diff options
| author | Ed Maste <emaste@FreeBSD.org> | 2013-08-23 17:46:38 +0000 | 
|---|---|---|
| committer | Ed Maste <emaste@FreeBSD.org> | 2013-08-23 17:46:38 +0000 | 
| commit | f034231a6a1fd5d6395206c1651de8cd9402cca3 (patch) | |
| tree | f561dabc721ad515599172c16da3a4400b7f4aec /source/Plugins/Process/gdb-remote/GDBRemoteRegisterContext.cpp | |
Notes
Diffstat (limited to 'source/Plugins/Process/gdb-remote/GDBRemoteRegisterContext.cpp')
| -rw-r--r-- | source/Plugins/Process/gdb-remote/GDBRemoteRegisterContext.cpp | 971 | 
1 files changed, 971 insertions, 0 deletions
diff --git a/source/Plugins/Process/gdb-remote/GDBRemoteRegisterContext.cpp b/source/Plugins/Process/gdb-remote/GDBRemoteRegisterContext.cpp new file mode 100644 index 0000000000000..b1612a5f3c2f9 --- /dev/null +++ b/source/Plugins/Process/gdb-remote/GDBRemoteRegisterContext.cpp @@ -0,0 +1,971 @@ +//===-- GDBRemoteRegisterContext.cpp ----------------------------*- C++ -*-===// +// +//                     The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// + +#include "GDBRemoteRegisterContext.h" + +// C Includes +// C++ Includes +// Other libraries and framework includes +#include "lldb/Core/DataBufferHeap.h" +#include "lldb/Core/DataExtractor.h" +#include "lldb/Core/RegisterValue.h" +#include "lldb/Core/Scalar.h" +#include "lldb/Core/StreamString.h" +#include "lldb/Target/ExecutionContext.h" +#include "lldb/Utility/Utils.h" +// Project includes +#include "Utility/StringExtractorGDBRemote.h" +#include "ProcessGDBRemote.h" +#include "ProcessGDBRemoteLog.h" +#include "ThreadGDBRemote.h" +#include "Utility/ARM_GCC_Registers.h" +#include "Utility/ARM_DWARF_Registers.h" + +using namespace lldb; +using namespace lldb_private; + +//---------------------------------------------------------------------- +// GDBRemoteRegisterContext constructor +//---------------------------------------------------------------------- +GDBRemoteRegisterContext::GDBRemoteRegisterContext +( +    ThreadGDBRemote &thread, +    uint32_t concrete_frame_idx, +    GDBRemoteDynamicRegisterInfo ®_info, +    bool read_all_at_once +) : +    RegisterContext (thread, concrete_frame_idx), +    m_reg_info (reg_info), +    m_reg_valid (), +    m_reg_data (), +    m_read_all_at_once (read_all_at_once) +{ +    // Resize our vector of bools to contain one bool for every register. +    // We will use these boolean values to know when a register value +    // is valid in m_reg_data. +    m_reg_valid.resize (reg_info.GetNumRegisters()); + +    // Make a heap based buffer that is big enough to store all registers +    DataBufferSP reg_data_sp(new DataBufferHeap (reg_info.GetRegisterDataByteSize(), 0)); +    m_reg_data.SetData (reg_data_sp); + +} + +//---------------------------------------------------------------------- +// Destructor +//---------------------------------------------------------------------- +GDBRemoteRegisterContext::~GDBRemoteRegisterContext() +{ +} + +void +GDBRemoteRegisterContext::InvalidateAllRegisters () +{ +    SetAllRegisterValid (false); +} + +void +GDBRemoteRegisterContext::SetAllRegisterValid (bool b) +{ +    std::vector<bool>::iterator pos, end = m_reg_valid.end(); +    for (pos = m_reg_valid.begin(); pos != end; ++pos) +        *pos = b; +} + +size_t +GDBRemoteRegisterContext::GetRegisterCount () +{ +    return m_reg_info.GetNumRegisters (); +} + +const RegisterInfo * +GDBRemoteRegisterContext::GetRegisterInfoAtIndex (size_t reg) +{ +    return m_reg_info.GetRegisterInfoAtIndex (reg); +} + +size_t +GDBRemoteRegisterContext::GetRegisterSetCount () +{ +    return m_reg_info.GetNumRegisterSets (); +} + + + +const RegisterSet * +GDBRemoteRegisterContext::GetRegisterSet (size_t reg_set) +{ +    return m_reg_info.GetRegisterSet (reg_set); +} + + + +bool +GDBRemoteRegisterContext::ReadRegister (const RegisterInfo *reg_info, RegisterValue &value) +{ +    // Read the register +    if (ReadRegisterBytes (reg_info, m_reg_data)) +    { +        const bool partial_data_ok = false; +        Error error (value.SetValueFromData(reg_info, m_reg_data, reg_info->byte_offset, partial_data_ok)); +        return error.Success(); +    } +    return false; +} + +bool +GDBRemoteRegisterContext::PrivateSetRegisterValue (uint32_t reg, StringExtractor &response) +{ +    const RegisterInfo *reg_info = GetRegisterInfoAtIndex (reg); +    if (reg_info == NULL) +        return false; + +    // Invalidate if needed +    InvalidateIfNeeded(false); + +    const uint32_t reg_byte_size = reg_info->byte_size; +    const size_t bytes_copied = response.GetHexBytes (const_cast<uint8_t*>(m_reg_data.PeekData(reg_info->byte_offset, reg_byte_size)), reg_byte_size, '\xcc'); +    bool success = bytes_copied == reg_byte_size; +    if (success) +    { +        SetRegisterIsValid(reg, true); +    } +    else if (bytes_copied > 0) +    { +        // Only set register is valid to false if we copied some bytes, else +        // leave it as it was. +        SetRegisterIsValid(reg, false); +    } +    return success; +} + +// Helper function for GDBRemoteRegisterContext::ReadRegisterBytes(). +bool +GDBRemoteRegisterContext::GetPrimordialRegister(const lldb_private::RegisterInfo *reg_info, +                                                GDBRemoteCommunicationClient &gdb_comm) +{ +    char packet[64]; +    StringExtractorGDBRemote response; +    int packet_len = 0; +    const uint32_t reg = reg_info->kinds[eRegisterKindLLDB]; +    if (gdb_comm.GetThreadSuffixSupported()) +        packet_len = ::snprintf (packet, sizeof(packet), "p%x;thread:%4.4" PRIx64 ";", reg, m_thread.GetProtocolID()); +    else +        packet_len = ::snprintf (packet, sizeof(packet), "p%x", reg); +    assert (packet_len < ((int)sizeof(packet) - 1)); +    if (gdb_comm.SendPacketAndWaitForResponse(packet, response, false)) +        return PrivateSetRegisterValue (reg, response); + +    return false; +} +bool +GDBRemoteRegisterContext::ReadRegisterBytes (const RegisterInfo *reg_info, DataExtractor &data) +{ +    ExecutionContext exe_ctx (CalculateThread()); + +    Process *process = exe_ctx.GetProcessPtr(); +    Thread *thread = exe_ctx.GetThreadPtr(); +    if (process == NULL || thread == NULL) +        return false; + +    GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *)process)->GetGDBRemote()); + +    InvalidateIfNeeded(false); + +    const uint32_t reg = reg_info->kinds[eRegisterKindLLDB]; + +    if (!GetRegisterIsValid(reg)) +    { +        Mutex::Locker locker; +        if (gdb_comm.GetSequenceMutex (locker, "Didn't get sequence mutex for read register.")) +        { +            const bool thread_suffix_supported = gdb_comm.GetThreadSuffixSupported(); +            ProcessSP process_sp (m_thread.GetProcess()); +            if (thread_suffix_supported || static_cast<ProcessGDBRemote *>(process_sp.get())->GetGDBRemote().SetCurrentThread(m_thread.GetProtocolID())) +            { +                char packet[64]; +                StringExtractorGDBRemote response; +                int packet_len = 0; +                if (m_read_all_at_once) +                { +                    // Get all registers in one packet +                    if (thread_suffix_supported) +                        packet_len = ::snprintf (packet, sizeof(packet), "g;thread:%4.4" PRIx64 ";", m_thread.GetProtocolID()); +                    else +                        packet_len = ::snprintf (packet, sizeof(packet), "g"); +                    assert (packet_len < ((int)sizeof(packet) - 1)); +                    if (gdb_comm.SendPacketAndWaitForResponse(packet, response, false)) +                    { +                        if (response.IsNormalResponse()) +                            if (response.GetHexBytes ((void *)m_reg_data.GetDataStart(), m_reg_data.GetByteSize(), '\xcc') == m_reg_data.GetByteSize()) +                                SetAllRegisterValid (true); +                    } +                } +                else if (reg_info->value_regs) +                { +                    // Process this composite register request by delegating to the constituent +                    // primordial registers. +                     +                    // Index of the primordial register. +                    bool success = true; +                    for (uint32_t idx = 0; success; ++idx) +                    { +                        const uint32_t prim_reg = reg_info->value_regs[idx]; +                        if (prim_reg == LLDB_INVALID_REGNUM) +                            break; +                        // We have a valid primordial regsiter as our constituent. +                        // Grab the corresponding register info. +                        const RegisterInfo *prim_reg_info = GetRegisterInfoAtIndex(prim_reg); +                        if (prim_reg_info == NULL) +                            success = false; +                        else +                        { +                            // Read the containing register if it hasn't already been read +                            if (!GetRegisterIsValid(prim_reg)) +                                success = GetPrimordialRegister(prim_reg_info, gdb_comm); +                        } +                    } + +                    if (success) +                    { +                        // If we reach this point, all primordial register requests have succeeded. +                        // Validate this composite register. +                        SetRegisterIsValid (reg_info, true); +                    } +                } +                else +                { +                    // Get each register individually +                    GetPrimordialRegister(reg_info, gdb_comm); +                } +            } +        } +        else +        { +#if LLDB_CONFIGURATION_DEBUG +            StreamString strm; +            gdb_comm.DumpHistory(strm); +            Host::SetCrashDescription (strm.GetData()); +            assert (!"Didn't get sequence mutex for read register."); +#else +            Log *log (ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet (GDBR_LOG_THREAD | GDBR_LOG_PACKETS)); +            if (log) +            { +                if (log->GetVerbose()) +                { +                    StreamString strm; +                    gdb_comm.DumpHistory(strm); +                    log->Printf("error: failed to get packet sequence mutex, not sending read register for \"%s\":\n%s", reg_info->name, strm.GetData()); +                } +                else +                { +                    log->Printf("error: failed to get packet sequence mutex, not sending read register for \"%s\"", reg_info->name); +                } +            } +#endif +        } + +        // Make sure we got a valid register value after reading it +        if (!GetRegisterIsValid(reg)) +            return false; +    } + +    if (&data != &m_reg_data) +    { +        // If we aren't extracting into our own buffer (which +        // only happens when this function is called from +        // ReadRegisterValue(uint32_t, Scalar&)) then +        // we transfer bytes from our buffer into the data +        // buffer that was passed in +        data.SetByteOrder (m_reg_data.GetByteOrder()); +        data.SetData (m_reg_data, reg_info->byte_offset, reg_info->byte_size); +    } +    return true; +} + +bool +GDBRemoteRegisterContext::WriteRegister (const RegisterInfo *reg_info, +                                         const RegisterValue &value) +{ +    DataExtractor data; +    if (value.GetData (data)) +        return WriteRegisterBytes (reg_info, data, 0); +    return false; +} + +// Helper function for GDBRemoteRegisterContext::WriteRegisterBytes(). +bool +GDBRemoteRegisterContext::SetPrimordialRegister(const lldb_private::RegisterInfo *reg_info, +                                                GDBRemoteCommunicationClient &gdb_comm) +{ +    StreamString packet; +    StringExtractorGDBRemote response; +    const uint32_t reg = reg_info->kinds[eRegisterKindLLDB]; +    packet.Printf ("P%x=", reg); +    packet.PutBytesAsRawHex8 (m_reg_data.PeekData(reg_info->byte_offset, reg_info->byte_size), +                              reg_info->byte_size, +                              lldb::endian::InlHostByteOrder(), +                              lldb::endian::InlHostByteOrder()); + +    if (gdb_comm.GetThreadSuffixSupported()) +        packet.Printf (";thread:%4.4" PRIx64 ";", m_thread.GetProtocolID()); + +    // Invalidate just this register +    SetRegisterIsValid(reg, false); +    if (gdb_comm.SendPacketAndWaitForResponse(packet.GetString().c_str(), +                                              packet.GetString().size(), +                                              response, +                                              false)) +    { +        if (response.IsOKResponse()) +            return true; +    } +    return false; +} + +void +GDBRemoteRegisterContext::SyncThreadState(Process *process) +{ +    // NB.  We assume our caller has locked the sequence mutex. +     +    GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *) process)->GetGDBRemote()); +    if (!gdb_comm.GetSyncThreadStateSupported()) +        return; + +    StreamString packet; +    StringExtractorGDBRemote response; +    packet.Printf ("QSyncThreadState:%4.4" PRIx64 ";", m_thread.GetProtocolID()); +    if (gdb_comm.SendPacketAndWaitForResponse(packet.GetString().c_str(), +                                              packet.GetString().size(), +                                              response, +                                              false)) +    { +        if (response.IsOKResponse()) +            InvalidateAllRegisters(); +    } +} + +bool +GDBRemoteRegisterContext::WriteRegisterBytes (const lldb_private::RegisterInfo *reg_info, DataExtractor &data, uint32_t data_offset) +{ +    ExecutionContext exe_ctx (CalculateThread()); + +    Process *process = exe_ctx.GetProcessPtr(); +    Thread *thread = exe_ctx.GetThreadPtr(); +    if (process == NULL || thread == NULL) +        return false; + +    GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *)process)->GetGDBRemote()); +// FIXME: This check isn't right because IsRunning checks the Public state, but this +// is work you need to do - for instance in ShouldStop & friends - before the public +// state has been changed. +//    if (gdb_comm.IsRunning()) +//        return false; + +    // Grab a pointer to where we are going to put this register +    uint8_t *dst = const_cast<uint8_t*>(m_reg_data.PeekData(reg_info->byte_offset, reg_info->byte_size)); + +    if (dst == NULL) +        return false; + + +    if (data.CopyByteOrderedData (data_offset,                  // src offset +                                  reg_info->byte_size,          // src length +                                  dst,                          // dst +                                  reg_info->byte_size,          // dst length +                                  m_reg_data.GetByteOrder()))   // dst byte order +    { +        Mutex::Locker locker; +        if (gdb_comm.GetSequenceMutex (locker, "Didn't get sequence mutex for write register.")) +        { +            const bool thread_suffix_supported = gdb_comm.GetThreadSuffixSupported(); +            ProcessSP process_sp (m_thread.GetProcess()); +            if (thread_suffix_supported || static_cast<ProcessGDBRemote *>(process_sp.get())->GetGDBRemote().SetCurrentThread(m_thread.GetProtocolID())) +            { +                StreamString packet; +                StringExtractorGDBRemote response; +                 +                if (m_read_all_at_once) +                { +                    // Set all registers in one packet +                    packet.PutChar ('G'); +                    packet.PutBytesAsRawHex8 (m_reg_data.GetDataStart(), +                                              m_reg_data.GetByteSize(), +                                              lldb::endian::InlHostByteOrder(), +                                              lldb::endian::InlHostByteOrder()); + +                    if (thread_suffix_supported) +                        packet.Printf (";thread:%4.4" PRIx64 ";", m_thread.GetProtocolID()); + +                    // Invalidate all register values +                    InvalidateIfNeeded (true); + +                    if (gdb_comm.SendPacketAndWaitForResponse(packet.GetString().c_str(), +                                                              packet.GetString().size(), +                                                              response, +                                                              false)) +                    { +                        SetAllRegisterValid (false); +                        if (response.IsOKResponse()) +                        { +                            return true; +                        } +                    } +                } +                else +                { +                    bool success = true; + +                    if (reg_info->value_regs) +                    { +                        // This register is part of another register. In this case we read the actual +                        // register data for any "value_regs", and once all that data is read, we will +                        // have enough data in our register context bytes for the value of this register +                         +                        // Invalidate this composite register first. +                         +                        for (uint32_t idx = 0; success; ++idx) +                        { +                            const uint32_t reg = reg_info->value_regs[idx]; +                            if (reg == LLDB_INVALID_REGNUM) +                                break; +                            // We have a valid primordial regsiter as our constituent. +                            // Grab the corresponding register info. +                            const RegisterInfo *value_reg_info = GetRegisterInfoAtIndex(reg); +                            if (value_reg_info == NULL) +                                success = false; +                            else +                                success = SetPrimordialRegister(value_reg_info, gdb_comm); +                        } +                    } +                    else +                    { +                        // This is an actual register, write it +                        success = SetPrimordialRegister(reg_info, gdb_comm); +                    } + +                    // Check if writing this register will invalidate any other register values? +                    // If so, invalidate them +                    if (reg_info->invalidate_regs) +                    { +                        for (uint32_t idx = 0, reg = reg_info->invalidate_regs[0]; +                             reg != LLDB_INVALID_REGNUM; +                             reg = reg_info->invalidate_regs[++idx]) +                        { +                            SetRegisterIsValid(reg, false); +                        } +                    } +                     +                    return success; +                } +            } +        } +        else +        { +            Log *log (ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet (GDBR_LOG_THREAD | GDBR_LOG_PACKETS)); +            if (log) +            { +                if (log->GetVerbose()) +                { +                    StreamString strm; +                    gdb_comm.DumpHistory(strm); +                    log->Printf("error: failed to get packet sequence mutex, not sending write register for \"%s\":\n%s", reg_info->name, strm.GetData()); +                } +                else +                    log->Printf("error: failed to get packet sequence mutex, not sending write register for \"%s\"", reg_info->name); +            } +        } +    } +    return false; +} + + +bool +GDBRemoteRegisterContext::ReadAllRegisterValues (lldb::DataBufferSP &data_sp) +{ +    ExecutionContext exe_ctx (CalculateThread()); + +    Process *process = exe_ctx.GetProcessPtr(); +    Thread *thread = exe_ctx.GetThreadPtr(); +    if (process == NULL || thread == NULL) +        return false; + +    GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *)process)->GetGDBRemote()); + +    StringExtractorGDBRemote response; + +    Mutex::Locker locker; +    if (gdb_comm.GetSequenceMutex (locker, "Didn't get sequence mutex for read all registers.")) +    { +        SyncThreadState(process); +         +        char packet[32]; +        const bool thread_suffix_supported = gdb_comm.GetThreadSuffixSupported(); +        ProcessSP process_sp (m_thread.GetProcess()); +        if (thread_suffix_supported || static_cast<ProcessGDBRemote *>(process_sp.get())->GetGDBRemote().SetCurrentThread(m_thread.GetProtocolID())) +        { +            int packet_len = 0; +            if (thread_suffix_supported) +                packet_len = ::snprintf (packet, sizeof(packet), "g;thread:%4.4" PRIx64, m_thread.GetProtocolID()); +            else +                packet_len = ::snprintf (packet, sizeof(packet), "g"); +            assert (packet_len < ((int)sizeof(packet) - 1)); + +            if (gdb_comm.SendPacketAndWaitForResponse(packet, packet_len, response, false)) +            { +                if (response.IsErrorResponse()) +                    return false; + +                std::string &response_str = response.GetStringRef(); +                if (isxdigit(response_str[0])) +                { +                    response_str.insert(0, 1, 'G'); +                    if (thread_suffix_supported) +                    { +                        char thread_id_cstr[64]; +                        ::snprintf (thread_id_cstr, sizeof(thread_id_cstr), ";thread:%4.4" PRIx64 ";", m_thread.GetProtocolID()); +                        response_str.append (thread_id_cstr); +                    } +                    data_sp.reset (new DataBufferHeap (response_str.c_str(), response_str.size())); +                    return true; +                } +            } +        } +    } +    else +    { +        Log *log (ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet (GDBR_LOG_THREAD | GDBR_LOG_PACKETS)); +        if (log) +        { +            if (log->GetVerbose()) +            { +                StreamString strm; +                gdb_comm.DumpHistory(strm); +                log->Printf("error: failed to get packet sequence mutex, not sending read all registers:\n%s", strm.GetData()); +            } +            else +                log->Printf("error: failed to get packet sequence mutex, not sending read all registers"); +        } +    } + +    data_sp.reset(); +    return false; +} + +bool +GDBRemoteRegisterContext::WriteAllRegisterValues (const lldb::DataBufferSP &data_sp) +{ +    if (!data_sp || data_sp->GetBytes() == NULL || data_sp->GetByteSize() == 0) +        return false; + +    ExecutionContext exe_ctx (CalculateThread()); + +    Process *process = exe_ctx.GetProcessPtr(); +    Thread *thread = exe_ctx.GetThreadPtr(); +    if (process == NULL || thread == NULL) +        return false; + +    GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *)process)->GetGDBRemote()); + +    StringExtractorGDBRemote response; +    Mutex::Locker locker; +    if (gdb_comm.GetSequenceMutex (locker, "Didn't get sequence mutex for write all registers.")) +    { +        const bool thread_suffix_supported = gdb_comm.GetThreadSuffixSupported(); +        ProcessSP process_sp (m_thread.GetProcess()); +        if (thread_suffix_supported || static_cast<ProcessGDBRemote *>(process_sp.get())->GetGDBRemote().SetCurrentThread(m_thread.GetProtocolID())) +        { +            // The data_sp contains the entire G response packet including the +            // G, and if the thread suffix is supported, it has the thread suffix +            // as well. +            const char *G_packet = (const char *)data_sp->GetBytes(); +            size_t G_packet_len = data_sp->GetByteSize(); +            if (gdb_comm.SendPacketAndWaitForResponse (G_packet, +                                                       G_packet_len, +                                                       response, +                                                       false)) +            { +                if (response.IsOKResponse()) +                    return true; +                else if (response.IsErrorResponse()) +                { +                    uint32_t num_restored = 0; +                    // We need to manually go through all of the registers and +                    // restore them manually + +                    response.GetStringRef().assign (G_packet, G_packet_len); +                    response.SetFilePos(1); // Skip the leading 'G' +                    DataBufferHeap buffer (m_reg_data.GetByteSize(), 0); +                    DataExtractor restore_data (buffer.GetBytes(), +                                                buffer.GetByteSize(), +                                                m_reg_data.GetByteOrder(), +                                                m_reg_data.GetAddressByteSize()); + +                    const uint32_t bytes_extracted = response.GetHexBytes ((void *)restore_data.GetDataStart(), +                                                                           restore_data.GetByteSize(), +                                                                           '\xcc'); + +                    if (bytes_extracted < restore_data.GetByteSize()) +                        restore_data.SetData(restore_data.GetDataStart(), bytes_extracted, m_reg_data.GetByteOrder()); + +                    //ReadRegisterBytes (const RegisterInfo *reg_info, RegisterValue &value, DataExtractor &data) +                    const RegisterInfo *reg_info; +                    // We have to march the offset of each register along in the +                    // buffer to make sure we get the right offset. +                    uint32_t reg_byte_offset = 0; +                    for (uint32_t reg_idx=0; (reg_info = GetRegisterInfoAtIndex (reg_idx)) != NULL; ++reg_idx, reg_byte_offset += reg_info->byte_size) +                    { +                        const uint32_t reg = reg_info->kinds[eRegisterKindLLDB]; + +                        // Skip composite registers. +                        if (reg_info->value_regs) +                            continue; + +                        // Only write down the registers that need to be written +                        // if we are going to be doing registers individually. +                        bool write_reg = true; +                        const uint32_t reg_byte_size = reg_info->byte_size; + +                        const char *restore_src = (const char *)restore_data.PeekData(reg_byte_offset, reg_byte_size); +                        if (restore_src) +                        { +                            if (GetRegisterIsValid(reg)) +                            { +                                const char *current_src = (const char *)m_reg_data.PeekData(reg_byte_offset, reg_byte_size); +                                if (current_src) +                                    write_reg = memcmp (current_src, restore_src, reg_byte_size) != 0; +                            } + +                            if (write_reg) +                            { +                                StreamString packet; +                                packet.Printf ("P%x=", reg); +                                packet.PutBytesAsRawHex8 (restore_src, +                                                          reg_byte_size, +                                                          lldb::endian::InlHostByteOrder(), +                                                          lldb::endian::InlHostByteOrder()); + +                                if (thread_suffix_supported) +                                    packet.Printf (";thread:%4.4" PRIx64 ";", m_thread.GetProtocolID()); + +                                SetRegisterIsValid(reg, false); +                                if (gdb_comm.SendPacketAndWaitForResponse(packet.GetString().c_str(), +                                                                          packet.GetString().size(), +                                                                          response, +                                                                          false)) +                                { +                                    if (response.IsOKResponse()) +                                        ++num_restored; +                                } +                            } +                        } +                    } +                    return num_restored > 0; +                } +            } +        } +    } +    else +    { +        Log *log (ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet (GDBR_LOG_THREAD | GDBR_LOG_PACKETS)); +        if (log) +        { +            if (log->GetVerbose()) +            { +                StreamString strm; +                gdb_comm.DumpHistory(strm); +                log->Printf("error: failed to get packet sequence mutex, not sending write all registers:\n%s", strm.GetData()); +            } +            else +                log->Printf("error: failed to get packet sequence mutex, not sending write all registers"); +        } +    } +    return false; +} + + +uint32_t +GDBRemoteRegisterContext::ConvertRegisterKindToRegisterNumber (uint32_t kind, uint32_t num) +{ +    return m_reg_info.ConvertRegisterKindToRegisterNumber (kind, num); +} + +void +GDBRemoteDynamicRegisterInfo::HardcodeARMRegisters(bool from_scratch) +{ +    // For Advanced SIMD and VFP register mapping. +    static uint32_t g_d0_regs[] =  { 26, 27, LLDB_INVALID_REGNUM }; // (s0, s1) +    static uint32_t g_d1_regs[] =  { 28, 29, LLDB_INVALID_REGNUM }; // (s2, s3) +    static uint32_t g_d2_regs[] =  { 30, 31, LLDB_INVALID_REGNUM }; // (s4, s5) +    static uint32_t g_d3_regs[] =  { 32, 33, LLDB_INVALID_REGNUM }; // (s6, s7) +    static uint32_t g_d4_regs[] =  { 34, 35, LLDB_INVALID_REGNUM }; // (s8, s9) +    static uint32_t g_d5_regs[] =  { 36, 37, LLDB_INVALID_REGNUM }; // (s10, s11) +    static uint32_t g_d6_regs[] =  { 38, 39, LLDB_INVALID_REGNUM }; // (s12, s13) +    static uint32_t g_d7_regs[] =  { 40, 41, LLDB_INVALID_REGNUM }; // (s14, s15) +    static uint32_t g_d8_regs[] =  { 42, 43, LLDB_INVALID_REGNUM }; // (s16, s17) +    static uint32_t g_d9_regs[] =  { 44, 45, LLDB_INVALID_REGNUM }; // (s18, s19) +    static uint32_t g_d10_regs[] = { 46, 47, LLDB_INVALID_REGNUM }; // (s20, s21) +    static uint32_t g_d11_regs[] = { 48, 49, LLDB_INVALID_REGNUM }; // (s22, s23) +    static uint32_t g_d12_regs[] = { 50, 51, LLDB_INVALID_REGNUM }; // (s24, s25) +    static uint32_t g_d13_regs[] = { 52, 53, LLDB_INVALID_REGNUM }; // (s26, s27) +    static uint32_t g_d14_regs[] = { 54, 55, LLDB_INVALID_REGNUM }; // (s28, s29) +    static uint32_t g_d15_regs[] = { 56, 57, LLDB_INVALID_REGNUM }; // (s30, s31) +    static uint32_t g_q0_regs[] =  { 26, 27, 28, 29, LLDB_INVALID_REGNUM }; // (d0, d1) -> (s0, s1, s2, s3) +    static uint32_t g_q1_regs[] =  { 30, 31, 32, 33, LLDB_INVALID_REGNUM }; // (d2, d3) -> (s4, s5, s6, s7) +    static uint32_t g_q2_regs[] =  { 34, 35, 36, 37, LLDB_INVALID_REGNUM }; // (d4, d5) -> (s8, s9, s10, s11) +    static uint32_t g_q3_regs[] =  { 38, 39, 40, 41, LLDB_INVALID_REGNUM }; // (d6, d7) -> (s12, s13, s14, s15) +    static uint32_t g_q4_regs[] =  { 42, 43, 44, 45, LLDB_INVALID_REGNUM }; // (d8, d9) -> (s16, s17, s18, s19) +    static uint32_t g_q5_regs[] =  { 46, 47, 48, 49, LLDB_INVALID_REGNUM }; // (d10, d11) -> (s20, s21, s22, s23) +    static uint32_t g_q6_regs[] =  { 50, 51, 52, 53, LLDB_INVALID_REGNUM }; // (d12, d13) -> (s24, s25, s26, s27) +    static uint32_t g_q7_regs[] =  { 54, 55, 56, 57, LLDB_INVALID_REGNUM }; // (d14, d15) -> (s28, s29, s30, s31) +    static uint32_t g_q8_regs[] =  { 59, 60, LLDB_INVALID_REGNUM }; // (d16, d17) +    static uint32_t g_q9_regs[] =  { 61, 62, LLDB_INVALID_REGNUM }; // (d18, d19) +    static uint32_t g_q10_regs[] = { 63, 64, LLDB_INVALID_REGNUM }; // (d20, d21) +    static uint32_t g_q11_regs[] = { 65, 66, LLDB_INVALID_REGNUM }; // (d22, d23) +    static uint32_t g_q12_regs[] = { 67, 68, LLDB_INVALID_REGNUM }; // (d24, d25) +    static uint32_t g_q13_regs[] = { 69, 70, LLDB_INVALID_REGNUM }; // (d26, d27) +    static uint32_t g_q14_regs[] = { 71, 72, LLDB_INVALID_REGNUM }; // (d28, d29) +    static uint32_t g_q15_regs[] = { 73, 74, LLDB_INVALID_REGNUM }; // (d30, d31) + +    // This is our array of composite registers, with each element coming from the above register mappings. +    static uint32_t *g_composites[] = { +        g_d0_regs, g_d1_regs,  g_d2_regs,  g_d3_regs,  g_d4_regs,  g_d5_regs,  g_d6_regs,  g_d7_regs, +        g_d8_regs, g_d9_regs, g_d10_regs, g_d11_regs, g_d12_regs, g_d13_regs, g_d14_regs, g_d15_regs, +        g_q0_regs, g_q1_regs,  g_q2_regs,  g_q3_regs,  g_q4_regs,  g_q5_regs,  g_q6_regs,  g_q7_regs, +        g_q8_regs, g_q9_regs, g_q10_regs, g_q11_regs, g_q12_regs, g_q13_regs, g_q14_regs, g_q15_regs +    }; + +    static RegisterInfo g_register_infos[] = { +//   NAME    ALT    SZ  OFF  ENCODING          FORMAT          COMPILER             DWARF                GENERIC                 GDB    LLDB      VALUE REGS    INVALIDATE REGS +//   ======  ====== === ===  =============     ============    ===================  ===================  ======================  ===    ====      ==========    =============== +    { "r0", "arg1",   4,   0, eEncodingUint,    eFormatHex,   { gcc_r0,              dwarf_r0,            LLDB_REGNUM_GENERIC_ARG1,0,      0 },        NULL,              NULL}, +    { "r1", "arg2",   4,   0, eEncodingUint,    eFormatHex,   { gcc_r1,              dwarf_r1,            LLDB_REGNUM_GENERIC_ARG2,1,      1 },        NULL,              NULL}, +    { "r2", "arg3",   4,   0, eEncodingUint,    eFormatHex,   { gcc_r2,              dwarf_r2,            LLDB_REGNUM_GENERIC_ARG3,2,      2 },        NULL,              NULL}, +    { "r3", "arg4",   4,   0, eEncodingUint,    eFormatHex,   { gcc_r3,              dwarf_r3,            LLDB_REGNUM_GENERIC_ARG4,3,      3 },        NULL,              NULL}, +    { "r4",   NULL,   4,   0, eEncodingUint,    eFormatHex,   { gcc_r4,              dwarf_r4,            LLDB_INVALID_REGNUM,     4,      4 },        NULL,              NULL}, +    { "r5",   NULL,   4,   0, eEncodingUint,    eFormatHex,   { gcc_r5,              dwarf_r5,            LLDB_INVALID_REGNUM,     5,      5 },        NULL,              NULL}, +    { "r6",   NULL,   4,   0, eEncodingUint,    eFormatHex,   { gcc_r6,              dwarf_r6,            LLDB_INVALID_REGNUM,     6,      6 },        NULL,              NULL}, +    { "r7",   "fp",   4,   0, eEncodingUint,    eFormatHex,   { gcc_r7,              dwarf_r7,            LLDB_REGNUM_GENERIC_FP,  7,      7 },        NULL,              NULL}, +    { "r8",   NULL,   4,   0, eEncodingUint,    eFormatHex,   { gcc_r8,              dwarf_r8,            LLDB_INVALID_REGNUM,     8,      8 },        NULL,              NULL}, +    { "r9",   NULL,   4,   0, eEncodingUint,    eFormatHex,   { gcc_r9,              dwarf_r9,            LLDB_INVALID_REGNUM,     9,      9 },        NULL,              NULL}, +    { "r10",  NULL,   4,   0, eEncodingUint,    eFormatHex,   { gcc_r10,             dwarf_r10,           LLDB_INVALID_REGNUM,    10,     10 },        NULL,              NULL}, +    { "r11",  NULL,   4,   0, eEncodingUint,    eFormatHex,   { gcc_r11,             dwarf_r11,           LLDB_INVALID_REGNUM,    11,     11 },        NULL,              NULL}, +    { "r12",  NULL,   4,   0, eEncodingUint,    eFormatHex,   { gcc_r12,             dwarf_r12,           LLDB_INVALID_REGNUM,    12,     12 },        NULL,              NULL}, +    { "sp",   "r13",  4,   0, eEncodingUint,    eFormatHex,   { gcc_sp,              dwarf_sp,            LLDB_REGNUM_GENERIC_SP, 13,     13 },        NULL,              NULL}, +    { "lr",   "r14",  4,   0, eEncodingUint,    eFormatHex,   { gcc_lr,              dwarf_lr,            LLDB_REGNUM_GENERIC_RA, 14,     14 },        NULL,              NULL}, +    { "pc",   "r15",  4,   0, eEncodingUint,    eFormatHex,   { gcc_pc,              dwarf_pc,            LLDB_REGNUM_GENERIC_PC, 15,     15 },        NULL,              NULL}, +    { "f0",   NULL,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    16,     16 },        NULL,              NULL}, +    { "f1",   NULL,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    17,     17 },        NULL,              NULL}, +    { "f2",   NULL,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    18,     18 },        NULL,              NULL}, +    { "f3",   NULL,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    19,     19 },        NULL,              NULL}, +    { "f4",   NULL,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    20,     20 },        NULL,              NULL}, +    { "f5",   NULL,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    21,     21 },        NULL,              NULL}, +    { "f6",   NULL,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    22,     22 },        NULL,              NULL}, +    { "f7",   NULL,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    23,     23 },        NULL,              NULL}, +    { "fps",  NULL,   4,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    24,     24 },        NULL,              NULL}, +    { "cpsr","flags", 4,   0, eEncodingUint,    eFormatHex,   { gcc_cpsr,            dwarf_cpsr,          LLDB_INVALID_REGNUM,    25,     25 },        NULL,              NULL}, +    { "s0",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s0,            LLDB_INVALID_REGNUM,    26,     26 },        NULL,              NULL}, +    { "s1",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s1,            LLDB_INVALID_REGNUM,    27,     27 },        NULL,              NULL}, +    { "s2",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s2,            LLDB_INVALID_REGNUM,    28,     28 },        NULL,              NULL}, +    { "s3",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s3,            LLDB_INVALID_REGNUM,    29,     29 },        NULL,              NULL}, +    { "s4",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s4,            LLDB_INVALID_REGNUM,    30,     30 },        NULL,              NULL}, +    { "s5",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s5,            LLDB_INVALID_REGNUM,    31,     31 },        NULL,              NULL}, +    { "s6",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s6,            LLDB_INVALID_REGNUM,    32,     32 },        NULL,              NULL}, +    { "s7",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s7,            LLDB_INVALID_REGNUM,    33,     33 },        NULL,              NULL}, +    { "s8",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s8,            LLDB_INVALID_REGNUM,    34,     34 },        NULL,              NULL}, +    { "s9",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s9,            LLDB_INVALID_REGNUM,    35,     35 },        NULL,              NULL}, +    { "s10",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s10,           LLDB_INVALID_REGNUM,    36,     36 },        NULL,              NULL}, +    { "s11",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s11,           LLDB_INVALID_REGNUM,    37,     37 },        NULL,              NULL}, +    { "s12",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s12,           LLDB_INVALID_REGNUM,    38,     38 },        NULL,              NULL}, +    { "s13",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s13,           LLDB_INVALID_REGNUM,    39,     39 },        NULL,              NULL}, +    { "s14",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s14,           LLDB_INVALID_REGNUM,    40,     40 },        NULL,              NULL}, +    { "s15",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s15,           LLDB_INVALID_REGNUM,    41,     41 },        NULL,              NULL}, +    { "s16",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s16,           LLDB_INVALID_REGNUM,    42,     42 },        NULL,              NULL}, +    { "s17",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s17,           LLDB_INVALID_REGNUM,    43,     43 },        NULL,              NULL}, +    { "s18",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s18,           LLDB_INVALID_REGNUM,    44,     44 },        NULL,              NULL}, +    { "s19",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s19,           LLDB_INVALID_REGNUM,    45,     45 },        NULL,              NULL}, +    { "s20",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s20,           LLDB_INVALID_REGNUM,    46,     46 },        NULL,              NULL}, +    { "s21",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s21,           LLDB_INVALID_REGNUM,    47,     47 },        NULL,              NULL}, +    { "s22",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s22,           LLDB_INVALID_REGNUM,    48,     48 },        NULL,              NULL}, +    { "s23",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s23,           LLDB_INVALID_REGNUM,    49,     49 },        NULL,              NULL}, +    { "s24",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s24,           LLDB_INVALID_REGNUM,    50,     50 },        NULL,              NULL}, +    { "s25",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s25,           LLDB_INVALID_REGNUM,    51,     51 },        NULL,              NULL}, +    { "s26",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s26,           LLDB_INVALID_REGNUM,    52,     52 },        NULL,              NULL}, +    { "s27",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s27,           LLDB_INVALID_REGNUM,    53,     53 },        NULL,              NULL}, +    { "s28",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s28,           LLDB_INVALID_REGNUM,    54,     54 },        NULL,              NULL}, +    { "s29",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s29,           LLDB_INVALID_REGNUM,    55,     55 },        NULL,              NULL}, +    { "s30",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s30,           LLDB_INVALID_REGNUM,    56,     56 },        NULL,              NULL}, +    { "s31",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s31,           LLDB_INVALID_REGNUM,    57,     57 },        NULL,              NULL}, +    { "fpscr",NULL,   4,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    58,     58 },        NULL,              NULL}, +    { "d16",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d16,           LLDB_INVALID_REGNUM,    59,     59 },        NULL,              NULL}, +    { "d17",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d17,           LLDB_INVALID_REGNUM,    60,     60 },        NULL,              NULL}, +    { "d18",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d18,           LLDB_INVALID_REGNUM,    61,     61 },        NULL,              NULL}, +    { "d19",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d19,           LLDB_INVALID_REGNUM,    62,     62 },        NULL,              NULL}, +    { "d20",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d20,           LLDB_INVALID_REGNUM,    63,     63 },        NULL,              NULL}, +    { "d21",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d21,           LLDB_INVALID_REGNUM,    64,     64 },        NULL,              NULL}, +    { "d22",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d22,           LLDB_INVALID_REGNUM,    65,     65 },        NULL,              NULL}, +    { "d23",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d23,           LLDB_INVALID_REGNUM,    66,     66 },        NULL,              NULL}, +    { "d24",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d24,           LLDB_INVALID_REGNUM,    67,     67 },        NULL,              NULL}, +    { "d25",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d25,           LLDB_INVALID_REGNUM,    68,     68 },        NULL,              NULL}, +    { "d26",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d26,           LLDB_INVALID_REGNUM,    69,     69 },        NULL,              NULL}, +    { "d27",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d27,           LLDB_INVALID_REGNUM,    70,     70 },        NULL,              NULL}, +    { "d28",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d28,           LLDB_INVALID_REGNUM,    71,     71 },        NULL,              NULL}, +    { "d29",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d29,           LLDB_INVALID_REGNUM,    72,     72 },        NULL,              NULL}, +    { "d30",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d30,           LLDB_INVALID_REGNUM,    73,     73 },        NULL,              NULL}, +    { "d31",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d31,           LLDB_INVALID_REGNUM,    74,     74 },        NULL,              NULL}, +    { "d0",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d0,            LLDB_INVALID_REGNUM,    75,     75 },   g_d0_regs,              NULL}, +    { "d1",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d1,            LLDB_INVALID_REGNUM,    76,     76 },   g_d1_regs,              NULL}, +    { "d2",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d2,            LLDB_INVALID_REGNUM,    77,     77 },   g_d2_regs,              NULL}, +    { "d3",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d3,            LLDB_INVALID_REGNUM,    78,     78 },   g_d3_regs,              NULL}, +    { "d4",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d4,            LLDB_INVALID_REGNUM,    79,     79 },   g_d4_regs,              NULL}, +    { "d5",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d5,            LLDB_INVALID_REGNUM,    80,     80 },   g_d5_regs,              NULL}, +    { "d6",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d6,            LLDB_INVALID_REGNUM,    81,     81 },   g_d6_regs,              NULL}, +    { "d7",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d7,            LLDB_INVALID_REGNUM,    82,     82 },   g_d7_regs,              NULL}, +    { "d8",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d8,            LLDB_INVALID_REGNUM,    83,     83 },   g_d8_regs,              NULL}, +    { "d9",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d9,            LLDB_INVALID_REGNUM,    84,     84 },   g_d9_regs,              NULL}, +    { "d10",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d10,           LLDB_INVALID_REGNUM,    85,     85 },  g_d10_regs,              NULL}, +    { "d11",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d11,           LLDB_INVALID_REGNUM,    86,     86 },  g_d11_regs,              NULL}, +    { "d12",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d12,           LLDB_INVALID_REGNUM,    87,     87 },  g_d12_regs,              NULL}, +    { "d13",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d13,           LLDB_INVALID_REGNUM,    88,     88 },  g_d13_regs,              NULL}, +    { "d14",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d14,           LLDB_INVALID_REGNUM,    89,     89 },  g_d14_regs,              NULL}, +    { "d15",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d15,           LLDB_INVALID_REGNUM,    90,     90 },  g_d15_regs,              NULL}, +    { "q0",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q0,    LLDB_INVALID_REGNUM,    91,     91 },   g_q0_regs,              NULL}, +    { "q1",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q1,    LLDB_INVALID_REGNUM,    92,     92 },   g_q1_regs,              NULL}, +    { "q2",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q2,    LLDB_INVALID_REGNUM,    93,     93 },   g_q2_regs,              NULL}, +    { "q3",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q3,    LLDB_INVALID_REGNUM,    94,     94 },   g_q3_regs,              NULL}, +    { "q4",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q4,    LLDB_INVALID_REGNUM,    95,     95 },   g_q4_regs,              NULL}, +    { "q5",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q5,    LLDB_INVALID_REGNUM,    96,     96 },   g_q5_regs,              NULL}, +    { "q6",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q6,    LLDB_INVALID_REGNUM,    97,     97 },   g_q6_regs,              NULL}, +    { "q7",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q7,    LLDB_INVALID_REGNUM,    98,     98 },   g_q7_regs,              NULL}, +    { "q8",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q8,    LLDB_INVALID_REGNUM,    99,     99 },   g_q8_regs,              NULL}, +    { "q9",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q9,    LLDB_INVALID_REGNUM,   100,    100 },   g_q9_regs,              NULL}, +    { "q10",  NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q10,   LLDB_INVALID_REGNUM,   101,    101 },  g_q10_regs,              NULL}, +    { "q11",  NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q11,   LLDB_INVALID_REGNUM,   102,    102 },  g_q11_regs,              NULL}, +    { "q12",  NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q12,   LLDB_INVALID_REGNUM,   103,    103 },  g_q12_regs,              NULL}, +    { "q13",  NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q13,   LLDB_INVALID_REGNUM,   104,    104 },  g_q13_regs,              NULL}, +    { "q14",  NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q14,   LLDB_INVALID_REGNUM,   105,    105 },  g_q14_regs,              NULL}, +    { "q15",  NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q15,   LLDB_INVALID_REGNUM,   106,    106 },  g_q15_regs,              NULL} +    }; + +    static const uint32_t num_registers = llvm::array_lengthof(g_register_infos); +    static ConstString gpr_reg_set ("General Purpose Registers"); +    static ConstString sfp_reg_set ("Software Floating Point Registers"); +    static ConstString vfp_reg_set ("Floating Point Registers"); +    size_t i; +    if (from_scratch) +    { +        // Calculate the offsets of the registers +        // Note that the layout of the "composite" registers (d0-d15 and q0-q15) which comes after the +        // "primordial" registers is important.  This enables us to calculate the offset of the composite +        // register by using the offset of its first primordial register.  For example, to calculate the +        // offset of q0, use s0's offset. +        if (g_register_infos[2].byte_offset == 0) +        { +            uint32_t byte_offset = 0; +            for (i=0; i<num_registers; ++i) +            { +                // For primordial registers, increment the byte_offset by the byte_size to arrive at the +                // byte_offset for the next register.  Otherwise, we have a composite register whose +                // offset can be calculated by consulting the offset of its first primordial register. +                if (!g_register_infos[i].value_regs) +                { +                    g_register_infos[i].byte_offset = byte_offset; +                    byte_offset += g_register_infos[i].byte_size; +                } +                else +                { +                    const uint32_t first_primordial_reg = g_register_infos[i].value_regs[0]; +                    g_register_infos[i].byte_offset = g_register_infos[first_primordial_reg].byte_offset; +                } +            } +        } +        for (i=0; i<num_registers; ++i) +        { +            ConstString name; +            ConstString alt_name; +            if (g_register_infos[i].name && g_register_infos[i].name[0]) +                name.SetCString(g_register_infos[i].name); +            if (g_register_infos[i].alt_name && g_register_infos[i].alt_name[0]) +                alt_name.SetCString(g_register_infos[i].alt_name); + +            if (i <= 15 || i == 25) +                AddRegister (g_register_infos[i], name, alt_name, gpr_reg_set); +            else if (i <= 24) +                AddRegister (g_register_infos[i], name, alt_name, sfp_reg_set); +            else +                AddRegister (g_register_infos[i], name, alt_name, vfp_reg_set); +        } +    } +    else +    { +        // Add composite registers to our primordial registers, then. +        const size_t num_composites = llvm::array_lengthof(g_composites); +        const size_t num_dynamic_regs = GetNumRegisters(); +        const size_t num_common_regs = num_registers - num_composites; +        RegisterInfo *g_comp_register_infos = g_register_infos + num_common_regs; + +        // First we need to validate that all registers that we already have match the non composite regs. +        // If so, then we can add the registers, else we need to bail +        bool match = true; +        if (num_dynamic_regs == num_common_regs) +        { +            for (i=0; match && i<num_dynamic_regs; ++i) +            { +                // Make sure all register names match +                if (m_regs[i].name && g_register_infos[i].name) +                { +                    if (strcmp(m_regs[i].name, g_register_infos[i].name)) +                    { +                        match = false; +                        break; +                    } +                } +                 +                // Make sure all register byte sizes match +                if (m_regs[i].byte_size != g_register_infos[i].byte_size) +                { +                    match = false; +                    break; +                } +            } +        } +        else +        { +            // Wrong number of registers. +            match = false; +        } +        // If "match" is true, then we can add extra registers. +        if (match) +        { +            for (i=0; i<num_composites; ++i) +            { +                ConstString name; +                ConstString alt_name; +                const uint32_t first_primordial_reg = g_comp_register_infos[i].value_regs[0]; +                const char *reg_name = g_register_infos[first_primordial_reg].name; +                if (reg_name && reg_name[0]) +                { +                    for (uint32_t j = 0; j < num_dynamic_regs; ++j) +                    { +                        const RegisterInfo *reg_info = GetRegisterInfoAtIndex(j); +                        // Find a matching primordial register info entry. +                        if (reg_info && reg_info->name && ::strcasecmp(reg_info->name, reg_name) == 0) +                        { +                            // The name matches the existing primordial entry. +                            // Find and assign the offset, and then add this composite register entry. +                            g_comp_register_infos[i].byte_offset = reg_info->byte_offset; +                            name.SetCString(g_comp_register_infos[i].name); +                            AddRegister(g_comp_register_infos[i], name, alt_name, vfp_reg_set); +                        } +                    } +                } +            } +        } +    } +}  | 
