWriter.cpp new file mode 100644 index 0000000000000..bfc029c1f2771 --- /dev/null +++ b/lib/Bitcode/Writer/BitcodeWriter.cpp @@ -0,0 +1,1449 @@ +//===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===// +// +//                     The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// Bitcode writer implementation. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Bitcode/ReaderWriter.h" +#include "llvm/Bitcode/BitstreamWriter.h" +#include "llvm/Bitcode/LLVMBitCodes.h" +#include "ValueEnumerator.h" +#include "llvm/Constants.h" +#include "llvm/DerivedTypes.h" +#include "llvm/InlineAsm.h" +#include "llvm/Instructions.h" +#include "llvm/MDNode.h" +#include "llvm/Module.h" +#include "llvm/TypeSymbolTable.h" +#include "llvm/ValueSymbolTable.h" +#include "llvm/Support/MathExtras.h" +#include "llvm/Support/Streams.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/System/Program.h" +using namespace llvm; + +/// These are manifest constants used by the bitcode writer. They do not need to +/// be kept in sync with the reader, but need to be consistent within this file. +enum { +  CurVersion = 0, +   +  // VALUE_SYMTAB_BLOCK abbrev id's. +  VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, +  VST_ENTRY_7_ABBREV, +  VST_ENTRY_6_ABBREV, +  VST_BBENTRY_6_ABBREV, +   +  // CONSTANTS_BLOCK abbrev id's. +  CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, +  CONSTANTS_INTEGER_ABBREV, +  CONSTANTS_CE_CAST_Abbrev, +  CONSTANTS_NULL_Abbrev, +   +  // FUNCTION_BLOCK abbrev id's. +  FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, +  FUNCTION_INST_BINOP_ABBREV, +  FUNCTION_INST_CAST_ABBREV, +  FUNCTION_INST_RET_VOID_ABBREV, +  FUNCTION_INST_RET_VAL_ABBREV, +  FUNCTION_INST_UNREACHABLE_ABBREV +}; + + +static unsigned GetEncodedCastOpcode(unsigned Opcode) { +  switch (Opcode) { +  default: assert(0 && "Unknown cast instruction!"); +  case Instruction::Trunc   : return bitc::CAST_TRUNC; +  case Instruction::ZExt    : return bitc::CAST_ZEXT; +  case Instruction::SExt    : return bitc::CAST_SEXT; +  case Instruction::FPToUI  : return bitc::CAST_FPTOUI; +  case Instruction::FPToSI  : return bitc::CAST_FPTOSI; +  case Instruction::UIToFP  : return bitc::CAST_UITOFP; +  case Instruction::SIToFP  : return bitc::CAST_SITOFP; +  case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; +  case Instruction::FPExt   : return bitc::CAST_FPEXT; +  case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; +  case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; +  case Instruction::BitCast : return bitc::CAST_BITCAST; +  } +} + +static unsigned GetEncodedBinaryOpcode(unsigned Opcode) { +  switch (Opcode) { +  default: assert(0 && "Unknown binary instruction!"); +  case Instruction::Add:  return bitc::BINOP_ADD; +  case Instruction::Sub:  return bitc::BINOP_SUB; +  case Instruction::Mul:  return bitc::BINOP_MUL; +  case Instruction::UDiv: return bitc::BINOP_UDIV; +  case Instruction::FDiv: +  case Instruction::SDiv: return bitc::BINOP_SDIV; +  case Instruction::URem: return bitc::BINOP_UREM; +  case Instruction::FRem: +  case Instruction::SRem: return bitc::BINOP_SREM; +  case Instruction::Shl:  return bitc::BINOP_SHL; +  case Instruction::LShr: return bitc::BINOP_LSHR; +  case Instruction::AShr: return bitc::BINOP_ASHR; +  case Instruction::And:  return bitc::BINOP_AND; +  case Instruction::Or:   return bitc::BINOP_OR; +  case Instruction::Xor:  return bitc::BINOP_XOR; +  } +} + + + +static void WriteStringRecord(unsigned Code, const std::string &Str,  +                              unsigned AbbrevToUse, BitstreamWriter &Stream) { +  SmallVector<unsigned, 64> Vals; +   +  // Code: [strchar x N] +  for (unsigned i = 0, e = Str.size(); i != e; ++i) +    Vals.push_back(Str[i]); +     +  // Emit the finished record. +  Stream.EmitRecord(Code, Vals, AbbrevToUse); +} + +// Emit information about parameter attributes. +static void WriteAttributeTable(const ValueEnumerator &VE,  +                                BitstreamWriter &Stream) { +  const std::vector<AttrListPtr> &Attrs = VE.getAttributes(); +  if (Attrs.empty()) return; +   +  Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); + +  SmallVector<uint64_t, 64> Record; +  for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { +    const AttrListPtr &A = Attrs[i]; +    for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) { +      const AttributeWithIndex &PAWI = A.getSlot(i); +      Record.push_back(PAWI.Index); + +      // FIXME: remove in LLVM 3.0 +      // Store the alignment in the bitcode as a 16-bit raw value instead of a +      // 5-bit log2 encoded value. Shift the bits above the alignment up by +      // 11 bits. +      uint64_t FauxAttr = PAWI.Attrs & 0xffff; +      if (PAWI.Attrs & Attribute::Alignment) +        FauxAttr |= (1ull<<16)<<(((PAWI.Attrs & Attribute::Alignment)-1) >> 16); +      FauxAttr |= (PAWI.Attrs & (0x3FFull << 21)) << 11; + +      Record.push_back(FauxAttr); +    } +     +    Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); +    Record.clear(); +  } +   +  Stream.ExitBlock(); +} + +/// WriteTypeTable - Write out the type table for a module. +static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) { +  const ValueEnumerator::TypeList &TypeList = VE.getTypes(); +   +  Stream.EnterSubblock(bitc::TYPE_BLOCK_ID, 4 /*count from # abbrevs */); +  SmallVector<uint64_t, 64> TypeVals; +   +  // Abbrev for TYPE_CODE_POINTER. +  BitCodeAbbrev *Abbv = new BitCodeAbbrev(); +  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); +  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, +                            Log2_32_Ceil(VE.getTypes().size()+1))); +  Abbv->Add(BitCodeAbbrevOp(0));  // Addrspace = 0 +  unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv); +   +  // Abbrev for TYPE_CODE_FUNCTION. +  Abbv = new BitCodeAbbrev(); +  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); +  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // isvararg +  Abbv->Add(BitCodeAbbrevOp(0));  // FIXME: DEAD value, remove in LLVM 3.0 +  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); +  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, +                            Log2_32_Ceil(VE.getTypes().size()+1))); +  unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv); +   +  // Abbrev for TYPE_CODE_STRUCT. +  Abbv = new BitCodeAbbrev(); +  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT)); +  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked +  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); +  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, +                            Log2_32_Ceil(VE.getTypes().size()+1))); +  unsigned StructAbbrev = Stream.EmitAbbrev(Abbv); +  +  // Abbrev for TYPE_CODE_ARRAY. +  Abbv = new BitCodeAbbrev(); +  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); +  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // size +  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, +                            Log2_32_Ceil(VE.getTypes().size()+1))); +  unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv); +   +  // Emit an entry count so the reader can reserve space. +  TypeVals.push_back(TypeList.size()); +  Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); +  TypeVals.clear(); +   +  // Loop over all of the types, emitting each in turn. +  for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { +    const Type *T = TypeList[i].first; +    int AbbrevToUse = 0; +    unsigned Code = 0; +     +    switch (T->getTypeID()) { +    default: assert(0 && "Unknown type!"); +    case Type::VoidTyID:   Code = bitc::TYPE_CODE_VOID;   break; +    case Type::FloatTyID:  Code = bitc::TYPE_CODE_FLOAT;  break; +    case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; +    case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; +    case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; +    case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; +    case Type::LabelTyID:  Code = bitc::TYPE_CODE_LABEL;  break; +    case Type::OpaqueTyID: Code = bitc::TYPE_CODE_OPAQUE; break; +    case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; +    case Type::IntegerTyID: +      // INTEGER: [width] +      Code = bitc::TYPE_CODE_INTEGER; +      TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); +      break; +    case Type::PointerTyID: { +      const PointerType *PTy = cast<PointerType>(T); +      // POINTER: [pointee type, address space] +      Code = bitc::TYPE_CODE_POINTER; +      TypeVals.push_back(VE.getTypeID(PTy->getElementType())); +      unsigned AddressSpace = PTy->getAddressSpace(); +      TypeVals.push_back(AddressSpace); +      if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; +      break; +    } +    case Type::FunctionTyID: { +      const FunctionType *FT = cast<FunctionType>(T); +      // FUNCTION: [isvararg, attrid, retty, paramty x N] +      Code = bitc::TYPE_CODE_FUNCTION; +      TypeVals.push_back(FT->isVarArg()); +      TypeVals.push_back(0);  // FIXME: DEAD: remove in llvm 3.0 +      TypeVals.push_back(VE.getTypeID(FT->getReturnType())); +      for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) +        TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); +      AbbrevToUse = FunctionAbbrev; +      break; +    } +    case Type::StructTyID: { +      const StructType *ST = cast<StructType>(T); +      // STRUCT: [ispacked, eltty x N] +      Code = bitc::TYPE_CODE_STRUCT; +      TypeVals.push_back(ST->isPacked()); +      // Output all of the element types. +      for (StructType::element_iterator I = ST->element_begin(), +           E = ST->element_end(); I != E; ++I) +        TypeVals.push_back(VE.getTypeID(*I)); +      AbbrevToUse = StructAbbrev; +      break; +    } +    case Type::ArrayTyID: { +      const ArrayType *AT = cast<ArrayType>(T); +      // ARRAY: [numelts, eltty] +      Code = bitc::TYPE_CODE_ARRAY; +      TypeVals.push_back(AT->getNumElements()); +      TypeVals.push_back(VE.getTypeID(AT->getElementType())); +      AbbrevToUse = ArrayAbbrev; +      break; +    } +    case Type::VectorTyID: { +      const VectorType *VT = cast<VectorType>(T); +      // VECTOR [numelts, eltty] +      Code = bitc::TYPE_CODE_VECTOR; +      TypeVals.push_back(VT->getNumElements()); +      TypeVals.push_back(VE.getTypeID(VT->getElementType())); +      break; +    } +    } + +    // Emit the finished record. +    Stream.EmitRecord(Code, TypeVals, AbbrevToUse); +    TypeVals.clear(); +  } +   +  Stream.ExitBlock(); +} + +static unsigned getEncodedLinkage(const GlobalValue *GV) { +  switch (GV->getLinkage()) { +  default: assert(0 && "Invalid linkage!"); +  case GlobalValue::GhostLinkage:  // Map ghost linkage onto external. +  case GlobalValue::ExternalLinkage:     return 0; +  case GlobalValue::WeakAnyLinkage:      return 1; +  case GlobalValue::AppendingLinkage:    return 2; +  case GlobalValue::InternalLinkage:     return 3; +  case GlobalValue::LinkOnceAnyLinkage:  return 4; +  case GlobalValue::DLLImportLinkage:    return 5; +  case GlobalValue::DLLExportLinkage:    return 6; +  case GlobalValue::ExternalWeakLinkage: return 7; +  case GlobalValue::CommonLinkage:       return 8; +  case GlobalValue::PrivateLinkage:      return 9; +  case GlobalValue::WeakODRLinkage:      return 10; +  case GlobalValue::LinkOnceODRLinkage:  return 11; +  case GlobalValue::AvailableExternallyLinkage:  return 12; +  } +} + +static unsigned getEncodedVisibility(const GlobalValue *GV) { +  switch (GV->getVisibility()) { +  default: assert(0 && "Invalid visibility!"); +  case GlobalValue::DefaultVisibility:   return 0; +  case GlobalValue::HiddenVisibility:    return 1; +  case GlobalValue::ProtectedVisibility: return 2; +  } +} + +// Emit top-level description of module, including target triple, inline asm, +// descriptors for global variables, and function prototype info. +static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE, +                            BitstreamWriter &Stream) { +  // Emit the list of dependent libraries for the Module. +  for (Module::lib_iterator I = M->lib_begin(), E = M->lib_end(); I != E; ++I) +    WriteStringRecord(bitc::MODULE_CODE_DEPLIB, *I, 0/*TODO*/, Stream); + +  // Emit various pieces of data attached to a module. +  if (!M->getTargetTriple().empty()) +    WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(), +                      0/*TODO*/, Stream); +  if (!M->getDataLayout().empty()) +    WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout(), +                      0/*TODO*/, Stream); +  if (!M->getModuleInlineAsm().empty()) +    WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(), +                      0/*TODO*/, Stream); + +  // Emit information about sections and GC, computing how many there are. Also +  // compute the maximum alignment value. +  std::map<std::string, unsigned> SectionMap; +  std::map<std::string, unsigned> GCMap; +  unsigned MaxAlignment = 0; +  unsigned MaxGlobalType = 0; +  for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end(); +       GV != E; ++GV) { +    MaxAlignment = std::max(MaxAlignment, GV->getAlignment()); +    MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType())); +     +    if (!GV->hasSection()) continue; +    // Give section names unique ID's. +    unsigned &Entry = SectionMap[GV->getSection()]; +    if (Entry != 0) continue; +    WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(), +                      0/*TODO*/, Stream); +    Entry = SectionMap.size(); +  } +  for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { +    MaxAlignment = std::max(MaxAlignment, F->getAlignment()); +    if (F->hasSection()) { +      // Give section names unique ID's. +      unsigned &Entry = SectionMap[F->getSection()]; +      if (!Entry) { +        WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(), +                          0/*TODO*/, Stream); +        Entry = SectionMap.size(); +      } +    } +    if (F->hasGC()) { +      // Same for GC names. +      unsigned &Entry = GCMap[F->getGC()]; +      if (!Entry) { +        WriteStringRecord(bitc::MODULE_CODE_GCNAME, F->getGC(), +                          0/*TODO*/, Stream); +        Entry = GCMap.size(); +      } +    } +  } +   +  // Emit abbrev for globals, now that we know # sections and max alignment. +  unsigned SimpleGVarAbbrev = 0; +  if (!M->global_empty()) {  +    // Add an abbrev for common globals with no visibility or thread localness. +    BitCodeAbbrev *Abbv = new BitCodeAbbrev(); +    Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, +                              Log2_32_Ceil(MaxGlobalType+1))); +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));      // Constant. +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));        // Initializer. +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));      // Linkage. +    if (MaxAlignment == 0)                                      // Alignment. +      Abbv->Add(BitCodeAbbrevOp(0)); +    else { +      unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; +      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, +                               Log2_32_Ceil(MaxEncAlignment+1))); +    } +    if (SectionMap.empty())                                    // Section. +      Abbv->Add(BitCodeAbbrevOp(0)); +    else +      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, +                               Log2_32_Ceil(SectionMap.size()+1))); +    // Don't bother emitting vis + thread local. +    SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv); +  } +   +  // Emit the global variable information. +  SmallVector<unsigned, 64> Vals; +  for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end(); +       GV != E; ++GV) { +    unsigned AbbrevToUse = 0; + +    // GLOBALVAR: [type, isconst, initid,  +    //             linkage, alignment, section, visibility, threadlocal] +    Vals.push_back(VE.getTypeID(GV->getType())); +    Vals.push_back(GV->isConstant()); +    Vals.push_back(GV->isDeclaration() ? 0 : +                   (VE.getValueID(GV->getInitializer()) + 1)); +    Vals.push_back(getEncodedLinkage(GV)); +    Vals.push_back(Log2_32(GV->getAlignment())+1); +    Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0); +    if (GV->isThreadLocal() ||  +        GV->getVisibility() != GlobalValue::DefaultVisibility) { +      Vals.push_back(getEncodedVisibility(GV)); +      Vals.push_back(GV->isThreadLocal()); +    } else { +      AbbrevToUse = SimpleGVarAbbrev; +    } +     +    Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); +    Vals.clear(); +  } + +  // Emit the function proto information. +  for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { +    // FUNCTION:  [type, callingconv, isproto, paramattr, +    //             linkage, alignment, section, visibility, gc] +    Vals.push_back(VE.getTypeID(F->getType())); +    Vals.push_back(F->getCallingConv()); +    Vals.push_back(F->isDeclaration()); +    Vals.push_back(getEncodedLinkage(F)); +    Vals.push_back(VE.getAttributeID(F->getAttributes())); +    Vals.push_back(Log2_32(F->getAlignment())+1); +    Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0); +    Vals.push_back(getEncodedVisibility(F)); +    Vals.push_back(F->hasGC() ? GCMap[F->getGC()] : 0); +     +    unsigned AbbrevToUse = 0; +    Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); +    Vals.clear(); +  } +   +   +  // Emit the alias information. +  for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end(); +       AI != E; ++AI) { +    Vals.push_back(VE.getTypeID(AI->getType())); +    Vals.push_back(VE.getValueID(AI->getAliasee())); +    Vals.push_back(getEncodedLinkage(AI)); +    Vals.push_back(getEncodedVisibility(AI)); +    unsigned AbbrevToUse = 0; +    Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); +    Vals.clear(); +  } +} + + +static void WriteConstants(unsigned FirstVal, unsigned LastVal, +                           const ValueEnumerator &VE, +                           BitstreamWriter &Stream, bool isGlobal) { +  if (FirstVal == LastVal) return; +   +  Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); + +  unsigned AggregateAbbrev = 0; +  unsigned String8Abbrev = 0; +  unsigned CString7Abbrev = 0; +  unsigned CString6Abbrev = 0; +  unsigned MDString8Abbrev = 0; +  unsigned MDString6Abbrev = 0; +  // If this is a constant pool for the module, emit module-specific abbrevs. +  if (isGlobal) { +    // Abbrev for CST_CODE_AGGREGATE. +    BitCodeAbbrev *Abbv = new BitCodeAbbrev(); +    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); +    AggregateAbbrev = Stream.EmitAbbrev(Abbv); + +    // Abbrev for CST_CODE_STRING. +    Abbv = new BitCodeAbbrev(); +    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); +    String8Abbrev = Stream.EmitAbbrev(Abbv); +    // Abbrev for CST_CODE_CSTRING. +    Abbv = new BitCodeAbbrev(); +    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); +    CString7Abbrev = Stream.EmitAbbrev(Abbv); +    // Abbrev for CST_CODE_CSTRING. +    Abbv = new BitCodeAbbrev(); +    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); +    CString6Abbrev = Stream.EmitAbbrev(Abbv); + +    // Abbrev for CST_CODE_MDSTRING. +    Abbv = new BitCodeAbbrev(); +    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_MDSTRING)); +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); +    MDString8Abbrev = Stream.EmitAbbrev(Abbv); +    // Abbrev for CST_CODE_MDSTRING. +    Abbv = new BitCodeAbbrev(); +    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_MDSTRING)); +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); +    MDString6Abbrev = Stream.EmitAbbrev(Abbv); +  }   +   +  SmallVector<uint64_t, 64> Record; + +  const ValueEnumerator::ValueList &Vals = VE.getValues(); +  const Type *LastTy = 0; +  for (unsigned i = FirstVal; i != LastVal; ++i) { +    const Value *V = Vals[i].first; +    // If we need to switch types, do so now. +    if (V->getType() != LastTy) { +      LastTy = V->getType(); +      Record.push_back(VE.getTypeID(LastTy)); +      Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, +                        CONSTANTS_SETTYPE_ABBREV); +      Record.clear(); +    } +     +    if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { +      Record.push_back(unsigned(IA->hasSideEffects())); +       +      // Add the asm string. +      const std::string &AsmStr = IA->getAsmString(); +      Record.push_back(AsmStr.size()); +      for (unsigned i = 0, e = AsmStr.size(); i != e; ++i) +        Record.push_back(AsmStr[i]); +       +      // Add the constraint string. +      const std::string &ConstraintStr = IA->getConstraintString(); +      Record.push_back(ConstraintStr.size()); +      for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i) +        Record.push_back(ConstraintStr[i]); +      Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); +      Record.clear(); +      continue; +    } +    const Constant *C = cast<Constant>(V); +    unsigned Code = -1U; +    unsigned AbbrevToUse = 0; +    if (C->isNullValue()) { +      Code = bitc::CST_CODE_NULL; +    } else if (isa<UndefValue>(C)) { +      Code = bitc::CST_CODE_UNDEF; +    } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { +      if (IV->getBitWidth() <= 64) { +        int64_t V = IV->getSExtValue(); +        if (V >= 0) +          Record.push_back(V << 1); +        else +          Record.push_back((-V << 1) | 1); +        Code = bitc::CST_CODE_INTEGER; +        AbbrevToUse = CONSTANTS_INTEGER_ABBREV; +      } else {                             // Wide integers, > 64 bits in size. +        // We have an arbitrary precision integer value to write whose  +        // bit width is > 64. However, in canonical unsigned integer  +        // format it is likely that the high bits are going to be zero. +        // So, we only write the number of active words. +        unsigned NWords = IV->getValue().getActiveWords();  +        const uint64_t *RawWords = IV->getValue().getRawData(); +        for (unsigned i = 0; i != NWords; ++i) { +          int64_t V = RawWords[i]; +          if (V >= 0) +            Record.push_back(V << 1); +          else +            Record.push_back((-V << 1) | 1); +        } +        Code = bitc::CST_CODE_WIDE_INTEGER; +      } +    } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { +      Code = bitc::CST_CODE_FLOAT; +      const Type *Ty = CFP->getType(); +      if (Ty == Type::FloatTy || Ty == Type::DoubleTy) { +        Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); +      } else if (Ty == Type::X86_FP80Ty) { +        // api needed to prevent premature destruction +        // bits are not in the same order as a normal i80 APInt, compensate. +        APInt api = CFP->getValueAPF().bitcastToAPInt(); +        const uint64_t *p = api.getRawData(); +        Record.push_back((p[1] << 48) | (p[0] >> 16)); +        Record.push_back(p[0] & 0xffffLL); +      } else if (Ty == Type::FP128Ty || Ty == Type::PPC_FP128Ty) { +        APInt api = CFP->getValueAPF().bitcastToAPInt(); +        const uint64_t *p = api.getRawData(); +        Record.push_back(p[0]); +        Record.push_back(p[1]); +      } else { +        assert (0 && "Unknown FP type!"); +      } +    } else if (isa<ConstantArray>(C) && cast<ConstantArray>(C)->isString()) { +      // Emit constant strings specially. +      unsigned NumOps = C->getNumOperands(); +      // If this is a null-terminated string, use the denser CSTRING encoding. +      if (C->getOperand(NumOps-1)->isNullValue()) { +        Code = bitc::CST_CODE_CSTRING; +        --NumOps;  // Don't encode the null, which isn't allowed by char6. +      } else { +        Code = bitc::CST_CODE_STRING; +        AbbrevToUse = String8Abbrev; +      } +      bool isCStr7 = Code == bitc::CST_CODE_CSTRING; +      bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; +      for (unsigned i = 0; i != NumOps; ++i) { +        unsigned char V = cast<ConstantInt>(C->getOperand(i))->getZExtValue(); +        Record.push_back(V); +        isCStr7 &= (V & 128) == 0; +        if (isCStrChar6)  +          isCStrChar6 = BitCodeAbbrevOp::isChar6(V); +      } +       +      if (isCStrChar6) +        AbbrevToUse = CString6Abbrev; +      else if (isCStr7) +        AbbrevToUse = CString7Abbrev; +    } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(V) || +               isa<ConstantVector>(V)) { +      Code = bitc::CST_CODE_AGGREGATE; +      for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) +        Record.push_back(VE.getValueID(C->getOperand(i))); +      AbbrevToUse = AggregateAbbrev; +    } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { +      switch (CE->getOpcode()) { +      default: +        if (Instruction::isCast(CE->getOpcode())) { +          Code = bitc::CST_CODE_CE_CAST; +          Record.push_back(GetEncodedCastOpcode(CE->getOpcode())); +          Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); +          Record.push_back(VE.getValueID(C->getOperand(0))); +          AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; +        } else { +          assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); +          Code = bitc::CST_CODE_CE_BINOP; +          Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode())); +          Record.push_back(VE.getValueID(C->getOperand(0))); +          Record.push_back(VE.getValueID(C->getOperand(1))); +        } +        break; +      case Instruction::GetElementPtr: +        Code = bitc::CST_CODE_CE_GEP; +        for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { +          Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); +          Record.push_back(VE.getValueID(C->getOperand(i))); +        } +        break; +      case Instruction::Select: +        Code = bitc::CST_CODE_CE_SELECT; +        Record.push_back(VE.getValueID(C->getOperand(0))); +        Record.push_back(VE.getValueID(C->getOperand(1))); +        Record.push_back(VE.getValueID(C->getOperand(2))); +        break; +      case Instruction::ExtractElement: +        Code = bitc::CST_CODE_CE_EXTRACTELT; +        Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); +        Record.push_back(VE.getValueID(C->getOperand(0))); +        Record.push_back(VE.getValueID(C->getOperand(1))); +        break; +      case Instruction::InsertElement: +        Code = bitc::CST_CODE_CE_INSERTELT; +        Record.push_back(VE.getValueID(C->getOperand(0))); +        Record.push_back(VE.getValueID(C->getOperand(1))); +        Record.push_back(VE.getValueID(C->getOperand(2))); +        break; +      case Instruction::ShuffleVector: +        // If the return type and argument types are the same, this is a +        // standard shufflevector instruction.  If the types are different, +        // then the shuffle is widening or truncating the input vectors, and +        // the argument type must also be encoded. +        if (C->getType() == C->getOperand(0)->getType()) { +          Code = bitc::CST_CODE_CE_SHUFFLEVEC; +        } else { +          Code = bitc::CST_CODE_CE_SHUFVEC_EX; +          Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); +        } +        Record.push_back(VE.getValueID(C->getOperand(0))); +        Record.push_back(VE.getValueID(C->getOperand(1))); +        Record.push_back(VE.getValueID(C->getOperand(2))); +        break; +      case Instruction::ICmp: +      case Instruction::FCmp: +      case Instruction::VICmp: +      case Instruction::VFCmp: +        if (isa<VectorType>(C->getOperand(0)->getType()) +            && (CE->getOpcode() == Instruction::ICmp +                || CE->getOpcode() == Instruction::FCmp)) { +          // compare returning vector of Int1Ty +          assert(0 && "Unsupported constant!"); +        } else { +          Code = bitc::CST_CODE_CE_CMP; +        } +        Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); +        Record.push_back(VE.getValueID(C->getOperand(0))); +        Record.push_back(VE.getValueID(C->getOperand(1))); +        Record.push_back(CE->getPredicate()); +        break; +      } +    } else if (const MDString *S = dyn_cast<MDString>(C)) { +      Code = bitc::CST_CODE_MDSTRING; +      AbbrevToUse = MDString6Abbrev; +      for (unsigned i = 0, e = S->size(); i != e; ++i) { +        char V = S->begin()[i]; +        Record.push_back(V); + +        if (!BitCodeAbbrevOp::isChar6(V)) +          AbbrevToUse = MDString8Abbrev; +      } +    } else if (const MDNode *N = dyn_cast<MDNode>(C)) { +      Code = bitc::CST_CODE_MDNODE; +      for (unsigned i = 0, e = N->getNumElements(); i != e; ++i) { +        if (N->getElement(i)) { +          Record.push_back(VE.getTypeID(N->getElement(i)->getType())); +          Record.push_back(VE.getValueID(N->getElement(i))); +        } else { +          Record.push_back(VE.getTypeID(Type::VoidTy)); +          Record.push_back(0); +        } +      } +    } else { +      assert(0 && "Unknown constant!"); +    } +    Stream.EmitRecord(Code, Record, AbbrevToUse); +    Record.clear(); +  } + +  Stream.ExitBlock(); +} + +static void WriteModuleConstants(const ValueEnumerator &VE, +                                 BitstreamWriter &Stream) { +  const ValueEnumerator::ValueList &Vals = VE.getValues(); +   +  // Find the first constant to emit, which is the first non-globalvalue value. +  // We know globalvalues have been emitted by WriteModuleInfo. +  for (unsigned i = 0, e = Vals.size(); i != e; ++i) { +    if (!isa<GlobalValue>(Vals[i].first)) { +      WriteConstants(i, Vals.size(), VE, Stream, true); +      return; +    } +  } +} + +/// PushValueAndType - The file has to encode both the value and type id for +/// many values, because we need to know what type to create for forward +/// references.  However, most operands are not forward references, so this type +/// field is not needed. +/// +/// This function adds V's value ID to Vals.  If the value ID is higher than the +/// instruction ID, then it is a forward reference, and it also includes the +/// type ID. +static bool PushValueAndType(const Value *V, unsigned InstID, +                             SmallVector<unsigned, 64> &Vals,  +                             ValueEnumerator &VE) { +  unsigned ValID = VE.getValueID(V); +  Vals.push_back(ValID); +  if (ValID >= InstID) { +    Vals.push_back(VE.getTypeID(V->getType())); +    return true; +  } +  return false; +} + +/// WriteInstruction - Emit an instruction to the specified stream. +static void WriteInstruction(const Instruction &I, unsigned InstID, +                             ValueEnumerator &VE, BitstreamWriter &Stream, +                             SmallVector<unsigned, 64> &Vals) { +  unsigned Code = 0; +  unsigned AbbrevToUse = 0; +  switch (I.getOpcode()) { +  default: +    if (Instruction::isCast(I.getOpcode())) { +      Code = bitc::FUNC_CODE_INST_CAST; +      if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) +        AbbrevToUse = FUNCTION_INST_CAST_ABBREV; +      Vals.push_back(VE.getTypeID(I.getType())); +      Vals.push_back(GetEncodedCastOpcode(I.getOpcode())); +    } else { +      assert(isa<BinaryOperator>(I) && "Unknown instruction!"); +      Code = bitc::FUNC_CODE_INST_BINOP; +      if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) +        AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; +      Vals.push_back(VE.getValueID(I.getOperand(1))); +      Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode())); +    } +    break; + +  case Instruction::GetElementPtr: +    Code = bitc::FUNC_CODE_INST_GEP; +    for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) +      PushValueAndType(I.getOperand(i), InstID, Vals, VE); +    break; +  case Instruction::ExtractValue: { +    Code = bitc::FUNC_CODE_INST_EXTRACTVAL; +    PushValueAndType(I.getOperand(0), InstID, Vals, VE); +    const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); +    for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i) +      Vals.push_back(*i); +    break; +  } +  case Instruction::InsertValue: { +    Code = bitc::FUNC_CODE_INST_INSERTVAL; +    PushValueAndType(I.getOperand(0), InstID, Vals, VE); +    PushValueAndType(I.getOperand(1), InstID, Vals, VE); +    const InsertValueInst *IVI = cast<InsertValueInst>(&I); +    for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i) +      Vals.push_back(*i); +    break; +  } +  case Instruction::Select: +    Code = bitc::FUNC_CODE_INST_VSELECT; +    PushValueAndType(I.getOperand(1), InstID, Vals, VE); +    Vals.push_back(VE.getValueID(I.getOperand(2))); +    PushValueAndType(I.getOperand(0), InstID, Vals, VE); +    break; +  case Instruction::ExtractElement: +    Code = bitc::FUNC_CODE_INST_EXTRACTELT; +    PushValueAndType(I.getOperand(0), InstID, Vals, VE); +    Vals.push_back(VE.getValueID(I.getOperand(1))); +    break; +  case Instruction::InsertElement: +    Code = bitc::FUNC_CODE_INST_INSERTELT; +    PushValueAndType(I.getOperand(0), InstID, Vals, VE); +    Vals.push_back(VE.getValueID(I.getOperand(1))); +    Vals.push_back(VE.getValueID(I.getOperand(2))); +    break; +  case Instruction::ShuffleVector: +    Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; +    PushValueAndType(I.getOperand(0), InstID, Vals, VE); +    Vals.push_back(VE.getValueID(I.getOperand(1))); +    Vals.push_back(VE.getValueID(I.getOperand(2))); +    break; +  case Instruction::ICmp: +  case Instruction::FCmp: +  case Instruction::VICmp: +  case Instruction::VFCmp: +    if (I.getOpcode() == Instruction::ICmp +        || I.getOpcode() == Instruction::FCmp) { +      // compare returning Int1Ty or vector of Int1Ty +      Code = bitc::FUNC_CODE_INST_CMP2; +    } else { +      Code = bitc::FUNC_CODE_INST_CMP; +    } +    PushValueAndType(I.getOperand(0), InstID, Vals, VE); +    Vals.push_back(VE.getValueID(I.getOperand(1))); +    Vals.push_back(cast<CmpInst>(I).getPredicate()); +    break; + +  case Instruction::Ret:  +    { +      Code = bitc::FUNC_CODE_INST_RET; +      unsigned NumOperands = I.getNumOperands(); +      if (NumOperands == 0) +        AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; +      else if (NumOperands == 1) { +        if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) +          AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; +      } else { +        for (unsigned i = 0, e = NumOperands; i != e; ++i) +          PushValueAndType(I.getOperand(i), InstID, Vals, VE); +      } +    } +    break; +  case Instruction::Br: +    { +      Code = bitc::FUNC_CODE_INST_BR; +      BranchInst &II(cast<BranchInst>(I)); +      Vals.push_back(VE.getValueID(II.getSuccessor(0))); +      if (II.isConditional()) { +        Vals.push_back(VE.getValueID(II.getSuccessor(1))); +        Vals.push_back(VE.getValueID(II.getCondition())); +      } +    } +    break; +  case Instruction::Switch: +    Code = bitc::FUNC_CODE_INST_SWITCH; +    Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); +    for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) +      Vals.push_back(VE.getValueID(I.getOperand(i))); +    break; +  case Instruction::Invoke: { +    const InvokeInst *II = cast<InvokeInst>(&I); +    const Value *Callee(II->getCalledValue()); +    const PointerType *PTy = cast<PointerType>(Callee->getType()); +    const FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); +    Code = bitc::FUNC_CODE_INST_INVOKE; +     +    Vals.push_back(VE.getAttributeID(II->getAttributes())); +    Vals.push_back(II->getCallingConv()); +    Vals.push_back(VE.getValueID(II->getNormalDest())); +    Vals.push_back(VE.getValueID(II->getUnwindDest())); +    PushValueAndType(Callee, InstID, Vals, VE); +     +    // Emit value #'s for the fixed parameters. +    for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) +      Vals.push_back(VE.getValueID(I.getOperand(i+3)));  // fixed param. + +    // Emit type/value pairs for varargs params. +    if (FTy->isVarArg()) { +      for (unsigned i = 3+FTy->getNumParams(), e = I.getNumOperands(); +           i != e; ++i) +        PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg +    } +    break; +  } +  case Instruction::Unwind: +    Code = bitc::FUNC_CODE_INST_UNWIND; +    break; +  case Instruction::Unreachable: +    Code = bitc::FUNC_CODE_INST_UNREACHABLE; +    AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; +    break; +   +  case Instruction::PHI: +    Code = bitc::FUNC_CODE_INST_PHI; +    Vals.push_back(VE.getTypeID(I.getType())); +    for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) +      Vals.push_back(VE.getValueID(I.getOperand(i))); +    break; +     +  case Instruction::Malloc: +    Code = bitc::FUNC_CODE_INST_MALLOC; +    Vals.push_back(VE.getTypeID(I.getType())); +    Vals.push_back(VE.getValueID(I.getOperand(0))); // size. +    Vals.push_back(Log2_32(cast<MallocInst>(I).getAlignment())+1); +    break; +     +  case Instruction::Free: +    Code = bitc::FUNC_CODE_INST_FREE; +    PushValueAndType(I.getOperand(0), InstID, Vals, VE); +    break; +     +  case Instruction::Alloca: +    Code = bitc::FUNC_CODE_INST_ALLOCA; +    Vals.push_back(VE.getTypeID(I.getType())); +    Vals.push_back(VE.getValueID(I.getOperand(0))); // size. +    Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1); +    break; +     +  case Instruction::Load: +    Code = bitc::FUNC_CODE_INST_LOAD; +    if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))  // ptr +      AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; +       +    Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); +    Vals.push_back(cast<LoadInst>(I).isVolatile()); +    break; +  case Instruction::Store: +    Code = bitc::FUNC_CODE_INST_STORE2; +    PushValueAndType(I.getOperand(1), InstID, Vals, VE);  // ptrty + ptr +    Vals.push_back(VE.getValueID(I.getOperand(0)));       // val. +    Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); +    Vals.push_back(cast<StoreInst>(I).isVolatile()); +    break; +  case Instruction::Call: { +    const PointerType *PTy = cast<PointerType>(I.getOperand(0)->getType()); +    const FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); + +    Code = bitc::FUNC_CODE_INST_CALL; +     +    const CallInst *CI = cast<CallInst>(&I); +    Vals.push_back(VE.getAttributeID(CI->getAttributes())); +    Vals.push_back((CI->getCallingConv() << 1) | unsigned(CI->isTailCall())); +    PushValueAndType(CI->getOperand(0), InstID, Vals, VE);  // Callee +     +    // Emit value #'s for the fixed parameters. +    for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) +      Vals.push_back(VE.getValueID(I.getOperand(i+1)));  // fixed param. +       +    // Emit type/value pairs for varargs params. +    if (FTy->isVarArg()) { +      unsigned NumVarargs = I.getNumOperands()-1-FTy->getNumParams(); +      for (unsigned i = I.getNumOperands()-NumVarargs, e = I.getNumOperands(); +           i != e; ++i) +        PushValueAndType(I.getOperand(i), InstID, Vals, VE);  // varargs +    } +    break; +  } +  case Instruction::VAArg: +    Code = bitc::FUNC_CODE_INST_VAARG; +    Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));   // valistty +    Vals.push_back(VE.getValueID(I.getOperand(0))); // valist. +    Vals.push_back(VE.getTypeID(I.getType())); // restype. +    break; +  } +   +  Stream.EmitRecord(Code, Vals, AbbrevToUse); +  Vals.clear(); +} + +// Emit names for globals/functions etc. +static void WriteValueSymbolTable(const ValueSymbolTable &VST, +                                  const ValueEnumerator &VE, +                                  BitstreamWriter &Stream) { +  if (VST.empty()) return; +  Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); + +  // FIXME: Set up the abbrev, we know how many values there are! +  // FIXME: We know if the type names can use 7-bit ascii. +  SmallVector<unsigned, 64> NameVals; +   +  for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end(); +       SI != SE; ++SI) { +     +    const ValueName &Name = *SI; +     +    // Figure out the encoding to use for the name. +    bool is7Bit = true; +    bool isChar6 = true; +    for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength(); +         C != E; ++C) { +      if (isChar6)  +        isChar6 = BitCodeAbbrevOp::isChar6(*C); +      if ((unsigned char)*C & 128) { +        is7Bit = false; +        break;  // don't bother scanning the rest. +      } +    } +     +    unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; +     +    // VST_ENTRY:   [valueid, namechar x N] +    // VST_BBENTRY: [bbid, namechar x N] +    unsigned Code; +    if (isa<BasicBlock>(SI->getValue())) { +      Code = bitc::VST_CODE_BBENTRY; +      if (isChar6) +        AbbrevToUse = VST_BBENTRY_6_ABBREV; +    } else { +      Code = bitc::VST_CODE_ENTRY; +      if (isChar6) +        AbbrevToUse = VST_ENTRY_6_ABBREV; +      else if (is7Bit) +        AbbrevToUse = VST_ENTRY_7_ABBREV; +    } +     +    NameVals.push_back(VE.getValueID(SI->getValue())); +    for (const char *P = Name.getKeyData(), +         *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P) +      NameVals.push_back((unsigned char)*P); +     +    // Emit the finished record. +    Stream.EmitRecord(Code, NameVals, AbbrevToUse); +    NameVals.clear(); +  } +  Stream.ExitBlock(); +} + +/// WriteFunction - Emit a function body to the module stream. +static void WriteFunction(const Function &F, ValueEnumerator &VE,  +                          BitstreamWriter &Stream) { +  Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); +  VE.incorporateFunction(F); + +  SmallVector<unsigned, 64> Vals; +   +  // Emit the number of basic blocks, so the reader can create them ahead of +  // time. +  Vals.push_back(VE.getBasicBlocks().size()); +  Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); +  Vals.clear(); +   +  // If there are function-local constants, emit them now. +  unsigned CstStart, CstEnd; +  VE.getFunctionConstantRange(CstStart, CstEnd); +  WriteConstants(CstStart, CstEnd, VE, Stream, false); +   +  // Keep a running idea of what the instruction ID is.  +  unsigned InstID = CstEnd; +   +  // Finally, emit all the instructions, in order. +  for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) +    for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); +         I != E; ++I) { +      WriteInstruction(*I, InstID, VE, Stream, Vals); +      if (I->getType() != Type::VoidTy) +        ++InstID; +    } +   +  // Emit names for all the instructions etc. +  WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream); +     +  VE.purgeFunction(); +  Stream.ExitBlock(); +} + +/// WriteTypeSymbolTable - Emit a block for the specified type symtab. +static void WriteTypeSymbolTable(const TypeSymbolTable &TST, +                                 const ValueEnumerator &VE, +                                 BitstreamWriter &Stream) { +  if (TST.empty()) return; +   +  Stream.EnterSubblock(bitc::TYPE_SYMTAB_BLOCK_ID, 3); +   +  // 7-bit fixed width VST_CODE_ENTRY strings. +  BitCodeAbbrev *Abbv = new BitCodeAbbrev(); +  Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); +  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, +                            Log2_32_Ceil(VE.getTypes().size()+1))); +  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); +  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); +  unsigned V7Abbrev = Stream.EmitAbbrev(Abbv); +   +  SmallVector<unsigned, 64> NameVals; +   +  for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end();  +       TI != TE; ++TI) { +    // TST_ENTRY: [typeid, namechar x N] +    NameVals.push_back(VE.getTypeID(TI->second)); +     +    const std::string &Str = TI->first; +    bool is7Bit = true; +    for (unsigned i = 0, e = Str.size(); i != e; ++i) { +      NameVals.push_back((unsigned char)Str[i]); +      if (Str[i] & 128) +        is7Bit = false; +    } +     +    // Emit the finished record. +    Stream.EmitRecord(bitc::VST_CODE_ENTRY, NameVals, is7Bit ? V7Abbrev : 0); +    NameVals.clear(); +  } +   +  Stream.ExitBlock(); +} + +// Emit blockinfo, which defines the standard abbreviations etc. +static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) { +  // We only want to emit block info records for blocks that have multiple +  // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.  Other +  // blocks can defined their abbrevs inline. +  Stream.EnterBlockInfoBlock(2); +   +  { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings. +    BitCodeAbbrev *Abbv = new BitCodeAbbrev(); +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); +    if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,  +                                   Abbv) != VST_ENTRY_8_ABBREV) +      assert(0 && "Unexpected abbrev ordering!"); +  } +   +  { // 7-bit fixed width VST_ENTRY strings. +    BitCodeAbbrev *Abbv = new BitCodeAbbrev(); +    Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); +    if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, +                                   Abbv) != VST_ENTRY_7_ABBREV) +      assert(0 && "Unexpected abbrev ordering!"); +  } +  { // 6-bit char6 VST_ENTRY strings. +    BitCodeAbbrev *Abbv = new BitCodeAbbrev(); +    Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); +    if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, +                                   Abbv) != VST_ENTRY_6_ABBREV) +      assert(0 && "Unexpected abbrev ordering!"); +  } +  { // 6-bit char6 VST_BBENTRY strings. +    BitCodeAbbrev *Abbv = new BitCodeAbbrev(); +    Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); +    if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, +                                   Abbv) != VST_BBENTRY_6_ABBREV) +      assert(0 && "Unexpected abbrev ordering!"); +  } +   +   +   +  { // SETTYPE abbrev for CONSTANTS_BLOCK. +    BitCodeAbbrev *Abbv = new BitCodeAbbrev(); +    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, +                              Log2_32_Ceil(VE.getTypes().size()+1))); +    if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, +                                   Abbv) != CONSTANTS_SETTYPE_ABBREV) +      assert(0 && "Unexpected abbrev ordering!"); +  } +   +  { // INTEGER abbrev for CONSTANTS_BLOCK. +    BitCodeAbbrev *Abbv = new BitCodeAbbrev(); +    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); +    if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, +                                   Abbv) != CONSTANTS_INTEGER_ABBREV) +      assert(0 && "Unexpected abbrev ordering!"); +  } +   +  { // CE_CAST abbrev for CONSTANTS_BLOCK. +    BitCodeAbbrev *Abbv = new BitCodeAbbrev(); +    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // cast opc +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // typeid +                              Log2_32_Ceil(VE.getTypes().size()+1))); +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));    // value id + +    if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, +                                   Abbv) != CONSTANTS_CE_CAST_Abbrev) +      assert(0 && "Unexpected abbrev ordering!"); +  } +  { // NULL abbrev for CONSTANTS_BLOCK. +    BitCodeAbbrev *Abbv = new BitCodeAbbrev(); +    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); +    if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, +                                   Abbv) != CONSTANTS_NULL_Abbrev) +      assert(0 && "Unexpected abbrev ordering!"); +  } +   +  // FIXME: This should only use space for first class types! +  +  { // INST_LOAD abbrev for FUNCTION_BLOCK. +    BitCodeAbbrev *Abbv = new BitCodeAbbrev(); +    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile +    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, +                                   Abbv) != FUNCTION_INST_LOAD_ABBREV) +      assert(0 && "Unexpected abbrev ordering!"); +  } +  { // INST_BINOP abbrev for FUNCTION_BLOCK. +    BitCodeAbbrev *Abbv = new BitCodeAbbrev(); +    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc +    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, +                                   Abbv) != FUNCTION_INST_BINOP_ABBREV) +      assert(0 && "Unexpected abbrev ordering!"); +  } +  { // INST_CAST abbrev for FUNCTION_BLOCK. +    BitCodeAbbrev *Abbv = new BitCodeAbbrev(); +    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));    // OpVal +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // dest ty +                              Log2_32_Ceil(VE.getTypes().size()+1))); +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // opc +    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, +                                   Abbv) != FUNCTION_INST_CAST_ABBREV) +      assert(0 && "Unexpected abbrev ordering!"); +  } +   +  { // INST_RET abbrev for FUNCTION_BLOCK. +    BitCodeAbbrev *Abbv = new BitCodeAbbrev(); +    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); +    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, +                                   Abbv) != FUNCTION_INST_RET_VOID_ABBREV) +      assert(0 && "Unexpected abbrev ordering!"); +  } +  { // INST_RET abbrev for FUNCTION_BLOCK. +    BitCodeAbbrev *Abbv = new BitCodeAbbrev(); +    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID +    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, +                                   Abbv) != FUNCTION_INST_RET_VAL_ABBREV) +      assert(0 && "Unexpected abbrev ordering!"); +  } +  { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. +    BitCodeAbbrev *Abbv = new BitCodeAbbrev(); +    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); +    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, +                                   Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV) +      assert(0 && "Unexpected abbrev ordering!"); +  } +   +  Stream.ExitBlock(); +} + + +/// WriteModule - Emit the specified module to the bitstream. +static void WriteModule(const Module *M, BitstreamWriter &Stream) { +  Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); +   +  // Emit the version number if it is non-zero. +  if (CurVersion) { +    SmallVector<unsigned, 1> Vals; +    Vals.push_back(CurVersion); +    Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); +  } +   +  // Analyze the module, enumerating globals, functions, etc. +  ValueEnumerator VE(M); + +  // Emit blockinfo, which defines the standard abbreviations etc. +  WriteBlockInfo(VE, Stream); +   +  // Emit information about parameter attributes. +  WriteAttributeTable(VE, Stream); +   +  // Emit information describing all of the types in the module. +  WriteTypeTable(VE, Stream); +   +  // Emit top-level description of module, including target triple, inline asm, +  // descriptors for global variables, and function prototype info. +  WriteModuleInfo(M, VE, Stream); +   +  // Emit constants. +  WriteModuleConstants(VE, Stream); +   +  // If we have any aggregate values in the value table, purge them - these can +  // only be used to initialize global variables.  Doing so makes the value +  // namespace smaller for code in functions. +  int NumNonAggregates = VE.PurgeAggregateValues(); +  if (NumNonAggregates != -1) { +    SmallVector<unsigned, 1> Vals; +    Vals.push_back(NumNonAggregates); +    Stream.EmitRecord(bitc::MODULE_CODE_PURGEVALS, Vals); +  } +   +  // Emit function bodies. +  for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I) +    if (!I->isDeclaration()) +      WriteFunction(*I, VE, Stream); +   +  // Emit the type symbol table information. +  WriteTypeSymbolTable(M->getTypeSymbolTable(), VE, Stream); +   +  // Emit names for globals/functions etc. +  WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream); +   +  Stream.ExitBlock(); +} + +/// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a +/// header and trailer to make it compatible with the system archiver.  To do +/// this we emit the following header, and then emit a trailer that pads the +/// file out to be a multiple of 16 bytes. +///  +/// struct bc_header { +///   uint32_t Magic;         // 0x0B17C0DE +///   uint32_t Version;       // Version, currently always 0. +///   uint32_t BitcodeOffset; // Offset to traditional bitcode file. +///   uint32_t BitcodeSize;   // Size of traditional bitcode file. +///   uint32_t CPUType;       // CPU specifier. +///   ... potentially more later ... +/// }; +enum { +  DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size. +  DarwinBCHeaderSize = 5*4 +}; + +static void EmitDarwinBCHeader(BitstreamWriter &Stream, +                               const std::string &TT) { +  unsigned CPUType = ~0U; +   +  // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*.  The CPUType is a +  // magic number from /usr/include/mach/machine.h.  It is ok to reproduce the +  // specific constants here because they are implicitly part of the Darwin ABI. +  enum { +    DARWIN_CPU_ARCH_ABI64      = 0x01000000, +    DARWIN_CPU_TYPE_X86        = 7, +    DARWIN_CPU_TYPE_POWERPC    = 18 +  }; +   +  if (TT.find("x86_64-") == 0) +    CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; +  else if (TT.size() >= 5 && TT[0] == 'i' && TT[2] == '8' && TT[3] == '6' && +           TT[4] == '-' && TT[1] - '3' < 6) +    CPUType = DARWIN_CPU_TYPE_X86; +  else if (TT.find("powerpc-") == 0) +    CPUType = DARWIN_CPU_TYPE_POWERPC; +  else if (TT.find("powerpc64-") == 0) +    CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; +   +  // Traditional Bitcode starts after header. +  unsigned BCOffset = DarwinBCHeaderSize; +   +  Stream.Emit(0x0B17C0DE, 32); +  Stream.Emit(0         , 32);  // Version. +  Stream.Emit(BCOffset  , 32); +  Stream.Emit(0         , 32);  // Filled in later. +  Stream.Emit(CPUType   , 32); +} + +/// EmitDarwinBCTrailer - Emit the darwin epilog after the bitcode file and +/// finalize the header. +static void EmitDarwinBCTrailer(BitstreamWriter &Stream, unsigned BufferSize) { +  // Update the size field in the header. +  Stream.BackpatchWord(DarwinBCSizeFieldOffset, BufferSize-DarwinBCHeaderSize); +   +  // If the file is not a multiple of 16 bytes, insert dummy padding. +  while (BufferSize & 15) { +    Stream.Emit(0, 8); +    ++BufferSize; +  } +} + + +/// WriteBitcodeToFile - Write the specified module to the specified output +/// stream. +void llvm::WriteBitcodeToFile(const Module *M, std::ostream &Out) { +  raw_os_ostream RawOut(Out); +  // If writing to stdout, set binary mode. +  if (llvm::cout == Out) +    sys::Program::ChangeStdoutToBinary(); +  WriteBitcodeToFile(M, RawOut); +} + +/// WriteBitcodeToFile - Write the specified module to the specified output +/// stream. +void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out) { +  std::vector<unsigned char> Buffer; +  BitstreamWriter Stream(Buffer); +   +  Buffer.reserve(256*1024); + +  WriteBitcodeToStream( M, Stream ); +   +  // If writing to stdout, set binary mode. +  if (&llvm::outs() == &Out) +    sys::Program::ChangeStdoutToBinary(); + +  // Write the generated bitstream to "Out". +  Out.write((char*)&Buffer.front(), Buffer.size()); +   +  // Make sure it hits disk now. +  Out.flush(); +} + +/// WriteBitcodeToStream - Write the specified module to the specified output +/// stream. +void llvm::WriteBitcodeToStream(const Module *M, BitstreamWriter &Stream) { +  // If this is darwin, emit a file header and trailer if needed. +  bool isDarwin = M->getTargetTriple().find("-darwin") != std::string::npos; +  if (isDarwin) +    EmitDarwinBCHeader(Stream, M->getTargetTriple()); +   +  // Emit the file header. +  Stream.Emit((unsigned)'B', 8); +  Stream.Emit((unsigned)'C', 8); +  Stream.Emit(0x0, 4); +  Stream.Emit(0xC, 4); +  Stream.Emit(0xE, 4); +  Stream.Emit(0xD, 4); + +  // Emit the module. +  WriteModule(M, Stream); + +  if (isDarwin) +    EmitDarwinBCTrailer(Stream, Stream.getBuffer().size()); +} | 
