diff options
author | Martin Matuska <mm@FreeBSD.org> | 2012-07-18 07:48:04 +0000 |
---|---|---|
committer | Martin Matuska <mm@FreeBSD.org> | 2012-07-18 07:48:04 +0000 |
commit | 93a00b0821525e25814cd720fafd04d600811c28 (patch) | |
tree | 581776874858fb2fad55f129938a1871f8758eb5 /lib/libzfs/common/libzfs_import.c | |
parent | e0ea83ebb1a4b194c927cb114766e8781676380b (diff) |
Notes
Diffstat (limited to 'lib/libzfs/common/libzfs_import.c')
-rw-r--r-- | lib/libzfs/common/libzfs_import.c | 1688 |
1 files changed, 1688 insertions, 0 deletions
diff --git a/lib/libzfs/common/libzfs_import.c b/lib/libzfs/common/libzfs_import.c new file mode 100644 index 0000000000000..e1370350fd52d --- /dev/null +++ b/lib/libzfs/common/libzfs_import.c @@ -0,0 +1,1688 @@ +/* + * CDDL HEADER START + * + * The contents of this file are subject to the terms of the + * Common Development and Distribution License (the "License"). + * You may not use this file except in compliance with the License. + * + * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE + * or http://www.opensolaris.org/os/licensing. + * See the License for the specific language governing permissions + * and limitations under the License. + * + * When distributing Covered Code, include this CDDL HEADER in each + * file and include the License file at usr/src/OPENSOLARIS.LICENSE. + * If applicable, add the following below this CDDL HEADER, with the + * fields enclosed by brackets "[]" replaced with your own identifying + * information: Portions Copyright [yyyy] [name of copyright owner] + * + * CDDL HEADER END + */ +/* + * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. + */ + +/* + * Pool import support functions. + * + * To import a pool, we rely on reading the configuration information from the + * ZFS label of each device. If we successfully read the label, then we + * organize the configuration information in the following hierarchy: + * + * pool guid -> toplevel vdev guid -> label txg + * + * Duplicate entries matching this same tuple will be discarded. Once we have + * examined every device, we pick the best label txg config for each toplevel + * vdev. We then arrange these toplevel vdevs into a complete pool config, and + * update any paths that have changed. Finally, we attempt to import the pool + * using our derived config, and record the results. + */ + +#include <ctype.h> +#include <devid.h> +#include <dirent.h> +#include <errno.h> +#include <libintl.h> +#include <stddef.h> +#include <stdlib.h> +#include <string.h> +#include <sys/stat.h> +#include <unistd.h> +#include <fcntl.h> +#include <sys/vtoc.h> +#include <sys/dktp/fdisk.h> +#include <sys/efi_partition.h> +#include <thread_pool.h> + +#include <sys/vdev_impl.h> + +#include "libzfs.h" +#include "libzfs_impl.h" + +/* + * Intermediate structures used to gather configuration information. + */ +typedef struct config_entry { + uint64_t ce_txg; + nvlist_t *ce_config; + struct config_entry *ce_next; +} config_entry_t; + +typedef struct vdev_entry { + uint64_t ve_guid; + config_entry_t *ve_configs; + struct vdev_entry *ve_next; +} vdev_entry_t; + +typedef struct pool_entry { + uint64_t pe_guid; + vdev_entry_t *pe_vdevs; + struct pool_entry *pe_next; +} pool_entry_t; + +typedef struct name_entry { + char *ne_name; + uint64_t ne_guid; + struct name_entry *ne_next; +} name_entry_t; + +typedef struct pool_list { + pool_entry_t *pools; + name_entry_t *names; +} pool_list_t; + +static char * +get_devid(const char *path) +{ + int fd; + ddi_devid_t devid; + char *minor, *ret; + + if ((fd = open(path, O_RDONLY)) < 0) + return (NULL); + + minor = NULL; + ret = NULL; + if (devid_get(fd, &devid) == 0) { + if (devid_get_minor_name(fd, &minor) == 0) + ret = devid_str_encode(devid, minor); + if (minor != NULL) + devid_str_free(minor); + devid_free(devid); + } + (void) close(fd); + + return (ret); +} + + +/* + * Go through and fix up any path and/or devid information for the given vdev + * configuration. + */ +static int +fix_paths(nvlist_t *nv, name_entry_t *names) +{ + nvlist_t **child; + uint_t c, children; + uint64_t guid; + name_entry_t *ne, *best; + char *path, *devid; + int matched; + + if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, + &child, &children) == 0) { + for (c = 0; c < children; c++) + if (fix_paths(child[c], names) != 0) + return (-1); + return (0); + } + + /* + * This is a leaf (file or disk) vdev. In either case, go through + * the name list and see if we find a matching guid. If so, replace + * the path and see if we can calculate a new devid. + * + * There may be multiple names associated with a particular guid, in + * which case we have overlapping slices or multiple paths to the same + * disk. If this is the case, then we want to pick the path that is + * the most similar to the original, where "most similar" is the number + * of matching characters starting from the end of the path. This will + * preserve slice numbers even if the disks have been reorganized, and + * will also catch preferred disk names if multiple paths exist. + */ + verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) == 0); + if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) != 0) + path = NULL; + + matched = 0; + best = NULL; + for (ne = names; ne != NULL; ne = ne->ne_next) { + if (ne->ne_guid == guid) { + const char *src, *dst; + int count; + + if (path == NULL) { + best = ne; + break; + } + + src = ne->ne_name + strlen(ne->ne_name) - 1; + dst = path + strlen(path) - 1; + for (count = 0; src >= ne->ne_name && dst >= path; + src--, dst--, count++) + if (*src != *dst) + break; + + /* + * At this point, 'count' is the number of characters + * matched from the end. + */ + if (count > matched || best == NULL) { + best = ne; + matched = count; + } + } + } + + if (best == NULL) + return (0); + + if (nvlist_add_string(nv, ZPOOL_CONFIG_PATH, best->ne_name) != 0) + return (-1); + + if ((devid = get_devid(best->ne_name)) == NULL) { + (void) nvlist_remove_all(nv, ZPOOL_CONFIG_DEVID); + } else { + if (nvlist_add_string(nv, ZPOOL_CONFIG_DEVID, devid) != 0) + return (-1); + devid_str_free(devid); + } + + return (0); +} + +/* + * Add the given configuration to the list of known devices. + */ +static int +add_config(libzfs_handle_t *hdl, pool_list_t *pl, const char *path, + nvlist_t *config) +{ + uint64_t pool_guid, vdev_guid, top_guid, txg, state; + pool_entry_t *pe; + vdev_entry_t *ve; + config_entry_t *ce; + name_entry_t *ne; + + /* + * If this is a hot spare not currently in use or level 2 cache + * device, add it to the list of names to translate, but don't do + * anything else. + */ + if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE, + &state) == 0 && + (state == POOL_STATE_SPARE || state == POOL_STATE_L2CACHE) && + nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, &vdev_guid) == 0) { + if ((ne = zfs_alloc(hdl, sizeof (name_entry_t))) == NULL) + return (-1); + + if ((ne->ne_name = zfs_strdup(hdl, path)) == NULL) { + free(ne); + return (-1); + } + ne->ne_guid = vdev_guid; + ne->ne_next = pl->names; + pl->names = ne; + return (0); + } + + /* + * If we have a valid config but cannot read any of these fields, then + * it means we have a half-initialized label. In vdev_label_init() + * we write a label with txg == 0 so that we can identify the device + * in case the user refers to the same disk later on. If we fail to + * create the pool, we'll be left with a label in this state + * which should not be considered part of a valid pool. + */ + if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, + &pool_guid) != 0 || + nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, + &vdev_guid) != 0 || + nvlist_lookup_uint64(config, ZPOOL_CONFIG_TOP_GUID, + &top_guid) != 0 || + nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, + &txg) != 0 || txg == 0) { + nvlist_free(config); + return (0); + } + + /* + * First, see if we know about this pool. If not, then add it to the + * list of known pools. + */ + for (pe = pl->pools; pe != NULL; pe = pe->pe_next) { + if (pe->pe_guid == pool_guid) + break; + } + + if (pe == NULL) { + if ((pe = zfs_alloc(hdl, sizeof (pool_entry_t))) == NULL) { + nvlist_free(config); + return (-1); + } + pe->pe_guid = pool_guid; + pe->pe_next = pl->pools; + pl->pools = pe; + } + + /* + * Second, see if we know about this toplevel vdev. Add it if its + * missing. + */ + for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) { + if (ve->ve_guid == top_guid) + break; + } + + if (ve == NULL) { + if ((ve = zfs_alloc(hdl, sizeof (vdev_entry_t))) == NULL) { + nvlist_free(config); + return (-1); + } + ve->ve_guid = top_guid; + ve->ve_next = pe->pe_vdevs; + pe->pe_vdevs = ve; + } + + /* + * Third, see if we have a config with a matching transaction group. If + * so, then we do nothing. Otherwise, add it to the list of known + * configs. + */ + for (ce = ve->ve_configs; ce != NULL; ce = ce->ce_next) { + if (ce->ce_txg == txg) + break; + } + + if (ce == NULL) { + if ((ce = zfs_alloc(hdl, sizeof (config_entry_t))) == NULL) { + nvlist_free(config); + return (-1); + } + ce->ce_txg = txg; + ce->ce_config = config; + ce->ce_next = ve->ve_configs; + ve->ve_configs = ce; + } else { + nvlist_free(config); + } + + /* + * At this point we've successfully added our config to the list of + * known configs. The last thing to do is add the vdev guid -> path + * mappings so that we can fix up the configuration as necessary before + * doing the import. + */ + if ((ne = zfs_alloc(hdl, sizeof (name_entry_t))) == NULL) + return (-1); + + if ((ne->ne_name = zfs_strdup(hdl, path)) == NULL) { + free(ne); + return (-1); + } + + ne->ne_guid = vdev_guid; + ne->ne_next = pl->names; + pl->names = ne; + + return (0); +} + +/* + * Returns true if the named pool matches the given GUID. + */ +static int +pool_active(libzfs_handle_t *hdl, const char *name, uint64_t guid, + boolean_t *isactive) +{ + zpool_handle_t *zhp; + uint64_t theguid; + + if (zpool_open_silent(hdl, name, &zhp) != 0) + return (-1); + + if (zhp == NULL) { + *isactive = B_FALSE; + return (0); + } + + verify(nvlist_lookup_uint64(zhp->zpool_config, ZPOOL_CONFIG_POOL_GUID, + &theguid) == 0); + + zpool_close(zhp); + + *isactive = (theguid == guid); + return (0); +} + +static nvlist_t * +refresh_config(libzfs_handle_t *hdl, nvlist_t *config) +{ + nvlist_t *nvl; + zfs_cmd_t zc = { 0 }; + int err; + + if (zcmd_write_conf_nvlist(hdl, &zc, config) != 0) + return (NULL); + + if (zcmd_alloc_dst_nvlist(hdl, &zc, + zc.zc_nvlist_conf_size * 2) != 0) { + zcmd_free_nvlists(&zc); + return (NULL); + } + + while ((err = ioctl(hdl->libzfs_fd, ZFS_IOC_POOL_TRYIMPORT, + &zc)) != 0 && errno == ENOMEM) { + if (zcmd_expand_dst_nvlist(hdl, &zc) != 0) { + zcmd_free_nvlists(&zc); + return (NULL); + } + } + + if (err) { + zcmd_free_nvlists(&zc); + return (NULL); + } + + if (zcmd_read_dst_nvlist(hdl, &zc, &nvl) != 0) { + zcmd_free_nvlists(&zc); + return (NULL); + } + + zcmd_free_nvlists(&zc); + return (nvl); +} + +/* + * Determine if the vdev id is a hole in the namespace. + */ +boolean_t +vdev_is_hole(uint64_t *hole_array, uint_t holes, uint_t id) +{ + for (int c = 0; c < holes; c++) { + + /* Top-level is a hole */ + if (hole_array[c] == id) + return (B_TRUE); + } + return (B_FALSE); +} + +/* + * Convert our list of pools into the definitive set of configurations. We + * start by picking the best config for each toplevel vdev. Once that's done, + * we assemble the toplevel vdevs into a full config for the pool. We make a + * pass to fix up any incorrect paths, and then add it to the main list to + * return to the user. + */ +static nvlist_t * +get_configs(libzfs_handle_t *hdl, pool_list_t *pl, boolean_t active_ok) +{ + pool_entry_t *pe; + vdev_entry_t *ve; + config_entry_t *ce; + nvlist_t *ret = NULL, *config = NULL, *tmp, *nvtop, *nvroot; + nvlist_t **spares, **l2cache; + uint_t i, nspares, nl2cache; + boolean_t config_seen; + uint64_t best_txg; + char *name, *hostname; + uint64_t version, guid; + uint_t children = 0; + nvlist_t **child = NULL; + uint_t holes; + uint64_t *hole_array, max_id; + uint_t c; + boolean_t isactive; + uint64_t hostid; + nvlist_t *nvl; + boolean_t found_one = B_FALSE; + boolean_t valid_top_config = B_FALSE; + + if (nvlist_alloc(&ret, 0, 0) != 0) + goto nomem; + + for (pe = pl->pools; pe != NULL; pe = pe->pe_next) { + uint64_t id, max_txg = 0; + + if (nvlist_alloc(&config, NV_UNIQUE_NAME, 0) != 0) + goto nomem; + config_seen = B_FALSE; + + /* + * Iterate over all toplevel vdevs. Grab the pool configuration + * from the first one we find, and then go through the rest and + * add them as necessary to the 'vdevs' member of the config. + */ + for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) { + + /* + * Determine the best configuration for this vdev by + * selecting the config with the latest transaction + * group. + */ + best_txg = 0; + for (ce = ve->ve_configs; ce != NULL; + ce = ce->ce_next) { + + if (ce->ce_txg > best_txg) { + tmp = ce->ce_config; + best_txg = ce->ce_txg; + } + } + + /* + * We rely on the fact that the max txg for the + * pool will contain the most up-to-date information + * about the valid top-levels in the vdev namespace. + */ + if (best_txg > max_txg) { + (void) nvlist_remove(config, + ZPOOL_CONFIG_VDEV_CHILDREN, + DATA_TYPE_UINT64); + (void) nvlist_remove(config, + ZPOOL_CONFIG_HOLE_ARRAY, + DATA_TYPE_UINT64_ARRAY); + + max_txg = best_txg; + hole_array = NULL; + holes = 0; + max_id = 0; + valid_top_config = B_FALSE; + + if (nvlist_lookup_uint64(tmp, + ZPOOL_CONFIG_VDEV_CHILDREN, &max_id) == 0) { + verify(nvlist_add_uint64(config, + ZPOOL_CONFIG_VDEV_CHILDREN, + max_id) == 0); + valid_top_config = B_TRUE; + } + + if (nvlist_lookup_uint64_array(tmp, + ZPOOL_CONFIG_HOLE_ARRAY, &hole_array, + &holes) == 0) { + verify(nvlist_add_uint64_array(config, + ZPOOL_CONFIG_HOLE_ARRAY, + hole_array, holes) == 0); + } + } + + if (!config_seen) { + /* + * Copy the relevant pieces of data to the pool + * configuration: + * + * version + * pool guid + * name + * pool state + * hostid (if available) + * hostname (if available) + */ + uint64_t state; + + verify(nvlist_lookup_uint64(tmp, + ZPOOL_CONFIG_VERSION, &version) == 0); + if (nvlist_add_uint64(config, + ZPOOL_CONFIG_VERSION, version) != 0) + goto nomem; + verify(nvlist_lookup_uint64(tmp, + ZPOOL_CONFIG_POOL_GUID, &guid) == 0); + if (nvlist_add_uint64(config, + ZPOOL_CONFIG_POOL_GUID, guid) != 0) + goto nomem; + verify(nvlist_lookup_string(tmp, + ZPOOL_CONFIG_POOL_NAME, &name) == 0); + if (nvlist_add_string(config, + ZPOOL_CONFIG_POOL_NAME, name) != 0) + goto nomem; + verify(nvlist_lookup_uint64(tmp, + ZPOOL_CONFIG_POOL_STATE, &state) == 0); + if (nvlist_add_uint64(config, + ZPOOL_CONFIG_POOL_STATE, state) != 0) + goto nomem; + hostid = 0; + if (nvlist_lookup_uint64(tmp, + ZPOOL_CONFIG_HOSTID, &hostid) == 0) { + if (nvlist_add_uint64(config, + ZPOOL_CONFIG_HOSTID, hostid) != 0) + goto nomem; + verify(nvlist_lookup_string(tmp, + ZPOOL_CONFIG_HOSTNAME, + &hostname) == 0); + if (nvlist_add_string(config, + ZPOOL_CONFIG_HOSTNAME, + hostname) != 0) + goto nomem; + } + + config_seen = B_TRUE; + } + + /* + * Add this top-level vdev to the child array. + */ + verify(nvlist_lookup_nvlist(tmp, + ZPOOL_CONFIG_VDEV_TREE, &nvtop) == 0); + verify(nvlist_lookup_uint64(nvtop, ZPOOL_CONFIG_ID, + &id) == 0); + + if (id >= children) { + nvlist_t **newchild; + + newchild = zfs_alloc(hdl, (id + 1) * + sizeof (nvlist_t *)); + if (newchild == NULL) + goto nomem; + + for (c = 0; c < children; c++) + newchild[c] = child[c]; + + free(child); + child = newchild; + children = id + 1; + } + if (nvlist_dup(nvtop, &child[id], 0) != 0) + goto nomem; + + } + + /* + * If we have information about all the top-levels then + * clean up the nvlist which we've constructed. This + * means removing any extraneous devices that are + * beyond the valid range or adding devices to the end + * of our array which appear to be missing. + */ + if (valid_top_config) { + if (max_id < children) { + for (c = max_id; c < children; c++) + nvlist_free(child[c]); + children = max_id; + } else if (max_id > children) { + nvlist_t **newchild; + + newchild = zfs_alloc(hdl, (max_id) * + sizeof (nvlist_t *)); + if (newchild == NULL) + goto nomem; + + for (c = 0; c < children; c++) + newchild[c] = child[c]; + + free(child); + child = newchild; + children = max_id; + } + } + + verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, + &guid) == 0); + + /* + * The vdev namespace may contain holes as a result of + * device removal. We must add them back into the vdev + * tree before we process any missing devices. + */ + if (holes > 0) { + ASSERT(valid_top_config); + + for (c = 0; c < children; c++) { + nvlist_t *holey; + + if (child[c] != NULL || + !vdev_is_hole(hole_array, holes, c)) + continue; + + if (nvlist_alloc(&holey, NV_UNIQUE_NAME, + 0) != 0) + goto nomem; + + /* + * Holes in the namespace are treated as + * "hole" top-level vdevs and have a + * special flag set on them. + */ + if (nvlist_add_string(holey, + ZPOOL_CONFIG_TYPE, + VDEV_TYPE_HOLE) != 0 || + nvlist_add_uint64(holey, + ZPOOL_CONFIG_ID, c) != 0 || + nvlist_add_uint64(holey, + ZPOOL_CONFIG_GUID, 0ULL) != 0) + goto nomem; + child[c] = holey; + } + } + + /* + * Look for any missing top-level vdevs. If this is the case, + * create a faked up 'missing' vdev as a placeholder. We cannot + * simply compress the child array, because the kernel performs + * certain checks to make sure the vdev IDs match their location + * in the configuration. + */ + for (c = 0; c < children; c++) { + if (child[c] == NULL) { + nvlist_t *missing; + if (nvlist_alloc(&missing, NV_UNIQUE_NAME, + 0) != 0) + goto nomem; + if (nvlist_add_string(missing, + ZPOOL_CONFIG_TYPE, + VDEV_TYPE_MISSING) != 0 || + nvlist_add_uint64(missing, + ZPOOL_CONFIG_ID, c) != 0 || + nvlist_add_uint64(missing, + ZPOOL_CONFIG_GUID, 0ULL) != 0) { + nvlist_free(missing); + goto nomem; + } + child[c] = missing; + } + } + + /* + * Put all of this pool's top-level vdevs into a root vdev. + */ + if (nvlist_alloc(&nvroot, NV_UNIQUE_NAME, 0) != 0) + goto nomem; + if (nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE, + VDEV_TYPE_ROOT) != 0 || + nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) != 0 || + nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, guid) != 0 || + nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, + child, children) != 0) { + nvlist_free(nvroot); + goto nomem; + } + + for (c = 0; c < children; c++) + nvlist_free(child[c]); + free(child); + children = 0; + child = NULL; + + /* + * Go through and fix up any paths and/or devids based on our + * known list of vdev GUID -> path mappings. + */ + if (fix_paths(nvroot, pl->names) != 0) { + nvlist_free(nvroot); + goto nomem; + } + + /* + * Add the root vdev to this pool's configuration. + */ + if (nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, + nvroot) != 0) { + nvlist_free(nvroot); + goto nomem; + } + nvlist_free(nvroot); + + /* + * zdb uses this path to report on active pools that were + * imported or created using -R. + */ + if (active_ok) + goto add_pool; + + /* + * Determine if this pool is currently active, in which case we + * can't actually import it. + */ + verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, + &name) == 0); + verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, + &guid) == 0); + + if (pool_active(hdl, name, guid, &isactive) != 0) + goto error; + + if (isactive) { + nvlist_free(config); + config = NULL; + continue; + } + + if ((nvl = refresh_config(hdl, config)) == NULL) { + nvlist_free(config); + config = NULL; + continue; + } + + nvlist_free(config); + config = nvl; + + /* + * Go through and update the paths for spares, now that we have + * them. + */ + verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, + &nvroot) == 0); + if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, + &spares, &nspares) == 0) { + for (i = 0; i < nspares; i++) { + if (fix_paths(spares[i], pl->names) != 0) + goto nomem; + } + } + + /* + * Update the paths for l2cache devices. + */ + if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, + &l2cache, &nl2cache) == 0) { + for (i = 0; i < nl2cache; i++) { + if (fix_paths(l2cache[i], pl->names) != 0) + goto nomem; + } + } + + /* + * Restore the original information read from the actual label. + */ + (void) nvlist_remove(config, ZPOOL_CONFIG_HOSTID, + DATA_TYPE_UINT64); + (void) nvlist_remove(config, ZPOOL_CONFIG_HOSTNAME, + DATA_TYPE_STRING); + if (hostid != 0) { + verify(nvlist_add_uint64(config, ZPOOL_CONFIG_HOSTID, + hostid) == 0); + verify(nvlist_add_string(config, ZPOOL_CONFIG_HOSTNAME, + hostname) == 0); + } + +add_pool: + /* + * Add this pool to the list of configs. + */ + verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, + &name) == 0); + if (nvlist_add_nvlist(ret, name, config) != 0) + goto nomem; + + found_one = B_TRUE; + nvlist_free(config); + config = NULL; + } + + if (!found_one) { + nvlist_free(ret); + ret = NULL; + } + + return (ret); + +nomem: + (void) no_memory(hdl); +error: + nvlist_free(config); + nvlist_free(ret); + for (c = 0; c < children; c++) + nvlist_free(child[c]); + free(child); + + return (NULL); +} + +/* + * Return the offset of the given label. + */ +static uint64_t +label_offset(uint64_t size, int l) +{ + ASSERT(P2PHASE_TYPED(size, sizeof (vdev_label_t), uint64_t) == 0); + return (l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ? + 0 : size - VDEV_LABELS * sizeof (vdev_label_t))); +} + +/* + * Given a file descriptor, read the label information and return an nvlist + * describing the configuration, if there is one. + */ +int +zpool_read_label(int fd, nvlist_t **config) +{ + struct stat64 statbuf; + int l; + vdev_label_t *label; + uint64_t state, txg, size; + + *config = NULL; + + if (fstat64(fd, &statbuf) == -1) + return (0); + size = P2ALIGN_TYPED(statbuf.st_size, sizeof (vdev_label_t), uint64_t); + + if ((label = malloc(sizeof (vdev_label_t))) == NULL) + return (-1); + + for (l = 0; l < VDEV_LABELS; l++) { + if (pread64(fd, label, sizeof (vdev_label_t), + label_offset(size, l)) != sizeof (vdev_label_t)) + continue; + + if (nvlist_unpack(label->vl_vdev_phys.vp_nvlist, + sizeof (label->vl_vdev_phys.vp_nvlist), config, 0) != 0) + continue; + + if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_STATE, + &state) != 0 || state > POOL_STATE_L2CACHE) { + nvlist_free(*config); + continue; + } + + if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && + (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_TXG, + &txg) != 0 || txg == 0)) { + nvlist_free(*config); + continue; + } + + free(label); + return (0); + } + + free(label); + *config = NULL; + return (0); +} + +typedef struct rdsk_node { + char *rn_name; + int rn_dfd; + libzfs_handle_t *rn_hdl; + nvlist_t *rn_config; + avl_tree_t *rn_avl; + avl_node_t rn_node; + boolean_t rn_nozpool; +} rdsk_node_t; + +static int +slice_cache_compare(const void *arg1, const void *arg2) +{ + const char *nm1 = ((rdsk_node_t *)arg1)->rn_name; + const char *nm2 = ((rdsk_node_t *)arg2)->rn_name; + char *nm1slice, *nm2slice; + int rv; + + /* + * slices zero and two are the most likely to provide results, + * so put those first + */ + nm1slice = strstr(nm1, "s0"); + nm2slice = strstr(nm2, "s0"); + if (nm1slice && !nm2slice) { + return (-1); + } + if (!nm1slice && nm2slice) { + return (1); + } + nm1slice = strstr(nm1, "s2"); + nm2slice = strstr(nm2, "s2"); + if (nm1slice && !nm2slice) { + return (-1); + } + if (!nm1slice && nm2slice) { + return (1); + } + + rv = strcmp(nm1, nm2); + if (rv == 0) + return (0); + return (rv > 0 ? 1 : -1); +} + +static void +check_one_slice(avl_tree_t *r, char *diskname, uint_t partno, + diskaddr_t size, uint_t blksz) +{ + rdsk_node_t tmpnode; + rdsk_node_t *node; + char sname[MAXNAMELEN]; + + tmpnode.rn_name = &sname[0]; + (void) snprintf(tmpnode.rn_name, MAXNAMELEN, "%s%u", + diskname, partno); + /* + * protect against division by zero for disk labels that + * contain a bogus sector size + */ + if (blksz == 0) + blksz = DEV_BSIZE; + /* too small to contain a zpool? */ + if ((size < (SPA_MINDEVSIZE / blksz)) && + (node = avl_find(r, &tmpnode, NULL))) + node->rn_nozpool = B_TRUE; +} + +static void +nozpool_all_slices(avl_tree_t *r, const char *sname) +{ + char diskname[MAXNAMELEN]; + char *ptr; + int i; + + (void) strncpy(diskname, sname, MAXNAMELEN); + if (((ptr = strrchr(diskname, 's')) == NULL) && + ((ptr = strrchr(diskname, 'p')) == NULL)) + return; + ptr[0] = 's'; + ptr[1] = '\0'; + for (i = 0; i < NDKMAP; i++) + check_one_slice(r, diskname, i, 0, 1); + ptr[0] = 'p'; + for (i = 0; i <= FD_NUMPART; i++) + check_one_slice(r, diskname, i, 0, 1); +} + +static void +check_slices(avl_tree_t *r, int fd, const char *sname) +{ + struct extvtoc vtoc; + struct dk_gpt *gpt; + char diskname[MAXNAMELEN]; + char *ptr; + int i; + + (void) strncpy(diskname, sname, MAXNAMELEN); + if ((ptr = strrchr(diskname, 's')) == NULL || !isdigit(ptr[1])) + return; + ptr[1] = '\0'; + + if (read_extvtoc(fd, &vtoc) >= 0) { + for (i = 0; i < NDKMAP; i++) + check_one_slice(r, diskname, i, + vtoc.v_part[i].p_size, vtoc.v_sectorsz); + } else if (efi_alloc_and_read(fd, &gpt) >= 0) { + /* + * on x86 we'll still have leftover links that point + * to slices s[9-15], so use NDKMAP instead + */ + for (i = 0; i < NDKMAP; i++) + check_one_slice(r, diskname, i, + gpt->efi_parts[i].p_size, gpt->efi_lbasize); + /* nodes p[1-4] are never used with EFI labels */ + ptr[0] = 'p'; + for (i = 1; i <= FD_NUMPART; i++) + check_one_slice(r, diskname, i, 0, 1); + efi_free(gpt); + } +} + +static void +zpool_open_func(void *arg) +{ + rdsk_node_t *rn = arg; + struct stat64 statbuf; + nvlist_t *config; + int fd; + + if (rn->rn_nozpool) + return; + if ((fd = openat64(rn->rn_dfd, rn->rn_name, O_RDONLY)) < 0) { + /* symlink to a device that's no longer there */ + if (errno == ENOENT) + nozpool_all_slices(rn->rn_avl, rn->rn_name); + return; + } + /* + * Ignore failed stats. We only want regular + * files, character devs and block devs. + */ + if (fstat64(fd, &statbuf) != 0 || + (!S_ISREG(statbuf.st_mode) && + !S_ISCHR(statbuf.st_mode) && + !S_ISBLK(statbuf.st_mode))) { + (void) close(fd); + return; + } + /* this file is too small to hold a zpool */ + if (S_ISREG(statbuf.st_mode) && + statbuf.st_size < SPA_MINDEVSIZE) { + (void) close(fd); + return; + } else if (!S_ISREG(statbuf.st_mode)) { + /* + * Try to read the disk label first so we don't have to + * open a bunch of minor nodes that can't have a zpool. + */ + check_slices(rn->rn_avl, fd, rn->rn_name); + } + + if ((zpool_read_label(fd, &config)) != 0) { + (void) close(fd); + (void) no_memory(rn->rn_hdl); + return; + } + (void) close(fd); + + + rn->rn_config = config; + if (config != NULL) { + assert(rn->rn_nozpool == B_FALSE); + } +} + +/* + * Given a file descriptor, clear (zero) the label information. This function + * is currently only used in the appliance stack as part of the ZFS sysevent + * module. + */ +int +zpool_clear_label(int fd) +{ + struct stat64 statbuf; + int l; + vdev_label_t *label; + uint64_t size; + + if (fstat64(fd, &statbuf) == -1) + return (0); + size = P2ALIGN_TYPED(statbuf.st_size, sizeof (vdev_label_t), uint64_t); + + if ((label = calloc(sizeof (vdev_label_t), 1)) == NULL) + return (-1); + + for (l = 0; l < VDEV_LABELS; l++) { + if (pwrite64(fd, label, sizeof (vdev_label_t), + label_offset(size, l)) != sizeof (vdev_label_t)) + return (-1); + } + + free(label); + return (0); +} + +/* + * Given a list of directories to search, find all pools stored on disk. This + * includes partial pools which are not available to import. If no args are + * given (argc is 0), then the default directory (/dev/dsk) is searched. + * poolname or guid (but not both) are provided by the caller when trying + * to import a specific pool. + */ +static nvlist_t * +zpool_find_import_impl(libzfs_handle_t *hdl, importargs_t *iarg) +{ + int i, dirs = iarg->paths; + DIR *dirp = NULL; + struct dirent64 *dp; + char path[MAXPATHLEN]; + char *end, **dir = iarg->path; + size_t pathleft; + nvlist_t *ret = NULL; + static char *default_dir = "/dev/dsk"; + pool_list_t pools = { 0 }; + pool_entry_t *pe, *penext; + vdev_entry_t *ve, *venext; + config_entry_t *ce, *cenext; + name_entry_t *ne, *nenext; + avl_tree_t slice_cache; + rdsk_node_t *slice; + void *cookie; + + if (dirs == 0) { + dirs = 1; + dir = &default_dir; + } + + /* + * Go through and read the label configuration information from every + * possible device, organizing the information according to pool GUID + * and toplevel GUID. + */ + for (i = 0; i < dirs; i++) { + tpool_t *t; + char *rdsk; + int dfd; + + /* use realpath to normalize the path */ + if (realpath(dir[i], path) == 0) { + (void) zfs_error_fmt(hdl, EZFS_BADPATH, + dgettext(TEXT_DOMAIN, "cannot open '%s'"), dir[i]); + goto error; + } + end = &path[strlen(path)]; + *end++ = '/'; + *end = 0; + pathleft = &path[sizeof (path)] - end; + + /* + * Using raw devices instead of block devices when we're + * reading the labels skips a bunch of slow operations during + * close(2) processing, so we replace /dev/dsk with /dev/rdsk. + */ + if (strcmp(path, "/dev/dsk/") == 0) + rdsk = "/dev/rdsk/"; + else + rdsk = path; + + if ((dfd = open64(rdsk, O_RDONLY)) < 0 || + (dirp = fdopendir(dfd)) == NULL) { + zfs_error_aux(hdl, strerror(errno)); + (void) zfs_error_fmt(hdl, EZFS_BADPATH, + dgettext(TEXT_DOMAIN, "cannot open '%s'"), + rdsk); + goto error; + } + + avl_create(&slice_cache, slice_cache_compare, + sizeof (rdsk_node_t), offsetof(rdsk_node_t, rn_node)); + /* + * This is not MT-safe, but we have no MT consumers of libzfs + */ + while ((dp = readdir64(dirp)) != NULL) { + const char *name = dp->d_name; + if (name[0] == '.' && + (name[1] == 0 || (name[1] == '.' && name[2] == 0))) + continue; + + slice = zfs_alloc(hdl, sizeof (rdsk_node_t)); + slice->rn_name = zfs_strdup(hdl, name); + slice->rn_avl = &slice_cache; + slice->rn_dfd = dfd; + slice->rn_hdl = hdl; + slice->rn_nozpool = B_FALSE; + avl_add(&slice_cache, slice); + } + /* + * create a thread pool to do all of this in parallel; + * rn_nozpool is not protected, so this is racy in that + * multiple tasks could decide that the same slice can + * not hold a zpool, which is benign. Also choose + * double the number of processors; we hold a lot of + * locks in the kernel, so going beyond this doesn't + * buy us much. + */ + t = tpool_create(1, 2 * sysconf(_SC_NPROCESSORS_ONLN), + 0, NULL); + for (slice = avl_first(&slice_cache); slice; + (slice = avl_walk(&slice_cache, slice, + AVL_AFTER))) + (void) tpool_dispatch(t, zpool_open_func, slice); + tpool_wait(t); + tpool_destroy(t); + + cookie = NULL; + while ((slice = avl_destroy_nodes(&slice_cache, + &cookie)) != NULL) { + if (slice->rn_config != NULL) { + nvlist_t *config = slice->rn_config; + boolean_t matched = B_TRUE; + + if (iarg->poolname != NULL) { + char *pname; + + matched = nvlist_lookup_string(config, + ZPOOL_CONFIG_POOL_NAME, + &pname) == 0 && + strcmp(iarg->poolname, pname) == 0; + } else if (iarg->guid != 0) { + uint64_t this_guid; + + matched = nvlist_lookup_uint64(config, + ZPOOL_CONFIG_POOL_GUID, + &this_guid) == 0 && + iarg->guid == this_guid; + } + if (!matched) { + nvlist_free(config); + config = NULL; + continue; + } + /* use the non-raw path for the config */ + (void) strlcpy(end, slice->rn_name, pathleft); + if (add_config(hdl, &pools, path, config) != 0) + goto error; + } + free(slice->rn_name); + free(slice); + } + avl_destroy(&slice_cache); + + (void) closedir(dirp); + dirp = NULL; + } + + ret = get_configs(hdl, &pools, iarg->can_be_active); + +error: + for (pe = pools.pools; pe != NULL; pe = penext) { + penext = pe->pe_next; + for (ve = pe->pe_vdevs; ve != NULL; ve = venext) { + venext = ve->ve_next; + for (ce = ve->ve_configs; ce != NULL; ce = cenext) { + cenext = ce->ce_next; + if (ce->ce_config) + nvlist_free(ce->ce_config); + free(ce); + } + free(ve); + } + free(pe); + } + + for (ne = pools.names; ne != NULL; ne = nenext) { + nenext = ne->ne_next; + if (ne->ne_name) + free(ne->ne_name); + free(ne); + } + + if (dirp) + (void) closedir(dirp); + + return (ret); +} + +nvlist_t * +zpool_find_import(libzfs_handle_t *hdl, int argc, char **argv) +{ + importargs_t iarg = { 0 }; + + iarg.paths = argc; + iarg.path = argv; + + return (zpool_find_import_impl(hdl, &iarg)); +} + +/* + * Given a cache file, return the contents as a list of importable pools. + * poolname or guid (but not both) are provided by the caller when trying + * to import a specific pool. + */ +nvlist_t * +zpool_find_import_cached(libzfs_handle_t *hdl, const char *cachefile, + char *poolname, uint64_t guid) +{ + char *buf; + int fd; + struct stat64 statbuf; + nvlist_t *raw, *src, *dst; + nvlist_t *pools; + nvpair_t *elem; + char *name; + uint64_t this_guid; + boolean_t active; + + verify(poolname == NULL || guid == 0); + + if ((fd = open(cachefile, O_RDONLY)) < 0) { + zfs_error_aux(hdl, "%s", strerror(errno)); + (void) zfs_error(hdl, EZFS_BADCACHE, + dgettext(TEXT_DOMAIN, "failed to open cache file")); + return (NULL); + } + + if (fstat64(fd, &statbuf) != 0) { + zfs_error_aux(hdl, "%s", strerror(errno)); + (void) close(fd); + (void) zfs_error(hdl, EZFS_BADCACHE, + dgettext(TEXT_DOMAIN, "failed to get size of cache file")); + return (NULL); + } + + if ((buf = zfs_alloc(hdl, statbuf.st_size)) == NULL) { + (void) close(fd); + return (NULL); + } + + if (read(fd, buf, statbuf.st_size) != statbuf.st_size) { + (void) close(fd); + free(buf); + (void) zfs_error(hdl, EZFS_BADCACHE, + dgettext(TEXT_DOMAIN, + "failed to read cache file contents")); + return (NULL); + } + + (void) close(fd); + + if (nvlist_unpack(buf, statbuf.st_size, &raw, 0) != 0) { + free(buf); + (void) zfs_error(hdl, EZFS_BADCACHE, + dgettext(TEXT_DOMAIN, + "invalid or corrupt cache file contents")); + return (NULL); + } + + free(buf); + + /* + * Go through and get the current state of the pools and refresh their + * state. + */ + if (nvlist_alloc(&pools, 0, 0) != 0) { + (void) no_memory(hdl); + nvlist_free(raw); + return (NULL); + } + + elem = NULL; + while ((elem = nvlist_next_nvpair(raw, elem)) != NULL) { + verify(nvpair_value_nvlist(elem, &src) == 0); + + verify(nvlist_lookup_string(src, ZPOOL_CONFIG_POOL_NAME, + &name) == 0); + if (poolname != NULL && strcmp(poolname, name) != 0) + continue; + + verify(nvlist_lookup_uint64(src, ZPOOL_CONFIG_POOL_GUID, + &this_guid) == 0); + if (guid != 0) { + verify(nvlist_lookup_uint64(src, ZPOOL_CONFIG_POOL_GUID, + &this_guid) == 0); + if (guid != this_guid) + continue; + } + + if (pool_active(hdl, name, this_guid, &active) != 0) { + nvlist_free(raw); + nvlist_free(pools); + return (NULL); + } + + if (active) + continue; + + if ((dst = refresh_config(hdl, src)) == NULL) { + nvlist_free(raw); + nvlist_free(pools); + return (NULL); + } + + if (nvlist_add_nvlist(pools, nvpair_name(elem), dst) != 0) { + (void) no_memory(hdl); + nvlist_free(dst); + nvlist_free(raw); + nvlist_free(pools); + return (NULL); + } + nvlist_free(dst); + } + + nvlist_free(raw); + return (pools); +} + +static int +name_or_guid_exists(zpool_handle_t *zhp, void *data) +{ + importargs_t *import = data; + int found = 0; + + if (import->poolname != NULL) { + char *pool_name; + + verify(nvlist_lookup_string(zhp->zpool_config, + ZPOOL_CONFIG_POOL_NAME, &pool_name) == 0); + if (strcmp(pool_name, import->poolname) == 0) + found = 1; + } else { + uint64_t pool_guid; + + verify(nvlist_lookup_uint64(zhp->zpool_config, + ZPOOL_CONFIG_POOL_GUID, &pool_guid) == 0); + if (pool_guid == import->guid) + found = 1; + } + + zpool_close(zhp); + return (found); +} + +nvlist_t * +zpool_search_import(libzfs_handle_t *hdl, importargs_t *import) +{ + verify(import->poolname == NULL || import->guid == 0); + + if (import->unique) + import->exists = zpool_iter(hdl, name_or_guid_exists, import); + + if (import->cachefile != NULL) + return (zpool_find_import_cached(hdl, import->cachefile, + import->poolname, import->guid)); + + return (zpool_find_import_impl(hdl, import)); +} + +boolean_t +find_guid(nvlist_t *nv, uint64_t guid) +{ + uint64_t tmp; + nvlist_t **child; + uint_t c, children; + + verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &tmp) == 0); + if (tmp == guid) + return (B_TRUE); + + if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, + &child, &children) == 0) { + for (c = 0; c < children; c++) + if (find_guid(child[c], guid)) + return (B_TRUE); + } + + return (B_FALSE); +} + +typedef struct aux_cbdata { + const char *cb_type; + uint64_t cb_guid; + zpool_handle_t *cb_zhp; +} aux_cbdata_t; + +static int +find_aux(zpool_handle_t *zhp, void *data) +{ + aux_cbdata_t *cbp = data; + nvlist_t **list; + uint_t i, count; + uint64_t guid; + nvlist_t *nvroot; + + verify(nvlist_lookup_nvlist(zhp->zpool_config, ZPOOL_CONFIG_VDEV_TREE, + &nvroot) == 0); + + if (nvlist_lookup_nvlist_array(nvroot, cbp->cb_type, + &list, &count) == 0) { + for (i = 0; i < count; i++) { + verify(nvlist_lookup_uint64(list[i], + ZPOOL_CONFIG_GUID, &guid) == 0); + if (guid == cbp->cb_guid) { + cbp->cb_zhp = zhp; + return (1); + } + } + } + + zpool_close(zhp); + return (0); +} + +/* + * Determines if the pool is in use. If so, it returns true and the state of + * the pool as well as the name of the pool. Both strings are allocated and + * must be freed by the caller. + */ +int +zpool_in_use(libzfs_handle_t *hdl, int fd, pool_state_t *state, char **namestr, + boolean_t *inuse) +{ + nvlist_t *config; + char *name; + boolean_t ret; + uint64_t guid, vdev_guid; + zpool_handle_t *zhp; + nvlist_t *pool_config; + uint64_t stateval, isspare; + aux_cbdata_t cb = { 0 }; + boolean_t isactive; + + *inuse = B_FALSE; + + if (zpool_read_label(fd, &config) != 0) { + (void) no_memory(hdl); + return (-1); + } + + if (config == NULL) + return (0); + + verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE, + &stateval) == 0); + verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, + &vdev_guid) == 0); + + if (stateval != POOL_STATE_SPARE && stateval != POOL_STATE_L2CACHE) { + verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, + &name) == 0); + verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, + &guid) == 0); + } + + switch (stateval) { + case POOL_STATE_EXPORTED: + /* + * A pool with an exported state may in fact be imported + * read-only, so check the in-core state to see if it's + * active and imported read-only. If it is, set + * its state to active. + */ + if (pool_active(hdl, name, guid, &isactive) == 0 && isactive && + (zhp = zpool_open_canfail(hdl, name)) != NULL && + zpool_get_prop_int(zhp, ZPOOL_PROP_READONLY, NULL)) + stateval = POOL_STATE_ACTIVE; + + ret = B_TRUE; + break; + + case POOL_STATE_ACTIVE: + /* + * For an active pool, we have to determine if it's really part + * of a currently active pool (in which case the pool will exist + * and the guid will be the same), or whether it's part of an + * active pool that was disconnected without being explicitly + * exported. + */ + if (pool_active(hdl, name, guid, &isactive) != 0) { + nvlist_free(config); + return (-1); + } + + if (isactive) { + /* + * Because the device may have been removed while + * offlined, we only report it as active if the vdev is + * still present in the config. Otherwise, pretend like + * it's not in use. + */ + if ((zhp = zpool_open_canfail(hdl, name)) != NULL && + (pool_config = zpool_get_config(zhp, NULL)) + != NULL) { + nvlist_t *nvroot; + + verify(nvlist_lookup_nvlist(pool_config, + ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); + ret = find_guid(nvroot, vdev_guid); + } else { + ret = B_FALSE; + } + + /* + * If this is an active spare within another pool, we + * treat it like an unused hot spare. This allows the + * user to create a pool with a hot spare that currently + * in use within another pool. Since we return B_TRUE, + * libdiskmgt will continue to prevent generic consumers + * from using the device. + */ + if (ret && nvlist_lookup_uint64(config, + ZPOOL_CONFIG_IS_SPARE, &isspare) == 0 && isspare) + stateval = POOL_STATE_SPARE; + + if (zhp != NULL) + zpool_close(zhp); + } else { + stateval = POOL_STATE_POTENTIALLY_ACTIVE; + ret = B_TRUE; + } + break; + + case POOL_STATE_SPARE: + /* + * For a hot spare, it can be either definitively in use, or + * potentially active. To determine if it's in use, we iterate + * over all pools in the system and search for one with a spare + * with a matching guid. + * + * Due to the shared nature of spares, we don't actually report + * the potentially active case as in use. This means the user + * can freely create pools on the hot spares of exported pools, + * but to do otherwise makes the resulting code complicated, and + * we end up having to deal with this case anyway. + */ + cb.cb_zhp = NULL; + cb.cb_guid = vdev_guid; + cb.cb_type = ZPOOL_CONFIG_SPARES; + if (zpool_iter(hdl, find_aux, &cb) == 1) { + name = (char *)zpool_get_name(cb.cb_zhp); + ret = TRUE; + } else { + ret = FALSE; + } + break; + + case POOL_STATE_L2CACHE: + + /* + * Check if any pool is currently using this l2cache device. + */ + cb.cb_zhp = NULL; + cb.cb_guid = vdev_guid; + cb.cb_type = ZPOOL_CONFIG_L2CACHE; + if (zpool_iter(hdl, find_aux, &cb) == 1) { + name = (char *)zpool_get_name(cb.cb_zhp); + ret = TRUE; + } else { + ret = FALSE; + } + break; + + default: + ret = B_FALSE; + } + + + if (ret) { + if ((*namestr = zfs_strdup(hdl, name)) == NULL) { + if (cb.cb_zhp) + zpool_close(cb.cb_zhp); + nvlist_free(config); + return (-1); + } + *state = (pool_state_t)stateval; + } + + if (cb.cb_zhp) + zpool_close(cb.cb_zhp); + + nvlist_free(config); + *inuse = ret; + return (0); +} |