summaryrefslogtreecommitdiff
path: root/lib/libzfs/common/libzfs_import.c
diff options
context:
space:
mode:
authorMartin Matuska <mm@FreeBSD.org>2012-07-18 07:48:04 +0000
committerMartin Matuska <mm@FreeBSD.org>2012-07-18 07:48:04 +0000
commit93a00b0821525e25814cd720fafd04d600811c28 (patch)
tree581776874858fb2fad55f129938a1871f8758eb5 /lib/libzfs/common/libzfs_import.c
parente0ea83ebb1a4b194c927cb114766e8781676380b (diff)
Notes
Diffstat (limited to 'lib/libzfs/common/libzfs_import.c')
-rw-r--r--lib/libzfs/common/libzfs_import.c1688
1 files changed, 1688 insertions, 0 deletions
diff --git a/lib/libzfs/common/libzfs_import.c b/lib/libzfs/common/libzfs_import.c
new file mode 100644
index 0000000000000..e1370350fd52d
--- /dev/null
+++ b/lib/libzfs/common/libzfs_import.c
@@ -0,0 +1,1688 @@
+/*
+ * CDDL HEADER START
+ *
+ * The contents of this file are subject to the terms of the
+ * Common Development and Distribution License (the "License").
+ * You may not use this file except in compliance with the License.
+ *
+ * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
+ * or http://www.opensolaris.org/os/licensing.
+ * See the License for the specific language governing permissions
+ * and limitations under the License.
+ *
+ * When distributing Covered Code, include this CDDL HEADER in each
+ * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
+ * If applicable, add the following below this CDDL HEADER, with the
+ * fields enclosed by brackets "[]" replaced with your own identifying
+ * information: Portions Copyright [yyyy] [name of copyright owner]
+ *
+ * CDDL HEADER END
+ */
+/*
+ * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
+ */
+
+/*
+ * Pool import support functions.
+ *
+ * To import a pool, we rely on reading the configuration information from the
+ * ZFS label of each device. If we successfully read the label, then we
+ * organize the configuration information in the following hierarchy:
+ *
+ * pool guid -> toplevel vdev guid -> label txg
+ *
+ * Duplicate entries matching this same tuple will be discarded. Once we have
+ * examined every device, we pick the best label txg config for each toplevel
+ * vdev. We then arrange these toplevel vdevs into a complete pool config, and
+ * update any paths that have changed. Finally, we attempt to import the pool
+ * using our derived config, and record the results.
+ */
+
+#include <ctype.h>
+#include <devid.h>
+#include <dirent.h>
+#include <errno.h>
+#include <libintl.h>
+#include <stddef.h>
+#include <stdlib.h>
+#include <string.h>
+#include <sys/stat.h>
+#include <unistd.h>
+#include <fcntl.h>
+#include <sys/vtoc.h>
+#include <sys/dktp/fdisk.h>
+#include <sys/efi_partition.h>
+#include <thread_pool.h>
+
+#include <sys/vdev_impl.h>
+
+#include "libzfs.h"
+#include "libzfs_impl.h"
+
+/*
+ * Intermediate structures used to gather configuration information.
+ */
+typedef struct config_entry {
+ uint64_t ce_txg;
+ nvlist_t *ce_config;
+ struct config_entry *ce_next;
+} config_entry_t;
+
+typedef struct vdev_entry {
+ uint64_t ve_guid;
+ config_entry_t *ve_configs;
+ struct vdev_entry *ve_next;
+} vdev_entry_t;
+
+typedef struct pool_entry {
+ uint64_t pe_guid;
+ vdev_entry_t *pe_vdevs;
+ struct pool_entry *pe_next;
+} pool_entry_t;
+
+typedef struct name_entry {
+ char *ne_name;
+ uint64_t ne_guid;
+ struct name_entry *ne_next;
+} name_entry_t;
+
+typedef struct pool_list {
+ pool_entry_t *pools;
+ name_entry_t *names;
+} pool_list_t;
+
+static char *
+get_devid(const char *path)
+{
+ int fd;
+ ddi_devid_t devid;
+ char *minor, *ret;
+
+ if ((fd = open(path, O_RDONLY)) < 0)
+ return (NULL);
+
+ minor = NULL;
+ ret = NULL;
+ if (devid_get(fd, &devid) == 0) {
+ if (devid_get_minor_name(fd, &minor) == 0)
+ ret = devid_str_encode(devid, minor);
+ if (minor != NULL)
+ devid_str_free(minor);
+ devid_free(devid);
+ }
+ (void) close(fd);
+
+ return (ret);
+}
+
+
+/*
+ * Go through and fix up any path and/or devid information for the given vdev
+ * configuration.
+ */
+static int
+fix_paths(nvlist_t *nv, name_entry_t *names)
+{
+ nvlist_t **child;
+ uint_t c, children;
+ uint64_t guid;
+ name_entry_t *ne, *best;
+ char *path, *devid;
+ int matched;
+
+ if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
+ &child, &children) == 0) {
+ for (c = 0; c < children; c++)
+ if (fix_paths(child[c], names) != 0)
+ return (-1);
+ return (0);
+ }
+
+ /*
+ * This is a leaf (file or disk) vdev. In either case, go through
+ * the name list and see if we find a matching guid. If so, replace
+ * the path and see if we can calculate a new devid.
+ *
+ * There may be multiple names associated with a particular guid, in
+ * which case we have overlapping slices or multiple paths to the same
+ * disk. If this is the case, then we want to pick the path that is
+ * the most similar to the original, where "most similar" is the number
+ * of matching characters starting from the end of the path. This will
+ * preserve slice numbers even if the disks have been reorganized, and
+ * will also catch preferred disk names if multiple paths exist.
+ */
+ verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) == 0);
+ if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) != 0)
+ path = NULL;
+
+ matched = 0;
+ best = NULL;
+ for (ne = names; ne != NULL; ne = ne->ne_next) {
+ if (ne->ne_guid == guid) {
+ const char *src, *dst;
+ int count;
+
+ if (path == NULL) {
+ best = ne;
+ break;
+ }
+
+ src = ne->ne_name + strlen(ne->ne_name) - 1;
+ dst = path + strlen(path) - 1;
+ for (count = 0; src >= ne->ne_name && dst >= path;
+ src--, dst--, count++)
+ if (*src != *dst)
+ break;
+
+ /*
+ * At this point, 'count' is the number of characters
+ * matched from the end.
+ */
+ if (count > matched || best == NULL) {
+ best = ne;
+ matched = count;
+ }
+ }
+ }
+
+ if (best == NULL)
+ return (0);
+
+ if (nvlist_add_string(nv, ZPOOL_CONFIG_PATH, best->ne_name) != 0)
+ return (-1);
+
+ if ((devid = get_devid(best->ne_name)) == NULL) {
+ (void) nvlist_remove_all(nv, ZPOOL_CONFIG_DEVID);
+ } else {
+ if (nvlist_add_string(nv, ZPOOL_CONFIG_DEVID, devid) != 0)
+ return (-1);
+ devid_str_free(devid);
+ }
+
+ return (0);
+}
+
+/*
+ * Add the given configuration to the list of known devices.
+ */
+static int
+add_config(libzfs_handle_t *hdl, pool_list_t *pl, const char *path,
+ nvlist_t *config)
+{
+ uint64_t pool_guid, vdev_guid, top_guid, txg, state;
+ pool_entry_t *pe;
+ vdev_entry_t *ve;
+ config_entry_t *ce;
+ name_entry_t *ne;
+
+ /*
+ * If this is a hot spare not currently in use or level 2 cache
+ * device, add it to the list of names to translate, but don't do
+ * anything else.
+ */
+ if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE,
+ &state) == 0 &&
+ (state == POOL_STATE_SPARE || state == POOL_STATE_L2CACHE) &&
+ nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, &vdev_guid) == 0) {
+ if ((ne = zfs_alloc(hdl, sizeof (name_entry_t))) == NULL)
+ return (-1);
+
+ if ((ne->ne_name = zfs_strdup(hdl, path)) == NULL) {
+ free(ne);
+ return (-1);
+ }
+ ne->ne_guid = vdev_guid;
+ ne->ne_next = pl->names;
+ pl->names = ne;
+ return (0);
+ }
+
+ /*
+ * If we have a valid config but cannot read any of these fields, then
+ * it means we have a half-initialized label. In vdev_label_init()
+ * we write a label with txg == 0 so that we can identify the device
+ * in case the user refers to the same disk later on. If we fail to
+ * create the pool, we'll be left with a label in this state
+ * which should not be considered part of a valid pool.
+ */
+ if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
+ &pool_guid) != 0 ||
+ nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID,
+ &vdev_guid) != 0 ||
+ nvlist_lookup_uint64(config, ZPOOL_CONFIG_TOP_GUID,
+ &top_guid) != 0 ||
+ nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
+ &txg) != 0 || txg == 0) {
+ nvlist_free(config);
+ return (0);
+ }
+
+ /*
+ * First, see if we know about this pool. If not, then add it to the
+ * list of known pools.
+ */
+ for (pe = pl->pools; pe != NULL; pe = pe->pe_next) {
+ if (pe->pe_guid == pool_guid)
+ break;
+ }
+
+ if (pe == NULL) {
+ if ((pe = zfs_alloc(hdl, sizeof (pool_entry_t))) == NULL) {
+ nvlist_free(config);
+ return (-1);
+ }
+ pe->pe_guid = pool_guid;
+ pe->pe_next = pl->pools;
+ pl->pools = pe;
+ }
+
+ /*
+ * Second, see if we know about this toplevel vdev. Add it if its
+ * missing.
+ */
+ for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) {
+ if (ve->ve_guid == top_guid)
+ break;
+ }
+
+ if (ve == NULL) {
+ if ((ve = zfs_alloc(hdl, sizeof (vdev_entry_t))) == NULL) {
+ nvlist_free(config);
+ return (-1);
+ }
+ ve->ve_guid = top_guid;
+ ve->ve_next = pe->pe_vdevs;
+ pe->pe_vdevs = ve;
+ }
+
+ /*
+ * Third, see if we have a config with a matching transaction group. If
+ * so, then we do nothing. Otherwise, add it to the list of known
+ * configs.
+ */
+ for (ce = ve->ve_configs; ce != NULL; ce = ce->ce_next) {
+ if (ce->ce_txg == txg)
+ break;
+ }
+
+ if (ce == NULL) {
+ if ((ce = zfs_alloc(hdl, sizeof (config_entry_t))) == NULL) {
+ nvlist_free(config);
+ return (-1);
+ }
+ ce->ce_txg = txg;
+ ce->ce_config = config;
+ ce->ce_next = ve->ve_configs;
+ ve->ve_configs = ce;
+ } else {
+ nvlist_free(config);
+ }
+
+ /*
+ * At this point we've successfully added our config to the list of
+ * known configs. The last thing to do is add the vdev guid -> path
+ * mappings so that we can fix up the configuration as necessary before
+ * doing the import.
+ */
+ if ((ne = zfs_alloc(hdl, sizeof (name_entry_t))) == NULL)
+ return (-1);
+
+ if ((ne->ne_name = zfs_strdup(hdl, path)) == NULL) {
+ free(ne);
+ return (-1);
+ }
+
+ ne->ne_guid = vdev_guid;
+ ne->ne_next = pl->names;
+ pl->names = ne;
+
+ return (0);
+}
+
+/*
+ * Returns true if the named pool matches the given GUID.
+ */
+static int
+pool_active(libzfs_handle_t *hdl, const char *name, uint64_t guid,
+ boolean_t *isactive)
+{
+ zpool_handle_t *zhp;
+ uint64_t theguid;
+
+ if (zpool_open_silent(hdl, name, &zhp) != 0)
+ return (-1);
+
+ if (zhp == NULL) {
+ *isactive = B_FALSE;
+ return (0);
+ }
+
+ verify(nvlist_lookup_uint64(zhp->zpool_config, ZPOOL_CONFIG_POOL_GUID,
+ &theguid) == 0);
+
+ zpool_close(zhp);
+
+ *isactive = (theguid == guid);
+ return (0);
+}
+
+static nvlist_t *
+refresh_config(libzfs_handle_t *hdl, nvlist_t *config)
+{
+ nvlist_t *nvl;
+ zfs_cmd_t zc = { 0 };
+ int err;
+
+ if (zcmd_write_conf_nvlist(hdl, &zc, config) != 0)
+ return (NULL);
+
+ if (zcmd_alloc_dst_nvlist(hdl, &zc,
+ zc.zc_nvlist_conf_size * 2) != 0) {
+ zcmd_free_nvlists(&zc);
+ return (NULL);
+ }
+
+ while ((err = ioctl(hdl->libzfs_fd, ZFS_IOC_POOL_TRYIMPORT,
+ &zc)) != 0 && errno == ENOMEM) {
+ if (zcmd_expand_dst_nvlist(hdl, &zc) != 0) {
+ zcmd_free_nvlists(&zc);
+ return (NULL);
+ }
+ }
+
+ if (err) {
+ zcmd_free_nvlists(&zc);
+ return (NULL);
+ }
+
+ if (zcmd_read_dst_nvlist(hdl, &zc, &nvl) != 0) {
+ zcmd_free_nvlists(&zc);
+ return (NULL);
+ }
+
+ zcmd_free_nvlists(&zc);
+ return (nvl);
+}
+
+/*
+ * Determine if the vdev id is a hole in the namespace.
+ */
+boolean_t
+vdev_is_hole(uint64_t *hole_array, uint_t holes, uint_t id)
+{
+ for (int c = 0; c < holes; c++) {
+
+ /* Top-level is a hole */
+ if (hole_array[c] == id)
+ return (B_TRUE);
+ }
+ return (B_FALSE);
+}
+
+/*
+ * Convert our list of pools into the definitive set of configurations. We
+ * start by picking the best config for each toplevel vdev. Once that's done,
+ * we assemble the toplevel vdevs into a full config for the pool. We make a
+ * pass to fix up any incorrect paths, and then add it to the main list to
+ * return to the user.
+ */
+static nvlist_t *
+get_configs(libzfs_handle_t *hdl, pool_list_t *pl, boolean_t active_ok)
+{
+ pool_entry_t *pe;
+ vdev_entry_t *ve;
+ config_entry_t *ce;
+ nvlist_t *ret = NULL, *config = NULL, *tmp, *nvtop, *nvroot;
+ nvlist_t **spares, **l2cache;
+ uint_t i, nspares, nl2cache;
+ boolean_t config_seen;
+ uint64_t best_txg;
+ char *name, *hostname;
+ uint64_t version, guid;
+ uint_t children = 0;
+ nvlist_t **child = NULL;
+ uint_t holes;
+ uint64_t *hole_array, max_id;
+ uint_t c;
+ boolean_t isactive;
+ uint64_t hostid;
+ nvlist_t *nvl;
+ boolean_t found_one = B_FALSE;
+ boolean_t valid_top_config = B_FALSE;
+
+ if (nvlist_alloc(&ret, 0, 0) != 0)
+ goto nomem;
+
+ for (pe = pl->pools; pe != NULL; pe = pe->pe_next) {
+ uint64_t id, max_txg = 0;
+
+ if (nvlist_alloc(&config, NV_UNIQUE_NAME, 0) != 0)
+ goto nomem;
+ config_seen = B_FALSE;
+
+ /*
+ * Iterate over all toplevel vdevs. Grab the pool configuration
+ * from the first one we find, and then go through the rest and
+ * add them as necessary to the 'vdevs' member of the config.
+ */
+ for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) {
+
+ /*
+ * Determine the best configuration for this vdev by
+ * selecting the config with the latest transaction
+ * group.
+ */
+ best_txg = 0;
+ for (ce = ve->ve_configs; ce != NULL;
+ ce = ce->ce_next) {
+
+ if (ce->ce_txg > best_txg) {
+ tmp = ce->ce_config;
+ best_txg = ce->ce_txg;
+ }
+ }
+
+ /*
+ * We rely on the fact that the max txg for the
+ * pool will contain the most up-to-date information
+ * about the valid top-levels in the vdev namespace.
+ */
+ if (best_txg > max_txg) {
+ (void) nvlist_remove(config,
+ ZPOOL_CONFIG_VDEV_CHILDREN,
+ DATA_TYPE_UINT64);
+ (void) nvlist_remove(config,
+ ZPOOL_CONFIG_HOLE_ARRAY,
+ DATA_TYPE_UINT64_ARRAY);
+
+ max_txg = best_txg;
+ hole_array = NULL;
+ holes = 0;
+ max_id = 0;
+ valid_top_config = B_FALSE;
+
+ if (nvlist_lookup_uint64(tmp,
+ ZPOOL_CONFIG_VDEV_CHILDREN, &max_id) == 0) {
+ verify(nvlist_add_uint64(config,
+ ZPOOL_CONFIG_VDEV_CHILDREN,
+ max_id) == 0);
+ valid_top_config = B_TRUE;
+ }
+
+ if (nvlist_lookup_uint64_array(tmp,
+ ZPOOL_CONFIG_HOLE_ARRAY, &hole_array,
+ &holes) == 0) {
+ verify(nvlist_add_uint64_array(config,
+ ZPOOL_CONFIG_HOLE_ARRAY,
+ hole_array, holes) == 0);
+ }
+ }
+
+ if (!config_seen) {
+ /*
+ * Copy the relevant pieces of data to the pool
+ * configuration:
+ *
+ * version
+ * pool guid
+ * name
+ * pool state
+ * hostid (if available)
+ * hostname (if available)
+ */
+ uint64_t state;
+
+ verify(nvlist_lookup_uint64(tmp,
+ ZPOOL_CONFIG_VERSION, &version) == 0);
+ if (nvlist_add_uint64(config,
+ ZPOOL_CONFIG_VERSION, version) != 0)
+ goto nomem;
+ verify(nvlist_lookup_uint64(tmp,
+ ZPOOL_CONFIG_POOL_GUID, &guid) == 0);
+ if (nvlist_add_uint64(config,
+ ZPOOL_CONFIG_POOL_GUID, guid) != 0)
+ goto nomem;
+ verify(nvlist_lookup_string(tmp,
+ ZPOOL_CONFIG_POOL_NAME, &name) == 0);
+ if (nvlist_add_string(config,
+ ZPOOL_CONFIG_POOL_NAME, name) != 0)
+ goto nomem;
+ verify(nvlist_lookup_uint64(tmp,
+ ZPOOL_CONFIG_POOL_STATE, &state) == 0);
+ if (nvlist_add_uint64(config,
+ ZPOOL_CONFIG_POOL_STATE, state) != 0)
+ goto nomem;
+ hostid = 0;
+ if (nvlist_lookup_uint64(tmp,
+ ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
+ if (nvlist_add_uint64(config,
+ ZPOOL_CONFIG_HOSTID, hostid) != 0)
+ goto nomem;
+ verify(nvlist_lookup_string(tmp,
+ ZPOOL_CONFIG_HOSTNAME,
+ &hostname) == 0);
+ if (nvlist_add_string(config,
+ ZPOOL_CONFIG_HOSTNAME,
+ hostname) != 0)
+ goto nomem;
+ }
+
+ config_seen = B_TRUE;
+ }
+
+ /*
+ * Add this top-level vdev to the child array.
+ */
+ verify(nvlist_lookup_nvlist(tmp,
+ ZPOOL_CONFIG_VDEV_TREE, &nvtop) == 0);
+ verify(nvlist_lookup_uint64(nvtop, ZPOOL_CONFIG_ID,
+ &id) == 0);
+
+ if (id >= children) {
+ nvlist_t **newchild;
+
+ newchild = zfs_alloc(hdl, (id + 1) *
+ sizeof (nvlist_t *));
+ if (newchild == NULL)
+ goto nomem;
+
+ for (c = 0; c < children; c++)
+ newchild[c] = child[c];
+
+ free(child);
+ child = newchild;
+ children = id + 1;
+ }
+ if (nvlist_dup(nvtop, &child[id], 0) != 0)
+ goto nomem;
+
+ }
+
+ /*
+ * If we have information about all the top-levels then
+ * clean up the nvlist which we've constructed. This
+ * means removing any extraneous devices that are
+ * beyond the valid range or adding devices to the end
+ * of our array which appear to be missing.
+ */
+ if (valid_top_config) {
+ if (max_id < children) {
+ for (c = max_id; c < children; c++)
+ nvlist_free(child[c]);
+ children = max_id;
+ } else if (max_id > children) {
+ nvlist_t **newchild;
+
+ newchild = zfs_alloc(hdl, (max_id) *
+ sizeof (nvlist_t *));
+ if (newchild == NULL)
+ goto nomem;
+
+ for (c = 0; c < children; c++)
+ newchild[c] = child[c];
+
+ free(child);
+ child = newchild;
+ children = max_id;
+ }
+ }
+
+ verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
+ &guid) == 0);
+
+ /*
+ * The vdev namespace may contain holes as a result of
+ * device removal. We must add them back into the vdev
+ * tree before we process any missing devices.
+ */
+ if (holes > 0) {
+ ASSERT(valid_top_config);
+
+ for (c = 0; c < children; c++) {
+ nvlist_t *holey;
+
+ if (child[c] != NULL ||
+ !vdev_is_hole(hole_array, holes, c))
+ continue;
+
+ if (nvlist_alloc(&holey, NV_UNIQUE_NAME,
+ 0) != 0)
+ goto nomem;
+
+ /*
+ * Holes in the namespace are treated as
+ * "hole" top-level vdevs and have a
+ * special flag set on them.
+ */
+ if (nvlist_add_string(holey,
+ ZPOOL_CONFIG_TYPE,
+ VDEV_TYPE_HOLE) != 0 ||
+ nvlist_add_uint64(holey,
+ ZPOOL_CONFIG_ID, c) != 0 ||
+ nvlist_add_uint64(holey,
+ ZPOOL_CONFIG_GUID, 0ULL) != 0)
+ goto nomem;
+ child[c] = holey;
+ }
+ }
+
+ /*
+ * Look for any missing top-level vdevs. If this is the case,
+ * create a faked up 'missing' vdev as a placeholder. We cannot
+ * simply compress the child array, because the kernel performs
+ * certain checks to make sure the vdev IDs match their location
+ * in the configuration.
+ */
+ for (c = 0; c < children; c++) {
+ if (child[c] == NULL) {
+ nvlist_t *missing;
+ if (nvlist_alloc(&missing, NV_UNIQUE_NAME,
+ 0) != 0)
+ goto nomem;
+ if (nvlist_add_string(missing,
+ ZPOOL_CONFIG_TYPE,
+ VDEV_TYPE_MISSING) != 0 ||
+ nvlist_add_uint64(missing,
+ ZPOOL_CONFIG_ID, c) != 0 ||
+ nvlist_add_uint64(missing,
+ ZPOOL_CONFIG_GUID, 0ULL) != 0) {
+ nvlist_free(missing);
+ goto nomem;
+ }
+ child[c] = missing;
+ }
+ }
+
+ /*
+ * Put all of this pool's top-level vdevs into a root vdev.
+ */
+ if (nvlist_alloc(&nvroot, NV_UNIQUE_NAME, 0) != 0)
+ goto nomem;
+ if (nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
+ VDEV_TYPE_ROOT) != 0 ||
+ nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) != 0 ||
+ nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, guid) != 0 ||
+ nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
+ child, children) != 0) {
+ nvlist_free(nvroot);
+ goto nomem;
+ }
+
+ for (c = 0; c < children; c++)
+ nvlist_free(child[c]);
+ free(child);
+ children = 0;
+ child = NULL;
+
+ /*
+ * Go through and fix up any paths and/or devids based on our
+ * known list of vdev GUID -> path mappings.
+ */
+ if (fix_paths(nvroot, pl->names) != 0) {
+ nvlist_free(nvroot);
+ goto nomem;
+ }
+
+ /*
+ * Add the root vdev to this pool's configuration.
+ */
+ if (nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
+ nvroot) != 0) {
+ nvlist_free(nvroot);
+ goto nomem;
+ }
+ nvlist_free(nvroot);
+
+ /*
+ * zdb uses this path to report on active pools that were
+ * imported or created using -R.
+ */
+ if (active_ok)
+ goto add_pool;
+
+ /*
+ * Determine if this pool is currently active, in which case we
+ * can't actually import it.
+ */
+ verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
+ &name) == 0);
+ verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
+ &guid) == 0);
+
+ if (pool_active(hdl, name, guid, &isactive) != 0)
+ goto error;
+
+ if (isactive) {
+ nvlist_free(config);
+ config = NULL;
+ continue;
+ }
+
+ if ((nvl = refresh_config(hdl, config)) == NULL) {
+ nvlist_free(config);
+ config = NULL;
+ continue;
+ }
+
+ nvlist_free(config);
+ config = nvl;
+
+ /*
+ * Go through and update the paths for spares, now that we have
+ * them.
+ */
+ verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
+ &nvroot) == 0);
+ if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
+ &spares, &nspares) == 0) {
+ for (i = 0; i < nspares; i++) {
+ if (fix_paths(spares[i], pl->names) != 0)
+ goto nomem;
+ }
+ }
+
+ /*
+ * Update the paths for l2cache devices.
+ */
+ if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
+ &l2cache, &nl2cache) == 0) {
+ for (i = 0; i < nl2cache; i++) {
+ if (fix_paths(l2cache[i], pl->names) != 0)
+ goto nomem;
+ }
+ }
+
+ /*
+ * Restore the original information read from the actual label.
+ */
+ (void) nvlist_remove(config, ZPOOL_CONFIG_HOSTID,
+ DATA_TYPE_UINT64);
+ (void) nvlist_remove(config, ZPOOL_CONFIG_HOSTNAME,
+ DATA_TYPE_STRING);
+ if (hostid != 0) {
+ verify(nvlist_add_uint64(config, ZPOOL_CONFIG_HOSTID,
+ hostid) == 0);
+ verify(nvlist_add_string(config, ZPOOL_CONFIG_HOSTNAME,
+ hostname) == 0);
+ }
+
+add_pool:
+ /*
+ * Add this pool to the list of configs.
+ */
+ verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
+ &name) == 0);
+ if (nvlist_add_nvlist(ret, name, config) != 0)
+ goto nomem;
+
+ found_one = B_TRUE;
+ nvlist_free(config);
+ config = NULL;
+ }
+
+ if (!found_one) {
+ nvlist_free(ret);
+ ret = NULL;
+ }
+
+ return (ret);
+
+nomem:
+ (void) no_memory(hdl);
+error:
+ nvlist_free(config);
+ nvlist_free(ret);
+ for (c = 0; c < children; c++)
+ nvlist_free(child[c]);
+ free(child);
+
+ return (NULL);
+}
+
+/*
+ * Return the offset of the given label.
+ */
+static uint64_t
+label_offset(uint64_t size, int l)
+{
+ ASSERT(P2PHASE_TYPED(size, sizeof (vdev_label_t), uint64_t) == 0);
+ return (l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ?
+ 0 : size - VDEV_LABELS * sizeof (vdev_label_t)));
+}
+
+/*
+ * Given a file descriptor, read the label information and return an nvlist
+ * describing the configuration, if there is one.
+ */
+int
+zpool_read_label(int fd, nvlist_t **config)
+{
+ struct stat64 statbuf;
+ int l;
+ vdev_label_t *label;
+ uint64_t state, txg, size;
+
+ *config = NULL;
+
+ if (fstat64(fd, &statbuf) == -1)
+ return (0);
+ size = P2ALIGN_TYPED(statbuf.st_size, sizeof (vdev_label_t), uint64_t);
+
+ if ((label = malloc(sizeof (vdev_label_t))) == NULL)
+ return (-1);
+
+ for (l = 0; l < VDEV_LABELS; l++) {
+ if (pread64(fd, label, sizeof (vdev_label_t),
+ label_offset(size, l)) != sizeof (vdev_label_t))
+ continue;
+
+ if (nvlist_unpack(label->vl_vdev_phys.vp_nvlist,
+ sizeof (label->vl_vdev_phys.vp_nvlist), config, 0) != 0)
+ continue;
+
+ if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_STATE,
+ &state) != 0 || state > POOL_STATE_L2CACHE) {
+ nvlist_free(*config);
+ continue;
+ }
+
+ if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
+ (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_TXG,
+ &txg) != 0 || txg == 0)) {
+ nvlist_free(*config);
+ continue;
+ }
+
+ free(label);
+ return (0);
+ }
+
+ free(label);
+ *config = NULL;
+ return (0);
+}
+
+typedef struct rdsk_node {
+ char *rn_name;
+ int rn_dfd;
+ libzfs_handle_t *rn_hdl;
+ nvlist_t *rn_config;
+ avl_tree_t *rn_avl;
+ avl_node_t rn_node;
+ boolean_t rn_nozpool;
+} rdsk_node_t;
+
+static int
+slice_cache_compare(const void *arg1, const void *arg2)
+{
+ const char *nm1 = ((rdsk_node_t *)arg1)->rn_name;
+ const char *nm2 = ((rdsk_node_t *)arg2)->rn_name;
+ char *nm1slice, *nm2slice;
+ int rv;
+
+ /*
+ * slices zero and two are the most likely to provide results,
+ * so put those first
+ */
+ nm1slice = strstr(nm1, "s0");
+ nm2slice = strstr(nm2, "s0");
+ if (nm1slice && !nm2slice) {
+ return (-1);
+ }
+ if (!nm1slice && nm2slice) {
+ return (1);
+ }
+ nm1slice = strstr(nm1, "s2");
+ nm2slice = strstr(nm2, "s2");
+ if (nm1slice && !nm2slice) {
+ return (-1);
+ }
+ if (!nm1slice && nm2slice) {
+ return (1);
+ }
+
+ rv = strcmp(nm1, nm2);
+ if (rv == 0)
+ return (0);
+ return (rv > 0 ? 1 : -1);
+}
+
+static void
+check_one_slice(avl_tree_t *r, char *diskname, uint_t partno,
+ diskaddr_t size, uint_t blksz)
+{
+ rdsk_node_t tmpnode;
+ rdsk_node_t *node;
+ char sname[MAXNAMELEN];
+
+ tmpnode.rn_name = &sname[0];
+ (void) snprintf(tmpnode.rn_name, MAXNAMELEN, "%s%u",
+ diskname, partno);
+ /*
+ * protect against division by zero for disk labels that
+ * contain a bogus sector size
+ */
+ if (blksz == 0)
+ blksz = DEV_BSIZE;
+ /* too small to contain a zpool? */
+ if ((size < (SPA_MINDEVSIZE / blksz)) &&
+ (node = avl_find(r, &tmpnode, NULL)))
+ node->rn_nozpool = B_TRUE;
+}
+
+static void
+nozpool_all_slices(avl_tree_t *r, const char *sname)
+{
+ char diskname[MAXNAMELEN];
+ char *ptr;
+ int i;
+
+ (void) strncpy(diskname, sname, MAXNAMELEN);
+ if (((ptr = strrchr(diskname, 's')) == NULL) &&
+ ((ptr = strrchr(diskname, 'p')) == NULL))
+ return;
+ ptr[0] = 's';
+ ptr[1] = '\0';
+ for (i = 0; i < NDKMAP; i++)
+ check_one_slice(r, diskname, i, 0, 1);
+ ptr[0] = 'p';
+ for (i = 0; i <= FD_NUMPART; i++)
+ check_one_slice(r, diskname, i, 0, 1);
+}
+
+static void
+check_slices(avl_tree_t *r, int fd, const char *sname)
+{
+ struct extvtoc vtoc;
+ struct dk_gpt *gpt;
+ char diskname[MAXNAMELEN];
+ char *ptr;
+ int i;
+
+ (void) strncpy(diskname, sname, MAXNAMELEN);
+ if ((ptr = strrchr(diskname, 's')) == NULL || !isdigit(ptr[1]))
+ return;
+ ptr[1] = '\0';
+
+ if (read_extvtoc(fd, &vtoc) >= 0) {
+ for (i = 0; i < NDKMAP; i++)
+ check_one_slice(r, diskname, i,
+ vtoc.v_part[i].p_size, vtoc.v_sectorsz);
+ } else if (efi_alloc_and_read(fd, &gpt) >= 0) {
+ /*
+ * on x86 we'll still have leftover links that point
+ * to slices s[9-15], so use NDKMAP instead
+ */
+ for (i = 0; i < NDKMAP; i++)
+ check_one_slice(r, diskname, i,
+ gpt->efi_parts[i].p_size, gpt->efi_lbasize);
+ /* nodes p[1-4] are never used with EFI labels */
+ ptr[0] = 'p';
+ for (i = 1; i <= FD_NUMPART; i++)
+ check_one_slice(r, diskname, i, 0, 1);
+ efi_free(gpt);
+ }
+}
+
+static void
+zpool_open_func(void *arg)
+{
+ rdsk_node_t *rn = arg;
+ struct stat64 statbuf;
+ nvlist_t *config;
+ int fd;
+
+ if (rn->rn_nozpool)
+ return;
+ if ((fd = openat64(rn->rn_dfd, rn->rn_name, O_RDONLY)) < 0) {
+ /* symlink to a device that's no longer there */
+ if (errno == ENOENT)
+ nozpool_all_slices(rn->rn_avl, rn->rn_name);
+ return;
+ }
+ /*
+ * Ignore failed stats. We only want regular
+ * files, character devs and block devs.
+ */
+ if (fstat64(fd, &statbuf) != 0 ||
+ (!S_ISREG(statbuf.st_mode) &&
+ !S_ISCHR(statbuf.st_mode) &&
+ !S_ISBLK(statbuf.st_mode))) {
+ (void) close(fd);
+ return;
+ }
+ /* this file is too small to hold a zpool */
+ if (S_ISREG(statbuf.st_mode) &&
+ statbuf.st_size < SPA_MINDEVSIZE) {
+ (void) close(fd);
+ return;
+ } else if (!S_ISREG(statbuf.st_mode)) {
+ /*
+ * Try to read the disk label first so we don't have to
+ * open a bunch of minor nodes that can't have a zpool.
+ */
+ check_slices(rn->rn_avl, fd, rn->rn_name);
+ }
+
+ if ((zpool_read_label(fd, &config)) != 0) {
+ (void) close(fd);
+ (void) no_memory(rn->rn_hdl);
+ return;
+ }
+ (void) close(fd);
+
+
+ rn->rn_config = config;
+ if (config != NULL) {
+ assert(rn->rn_nozpool == B_FALSE);
+ }
+}
+
+/*
+ * Given a file descriptor, clear (zero) the label information. This function
+ * is currently only used in the appliance stack as part of the ZFS sysevent
+ * module.
+ */
+int
+zpool_clear_label(int fd)
+{
+ struct stat64 statbuf;
+ int l;
+ vdev_label_t *label;
+ uint64_t size;
+
+ if (fstat64(fd, &statbuf) == -1)
+ return (0);
+ size = P2ALIGN_TYPED(statbuf.st_size, sizeof (vdev_label_t), uint64_t);
+
+ if ((label = calloc(sizeof (vdev_label_t), 1)) == NULL)
+ return (-1);
+
+ for (l = 0; l < VDEV_LABELS; l++) {
+ if (pwrite64(fd, label, sizeof (vdev_label_t),
+ label_offset(size, l)) != sizeof (vdev_label_t))
+ return (-1);
+ }
+
+ free(label);
+ return (0);
+}
+
+/*
+ * Given a list of directories to search, find all pools stored on disk. This
+ * includes partial pools which are not available to import. If no args are
+ * given (argc is 0), then the default directory (/dev/dsk) is searched.
+ * poolname or guid (but not both) are provided by the caller when trying
+ * to import a specific pool.
+ */
+static nvlist_t *
+zpool_find_import_impl(libzfs_handle_t *hdl, importargs_t *iarg)
+{
+ int i, dirs = iarg->paths;
+ DIR *dirp = NULL;
+ struct dirent64 *dp;
+ char path[MAXPATHLEN];
+ char *end, **dir = iarg->path;
+ size_t pathleft;
+ nvlist_t *ret = NULL;
+ static char *default_dir = "/dev/dsk";
+ pool_list_t pools = { 0 };
+ pool_entry_t *pe, *penext;
+ vdev_entry_t *ve, *venext;
+ config_entry_t *ce, *cenext;
+ name_entry_t *ne, *nenext;
+ avl_tree_t slice_cache;
+ rdsk_node_t *slice;
+ void *cookie;
+
+ if (dirs == 0) {
+ dirs = 1;
+ dir = &default_dir;
+ }
+
+ /*
+ * Go through and read the label configuration information from every
+ * possible device, organizing the information according to pool GUID
+ * and toplevel GUID.
+ */
+ for (i = 0; i < dirs; i++) {
+ tpool_t *t;
+ char *rdsk;
+ int dfd;
+
+ /* use realpath to normalize the path */
+ if (realpath(dir[i], path) == 0) {
+ (void) zfs_error_fmt(hdl, EZFS_BADPATH,
+ dgettext(TEXT_DOMAIN, "cannot open '%s'"), dir[i]);
+ goto error;
+ }
+ end = &path[strlen(path)];
+ *end++ = '/';
+ *end = 0;
+ pathleft = &path[sizeof (path)] - end;
+
+ /*
+ * Using raw devices instead of block devices when we're
+ * reading the labels skips a bunch of slow operations during
+ * close(2) processing, so we replace /dev/dsk with /dev/rdsk.
+ */
+ if (strcmp(path, "/dev/dsk/") == 0)
+ rdsk = "/dev/rdsk/";
+ else
+ rdsk = path;
+
+ if ((dfd = open64(rdsk, O_RDONLY)) < 0 ||
+ (dirp = fdopendir(dfd)) == NULL) {
+ zfs_error_aux(hdl, strerror(errno));
+ (void) zfs_error_fmt(hdl, EZFS_BADPATH,
+ dgettext(TEXT_DOMAIN, "cannot open '%s'"),
+ rdsk);
+ goto error;
+ }
+
+ avl_create(&slice_cache, slice_cache_compare,
+ sizeof (rdsk_node_t), offsetof(rdsk_node_t, rn_node));
+ /*
+ * This is not MT-safe, but we have no MT consumers of libzfs
+ */
+ while ((dp = readdir64(dirp)) != NULL) {
+ const char *name = dp->d_name;
+ if (name[0] == '.' &&
+ (name[1] == 0 || (name[1] == '.' && name[2] == 0)))
+ continue;
+
+ slice = zfs_alloc(hdl, sizeof (rdsk_node_t));
+ slice->rn_name = zfs_strdup(hdl, name);
+ slice->rn_avl = &slice_cache;
+ slice->rn_dfd = dfd;
+ slice->rn_hdl = hdl;
+ slice->rn_nozpool = B_FALSE;
+ avl_add(&slice_cache, slice);
+ }
+ /*
+ * create a thread pool to do all of this in parallel;
+ * rn_nozpool is not protected, so this is racy in that
+ * multiple tasks could decide that the same slice can
+ * not hold a zpool, which is benign. Also choose
+ * double the number of processors; we hold a lot of
+ * locks in the kernel, so going beyond this doesn't
+ * buy us much.
+ */
+ t = tpool_create(1, 2 * sysconf(_SC_NPROCESSORS_ONLN),
+ 0, NULL);
+ for (slice = avl_first(&slice_cache); slice;
+ (slice = avl_walk(&slice_cache, slice,
+ AVL_AFTER)))
+ (void) tpool_dispatch(t, zpool_open_func, slice);
+ tpool_wait(t);
+ tpool_destroy(t);
+
+ cookie = NULL;
+ while ((slice = avl_destroy_nodes(&slice_cache,
+ &cookie)) != NULL) {
+ if (slice->rn_config != NULL) {
+ nvlist_t *config = slice->rn_config;
+ boolean_t matched = B_TRUE;
+
+ if (iarg->poolname != NULL) {
+ char *pname;
+
+ matched = nvlist_lookup_string(config,
+ ZPOOL_CONFIG_POOL_NAME,
+ &pname) == 0 &&
+ strcmp(iarg->poolname, pname) == 0;
+ } else if (iarg->guid != 0) {
+ uint64_t this_guid;
+
+ matched = nvlist_lookup_uint64(config,
+ ZPOOL_CONFIG_POOL_GUID,
+ &this_guid) == 0 &&
+ iarg->guid == this_guid;
+ }
+ if (!matched) {
+ nvlist_free(config);
+ config = NULL;
+ continue;
+ }
+ /* use the non-raw path for the config */
+ (void) strlcpy(end, slice->rn_name, pathleft);
+ if (add_config(hdl, &pools, path, config) != 0)
+ goto error;
+ }
+ free(slice->rn_name);
+ free(slice);
+ }
+ avl_destroy(&slice_cache);
+
+ (void) closedir(dirp);
+ dirp = NULL;
+ }
+
+ ret = get_configs(hdl, &pools, iarg->can_be_active);
+
+error:
+ for (pe = pools.pools; pe != NULL; pe = penext) {
+ penext = pe->pe_next;
+ for (ve = pe->pe_vdevs; ve != NULL; ve = venext) {
+ venext = ve->ve_next;
+ for (ce = ve->ve_configs; ce != NULL; ce = cenext) {
+ cenext = ce->ce_next;
+ if (ce->ce_config)
+ nvlist_free(ce->ce_config);
+ free(ce);
+ }
+ free(ve);
+ }
+ free(pe);
+ }
+
+ for (ne = pools.names; ne != NULL; ne = nenext) {
+ nenext = ne->ne_next;
+ if (ne->ne_name)
+ free(ne->ne_name);
+ free(ne);
+ }
+
+ if (dirp)
+ (void) closedir(dirp);
+
+ return (ret);
+}
+
+nvlist_t *
+zpool_find_import(libzfs_handle_t *hdl, int argc, char **argv)
+{
+ importargs_t iarg = { 0 };
+
+ iarg.paths = argc;
+ iarg.path = argv;
+
+ return (zpool_find_import_impl(hdl, &iarg));
+}
+
+/*
+ * Given a cache file, return the contents as a list of importable pools.
+ * poolname or guid (but not both) are provided by the caller when trying
+ * to import a specific pool.
+ */
+nvlist_t *
+zpool_find_import_cached(libzfs_handle_t *hdl, const char *cachefile,
+ char *poolname, uint64_t guid)
+{
+ char *buf;
+ int fd;
+ struct stat64 statbuf;
+ nvlist_t *raw, *src, *dst;
+ nvlist_t *pools;
+ nvpair_t *elem;
+ char *name;
+ uint64_t this_guid;
+ boolean_t active;
+
+ verify(poolname == NULL || guid == 0);
+
+ if ((fd = open(cachefile, O_RDONLY)) < 0) {
+ zfs_error_aux(hdl, "%s", strerror(errno));
+ (void) zfs_error(hdl, EZFS_BADCACHE,
+ dgettext(TEXT_DOMAIN, "failed to open cache file"));
+ return (NULL);
+ }
+
+ if (fstat64(fd, &statbuf) != 0) {
+ zfs_error_aux(hdl, "%s", strerror(errno));
+ (void) close(fd);
+ (void) zfs_error(hdl, EZFS_BADCACHE,
+ dgettext(TEXT_DOMAIN, "failed to get size of cache file"));
+ return (NULL);
+ }
+
+ if ((buf = zfs_alloc(hdl, statbuf.st_size)) == NULL) {
+ (void) close(fd);
+ return (NULL);
+ }
+
+ if (read(fd, buf, statbuf.st_size) != statbuf.st_size) {
+ (void) close(fd);
+ free(buf);
+ (void) zfs_error(hdl, EZFS_BADCACHE,
+ dgettext(TEXT_DOMAIN,
+ "failed to read cache file contents"));
+ return (NULL);
+ }
+
+ (void) close(fd);
+
+ if (nvlist_unpack(buf, statbuf.st_size, &raw, 0) != 0) {
+ free(buf);
+ (void) zfs_error(hdl, EZFS_BADCACHE,
+ dgettext(TEXT_DOMAIN,
+ "invalid or corrupt cache file contents"));
+ return (NULL);
+ }
+
+ free(buf);
+
+ /*
+ * Go through and get the current state of the pools and refresh their
+ * state.
+ */
+ if (nvlist_alloc(&pools, 0, 0) != 0) {
+ (void) no_memory(hdl);
+ nvlist_free(raw);
+ return (NULL);
+ }
+
+ elem = NULL;
+ while ((elem = nvlist_next_nvpair(raw, elem)) != NULL) {
+ verify(nvpair_value_nvlist(elem, &src) == 0);
+
+ verify(nvlist_lookup_string(src, ZPOOL_CONFIG_POOL_NAME,
+ &name) == 0);
+ if (poolname != NULL && strcmp(poolname, name) != 0)
+ continue;
+
+ verify(nvlist_lookup_uint64(src, ZPOOL_CONFIG_POOL_GUID,
+ &this_guid) == 0);
+ if (guid != 0) {
+ verify(nvlist_lookup_uint64(src, ZPOOL_CONFIG_POOL_GUID,
+ &this_guid) == 0);
+ if (guid != this_guid)
+ continue;
+ }
+
+ if (pool_active(hdl, name, this_guid, &active) != 0) {
+ nvlist_free(raw);
+ nvlist_free(pools);
+ return (NULL);
+ }
+
+ if (active)
+ continue;
+
+ if ((dst = refresh_config(hdl, src)) == NULL) {
+ nvlist_free(raw);
+ nvlist_free(pools);
+ return (NULL);
+ }
+
+ if (nvlist_add_nvlist(pools, nvpair_name(elem), dst) != 0) {
+ (void) no_memory(hdl);
+ nvlist_free(dst);
+ nvlist_free(raw);
+ nvlist_free(pools);
+ return (NULL);
+ }
+ nvlist_free(dst);
+ }
+
+ nvlist_free(raw);
+ return (pools);
+}
+
+static int
+name_or_guid_exists(zpool_handle_t *zhp, void *data)
+{
+ importargs_t *import = data;
+ int found = 0;
+
+ if (import->poolname != NULL) {
+ char *pool_name;
+
+ verify(nvlist_lookup_string(zhp->zpool_config,
+ ZPOOL_CONFIG_POOL_NAME, &pool_name) == 0);
+ if (strcmp(pool_name, import->poolname) == 0)
+ found = 1;
+ } else {
+ uint64_t pool_guid;
+
+ verify(nvlist_lookup_uint64(zhp->zpool_config,
+ ZPOOL_CONFIG_POOL_GUID, &pool_guid) == 0);
+ if (pool_guid == import->guid)
+ found = 1;
+ }
+
+ zpool_close(zhp);
+ return (found);
+}
+
+nvlist_t *
+zpool_search_import(libzfs_handle_t *hdl, importargs_t *import)
+{
+ verify(import->poolname == NULL || import->guid == 0);
+
+ if (import->unique)
+ import->exists = zpool_iter(hdl, name_or_guid_exists, import);
+
+ if (import->cachefile != NULL)
+ return (zpool_find_import_cached(hdl, import->cachefile,
+ import->poolname, import->guid));
+
+ return (zpool_find_import_impl(hdl, import));
+}
+
+boolean_t
+find_guid(nvlist_t *nv, uint64_t guid)
+{
+ uint64_t tmp;
+ nvlist_t **child;
+ uint_t c, children;
+
+ verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &tmp) == 0);
+ if (tmp == guid)
+ return (B_TRUE);
+
+ if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
+ &child, &children) == 0) {
+ for (c = 0; c < children; c++)
+ if (find_guid(child[c], guid))
+ return (B_TRUE);
+ }
+
+ return (B_FALSE);
+}
+
+typedef struct aux_cbdata {
+ const char *cb_type;
+ uint64_t cb_guid;
+ zpool_handle_t *cb_zhp;
+} aux_cbdata_t;
+
+static int
+find_aux(zpool_handle_t *zhp, void *data)
+{
+ aux_cbdata_t *cbp = data;
+ nvlist_t **list;
+ uint_t i, count;
+ uint64_t guid;
+ nvlist_t *nvroot;
+
+ verify(nvlist_lookup_nvlist(zhp->zpool_config, ZPOOL_CONFIG_VDEV_TREE,
+ &nvroot) == 0);
+
+ if (nvlist_lookup_nvlist_array(nvroot, cbp->cb_type,
+ &list, &count) == 0) {
+ for (i = 0; i < count; i++) {
+ verify(nvlist_lookup_uint64(list[i],
+ ZPOOL_CONFIG_GUID, &guid) == 0);
+ if (guid == cbp->cb_guid) {
+ cbp->cb_zhp = zhp;
+ return (1);
+ }
+ }
+ }
+
+ zpool_close(zhp);
+ return (0);
+}
+
+/*
+ * Determines if the pool is in use. If so, it returns true and the state of
+ * the pool as well as the name of the pool. Both strings are allocated and
+ * must be freed by the caller.
+ */
+int
+zpool_in_use(libzfs_handle_t *hdl, int fd, pool_state_t *state, char **namestr,
+ boolean_t *inuse)
+{
+ nvlist_t *config;
+ char *name;
+ boolean_t ret;
+ uint64_t guid, vdev_guid;
+ zpool_handle_t *zhp;
+ nvlist_t *pool_config;
+ uint64_t stateval, isspare;
+ aux_cbdata_t cb = { 0 };
+ boolean_t isactive;
+
+ *inuse = B_FALSE;
+
+ if (zpool_read_label(fd, &config) != 0) {
+ (void) no_memory(hdl);
+ return (-1);
+ }
+
+ if (config == NULL)
+ return (0);
+
+ verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE,
+ &stateval) == 0);
+ verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID,
+ &vdev_guid) == 0);
+
+ if (stateval != POOL_STATE_SPARE && stateval != POOL_STATE_L2CACHE) {
+ verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
+ &name) == 0);
+ verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
+ &guid) == 0);
+ }
+
+ switch (stateval) {
+ case POOL_STATE_EXPORTED:
+ /*
+ * A pool with an exported state may in fact be imported
+ * read-only, so check the in-core state to see if it's
+ * active and imported read-only. If it is, set
+ * its state to active.
+ */
+ if (pool_active(hdl, name, guid, &isactive) == 0 && isactive &&
+ (zhp = zpool_open_canfail(hdl, name)) != NULL &&
+ zpool_get_prop_int(zhp, ZPOOL_PROP_READONLY, NULL))
+ stateval = POOL_STATE_ACTIVE;
+
+ ret = B_TRUE;
+ break;
+
+ case POOL_STATE_ACTIVE:
+ /*
+ * For an active pool, we have to determine if it's really part
+ * of a currently active pool (in which case the pool will exist
+ * and the guid will be the same), or whether it's part of an
+ * active pool that was disconnected without being explicitly
+ * exported.
+ */
+ if (pool_active(hdl, name, guid, &isactive) != 0) {
+ nvlist_free(config);
+ return (-1);
+ }
+
+ if (isactive) {
+ /*
+ * Because the device may have been removed while
+ * offlined, we only report it as active if the vdev is
+ * still present in the config. Otherwise, pretend like
+ * it's not in use.
+ */
+ if ((zhp = zpool_open_canfail(hdl, name)) != NULL &&
+ (pool_config = zpool_get_config(zhp, NULL))
+ != NULL) {
+ nvlist_t *nvroot;
+
+ verify(nvlist_lookup_nvlist(pool_config,
+ ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
+ ret = find_guid(nvroot, vdev_guid);
+ } else {
+ ret = B_FALSE;
+ }
+
+ /*
+ * If this is an active spare within another pool, we
+ * treat it like an unused hot spare. This allows the
+ * user to create a pool with a hot spare that currently
+ * in use within another pool. Since we return B_TRUE,
+ * libdiskmgt will continue to prevent generic consumers
+ * from using the device.
+ */
+ if (ret && nvlist_lookup_uint64(config,
+ ZPOOL_CONFIG_IS_SPARE, &isspare) == 0 && isspare)
+ stateval = POOL_STATE_SPARE;
+
+ if (zhp != NULL)
+ zpool_close(zhp);
+ } else {
+ stateval = POOL_STATE_POTENTIALLY_ACTIVE;
+ ret = B_TRUE;
+ }
+ break;
+
+ case POOL_STATE_SPARE:
+ /*
+ * For a hot spare, it can be either definitively in use, or
+ * potentially active. To determine if it's in use, we iterate
+ * over all pools in the system and search for one with a spare
+ * with a matching guid.
+ *
+ * Due to the shared nature of spares, we don't actually report
+ * the potentially active case as in use. This means the user
+ * can freely create pools on the hot spares of exported pools,
+ * but to do otherwise makes the resulting code complicated, and
+ * we end up having to deal with this case anyway.
+ */
+ cb.cb_zhp = NULL;
+ cb.cb_guid = vdev_guid;
+ cb.cb_type = ZPOOL_CONFIG_SPARES;
+ if (zpool_iter(hdl, find_aux, &cb) == 1) {
+ name = (char *)zpool_get_name(cb.cb_zhp);
+ ret = TRUE;
+ } else {
+ ret = FALSE;
+ }
+ break;
+
+ case POOL_STATE_L2CACHE:
+
+ /*
+ * Check if any pool is currently using this l2cache device.
+ */
+ cb.cb_zhp = NULL;
+ cb.cb_guid = vdev_guid;
+ cb.cb_type = ZPOOL_CONFIG_L2CACHE;
+ if (zpool_iter(hdl, find_aux, &cb) == 1) {
+ name = (char *)zpool_get_name(cb.cb_zhp);
+ ret = TRUE;
+ } else {
+ ret = FALSE;
+ }
+ break;
+
+ default:
+ ret = B_FALSE;
+ }
+
+
+ if (ret) {
+ if ((*namestr = zfs_strdup(hdl, name)) == NULL) {
+ if (cb.cb_zhp)
+ zpool_close(cb.cb_zhp);
+ nvlist_free(config);
+ return (-1);
+ }
+ *state = (pool_state_t)stateval;
+ }
+
+ if (cb.cb_zhp)
+ zpool_close(cb.cb_zhp);
+
+ nvlist_free(config);
+ *inuse = ret;
+ return (0);
+}