diff options
Diffstat (limited to 'ELF/Arch/ARM.cpp')
-rw-r--r-- | ELF/Arch/ARM.cpp | 462 |
1 files changed, 228 insertions, 234 deletions
diff --git a/ELF/Arch/ARM.cpp b/ELF/Arch/ARM.cpp index 120caca671afe..64adc33c07ae2 100644 --- a/ELF/Arch/ARM.cpp +++ b/ELF/Arch/ARM.cpp @@ -1,9 +1,8 @@ //===- ARM.cpp ------------------------------------------------------------===// // -// The LLVM Linker -// -// This file is distributed under the University of Illinois Open Source -// License. See LICENSE.TXT for details. +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// @@ -27,63 +26,62 @@ class ARM final : public TargetInfo { public: ARM(); uint32_t calcEFlags() const override; - RelExpr getRelExpr(RelType Type, const Symbol &S, - const uint8_t *Loc) const override; - RelType getDynRel(RelType Type) const override; - int64_t getImplicitAddend(const uint8_t *Buf, RelType Type) const override; - void writeGotPlt(uint8_t *Buf, const Symbol &S) const override; - void writeIgotPlt(uint8_t *Buf, const Symbol &S) const override; - void writePltHeader(uint8_t *Buf) const override; - void writePlt(uint8_t *Buf, uint64_t GotPltEntryAddr, uint64_t PltEntryAddr, - int32_t Index, unsigned RelOff) const override; - void addPltSymbols(InputSection &IS, uint64_t Off) const override; - void addPltHeaderSymbols(InputSection &ISD) const override; - bool needsThunk(RelExpr Expr, RelType Type, const InputFile *File, - uint64_t BranchAddr, const Symbol &S) const override; + RelExpr getRelExpr(RelType type, const Symbol &s, + const uint8_t *loc) const override; + RelType getDynRel(RelType type) const override; + int64_t getImplicitAddend(const uint8_t *buf, RelType type) const override; + void writeGotPlt(uint8_t *buf, const Symbol &s) const override; + void writeIgotPlt(uint8_t *buf, const Symbol &s) const override; + void writePltHeader(uint8_t *buf) const override; + void writePlt(uint8_t *buf, uint64_t gotPltEntryAddr, uint64_t pltEntryAddr, + int32_t index, unsigned relOff) const override; + void addPltSymbols(InputSection &isec, uint64_t off) const override; + void addPltHeaderSymbols(InputSection &isd) const override; + bool needsThunk(RelExpr expr, RelType type, const InputFile *file, + uint64_t branchAddr, const Symbol &s) const override; uint32_t getThunkSectionSpacing() const override; - bool inBranchRange(RelType Type, uint64_t Src, uint64_t Dst) const override; - void relocateOne(uint8_t *Loc, RelType Type, uint64_t Val) const override; + bool inBranchRange(RelType type, uint64_t src, uint64_t dst) const override; + void relocateOne(uint8_t *loc, RelType type, uint64_t val) const override; }; } // namespace ARM::ARM() { - CopyRel = R_ARM_COPY; - RelativeRel = R_ARM_RELATIVE; - IRelativeRel = R_ARM_IRELATIVE; - GotRel = R_ARM_GLOB_DAT; - NoneRel = R_ARM_NONE; - PltRel = R_ARM_JUMP_SLOT; - TlsGotRel = R_ARM_TLS_TPOFF32; - TlsModuleIndexRel = R_ARM_TLS_DTPMOD32; - TlsOffsetRel = R_ARM_TLS_DTPOFF32; - GotBaseSymInGotPlt = false; - GotEntrySize = 4; - GotPltEntrySize = 4; - PltEntrySize = 16; - PltHeaderSize = 32; - TrapInstr = {0xd4, 0xd4, 0xd4, 0xd4}; - NeedsThunks = true; + copyRel = R_ARM_COPY; + relativeRel = R_ARM_RELATIVE; + iRelativeRel = R_ARM_IRELATIVE; + gotRel = R_ARM_GLOB_DAT; + noneRel = R_ARM_NONE; + pltRel = R_ARM_JUMP_SLOT; + symbolicRel = R_ARM_ABS32; + tlsGotRel = R_ARM_TLS_TPOFF32; + tlsModuleIndexRel = R_ARM_TLS_DTPMOD32; + tlsOffsetRel = R_ARM_TLS_DTPOFF32; + gotBaseSymInGotPlt = false; + pltEntrySize = 16; + pltHeaderSize = 32; + trapInstr = {0xd4, 0xd4, 0xd4, 0xd4}; + needsThunks = true; } uint32_t ARM::calcEFlags() const { // The ABIFloatType is used by loaders to detect the floating point calling // convention. - uint32_t ABIFloatType = 0; - if (Config->ARMVFPArgs == ARMVFPArgKind::Base || - Config->ARMVFPArgs == ARMVFPArgKind::Default) - ABIFloatType = EF_ARM_ABI_FLOAT_SOFT; - else if (Config->ARMVFPArgs == ARMVFPArgKind::VFP) - ABIFloatType = EF_ARM_ABI_FLOAT_HARD; + uint32_t abiFloatType = 0; + if (config->armVFPArgs == ARMVFPArgKind::Base || + config->armVFPArgs == ARMVFPArgKind::Default) + abiFloatType = EF_ARM_ABI_FLOAT_SOFT; + else if (config->armVFPArgs == ARMVFPArgKind::VFP) + abiFloatType = EF_ARM_ABI_FLOAT_HARD; // We don't currently use any features incompatible with EF_ARM_EABI_VER5, // but we don't have any firm guarantees of conformance. Linux AArch64 // kernels (as of 2016) require an EABI version to be set. - return EF_ARM_EABI_VER5 | ABIFloatType; + return EF_ARM_EABI_VER5 | abiFloatType; } -RelExpr ARM::getRelExpr(RelType Type, const Symbol &S, - const uint8_t *Loc) const { - switch (Type) { +RelExpr ARM::getRelExpr(RelType type, const Symbol &s, + const uint8_t *loc) const { + switch (type) { case R_ARM_THM_JUMP11: return R_PC; case R_ARM_CALL: @@ -108,11 +106,11 @@ RelExpr ARM::getRelExpr(RelType Type, const Symbol &S, case R_ARM_SBREL32: return R_ARM_SBREL; case R_ARM_TARGET1: - return Config->Target1Rel ? R_PC : R_ABS; + return config->target1Rel ? R_PC : R_ABS; case R_ARM_TARGET2: - if (Config->Target2 == Target2Policy::Rel) + if (config->target2 == Target2Policy::Rel) return R_PC; - if (Config->Target2 == Target2Policy::Abs) + if (config->target2 == Target2Policy::Abs) return R_ABS; return R_GOT_PC; case R_ARM_TLS_GD32: @@ -145,25 +143,25 @@ RelExpr ARM::getRelExpr(RelType Type, const Symbol &S, } } -RelType ARM::getDynRel(RelType Type) const { - if ((Type == R_ARM_ABS32) || (Type == R_ARM_TARGET1 && !Config->Target1Rel)) +RelType ARM::getDynRel(RelType type) const { + if ((type == R_ARM_ABS32) || (type == R_ARM_TARGET1 && !config->target1Rel)) return R_ARM_ABS32; return R_ARM_NONE; } -void ARM::writeGotPlt(uint8_t *Buf, const Symbol &) const { - write32le(Buf, In.Plt->getVA()); +void ARM::writeGotPlt(uint8_t *buf, const Symbol &) const { + write32le(buf, in.plt->getVA()); } -void ARM::writeIgotPlt(uint8_t *Buf, const Symbol &S) const { +void ARM::writeIgotPlt(uint8_t *buf, const Symbol &s) const { // An ARM entry is the address of the ifunc resolver function. - write32le(Buf, S.getVA()); + write32le(buf, s.getVA()); } // Long form PLT Header that does not have any restrictions on the displacement // of the .plt from the .plt.got. -static void writePltHeaderLong(uint8_t *Buf) { - const uint8_t PltData[] = { +static void writePltHeaderLong(uint8_t *buf) { + const uint8_t pltData[] = { 0x04, 0xe0, 0x2d, 0xe5, // str lr, [sp,#-4]! 0x04, 0xe0, 0x9f, 0xe5, // ldr lr, L2 0x0e, 0xe0, 0x8f, 0xe0, // L1: add lr, pc, lr @@ -172,128 +170,128 @@ static void writePltHeaderLong(uint8_t *Buf) { 0xd4, 0xd4, 0xd4, 0xd4, // Pad to 32-byte boundary 0xd4, 0xd4, 0xd4, 0xd4, // Pad to 32-byte boundary 0xd4, 0xd4, 0xd4, 0xd4}; - memcpy(Buf, PltData, sizeof(PltData)); - uint64_t GotPlt = In.GotPlt->getVA(); - uint64_t L1 = In.Plt->getVA() + 8; - write32le(Buf + 16, GotPlt - L1 - 8); + memcpy(buf, pltData, sizeof(pltData)); + uint64_t gotPlt = in.gotPlt->getVA(); + uint64_t l1 = in.plt->getVA() + 8; + write32le(buf + 16, gotPlt - l1 - 8); } // The default PLT header requires the .plt.got to be within 128 Mb of the // .plt in the positive direction. -void ARM::writePltHeader(uint8_t *Buf) const { +void ARM::writePltHeader(uint8_t *buf) const { // Use a similar sequence to that in writePlt(), the difference is the calling // conventions mean we use lr instead of ip. The PLT entry is responsible for // saving lr on the stack, the dynamic loader is responsible for reloading // it. - const uint32_t PltData[] = { + const uint32_t pltData[] = { 0xe52de004, // L1: str lr, [sp,#-4]! 0xe28fe600, // add lr, pc, #0x0NN00000 &(.got.plt - L1 - 4) 0xe28eea00, // add lr, lr, #0x000NN000 &(.got.plt - L1 - 4) 0xe5bef000, // ldr pc, [lr, #0x00000NNN] &(.got.plt -L1 - 4) }; - uint64_t Offset = In.GotPlt->getVA() - In.Plt->getVA() - 4; - if (!llvm::isUInt<27>(Offset)) { + uint64_t offset = in.gotPlt->getVA() - in.plt->getVA() - 4; + if (!llvm::isUInt<27>(offset)) { // We cannot encode the Offset, use the long form. - writePltHeaderLong(Buf); + writePltHeaderLong(buf); return; } - write32le(Buf + 0, PltData[0]); - write32le(Buf + 4, PltData[1] | ((Offset >> 20) & 0xff)); - write32le(Buf + 8, PltData[2] | ((Offset >> 12) & 0xff)); - write32le(Buf + 12, PltData[3] | (Offset & 0xfff)); - memcpy(Buf + 16, TrapInstr.data(), 4); // Pad to 32-byte boundary - memcpy(Buf + 20, TrapInstr.data(), 4); - memcpy(Buf + 24, TrapInstr.data(), 4); - memcpy(Buf + 28, TrapInstr.data(), 4); + write32le(buf + 0, pltData[0]); + write32le(buf + 4, pltData[1] | ((offset >> 20) & 0xff)); + write32le(buf + 8, pltData[2] | ((offset >> 12) & 0xff)); + write32le(buf + 12, pltData[3] | (offset & 0xfff)); + memcpy(buf + 16, trapInstr.data(), 4); // Pad to 32-byte boundary + memcpy(buf + 20, trapInstr.data(), 4); + memcpy(buf + 24, trapInstr.data(), 4); + memcpy(buf + 28, trapInstr.data(), 4); } -void ARM::addPltHeaderSymbols(InputSection &IS) const { - addSyntheticLocal("$a", STT_NOTYPE, 0, 0, IS); - addSyntheticLocal("$d", STT_NOTYPE, 16, 0, IS); +void ARM::addPltHeaderSymbols(InputSection &isec) const { + addSyntheticLocal("$a", STT_NOTYPE, 0, 0, isec); + addSyntheticLocal("$d", STT_NOTYPE, 16, 0, isec); } // Long form PLT entries that do not have any restrictions on the displacement // of the .plt from the .plt.got. -static void writePltLong(uint8_t *Buf, uint64_t GotPltEntryAddr, - uint64_t PltEntryAddr, int32_t Index, - unsigned RelOff) { - const uint8_t PltData[] = { +static void writePltLong(uint8_t *buf, uint64_t gotPltEntryAddr, + uint64_t pltEntryAddr, int32_t index, + unsigned relOff) { + const uint8_t pltData[] = { 0x04, 0xc0, 0x9f, 0xe5, // ldr ip, L2 0x0f, 0xc0, 0x8c, 0xe0, // L1: add ip, ip, pc 0x00, 0xf0, 0x9c, 0xe5, // ldr pc, [ip] 0x00, 0x00, 0x00, 0x00, // L2: .word Offset(&(.plt.got) - L1 - 8 }; - memcpy(Buf, PltData, sizeof(PltData)); - uint64_t L1 = PltEntryAddr + 4; - write32le(Buf + 12, GotPltEntryAddr - L1 - 8); + memcpy(buf, pltData, sizeof(pltData)); + uint64_t l1 = pltEntryAddr + 4; + write32le(buf + 12, gotPltEntryAddr - l1 - 8); } // The default PLT entries require the .plt.got to be within 128 Mb of the // .plt in the positive direction. -void ARM::writePlt(uint8_t *Buf, uint64_t GotPltEntryAddr, - uint64_t PltEntryAddr, int32_t Index, - unsigned RelOff) const { +void ARM::writePlt(uint8_t *buf, uint64_t gotPltEntryAddr, + uint64_t pltEntryAddr, int32_t index, + unsigned relOff) const { // The PLT entry is similar to the example given in Appendix A of ELF for // the Arm Architecture. Instead of using the Group Relocations to find the // optimal rotation for the 8-bit immediate used in the add instructions we // hard code the most compact rotations for simplicity. This saves a load // instruction over the long plt sequences. - const uint32_t PltData[] = { + const uint32_t pltData[] = { 0xe28fc600, // L1: add ip, pc, #0x0NN00000 Offset(&(.plt.got) - L1 - 8 0xe28cca00, // add ip, ip, #0x000NN000 Offset(&(.plt.got) - L1 - 8 0xe5bcf000, // ldr pc, [ip, #0x00000NNN] Offset(&(.plt.got) - L1 - 8 }; - uint64_t Offset = GotPltEntryAddr - PltEntryAddr - 8; - if (!llvm::isUInt<27>(Offset)) { + uint64_t offset = gotPltEntryAddr - pltEntryAddr - 8; + if (!llvm::isUInt<27>(offset)) { // We cannot encode the Offset, use the long form. - writePltLong(Buf, GotPltEntryAddr, PltEntryAddr, Index, RelOff); + writePltLong(buf, gotPltEntryAddr, pltEntryAddr, index, relOff); return; } - write32le(Buf + 0, PltData[0] | ((Offset >> 20) & 0xff)); - write32le(Buf + 4, PltData[1] | ((Offset >> 12) & 0xff)); - write32le(Buf + 8, PltData[2] | (Offset & 0xfff)); - memcpy(Buf + 12, TrapInstr.data(), 4); // Pad to 16-byte boundary + write32le(buf + 0, pltData[0] | ((offset >> 20) & 0xff)); + write32le(buf + 4, pltData[1] | ((offset >> 12) & 0xff)); + write32le(buf + 8, pltData[2] | (offset & 0xfff)); + memcpy(buf + 12, trapInstr.data(), 4); // Pad to 16-byte boundary } -void ARM::addPltSymbols(InputSection &IS, uint64_t Off) const { - addSyntheticLocal("$a", STT_NOTYPE, Off, 0, IS); - addSyntheticLocal("$d", STT_NOTYPE, Off + 12, 0, IS); +void ARM::addPltSymbols(InputSection &isec, uint64_t off) const { + addSyntheticLocal("$a", STT_NOTYPE, off, 0, isec); + addSyntheticLocal("$d", STT_NOTYPE, off + 12, 0, isec); } -bool ARM::needsThunk(RelExpr Expr, RelType Type, const InputFile *File, - uint64_t BranchAddr, const Symbol &S) const { +bool ARM::needsThunk(RelExpr expr, RelType type, const InputFile *file, + uint64_t branchAddr, const Symbol &s) const { // If S is an undefined weak symbol and does not have a PLT entry then it // will be resolved as a branch to the next instruction. - if (S.isUndefWeak() && !S.isInPlt()) + if (s.isUndefWeak() && !s.isInPlt()) return false; // A state change from ARM to Thumb and vice versa must go through an // interworking thunk if the relocation type is not R_ARM_CALL or // R_ARM_THM_CALL. - switch (Type) { + switch (type) { case R_ARM_PC24: case R_ARM_PLT32: case R_ARM_JUMP24: // Source is ARM, all PLT entries are ARM so no interworking required. // Otherwise we need to interwork if Symbol has bit 0 set (Thumb). - if (Expr == R_PC && ((S.getVA() & 1) == 1)) + if (expr == R_PC && ((s.getVA() & 1) == 1)) return true; LLVM_FALLTHROUGH; case R_ARM_CALL: { - uint64_t Dst = (Expr == R_PLT_PC) ? S.getPltVA() : S.getVA(); - return !inBranchRange(Type, BranchAddr, Dst); + uint64_t dst = (expr == R_PLT_PC) ? s.getPltVA() : s.getVA(); + return !inBranchRange(type, branchAddr, dst); } case R_ARM_THM_JUMP19: case R_ARM_THM_JUMP24: // Source is Thumb, all PLT entries are ARM so interworking is required. // Otherwise we need to interwork if Symbol has bit 0 clear (ARM). - if (Expr == R_PLT_PC || ((S.getVA() & 1) == 0)) + if (expr == R_PLT_PC || ((s.getVA() & 1) == 0)) return true; LLVM_FALLTHROUGH; case R_ARM_THM_CALL: { - uint64_t Dst = (Expr == R_PLT_PC) ? S.getPltVA() : S.getVA(); - return !inBranchRange(Type, BranchAddr, Dst); + uint64_t dst = (expr == R_PLT_PC) ? s.getPltVA() : s.getVA(); + return !inBranchRange(type, branchAddr, dst); } } return false; @@ -301,13 +299,13 @@ bool ARM::needsThunk(RelExpr Expr, RelType Type, const InputFile *File, uint32_t ARM::getThunkSectionSpacing() const { // The placing of pre-created ThunkSections is controlled by the value - // ThunkSectionSpacing returned by getThunkSectionSpacing(). The aim is to + // thunkSectionSpacing returned by getThunkSectionSpacing(). The aim is to // place the ThunkSection such that all branches from the InputSections // prior to the ThunkSection can reach a Thunk placed at the end of the // ThunkSection. Graphically: - // | up to ThunkSectionSpacing .text input sections | + // | up to thunkSectionSpacing .text input sections | // | ThunkSection | - // | up to ThunkSectionSpacing .text input sections | + // | up to thunkSectionSpacing .text input sections | // | ThunkSection | // Pre-created ThunkSections are spaced roughly 16MiB apart on ARMv7. This @@ -318,69 +316,68 @@ uint32_t ARM::getThunkSectionSpacing() const { // Thumb B<cc>.W range +/- 1MiB // If a branch cannot reach a pre-created ThunkSection a new one will be // created so we can handle the rare cases of a Thumb 2 conditional branch. - // We intentionally use a lower size for ThunkSectionSpacing than the maximum + // We intentionally use a lower size for thunkSectionSpacing than the maximum // branch range so the end of the ThunkSection is more likely to be within // range of the branch instruction that is furthest away. The value we shorten - // ThunkSectionSpacing by is set conservatively to allow us to create 16,384 + // thunkSectionSpacing by is set conservatively to allow us to create 16,384 // 12 byte Thunks at any offset in a ThunkSection without risk of a branch to // one of the Thunks going out of range. - // On Arm the ThunkSectionSpacing depends on the range of the Thumb Branch + // On Arm the thunkSectionSpacing depends on the range of the Thumb Branch // range. On earlier Architectures such as ARMv4, ARMv5 and ARMv6 (except // ARMv6T2) the range is +/- 4MiB. - return (Config->ARMJ1J2BranchEncoding) ? 0x1000000 - 0x30000 + return (config->armJ1J2BranchEncoding) ? 0x1000000 - 0x30000 : 0x400000 - 0x7500; } -bool ARM::inBranchRange(RelType Type, uint64_t Src, uint64_t Dst) const { - uint64_t Range; - uint64_t InstrSize; +bool ARM::inBranchRange(RelType type, uint64_t src, uint64_t dst) const { + uint64_t range; + uint64_t instrSize; - switch (Type) { + switch (type) { case R_ARM_PC24: case R_ARM_PLT32: case R_ARM_JUMP24: case R_ARM_CALL: - Range = 0x2000000; - InstrSize = 4; + range = 0x2000000; + instrSize = 4; break; case R_ARM_THM_JUMP19: - Range = 0x100000; - InstrSize = 2; + range = 0x100000; + instrSize = 2; break; case R_ARM_THM_JUMP24: case R_ARM_THM_CALL: - Range = Config->ARMJ1J2BranchEncoding ? 0x1000000 : 0x400000; - InstrSize = 2; + range = config->armJ1J2BranchEncoding ? 0x1000000 : 0x400000; + instrSize = 2; break; default: return true; } // PC at Src is 2 instructions ahead, immediate of branch is signed - if (Src > Dst) - Range -= 2 * InstrSize; + if (src > dst) + range -= 2 * instrSize; else - Range += InstrSize; + range += instrSize; - if ((Dst & 0x1) == 0) + if ((dst & 0x1) == 0) // Destination is ARM, if ARM caller then Src is already 4-byte aligned. // If Thumb Caller (BLX) the Src address has bottom 2 bits cleared to ensure // destination will be 4 byte aligned. - Src &= ~0x3; + src &= ~0x3; else // Bit 0 == 1 denotes Thumb state, it is not part of the range - Dst &= ~0x1; + dst &= ~0x1; - uint64_t Distance = (Src > Dst) ? Src - Dst : Dst - Src; - return Distance <= Range; + uint64_t distance = (src > dst) ? src - dst : dst - src; + return distance <= range; } -void ARM::relocateOne(uint8_t *Loc, RelType Type, uint64_t Val) const { - switch (Type) { +void ARM::relocateOne(uint8_t *loc, RelType type, uint64_t val) const { + switch (type) { case R_ARM_ABS32: case R_ARM_BASE_PREL: - case R_ARM_GLOB_DAT: case R_ARM_GOTOFF32: case R_ARM_GOT_BREL: case R_ARM_GOT_PREL: @@ -396,135 +393,132 @@ void ARM::relocateOne(uint8_t *Loc, RelType Type, uint64_t Val) const { case R_ARM_TLS_LE32: case R_ARM_TLS_TPOFF32: case R_ARM_TLS_DTPOFF32: - write32le(Loc, Val); - break; - case R_ARM_TLS_DTPMOD32: - write32le(Loc, 1); + write32le(loc, val); break; case R_ARM_PREL31: - checkInt(Loc, Val, 31, Type); - write32le(Loc, (read32le(Loc) & 0x80000000) | (Val & ~0x80000000)); + checkInt(loc, val, 31, type); + write32le(loc, (read32le(loc) & 0x80000000) | (val & ~0x80000000)); break; case R_ARM_CALL: // R_ARM_CALL is used for BL and BLX instructions, depending on the // value of bit 0 of Val, we must select a BL or BLX instruction - if (Val & 1) { + if (val & 1) { // If bit 0 of Val is 1 the target is Thumb, we must select a BLX. // The BLX encoding is 0xfa:H:imm24 where Val = imm24:H:'1' - checkInt(Loc, Val, 26, Type); - write32le(Loc, 0xfa000000 | // opcode - ((Val & 2) << 23) | // H - ((Val >> 2) & 0x00ffffff)); // imm24 + checkInt(loc, val, 26, type); + write32le(loc, 0xfa000000 | // opcode + ((val & 2) << 23) | // H + ((val >> 2) & 0x00ffffff)); // imm24 break; } - if ((read32le(Loc) & 0xfe000000) == 0xfa000000) + if ((read32le(loc) & 0xfe000000) == 0xfa000000) // BLX (always unconditional) instruction to an ARM Target, select an // unconditional BL. - write32le(Loc, 0xeb000000 | (read32le(Loc) & 0x00ffffff)); + write32le(loc, 0xeb000000 | (read32le(loc) & 0x00ffffff)); // fall through as BL encoding is shared with B LLVM_FALLTHROUGH; case R_ARM_JUMP24: case R_ARM_PC24: case R_ARM_PLT32: - checkInt(Loc, Val, 26, Type); - write32le(Loc, (read32le(Loc) & ~0x00ffffff) | ((Val >> 2) & 0x00ffffff)); + checkInt(loc, val, 26, type); + write32le(loc, (read32le(loc) & ~0x00ffffff) | ((val >> 2) & 0x00ffffff)); break; case R_ARM_THM_JUMP11: - checkInt(Loc, Val, 12, Type); - write16le(Loc, (read32le(Loc) & 0xf800) | ((Val >> 1) & 0x07ff)); + checkInt(loc, val, 12, type); + write16le(loc, (read32le(loc) & 0xf800) | ((val >> 1) & 0x07ff)); break; case R_ARM_THM_JUMP19: // Encoding T3: Val = S:J2:J1:imm6:imm11:0 - checkInt(Loc, Val, 21, Type); - write16le(Loc, - (read16le(Loc) & 0xfbc0) | // opcode cond - ((Val >> 10) & 0x0400) | // S - ((Val >> 12) & 0x003f)); // imm6 - write16le(Loc + 2, + checkInt(loc, val, 21, type); + write16le(loc, + (read16le(loc) & 0xfbc0) | // opcode cond + ((val >> 10) & 0x0400) | // S + ((val >> 12) & 0x003f)); // imm6 + write16le(loc + 2, 0x8000 | // opcode - ((Val >> 8) & 0x0800) | // J2 - ((Val >> 5) & 0x2000) | // J1 - ((Val >> 1) & 0x07ff)); // imm11 + ((val >> 8) & 0x0800) | // J2 + ((val >> 5) & 0x2000) | // J1 + ((val >> 1) & 0x07ff)); // imm11 break; case R_ARM_THM_CALL: // R_ARM_THM_CALL is used for BL and BLX instructions, depending on the // value of bit 0 of Val, we must select a BL or BLX instruction - if ((Val & 1) == 0) { + if ((val & 1) == 0) { // Ensure BLX destination is 4-byte aligned. As BLX instruction may // only be two byte aligned. This must be done before overflow check - Val = alignTo(Val, 4); + val = alignTo(val, 4); } // Bit 12 is 0 for BLX, 1 for BL - write16le(Loc + 2, (read16le(Loc + 2) & ~0x1000) | (Val & 1) << 12); - if (!Config->ARMJ1J2BranchEncoding) { + write16le(loc + 2, (read16le(loc + 2) & ~0x1000) | (val & 1) << 12); + if (!config->armJ1J2BranchEncoding) { // Older Arm architectures do not support R_ARM_THM_JUMP24 and have // different encoding rules and range due to J1 and J2 always being 1. - checkInt(Loc, Val, 23, Type); - write16le(Loc, + checkInt(loc, val, 23, type); + write16le(loc, 0xf000 | // opcode - ((Val >> 12) & 0x07ff)); // imm11 - write16le(Loc + 2, - (read16le(Loc + 2) & 0xd000) | // opcode + ((val >> 12) & 0x07ff)); // imm11 + write16le(loc + 2, + (read16le(loc + 2) & 0xd000) | // opcode 0x2800 | // J1 == J2 == 1 - ((Val >> 1) & 0x07ff)); // imm11 + ((val >> 1) & 0x07ff)); // imm11 break; } // Fall through as rest of encoding is the same as B.W LLVM_FALLTHROUGH; case R_ARM_THM_JUMP24: // Encoding B T4, BL T1, BLX T2: Val = S:I1:I2:imm10:imm11:0 - checkInt(Loc, Val, 25, Type); - write16le(Loc, + checkInt(loc, val, 25, type); + write16le(loc, 0xf000 | // opcode - ((Val >> 14) & 0x0400) | // S - ((Val >> 12) & 0x03ff)); // imm10 - write16le(Loc + 2, - (read16le(Loc + 2) & 0xd000) | // opcode - (((~(Val >> 10)) ^ (Val >> 11)) & 0x2000) | // J1 - (((~(Val >> 11)) ^ (Val >> 13)) & 0x0800) | // J2 - ((Val >> 1) & 0x07ff)); // imm11 + ((val >> 14) & 0x0400) | // S + ((val >> 12) & 0x03ff)); // imm10 + write16le(loc + 2, + (read16le(loc + 2) & 0xd000) | // opcode + (((~(val >> 10)) ^ (val >> 11)) & 0x2000) | // J1 + (((~(val >> 11)) ^ (val >> 13)) & 0x0800) | // J2 + ((val >> 1) & 0x07ff)); // imm11 break; case R_ARM_MOVW_ABS_NC: case R_ARM_MOVW_PREL_NC: - write32le(Loc, (read32le(Loc) & ~0x000f0fff) | ((Val & 0xf000) << 4) | - (Val & 0x0fff)); + write32le(loc, (read32le(loc) & ~0x000f0fff) | ((val & 0xf000) << 4) | + (val & 0x0fff)); break; case R_ARM_MOVT_ABS: case R_ARM_MOVT_PREL: - write32le(Loc, (read32le(Loc) & ~0x000f0fff) | - (((Val >> 16) & 0xf000) << 4) | ((Val >> 16) & 0xfff)); + write32le(loc, (read32le(loc) & ~0x000f0fff) | + (((val >> 16) & 0xf000) << 4) | ((val >> 16) & 0xfff)); break; case R_ARM_THM_MOVT_ABS: case R_ARM_THM_MOVT_PREL: // Encoding T1: A = imm4:i:imm3:imm8 - write16le(Loc, + write16le(loc, 0xf2c0 | // opcode - ((Val >> 17) & 0x0400) | // i - ((Val >> 28) & 0x000f)); // imm4 - write16le(Loc + 2, - (read16le(Loc + 2) & 0x8f00) | // opcode - ((Val >> 12) & 0x7000) | // imm3 - ((Val >> 16) & 0x00ff)); // imm8 + ((val >> 17) & 0x0400) | // i + ((val >> 28) & 0x000f)); // imm4 + write16le(loc + 2, + (read16le(loc + 2) & 0x8f00) | // opcode + ((val >> 12) & 0x7000) | // imm3 + ((val >> 16) & 0x00ff)); // imm8 break; case R_ARM_THM_MOVW_ABS_NC: case R_ARM_THM_MOVW_PREL_NC: // Encoding T3: A = imm4:i:imm3:imm8 - write16le(Loc, + write16le(loc, 0xf240 | // opcode - ((Val >> 1) & 0x0400) | // i - ((Val >> 12) & 0x000f)); // imm4 - write16le(Loc + 2, - (read16le(Loc + 2) & 0x8f00) | // opcode - ((Val << 4) & 0x7000) | // imm3 - (Val & 0x00ff)); // imm8 + ((val >> 1) & 0x0400) | // i + ((val >> 12) & 0x000f)); // imm4 + write16le(loc + 2, + (read16le(loc + 2) & 0x8f00) | // opcode + ((val << 4) & 0x7000) | // imm3 + (val & 0x00ff)); // imm8 break; default: - error(getErrorLocation(Loc) + "unrecognized reloc " + Twine(Type)); + error(getErrorLocation(loc) + "unrecognized relocation " + toString(type)); } } -int64_t ARM::getImplicitAddend(const uint8_t *Buf, RelType Type) const { - switch (Type) { +int64_t ARM::getImplicitAddend(const uint8_t *buf, RelType type) const { + switch (type) { default: return 0; case R_ARM_ABS32: @@ -540,47 +534,47 @@ int64_t ARM::getImplicitAddend(const uint8_t *Buf, RelType Type) const { case R_ARM_TLS_LDO32: case R_ARM_TLS_IE32: case R_ARM_TLS_LE32: - return SignExtend64<32>(read32le(Buf)); + return SignExtend64<32>(read32le(buf)); case R_ARM_PREL31: - return SignExtend64<31>(read32le(Buf)); + return SignExtend64<31>(read32le(buf)); case R_ARM_CALL: case R_ARM_JUMP24: case R_ARM_PC24: case R_ARM_PLT32: - return SignExtend64<26>(read32le(Buf) << 2); + return SignExtend64<26>(read32le(buf) << 2); case R_ARM_THM_JUMP11: - return SignExtend64<12>(read16le(Buf) << 1); + return SignExtend64<12>(read16le(buf) << 1); case R_ARM_THM_JUMP19: { // Encoding T3: A = S:J2:J1:imm10:imm6:0 - uint16_t Hi = read16le(Buf); - uint16_t Lo = read16le(Buf + 2); - return SignExtend64<20>(((Hi & 0x0400) << 10) | // S - ((Lo & 0x0800) << 8) | // J2 - ((Lo & 0x2000) << 5) | // J1 - ((Hi & 0x003f) << 12) | // imm6 - ((Lo & 0x07ff) << 1)); // imm11:0 + uint16_t hi = read16le(buf); + uint16_t lo = read16le(buf + 2); + return SignExtend64<20>(((hi & 0x0400) << 10) | // S + ((lo & 0x0800) << 8) | // J2 + ((lo & 0x2000) << 5) | // J1 + ((hi & 0x003f) << 12) | // imm6 + ((lo & 0x07ff) << 1)); // imm11:0 } case R_ARM_THM_CALL: - if (!Config->ARMJ1J2BranchEncoding) { + if (!config->armJ1J2BranchEncoding) { // Older Arm architectures do not support R_ARM_THM_JUMP24 and have // different encoding rules and range due to J1 and J2 always being 1. - uint16_t Hi = read16le(Buf); - uint16_t Lo = read16le(Buf + 2); - return SignExtend64<22>(((Hi & 0x7ff) << 12) | // imm11 - ((Lo & 0x7ff) << 1)); // imm11:0 + uint16_t hi = read16le(buf); + uint16_t lo = read16le(buf + 2); + return SignExtend64<22>(((hi & 0x7ff) << 12) | // imm11 + ((lo & 0x7ff) << 1)); // imm11:0 break; } LLVM_FALLTHROUGH; case R_ARM_THM_JUMP24: { // Encoding B T4, BL T1, BLX T2: A = S:I1:I2:imm10:imm11:0 // I1 = NOT(J1 EOR S), I2 = NOT(J2 EOR S) - uint16_t Hi = read16le(Buf); - uint16_t Lo = read16le(Buf + 2); - return SignExtend64<24>(((Hi & 0x0400) << 14) | // S - (~((Lo ^ (Hi << 3)) << 10) & 0x00800000) | // I1 - (~((Lo ^ (Hi << 1)) << 11) & 0x00400000) | // I2 - ((Hi & 0x003ff) << 12) | // imm0 - ((Lo & 0x007ff) << 1)); // imm11:0 + uint16_t hi = read16le(buf); + uint16_t lo = read16le(buf + 2); + return SignExtend64<24>(((hi & 0x0400) << 14) | // S + (~((lo ^ (hi << 3)) << 10) & 0x00800000) | // I1 + (~((lo ^ (hi << 1)) << 11) & 0x00400000) | // I2 + ((hi & 0x003ff) << 12) | // imm0 + ((lo & 0x007ff) << 1)); // imm11:0 } // ELF for the ARM Architecture 4.6.1.1 the implicit addend for MOVW and // MOVT is in the range -32768 <= A < 32768 @@ -588,25 +582,25 @@ int64_t ARM::getImplicitAddend(const uint8_t *Buf, RelType Type) const { case R_ARM_MOVT_ABS: case R_ARM_MOVW_PREL_NC: case R_ARM_MOVT_PREL: { - uint64_t Val = read32le(Buf) & 0x000f0fff; - return SignExtend64<16>(((Val & 0x000f0000) >> 4) | (Val & 0x00fff)); + uint64_t val = read32le(buf) & 0x000f0fff; + return SignExtend64<16>(((val & 0x000f0000) >> 4) | (val & 0x00fff)); } case R_ARM_THM_MOVW_ABS_NC: case R_ARM_THM_MOVT_ABS: case R_ARM_THM_MOVW_PREL_NC: case R_ARM_THM_MOVT_PREL: { // Encoding T3: A = imm4:i:imm3:imm8 - uint16_t Hi = read16le(Buf); - uint16_t Lo = read16le(Buf + 2); - return SignExtend64<16>(((Hi & 0x000f) << 12) | // imm4 - ((Hi & 0x0400) << 1) | // i - ((Lo & 0x7000) >> 4) | // imm3 - (Lo & 0x00ff)); // imm8 + uint16_t hi = read16le(buf); + uint16_t lo = read16le(buf + 2); + return SignExtend64<16>(((hi & 0x000f) << 12) | // imm4 + ((hi & 0x0400) << 1) | // i + ((lo & 0x7000) >> 4) | // imm3 + (lo & 0x00ff)); // imm8 } } } TargetInfo *elf::getARMTargetInfo() { - static ARM Target; - return &Target; + static ARM target; + return ⌖ } |