diff options
author | Dimitry Andric <dim@FreeBSD.org> | 2020-07-26 19:36:28 +0000 |
---|---|---|
committer | Dimitry Andric <dim@FreeBSD.org> | 2020-07-26 19:36:28 +0000 |
commit | cfca06d7963fa0909f90483b42a6d7d194d01e08 (patch) | |
tree | 209fb2a2d68f8f277793fc8df46c753d31bc853b /llvm/lib/Analysis/MLInlineAdvisor.cpp | |
parent | 706b4fc47bbc608932d3b491ae19a3b9cde9497b (diff) |
Notes
Diffstat (limited to 'llvm/lib/Analysis/MLInlineAdvisor.cpp')
-rw-r--r-- | llvm/lib/Analysis/MLInlineAdvisor.cpp | 301 |
1 files changed, 301 insertions, 0 deletions
diff --git a/llvm/lib/Analysis/MLInlineAdvisor.cpp b/llvm/lib/Analysis/MLInlineAdvisor.cpp new file mode 100644 index 0000000000000..45873f260f23d --- /dev/null +++ b/llvm/lib/Analysis/MLInlineAdvisor.cpp @@ -0,0 +1,301 @@ +//===- MLInlineAdvisor.cpp - machine learned InlineAdvisor ----------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This file implements the interface between the inliner and a learned model. +// It delegates model evaluation to either the AOT compiled model (the +// 'release' mode) or a runtime-loaded model (the 'development' case). +// +//===----------------------------------------------------------------------===// +#include <limits> +#include <unordered_map> +#include <unordered_set> + +#include "llvm/ADT/SCCIterator.h" +#include "llvm/Analysis/CallGraph.h" +#include "llvm/Analysis/InlineCost.h" +#include "llvm/Analysis/InlineFeaturesAnalysis.h" +#include "llvm/Analysis/MLInlineAdvisor.h" +#include "llvm/Analysis/MLModelRunner.h" +#include "llvm/Analysis/OptimizationRemarkEmitter.h" +#include "llvm/Analysis/TargetLibraryInfo.h" +#include "llvm/Analysis/TargetTransformInfo.h" +#include "llvm/IR/InstIterator.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/PassManager.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Path.h" + +using namespace llvm; + +#define DEBUG_TYPE "inline-ml" + +static cl::opt<float> SizeIncreaseThreshold( + "ml-advisor-size-increase-threshold", cl::Hidden, + cl::desc("Maximum factor by which expected native size may increase before " + "blocking any further inlining."), + cl::init(2.0)); + +const std::array<std::string, NumberOfFeatures> llvm::FeatureNameMap{ +#define POPULATE_NAMES(INDEX_NAME, NAME, COMMENT) NAME, + INLINE_FEATURE_ITERATOR(POPULATE_NAMES) +#undef POPULATE_NAMES +}; + +const char *const llvm::DecisionName = "inlining_decision"; +const char *const llvm::DefaultDecisionName = "inlining_default"; +const char *const llvm::RewardName = "delta_size"; + +CallBase *getInlinableCS(Instruction &I) { + if (auto *CS = dyn_cast<CallBase>(&I)) + if (Function *Callee = CS->getCalledFunction()) { + if (!Callee->isDeclaration()) { + return CS; + } + } + return nullptr; +} + +MLInlineAdvisor::MLInlineAdvisor(Module &M, ModuleAnalysisManager &MAM, + std::unique_ptr<MLModelRunner> Runner) + : InlineAdvisor( + MAM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager()), + M(M), ModelRunner(std::move(Runner)), CG(new CallGraph(M)), + InitialIRSize(getModuleIRSize()), CurrentIRSize(InitialIRSize) { + assert(ModelRunner); + + // Extract the 'call site height' feature - the position of a call site + // relative to the farthest statically reachable SCC node. We don't mutate + // this value while inlining happens. Empirically, this feature proved + // critical in behavioral cloning - i.e. training a model to mimic the manual + // heuristic's decisions - and, thus, equally important for training for + // improvement. + for (auto I = scc_begin(CG.get()); !I.isAtEnd(); ++I) { + const std::vector<CallGraphNode *> &CGNodes = *I; + unsigned Level = 0; + for (auto *CGNode : CGNodes) { + Function *F = CGNode->getFunction(); + if (!F || F->isDeclaration()) + continue; + for (auto &I : instructions(F)) { + if (auto *CS = getInlinableCS(I)) { + auto *Called = CS->getCalledFunction(); + auto Pos = FunctionLevels.find(Called); + // In bottom up traversal, an inlinable callee is either in the + // same SCC, or to a function in a visited SCC. So not finding its + // level means we haven't visited it yet, meaning it's in this SCC. + if (Pos == FunctionLevels.end()) + continue; + Level = std::max(Level, Pos->second + 1); + } + } + } + for (auto *CGNode : CGNodes) { + Function *F = CGNode->getFunction(); + if (F && !F->isDeclaration()) + FunctionLevels[F] = Level; + } + } +} + +void MLInlineAdvisor::onPassEntry() { + // Function passes executed between InlinerPass runs may have changed the + // module-wide features. + NodeCount = 0; + EdgeCount = 0; + for (auto &F : M) + if (!F.isDeclaration()) { + ++NodeCount; + EdgeCount += getLocalCalls(F); + } +} + +int64_t MLInlineAdvisor::getLocalCalls(Function &F) { + return FAM.getResult<InlineFeaturesAnalysis>(F).DirectCallsToDefinedFunctions; +} + +// Update the internal state of the advisor, and force invalidate feature +// analysis. Currently, we maintain minimal (and very simple) global state - the +// number of functions and the number of static calls. We also keep track of the +// total IR size in this module, to stop misbehaving policies at a certain bloat +// factor (SizeIncreaseThreshold) +void MLInlineAdvisor::onSuccessfulInlining(const MLInlineAdvice &Advice, + bool CalleeWasDeleted) { + assert(!ForceStop); + Function *Caller = Advice.getCaller(); + Function *Callee = Advice.getCallee(); + + // The caller features aren't valid anymore. + FAM.invalidate<InlineFeaturesAnalysis>(*Caller); + int64_t IRSizeAfter = + getIRSize(*Caller) + (CalleeWasDeleted ? 0 : Advice.CalleeIRSize); + CurrentIRSize += IRSizeAfter - (Advice.CallerIRSize + Advice.CalleeIRSize); + if (CurrentIRSize > SizeIncreaseThreshold * InitialIRSize) + ForceStop = true; + + // We can delta-update module-wide features. We know the inlining only changed + // the caller, and maybe the callee (by deleting the latter). + // Nodes are simple to update. + // For edges, we 'forget' the edges that the caller and callee used to have + // before inlining, and add back what they currently have together. + int64_t NewCallerAndCalleeEdges = + FAM.getResult<InlineFeaturesAnalysis>(*Caller) + .DirectCallsToDefinedFunctions; + + if (CalleeWasDeleted) + --NodeCount; + else + NewCallerAndCalleeEdges += FAM.getResult<InlineFeaturesAnalysis>(*Callee) + .DirectCallsToDefinedFunctions; + EdgeCount += (NewCallerAndCalleeEdges - Advice.CallerAndCalleeEdges); + assert(CurrentIRSize >= 0 && EdgeCount >= 0 && NodeCount >= 0); +} + +int64_t MLInlineAdvisor::getModuleIRSize() const { + int64_t Ret = 0; + for (auto &F : CG->getModule()) + if (!F.isDeclaration()) + Ret += getIRSize(F); + return Ret; +} + +std::unique_ptr<InlineAdvice> MLInlineAdvisor::getAdvice(CallBase &CB) { + auto &Caller = *CB.getCaller(); + auto &Callee = *CB.getCalledFunction(); + + auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & { + return FAM.getResult<AssumptionAnalysis>(F); + }; + auto GetTLI = [&](Function &F) -> const TargetLibraryInfo & { + return FAM.getResult<TargetLibraryAnalysis>(F); + }; + + auto &TIR = FAM.getResult<TargetIRAnalysis>(Callee); + auto &ORE = FAM.getResult<OptimizationRemarkEmitterAnalysis>(Caller); + + auto TrivialDecision = + llvm::getAttributeBasedInliningDecision(CB, &Callee, TIR, GetTLI); + + // If this is a "never inline" case, there won't be any changes to internal + // state we need to track, so we can just return the base InlineAdvice, which + // will do nothing interesting. + // Same thing if this is a recursive case. + if ((TrivialDecision.hasValue() && !TrivialDecision->isSuccess()) || + &Caller == &Callee) + return std::make_unique<InlineAdvice>(this, CB, ORE, false); + + bool Mandatory = TrivialDecision.hasValue() && TrivialDecision->isSuccess(); + + // If we need to stop, we won't want to track anymore any state changes, so + // we just return the base InlineAdvice, which acts as a noop. + if (ForceStop) { + ORE.emit([&] { + return OptimizationRemarkMissed(DEBUG_TYPE, "ForceStop", &CB) + << "Won't attempt inlining because module size grew too much."; + }); + return std::make_unique<InlineAdvice>(this, CB, ORE, Mandatory); + } + + int CostEstimate = 0; + if (!Mandatory) { + auto IsCallSiteInlinable = + llvm::getInliningCostEstimate(CB, TIR, GetAssumptionCache); + if (!IsCallSiteInlinable) { + // We can't inline this for correctness reasons, so return the base + // InlineAdvice, as we don't care about tracking any state changes (which + // won't happen). + return std::make_unique<InlineAdvice>(this, CB, ORE, false); + } + CostEstimate = *IsCallSiteInlinable; + } + + if (Mandatory) + return getMandatoryAdvice(CB, ORE); + + auto NrCtantParams = 0; + for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) { + NrCtantParams += (isa<Constant>(*I)); + } + + auto &CallerBefore = FAM.getResult<InlineFeaturesAnalysis>(Caller); + auto &CalleeBefore = FAM.getResult<InlineFeaturesAnalysis>(Callee); + + ModelRunner->setFeature(FeatureIndex::CalleeBasicBlockCount, + CalleeBefore.BasicBlockCount); + ModelRunner->setFeature(FeatureIndex::CallSiteHeight, + FunctionLevels[&Caller]); + ModelRunner->setFeature(FeatureIndex::NodeCount, NodeCount); + ModelRunner->setFeature(FeatureIndex::NrCtantParams, NrCtantParams); + ModelRunner->setFeature(FeatureIndex::CostEstimate, CostEstimate); + ModelRunner->setFeature(FeatureIndex::EdgeCount, EdgeCount); + ModelRunner->setFeature(FeatureIndex::CallerUsers, CallerBefore.Uses); + ModelRunner->setFeature(FeatureIndex::CallerConditionallyExecutedBlocks, + CallerBefore.BlocksReachedFromConditionalInstruction); + ModelRunner->setFeature(FeatureIndex::CallerBasicBlockCount, + CallerBefore.BasicBlockCount); + ModelRunner->setFeature(FeatureIndex::CalleeConditionallyExecutedBlocks, + CalleeBefore.BlocksReachedFromConditionalInstruction); + ModelRunner->setFeature(FeatureIndex::CalleeUsers, CalleeBefore.Uses); + return getAdviceFromModel(CB, ORE); +} + +std::unique_ptr<MLInlineAdvice> +MLInlineAdvisor::getAdviceFromModel(CallBase &CB, + OptimizationRemarkEmitter &ORE) { + return std::make_unique<MLInlineAdvice>(this, CB, ORE, ModelRunner->run()); +} + +std::unique_ptr<MLInlineAdvice> +MLInlineAdvisor::getMandatoryAdvice(CallBase &CB, + OptimizationRemarkEmitter &ORE) { + return std::make_unique<MLInlineAdvice>(this, CB, ORE, true); +} + +void MLInlineAdvice::reportContextForRemark( + DiagnosticInfoOptimizationBase &OR) { + using namespace ore; + OR << NV("Callee", Callee->getName()); + for (size_t I = 0; I < NumberOfFeatures; ++I) + OR << NV(FeatureNameMap[I], getAdvisor()->getModelRunner().getFeature(I)); + OR << NV("ShouldInline", isInliningRecommended()); +} + +void MLInlineAdvice::recordInliningImpl() { + ORE.emit([&]() { + OptimizationRemark R(DEBUG_TYPE, "InliningSuccess", DLoc, Block); + reportContextForRemark(R); + return R; + }); + getAdvisor()->onSuccessfulInlining(*this, /*CalleeWasDeleted*/ false); +} + +void MLInlineAdvice::recordInliningWithCalleeDeletedImpl() { + ORE.emit([&]() { + OptimizationRemark R(DEBUG_TYPE, "InliningSuccessWithCalleeDeleted", DLoc, + Block); + reportContextForRemark(R); + return R; + }); + getAdvisor()->onSuccessfulInlining(*this, /*CalleeWasDeleted*/ true); +} + +void MLInlineAdvice::recordUnsuccessfulInliningImpl( + const InlineResult &Result) { + ORE.emit([&]() { + OptimizationRemarkMissed R(DEBUG_TYPE, "InliningAttemptedAndUnsuccessful", + DLoc, Block); + reportContextForRemark(R); + return R; + }); +} +void MLInlineAdvice::recordUnattemptedInliningImpl() { + ORE.emit([&]() { + OptimizationRemarkMissed R(DEBUG_TYPE, "IniningNotAttempted", DLoc, Block); + reportContextForRemark(R); + return R; + }); +}
\ No newline at end of file |