diff options
author | Dimitry Andric <dim@FreeBSD.org> | 2020-01-17 20:45:01 +0000 |
---|---|---|
committer | Dimitry Andric <dim@FreeBSD.org> | 2020-01-17 20:45:01 +0000 |
commit | 706b4fc47bbc608932d3b491ae19a3b9cde9497b (patch) | |
tree | 4adf86a776049cbf7f69a1929c4babcbbef925eb /llvm/lib/Transforms/Scalar/LoopIdiomRecognize.cpp | |
parent | 7cc9cf2bf09f069cb2dd947ead05d0b54301fb71 (diff) |
Notes
Diffstat (limited to 'llvm/lib/Transforms/Scalar/LoopIdiomRecognize.cpp')
-rw-r--r-- | llvm/lib/Transforms/Scalar/LoopIdiomRecognize.cpp | 927 |
1 files changed, 30 insertions, 897 deletions
diff --git a/llvm/lib/Transforms/Scalar/LoopIdiomRecognize.cpp b/llvm/lib/Transforms/Scalar/LoopIdiomRecognize.cpp index dd477e8006937..b77843d7cd711 100644 --- a/llvm/lib/Transforms/Scalar/LoopIdiomRecognize.cpp +++ b/llvm/lib/Transforms/Scalar/LoopIdiomRecognize.cpp @@ -41,7 +41,6 @@ #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/MapVector.h" -#include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SetVector.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallVector.h" @@ -78,20 +77,17 @@ #include "llvm/IR/LLVMContext.h" #include "llvm/IR/Module.h" #include "llvm/IR/PassManager.h" -#include "llvm/IR/PatternMatch.h" #include "llvm/IR/Type.h" #include "llvm/IR/User.h" #include "llvm/IR/Value.h" #include "llvm/IR/ValueHandle.h" -#include "llvm/IR/Verifier.h" +#include "llvm/InitializePasses.h" #include "llvm/Pass.h" #include "llvm/Support/Casting.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Transforms/Scalar.h" -#include "llvm/Transforms/Scalar/LoopPassManager.h" -#include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "llvm/Transforms/Utils/BuildLibCalls.h" #include "llvm/Transforms/Utils/Local.h" #include "llvm/Transforms/Utils/LoopUtils.h" @@ -107,7 +103,6 @@ using namespace llvm; STATISTIC(NumMemSet, "Number of memset's formed from loop stores"); STATISTIC(NumMemCpy, "Number of memcpy's formed from loop load+stores"); -STATISTIC(NumBCmp, "Number of memcmp's formed from loop 2xload+eq-compare"); static cl::opt<bool> UseLIRCodeSizeHeurs( "use-lir-code-size-heurs", @@ -117,26 +112,6 @@ static cl::opt<bool> UseLIRCodeSizeHeurs( namespace { -// FIXME: reinventing the wheel much? Is there a cleaner solution? -struct PMAbstraction { - virtual void markLoopAsDeleted(Loop *L) = 0; - virtual ~PMAbstraction() = default; -}; -struct LegacyPMAbstraction : PMAbstraction { - LPPassManager &LPM; - LegacyPMAbstraction(LPPassManager &LPM) : LPM(LPM) {} - virtual ~LegacyPMAbstraction() = default; - void markLoopAsDeleted(Loop *L) override { LPM.markLoopAsDeleted(*L); } -}; -struct NewPMAbstraction : PMAbstraction { - LPMUpdater &Updater; - NewPMAbstraction(LPMUpdater &Updater) : Updater(Updater) {} - virtual ~NewPMAbstraction() = default; - void markLoopAsDeleted(Loop *L) override { - Updater.markLoopAsDeleted(*L, L->getName()); - } -}; - class LoopIdiomRecognize { Loop *CurLoop = nullptr; AliasAnalysis *AA; @@ -146,7 +121,6 @@ class LoopIdiomRecognize { TargetLibraryInfo *TLI; const TargetTransformInfo *TTI; const DataLayout *DL; - PMAbstraction &LoopDeleter; OptimizationRemarkEmitter &ORE; bool ApplyCodeSizeHeuristics; @@ -155,10 +129,9 @@ public: LoopInfo *LI, ScalarEvolution *SE, TargetLibraryInfo *TLI, const TargetTransformInfo *TTI, - const DataLayout *DL, PMAbstraction &LoopDeleter, + const DataLayout *DL, OptimizationRemarkEmitter &ORE) - : AA(AA), DT(DT), LI(LI), SE(SE), TLI(TLI), TTI(TTI), DL(DL), - LoopDeleter(LoopDeleter), ORE(ORE) {} + : AA(AA), DT(DT), LI(LI), SE(SE), TLI(TLI), TTI(TTI), DL(DL), ORE(ORE) {} bool runOnLoop(Loop *L); @@ -172,8 +145,6 @@ private: bool HasMemset; bool HasMemsetPattern; bool HasMemcpy; - bool HasMemCmp; - bool HasBCmp; /// Return code for isLegalStore() enum LegalStoreKind { @@ -201,7 +172,7 @@ private: bool processLoopMemSet(MemSetInst *MSI, const SCEV *BECount); bool processLoopStridedStore(Value *DestPtr, unsigned StoreSize, - unsigned StoreAlignment, Value *StoredVal, + MaybeAlign StoreAlignment, Value *StoredVal, Instruction *TheStore, SmallPtrSetImpl<Instruction *> &Stores, const SCEVAddRecExpr *Ev, const SCEV *BECount, @@ -216,32 +187,6 @@ private: bool runOnNoncountableLoop(); - struct CmpLoopStructure { - Value *BCmpValue, *LatchCmpValue; - BasicBlock *HeaderBrEqualBB, *HeaderBrUnequalBB; - BasicBlock *LatchBrFinishBB, *LatchBrContinueBB; - }; - bool matchBCmpLoopStructure(CmpLoopStructure &CmpLoop) const; - struct CmpOfLoads { - ICmpInst::Predicate BCmpPred; - Value *LoadSrcA, *LoadSrcB; - Value *LoadA, *LoadB; - }; - bool matchBCmpOfLoads(Value *BCmpValue, CmpOfLoads &CmpOfLoads) const; - bool recognizeBCmpLoopControlFlow(const CmpOfLoads &CmpOfLoads, - CmpLoopStructure &CmpLoop) const; - bool recognizeBCmpLoopSCEV(uint64_t BCmpTyBytes, CmpOfLoads &CmpOfLoads, - const SCEV *&SrcA, const SCEV *&SrcB, - const SCEV *&Iterations) const; - bool detectBCmpIdiom(ICmpInst *&BCmpInst, CmpInst *&LatchCmpInst, - LoadInst *&LoadA, LoadInst *&LoadB, const SCEV *&SrcA, - const SCEV *&SrcB, const SCEV *&NBytes) const; - BasicBlock *transformBCmpControlFlow(ICmpInst *ComparedEqual); - void transformLoopToBCmp(ICmpInst *BCmpInst, CmpInst *LatchCmpInst, - LoadInst *LoadA, LoadInst *LoadB, const SCEV *SrcA, - const SCEV *SrcB, const SCEV *NBytes); - bool recognizeBCmp(); - bool recognizePopcount(); void transformLoopToPopcount(BasicBlock *PreCondBB, Instruction *CntInst, PHINode *CntPhi, Value *Var); @@ -279,14 +224,13 @@ public: &getAnalysis<TargetTransformInfoWrapperPass>().getTTI( *L->getHeader()->getParent()); const DataLayout *DL = &L->getHeader()->getModule()->getDataLayout(); - LegacyPMAbstraction LoopDeleter(LPM); // For the old PM, we can't use OptimizationRemarkEmitter as an analysis // pass. Function analyses need to be preserved across loop transformations // but ORE cannot be preserved (see comment before the pass definition). OptimizationRemarkEmitter ORE(L->getHeader()->getParent()); - LoopIdiomRecognize LIR(AA, DT, LI, SE, TLI, TTI, DL, LoopDeleter, ORE); + LoopIdiomRecognize LIR(AA, DT, LI, SE, TLI, TTI, DL, ORE); return LIR.runOnLoop(L); } @@ -305,7 +249,7 @@ char LoopIdiomRecognizeLegacyPass::ID = 0; PreservedAnalyses LoopIdiomRecognizePass::run(Loop &L, LoopAnalysisManager &AM, LoopStandardAnalysisResults &AR, - LPMUpdater &Updater) { + LPMUpdater &) { const auto *DL = &L.getHeader()->getModule()->getDataLayout(); const auto &FAM = @@ -319,9 +263,8 @@ PreservedAnalyses LoopIdiomRecognizePass::run(Loop &L, LoopAnalysisManager &AM, "LoopIdiomRecognizePass: OptimizationRemarkEmitterAnalysis not cached " "at a higher level"); - NewPMAbstraction LoopDeleter(Updater); LoopIdiomRecognize LIR(&AR.AA, &AR.DT, &AR.LI, &AR.SE, &AR.TLI, &AR.TTI, DL, - LoopDeleter, *ORE); + *ORE); if (!LIR.runOnLoop(&L)) return PreservedAnalyses::all(); @@ -358,8 +301,7 @@ bool LoopIdiomRecognize::runOnLoop(Loop *L) { // Disable loop idiom recognition if the function's name is a common idiom. StringRef Name = L->getHeader()->getParent()->getName(); - if (Name == "memset" || Name == "memcpy" || Name == "memcmp" || - Name == "bcmp") + if (Name == "memset" || Name == "memcpy") return false; // Determine if code size heuristics need to be applied. @@ -369,10 +311,8 @@ bool LoopIdiomRecognize::runOnLoop(Loop *L) { HasMemset = TLI->has(LibFunc_memset); HasMemsetPattern = TLI->has(LibFunc_memset_pattern16); HasMemcpy = TLI->has(LibFunc_memcpy); - HasMemCmp = TLI->has(LibFunc_memcmp); - HasBCmp = TLI->has(LibFunc_bcmp); - if (HasMemset || HasMemsetPattern || HasMemcpy || HasMemCmp || HasBCmp) + if (HasMemset || HasMemsetPattern || HasMemcpy) if (SE->hasLoopInvariantBackedgeTakenCount(L)) return runOnCountableLoop(); @@ -791,7 +731,8 @@ bool LoopIdiomRecognize::processLoopStores(SmallVectorImpl<StoreInst *> &SL, bool NegStride = StoreSize == -Stride; - if (processLoopStridedStore(StorePtr, StoreSize, HeadStore->getAlignment(), + if (processLoopStridedStore(StorePtr, StoreSize, + MaybeAlign(HeadStore->getAlignment()), StoredVal, HeadStore, AdjacentStores, StoreEv, BECount, NegStride)) { TransformedStores.insert(AdjacentStores.begin(), AdjacentStores.end()); @@ -846,9 +787,9 @@ bool LoopIdiomRecognize::processLoopMemSet(MemSetInst *MSI, SmallPtrSet<Instruction *, 1> MSIs; MSIs.insert(MSI); bool NegStride = SizeInBytes == -Stride; - return processLoopStridedStore(Pointer, (unsigned)SizeInBytes, - MSI->getDestAlignment(), SplatValue, MSI, MSIs, - Ev, BECount, NegStride, /*IsLoopMemset=*/true); + return processLoopStridedStore( + Pointer, (unsigned)SizeInBytes, MaybeAlign(MSI->getDestAlignment()), + SplatValue, MSI, MSIs, Ev, BECount, NegStride, /*IsLoopMemset=*/true); } /// mayLoopAccessLocation - Return true if the specified loop might access the @@ -938,7 +879,7 @@ static const SCEV *getNumBytes(const SCEV *BECount, Type *IntPtr, /// processLoopStridedStore - We see a strided store of some value. If we can /// transform this into a memset or memset_pattern in the loop preheader, do so. bool LoopIdiomRecognize::processLoopStridedStore( - Value *DestPtr, unsigned StoreSize, unsigned StoreAlignment, + Value *DestPtr, unsigned StoreSize, MaybeAlign StoreAlignment, Value *StoredVal, Instruction *TheStore, SmallPtrSetImpl<Instruction *> &Stores, const SCEVAddRecExpr *Ev, const SCEV *BECount, bool NegStride, bool IsLoopMemset) { @@ -960,12 +901,12 @@ bool LoopIdiomRecognize::processLoopStridedStore( SCEVExpander Expander(*SE, *DL, "loop-idiom"); Type *DestInt8PtrTy = Builder.getInt8PtrTy(DestAS); - Type *IntPtr = Builder.getIntPtrTy(*DL, DestAS); + Type *IntIdxTy = DL->getIndexType(DestPtr->getType()); const SCEV *Start = Ev->getStart(); // Handle negative strided loops. if (NegStride) - Start = getStartForNegStride(Start, BECount, IntPtr, StoreSize, SE); + Start = getStartForNegStride(Start, BECount, IntIdxTy, StoreSize, SE); // TODO: ideally we should still be able to generate memset if SCEV expander // is taught to generate the dependencies at the latest point. @@ -993,7 +934,7 @@ bool LoopIdiomRecognize::processLoopStridedStore( // Okay, everything looks good, insert the memset. const SCEV *NumBytesS = - getNumBytes(BECount, IntPtr, StoreSize, CurLoop, DL, SE); + getNumBytes(BECount, IntIdxTy, StoreSize, CurLoop, DL, SE); // TODO: ideally we should still be able to generate memset if SCEV expander // is taught to generate the dependencies at the latest point. @@ -1001,12 +942,12 @@ bool LoopIdiomRecognize::processLoopStridedStore( return false; Value *NumBytes = - Expander.expandCodeFor(NumBytesS, IntPtr, Preheader->getTerminator()); + Expander.expandCodeFor(NumBytesS, IntIdxTy, Preheader->getTerminator()); CallInst *NewCall; if (SplatValue) { - NewCall = - Builder.CreateMemSet(BasePtr, SplatValue, NumBytes, StoreAlignment); + NewCall = Builder.CreateMemSet(BasePtr, SplatValue, NumBytes, + MaybeAlign(StoreAlignment)); } else { // Everything is emitted in default address space Type *Int8PtrTy = DestInt8PtrTy; @@ -1014,7 +955,7 @@ bool LoopIdiomRecognize::processLoopStridedStore( Module *M = TheStore->getModule(); StringRef FuncName = "memset_pattern16"; FunctionCallee MSP = M->getOrInsertFunction(FuncName, Builder.getVoidTy(), - Int8PtrTy, Int8PtrTy, IntPtr); + Int8PtrTy, Int8PtrTy, IntIdxTy); inferLibFuncAttributes(M, FuncName, *TLI); // Otherwise we should form a memset_pattern16. PatternValue is known to be @@ -1081,11 +1022,11 @@ bool LoopIdiomRecognize::processLoopStoreOfLoopLoad(StoreInst *SI, const SCEV *StrStart = StoreEv->getStart(); unsigned StrAS = SI->getPointerAddressSpace(); - Type *IntPtrTy = Builder.getIntPtrTy(*DL, StrAS); + Type *IntIdxTy = Builder.getIntNTy(DL->getIndexSizeInBits(StrAS)); // Handle negative strided loops. if (NegStride) - StrStart = getStartForNegStride(StrStart, BECount, IntPtrTy, StoreSize, SE); + StrStart = getStartForNegStride(StrStart, BECount, IntIdxTy, StoreSize, SE); // Okay, we have a strided store "p[i]" of a loaded value. We can turn // this into a memcpy in the loop preheader now if we want. However, this @@ -1111,7 +1052,7 @@ bool LoopIdiomRecognize::processLoopStoreOfLoopLoad(StoreInst *SI, // Handle negative strided loops. if (NegStride) - LdStart = getStartForNegStride(LdStart, BECount, IntPtrTy, StoreSize, SE); + LdStart = getStartForNegStride(LdStart, BECount, IntIdxTy, StoreSize, SE); // For a memcpy, we have to make sure that the input array is not being // mutated by the loop. @@ -1133,18 +1074,18 @@ bool LoopIdiomRecognize::processLoopStoreOfLoopLoad(StoreInst *SI, // Okay, everything is safe, we can transform this! const SCEV *NumBytesS = - getNumBytes(BECount, IntPtrTy, StoreSize, CurLoop, DL, SE); + getNumBytes(BECount, IntIdxTy, StoreSize, CurLoop, DL, SE); Value *NumBytes = - Expander.expandCodeFor(NumBytesS, IntPtrTy, Preheader->getTerminator()); + Expander.expandCodeFor(NumBytesS, IntIdxTy, Preheader->getTerminator()); CallInst *NewCall = nullptr; // Check whether to generate an unordered atomic memcpy: // If the load or store are atomic, then they must necessarily be unordered // by previous checks. if (!SI->isAtomic() && !LI->isAtomic()) - NewCall = Builder.CreateMemCpy(StoreBasePtr, SI->getAlignment(), - LoadBasePtr, LI->getAlignment(), NumBytes); + NewCall = Builder.CreateMemCpy(StoreBasePtr, SI->getAlign(), LoadBasePtr, + LI->getAlign(), NumBytes); else { // We cannot allow unaligned ops for unordered load/store, so reject // anything where the alignment isn't at least the element size. @@ -1211,7 +1152,7 @@ bool LoopIdiomRecognize::runOnNoncountableLoop() { << "] Noncountable Loop %" << CurLoop->getHeader()->getName() << "\n"); - return recognizeBCmp() || recognizePopcount() || recognizeAndInsertFFS(); + return recognizePopcount() || recognizeAndInsertFFS(); } /// Check if the given conditional branch is based on the comparison between @@ -1885,811 +1826,3 @@ void LoopIdiomRecognize::transformLoopToPopcount(BasicBlock *PreCondBB, // loop. The loop would otherwise not be deleted even if it becomes empty. SE->forgetLoop(CurLoop); } - -bool LoopIdiomRecognize::matchBCmpLoopStructure( - CmpLoopStructure &CmpLoop) const { - ICmpInst::Predicate BCmpPred; - - // We are looking for the following basic layout: - // PreheaderBB: <preheader> ; preds = ??? - // <...> - // br label %LoopHeaderBB - // LoopHeaderBB: <header,exiting> ; preds = %PreheaderBB,%LoopLatchBB - // <...> - // %BCmpValue = icmp <...> - // br i1 %BCmpValue, label %LoopLatchBB, label %Successor0 - // LoopLatchBB: <latch,exiting> ; preds = %LoopHeaderBB - // <...> - // %LatchCmpValue = <are we done, or do next iteration?> - // br i1 %LatchCmpValue, label %Successor1, label %LoopHeaderBB - // Successor0: <exit> ; preds = %LoopHeaderBB - // <...> - // Successor1: <exit> ; preds = %LoopLatchBB - // <...> - // - // Successor0 and Successor1 may or may not be the same basic block. - - // Match basic frame-work of this supposedly-comparison loop. - using namespace PatternMatch; - if (!match(CurLoop->getHeader()->getTerminator(), - m_Br(m_CombineAnd(m_ICmp(BCmpPred, m_Value(), m_Value()), - m_Value(CmpLoop.BCmpValue)), - CmpLoop.HeaderBrEqualBB, CmpLoop.HeaderBrUnequalBB)) || - !match(CurLoop->getLoopLatch()->getTerminator(), - m_Br(m_CombineAnd(m_Cmp(), m_Value(CmpLoop.LatchCmpValue)), - CmpLoop.LatchBrFinishBB, CmpLoop.LatchBrContinueBB))) { - LLVM_DEBUG(dbgs() << "Basic control-flow layout unrecognized.\n"); - return false; - } - LLVM_DEBUG(dbgs() << "Recognized basic control-flow layout.\n"); - return true; -} - -bool LoopIdiomRecognize::matchBCmpOfLoads(Value *BCmpValue, - CmpOfLoads &CmpOfLoads) const { - using namespace PatternMatch; - LLVM_DEBUG(dbgs() << "Analyzing header icmp " << *BCmpValue - << " as bcmp pattern.\n"); - - // Match bcmp-style loop header cmp. It must be an eq-icmp of loads. Example: - // %v0 = load <...>, <...>* %LoadSrcA - // %v1 = load <...>, <...>* %LoadSrcB - // %CmpLoop.BCmpValue = icmp eq <...> %v0, %v1 - // There won't be any no-op bitcasts between load and icmp, - // they would have been transformed into a load of bitcast. - // FIXME: {b,mem}cmp() calls have the same semantics as icmp. Match them too. - if (!match(BCmpValue, - m_ICmp(CmpOfLoads.BCmpPred, - m_CombineAnd(m_Load(m_Value(CmpOfLoads.LoadSrcA)), - m_Value(CmpOfLoads.LoadA)), - m_CombineAnd(m_Load(m_Value(CmpOfLoads.LoadSrcB)), - m_Value(CmpOfLoads.LoadB)))) || - !ICmpInst::isEquality(CmpOfLoads.BCmpPred)) { - LLVM_DEBUG(dbgs() << "Loop header icmp did not match bcmp pattern.\n"); - return false; - } - LLVM_DEBUG(dbgs() << "Recognized header icmp as bcmp pattern with loads:\n\t" - << *CmpOfLoads.LoadA << "\n\t" << *CmpOfLoads.LoadB - << "\n"); - // FIXME: handle memcmp pattern? - return true; -} - -bool LoopIdiomRecognize::recognizeBCmpLoopControlFlow( - const CmpOfLoads &CmpOfLoads, CmpLoopStructure &CmpLoop) const { - BasicBlock *LoopHeaderBB = CurLoop->getHeader(); - BasicBlock *LoopLatchBB = CurLoop->getLoopLatch(); - - // Be wary, comparisons can be inverted, canonicalize order. - // If this 'element' comparison passed, we expect to proceed to the next elt. - if (CmpOfLoads.BCmpPred != ICmpInst::Predicate::ICMP_EQ) - std::swap(CmpLoop.HeaderBrEqualBB, CmpLoop.HeaderBrUnequalBB); - // The predicate on loop latch does not matter, just canonicalize some order. - if (CmpLoop.LatchBrContinueBB != LoopHeaderBB) - std::swap(CmpLoop.LatchBrFinishBB, CmpLoop.LatchBrContinueBB); - - SmallVector<BasicBlock *, 2> ExitBlocks; - - CurLoop->getUniqueExitBlocks(ExitBlocks); - assert(ExitBlocks.size() <= 2U && "Can't have more than two exit blocks."); - - // Check that control-flow between blocks is as expected. - if (CmpLoop.HeaderBrEqualBB != LoopLatchBB || - CmpLoop.LatchBrContinueBB != LoopHeaderBB || - !is_contained(ExitBlocks, CmpLoop.HeaderBrUnequalBB) || - !is_contained(ExitBlocks, CmpLoop.LatchBrFinishBB)) { - LLVM_DEBUG(dbgs() << "Loop control-flow not recognized.\n"); - return false; - } - - assert(!is_contained(ExitBlocks, CmpLoop.HeaderBrEqualBB) && - !is_contained(ExitBlocks, CmpLoop.LatchBrContinueBB) && - "Unexpected exit edges."); - - LLVM_DEBUG(dbgs() << "Recognized loop control-flow.\n"); - - LLVM_DEBUG(dbgs() << "Performing side-effect analysis on the loop.\n"); - assert(CurLoop->isLCSSAForm(*DT) && "Should only get LCSSA-form loops here."); - // No loop instructions must be used outside of the loop. Since we are in - // LCSSA form, we only need to check successor block's PHI nodes's incoming - // values for incoming blocks that are the loop basic blocks. - for (const BasicBlock *ExitBB : ExitBlocks) { - for (const PHINode &PHI : ExitBB->phis()) { - for (const BasicBlock *LoopBB : - make_filter_range(PHI.blocks(), [this](BasicBlock *PredecessorBB) { - return CurLoop->contains(PredecessorBB); - })) { - const auto *I = - dyn_cast<Instruction>(PHI.getIncomingValueForBlock(LoopBB)); - if (I && CurLoop->contains(I)) { - LLVM_DEBUG(dbgs() - << "Loop contains instruction " << *I - << " which is used outside of the loop in basic block " - << ExitBB->getName() << " in phi node " << PHI << "\n"); - return false; - } - } - } - } - // Similarly, the loop should not have any other observable side-effects - // other than the final comparison result. - for (BasicBlock *LoopBB : CurLoop->blocks()) { - for (Instruction &I : *LoopBB) { - if (isa<DbgInfoIntrinsic>(I)) // Ignore dbginfo. - continue; // FIXME: anything else? lifetime info? - if ((I.mayHaveSideEffects() || I.isAtomic() || I.isFenceLike()) && - &I != CmpOfLoads.LoadA && &I != CmpOfLoads.LoadB) { - LLVM_DEBUG( - dbgs() << "Loop contains instruction with potential side-effects: " - << I << "\n"); - return false; - } - } - } - LLVM_DEBUG(dbgs() << "No loop instructions deemed to have side-effects.\n"); - return true; -} - -bool LoopIdiomRecognize::recognizeBCmpLoopSCEV(uint64_t BCmpTyBytes, - CmpOfLoads &CmpOfLoads, - const SCEV *&SrcA, - const SCEV *&SrcB, - const SCEV *&Iterations) const { - // Try to compute SCEV of the loads, for this loop's scope. - const auto *ScevForSrcA = dyn_cast<SCEVAddRecExpr>( - SE->getSCEVAtScope(CmpOfLoads.LoadSrcA, CurLoop)); - const auto *ScevForSrcB = dyn_cast<SCEVAddRecExpr>( - SE->getSCEVAtScope(CmpOfLoads.LoadSrcB, CurLoop)); - if (!ScevForSrcA || !ScevForSrcB) { - LLVM_DEBUG(dbgs() << "Failed to get SCEV expressions for load sources.\n"); - return false; - } - - LLVM_DEBUG(dbgs() << "Got SCEV expressions (at loop scope) for loads:\n\t" - << *ScevForSrcA << "\n\t" << *ScevForSrcB << "\n"); - - // Loads must have folloving SCEV exprs: {%ptr,+,BCmpTyBytes}<%LoopHeaderBB> - const SCEV *RecStepForA = ScevForSrcA->getStepRecurrence(*SE); - const SCEV *RecStepForB = ScevForSrcB->getStepRecurrence(*SE); - if (!ScevForSrcA->isAffine() || !ScevForSrcB->isAffine() || - ScevForSrcA->getLoop() != CurLoop || ScevForSrcB->getLoop() != CurLoop || - RecStepForA != RecStepForB || !isa<SCEVConstant>(RecStepForA) || - cast<SCEVConstant>(RecStepForA)->getAPInt() != BCmpTyBytes) { - LLVM_DEBUG(dbgs() << "Unsupported SCEV expressions for loads. Only support " - "affine SCEV expressions originating in the loop we " - "are analysing with identical constant positive step, " - "equal to the count of bytes compared. Got:\n\t" - << *RecStepForA << "\n\t" << *RecStepForB << "\n"); - return false; - // FIXME: can support BCmpTyBytes > Step. - // But will need to account for the extra bytes compared at the end. - } - - SrcA = ScevForSrcA->getStart(); - SrcB = ScevForSrcB->getStart(); - LLVM_DEBUG(dbgs() << "Got SCEV expressions for load sources:\n\t" << *SrcA - << "\n\t" << *SrcB << "\n"); - - // The load sources must be loop-invants that dominate the loop header. - if (SrcA == SE->getCouldNotCompute() || SrcB == SE->getCouldNotCompute() || - !SE->isAvailableAtLoopEntry(SrcA, CurLoop) || - !SE->isAvailableAtLoopEntry(SrcB, CurLoop)) { - LLVM_DEBUG(dbgs() << "Unsupported SCEV expressions for loads, unavaliable " - "prior to loop header.\n"); - return false; - } - - LLVM_DEBUG(dbgs() << "SCEV expressions for loads are acceptable.\n"); - - // bcmp / memcmp take length argument as size_t, so let's conservatively - // assume that the iteration count should be not wider than that. - Type *CmpFuncSizeTy = DL->getIntPtrType(SE->getContext()); - - // For how many iterations is loop guaranteed not to exit via LoopLatch? - // This is one less than the maximal number of comparisons,and is: n + -1 - const SCEV *LoopExitCount = - SE->getExitCount(CurLoop, CurLoop->getLoopLatch()); - LLVM_DEBUG(dbgs() << "Got SCEV expression for loop latch exit count: " - << *LoopExitCount << "\n"); - // Exit count, similarly, must be loop-invant that dominates the loop header. - if (LoopExitCount == SE->getCouldNotCompute() || - !LoopExitCount->getType()->isIntOrPtrTy() || - LoopExitCount->getType()->getScalarSizeInBits() > - CmpFuncSizeTy->getScalarSizeInBits() || - !SE->isAvailableAtLoopEntry(LoopExitCount, CurLoop)) { - LLVM_DEBUG(dbgs() << "Unsupported SCEV expression for loop latch exit.\n"); - return false; - } - - // LoopExitCount is always one less than the actual count of iterations. - // Do this before cast, else we will be stuck with 1 + zext(-1 + n) - Iterations = SE->getAddExpr( - LoopExitCount, SE->getOne(LoopExitCount->getType()), SCEV::FlagNUW); - assert(Iterations != SE->getCouldNotCompute() && - "Shouldn't fail to increment by one."); - - LLVM_DEBUG(dbgs() << "Computed iteration count: " << *Iterations << "\n"); - return true; -} - -/// Return true iff the bcmp idiom is detected in the loop. -/// -/// Additionally: -/// 1) \p BCmpInst is set to the root byte-comparison instruction. -/// 2) \p LatchCmpInst is set to the comparison that controls the latch. -/// 3) \p LoadA is set to the first LoadInst. -/// 4) \p LoadB is set to the second LoadInst. -/// 5) \p SrcA is set to the first source location that is being compared. -/// 6) \p SrcB is set to the second source location that is being compared. -/// 7) \p NBytes is set to the number of bytes to compare. -bool LoopIdiomRecognize::detectBCmpIdiom(ICmpInst *&BCmpInst, - CmpInst *&LatchCmpInst, - LoadInst *&LoadA, LoadInst *&LoadB, - const SCEV *&SrcA, const SCEV *&SrcB, - const SCEV *&NBytes) const { - LLVM_DEBUG(dbgs() << "Recognizing bcmp idiom\n"); - - // Give up if the loop is not in normal form, or has more than 2 blocks. - if (!CurLoop->isLoopSimplifyForm() || CurLoop->getNumBlocks() > 2) { - LLVM_DEBUG(dbgs() << "Basic loop structure unrecognized.\n"); - return false; - } - LLVM_DEBUG(dbgs() << "Recognized basic loop structure.\n"); - - CmpLoopStructure CmpLoop; - if (!matchBCmpLoopStructure(CmpLoop)) - return false; - - CmpOfLoads CmpOfLoads; - if (!matchBCmpOfLoads(CmpLoop.BCmpValue, CmpOfLoads)) - return false; - - if (!recognizeBCmpLoopControlFlow(CmpOfLoads, CmpLoop)) - return false; - - BCmpInst = cast<ICmpInst>(CmpLoop.BCmpValue); // FIXME: is there no - LatchCmpInst = cast<CmpInst>(CmpLoop.LatchCmpValue); // way to combine - LoadA = cast<LoadInst>(CmpOfLoads.LoadA); // these cast with - LoadB = cast<LoadInst>(CmpOfLoads.LoadB); // m_Value() matcher? - - Type *BCmpValTy = BCmpInst->getOperand(0)->getType(); - LLVMContext &Context = BCmpValTy->getContext(); - uint64_t BCmpTyBits = DL->getTypeSizeInBits(BCmpValTy); - static constexpr uint64_t ByteTyBits = 8; - - LLVM_DEBUG(dbgs() << "Got comparison between values of type " << *BCmpValTy - << " of size " << BCmpTyBits - << " bits (while byte = " << ByteTyBits << " bits).\n"); - // bcmp()/memcmp() minimal unit of work is a byte. Therefore we must check - // that we are dealing with a multiple of a byte here. - if (BCmpTyBits % ByteTyBits != 0) { - LLVM_DEBUG(dbgs() << "Value size is not a multiple of byte.\n"); - return false; - // FIXME: could still be done under a run-time check that the total bit - // count is a multiple of a byte i guess? Or handle remainder separately? - } - - // Each comparison is done on this many bytes. - uint64_t BCmpTyBytes = BCmpTyBits / ByteTyBits; - LLVM_DEBUG(dbgs() << "Size is exactly " << BCmpTyBytes - << " bytes, eligible for bcmp conversion.\n"); - - const SCEV *Iterations; - if (!recognizeBCmpLoopSCEV(BCmpTyBytes, CmpOfLoads, SrcA, SrcB, Iterations)) - return false; - - // bcmp / memcmp take length argument as size_t, do promotion now. - Type *CmpFuncSizeTy = DL->getIntPtrType(Context); - Iterations = SE->getNoopOrZeroExtend(Iterations, CmpFuncSizeTy); - assert(Iterations != SE->getCouldNotCompute() && "Promotion failed."); - // Note that it didn't do ptrtoint cast, we will need to do it manually. - - // We will be comparing *bytes*, not BCmpTy, we need to recalculate size. - // It's a multiplication, and it *could* overflow. But for it to overflow - // we'd want to compare more bytes than could be represented by size_t, But - // allocation functions also take size_t. So how'd you produce such buffer? - // FIXME: we likely need to actually check that we know this won't overflow, - // via llvm::computeOverflowForUnsignedMul(). - NBytes = SE->getMulExpr( - Iterations, SE->getConstant(CmpFuncSizeTy, BCmpTyBytes), SCEV::FlagNUW); - assert(NBytes != SE->getCouldNotCompute() && - "Shouldn't fail to increment by one."); - - LLVM_DEBUG(dbgs() << "Computed total byte count: " << *NBytes << "\n"); - - if (LoadA->getPointerAddressSpace() != LoadB->getPointerAddressSpace() || - LoadA->getPointerAddressSpace() != 0 || !LoadA->isSimple() || - !LoadB->isSimple()) { - StringLiteral L("Unsupported loads in idiom - only support identical, " - "simple loads from address space 0.\n"); - LLVM_DEBUG(dbgs() << L); - ORE.emit([&]() { - return OptimizationRemarkMissed(DEBUG_TYPE, "BCmpIdiomUnsupportedLoads", - BCmpInst->getDebugLoc(), - CurLoop->getHeader()) - << L; - }); - return false; // FIXME: support non-simple loads. - } - - LLVM_DEBUG(dbgs() << "Recognized bcmp idiom\n"); - ORE.emit([&]() { - return OptimizationRemarkAnalysis(DEBUG_TYPE, "RecognizedBCmpIdiom", - CurLoop->getStartLoc(), - CurLoop->getHeader()) - << "Loop recognized as a bcmp idiom"; - }); - - return true; -} - -BasicBlock * -LoopIdiomRecognize::transformBCmpControlFlow(ICmpInst *ComparedEqual) { - LLVM_DEBUG(dbgs() << "Transforming control-flow.\n"); - SmallVector<DominatorTree::UpdateType, 8> DTUpdates; - - BasicBlock *PreheaderBB = CurLoop->getLoopPreheader(); - BasicBlock *HeaderBB = CurLoop->getHeader(); - BasicBlock *LoopLatchBB = CurLoop->getLoopLatch(); - SmallString<32> LoopName = CurLoop->getName(); - Function *Func = PreheaderBB->getParent(); - LLVMContext &Context = Func->getContext(); - - // Before doing anything, drop SCEV info. - SE->forgetLoop(CurLoop); - - // Here we start with: (0/6) - // PreheaderBB: <preheader> ; preds = ??? - // <...> - // %memcmp = call i32 @memcmp(i8* %LoadSrcA, i8* %LoadSrcB, i64 %Nbytes) - // %ComparedEqual = icmp eq <...> %memcmp, 0 - // br label %LoopHeaderBB - // LoopHeaderBB: <header,exiting> ; preds = %PreheaderBB,%LoopLatchBB - // <...> - // br i1 %<...>, label %LoopLatchBB, label %Successor0BB - // LoopLatchBB: <latch,exiting> ; preds = %LoopHeaderBB - // <...> - // br i1 %<...>, label %Successor1BB, label %LoopHeaderBB - // Successor0BB: <exit> ; preds = %LoopHeaderBB - // %S0PHI = phi <...> [ <...>, %LoopHeaderBB ] - // <...> - // Successor1BB: <exit> ; preds = %LoopLatchBB - // %S1PHI = phi <...> [ <...>, %LoopLatchBB ] - // <...> - // - // Successor0 and Successor1 may or may not be the same basic block. - - // Decouple the edge between loop preheader basic block and loop header basic - // block. Thus the loop has become unreachable. - assert(cast<BranchInst>(PreheaderBB->getTerminator())->isUnconditional() && - PreheaderBB->getTerminator()->getSuccessor(0) == HeaderBB && - "Preheader bb must end with an unconditional branch to header bb."); - PreheaderBB->getTerminator()->eraseFromParent(); - DTUpdates.push_back({DominatorTree::Delete, PreheaderBB, HeaderBB}); - - // Create a new preheader basic block before loop header basic block. - auto *PhonyPreheaderBB = BasicBlock::Create( - Context, LoopName + ".phonypreheaderbb", Func, HeaderBB); - // And insert an unconditional branch from phony preheader basic block to - // loop header basic block. - IRBuilder<>(PhonyPreheaderBB).CreateBr(HeaderBB); - DTUpdates.push_back({DominatorTree::Insert, PhonyPreheaderBB, HeaderBB}); - - // Create a *single* new empty block that we will substitute as a - // successor basic block for the loop's exits. This one is temporary. - // Much like phony preheader basic block, it is not connected. - auto *PhonySuccessorBB = - BasicBlock::Create(Context, LoopName + ".phonysuccessorbb", Func, - LoopLatchBB->getNextNode()); - // That block must have *some* non-PHI instruction, or else deleteDeadLoop() - // will mess up cleanup of dbginfo, and verifier will complain. - IRBuilder<>(PhonySuccessorBB).CreateUnreachable(); - - // Create two new empty blocks that we will use to preserve the original - // loop exit control-flow, and preserve the incoming values in the PHI nodes - // in loop's successor exit blocks. These will live one. - auto *ComparedUnequalBB = - BasicBlock::Create(Context, ComparedEqual->getName() + ".unequalbb", Func, - PhonySuccessorBB->getNextNode()); - auto *ComparedEqualBB = - BasicBlock::Create(Context, ComparedEqual->getName() + ".equalbb", Func, - PhonySuccessorBB->getNextNode()); - - // By now we have: (1/6) - // PreheaderBB: ; preds = ??? - // <...> - // %memcmp = call i32 @memcmp(i8* %LoadSrcA, i8* %LoadSrcB, i64 %Nbytes) - // %ComparedEqual = icmp eq <...> %memcmp, 0 - // [no terminator instruction!] - // PhonyPreheaderBB: <preheader> ; No preds, UNREACHABLE! - // br label %LoopHeaderBB - // LoopHeaderBB: <header,exiting> ; preds = %PhonyPreheaderBB, %LoopLatchBB - // <...> - // br i1 %<...>, label %LoopLatchBB, label %Successor0BB - // LoopLatchBB: <latch,exiting> ; preds = %LoopHeaderBB - // <...> - // br i1 %<...>, label %Successor1BB, label %LoopHeaderBB - // PhonySuccessorBB: ; No preds, UNREACHABLE! - // unreachable - // EqualBB: ; No preds, UNREACHABLE! - // [no terminator instruction!] - // UnequalBB: ; No preds, UNREACHABLE! - // [no terminator instruction!] - // Successor0BB: <exit> ; preds = %LoopHeaderBB - // %S0PHI = phi <...> [ <...>, %LoopHeaderBB ] - // <...> - // Successor1BB: <exit> ; preds = %LoopLatchBB - // %S1PHI = phi <...> [ <...>, %LoopLatchBB ] - // <...> - - // What is the mapping/replacement basic block for exiting out of the loop - // from either of old's loop basic blocks? - auto GetReplacementBB = [this, ComparedEqualBB, - ComparedUnequalBB](const BasicBlock *OldBB) { - assert(CurLoop->contains(OldBB) && "Only for loop's basic blocks."); - if (OldBB == CurLoop->getLoopLatch()) // "all elements compared equal". - return ComparedEqualBB; - if (OldBB == CurLoop->getHeader()) // "element compared unequal". - return ComparedUnequalBB; - llvm_unreachable("Only had two basic blocks in loop."); - }; - - // What are the exits out of this loop? - SmallVector<Loop::Edge, 2> LoopExitEdges; - CurLoop->getExitEdges(LoopExitEdges); - assert(LoopExitEdges.size() == 2 && "Should have only to two exit edges."); - - // Populate new basic blocks, update the exiting control-flow, PHI nodes. - for (const Loop::Edge &Edge : LoopExitEdges) { - auto *OldLoopBB = const_cast<BasicBlock *>(Edge.first); - auto *SuccessorBB = const_cast<BasicBlock *>(Edge.second); - assert(CurLoop->contains(OldLoopBB) && !CurLoop->contains(SuccessorBB) && - "Unexpected edge."); - - // If we would exit the loop from this loop's basic block, - // what semantically would that mean? Did comparison succeed or fail? - BasicBlock *NewBB = GetReplacementBB(OldLoopBB); - assert(NewBB->empty() && "Should not get same new basic block here twice."); - IRBuilder<> Builder(NewBB); - Builder.SetCurrentDebugLocation(OldLoopBB->getTerminator()->getDebugLoc()); - Builder.CreateBr(SuccessorBB); - DTUpdates.push_back({DominatorTree::Insert, NewBB, SuccessorBB}); - // Also, be *REALLY* careful with PHI nodes in successor basic block, - // update them to recieve the same input value, but not from current loop's - // basic block, but from new basic block instead. - SuccessorBB->replacePhiUsesWith(OldLoopBB, NewBB); - // Also, change loop control-flow. This loop's basic block shall no longer - // exit from the loop to it's original successor basic block, but to our new - // phony successor basic block. Note that new successor will be unique exit. - OldLoopBB->getTerminator()->replaceSuccessorWith(SuccessorBB, - PhonySuccessorBB); - DTUpdates.push_back({DominatorTree::Delete, OldLoopBB, SuccessorBB}); - DTUpdates.push_back({DominatorTree::Insert, OldLoopBB, PhonySuccessorBB}); - } - - // Inform DomTree about edge changes. Note that LoopInfo is still out-of-date. - assert(DTUpdates.size() == 8 && "Update count prediction failed."); - DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); - DTU.applyUpdates(DTUpdates); - DTUpdates.clear(); - - // By now we have: (2/6) - // PreheaderBB: ; preds = ??? - // <...> - // %memcmp = call i32 @memcmp(i8* %LoadSrcA, i8* %LoadSrcB, i64 %Nbytes) - // %ComparedEqual = icmp eq <...> %memcmp, 0 - // [no terminator instruction!] - // PhonyPreheaderBB: <preheader> ; No preds, UNREACHABLE! - // br label %LoopHeaderBB - // LoopHeaderBB: <header,exiting> ; preds = %PhonyPreheaderBB, %LoopLatchBB - // <...> - // br i1 %<...>, label %LoopLatchBB, label %PhonySuccessorBB - // LoopLatchBB: <latch,exiting> ; preds = %LoopHeaderBB - // <...> - // br i1 %<...>, label %PhonySuccessorBB, label %LoopHeaderBB - // PhonySuccessorBB: <uniq. exit> ; preds = %LoopHeaderBB, %LoopLatchBB - // unreachable - // EqualBB: ; No preds, UNREACHABLE! - // br label %Successor1BB - // UnequalBB: ; No preds, UNREACHABLE! - // br label %Successor0BB - // Successor0BB: ; preds = %UnequalBB - // %S0PHI = phi <...> [ <...>, %UnequalBB ] - // <...> - // Successor1BB: ; preds = %EqualBB - // %S0PHI = phi <...> [ <...>, %EqualBB ] - // <...> - - // *Finally*, zap the original loop. Record it's parent loop though. - Loop *ParentLoop = CurLoop->getParentLoop(); - LLVM_DEBUG(dbgs() << "Deleting old loop.\n"); - LoopDeleter.markLoopAsDeleted(CurLoop); // Mark as deleted *BEFORE* deleting! - deleteDeadLoop(CurLoop, DT, SE, LI); // And actually delete the loop. - CurLoop = nullptr; - - // By now we have: (3/6) - // PreheaderBB: ; preds = ??? - // <...> - // %memcmp = call i32 @memcmp(i8* %LoadSrcA, i8* %LoadSrcB, i64 %Nbytes) - // %ComparedEqual = icmp eq <...> %memcmp, 0 - // [no terminator instruction!] - // PhonyPreheaderBB: ; No preds, UNREACHABLE! - // br label %PhonySuccessorBB - // PhonySuccessorBB: ; preds = %PhonyPreheaderBB - // unreachable - // EqualBB: ; No preds, UNREACHABLE! - // br label %Successor1BB - // UnequalBB: ; No preds, UNREACHABLE! - // br label %Successor0BB - // Successor0BB: ; preds = %UnequalBB - // %S0PHI = phi <...> [ <...>, %UnequalBB ] - // <...> - // Successor1BB: ; preds = %EqualBB - // %S0PHI = phi <...> [ <...>, %EqualBB ] - // <...> - - // Now, actually restore the CFG. - - // Insert an unconditional branch from an actual preheader basic block to - // phony preheader basic block. - IRBuilder<>(PreheaderBB).CreateBr(PhonyPreheaderBB); - DTUpdates.push_back({DominatorTree::Insert, PhonyPreheaderBB, HeaderBB}); - // Insert proper conditional branch from phony successor basic block to the - // "dispatch" basic blocks, which were used to preserve incoming values in - // original loop's successor basic blocks. - assert(isa<UnreachableInst>(PhonySuccessorBB->getTerminator()) && - "Yep, that's the one we created to keep deleteDeadLoop() happy."); - PhonySuccessorBB->getTerminator()->eraseFromParent(); - { - IRBuilder<> Builder(PhonySuccessorBB); - Builder.SetCurrentDebugLocation(ComparedEqual->getDebugLoc()); - Builder.CreateCondBr(ComparedEqual, ComparedEqualBB, ComparedUnequalBB); - } - DTUpdates.push_back( - {DominatorTree::Insert, PhonySuccessorBB, ComparedEqualBB}); - DTUpdates.push_back( - {DominatorTree::Insert, PhonySuccessorBB, ComparedUnequalBB}); - - BasicBlock *DispatchBB = PhonySuccessorBB; - DispatchBB->setName(LoopName + ".bcmpdispatchbb"); - - assert(DTUpdates.size() == 3 && "Update count prediction failed."); - DTU.applyUpdates(DTUpdates); - DTUpdates.clear(); - - // By now we have: (4/6) - // PreheaderBB: ; preds = ??? - // <...> - // %memcmp = call i32 @memcmp(i8* %LoadSrcA, i8* %LoadSrcB, i64 %Nbytes) - // %ComparedEqual = icmp eq <...> %memcmp, 0 - // br label %PhonyPreheaderBB - // PhonyPreheaderBB: ; preds = %PreheaderBB - // br label %DispatchBB - // DispatchBB: ; preds = %PhonyPreheaderBB - // br i1 %ComparedEqual, label %EqualBB, label %UnequalBB - // EqualBB: ; preds = %DispatchBB - // br label %Successor1BB - // UnequalBB: ; preds = %DispatchBB - // br label %Successor0BB - // Successor0BB: ; preds = %UnequalBB - // %S0PHI = phi <...> [ <...>, %UnequalBB ] - // <...> - // Successor1BB: ; preds = %EqualBB - // %S0PHI = phi <...> [ <...>, %EqualBB ] - // <...> - - // The basic CFG has been restored! Now let's merge redundant basic blocks. - - // Merge phony successor basic block into it's only predecessor, - // phony preheader basic block. It is fully pointlessly redundant. - MergeBasicBlockIntoOnlyPred(DispatchBB, &DTU); - - // By now we have: (5/6) - // PreheaderBB: ; preds = ??? - // <...> - // %memcmp = call i32 @memcmp(i8* %LoadSrcA, i8* %LoadSrcB, i64 %Nbytes) - // %ComparedEqual = icmp eq <...> %memcmp, 0 - // br label %DispatchBB - // DispatchBB: ; preds = %PreheaderBB - // br i1 %ComparedEqual, label %EqualBB, label %UnequalBB - // EqualBB: ; preds = %DispatchBB - // br label %Successor1BB - // UnequalBB: ; preds = %DispatchBB - // br label %Successor0BB - // Successor0BB: ; preds = %UnequalBB - // %S0PHI = phi <...> [ <...>, %UnequalBB ] - // <...> - // Successor1BB: ; preds = %EqualBB - // %S0PHI = phi <...> [ <...>, %EqualBB ] - // <...> - - // Was this loop nested? - if (!ParentLoop) { - // If the loop was *NOT* nested, then let's also merge phony successor - // basic block into it's only predecessor, preheader basic block. - // Also, here we need to update LoopInfo. - LI->removeBlock(PreheaderBB); - MergeBasicBlockIntoOnlyPred(DispatchBB, &DTU); - - // By now we have: (6/6) - // DispatchBB: ; preds = ??? - // <...> - // %memcmp = call i32 @memcmp(i8* %LoadSrcA, i8* %LoadSrcB, i64 %Nbytes) - // %ComparedEqual = icmp eq <...> %memcmp, 0 - // br i1 %ComparedEqual, label %EqualBB, label %UnequalBB - // EqualBB: ; preds = %DispatchBB - // br label %Successor1BB - // UnequalBB: ; preds = %DispatchBB - // br label %Successor0BB - // Successor0BB: ; preds = %UnequalBB - // %S0PHI = phi <...> [ <...>, %UnequalBB ] - // <...> - // Successor1BB: ; preds = %EqualBB - // %S0PHI = phi <...> [ <...>, %EqualBB ] - // <...> - - return DispatchBB; - } - - // Otherwise, we need to "preserve" the LoopSimplify form of the deleted loop. - // To achieve that, we shall keep the preheader basic block (mainly so that - // the loop header block will be guaranteed to have a predecessor outside of - // the loop), and create a phony loop with all these new three basic blocks. - Loop *PhonyLoop = LI->AllocateLoop(); - ParentLoop->addChildLoop(PhonyLoop); - PhonyLoop->addBasicBlockToLoop(DispatchBB, *LI); - PhonyLoop->addBasicBlockToLoop(ComparedEqualBB, *LI); - PhonyLoop->addBasicBlockToLoop(ComparedUnequalBB, *LI); - - // But we only have a preheader basic block, a header basic block block and - // two exiting basic blocks. For a proper loop we also need a backedge from - // non-header basic block to header bb. - // Let's just add a never-taken branch from both of the exiting basic blocks. - for (BasicBlock *BB : {ComparedEqualBB, ComparedUnequalBB}) { - BranchInst *OldTerminator = cast<BranchInst>(BB->getTerminator()); - assert(OldTerminator->isUnconditional() && "That's the one we created."); - BasicBlock *SuccessorBB = OldTerminator->getSuccessor(0); - - IRBuilder<> Builder(OldTerminator); - Builder.SetCurrentDebugLocation(OldTerminator->getDebugLoc()); - Builder.CreateCondBr(ConstantInt::getTrue(Context), SuccessorBB, - DispatchBB); - OldTerminator->eraseFromParent(); - // Yes, the backedge will never be taken. The control-flow is redundant. - // If it can be simplified further, other passes will take care. - DTUpdates.push_back({DominatorTree::Delete, BB, SuccessorBB}); - DTUpdates.push_back({DominatorTree::Insert, BB, SuccessorBB}); - DTUpdates.push_back({DominatorTree::Insert, BB, DispatchBB}); - } - assert(DTUpdates.size() == 6 && "Update count prediction failed."); - DTU.applyUpdates(DTUpdates); - DTUpdates.clear(); - - // By now we have: (6/6) - // PreheaderBB: <preheader> ; preds = ??? - // <...> - // %memcmp = call i32 @memcmp(i8* %LoadSrcA, i8* %LoadSrcB, i64 %Nbytes) - // %ComparedEqual = icmp eq <...> %memcmp, 0 - // br label %BCmpDispatchBB - // BCmpDispatchBB: <header> ; preds = %PreheaderBB - // br i1 %ComparedEqual, label %EqualBB, label %UnequalBB - // EqualBB: <latch,exiting> ; preds = %BCmpDispatchBB - // br i1 %true, label %Successor1BB, label %BCmpDispatchBB - // UnequalBB: <latch,exiting> ; preds = %BCmpDispatchBB - // br i1 %true, label %Successor0BB, label %BCmpDispatchBB - // Successor0BB: ; preds = %UnequalBB - // %S0PHI = phi <...> [ <...>, %UnequalBB ] - // <...> - // Successor1BB: ; preds = %EqualBB - // %S0PHI = phi <...> [ <...>, %EqualBB ] - // <...> - - // Finally fully DONE! - return DispatchBB; -} - -void LoopIdiomRecognize::transformLoopToBCmp(ICmpInst *BCmpInst, - CmpInst *LatchCmpInst, - LoadInst *LoadA, LoadInst *LoadB, - const SCEV *SrcA, const SCEV *SrcB, - const SCEV *NBytes) { - // We will be inserting before the terminator instruction of preheader block. - IRBuilder<> Builder(CurLoop->getLoopPreheader()->getTerminator()); - - LLVM_DEBUG(dbgs() << "Transforming bcmp loop idiom into a call.\n"); - LLVM_DEBUG(dbgs() << "Emitting new instructions.\n"); - - // Expand the SCEV expressions for both sources to compare, and produce value - // for the byte len (beware of Iterations potentially being a pointer, and - // account for element size being BCmpTyBytes bytes, which may be not 1 byte) - Value *PtrA, *PtrB, *Len; - { - SCEVExpander SExp(*SE, *DL, "LoopToBCmp"); - SExp.setInsertPoint(&*Builder.GetInsertPoint()); - - auto HandlePtr = [&SExp](LoadInst *Load, const SCEV *Src) { - SExp.SetCurrentDebugLocation(DebugLoc()); - // If the pointer operand of original load had dbgloc - use it. - if (const auto *I = dyn_cast<Instruction>(Load->getPointerOperand())) - SExp.SetCurrentDebugLocation(I->getDebugLoc()); - return SExp.expandCodeFor(Src); - }; - PtrA = HandlePtr(LoadA, SrcA); - PtrB = HandlePtr(LoadB, SrcB); - - // For len calculation let's use dbgloc for the loop's latch condition. - Builder.SetCurrentDebugLocation(LatchCmpInst->getDebugLoc()); - SExp.SetCurrentDebugLocation(LatchCmpInst->getDebugLoc()); - Len = SExp.expandCodeFor(NBytes); - - Type *CmpFuncSizeTy = DL->getIntPtrType(Builder.getContext()); - assert(SE->getTypeSizeInBits(Len->getType()) == - DL->getTypeSizeInBits(CmpFuncSizeTy) && - "Len should already have the correct size."); - - // Make sure that iteration count is a number, insert ptrtoint cast if not. - if (Len->getType()->isPointerTy()) - Len = Builder.CreatePtrToInt(Len, CmpFuncSizeTy); - assert(Len->getType() == CmpFuncSizeTy && "Should have correct type now."); - - Len->setName(Len->getName() + ".bytecount"); - - // There is no legality check needed. We want to compare that the memory - // regions [PtrA, PtrA+Len) and [PtrB, PtrB+Len) are fully identical, equal. - // For them to be fully equal, they must match bit-by-bit. And likewise, - // for them to *NOT* be fully equal, they have to differ just by one bit. - // The step of comparison (bits compared at once) simply does not matter. - } - - // For the rest of new instructions, dbgloc should point at the value cmp. - Builder.SetCurrentDebugLocation(BCmpInst->getDebugLoc()); - - // Emit the comparison itself. - auto *CmpCall = - cast<CallInst>(HasBCmp ? emitBCmp(PtrA, PtrB, Len, Builder, *DL, TLI) - : emitMemCmp(PtrA, PtrB, Len, Builder, *DL, TLI)); - // FIXME: add {B,Mem}CmpInst with MemoryCompareInst - // (based on MemIntrinsicBase) as base? - // FIXME: propagate metadata from loads? (alignments, AS, TBAA, ...) - - // {b,mem}cmp returned 0 if they were equal, or non-zero if not equal. - auto *ComparedEqual = cast<ICmpInst>(Builder.CreateICmpEQ( - CmpCall, ConstantInt::get(CmpCall->getType(), 0), - PtrA->getName() + ".vs." + PtrB->getName() + ".eqcmp")); - - BasicBlock *BB = transformBCmpControlFlow(ComparedEqual); - Builder.ClearInsertionPoint(); - - // We're done. - LLVM_DEBUG(dbgs() << "Transformed loop bcmp idiom into a call.\n"); - ORE.emit([&]() { - return OptimizationRemark(DEBUG_TYPE, "TransformedBCmpIdiomToCall", - CmpCall->getDebugLoc(), BB) - << "Transformed bcmp idiom into a call to " - << ore::NV("NewFunction", CmpCall->getCalledFunction()) - << "() function"; - }); - ++NumBCmp; -} - -/// Recognizes a bcmp idiom in a non-countable loop. -/// -/// If detected, transforms the relevant code to issue the bcmp (or memcmp) -/// intrinsic function call, and returns true; otherwise, returns false. -bool LoopIdiomRecognize::recognizeBCmp() { - if (!HasMemCmp && !HasBCmp) - return false; - - ICmpInst *BCmpInst; - CmpInst *LatchCmpInst; - LoadInst *LoadA, *LoadB; - const SCEV *SrcA, *SrcB, *NBytes; - if (!detectBCmpIdiom(BCmpInst, LatchCmpInst, LoadA, LoadB, SrcA, SrcB, - NBytes)) { - LLVM_DEBUG(dbgs() << "bcmp idiom recognition failed.\n"); - return false; - } - - transformLoopToBCmp(BCmpInst, LatchCmpInst, LoadA, LoadB, SrcA, SrcB, NBytes); - return true; -} |