summaryrefslogtreecommitdiff
path: root/lib/Transforms
diff options
context:
space:
mode:
authorDimitry Andric <dim@FreeBSD.org>2018-02-24 21:27:30 +0000
committerDimitry Andric <dim@FreeBSD.org>2018-02-24 21:27:30 +0000
commit0f8e52dfc671bf6e2c09c8a28062ec76237954ea (patch)
tree03012a05e4c16a3dd809c281777acd1d9fe4a127 /lib/Transforms
parent3c315f3a8e8f326948fc789f146794ecd33cc540 (diff)
Diffstat (limited to 'lib/Transforms')
-rw-r--r--lib/Transforms/InstCombine/InstCombineSelect.cpp19
-rw-r--r--lib/Transforms/Scalar/LICM.cpp31
-rw-r--r--lib/Transforms/Utils/LoopUtils.cpp216
-rw-r--r--lib/Transforms/Vectorize/LoopVectorize.cpp18
4 files changed, 198 insertions, 86 deletions
diff --git a/lib/Transforms/InstCombine/InstCombineSelect.cpp b/lib/Transforms/InstCombine/InstCombineSelect.cpp
index 6f26f7f5cd19b..c790de3505f32 100644
--- a/lib/Transforms/InstCombine/InstCombineSelect.cpp
+++ b/lib/Transforms/InstCombine/InstCombineSelect.cpp
@@ -1643,11 +1643,25 @@ Instruction *InstCombiner::visitSelectInst(SelectInst &SI) {
}
}
+ auto canMergeSelectThroughBinop = [](BinaryOperator *BO) {
+ // The select might be preventing a division by 0.
+ switch (BO->getOpcode()) {
+ default:
+ return true;
+ case Instruction::SRem:
+ case Instruction::URem:
+ case Instruction::SDiv:
+ case Instruction::UDiv:
+ return false;
+ }
+ };
+
// Try to simplify a binop sandwiched between 2 selects with the same
// condition.
// select(C, binop(select(C, X, Y), W), Z) -> select(C, binop(X, W), Z)
BinaryOperator *TrueBO;
- if (match(TrueVal, m_OneUse(m_BinOp(TrueBO)))) {
+ if (match(TrueVal, m_OneUse(m_BinOp(TrueBO))) &&
+ canMergeSelectThroughBinop(TrueBO)) {
if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(0))) {
if (TrueBOSI->getCondition() == CondVal) {
TrueBO->setOperand(0, TrueBOSI->getTrueValue());
@@ -1666,7 +1680,8 @@ Instruction *InstCombiner::visitSelectInst(SelectInst &SI) {
// select(C, Z, binop(select(C, X, Y), W)) -> select(C, Z, binop(Y, W))
BinaryOperator *FalseBO;
- if (match(FalseVal, m_OneUse(m_BinOp(FalseBO)))) {
+ if (match(FalseVal, m_OneUse(m_BinOp(FalseBO))) &&
+ canMergeSelectThroughBinop(FalseBO)) {
if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(0))) {
if (FalseBOSI->getCondition() == CondVal) {
FalseBO->setOperand(0, FalseBOSI->getFalseValue());
diff --git a/lib/Transforms/Scalar/LICM.cpp b/lib/Transforms/Scalar/LICM.cpp
index 4ea935793b802..946474fef0625 100644
--- a/lib/Transforms/Scalar/LICM.cpp
+++ b/lib/Transforms/Scalar/LICM.cpp
@@ -97,7 +97,7 @@ static bool hoist(Instruction &I, const DominatorTree *DT, const Loop *CurLoop,
const LoopSafetyInfo *SafetyInfo,
OptimizationRemarkEmitter *ORE);
static bool sink(Instruction &I, LoopInfo *LI, DominatorTree *DT,
- const Loop *CurLoop, const LoopSafetyInfo *SafetyInfo,
+ const Loop *CurLoop, LoopSafetyInfo *SafetyInfo,
OptimizationRemarkEmitter *ORE, bool FreeInLoop);
static bool isSafeToExecuteUnconditionally(Instruction &Inst,
const DominatorTree *DT,
@@ -855,10 +855,16 @@ static Instruction *sinkThroughTriviallyReplacablePHI(
return New;
}
-static bool canSplitPredecessors(PHINode *PN) {
+static bool canSplitPredecessors(PHINode *PN, LoopSafetyInfo *SafetyInfo) {
BasicBlock *BB = PN->getParent();
if (!BB->canSplitPredecessors())
return false;
+ // It's not impossible to split EHPad blocks, but if BlockColors already exist
+ // it require updating BlockColors for all offspring blocks accordingly. By
+ // skipping such corner case, we can make updating BlockColors after splitting
+ // predecessor fairly simple.
+ if (!SafetyInfo->BlockColors.empty() && BB->getFirstNonPHI()->isEHPad())
+ return false;
for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
BasicBlock *BBPred = *PI;
if (isa<IndirectBrInst>(BBPred->getTerminator()))
@@ -868,7 +874,8 @@ static bool canSplitPredecessors(PHINode *PN) {
}
static void splitPredecessorsOfLoopExit(PHINode *PN, DominatorTree *DT,
- LoopInfo *LI, const Loop *CurLoop) {
+ LoopInfo *LI, const Loop *CurLoop,
+ LoopSafetyInfo *SafetyInfo) {
#ifndef NDEBUG
SmallVector<BasicBlock *, 32> ExitBlocks;
CurLoop->getUniqueExitBlocks(ExitBlocks);
@@ -910,13 +917,21 @@ static void splitPredecessorsOfLoopExit(PHINode *PN, DominatorTree *DT,
// LE:
// %p = phi [%p1, %LE.split], [%p2, %LE.split2]
//
+ auto &BlockColors = SafetyInfo->BlockColors;
SmallSetVector<BasicBlock *, 8> PredBBs(pred_begin(ExitBB), pred_end(ExitBB));
while (!PredBBs.empty()) {
BasicBlock *PredBB = *PredBBs.begin();
assert(CurLoop->contains(PredBB) &&
"Expect all predecessors are in the loop");
- if (PN->getBasicBlockIndex(PredBB) >= 0)
- SplitBlockPredecessors(ExitBB, PredBB, ".split.loop.exit", DT, LI, true);
+ if (PN->getBasicBlockIndex(PredBB) >= 0) {
+ BasicBlock *NewPred = SplitBlockPredecessors(
+ ExitBB, PredBB, ".split.loop.exit", DT, LI, true);
+ // Since we do not allow splitting EH-block with BlockColors in
+ // canSplitPredecessors(), we can simply assign predecessor's color to
+ // the new block.
+ if (!BlockColors.empty())
+ BlockColors[NewPred] = BlockColors[PredBB];
+ }
PredBBs.remove(PredBB);
}
}
@@ -927,7 +942,7 @@ static void splitPredecessorsOfLoopExit(PHINode *PN, DominatorTree *DT,
/// position, and may either delete it or move it to outside of the loop.
///
static bool sink(Instruction &I, LoopInfo *LI, DominatorTree *DT,
- const Loop *CurLoop, const LoopSafetyInfo *SafetyInfo,
+ const Loop *CurLoop, LoopSafetyInfo *SafetyInfo,
OptimizationRemarkEmitter *ORE, bool FreeInLoop) {
DEBUG(dbgs() << "LICM sinking instruction: " << I << "\n");
ORE->emit([&]() {
@@ -975,12 +990,12 @@ static bool sink(Instruction &I, LoopInfo *LI, DominatorTree *DT,
if (isTriviallyReplacablePHI(*PN, I))
continue;
- if (!canSplitPredecessors(PN))
+ if (!canSplitPredecessors(PN, SafetyInfo))
return Changed;
// Split predecessors of the PHI so that we can make users trivially
// replacable.
- splitPredecessorsOfLoopExit(PN, DT, LI, CurLoop);
+ splitPredecessorsOfLoopExit(PN, DT, LI, CurLoop, SafetyInfo);
// Should rebuild the iterators, as they may be invalidated by
// splitPredecessorsOfLoopExit().
diff --git a/lib/Transforms/Utils/LoopUtils.cpp b/lib/Transforms/Utils/LoopUtils.cpp
index a5a305ef582bb..0a357f4b50044 100644
--- a/lib/Transforms/Utils/LoopUtils.cpp
+++ b/lib/Transforms/Utils/LoopUtils.cpp
@@ -23,6 +23,7 @@
#include "llvm/Analysis/ScalarEvolutionExpander.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/Analysis/TargetTransformInfo.h"
+#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Module.h"
@@ -30,6 +31,7 @@
#include "llvm/IR/ValueHandle.h"
#include "llvm/Pass.h"
#include "llvm/Support/Debug.h"
+#include "llvm/Support/KnownBits.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
using namespace llvm;
@@ -77,10 +79,13 @@ bool RecurrenceDescriptor::isArithmeticRecurrenceKind(RecurrenceKind Kind) {
return false;
}
-Instruction *
-RecurrenceDescriptor::lookThroughAnd(PHINode *Phi, Type *&RT,
- SmallPtrSetImpl<Instruction *> &Visited,
- SmallPtrSetImpl<Instruction *> &CI) {
+/// Determines if Phi may have been type-promoted. If Phi has a single user
+/// that ANDs the Phi with a type mask, return the user. RT is updated to
+/// account for the narrower bit width represented by the mask, and the AND
+/// instruction is added to CI.
+static Instruction *lookThroughAnd(PHINode *Phi, Type *&RT,
+ SmallPtrSetImpl<Instruction *> &Visited,
+ SmallPtrSetImpl<Instruction *> &CI) {
if (!Phi->hasOneUse())
return Phi;
@@ -101,70 +106,92 @@ RecurrenceDescriptor::lookThroughAnd(PHINode *Phi, Type *&RT,
return Phi;
}
-bool RecurrenceDescriptor::getSourceExtensionKind(
- Instruction *Start, Instruction *Exit, Type *RT, bool &IsSigned,
- SmallPtrSetImpl<Instruction *> &Visited,
- SmallPtrSetImpl<Instruction *> &CI) {
+/// Compute the minimal bit width needed to represent a reduction whose exit
+/// instruction is given by Exit.
+static std::pair<Type *, bool> computeRecurrenceType(Instruction *Exit,
+ DemandedBits *DB,
+ AssumptionCache *AC,
+ DominatorTree *DT) {
+ bool IsSigned = false;
+ const DataLayout &DL = Exit->getModule()->getDataLayout();
+ uint64_t MaxBitWidth = DL.getTypeSizeInBits(Exit->getType());
+
+ if (DB) {
+ // Use the demanded bits analysis to determine the bits that are live out
+ // of the exit instruction, rounding up to the nearest power of two. If the
+ // use of demanded bits results in a smaller bit width, we know the value
+ // must be positive (i.e., IsSigned = false), because if this were not the
+ // case, the sign bit would have been demanded.
+ auto Mask = DB->getDemandedBits(Exit);
+ MaxBitWidth = Mask.getBitWidth() - Mask.countLeadingZeros();
+ }
+
+ if (MaxBitWidth == DL.getTypeSizeInBits(Exit->getType()) && AC && DT) {
+ // If demanded bits wasn't able to limit the bit width, we can try to use
+ // value tracking instead. This can be the case, for example, if the value
+ // may be negative.
+ auto NumSignBits = ComputeNumSignBits(Exit, DL, 0, AC, nullptr, DT);
+ auto NumTypeBits = DL.getTypeSizeInBits(Exit->getType());
+ MaxBitWidth = NumTypeBits - NumSignBits;
+ KnownBits Bits = computeKnownBits(Exit, DL);
+ if (!Bits.isNonNegative()) {
+ // If the value is not known to be non-negative, we set IsSigned to true,
+ // meaning that we will use sext instructions instead of zext
+ // instructions to restore the original type.
+ IsSigned = true;
+ if (!Bits.isNegative())
+ // If the value is not known to be negative, we don't known what the
+ // upper bit is, and therefore, we don't know what kind of extend we
+ // will need. In this case, just increase the bit width by one bit and
+ // use sext.
+ ++MaxBitWidth;
+ }
+ }
+ if (!isPowerOf2_64(MaxBitWidth))
+ MaxBitWidth = NextPowerOf2(MaxBitWidth);
+
+ return std::make_pair(Type::getIntNTy(Exit->getContext(), MaxBitWidth),
+ IsSigned);
+}
+
+/// Collect cast instructions that can be ignored in the vectorizer's cost
+/// model, given a reduction exit value and the minimal type in which the
+/// reduction can be represented.
+static void collectCastsToIgnore(Loop *TheLoop, Instruction *Exit,
+ Type *RecurrenceType,
+ SmallPtrSetImpl<Instruction *> &Casts) {
SmallVector<Instruction *, 8> Worklist;
- bool FoundOneOperand = false;
- unsigned DstSize = RT->getPrimitiveSizeInBits();
+ SmallPtrSet<Instruction *, 8> Visited;
Worklist.push_back(Exit);
- // Traverse the instructions in the reduction expression, beginning with the
- // exit value.
while (!Worklist.empty()) {
- Instruction *I = Worklist.pop_back_val();
- for (Use &U : I->operands()) {
-
- // Terminate the traversal if the operand is not an instruction, or we
- // reach the starting value.
- Instruction *J = dyn_cast<Instruction>(U.get());
- if (!J || J == Start)
- continue;
-
- // Otherwise, investigate the operation if it is also in the expression.
- if (Visited.count(J)) {
- Worklist.push_back(J);
+ Instruction *Val = Worklist.pop_back_val();
+ Visited.insert(Val);
+ if (auto *Cast = dyn_cast<CastInst>(Val))
+ if (Cast->getSrcTy() == RecurrenceType) {
+ // If the source type of a cast instruction is equal to the recurrence
+ // type, it will be eliminated, and should be ignored in the vectorizer
+ // cost model.
+ Casts.insert(Cast);
continue;
}
- // If the operand is not in Visited, it is not a reduction operation, but
- // it does feed into one. Make sure it is either a single-use sign- or
- // zero-extend instruction.
- CastInst *Cast = dyn_cast<CastInst>(J);
- bool IsSExtInst = isa<SExtInst>(J);
- if (!Cast || !Cast->hasOneUse() || !(isa<ZExtInst>(J) || IsSExtInst))
- return false;
-
- // Ensure the source type of the extend is no larger than the reduction
- // type. It is not necessary for the types to be identical.
- unsigned SrcSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
- if (SrcSize > DstSize)
- return false;
-
- // Furthermore, ensure that all such extends are of the same kind.
- if (FoundOneOperand) {
- if (IsSigned != IsSExtInst)
- return false;
- } else {
- FoundOneOperand = true;
- IsSigned = IsSExtInst;
- }
-
- // Lastly, if the source type of the extend matches the reduction type,
- // add the extend to CI so that we can avoid accounting for it in the
- // cost model.
- if (SrcSize == DstSize)
- CI.insert(Cast);
- }
+ // Add all operands to the work list if they are loop-varying values that
+ // we haven't yet visited.
+ for (Value *O : cast<User>(Val)->operands())
+ if (auto *I = dyn_cast<Instruction>(O))
+ if (TheLoop->contains(I) && !Visited.count(I))
+ Worklist.push_back(I);
}
- return true;
}
bool RecurrenceDescriptor::AddReductionVar(PHINode *Phi, RecurrenceKind Kind,
Loop *TheLoop, bool HasFunNoNaNAttr,
- RecurrenceDescriptor &RedDes) {
+ RecurrenceDescriptor &RedDes,
+ DemandedBits *DB,
+ AssumptionCache *AC,
+ DominatorTree *DT) {
if (Phi->getNumIncomingValues() != 2)
return false;
@@ -353,14 +380,49 @@ bool RecurrenceDescriptor::AddReductionVar(PHINode *Phi, RecurrenceKind Kind,
if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction)
return false;
- // If we think Phi may have been type-promoted, we also need to ensure that
- // all source operands of the reduction are either SExtInsts or ZEstInsts. If
- // so, we will be able to evaluate the reduction in the narrower bit width.
- if (Start != Phi)
- if (!getSourceExtensionKind(Start, ExitInstruction, RecurrenceType,
- IsSigned, VisitedInsts, CastInsts))
+ if (Start != Phi) {
+ // If the starting value is not the same as the phi node, we speculatively
+ // looked through an 'and' instruction when evaluating a potential
+ // arithmetic reduction to determine if it may have been type-promoted.
+ //
+ // We now compute the minimal bit width that is required to represent the
+ // reduction. If this is the same width that was indicated by the 'and', we
+ // can represent the reduction in the smaller type. The 'and' instruction
+ // will be eliminated since it will essentially be a cast instruction that
+ // can be ignore in the cost model. If we compute a different type than we
+ // did when evaluating the 'and', the 'and' will not be eliminated, and we
+ // will end up with different kinds of operations in the recurrence
+ // expression (e.g., RK_IntegerAND, RK_IntegerADD). We give up if this is
+ // the case.
+ //
+ // The vectorizer relies on InstCombine to perform the actual
+ // type-shrinking. It does this by inserting instructions to truncate the
+ // exit value of the reduction to the width indicated by RecurrenceType and
+ // then extend this value back to the original width. If IsSigned is false,
+ // a 'zext' instruction will be generated; otherwise, a 'sext' will be
+ // used.
+ //
+ // TODO: We should not rely on InstCombine to rewrite the reduction in the
+ // smaller type. We should just generate a correctly typed expression
+ // to begin with.
+ Type *ComputedType;
+ std::tie(ComputedType, IsSigned) =
+ computeRecurrenceType(ExitInstruction, DB, AC, DT);
+ if (ComputedType != RecurrenceType)
return false;
+ // The recurrence expression will be represented in a narrower type. If
+ // there are any cast instructions that will be unnecessary, collect them
+ // in CastInsts. Note that the 'and' instruction was already included in
+ // this list.
+ //
+ // TODO: A better way to represent this may be to tag in some way all the
+ // instructions that are a part of the reduction. The vectorizer cost
+ // model could then apply the recurrence type to these instructions,
+ // without needing a white list of instructions to ignore.
+ collectCastsToIgnore(TheLoop, ExitInstruction, RecurrenceType, CastInsts);
+ }
+
// We found a reduction var if we have reached the original phi node and we
// only have a single instruction with out-of-loop users.
@@ -480,47 +542,57 @@ bool RecurrenceDescriptor::hasMultipleUsesOf(
return false;
}
bool RecurrenceDescriptor::isReductionPHI(PHINode *Phi, Loop *TheLoop,
- RecurrenceDescriptor &RedDes) {
+ RecurrenceDescriptor &RedDes,
+ DemandedBits *DB, AssumptionCache *AC,
+ DominatorTree *DT) {
BasicBlock *Header = TheLoop->getHeader();
Function &F = *Header->getParent();
bool HasFunNoNaNAttr =
F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true";
- if (AddReductionVar(Phi, RK_IntegerAdd, TheLoop, HasFunNoNaNAttr, RedDes)) {
+ if (AddReductionVar(Phi, RK_IntegerAdd, TheLoop, HasFunNoNaNAttr, RedDes, DB,
+ AC, DT)) {
DEBUG(dbgs() << "Found an ADD reduction PHI." << *Phi << "\n");
return true;
}
- if (AddReductionVar(Phi, RK_IntegerMult, TheLoop, HasFunNoNaNAttr, RedDes)) {
+ if (AddReductionVar(Phi, RK_IntegerMult, TheLoop, HasFunNoNaNAttr, RedDes, DB,
+ AC, DT)) {
DEBUG(dbgs() << "Found a MUL reduction PHI." << *Phi << "\n");
return true;
}
- if (AddReductionVar(Phi, RK_IntegerOr, TheLoop, HasFunNoNaNAttr, RedDes)) {
+ if (AddReductionVar(Phi, RK_IntegerOr, TheLoop, HasFunNoNaNAttr, RedDes, DB,
+ AC, DT)) {
DEBUG(dbgs() << "Found an OR reduction PHI." << *Phi << "\n");
return true;
}
- if (AddReductionVar(Phi, RK_IntegerAnd, TheLoop, HasFunNoNaNAttr, RedDes)) {
+ if (AddReductionVar(Phi, RK_IntegerAnd, TheLoop, HasFunNoNaNAttr, RedDes, DB,
+ AC, DT)) {
DEBUG(dbgs() << "Found an AND reduction PHI." << *Phi << "\n");
return true;
}
- if (AddReductionVar(Phi, RK_IntegerXor, TheLoop, HasFunNoNaNAttr, RedDes)) {
+ if (AddReductionVar(Phi, RK_IntegerXor, TheLoop, HasFunNoNaNAttr, RedDes, DB,
+ AC, DT)) {
DEBUG(dbgs() << "Found a XOR reduction PHI." << *Phi << "\n");
return true;
}
- if (AddReductionVar(Phi, RK_IntegerMinMax, TheLoop, HasFunNoNaNAttr,
- RedDes)) {
+ if (AddReductionVar(Phi, RK_IntegerMinMax, TheLoop, HasFunNoNaNAttr, RedDes,
+ DB, AC, DT)) {
DEBUG(dbgs() << "Found a MINMAX reduction PHI." << *Phi << "\n");
return true;
}
- if (AddReductionVar(Phi, RK_FloatMult, TheLoop, HasFunNoNaNAttr, RedDes)) {
+ if (AddReductionVar(Phi, RK_FloatMult, TheLoop, HasFunNoNaNAttr, RedDes, DB,
+ AC, DT)) {
DEBUG(dbgs() << "Found an FMult reduction PHI." << *Phi << "\n");
return true;
}
- if (AddReductionVar(Phi, RK_FloatAdd, TheLoop, HasFunNoNaNAttr, RedDes)) {
+ if (AddReductionVar(Phi, RK_FloatAdd, TheLoop, HasFunNoNaNAttr, RedDes, DB,
+ AC, DT)) {
DEBUG(dbgs() << "Found an FAdd reduction PHI." << *Phi << "\n");
return true;
}
- if (AddReductionVar(Phi, RK_FloatMinMax, TheLoop, HasFunNoNaNAttr, RedDes)) {
+ if (AddReductionVar(Phi, RK_FloatMinMax, TheLoop, HasFunNoNaNAttr, RedDes, DB,
+ AC, DT)) {
DEBUG(dbgs() << "Found an float MINMAX reduction PHI." << *Phi << "\n");
return true;
}
diff --git a/lib/Transforms/Vectorize/LoopVectorize.cpp b/lib/Transforms/Vectorize/LoopVectorize.cpp
index 64f206ea92eb3..5bcf0c0a7ba63 100644
--- a/lib/Transforms/Vectorize/LoopVectorize.cpp
+++ b/lib/Transforms/Vectorize/LoopVectorize.cpp
@@ -1542,9 +1542,10 @@ public:
const TargetTransformInfo *TTI,
std::function<const LoopAccessInfo &(Loop &)> *GetLAA, LoopInfo *LI,
OptimizationRemarkEmitter *ORE, LoopVectorizationRequirements *R,
- LoopVectorizeHints *H)
+ LoopVectorizeHints *H, DemandedBits *DB, AssumptionCache *AC)
: TheLoop(L), PSE(PSE), TLI(TLI), TTI(TTI), DT(DT), GetLAA(GetLAA),
- ORE(ORE), InterleaveInfo(PSE, L, DT, LI), Requirements(R), Hints(H) {}
+ ORE(ORE), InterleaveInfo(PSE, L, DT, LI), Requirements(R), Hints(H),
+ DB(DB), AC(AC) {}
/// ReductionList contains the reduction descriptors for all
/// of the reductions that were found in the loop.
@@ -1833,6 +1834,14 @@ private:
/// Used to emit an analysis of any legality issues.
LoopVectorizeHints *Hints;
+ /// The demanded bits analsyis is used to compute the minimum type size in
+ /// which a reduction can be computed.
+ DemandedBits *DB;
+
+ /// The assumption cache analysis is used to compute the minimum type size in
+ /// which a reduction can be computed.
+ AssumptionCache *AC;
+
/// While vectorizing these instructions we have to generate a
/// call to the appropriate masked intrinsic
SmallPtrSet<const Instruction *, 8> MaskedOp;
@@ -5300,7 +5309,8 @@ bool LoopVectorizationLegality::canVectorizeInstrs() {
}
RecurrenceDescriptor RedDes;
- if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, RedDes)) {
+ if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, RedDes, DB, AC,
+ DT)) {
if (RedDes.hasUnsafeAlgebra())
Requirements->addUnsafeAlgebraInst(RedDes.getUnsafeAlgebraInst());
AllowedExit.insert(RedDes.getLoopExitInstr());
@@ -8514,7 +8524,7 @@ bool LoopVectorizePass::processLoop(Loop *L) {
// Check if it is legal to vectorize the loop.
LoopVectorizationRequirements Requirements(*ORE);
LoopVectorizationLegality LVL(L, PSE, DT, TLI, AA, F, TTI, GetLAA, LI, ORE,
- &Requirements, &Hints);
+ &Requirements, &Hints, DB, AC);
if (!LVL.canVectorize()) {
DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n");
emitMissedWarning(F, L, Hints, ORE);