summaryrefslogtreecommitdiff
path: root/ELF/SyntheticSections.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'ELF/SyntheticSections.cpp')
-rw-r--r--ELF/SyntheticSections.cpp3698
1 files changed, 2046 insertions, 1652 deletions
diff --git a/ELF/SyntheticSections.cpp b/ELF/SyntheticSections.cpp
index f459c1b6b4792..f6d0f190d84d0 100644
--- a/ELF/SyntheticSections.cpp
+++ b/ELF/SyntheticSections.cpp
@@ -1,9 +1,8 @@
//===- SyntheticSections.cpp ----------------------------------------------===//
//
-// The LLVM Linker
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
@@ -15,7 +14,6 @@
//===----------------------------------------------------------------------===//
#include "SyntheticSections.h"
-#include "Bits.h"
#include "Config.h"
#include "InputFiles.h"
#include "LinkerScript.h"
@@ -38,9 +36,6 @@
#include "llvm/Support/Endian.h"
#include "llvm/Support/LEB128.h"
#include "llvm/Support/MD5.h"
-#include "llvm/Support/RandomNumberGenerator.h"
-#include "llvm/Support/SHA1.h"
-#include "llvm/Support/xxhash.h"
#include <cstdlib>
#include <thread>
@@ -57,19 +52,30 @@ using llvm::support::endian::read32le;
using llvm::support::endian::write32le;
using llvm::support::endian::write64le;
-constexpr size_t MergeNoTailSection::NumShards;
+constexpr size_t MergeNoTailSection::numShards;
+
+static uint64_t readUint(uint8_t *buf) {
+ return config->is64 ? read64(buf) : read32(buf);
+}
+
+static void writeUint(uint8_t *buf, uint64_t val) {
+ if (config->is64)
+ write64(buf, val);
+ else
+ write32(buf, val);
+}
// Returns an LLD version string.
static ArrayRef<uint8_t> getVersion() {
// Check LLD_VERSION first for ease of testing.
// You can get consistent output by using the environment variable.
// This is only for testing.
- StringRef S = getenv("LLD_VERSION");
- if (S.empty())
- S = Saver.save(Twine("Linker: ") + getLLDVersion());
+ StringRef s = getenv("LLD_VERSION");
+ if (s.empty())
+ s = saver.save(Twine("Linker: ") + getLLDVersion());
// +1 to include the terminating '\0'.
- return {(const uint8_t *)S.data(), S.size() + 1};
+ return {(const uint8_t *)s.data(), s.size() + 1};
}
// Creates a .comment section containing LLD version info.
@@ -83,79 +89,79 @@ MergeInputSection *elf::createCommentSection() {
// .MIPS.abiflags section.
template <class ELFT>
-MipsAbiFlagsSection<ELFT>::MipsAbiFlagsSection(Elf_Mips_ABIFlags Flags)
+MipsAbiFlagsSection<ELFT>::MipsAbiFlagsSection(Elf_Mips_ABIFlags flags)
: SyntheticSection(SHF_ALLOC, SHT_MIPS_ABIFLAGS, 8, ".MIPS.abiflags"),
- Flags(Flags) {
- this->Entsize = sizeof(Elf_Mips_ABIFlags);
+ flags(flags) {
+ this->entsize = sizeof(Elf_Mips_ABIFlags);
}
-template <class ELFT> void MipsAbiFlagsSection<ELFT>::writeTo(uint8_t *Buf) {
- memcpy(Buf, &Flags, sizeof(Flags));
+template <class ELFT> void MipsAbiFlagsSection<ELFT>::writeTo(uint8_t *buf) {
+ memcpy(buf, &flags, sizeof(flags));
}
template <class ELFT>
MipsAbiFlagsSection<ELFT> *MipsAbiFlagsSection<ELFT>::create() {
- Elf_Mips_ABIFlags Flags = {};
- bool Create = false;
+ Elf_Mips_ABIFlags flags = {};
+ bool create = false;
- for (InputSectionBase *Sec : InputSections) {
- if (Sec->Type != SHT_MIPS_ABIFLAGS)
+ for (InputSectionBase *sec : inputSections) {
+ if (sec->type != SHT_MIPS_ABIFLAGS)
continue;
- Sec->Live = false;
- Create = true;
+ sec->markDead();
+ create = true;
- std::string Filename = toString(Sec->File);
- const size_t Size = Sec->data().size();
+ std::string filename = toString(sec->file);
+ const size_t size = sec->data().size();
// Older version of BFD (such as the default FreeBSD linker) concatenate
// .MIPS.abiflags instead of merging. To allow for this case (or potential
// zero padding) we ignore everything after the first Elf_Mips_ABIFlags
- if (Size < sizeof(Elf_Mips_ABIFlags)) {
- error(Filename + ": invalid size of .MIPS.abiflags section: got " +
- Twine(Size) + " instead of " + Twine(sizeof(Elf_Mips_ABIFlags)));
+ if (size < sizeof(Elf_Mips_ABIFlags)) {
+ error(filename + ": invalid size of .MIPS.abiflags section: got " +
+ Twine(size) + " instead of " + Twine(sizeof(Elf_Mips_ABIFlags)));
return nullptr;
}
- auto *S = reinterpret_cast<const Elf_Mips_ABIFlags *>(Sec->data().data());
- if (S->version != 0) {
- error(Filename + ": unexpected .MIPS.abiflags version " +
- Twine(S->version));
+ auto *s = reinterpret_cast<const Elf_Mips_ABIFlags *>(sec->data().data());
+ if (s->version != 0) {
+ error(filename + ": unexpected .MIPS.abiflags version " +
+ Twine(s->version));
return nullptr;
}
// LLD checks ISA compatibility in calcMipsEFlags(). Here we just
// select the highest number of ISA/Rev/Ext.
- Flags.isa_level = std::max(Flags.isa_level, S->isa_level);
- Flags.isa_rev = std::max(Flags.isa_rev, S->isa_rev);
- Flags.isa_ext = std::max(Flags.isa_ext, S->isa_ext);
- Flags.gpr_size = std::max(Flags.gpr_size, S->gpr_size);
- Flags.cpr1_size = std::max(Flags.cpr1_size, S->cpr1_size);
- Flags.cpr2_size = std::max(Flags.cpr2_size, S->cpr2_size);
- Flags.ases |= S->ases;
- Flags.flags1 |= S->flags1;
- Flags.flags2 |= S->flags2;
- Flags.fp_abi = elf::getMipsFpAbiFlag(Flags.fp_abi, S->fp_abi, Filename);
+ flags.isa_level = std::max(flags.isa_level, s->isa_level);
+ flags.isa_rev = std::max(flags.isa_rev, s->isa_rev);
+ flags.isa_ext = std::max(flags.isa_ext, s->isa_ext);
+ flags.gpr_size = std::max(flags.gpr_size, s->gpr_size);
+ flags.cpr1_size = std::max(flags.cpr1_size, s->cpr1_size);
+ flags.cpr2_size = std::max(flags.cpr2_size, s->cpr2_size);
+ flags.ases |= s->ases;
+ flags.flags1 |= s->flags1;
+ flags.flags2 |= s->flags2;
+ flags.fp_abi = elf::getMipsFpAbiFlag(flags.fp_abi, s->fp_abi, filename);
};
- if (Create)
- return make<MipsAbiFlagsSection<ELFT>>(Flags);
+ if (create)
+ return make<MipsAbiFlagsSection<ELFT>>(flags);
return nullptr;
}
// .MIPS.options section.
template <class ELFT>
-MipsOptionsSection<ELFT>::MipsOptionsSection(Elf_Mips_RegInfo Reginfo)
+MipsOptionsSection<ELFT>::MipsOptionsSection(Elf_Mips_RegInfo reginfo)
: SyntheticSection(SHF_ALLOC, SHT_MIPS_OPTIONS, 8, ".MIPS.options"),
- Reginfo(Reginfo) {
- this->Entsize = sizeof(Elf_Mips_Options) + sizeof(Elf_Mips_RegInfo);
+ reginfo(reginfo) {
+ this->entsize = sizeof(Elf_Mips_Options) + sizeof(Elf_Mips_RegInfo);
}
-template <class ELFT> void MipsOptionsSection<ELFT>::writeTo(uint8_t *Buf) {
- auto *Options = reinterpret_cast<Elf_Mips_Options *>(Buf);
- Options->kind = ODK_REGINFO;
- Options->size = getSize();
+template <class ELFT> void MipsOptionsSection<ELFT>::writeTo(uint8_t *buf) {
+ auto *options = reinterpret_cast<Elf_Mips_Options *>(buf);
+ options->kind = ODK_REGINFO;
+ options->size = getSize();
- if (!Config->Relocatable)
- Reginfo.ri_gp_value = In.MipsGot->getGp();
- memcpy(Buf + sizeof(Elf_Mips_Options), &Reginfo, sizeof(Reginfo));
+ if (!config->relocatable)
+ reginfo.ri_gp_value = in.mipsGot->getGp();
+ memcpy(buf + sizeof(Elf_Mips_Options), &reginfo, sizeof(reginfo));
}
template <class ELFT>
@@ -164,55 +170,55 @@ MipsOptionsSection<ELFT> *MipsOptionsSection<ELFT>::create() {
if (!ELFT::Is64Bits)
return nullptr;
- std::vector<InputSectionBase *> Sections;
- for (InputSectionBase *Sec : InputSections)
- if (Sec->Type == SHT_MIPS_OPTIONS)
- Sections.push_back(Sec);
+ std::vector<InputSectionBase *> sections;
+ for (InputSectionBase *sec : inputSections)
+ if (sec->type == SHT_MIPS_OPTIONS)
+ sections.push_back(sec);
- if (Sections.empty())
+ if (sections.empty())
return nullptr;
- Elf_Mips_RegInfo Reginfo = {};
- for (InputSectionBase *Sec : Sections) {
- Sec->Live = false;
+ Elf_Mips_RegInfo reginfo = {};
+ for (InputSectionBase *sec : sections) {
+ sec->markDead();
- std::string Filename = toString(Sec->File);
- ArrayRef<uint8_t> D = Sec->data();
+ std::string filename = toString(sec->file);
+ ArrayRef<uint8_t> d = sec->data();
- while (!D.empty()) {
- if (D.size() < sizeof(Elf_Mips_Options)) {
- error(Filename + ": invalid size of .MIPS.options section");
+ while (!d.empty()) {
+ if (d.size() < sizeof(Elf_Mips_Options)) {
+ error(filename + ": invalid size of .MIPS.options section");
break;
}
- auto *Opt = reinterpret_cast<const Elf_Mips_Options *>(D.data());
- if (Opt->kind == ODK_REGINFO) {
- Reginfo.ri_gprmask |= Opt->getRegInfo().ri_gprmask;
- Sec->getFile<ELFT>()->MipsGp0 = Opt->getRegInfo().ri_gp_value;
+ auto *opt = reinterpret_cast<const Elf_Mips_Options *>(d.data());
+ if (opt->kind == ODK_REGINFO) {
+ reginfo.ri_gprmask |= opt->getRegInfo().ri_gprmask;
+ sec->getFile<ELFT>()->mipsGp0 = opt->getRegInfo().ri_gp_value;
break;
}
- if (!Opt->size)
- fatal(Filename + ": zero option descriptor size");
- D = D.slice(Opt->size);
+ if (!opt->size)
+ fatal(filename + ": zero option descriptor size");
+ d = d.slice(opt->size);
}
};
- return make<MipsOptionsSection<ELFT>>(Reginfo);
+ return make<MipsOptionsSection<ELFT>>(reginfo);
}
// MIPS .reginfo section.
template <class ELFT>
-MipsReginfoSection<ELFT>::MipsReginfoSection(Elf_Mips_RegInfo Reginfo)
+MipsReginfoSection<ELFT>::MipsReginfoSection(Elf_Mips_RegInfo reginfo)
: SyntheticSection(SHF_ALLOC, SHT_MIPS_REGINFO, 4, ".reginfo"),
- Reginfo(Reginfo) {
- this->Entsize = sizeof(Elf_Mips_RegInfo);
+ reginfo(reginfo) {
+ this->entsize = sizeof(Elf_Mips_RegInfo);
}
-template <class ELFT> void MipsReginfoSection<ELFT>::writeTo(uint8_t *Buf) {
- if (!Config->Relocatable)
- Reginfo.ri_gp_value = In.MipsGot->getGp();
- memcpy(Buf, &Reginfo, sizeof(Reginfo));
+template <class ELFT> void MipsReginfoSection<ELFT>::writeTo(uint8_t *buf) {
+ if (!config->relocatable)
+ reginfo.ri_gp_value = in.mipsGot->getGp();
+ memcpy(buf, &reginfo, sizeof(reginfo));
}
template <class ELFT>
@@ -221,53 +227,53 @@ MipsReginfoSection<ELFT> *MipsReginfoSection<ELFT>::create() {
if (ELFT::Is64Bits)
return nullptr;
- std::vector<InputSectionBase *> Sections;
- for (InputSectionBase *Sec : InputSections)
- if (Sec->Type == SHT_MIPS_REGINFO)
- Sections.push_back(Sec);
+ std::vector<InputSectionBase *> sections;
+ for (InputSectionBase *sec : inputSections)
+ if (sec->type == SHT_MIPS_REGINFO)
+ sections.push_back(sec);
- if (Sections.empty())
+ if (sections.empty())
return nullptr;
- Elf_Mips_RegInfo Reginfo = {};
- for (InputSectionBase *Sec : Sections) {
- Sec->Live = false;
+ Elf_Mips_RegInfo reginfo = {};
+ for (InputSectionBase *sec : sections) {
+ sec->markDead();
- if (Sec->data().size() != sizeof(Elf_Mips_RegInfo)) {
- error(toString(Sec->File) + ": invalid size of .reginfo section");
+ if (sec->data().size() != sizeof(Elf_Mips_RegInfo)) {
+ error(toString(sec->file) + ": invalid size of .reginfo section");
return nullptr;
}
- auto *R = reinterpret_cast<const Elf_Mips_RegInfo *>(Sec->data().data());
- Reginfo.ri_gprmask |= R->ri_gprmask;
- Sec->getFile<ELFT>()->MipsGp0 = R->ri_gp_value;
+ auto *r = reinterpret_cast<const Elf_Mips_RegInfo *>(sec->data().data());
+ reginfo.ri_gprmask |= r->ri_gprmask;
+ sec->getFile<ELFT>()->mipsGp0 = r->ri_gp_value;
};
- return make<MipsReginfoSection<ELFT>>(Reginfo);
+ return make<MipsReginfoSection<ELFT>>(reginfo);
}
InputSection *elf::createInterpSection() {
// StringSaver guarantees that the returned string ends with '\0'.
- StringRef S = Saver.save(Config->DynamicLinker);
- ArrayRef<uint8_t> Contents = {(const uint8_t *)S.data(), S.size() + 1};
+ StringRef s = saver.save(config->dynamicLinker);
+ ArrayRef<uint8_t> contents = {(const uint8_t *)s.data(), s.size() + 1};
- auto *Sec = make<InputSection>(nullptr, SHF_ALLOC, SHT_PROGBITS, 1, Contents,
+ auto *sec = make<InputSection>(nullptr, SHF_ALLOC, SHT_PROGBITS, 1, contents,
".interp");
- Sec->Live = true;
- return Sec;
+ sec->markLive();
+ return sec;
}
-Defined *elf::addSyntheticLocal(StringRef Name, uint8_t Type, uint64_t Value,
- uint64_t Size, InputSectionBase &Section) {
- auto *S = make<Defined>(Section.File, Name, STB_LOCAL, STV_DEFAULT, Type,
- Value, Size, &Section);
- if (In.SymTab)
- In.SymTab->addSymbol(S);
- return S;
+Defined *elf::addSyntheticLocal(StringRef name, uint8_t type, uint64_t value,
+ uint64_t size, InputSectionBase &section) {
+ auto *s = make<Defined>(section.file, name, STB_LOCAL, STV_DEFAULT, type,
+ value, size, &section);
+ if (in.symTab)
+ in.symTab->addSymbol(s);
+ return s;
}
static size_t getHashSize() {
- switch (Config->BuildId) {
+ switch (config->buildId) {
case BuildIdKind::Fast:
return 8;
case BuildIdKind::Md5:
@@ -276,89 +282,67 @@ static size_t getHashSize() {
case BuildIdKind::Sha1:
return 20;
case BuildIdKind::Hexstring:
- return Config->BuildIdVector.size();
+ return config->buildIdVector.size();
default:
llvm_unreachable("unknown BuildIdKind");
}
}
+// This class represents a linker-synthesized .note.gnu.property section.
+//
+// In x86 and AArch64, object files may contain feature flags indicating the
+// features that they have used. The flags are stored in a .note.gnu.property
+// section.
+//
+// lld reads the sections from input files and merges them by computing AND of
+// the flags. The result is written as a new .note.gnu.property section.
+//
+// If the flag is zero (which indicates that the intersection of the feature
+// sets is empty, or some input files didn't have .note.gnu.property sections),
+// we don't create this section.
+GnuPropertySection::GnuPropertySection()
+ : SyntheticSection(llvm::ELF::SHF_ALLOC, llvm::ELF::SHT_NOTE, 4,
+ ".note.gnu.property") {}
+
+void GnuPropertySection::writeTo(uint8_t *buf) {
+ uint32_t featureAndType = config->emachine == EM_AARCH64
+ ? GNU_PROPERTY_AARCH64_FEATURE_1_AND
+ : GNU_PROPERTY_X86_FEATURE_1_AND;
+
+ write32(buf, 4); // Name size
+ write32(buf + 4, config->is64 ? 16 : 12); // Content size
+ write32(buf + 8, NT_GNU_PROPERTY_TYPE_0); // Type
+ memcpy(buf + 12, "GNU", 4); // Name string
+ write32(buf + 16, featureAndType); // Feature type
+ write32(buf + 20, 4); // Feature size
+ write32(buf + 24, config->andFeatures); // Feature flags
+ if (config->is64)
+ write32(buf + 28, 0); // Padding
+}
+
+size_t GnuPropertySection::getSize() const { return config->is64 ? 32 : 28; }
+
BuildIdSection::BuildIdSection()
: SyntheticSection(SHF_ALLOC, SHT_NOTE, 4, ".note.gnu.build-id"),
- HashSize(getHashSize()) {}
-
-void BuildIdSection::writeTo(uint8_t *Buf) {
- write32(Buf, 4); // Name size
- write32(Buf + 4, HashSize); // Content size
- write32(Buf + 8, NT_GNU_BUILD_ID); // Type
- memcpy(Buf + 12, "GNU", 4); // Name string
- HashBuf = Buf + 16;
-}
-
-// Split one uint8 array into small pieces of uint8 arrays.
-static std::vector<ArrayRef<uint8_t>> split(ArrayRef<uint8_t> Arr,
- size_t ChunkSize) {
- std::vector<ArrayRef<uint8_t>> Ret;
- while (Arr.size() > ChunkSize) {
- Ret.push_back(Arr.take_front(ChunkSize));
- Arr = Arr.drop_front(ChunkSize);
- }
- if (!Arr.empty())
- Ret.push_back(Arr);
- return Ret;
-}
-
-// Computes a hash value of Data using a given hash function.
-// In order to utilize multiple cores, we first split data into 1MB
-// chunks, compute a hash for each chunk, and then compute a hash value
-// of the hash values.
-void BuildIdSection::computeHash(
- llvm::ArrayRef<uint8_t> Data,
- std::function<void(uint8_t *Dest, ArrayRef<uint8_t> Arr)> HashFn) {
- std::vector<ArrayRef<uint8_t>> Chunks = split(Data, 1024 * 1024);
- std::vector<uint8_t> Hashes(Chunks.size() * HashSize);
-
- // Compute hash values.
- parallelForEachN(0, Chunks.size(), [&](size_t I) {
- HashFn(Hashes.data() + I * HashSize, Chunks[I]);
- });
+ hashSize(getHashSize()) {}
- // Write to the final output buffer.
- HashFn(HashBuf, Hashes);
+void BuildIdSection::writeTo(uint8_t *buf) {
+ write32(buf, 4); // Name size
+ write32(buf + 4, hashSize); // Content size
+ write32(buf + 8, NT_GNU_BUILD_ID); // Type
+ memcpy(buf + 12, "GNU", 4); // Name string
+ hashBuf = buf + 16;
}
-BssSection::BssSection(StringRef Name, uint64_t Size, uint32_t Alignment)
- : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_NOBITS, Alignment, Name) {
- this->Bss = true;
- this->Size = Size;
+void BuildIdSection::writeBuildId(ArrayRef<uint8_t> buf) {
+ assert(buf.size() == hashSize);
+ memcpy(hashBuf, buf.data(), hashSize);
}
-void BuildIdSection::writeBuildId(ArrayRef<uint8_t> Buf) {
- switch (Config->BuildId) {
- case BuildIdKind::Fast:
- computeHash(Buf, [](uint8_t *Dest, ArrayRef<uint8_t> Arr) {
- write64le(Dest, xxHash64(Arr));
- });
- break;
- case BuildIdKind::Md5:
- computeHash(Buf, [](uint8_t *Dest, ArrayRef<uint8_t> Arr) {
- memcpy(Dest, MD5::hash(Arr).data(), 16);
- });
- break;
- case BuildIdKind::Sha1:
- computeHash(Buf, [](uint8_t *Dest, ArrayRef<uint8_t> Arr) {
- memcpy(Dest, SHA1::hash(Arr).data(), 20);
- });
- break;
- case BuildIdKind::Uuid:
- if (auto EC = getRandomBytes(HashBuf, HashSize))
- error("entropy source failure: " + EC.message());
- break;
- case BuildIdKind::Hexstring:
- memcpy(HashBuf, Config->BuildIdVector.data(), Config->BuildIdVector.size());
- break;
- default:
- llvm_unreachable("unknown BuildIdKind");
- }
+BssSection::BssSection(StringRef name, uint64_t size, uint32_t alignment)
+ : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_NOBITS, alignment, name) {
+ this->bss = true;
+ this->size = size;
}
EhFrameSection::EhFrameSection()
@@ -368,47 +352,48 @@ EhFrameSection::EhFrameSection()
// CIE records from input object files are uniquified by their contents
// and where their relocations point to.
template <class ELFT, class RelTy>
-CieRecord *EhFrameSection::addCie(EhSectionPiece &Cie, ArrayRef<RelTy> Rels) {
- Symbol *Personality = nullptr;
- unsigned FirstRelI = Cie.FirstRelocation;
- if (FirstRelI != (unsigned)-1)
- Personality =
- &Cie.Sec->template getFile<ELFT>()->getRelocTargetSym(Rels[FirstRelI]);
+CieRecord *EhFrameSection::addCie(EhSectionPiece &cie, ArrayRef<RelTy> rels) {
+ Symbol *personality = nullptr;
+ unsigned firstRelI = cie.firstRelocation;
+ if (firstRelI != (unsigned)-1)
+ personality =
+ &cie.sec->template getFile<ELFT>()->getRelocTargetSym(rels[firstRelI]);
// Search for an existing CIE by CIE contents/relocation target pair.
- CieRecord *&Rec = CieMap[{Cie.data(), Personality}];
+ CieRecord *&rec = cieMap[{cie.data(), personality}];
// If not found, create a new one.
- if (!Rec) {
- Rec = make<CieRecord>();
- Rec->Cie = &Cie;
- CieRecords.push_back(Rec);
+ if (!rec) {
+ rec = make<CieRecord>();
+ rec->cie = &cie;
+ cieRecords.push_back(rec);
}
- return Rec;
+ return rec;
}
// There is one FDE per function. Returns true if a given FDE
// points to a live function.
template <class ELFT, class RelTy>
-bool EhFrameSection::isFdeLive(EhSectionPiece &Fde, ArrayRef<RelTy> Rels) {
- auto *Sec = cast<EhInputSection>(Fde.Sec);
- unsigned FirstRelI = Fde.FirstRelocation;
+bool EhFrameSection::isFdeLive(EhSectionPiece &fde, ArrayRef<RelTy> rels) {
+ auto *sec = cast<EhInputSection>(fde.sec);
+ unsigned firstRelI = fde.firstRelocation;
// An FDE should point to some function because FDEs are to describe
// functions. That's however not always the case due to an issue of
// ld.gold with -r. ld.gold may discard only functions and leave their
// corresponding FDEs, which results in creating bad .eh_frame sections.
// To deal with that, we ignore such FDEs.
- if (FirstRelI == (unsigned)-1)
+ if (firstRelI == (unsigned)-1)
return false;
- const RelTy &Rel = Rels[FirstRelI];
- Symbol &B = Sec->template getFile<ELFT>()->getRelocTargetSym(Rel);
+ const RelTy &rel = rels[firstRelI];
+ Symbol &b = sec->template getFile<ELFT>()->getRelocTargetSym(rel);
- // FDEs for garbage-collected or merged-by-ICF sections are dead.
- if (auto *D = dyn_cast<Defined>(&B))
- if (SectionBase *Sec = D->Section)
- return Sec->Live;
+ // FDEs for garbage-collected or merged-by-ICF sections, or sections in
+ // another partition, are dead.
+ if (auto *d = dyn_cast<Defined>(&b))
+ if (SectionBase *sec = d->section)
+ return sec->partition == partition;
return false;
}
@@ -417,73 +402,73 @@ bool EhFrameSection::isFdeLive(EhSectionPiece &Fde, ArrayRef<RelTy> Rels) {
// a list of FDEs. This function searches an existing CIE or create a new
// one and associates FDEs to the CIE.
template <class ELFT, class RelTy>
-void EhFrameSection::addSectionAux(EhInputSection *Sec, ArrayRef<RelTy> Rels) {
- OffsetToCie.clear();
- for (EhSectionPiece &Piece : Sec->Pieces) {
+void EhFrameSection::addSectionAux(EhInputSection *sec, ArrayRef<RelTy> rels) {
+ offsetToCie.clear();
+ for (EhSectionPiece &piece : sec->pieces) {
// The empty record is the end marker.
- if (Piece.Size == 4)
+ if (piece.size == 4)
return;
- size_t Offset = Piece.InputOff;
- uint32_t ID = read32(Piece.data().data() + 4);
- if (ID == 0) {
- OffsetToCie[Offset] = addCie<ELFT>(Piece, Rels);
+ size_t offset = piece.inputOff;
+ uint32_t id = read32(piece.data().data() + 4);
+ if (id == 0) {
+ offsetToCie[offset] = addCie<ELFT>(piece, rels);
continue;
}
- uint32_t CieOffset = Offset + 4 - ID;
- CieRecord *Rec = OffsetToCie[CieOffset];
- if (!Rec)
- fatal(toString(Sec) + ": invalid CIE reference");
+ uint32_t cieOffset = offset + 4 - id;
+ CieRecord *rec = offsetToCie[cieOffset];
+ if (!rec)
+ fatal(toString(sec) + ": invalid CIE reference");
- if (!isFdeLive<ELFT>(Piece, Rels))
+ if (!isFdeLive<ELFT>(piece, rels))
continue;
- Rec->Fdes.push_back(&Piece);
- NumFdes++;
+ rec->fdes.push_back(&piece);
+ numFdes++;
}
}
-template <class ELFT> void EhFrameSection::addSection(InputSectionBase *C) {
- auto *Sec = cast<EhInputSection>(C);
- Sec->Parent = this;
+template <class ELFT> void EhFrameSection::addSection(InputSectionBase *c) {
+ auto *sec = cast<EhInputSection>(c);
+ sec->parent = this;
- Alignment = std::max(Alignment, Sec->Alignment);
- Sections.push_back(Sec);
+ alignment = std::max(alignment, sec->alignment);
+ sections.push_back(sec);
- for (auto *DS : Sec->DependentSections)
- DependentSections.push_back(DS);
+ for (auto *ds : sec->dependentSections)
+ dependentSections.push_back(ds);
- if (Sec->Pieces.empty())
+ if (sec->pieces.empty())
return;
- if (Sec->AreRelocsRela)
- addSectionAux<ELFT>(Sec, Sec->template relas<ELFT>());
+ if (sec->areRelocsRela)
+ addSectionAux<ELFT>(sec, sec->template relas<ELFT>());
else
- addSectionAux<ELFT>(Sec, Sec->template rels<ELFT>());
+ addSectionAux<ELFT>(sec, sec->template rels<ELFT>());
}
-static void writeCieFde(uint8_t *Buf, ArrayRef<uint8_t> D) {
- memcpy(Buf, D.data(), D.size());
+static void writeCieFde(uint8_t *buf, ArrayRef<uint8_t> d) {
+ memcpy(buf, d.data(), d.size());
- size_t Aligned = alignTo(D.size(), Config->Wordsize);
+ size_t aligned = alignTo(d.size(), config->wordsize);
// Zero-clear trailing padding if it exists.
- memset(Buf + D.size(), 0, Aligned - D.size());
+ memset(buf + d.size(), 0, aligned - d.size());
// Fix the size field. -4 since size does not include the size field itself.
- write32(Buf, Aligned - 4);
+ write32(buf, aligned - 4);
}
void EhFrameSection::finalizeContents() {
- assert(!this->Size); // Not finalized.
- size_t Off = 0;
- for (CieRecord *Rec : CieRecords) {
- Rec->Cie->OutputOff = Off;
- Off += alignTo(Rec->Cie->Size, Config->Wordsize);
-
- for (EhSectionPiece *Fde : Rec->Fdes) {
- Fde->OutputOff = Off;
- Off += alignTo(Fde->Size, Config->Wordsize);
+ assert(!this->size); // Not finalized.
+ size_t off = 0;
+ for (CieRecord *rec : cieRecords) {
+ rec->cie->outputOff = off;
+ off += alignTo(rec->cie->size, config->wordsize);
+
+ for (EhSectionPiece *fde : rec->fdes) {
+ fde->outputOff = off;
+ off += alignTo(fde->size, config->wordsize);
}
}
@@ -491,375 +476,374 @@ void EhFrameSection::finalizeContents() {
// Call Frame Information records. glibc unwind-dw2-fde.c
// classify_object_over_fdes expects there is a CIE record length 0 as a
// terminator. Thus we add one unconditionally.
- Off += 4;
+ off += 4;
- this->Size = Off;
+ this->size = off;
}
// Returns data for .eh_frame_hdr. .eh_frame_hdr is a binary search table
// to get an FDE from an address to which FDE is applied. This function
// returns a list of such pairs.
std::vector<EhFrameSection::FdeData> EhFrameSection::getFdeData() const {
- uint8_t *Buf = getParent()->Loc + OutSecOff;
- std::vector<FdeData> Ret;
-
- uint64_t VA = In.EhFrameHdr->getVA();
- for (CieRecord *Rec : CieRecords) {
- uint8_t Enc = getFdeEncoding(Rec->Cie);
- for (EhSectionPiece *Fde : Rec->Fdes) {
- uint64_t Pc = getFdePc(Buf, Fde->OutputOff, Enc);
- uint64_t FdeVA = getParent()->Addr + Fde->OutputOff;
- if (!isInt<32>(Pc - VA))
- fatal(toString(Fde->Sec) + ": PC offset is too large: 0x" +
- Twine::utohexstr(Pc - VA));
- Ret.push_back({uint32_t(Pc - VA), uint32_t(FdeVA - VA)});
+ uint8_t *buf = Out::bufferStart + getParent()->offset + outSecOff;
+ std::vector<FdeData> ret;
+
+ uint64_t va = getPartition().ehFrameHdr->getVA();
+ for (CieRecord *rec : cieRecords) {
+ uint8_t enc = getFdeEncoding(rec->cie);
+ for (EhSectionPiece *fde : rec->fdes) {
+ uint64_t pc = getFdePc(buf, fde->outputOff, enc);
+ uint64_t fdeVA = getParent()->addr + fde->outputOff;
+ if (!isInt<32>(pc - va))
+ fatal(toString(fde->sec) + ": PC offset is too large: 0x" +
+ Twine::utohexstr(pc - va));
+ ret.push_back({uint32_t(pc - va), uint32_t(fdeVA - va)});
}
}
// Sort the FDE list by their PC and uniqueify. Usually there is only
// one FDE for a PC (i.e. function), but if ICF merges two functions
// into one, there can be more than one FDEs pointing to the address.
- auto Less = [](const FdeData &A, const FdeData &B) {
- return A.PcRel < B.PcRel;
+ auto less = [](const FdeData &a, const FdeData &b) {
+ return a.pcRel < b.pcRel;
};
- std::stable_sort(Ret.begin(), Ret.end(), Less);
- auto Eq = [](const FdeData &A, const FdeData &B) {
- return A.PcRel == B.PcRel;
+ llvm::stable_sort(ret, less);
+ auto eq = [](const FdeData &a, const FdeData &b) {
+ return a.pcRel == b.pcRel;
};
- Ret.erase(std::unique(Ret.begin(), Ret.end(), Eq), Ret.end());
+ ret.erase(std::unique(ret.begin(), ret.end(), eq), ret.end());
- return Ret;
+ return ret;
}
-static uint64_t readFdeAddr(uint8_t *Buf, int Size) {
- switch (Size) {
+static uint64_t readFdeAddr(uint8_t *buf, int size) {
+ switch (size) {
case DW_EH_PE_udata2:
- return read16(Buf);
+ return read16(buf);
case DW_EH_PE_sdata2:
- return (int16_t)read16(Buf);
+ return (int16_t)read16(buf);
case DW_EH_PE_udata4:
- return read32(Buf);
+ return read32(buf);
case DW_EH_PE_sdata4:
- return (int32_t)read32(Buf);
+ return (int32_t)read32(buf);
case DW_EH_PE_udata8:
case DW_EH_PE_sdata8:
- return read64(Buf);
+ return read64(buf);
case DW_EH_PE_absptr:
- return readUint(Buf);
+ return readUint(buf);
}
fatal("unknown FDE size encoding");
}
// Returns the VA to which a given FDE (on a mmap'ed buffer) is applied to.
// We need it to create .eh_frame_hdr section.
-uint64_t EhFrameSection::getFdePc(uint8_t *Buf, size_t FdeOff,
- uint8_t Enc) const {
+uint64_t EhFrameSection::getFdePc(uint8_t *buf, size_t fdeOff,
+ uint8_t enc) const {
// The starting address to which this FDE applies is
// stored at FDE + 8 byte.
- size_t Off = FdeOff + 8;
- uint64_t Addr = readFdeAddr(Buf + Off, Enc & 0xf);
- if ((Enc & 0x70) == DW_EH_PE_absptr)
- return Addr;
- if ((Enc & 0x70) == DW_EH_PE_pcrel)
- return Addr + getParent()->Addr + Off;
+ size_t off = fdeOff + 8;
+ uint64_t addr = readFdeAddr(buf + off, enc & 0xf);
+ if ((enc & 0x70) == DW_EH_PE_absptr)
+ return addr;
+ if ((enc & 0x70) == DW_EH_PE_pcrel)
+ return addr + getParent()->addr + off;
fatal("unknown FDE size relative encoding");
}
-void EhFrameSection::writeTo(uint8_t *Buf) {
+void EhFrameSection::writeTo(uint8_t *buf) {
// Write CIE and FDE records.
- for (CieRecord *Rec : CieRecords) {
- size_t CieOffset = Rec->Cie->OutputOff;
- writeCieFde(Buf + CieOffset, Rec->Cie->data());
+ for (CieRecord *rec : cieRecords) {
+ size_t cieOffset = rec->cie->outputOff;
+ writeCieFde(buf + cieOffset, rec->cie->data());
- for (EhSectionPiece *Fde : Rec->Fdes) {
- size_t Off = Fde->OutputOff;
- writeCieFde(Buf + Off, Fde->data());
+ for (EhSectionPiece *fde : rec->fdes) {
+ size_t off = fde->outputOff;
+ writeCieFde(buf + off, fde->data());
// FDE's second word should have the offset to an associated CIE.
// Write it.
- write32(Buf + Off + 4, Off + 4 - CieOffset);
+ write32(buf + off + 4, off + 4 - cieOffset);
}
}
// Apply relocations. .eh_frame section contents are not contiguous
// in the output buffer, but relocateAlloc() still works because
// getOffset() takes care of discontiguous section pieces.
- for (EhInputSection *S : Sections)
- S->relocateAlloc(Buf, nullptr);
+ for (EhInputSection *s : sections)
+ s->relocateAlloc(buf, nullptr);
+
+ if (getPartition().ehFrameHdr && getPartition().ehFrameHdr->getParent())
+ getPartition().ehFrameHdr->write();
}
GotSection::GotSection()
- : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS,
- Target->GotEntrySize, ".got") {
- // PPC64 saves the ElfSym::GlobalOffsetTable .TOC. as the first entry in the
- // .got. If there are no references to .TOC. in the symbol table,
- // ElfSym::GlobalOffsetTable will not be defined and we won't need to save
- // .TOC. in the .got. When it is defined, we increase NumEntries by the number
- // of entries used to emit ElfSym::GlobalOffsetTable.
- if (ElfSym::GlobalOffsetTable && !Target->GotBaseSymInGotPlt)
- NumEntries += Target->GotHeaderEntriesNum;
+ : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, config->wordsize,
+ ".got") {
+ // If ElfSym::globalOffsetTable is relative to .got and is referenced,
+ // increase numEntries by the number of entries used to emit
+ // ElfSym::globalOffsetTable.
+ if (ElfSym::globalOffsetTable && !target->gotBaseSymInGotPlt)
+ numEntries += target->gotHeaderEntriesNum;
}
-void GotSection::addEntry(Symbol &Sym) {
- Sym.GotIndex = NumEntries;
- ++NumEntries;
+void GotSection::addEntry(Symbol &sym) {
+ sym.gotIndex = numEntries;
+ ++numEntries;
}
-bool GotSection::addDynTlsEntry(Symbol &Sym) {
- if (Sym.GlobalDynIndex != -1U)
+bool GotSection::addDynTlsEntry(Symbol &sym) {
+ if (sym.globalDynIndex != -1U)
return false;
- Sym.GlobalDynIndex = NumEntries;
+ sym.globalDynIndex = numEntries;
// Global Dynamic TLS entries take two GOT slots.
- NumEntries += 2;
+ numEntries += 2;
return true;
}
// Reserves TLS entries for a TLS module ID and a TLS block offset.
// In total it takes two GOT slots.
bool GotSection::addTlsIndex() {
- if (TlsIndexOff != uint32_t(-1))
+ if (tlsIndexOff != uint32_t(-1))
return false;
- TlsIndexOff = NumEntries * Config->Wordsize;
- NumEntries += 2;
+ tlsIndexOff = numEntries * config->wordsize;
+ numEntries += 2;
return true;
}
-uint64_t GotSection::getGlobalDynAddr(const Symbol &B) const {
- return this->getVA() + B.GlobalDynIndex * Config->Wordsize;
+uint64_t GotSection::getGlobalDynAddr(const Symbol &b) const {
+ return this->getVA() + b.globalDynIndex * config->wordsize;
}
-uint64_t GotSection::getGlobalDynOffset(const Symbol &B) const {
- return B.GlobalDynIndex * Config->Wordsize;
+uint64_t GotSection::getGlobalDynOffset(const Symbol &b) const {
+ return b.globalDynIndex * config->wordsize;
}
void GotSection::finalizeContents() {
- Size = NumEntries * Config->Wordsize;
+ size = numEntries * config->wordsize;
}
-bool GotSection::empty() const {
+bool GotSection::isNeeded() const {
// We need to emit a GOT even if it's empty if there's a relocation that is
- // relative to GOT(such as GOTOFFREL) or there's a symbol that points to a GOT
- // (i.e. _GLOBAL_OFFSET_TABLE_) that the target defines relative to the .got.
- return NumEntries == 0 && !HasGotOffRel &&
- !(ElfSym::GlobalOffsetTable && !Target->GotBaseSymInGotPlt);
+ // relative to GOT(such as GOTOFFREL).
+ return numEntries || hasGotOffRel;
}
-void GotSection::writeTo(uint8_t *Buf) {
+void GotSection::writeTo(uint8_t *buf) {
// Buf points to the start of this section's buffer,
// whereas InputSectionBase::relocateAlloc() expects its argument
// to point to the start of the output section.
- Target->writeGotHeader(Buf);
- relocateAlloc(Buf - OutSecOff, Buf - OutSecOff + Size);
+ target->writeGotHeader(buf);
+ relocateAlloc(buf - outSecOff, buf - outSecOff + size);
}
-static uint64_t getMipsPageAddr(uint64_t Addr) {
- return (Addr + 0x8000) & ~0xffff;
+static uint64_t getMipsPageAddr(uint64_t addr) {
+ return (addr + 0x8000) & ~0xffff;
}
-static uint64_t getMipsPageCount(uint64_t Size) {
- return (Size + 0xfffe) / 0xffff + 1;
+static uint64_t getMipsPageCount(uint64_t size) {
+ return (size + 0xfffe) / 0xffff + 1;
}
MipsGotSection::MipsGotSection()
: SyntheticSection(SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL, SHT_PROGBITS, 16,
".got") {}
-void MipsGotSection::addEntry(InputFile &File, Symbol &Sym, int64_t Addend,
- RelExpr Expr) {
- FileGot &G = getGot(File);
- if (Expr == R_MIPS_GOT_LOCAL_PAGE) {
- if (const OutputSection *OS = Sym.getOutputSection())
- G.PagesMap.insert({OS, {}});
+void MipsGotSection::addEntry(InputFile &file, Symbol &sym, int64_t addend,
+ RelExpr expr) {
+ FileGot &g = getGot(file);
+ if (expr == R_MIPS_GOT_LOCAL_PAGE) {
+ if (const OutputSection *os = sym.getOutputSection())
+ g.pagesMap.insert({os, {}});
else
- G.Local16.insert({{nullptr, getMipsPageAddr(Sym.getVA(Addend))}, 0});
- } else if (Sym.isTls())
- G.Tls.insert({&Sym, 0});
- else if (Sym.IsPreemptible && Expr == R_ABS)
- G.Relocs.insert({&Sym, 0});
- else if (Sym.IsPreemptible)
- G.Global.insert({&Sym, 0});
- else if (Expr == R_MIPS_GOT_OFF32)
- G.Local32.insert({{&Sym, Addend}, 0});
+ g.local16.insert({{nullptr, getMipsPageAddr(sym.getVA(addend))}, 0});
+ } else if (sym.isTls())
+ g.tls.insert({&sym, 0});
+ else if (sym.isPreemptible && expr == R_ABS)
+ g.relocs.insert({&sym, 0});
+ else if (sym.isPreemptible)
+ g.global.insert({&sym, 0});
+ else if (expr == R_MIPS_GOT_OFF32)
+ g.local32.insert({{&sym, addend}, 0});
else
- G.Local16.insert({{&Sym, Addend}, 0});
+ g.local16.insert({{&sym, addend}, 0});
}
-void MipsGotSection::addDynTlsEntry(InputFile &File, Symbol &Sym) {
- getGot(File).DynTlsSymbols.insert({&Sym, 0});
+void MipsGotSection::addDynTlsEntry(InputFile &file, Symbol &sym) {
+ getGot(file).dynTlsSymbols.insert({&sym, 0});
}
-void MipsGotSection::addTlsIndex(InputFile &File) {
- getGot(File).DynTlsSymbols.insert({nullptr, 0});
+void MipsGotSection::addTlsIndex(InputFile &file) {
+ getGot(file).dynTlsSymbols.insert({nullptr, 0});
}
size_t MipsGotSection::FileGot::getEntriesNum() const {
- return getPageEntriesNum() + Local16.size() + Global.size() + Relocs.size() +
- Tls.size() + DynTlsSymbols.size() * 2;
+ return getPageEntriesNum() + local16.size() + global.size() + relocs.size() +
+ tls.size() + dynTlsSymbols.size() * 2;
}
size_t MipsGotSection::FileGot::getPageEntriesNum() const {
- size_t Num = 0;
- for (const std::pair<const OutputSection *, FileGot::PageBlock> &P : PagesMap)
- Num += P.second.Count;
- return Num;
+ size_t num = 0;
+ for (const std::pair<const OutputSection *, FileGot::PageBlock> &p : pagesMap)
+ num += p.second.count;
+ return num;
}
size_t MipsGotSection::FileGot::getIndexedEntriesNum() const {
- size_t Count = getPageEntriesNum() + Local16.size() + Global.size();
+ size_t count = getPageEntriesNum() + local16.size() + global.size();
// If there are relocation-only entries in the GOT, TLS entries
// are allocated after them. TLS entries should be addressable
// by 16-bit index so count both reloc-only and TLS entries.
- if (!Tls.empty() || !DynTlsSymbols.empty())
- Count += Relocs.size() + Tls.size() + DynTlsSymbols.size() * 2;
- return Count;
+ if (!tls.empty() || !dynTlsSymbols.empty())
+ count += relocs.size() + tls.size() + dynTlsSymbols.size() * 2;
+ return count;
}
-MipsGotSection::FileGot &MipsGotSection::getGot(InputFile &F) {
- if (!F.MipsGotIndex.hasValue()) {
- Gots.emplace_back();
- Gots.back().File = &F;
- F.MipsGotIndex = Gots.size() - 1;
+MipsGotSection::FileGot &MipsGotSection::getGot(InputFile &f) {
+ if (!f.mipsGotIndex.hasValue()) {
+ gots.emplace_back();
+ gots.back().file = &f;
+ f.mipsGotIndex = gots.size() - 1;
}
- return Gots[*F.MipsGotIndex];
+ return gots[*f.mipsGotIndex];
}
-uint64_t MipsGotSection::getPageEntryOffset(const InputFile *F,
- const Symbol &Sym,
- int64_t Addend) const {
- const FileGot &G = Gots[*F->MipsGotIndex];
- uint64_t Index = 0;
- if (const OutputSection *OutSec = Sym.getOutputSection()) {
- uint64_t SecAddr = getMipsPageAddr(OutSec->Addr);
- uint64_t SymAddr = getMipsPageAddr(Sym.getVA(Addend));
- Index = G.PagesMap.lookup(OutSec).FirstIndex + (SymAddr - SecAddr) / 0xffff;
+uint64_t MipsGotSection::getPageEntryOffset(const InputFile *f,
+ const Symbol &sym,
+ int64_t addend) const {
+ const FileGot &g = gots[*f->mipsGotIndex];
+ uint64_t index = 0;
+ if (const OutputSection *outSec = sym.getOutputSection()) {
+ uint64_t secAddr = getMipsPageAddr(outSec->addr);
+ uint64_t symAddr = getMipsPageAddr(sym.getVA(addend));
+ index = g.pagesMap.lookup(outSec).firstIndex + (symAddr - secAddr) / 0xffff;
} else {
- Index = G.Local16.lookup({nullptr, getMipsPageAddr(Sym.getVA(Addend))});
+ index = g.local16.lookup({nullptr, getMipsPageAddr(sym.getVA(addend))});
}
- return Index * Config->Wordsize;
+ return index * config->wordsize;
}
-uint64_t MipsGotSection::getSymEntryOffset(const InputFile *F, const Symbol &S,
- int64_t Addend) const {
- const FileGot &G = Gots[*F->MipsGotIndex];
- Symbol *Sym = const_cast<Symbol *>(&S);
- if (Sym->isTls())
- return G.Tls.lookup(Sym) * Config->Wordsize;
- if (Sym->IsPreemptible)
- return G.Global.lookup(Sym) * Config->Wordsize;
- return G.Local16.lookup({Sym, Addend}) * Config->Wordsize;
+uint64_t MipsGotSection::getSymEntryOffset(const InputFile *f, const Symbol &s,
+ int64_t addend) const {
+ const FileGot &g = gots[*f->mipsGotIndex];
+ Symbol *sym = const_cast<Symbol *>(&s);
+ if (sym->isTls())
+ return g.tls.lookup(sym) * config->wordsize;
+ if (sym->isPreemptible)
+ return g.global.lookup(sym) * config->wordsize;
+ return g.local16.lookup({sym, addend}) * config->wordsize;
}
-uint64_t MipsGotSection::getTlsIndexOffset(const InputFile *F) const {
- const FileGot &G = Gots[*F->MipsGotIndex];
- return G.DynTlsSymbols.lookup(nullptr) * Config->Wordsize;
+uint64_t MipsGotSection::getTlsIndexOffset(const InputFile *f) const {
+ const FileGot &g = gots[*f->mipsGotIndex];
+ return g.dynTlsSymbols.lookup(nullptr) * config->wordsize;
}
-uint64_t MipsGotSection::getGlobalDynOffset(const InputFile *F,
- const Symbol &S) const {
- const FileGot &G = Gots[*F->MipsGotIndex];
- Symbol *Sym = const_cast<Symbol *>(&S);
- return G.DynTlsSymbols.lookup(Sym) * Config->Wordsize;
+uint64_t MipsGotSection::getGlobalDynOffset(const InputFile *f,
+ const Symbol &s) const {
+ const FileGot &g = gots[*f->mipsGotIndex];
+ Symbol *sym = const_cast<Symbol *>(&s);
+ return g.dynTlsSymbols.lookup(sym) * config->wordsize;
}
const Symbol *MipsGotSection::getFirstGlobalEntry() const {
- if (Gots.empty())
+ if (gots.empty())
return nullptr;
- const FileGot &PrimGot = Gots.front();
- if (!PrimGot.Global.empty())
- return PrimGot.Global.front().first;
- if (!PrimGot.Relocs.empty())
- return PrimGot.Relocs.front().first;
+ const FileGot &primGot = gots.front();
+ if (!primGot.global.empty())
+ return primGot.global.front().first;
+ if (!primGot.relocs.empty())
+ return primGot.relocs.front().first;
return nullptr;
}
unsigned MipsGotSection::getLocalEntriesNum() const {
- if (Gots.empty())
- return HeaderEntriesNum;
- return HeaderEntriesNum + Gots.front().getPageEntriesNum() +
- Gots.front().Local16.size();
+ if (gots.empty())
+ return headerEntriesNum;
+ return headerEntriesNum + gots.front().getPageEntriesNum() +
+ gots.front().local16.size();
}
-bool MipsGotSection::tryMergeGots(FileGot &Dst, FileGot &Src, bool IsPrimary) {
- FileGot Tmp = Dst;
- set_union(Tmp.PagesMap, Src.PagesMap);
- set_union(Tmp.Local16, Src.Local16);
- set_union(Tmp.Global, Src.Global);
- set_union(Tmp.Relocs, Src.Relocs);
- set_union(Tmp.Tls, Src.Tls);
- set_union(Tmp.DynTlsSymbols, Src.DynTlsSymbols);
+bool MipsGotSection::tryMergeGots(FileGot &dst, FileGot &src, bool isPrimary) {
+ FileGot tmp = dst;
+ set_union(tmp.pagesMap, src.pagesMap);
+ set_union(tmp.local16, src.local16);
+ set_union(tmp.global, src.global);
+ set_union(tmp.relocs, src.relocs);
+ set_union(tmp.tls, src.tls);
+ set_union(tmp.dynTlsSymbols, src.dynTlsSymbols);
- size_t Count = IsPrimary ? HeaderEntriesNum : 0;
- Count += Tmp.getIndexedEntriesNum();
+ size_t count = isPrimary ? headerEntriesNum : 0;
+ count += tmp.getIndexedEntriesNum();
- if (Count * Config->Wordsize > Config->MipsGotSize)
+ if (count * config->wordsize > config->mipsGotSize)
return false;
- std::swap(Tmp, Dst);
+ std::swap(tmp, dst);
return true;
}
void MipsGotSection::finalizeContents() { updateAllocSize(); }
bool MipsGotSection::updateAllocSize() {
- Size = HeaderEntriesNum * Config->Wordsize;
- for (const FileGot &G : Gots)
- Size += G.getEntriesNum() * Config->Wordsize;
+ size = headerEntriesNum * config->wordsize;
+ for (const FileGot &g : gots)
+ size += g.getEntriesNum() * config->wordsize;
return false;
}
-template <class ELFT> void MipsGotSection::build() {
- if (Gots.empty())
+void MipsGotSection::build() {
+ if (gots.empty())
return;
- std::vector<FileGot> MergedGots(1);
+ std::vector<FileGot> mergedGots(1);
// For each GOT move non-preemptible symbols from the `Global`
// to `Local16` list. Preemptible symbol might become non-preemptible
// one if, for example, it gets a related copy relocation.
- for (FileGot &Got : Gots) {
- for (auto &P: Got.Global)
- if (!P.first->IsPreemptible)
- Got.Local16.insert({{P.first, 0}, 0});
- Got.Global.remove_if([&](const std::pair<Symbol *, size_t> &P) {
- return !P.first->IsPreemptible;
+ for (FileGot &got : gots) {
+ for (auto &p: got.global)
+ if (!p.first->isPreemptible)
+ got.local16.insert({{p.first, 0}, 0});
+ got.global.remove_if([&](const std::pair<Symbol *, size_t> &p) {
+ return !p.first->isPreemptible;
});
}
// For each GOT remove "reloc-only" entry if there is "global"
// entry for the same symbol. And add local entries which indexed
// using 32-bit value at the end of 16-bit entries.
- for (FileGot &Got : Gots) {
- Got.Relocs.remove_if([&](const std::pair<Symbol *, size_t> &P) {
- return Got.Global.count(P.first);
+ for (FileGot &got : gots) {
+ got.relocs.remove_if([&](const std::pair<Symbol *, size_t> &p) {
+ return got.global.count(p.first);
});
- set_union(Got.Local16, Got.Local32);
- Got.Local32.clear();
+ set_union(got.local16, got.local32);
+ got.local32.clear();
}
// Evaluate number of "reloc-only" entries in the resulting GOT.
// To do that put all unique "reloc-only" and "global" entries
// from all GOTs to the future primary GOT.
- FileGot *PrimGot = &MergedGots.front();
- for (FileGot &Got : Gots) {
- set_union(PrimGot->Relocs, Got.Global);
- set_union(PrimGot->Relocs, Got.Relocs);
- Got.Relocs.clear();
+ FileGot *primGot = &mergedGots.front();
+ for (FileGot &got : gots) {
+ set_union(primGot->relocs, got.global);
+ set_union(primGot->relocs, got.relocs);
+ got.relocs.clear();
}
// Evaluate number of "page" entries in each GOT.
- for (FileGot &Got : Gots) {
- for (std::pair<const OutputSection *, FileGot::PageBlock> &P :
- Got.PagesMap) {
- const OutputSection *OS = P.first;
- uint64_t SecSize = 0;
- for (BaseCommand *Cmd : OS->SectionCommands) {
- if (auto *ISD = dyn_cast<InputSectionDescription>(Cmd))
- for (InputSection *IS : ISD->Sections) {
- uint64_t Off = alignTo(SecSize, IS->Alignment);
- SecSize = Off + IS->getSize();
+ for (FileGot &got : gots) {
+ for (std::pair<const OutputSection *, FileGot::PageBlock> &p :
+ got.pagesMap) {
+ const OutputSection *os = p.first;
+ uint64_t secSize = 0;
+ for (BaseCommand *cmd : os->sectionCommands) {
+ if (auto *isd = dyn_cast<InputSectionDescription>(cmd))
+ for (InputSection *isec : isd->sections) {
+ uint64_t off = alignTo(secSize, isec->alignment);
+ secSize = off + isec->getSize();
}
}
- P.second.Count = getMipsPageCount(SecSize);
+ p.second.count = getMipsPageCount(secSize);
}
}
@@ -868,149 +852,149 @@ template <class ELFT> void MipsGotSection::build() {
// the primary GOT can be accessed in the most effective way. If it
// is not possible, try to fill the last GOT in the list, and finally
// create a new GOT if both attempts failed.
- for (FileGot &SrcGot : Gots) {
- InputFile *File = SrcGot.File;
- if (tryMergeGots(MergedGots.front(), SrcGot, true)) {
- File->MipsGotIndex = 0;
+ for (FileGot &srcGot : gots) {
+ InputFile *file = srcGot.file;
+ if (tryMergeGots(mergedGots.front(), srcGot, true)) {
+ file->mipsGotIndex = 0;
} else {
// If this is the first time we failed to merge with the primary GOT,
// MergedGots.back() will also be the primary GOT. We must make sure not
- // to try to merge again with IsPrimary=false, as otherwise, if the
+ // to try to merge again with isPrimary=false, as otherwise, if the
// inputs are just right, we could allow the primary GOT to become 1 or 2
- // words too big due to ignoring the header size.
- if (MergedGots.size() == 1 ||
- !tryMergeGots(MergedGots.back(), SrcGot, false)) {
- MergedGots.emplace_back();
- std::swap(MergedGots.back(), SrcGot);
+ // words bigger due to ignoring the header size.
+ if (mergedGots.size() == 1 ||
+ !tryMergeGots(mergedGots.back(), srcGot, false)) {
+ mergedGots.emplace_back();
+ std::swap(mergedGots.back(), srcGot);
}
- File->MipsGotIndex = MergedGots.size() - 1;
+ file->mipsGotIndex = mergedGots.size() - 1;
}
}
- std::swap(Gots, MergedGots);
+ std::swap(gots, mergedGots);
// Reduce number of "reloc-only" entries in the primary GOT
// by substracting "global" entries exist in the primary GOT.
- PrimGot = &Gots.front();
- PrimGot->Relocs.remove_if([&](const std::pair<Symbol *, size_t> &P) {
- return PrimGot->Global.count(P.first);
+ primGot = &gots.front();
+ primGot->relocs.remove_if([&](const std::pair<Symbol *, size_t> &p) {
+ return primGot->global.count(p.first);
});
// Calculate indexes for each GOT entry.
- size_t Index = HeaderEntriesNum;
- for (FileGot &Got : Gots) {
- Got.StartIndex = &Got == PrimGot ? 0 : Index;
- for (std::pair<const OutputSection *, FileGot::PageBlock> &P :
- Got.PagesMap) {
+ size_t index = headerEntriesNum;
+ for (FileGot &got : gots) {
+ got.startIndex = &got == primGot ? 0 : index;
+ for (std::pair<const OutputSection *, FileGot::PageBlock> &p :
+ got.pagesMap) {
// For each output section referenced by GOT page relocations calculate
- // and save into PagesMap an upper bound of MIPS GOT entries required
+ // and save into pagesMap an upper bound of MIPS GOT entries required
// to store page addresses of local symbols. We assume the worst case -
// each 64kb page of the output section has at least one GOT relocation
// against it. And take in account the case when the section intersects
// page boundaries.
- P.second.FirstIndex = Index;
- Index += P.second.Count;
+ p.second.firstIndex = index;
+ index += p.second.count;
}
- for (auto &P: Got.Local16)
- P.second = Index++;
- for (auto &P: Got.Global)
- P.second = Index++;
- for (auto &P: Got.Relocs)
- P.second = Index++;
- for (auto &P: Got.Tls)
- P.second = Index++;
- for (auto &P: Got.DynTlsSymbols) {
- P.second = Index;
- Index += 2;
+ for (auto &p: got.local16)
+ p.second = index++;
+ for (auto &p: got.global)
+ p.second = index++;
+ for (auto &p: got.relocs)
+ p.second = index++;
+ for (auto &p: got.tls)
+ p.second = index++;
+ for (auto &p: got.dynTlsSymbols) {
+ p.second = index;
+ index += 2;
}
}
- // Update Symbol::GotIndex field to use this
+ // Update Symbol::gotIndex field to use this
// value later in the `sortMipsSymbols` function.
- for (auto &P : PrimGot->Global)
- P.first->GotIndex = P.second;
- for (auto &P : PrimGot->Relocs)
- P.first->GotIndex = P.second;
+ for (auto &p : primGot->global)
+ p.first->gotIndex = p.second;
+ for (auto &p : primGot->relocs)
+ p.first->gotIndex = p.second;
// Create dynamic relocations.
- for (FileGot &Got : Gots) {
+ for (FileGot &got : gots) {
// Create dynamic relocations for TLS entries.
- for (std::pair<Symbol *, size_t> &P : Got.Tls) {
- Symbol *S = P.first;
- uint64_t Offset = P.second * Config->Wordsize;
- if (S->IsPreemptible)
- In.RelaDyn->addReloc(Target->TlsGotRel, this, Offset, S);
+ for (std::pair<Symbol *, size_t> &p : got.tls) {
+ Symbol *s = p.first;
+ uint64_t offset = p.second * config->wordsize;
+ if (s->isPreemptible)
+ mainPart->relaDyn->addReloc(target->tlsGotRel, this, offset, s);
}
- for (std::pair<Symbol *, size_t> &P : Got.DynTlsSymbols) {
- Symbol *S = P.first;
- uint64_t Offset = P.second * Config->Wordsize;
- if (S == nullptr) {
- if (!Config->Pic)
+ for (std::pair<Symbol *, size_t> &p : got.dynTlsSymbols) {
+ Symbol *s = p.first;
+ uint64_t offset = p.second * config->wordsize;
+ if (s == nullptr) {
+ if (!config->isPic)
continue;
- In.RelaDyn->addReloc(Target->TlsModuleIndexRel, this, Offset, S);
+ mainPart->relaDyn->addReloc(target->tlsModuleIndexRel, this, offset, s);
} else {
// When building a shared library we still need a dynamic relocation
// for the module index. Therefore only checking for
- // S->IsPreemptible is not sufficient (this happens e.g. for
+ // S->isPreemptible is not sufficient (this happens e.g. for
// thread-locals that have been marked as local through a linker script)
- if (!S->IsPreemptible && !Config->Pic)
+ if (!s->isPreemptible && !config->isPic)
continue;
- In.RelaDyn->addReloc(Target->TlsModuleIndexRel, this, Offset, S);
+ mainPart->relaDyn->addReloc(target->tlsModuleIndexRel, this, offset, s);
// However, we can skip writing the TLS offset reloc for non-preemptible
// symbols since it is known even in shared libraries
- if (!S->IsPreemptible)
+ if (!s->isPreemptible)
continue;
- Offset += Config->Wordsize;
- In.RelaDyn->addReloc(Target->TlsOffsetRel, this, Offset, S);
+ offset += config->wordsize;
+ mainPart->relaDyn->addReloc(target->tlsOffsetRel, this, offset, s);
}
}
// Do not create dynamic relocations for non-TLS
// entries in the primary GOT.
- if (&Got == PrimGot)
+ if (&got == primGot)
continue;
// Dynamic relocations for "global" entries.
- for (const std::pair<Symbol *, size_t> &P : Got.Global) {
- uint64_t Offset = P.second * Config->Wordsize;
- In.RelaDyn->addReloc(Target->RelativeRel, this, Offset, P.first);
+ for (const std::pair<Symbol *, size_t> &p : got.global) {
+ uint64_t offset = p.second * config->wordsize;
+ mainPart->relaDyn->addReloc(target->relativeRel, this, offset, p.first);
}
- if (!Config->Pic)
+ if (!config->isPic)
continue;
// Dynamic relocations for "local" entries in case of PIC.
- for (const std::pair<const OutputSection *, FileGot::PageBlock> &L :
- Got.PagesMap) {
- size_t PageCount = L.second.Count;
- for (size_t PI = 0; PI < PageCount; ++PI) {
- uint64_t Offset = (L.second.FirstIndex + PI) * Config->Wordsize;
- In.RelaDyn->addReloc({Target->RelativeRel, this, Offset, L.first,
- int64_t(PI * 0x10000)});
+ for (const std::pair<const OutputSection *, FileGot::PageBlock> &l :
+ got.pagesMap) {
+ size_t pageCount = l.second.count;
+ for (size_t pi = 0; pi < pageCount; ++pi) {
+ uint64_t offset = (l.second.firstIndex + pi) * config->wordsize;
+ mainPart->relaDyn->addReloc({target->relativeRel, this, offset, l.first,
+ int64_t(pi * 0x10000)});
}
}
- for (const std::pair<GotEntry, size_t> &P : Got.Local16) {
- uint64_t Offset = P.second * Config->Wordsize;
- In.RelaDyn->addReloc({Target->RelativeRel, this, Offset, true,
- P.first.first, P.first.second});
+ for (const std::pair<GotEntry, size_t> &p : got.local16) {
+ uint64_t offset = p.second * config->wordsize;
+ mainPart->relaDyn->addReloc({target->relativeRel, this, offset, true,
+ p.first.first, p.first.second});
}
}
}
-bool MipsGotSection::empty() const {
+bool MipsGotSection::isNeeded() const {
// We add the .got section to the result for dynamic MIPS target because
// its address and properties are mentioned in the .dynamic section.
- return Config->Relocatable;
+ return !config->relocatable;
}
-uint64_t MipsGotSection::getGp(const InputFile *F) const {
+uint64_t MipsGotSection::getGp(const InputFile *f) const {
// For files without related GOT or files refer a primary GOT
// returns "common" _gp value. For secondary GOTs calculate
// individual _gp values.
- if (!F || !F->MipsGotIndex.hasValue() || *F->MipsGotIndex == 0)
- return ElfSym::MipsGp->getVA(0);
- return getVA() + Gots[*F->MipsGotIndex].StartIndex * Config->Wordsize +
+ if (!f || !f->mipsGotIndex.hasValue() || *f->mipsGotIndex == 0)
+ return ElfSym::mipsGp->getVA(0);
+ return getVA() + gots[*f->mipsGotIndex].startIndex * config->wordsize +
0x7ff0;
}
-void MipsGotSection::writeTo(uint8_t *Buf) {
+void MipsGotSection::writeTo(uint8_t *buf) {
// Set the MSB of the second GOT slot. This is not required by any
// MIPS ABI documentation, though.
//
@@ -1025,51 +1009,48 @@ void MipsGotSection::writeTo(uint8_t *Buf) {
// we've been doing this for years, it is probably a safe bet to
// keep doing this for now. We really need to revisit this to see
// if we had to do this.
- writeUint(Buf + Config->Wordsize, (uint64_t)1 << (Config->Wordsize * 8 - 1));
- for (const FileGot &G : Gots) {
- auto Write = [&](size_t I, const Symbol *S, int64_t A) {
- uint64_t VA = A;
- if (S) {
- VA = S->getVA(A);
- if (S->StOther & STO_MIPS_MICROMIPS)
- VA |= 1;
- }
- writeUint(Buf + I * Config->Wordsize, VA);
+ writeUint(buf + config->wordsize, (uint64_t)1 << (config->wordsize * 8 - 1));
+ for (const FileGot &g : gots) {
+ auto write = [&](size_t i, const Symbol *s, int64_t a) {
+ uint64_t va = a;
+ if (s)
+ va = s->getVA(a);
+ writeUint(buf + i * config->wordsize, va);
};
// Write 'page address' entries to the local part of the GOT.
- for (const std::pair<const OutputSection *, FileGot::PageBlock> &L :
- G.PagesMap) {
- size_t PageCount = L.second.Count;
- uint64_t FirstPageAddr = getMipsPageAddr(L.first->Addr);
- for (size_t PI = 0; PI < PageCount; ++PI)
- Write(L.second.FirstIndex + PI, nullptr, FirstPageAddr + PI * 0x10000);
+ for (const std::pair<const OutputSection *, FileGot::PageBlock> &l :
+ g.pagesMap) {
+ size_t pageCount = l.second.count;
+ uint64_t firstPageAddr = getMipsPageAddr(l.first->addr);
+ for (size_t pi = 0; pi < pageCount; ++pi)
+ write(l.second.firstIndex + pi, nullptr, firstPageAddr + pi * 0x10000);
}
// Local, global, TLS, reloc-only entries.
// If TLS entry has a corresponding dynamic relocations, leave it
// initialized by zero. Write down adjusted TLS symbol's values otherwise.
// To calculate the adjustments use offsets for thread-local storage.
// https://www.linux-mips.org/wiki/NPTL
- for (const std::pair<GotEntry, size_t> &P : G.Local16)
- Write(P.second, P.first.first, P.first.second);
+ for (const std::pair<GotEntry, size_t> &p : g.local16)
+ write(p.second, p.first.first, p.first.second);
// Write VA to the primary GOT only. For secondary GOTs that
// will be done by REL32 dynamic relocations.
- if (&G == &Gots.front())
- for (const std::pair<const Symbol *, size_t> &P : G.Global)
- Write(P.second, P.first, 0);
- for (const std::pair<Symbol *, size_t> &P : G.Relocs)
- Write(P.second, P.first, 0);
- for (const std::pair<Symbol *, size_t> &P : G.Tls)
- Write(P.second, P.first, P.first->IsPreemptible ? 0 : -0x7000);
- for (const std::pair<Symbol *, size_t> &P : G.DynTlsSymbols) {
- if (P.first == nullptr && !Config->Pic)
- Write(P.second, nullptr, 1);
- else if (P.first && !P.first->IsPreemptible) {
+ if (&g == &gots.front())
+ for (const std::pair<const Symbol *, size_t> &p : g.global)
+ write(p.second, p.first, 0);
+ for (const std::pair<Symbol *, size_t> &p : g.relocs)
+ write(p.second, p.first, 0);
+ for (const std::pair<Symbol *, size_t> &p : g.tls)
+ write(p.second, p.first, p.first->isPreemptible ? 0 : -0x7000);
+ for (const std::pair<Symbol *, size_t> &p : g.dynTlsSymbols) {
+ if (p.first == nullptr && !config->isPic)
+ write(p.second, nullptr, 1);
+ else if (p.first && !p.first->isPreemptible) {
// If we are emitting PIC code with relocations we mustn't write
// anything to the GOT here. When using Elf_Rel relocations the value
// one will be treated as an addend and will cause crashes at runtime
- if (!Config->Pic)
- Write(P.second, nullptr, 1);
- Write(P.second + 1, P.first, -0x8000);
+ if (!config->isPic)
+ write(p.second, nullptr, 1);
+ write(p.second + 1, p.first, -0x8000);
}
}
}
@@ -1080,46 +1061,48 @@ void MipsGotSection::writeTo(uint8_t *Buf) {
// section. I don't know why we have a BSS style type for the section but it is
// consitent across both 64-bit PowerPC ABIs as well as the 32-bit PowerPC ABI.
GotPltSection::GotPltSection()
- : SyntheticSection(SHF_ALLOC | SHF_WRITE,
- Config->EMachine == EM_PPC64 ? SHT_NOBITS : SHT_PROGBITS,
- Target->GotPltEntrySize,
- Config->EMachine == EM_PPC64 ? ".plt" : ".got.plt") {}
+ : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, config->wordsize,
+ ".got.plt") {
+ if (config->emachine == EM_PPC) {
+ name = ".plt";
+ } else if (config->emachine == EM_PPC64) {
+ type = SHT_NOBITS;
+ name = ".plt";
+ }
+}
-void GotPltSection::addEntry(Symbol &Sym) {
- assert(Sym.PltIndex == Entries.size());
- Entries.push_back(&Sym);
+void GotPltSection::addEntry(Symbol &sym) {
+ assert(sym.pltIndex == entries.size());
+ entries.push_back(&sym);
}
size_t GotPltSection::getSize() const {
- return (Target->GotPltHeaderEntriesNum + Entries.size()) *
- Target->GotPltEntrySize;
+ return (target->gotPltHeaderEntriesNum + entries.size()) * config->wordsize;
}
-void GotPltSection::writeTo(uint8_t *Buf) {
- Target->writeGotPltHeader(Buf);
- Buf += Target->GotPltHeaderEntriesNum * Target->GotPltEntrySize;
- for (const Symbol *B : Entries) {
- Target->writeGotPlt(Buf, *B);
- Buf += Config->Wordsize;
+void GotPltSection::writeTo(uint8_t *buf) {
+ target->writeGotPltHeader(buf);
+ buf += target->gotPltHeaderEntriesNum * config->wordsize;
+ for (const Symbol *b : entries) {
+ target->writeGotPlt(buf, *b);
+ buf += config->wordsize;
}
}
-bool GotPltSection::empty() const {
- // We need to emit a GOT.PLT even if it's empty if there's a symbol that
- // references the _GLOBAL_OFFSET_TABLE_ and the Target defines the symbol
- // relative to the .got.plt section.
- return Entries.empty() &&
- !(ElfSym::GlobalOffsetTable && Target->GotBaseSymInGotPlt);
+bool GotPltSection::isNeeded() const {
+ // We need to emit GOTPLT even if it's empty if there's a relocation relative
+ // to it.
+ return !entries.empty() || hasGotPltOffRel;
}
static StringRef getIgotPltName() {
// On ARM the IgotPltSection is part of the GotSection.
- if (Config->EMachine == EM_ARM)
+ if (config->emachine == EM_ARM)
return ".got";
// On PowerPC64 the GotPltSection is renamed to '.plt' so the IgotPltSection
// needs to be named the same.
- if (Config->EMachine == EM_PPC64)
+ if (config->emachine == EM_PPC64)
return ".plt";
return ".got.plt";
@@ -1129,130 +1112,110 @@ static StringRef getIgotPltName() {
// with the IgotPltSection.
IgotPltSection::IgotPltSection()
: SyntheticSection(SHF_ALLOC | SHF_WRITE,
- Config->EMachine == EM_PPC64 ? SHT_NOBITS : SHT_PROGBITS,
- Target->GotPltEntrySize, getIgotPltName()) {}
+ config->emachine == EM_PPC64 ? SHT_NOBITS : SHT_PROGBITS,
+ config->wordsize, getIgotPltName()) {}
-void IgotPltSection::addEntry(Symbol &Sym) {
- Sym.IsInIgot = true;
- assert(Sym.PltIndex == Entries.size());
- Entries.push_back(&Sym);
+void IgotPltSection::addEntry(Symbol &sym) {
+ assert(sym.pltIndex == entries.size());
+ entries.push_back(&sym);
}
size_t IgotPltSection::getSize() const {
- return Entries.size() * Target->GotPltEntrySize;
+ return entries.size() * config->wordsize;
}
-void IgotPltSection::writeTo(uint8_t *Buf) {
- for (const Symbol *B : Entries) {
- Target->writeIgotPlt(Buf, *B);
- Buf += Config->Wordsize;
+void IgotPltSection::writeTo(uint8_t *buf) {
+ for (const Symbol *b : entries) {
+ target->writeIgotPlt(buf, *b);
+ buf += config->wordsize;
}
}
-StringTableSection::StringTableSection(StringRef Name, bool Dynamic)
- : SyntheticSection(Dynamic ? (uint64_t)SHF_ALLOC : 0, SHT_STRTAB, 1, Name),
- Dynamic(Dynamic) {
+StringTableSection::StringTableSection(StringRef name, bool dynamic)
+ : SyntheticSection(dynamic ? (uint64_t)SHF_ALLOC : 0, SHT_STRTAB, 1, name),
+ dynamic(dynamic) {
// ELF string tables start with a NUL byte.
addString("");
}
-// Adds a string to the string table. If HashIt is true we hash and check for
+// Adds a string to the string table. If `hashIt` is true we hash and check for
// duplicates. It is optional because the name of global symbols are already
// uniqued and hashing them again has a big cost for a small value: uniquing
// them with some other string that happens to be the same.
-unsigned StringTableSection::addString(StringRef S, bool HashIt) {
- if (HashIt) {
- auto R = StringMap.insert(std::make_pair(S, this->Size));
- if (!R.second)
- return R.first->second;
+unsigned StringTableSection::addString(StringRef s, bool hashIt) {
+ if (hashIt) {
+ auto r = stringMap.insert(std::make_pair(s, this->size));
+ if (!r.second)
+ return r.first->second;
}
- unsigned Ret = this->Size;
- this->Size = this->Size + S.size() + 1;
- Strings.push_back(S);
- return Ret;
+ unsigned ret = this->size;
+ this->size = this->size + s.size() + 1;
+ strings.push_back(s);
+ return ret;
}
-void StringTableSection::writeTo(uint8_t *Buf) {
- for (StringRef S : Strings) {
- memcpy(Buf, S.data(), S.size());
- Buf[S.size()] = '\0';
- Buf += S.size() + 1;
+void StringTableSection::writeTo(uint8_t *buf) {
+ for (StringRef s : strings) {
+ memcpy(buf, s.data(), s.size());
+ buf[s.size()] = '\0';
+ buf += s.size() + 1;
}
}
// Returns the number of version definition entries. Because the first entry
// is for the version definition itself, it is the number of versioned symbols
// plus one. Note that we don't support multiple versions yet.
-static unsigned getVerDefNum() { return Config->VersionDefinitions.size() + 1; }
+static unsigned getVerDefNum() { return config->versionDefinitions.size() + 1; }
template <class ELFT>
DynamicSection<ELFT>::DynamicSection()
- : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_DYNAMIC, Config->Wordsize,
+ : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_DYNAMIC, config->wordsize,
".dynamic") {
- this->Entsize = ELFT::Is64Bits ? 16 : 8;
+ this->entsize = ELFT::Is64Bits ? 16 : 8;
// .dynamic section is not writable on MIPS and on Fuchsia OS
// which passes -z rodynamic.
// See "Special Section" in Chapter 4 in the following document:
// ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
- if (Config->EMachine == EM_MIPS || Config->ZRodynamic)
- this->Flags = SHF_ALLOC;
-
- // Add strings to .dynstr early so that .dynstr's size will be
- // fixed early.
- for (StringRef S : Config->FilterList)
- addInt(DT_FILTER, In.DynStrTab->addString(S));
- for (StringRef S : Config->AuxiliaryList)
- addInt(DT_AUXILIARY, In.DynStrTab->addString(S));
-
- if (!Config->Rpath.empty())
- addInt(Config->EnableNewDtags ? DT_RUNPATH : DT_RPATH,
- In.DynStrTab->addString(Config->Rpath));
-
- for (InputFile *File : SharedFiles) {
- SharedFile<ELFT> *F = cast<SharedFile<ELFT>>(File);
- if (F->IsNeeded)
- addInt(DT_NEEDED, In.DynStrTab->addString(F->SoName));
- }
- if (!Config->SoName.empty())
- addInt(DT_SONAME, In.DynStrTab->addString(Config->SoName));
+ if (config->emachine == EM_MIPS || config->zRodynamic)
+ this->flags = SHF_ALLOC;
}
template <class ELFT>
-void DynamicSection<ELFT>::add(int32_t Tag, std::function<uint64_t()> Fn) {
- Entries.push_back({Tag, Fn});
+void DynamicSection<ELFT>::add(int32_t tag, std::function<uint64_t()> fn) {
+ entries.push_back({tag, fn});
}
template <class ELFT>
-void DynamicSection<ELFT>::addInt(int32_t Tag, uint64_t Val) {
- Entries.push_back({Tag, [=] { return Val; }});
+void DynamicSection<ELFT>::addInt(int32_t tag, uint64_t val) {
+ entries.push_back({tag, [=] { return val; }});
}
template <class ELFT>
-void DynamicSection<ELFT>::addInSec(int32_t Tag, InputSection *Sec) {
- Entries.push_back({Tag, [=] { return Sec->getVA(0); }});
+void DynamicSection<ELFT>::addInSec(int32_t tag, InputSection *sec) {
+ entries.push_back({tag, [=] { return sec->getVA(0); }});
}
template <class ELFT>
-void DynamicSection<ELFT>::addInSecRelative(int32_t Tag, InputSection *Sec) {
- size_t TagOffset = Entries.size() * Entsize;
- Entries.push_back(
- {Tag, [=] { return Sec->getVA(0) - (getVA() + TagOffset); }});
+void DynamicSection<ELFT>::addInSecRelative(int32_t tag, InputSection *sec) {
+ size_t tagOffset = entries.size() * entsize;
+ entries.push_back(
+ {tag, [=] { return sec->getVA(0) - (getVA() + tagOffset); }});
}
template <class ELFT>
-void DynamicSection<ELFT>::addOutSec(int32_t Tag, OutputSection *Sec) {
- Entries.push_back({Tag, [=] { return Sec->Addr; }});
+void DynamicSection<ELFT>::addOutSec(int32_t tag, OutputSection *sec) {
+ entries.push_back({tag, [=] { return sec->addr; }});
}
template <class ELFT>
-void DynamicSection<ELFT>::addSize(int32_t Tag, OutputSection *Sec) {
- Entries.push_back({Tag, [=] { return Sec->Size; }});
+void DynamicSection<ELFT>::addSize(int32_t tag, OutputSection *sec) {
+ entries.push_back({tag, [=] { return sec->size; }});
}
template <class ELFT>
-void DynamicSection<ELFT>::addSym(int32_t Tag, Symbol *Sym) {
- Entries.push_back({Tag, [=] { return Sym->getVA(); }});
+void DynamicSection<ELFT>::addSym(int32_t tag, Symbol *sym) {
+ entries.push_back({tag, [=] { return sym->getVA(); }});
}
// A Linker script may assign the RELA relocation sections to the same
@@ -1260,47 +1223,74 @@ void DynamicSection<ELFT>::addSym(int32_t Tag, Symbol *Sym) {
// Size. Moreover the [DT_JMPREL, DT_JMPREL + DT_PLTRELSZ) is permitted to
// overlap with the [DT_RELA, DT_RELA + DT_RELASZ).
static uint64_t addPltRelSz() {
- size_t Size = In.RelaPlt->getSize();
- if (In.RelaIplt->getParent() == In.RelaPlt->getParent() &&
- In.RelaIplt->Name == In.RelaPlt->Name)
- Size += In.RelaIplt->getSize();
- return Size;
+ size_t size = in.relaPlt->getSize();
+ if (in.relaIplt->getParent() == in.relaPlt->getParent() &&
+ in.relaIplt->name == in.relaPlt->name)
+ size += in.relaIplt->getSize();
+ return size;
}
// Add remaining entries to complete .dynamic contents.
template <class ELFT> void DynamicSection<ELFT>::finalizeContents() {
+ elf::Partition &part = getPartition();
+ bool isMain = part.name.empty();
+
+ for (StringRef s : config->filterList)
+ addInt(DT_FILTER, part.dynStrTab->addString(s));
+ for (StringRef s : config->auxiliaryList)
+ addInt(DT_AUXILIARY, part.dynStrTab->addString(s));
+
+ if (!config->rpath.empty())
+ addInt(config->enableNewDtags ? DT_RUNPATH : DT_RPATH,
+ part.dynStrTab->addString(config->rpath));
+
+ for (SharedFile *file : sharedFiles)
+ if (file->isNeeded)
+ addInt(DT_NEEDED, part.dynStrTab->addString(file->soName));
+
+ if (isMain) {
+ if (!config->soName.empty())
+ addInt(DT_SONAME, part.dynStrTab->addString(config->soName));
+ } else {
+ if (!config->soName.empty())
+ addInt(DT_NEEDED, part.dynStrTab->addString(config->soName));
+ addInt(DT_SONAME, part.dynStrTab->addString(part.name));
+ }
+
// Set DT_FLAGS and DT_FLAGS_1.
- uint32_t DtFlags = 0;
- uint32_t DtFlags1 = 0;
- if (Config->Bsymbolic)
- DtFlags |= DF_SYMBOLIC;
- if (Config->ZGlobal)
- DtFlags1 |= DF_1_GLOBAL;
- if (Config->ZInitfirst)
- DtFlags1 |= DF_1_INITFIRST;
- if (Config->ZInterpose)
- DtFlags1 |= DF_1_INTERPOSE;
- if (Config->ZNodefaultlib)
- DtFlags1 |= DF_1_NODEFLIB;
- if (Config->ZNodelete)
- DtFlags1 |= DF_1_NODELETE;
- if (Config->ZNodlopen)
- DtFlags1 |= DF_1_NOOPEN;
- if (Config->ZNow) {
- DtFlags |= DF_BIND_NOW;
- DtFlags1 |= DF_1_NOW;
- }
- if (Config->ZOrigin) {
- DtFlags |= DF_ORIGIN;
- DtFlags1 |= DF_1_ORIGIN;
- }
- if (!Config->ZText)
- DtFlags |= DF_TEXTREL;
-
- if (DtFlags)
- addInt(DT_FLAGS, DtFlags);
- if (DtFlags1)
- addInt(DT_FLAGS_1, DtFlags1);
+ uint32_t dtFlags = 0;
+ uint32_t dtFlags1 = 0;
+ if (config->bsymbolic)
+ dtFlags |= DF_SYMBOLIC;
+ if (config->zGlobal)
+ dtFlags1 |= DF_1_GLOBAL;
+ if (config->zInitfirst)
+ dtFlags1 |= DF_1_INITFIRST;
+ if (config->zInterpose)
+ dtFlags1 |= DF_1_INTERPOSE;
+ if (config->zNodefaultlib)
+ dtFlags1 |= DF_1_NODEFLIB;
+ if (config->zNodelete)
+ dtFlags1 |= DF_1_NODELETE;
+ if (config->zNodlopen)
+ dtFlags1 |= DF_1_NOOPEN;
+ if (config->zNow) {
+ dtFlags |= DF_BIND_NOW;
+ dtFlags1 |= DF_1_NOW;
+ }
+ if (config->zOrigin) {
+ dtFlags |= DF_ORIGIN;
+ dtFlags1 |= DF_1_ORIGIN;
+ }
+ if (!config->zText)
+ dtFlags |= DF_TEXTREL;
+ if (config->hasStaticTlsModel)
+ dtFlags |= DF_STATIC_TLS;
+
+ if (dtFlags)
+ addInt(DT_FLAGS, dtFlags);
+ if (dtFlags1)
+ addInt(DT_FLAGS_1, dtFlags1);
// DT_DEBUG is a pointer to debug informaion used by debuggers at runtime. We
// need it for each process, so we don't write it for DSOs. The loader writes
@@ -1310,266 +1300,287 @@ template <class ELFT> void DynamicSection<ELFT>::finalizeContents() {
// systems (currently only Fuchsia OS) provide other means to give the
// debugger this information. Such systems may choose make .dynamic read-only.
// If the target is such a system (used -z rodynamic) don't write DT_DEBUG.
- if (!Config->Shared && !Config->Relocatable && !Config->ZRodynamic)
+ if (!config->shared && !config->relocatable && !config->zRodynamic)
addInt(DT_DEBUG, 0);
- if (OutputSection *Sec = In.DynStrTab->getParent())
- this->Link = Sec->SectionIndex;
+ if (OutputSection *sec = part.dynStrTab->getParent())
+ this->link = sec->sectionIndex;
- if (!In.RelaDyn->empty()) {
- addInSec(In.RelaDyn->DynamicTag, In.RelaDyn);
- addSize(In.RelaDyn->SizeDynamicTag, In.RelaDyn->getParent());
+ if (part.relaDyn->isNeeded()) {
+ addInSec(part.relaDyn->dynamicTag, part.relaDyn);
+ addSize(part.relaDyn->sizeDynamicTag, part.relaDyn->getParent());
- bool IsRela = Config->IsRela;
- addInt(IsRela ? DT_RELAENT : DT_RELENT,
- IsRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel));
+ bool isRela = config->isRela;
+ addInt(isRela ? DT_RELAENT : DT_RELENT,
+ isRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel));
// MIPS dynamic loader does not support RELCOUNT tag.
// The problem is in the tight relation between dynamic
// relocations and GOT. So do not emit this tag on MIPS.
- if (Config->EMachine != EM_MIPS) {
- size_t NumRelativeRels = In.RelaDyn->getRelativeRelocCount();
- if (Config->ZCombreloc && NumRelativeRels)
- addInt(IsRela ? DT_RELACOUNT : DT_RELCOUNT, NumRelativeRels);
+ if (config->emachine != EM_MIPS) {
+ size_t numRelativeRels = part.relaDyn->getRelativeRelocCount();
+ if (config->zCombreloc && numRelativeRels)
+ addInt(isRela ? DT_RELACOUNT : DT_RELCOUNT, numRelativeRels);
}
}
- if (In.RelrDyn && !In.RelrDyn->Relocs.empty()) {
- addInSec(Config->UseAndroidRelrTags ? DT_ANDROID_RELR : DT_RELR,
- In.RelrDyn);
- addSize(Config->UseAndroidRelrTags ? DT_ANDROID_RELRSZ : DT_RELRSZ,
- In.RelrDyn->getParent());
- addInt(Config->UseAndroidRelrTags ? DT_ANDROID_RELRENT : DT_RELRENT,
+ if (part.relrDyn && !part.relrDyn->relocs.empty()) {
+ addInSec(config->useAndroidRelrTags ? DT_ANDROID_RELR : DT_RELR,
+ part.relrDyn);
+ addSize(config->useAndroidRelrTags ? DT_ANDROID_RELRSZ : DT_RELRSZ,
+ part.relrDyn->getParent());
+ addInt(config->useAndroidRelrTags ? DT_ANDROID_RELRENT : DT_RELRENT,
sizeof(Elf_Relr));
}
// .rel[a].plt section usually consists of two parts, containing plt and
// iplt relocations. It is possible to have only iplt relocations in the
- // output. In that case RelaPlt is empty and have zero offset, the same offset
- // as RelaIplt have. And we still want to emit proper dynamic tags for that
- // case, so here we always use RelaPlt as marker for the begining of
+ // output. In that case relaPlt is empty and have zero offset, the same offset
+ // as relaIplt has. And we still want to emit proper dynamic tags for that
+ // case, so here we always use relaPlt as marker for the begining of
// .rel[a].plt section.
- if (In.RelaPlt->getParent()->Live) {
- addInSec(DT_JMPREL, In.RelaPlt);
- Entries.push_back({DT_PLTRELSZ, addPltRelSz});
- switch (Config->EMachine) {
+ if (isMain && (in.relaPlt->isNeeded() || in.relaIplt->isNeeded())) {
+ addInSec(DT_JMPREL, in.relaPlt);
+ entries.push_back({DT_PLTRELSZ, addPltRelSz});
+ switch (config->emachine) {
case EM_MIPS:
- addInSec(DT_MIPS_PLTGOT, In.GotPlt);
+ addInSec(DT_MIPS_PLTGOT, in.gotPlt);
break;
case EM_SPARCV9:
- addInSec(DT_PLTGOT, In.Plt);
+ addInSec(DT_PLTGOT, in.plt);
break;
default:
- addInSec(DT_PLTGOT, In.GotPlt);
+ addInSec(DT_PLTGOT, in.gotPlt);
break;
}
- addInt(DT_PLTREL, Config->IsRela ? DT_RELA : DT_REL);
+ addInt(DT_PLTREL, config->isRela ? DT_RELA : DT_REL);
+ }
+
+ if (config->emachine == EM_AARCH64) {
+ if (config->andFeatures & GNU_PROPERTY_AARCH64_FEATURE_1_BTI)
+ addInt(DT_AARCH64_BTI_PLT, 0);
+ if (config->andFeatures & GNU_PROPERTY_AARCH64_FEATURE_1_PAC)
+ addInt(DT_AARCH64_PAC_PLT, 0);
}
- addInSec(DT_SYMTAB, In.DynSymTab);
+ addInSec(DT_SYMTAB, part.dynSymTab);
addInt(DT_SYMENT, sizeof(Elf_Sym));
- addInSec(DT_STRTAB, In.DynStrTab);
- addInt(DT_STRSZ, In.DynStrTab->getSize());
- if (!Config->ZText)
+ addInSec(DT_STRTAB, part.dynStrTab);
+ addInt(DT_STRSZ, part.dynStrTab->getSize());
+ if (!config->zText)
addInt(DT_TEXTREL, 0);
- if (In.GnuHashTab)
- addInSec(DT_GNU_HASH, In.GnuHashTab);
- if (In.HashTab)
- addInSec(DT_HASH, In.HashTab);
-
- if (Out::PreinitArray) {
- addOutSec(DT_PREINIT_ARRAY, Out::PreinitArray);
- addSize(DT_PREINIT_ARRAYSZ, Out::PreinitArray);
- }
- if (Out::InitArray) {
- addOutSec(DT_INIT_ARRAY, Out::InitArray);
- addSize(DT_INIT_ARRAYSZ, Out::InitArray);
- }
- if (Out::FiniArray) {
- addOutSec(DT_FINI_ARRAY, Out::FiniArray);
- addSize(DT_FINI_ARRAYSZ, Out::FiniArray);
- }
-
- if (Symbol *B = Symtab->find(Config->Init))
- if (B->isDefined())
- addSym(DT_INIT, B);
- if (Symbol *B = Symtab->find(Config->Fini))
- if (B->isDefined())
- addSym(DT_FINI, B);
-
- bool HasVerNeed = InX<ELFT>::VerNeed->getNeedNum() != 0;
- if (HasVerNeed || In.VerDef)
- addInSec(DT_VERSYM, InX<ELFT>::VerSym);
- if (In.VerDef) {
- addInSec(DT_VERDEF, In.VerDef);
+ if (part.gnuHashTab)
+ addInSec(DT_GNU_HASH, part.gnuHashTab);
+ if (part.hashTab)
+ addInSec(DT_HASH, part.hashTab);
+
+ if (isMain) {
+ if (Out::preinitArray) {
+ addOutSec(DT_PREINIT_ARRAY, Out::preinitArray);
+ addSize(DT_PREINIT_ARRAYSZ, Out::preinitArray);
+ }
+ if (Out::initArray) {
+ addOutSec(DT_INIT_ARRAY, Out::initArray);
+ addSize(DT_INIT_ARRAYSZ, Out::initArray);
+ }
+ if (Out::finiArray) {
+ addOutSec(DT_FINI_ARRAY, Out::finiArray);
+ addSize(DT_FINI_ARRAYSZ, Out::finiArray);
+ }
+
+ if (Symbol *b = symtab->find(config->init))
+ if (b->isDefined())
+ addSym(DT_INIT, b);
+ if (Symbol *b = symtab->find(config->fini))
+ if (b->isDefined())
+ addSym(DT_FINI, b);
+ }
+
+ bool hasVerNeed = SharedFile::vernauxNum != 0;
+ if (hasVerNeed || part.verDef)
+ addInSec(DT_VERSYM, part.verSym);
+ if (part.verDef) {
+ addInSec(DT_VERDEF, part.verDef);
addInt(DT_VERDEFNUM, getVerDefNum());
}
- if (HasVerNeed) {
- addInSec(DT_VERNEED, InX<ELFT>::VerNeed);
- addInt(DT_VERNEEDNUM, InX<ELFT>::VerNeed->getNeedNum());
+ if (hasVerNeed) {
+ addInSec(DT_VERNEED, part.verNeed);
+ unsigned needNum = 0;
+ for (SharedFile *f : sharedFiles)
+ if (!f->vernauxs.empty())
+ ++needNum;
+ addInt(DT_VERNEEDNUM, needNum);
}
- if (Config->EMachine == EM_MIPS) {
+ if (config->emachine == EM_MIPS) {
addInt(DT_MIPS_RLD_VERSION, 1);
addInt(DT_MIPS_FLAGS, RHF_NOTPOT);
- addInt(DT_MIPS_BASE_ADDRESS, Target->getImageBase());
- addInt(DT_MIPS_SYMTABNO, In.DynSymTab->getNumSymbols());
+ addInt(DT_MIPS_BASE_ADDRESS, target->getImageBase());
+ addInt(DT_MIPS_SYMTABNO, part.dynSymTab->getNumSymbols());
- add(DT_MIPS_LOCAL_GOTNO, [] { return In.MipsGot->getLocalEntriesNum(); });
+ add(DT_MIPS_LOCAL_GOTNO, [] { return in.mipsGot->getLocalEntriesNum(); });
- if (const Symbol *B = In.MipsGot->getFirstGlobalEntry())
- addInt(DT_MIPS_GOTSYM, B->DynsymIndex);
+ if (const Symbol *b = in.mipsGot->getFirstGlobalEntry())
+ addInt(DT_MIPS_GOTSYM, b->dynsymIndex);
else
- addInt(DT_MIPS_GOTSYM, In.DynSymTab->getNumSymbols());
- addInSec(DT_PLTGOT, In.MipsGot);
- if (In.MipsRldMap) {
- if (!Config->Pie)
- addInSec(DT_MIPS_RLD_MAP, In.MipsRldMap);
+ addInt(DT_MIPS_GOTSYM, part.dynSymTab->getNumSymbols());
+ addInSec(DT_PLTGOT, in.mipsGot);
+ if (in.mipsRldMap) {
+ if (!config->pie)
+ addInSec(DT_MIPS_RLD_MAP, in.mipsRldMap);
// Store the offset to the .rld_map section
// relative to the address of the tag.
- addInSecRelative(DT_MIPS_RLD_MAP_REL, In.MipsRldMap);
+ addInSecRelative(DT_MIPS_RLD_MAP_REL, in.mipsRldMap);
}
}
+ // DT_PPC_GOT indicates to glibc Secure PLT is used. If DT_PPC_GOT is absent,
+ // glibc assumes the old-style BSS PLT layout which we don't support.
+ if (config->emachine == EM_PPC)
+ add(DT_PPC_GOT, [] { return in.got->getVA(); });
+
// Glink dynamic tag is required by the V2 abi if the plt section isn't empty.
- if (Config->EMachine == EM_PPC64 && !In.Plt->empty()) {
+ if (config->emachine == EM_PPC64 && in.plt->isNeeded()) {
// The Glink tag points to 32 bytes before the first lazy symbol resolution
// stub, which starts directly after the header.
- Entries.push_back({DT_PPC64_GLINK, [=] {
- unsigned Offset = Target->PltHeaderSize - 32;
- return In.Plt->getVA(0) + Offset;
+ entries.push_back({DT_PPC64_GLINK, [=] {
+ unsigned offset = target->pltHeaderSize - 32;
+ return in.plt->getVA(0) + offset;
}});
}
addInt(DT_NULL, 0);
- getParent()->Link = this->Link;
- this->Size = Entries.size() * this->Entsize;
+ getParent()->link = this->link;
+ this->size = entries.size() * this->entsize;
}
-template <class ELFT> void DynamicSection<ELFT>::writeTo(uint8_t *Buf) {
- auto *P = reinterpret_cast<Elf_Dyn *>(Buf);
+template <class ELFT> void DynamicSection<ELFT>::writeTo(uint8_t *buf) {
+ auto *p = reinterpret_cast<Elf_Dyn *>(buf);
- for (std::pair<int32_t, std::function<uint64_t()>> &KV : Entries) {
- P->d_tag = KV.first;
- P->d_un.d_val = KV.second();
- ++P;
+ for (std::pair<int32_t, std::function<uint64_t()>> &kv : entries) {
+ p->d_tag = kv.first;
+ p->d_un.d_val = kv.second();
+ ++p;
}
}
uint64_t DynamicReloc::getOffset() const {
- return InputSec->getVA(OffsetInSec);
+ return inputSec->getVA(offsetInSec);
}
int64_t DynamicReloc::computeAddend() const {
- if (UseSymVA)
- return Sym->getVA(Addend);
- if (!OutputSec)
- return Addend;
+ if (useSymVA)
+ return sym->getVA(addend);
+ if (!outputSec)
+ return addend;
// See the comment in the DynamicReloc ctor.
- return getMipsPageAddr(OutputSec->Addr) + Addend;
+ return getMipsPageAddr(outputSec->addr) + addend;
}
-uint32_t DynamicReloc::getSymIndex() const {
- if (Sym && !UseSymVA)
- return Sym->DynsymIndex;
+uint32_t DynamicReloc::getSymIndex(SymbolTableBaseSection *symTab) const {
+ if (sym && !useSymVA)
+ return symTab->getSymbolIndex(sym);
return 0;
}
-RelocationBaseSection::RelocationBaseSection(StringRef Name, uint32_t Type,
- int32_t DynamicTag,
- int32_t SizeDynamicTag)
- : SyntheticSection(SHF_ALLOC, Type, Config->Wordsize, Name),
- DynamicTag(DynamicTag), SizeDynamicTag(SizeDynamicTag) {}
+RelocationBaseSection::RelocationBaseSection(StringRef name, uint32_t type,
+ int32_t dynamicTag,
+ int32_t sizeDynamicTag)
+ : SyntheticSection(SHF_ALLOC, type, config->wordsize, name),
+ dynamicTag(dynamicTag), sizeDynamicTag(sizeDynamicTag) {}
-void RelocationBaseSection::addReloc(RelType DynType, InputSectionBase *IS,
- uint64_t OffsetInSec, Symbol *Sym) {
- addReloc({DynType, IS, OffsetInSec, false, Sym, 0});
+void RelocationBaseSection::addReloc(RelType dynType, InputSectionBase *isec,
+ uint64_t offsetInSec, Symbol *sym) {
+ addReloc({dynType, isec, offsetInSec, false, sym, 0});
}
-void RelocationBaseSection::addReloc(RelType DynType,
- InputSectionBase *InputSec,
- uint64_t OffsetInSec, Symbol *Sym,
- int64_t Addend, RelExpr Expr,
- RelType Type) {
+void RelocationBaseSection::addReloc(RelType dynType,
+ InputSectionBase *inputSec,
+ uint64_t offsetInSec, Symbol *sym,
+ int64_t addend, RelExpr expr,
+ RelType type) {
// Write the addends to the relocated address if required. We skip
// it if the written value would be zero.
- if (Config->WriteAddends && (Expr != R_ADDEND || Addend != 0))
- InputSec->Relocations.push_back({Expr, Type, OffsetInSec, Addend, Sym});
- addReloc({DynType, InputSec, OffsetInSec, Expr != R_ADDEND, Sym, Addend});
+ if (config->writeAddends && (expr != R_ADDEND || addend != 0))
+ inputSec->relocations.push_back({expr, type, offsetInSec, addend, sym});
+ addReloc({dynType, inputSec, offsetInSec, expr != R_ADDEND, sym, addend});
}
-void RelocationBaseSection::addReloc(const DynamicReloc &Reloc) {
- if (Reloc.Type == Target->RelativeRel)
- ++NumRelativeRelocs;
- Relocs.push_back(Reloc);
+void RelocationBaseSection::addReloc(const DynamicReloc &reloc) {
+ if (reloc.type == target->relativeRel)
+ ++numRelativeRelocs;
+ relocs.push_back(reloc);
}
void RelocationBaseSection::finalizeContents() {
+ SymbolTableBaseSection *symTab = getPartition().dynSymTab;
+
// When linking glibc statically, .rel{,a}.plt contains R_*_IRELATIVE
// relocations due to IFUNC (e.g. strcpy). sh_link will be set to 0 in that
// case.
- InputSection *SymTab = Config->Relocatable ? In.SymTab : In.DynSymTab;
- if (SymTab && SymTab->getParent())
- getParent()->Link = SymTab->getParent()->SectionIndex;
+ if (symTab && symTab->getParent())
+ getParent()->link = symTab->getParent()->sectionIndex;
else
- getParent()->Link = 0;
+ getParent()->link = 0;
- if (In.RelaIplt == this || In.RelaPlt == this)
- getParent()->Info = In.GotPlt->getParent()->SectionIndex;
+ if (in.relaPlt == this)
+ getParent()->info = in.gotPlt->getParent()->sectionIndex;
+ if (in.relaIplt == this)
+ getParent()->info = in.igotPlt->getParent()->sectionIndex;
}
RelrBaseSection::RelrBaseSection()
: SyntheticSection(SHF_ALLOC,
- Config->UseAndroidRelrTags ? SHT_ANDROID_RELR : SHT_RELR,
- Config->Wordsize, ".relr.dyn") {}
+ config->useAndroidRelrTags ? SHT_ANDROID_RELR : SHT_RELR,
+ config->wordsize, ".relr.dyn") {}
template <class ELFT>
-static void encodeDynamicReloc(typename ELFT::Rela *P,
- const DynamicReloc &Rel) {
- if (Config->IsRela)
- P->r_addend = Rel.computeAddend();
- P->r_offset = Rel.getOffset();
- P->setSymbolAndType(Rel.getSymIndex(), Rel.Type, Config->IsMips64EL);
+static void encodeDynamicReloc(SymbolTableBaseSection *symTab,
+ typename ELFT::Rela *p,
+ const DynamicReloc &rel) {
+ if (config->isRela)
+ p->r_addend = rel.computeAddend();
+ p->r_offset = rel.getOffset();
+ p->setSymbolAndType(rel.getSymIndex(symTab), rel.type, config->isMips64EL);
}
template <class ELFT>
-RelocationSection<ELFT>::RelocationSection(StringRef Name, bool Sort)
- : RelocationBaseSection(Name, Config->IsRela ? SHT_RELA : SHT_REL,
- Config->IsRela ? DT_RELA : DT_REL,
- Config->IsRela ? DT_RELASZ : DT_RELSZ),
- Sort(Sort) {
- this->Entsize = Config->IsRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel);
+RelocationSection<ELFT>::RelocationSection(StringRef name, bool sort)
+ : RelocationBaseSection(name, config->isRela ? SHT_RELA : SHT_REL,
+ config->isRela ? DT_RELA : DT_REL,
+ config->isRela ? DT_RELASZ : DT_RELSZ),
+ sort(sort) {
+ this->entsize = config->isRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel);
}
-static bool compRelocations(const DynamicReloc &A, const DynamicReloc &B) {
- bool AIsRel = A.Type == Target->RelativeRel;
- bool BIsRel = B.Type == Target->RelativeRel;
- if (AIsRel != BIsRel)
- return AIsRel;
- return A.getSymIndex() < B.getSymIndex();
-}
+template <class ELFT> void RelocationSection<ELFT>::writeTo(uint8_t *buf) {
+ SymbolTableBaseSection *symTab = getPartition().dynSymTab;
-template <class ELFT> void RelocationSection<ELFT>::writeTo(uint8_t *Buf) {
- if (Sort)
- std::stable_sort(Relocs.begin(), Relocs.end(), compRelocations);
+ // Sort by (!IsRelative,SymIndex,r_offset). DT_REL[A]COUNT requires us to
+ // place R_*_RELATIVE first. SymIndex is to improve locality, while r_offset
+ // is to make results easier to read.
+ if (sort)
+ llvm::stable_sort(
+ relocs, [&](const DynamicReloc &a, const DynamicReloc &b) {
+ return std::make_tuple(a.type != target->relativeRel,
+ a.getSymIndex(symTab), a.getOffset()) <
+ std::make_tuple(b.type != target->relativeRel,
+ b.getSymIndex(symTab), b.getOffset());
+ });
- for (const DynamicReloc &Rel : Relocs) {
- encodeDynamicReloc<ELFT>(reinterpret_cast<Elf_Rela *>(Buf), Rel);
- Buf += Config->IsRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel);
+ for (const DynamicReloc &rel : relocs) {
+ encodeDynamicReloc<ELFT>(symTab, reinterpret_cast<Elf_Rela *>(buf), rel);
+ buf += config->isRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel);
}
}
-template <class ELFT> unsigned RelocationSection<ELFT>::getRelocOffset() {
- return this->Entsize * Relocs.size();
-}
-
template <class ELFT>
AndroidPackedRelocationSection<ELFT>::AndroidPackedRelocationSection(
- StringRef Name)
+ StringRef name)
: RelocationBaseSection(
- Name, Config->IsRela ? SHT_ANDROID_RELA : SHT_ANDROID_REL,
- Config->IsRela ? DT_ANDROID_RELA : DT_ANDROID_REL,
- Config->IsRela ? DT_ANDROID_RELASZ : DT_ANDROID_RELSZ) {
- this->Entsize = 1;
+ name, config->isRela ? SHT_ANDROID_RELA : SHT_ANDROID_REL,
+ config->isRela ? DT_ANDROID_RELA : DT_ANDROID_REL,
+ config->isRela ? DT_ANDROID_RELASZ : DT_ANDROID_RELSZ) {
+ this->entsize = 1;
}
template <class ELFT>
@@ -1619,32 +1630,32 @@ bool AndroidPackedRelocationSection<ELFT>::updateAllocSize() {
// RELOCATION_GROUPED_BY_ADDEND_FLAG is not set) the r_addend delta for
// this relocation.
- size_t OldSize = RelocData.size();
+ size_t oldSize = relocData.size();
- RelocData = {'A', 'P', 'S', '2'};
- raw_svector_ostream OS(RelocData);
- auto Add = [&](int64_t V) { encodeSLEB128(V, OS); };
+ relocData = {'A', 'P', 'S', '2'};
+ raw_svector_ostream os(relocData);
+ auto add = [&](int64_t v) { encodeSLEB128(v, os); };
// The format header includes the number of relocations and the initial
// offset (we set this to zero because the first relocation group will
// perform the initial adjustment).
- Add(Relocs.size());
- Add(0);
+ add(relocs.size());
+ add(0);
- std::vector<Elf_Rela> Relatives, NonRelatives;
+ std::vector<Elf_Rela> relatives, nonRelatives;
- for (const DynamicReloc &Rel : Relocs) {
- Elf_Rela R;
- encodeDynamicReloc<ELFT>(&R, Rel);
+ for (const DynamicReloc &rel : relocs) {
+ Elf_Rela r;
+ encodeDynamicReloc<ELFT>(getPartition().dynSymTab, &r, rel);
- if (R.getType(Config->IsMips64EL) == Target->RelativeRel)
- Relatives.push_back(R);
+ if (r.getType(config->isMips64EL) == target->relativeRel)
+ relatives.push_back(r);
else
- NonRelatives.push_back(R);
+ nonRelatives.push_back(r);
}
- llvm::sort(Relatives, [](const Elf_Rel &A, const Elf_Rel &B) {
- return A.r_offset < B.r_offset;
+ llvm::sort(relatives, [](const Elf_Rel &a, const Elf_Rel &b) {
+ return a.r_offset < b.r_offset;
});
// Try to find groups of relative relocations which are spaced one word
@@ -1653,108 +1664,108 @@ bool AndroidPackedRelocationSection<ELFT>::updateAllocSize() {
// encoding, but each group will cost 7 bytes in addition to the offset from
// the previous group, so it is only profitable to do this for groups of
// size 8 or larger.
- std::vector<Elf_Rela> UngroupedRelatives;
- std::vector<std::vector<Elf_Rela>> RelativeGroups;
- for (auto I = Relatives.begin(), E = Relatives.end(); I != E;) {
- std::vector<Elf_Rela> Group;
+ std::vector<Elf_Rela> ungroupedRelatives;
+ std::vector<std::vector<Elf_Rela>> relativeGroups;
+ for (auto i = relatives.begin(), e = relatives.end(); i != e;) {
+ std::vector<Elf_Rela> group;
do {
- Group.push_back(*I++);
- } while (I != E && (I - 1)->r_offset + Config->Wordsize == I->r_offset);
+ group.push_back(*i++);
+ } while (i != e && (i - 1)->r_offset + config->wordsize == i->r_offset);
- if (Group.size() < 8)
- UngroupedRelatives.insert(UngroupedRelatives.end(), Group.begin(),
- Group.end());
+ if (group.size() < 8)
+ ungroupedRelatives.insert(ungroupedRelatives.end(), group.begin(),
+ group.end());
else
- RelativeGroups.emplace_back(std::move(Group));
+ relativeGroups.emplace_back(std::move(group));
}
- unsigned HasAddendIfRela =
- Config->IsRela ? RELOCATION_GROUP_HAS_ADDEND_FLAG : 0;
+ unsigned hasAddendIfRela =
+ config->isRela ? RELOCATION_GROUP_HAS_ADDEND_FLAG : 0;
- uint64_t Offset = 0;
- uint64_t Addend = 0;
+ uint64_t offset = 0;
+ uint64_t addend = 0;
// Emit the run-length encoding for the groups of adjacent relative
// relocations. Each group is represented using two groups in the packed
// format. The first is used to set the current offset to the start of the
// group (and also encodes the first relocation), and the second encodes the
// remaining relocations.
- for (std::vector<Elf_Rela> &G : RelativeGroups) {
+ for (std::vector<Elf_Rela> &g : relativeGroups) {
// The first relocation in the group.
- Add(1);
- Add(RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG |
- RELOCATION_GROUPED_BY_INFO_FLAG | HasAddendIfRela);
- Add(G[0].r_offset - Offset);
- Add(Target->RelativeRel);
- if (Config->IsRela) {
- Add(G[0].r_addend - Addend);
- Addend = G[0].r_addend;
+ add(1);
+ add(RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG |
+ RELOCATION_GROUPED_BY_INFO_FLAG | hasAddendIfRela);
+ add(g[0].r_offset - offset);
+ add(target->relativeRel);
+ if (config->isRela) {
+ add(g[0].r_addend - addend);
+ addend = g[0].r_addend;
}
// The remaining relocations.
- Add(G.size() - 1);
- Add(RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG |
- RELOCATION_GROUPED_BY_INFO_FLAG | HasAddendIfRela);
- Add(Config->Wordsize);
- Add(Target->RelativeRel);
- if (Config->IsRela) {
- for (auto I = G.begin() + 1, E = G.end(); I != E; ++I) {
- Add(I->r_addend - Addend);
- Addend = I->r_addend;
+ add(g.size() - 1);
+ add(RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG |
+ RELOCATION_GROUPED_BY_INFO_FLAG | hasAddendIfRela);
+ add(config->wordsize);
+ add(target->relativeRel);
+ if (config->isRela) {
+ for (auto i = g.begin() + 1, e = g.end(); i != e; ++i) {
+ add(i->r_addend - addend);
+ addend = i->r_addend;
}
}
- Offset = G.back().r_offset;
+ offset = g.back().r_offset;
}
// Now the ungrouped relatives.
- if (!UngroupedRelatives.empty()) {
- Add(UngroupedRelatives.size());
- Add(RELOCATION_GROUPED_BY_INFO_FLAG | HasAddendIfRela);
- Add(Target->RelativeRel);
- for (Elf_Rela &R : UngroupedRelatives) {
- Add(R.r_offset - Offset);
- Offset = R.r_offset;
- if (Config->IsRela) {
- Add(R.r_addend - Addend);
- Addend = R.r_addend;
+ if (!ungroupedRelatives.empty()) {
+ add(ungroupedRelatives.size());
+ add(RELOCATION_GROUPED_BY_INFO_FLAG | hasAddendIfRela);
+ add(target->relativeRel);
+ for (Elf_Rela &r : ungroupedRelatives) {
+ add(r.r_offset - offset);
+ offset = r.r_offset;
+ if (config->isRela) {
+ add(r.r_addend - addend);
+ addend = r.r_addend;
}
}
}
// Finally the non-relative relocations.
- llvm::sort(NonRelatives, [](const Elf_Rela &A, const Elf_Rela &B) {
- return A.r_offset < B.r_offset;
+ llvm::sort(nonRelatives, [](const Elf_Rela &a, const Elf_Rela &b) {
+ return a.r_offset < b.r_offset;
});
- if (!NonRelatives.empty()) {
- Add(NonRelatives.size());
- Add(HasAddendIfRela);
- for (Elf_Rela &R : NonRelatives) {
- Add(R.r_offset - Offset);
- Offset = R.r_offset;
- Add(R.r_info);
- if (Config->IsRela) {
- Add(R.r_addend - Addend);
- Addend = R.r_addend;
+ if (!nonRelatives.empty()) {
+ add(nonRelatives.size());
+ add(hasAddendIfRela);
+ for (Elf_Rela &r : nonRelatives) {
+ add(r.r_offset - offset);
+ offset = r.r_offset;
+ add(r.r_info);
+ if (config->isRela) {
+ add(r.r_addend - addend);
+ addend = r.r_addend;
}
}
}
// Don't allow the section to shrink; otherwise the size of the section can
// oscillate infinitely.
- if (RelocData.size() < OldSize)
- RelocData.append(OldSize - RelocData.size(), 0);
+ if (relocData.size() < oldSize)
+ relocData.append(oldSize - relocData.size(), 0);
// Returns whether the section size changed. We need to keep recomputing both
// section layout and the contents of this section until the size converges
// because changing this section's size can affect section layout, which in
// turn can affect the sizes of the LEB-encoded integers stored in this
// section.
- return RelocData.size() != OldSize;
+ return relocData.size() != oldSize;
}
template <class ELFT> RelrSection<ELFT>::RelrSection() {
- this->Entsize = Config->Wordsize;
+ this->entsize = config->wordsize;
}
template <class ELFT> bool RelrSection<ELFT>::updateAllocSize() {
@@ -1788,90 +1799,90 @@ template <class ELFT> bool RelrSection<ELFT>::updateAllocSize() {
// even means address, odd means bitmap.
// 2. Just a simple list of addresses is a valid encoding.
- size_t OldSize = RelrRelocs.size();
- RelrRelocs.clear();
+ size_t oldSize = relrRelocs.size();
+ relrRelocs.clear();
// Same as Config->Wordsize but faster because this is a compile-time
// constant.
- const size_t Wordsize = sizeof(typename ELFT::uint);
+ const size_t wordsize = sizeof(typename ELFT::uint);
// Number of bits to use for the relocation offsets bitmap.
// Must be either 63 or 31.
- const size_t NBits = Wordsize * 8 - 1;
+ const size_t nBits = wordsize * 8 - 1;
// Get offsets for all relative relocations and sort them.
- std::vector<uint64_t> Offsets;
- for (const RelativeReloc &Rel : Relocs)
- Offsets.push_back(Rel.getOffset());
- llvm::sort(Offsets.begin(), Offsets.end());
+ std::vector<uint64_t> offsets;
+ for (const RelativeReloc &rel : relocs)
+ offsets.push_back(rel.getOffset());
+ llvm::sort(offsets);
// For each leading relocation, find following ones that can be folded
// as a bitmap and fold them.
- for (size_t I = 0, E = Offsets.size(); I < E;) {
+ for (size_t i = 0, e = offsets.size(); i < e;) {
// Add a leading relocation.
- RelrRelocs.push_back(Elf_Relr(Offsets[I]));
- uint64_t Base = Offsets[I] + Wordsize;
- ++I;
+ relrRelocs.push_back(Elf_Relr(offsets[i]));
+ uint64_t base = offsets[i] + wordsize;
+ ++i;
// Find foldable relocations to construct bitmaps.
- while (I < E) {
- uint64_t Bitmap = 0;
+ while (i < e) {
+ uint64_t bitmap = 0;
- while (I < E) {
- uint64_t Delta = Offsets[I] - Base;
+ while (i < e) {
+ uint64_t delta = offsets[i] - base;
// If it is too far, it cannot be folded.
- if (Delta >= NBits * Wordsize)
+ if (delta >= nBits * wordsize)
break;
// If it is not a multiple of wordsize away, it cannot be folded.
- if (Delta % Wordsize)
+ if (delta % wordsize)
break;
// Fold it.
- Bitmap |= 1ULL << (Delta / Wordsize);
- ++I;
+ bitmap |= 1ULL << (delta / wordsize);
+ ++i;
}
- if (!Bitmap)
+ if (!bitmap)
break;
- RelrRelocs.push_back(Elf_Relr((Bitmap << 1) | 1));
- Base += NBits * Wordsize;
+ relrRelocs.push_back(Elf_Relr((bitmap << 1) | 1));
+ base += nBits * wordsize;
}
}
- return RelrRelocs.size() != OldSize;
+ return relrRelocs.size() != oldSize;
}
-SymbolTableBaseSection::SymbolTableBaseSection(StringTableSection &StrTabSec)
- : SyntheticSection(StrTabSec.isDynamic() ? (uint64_t)SHF_ALLOC : 0,
- StrTabSec.isDynamic() ? SHT_DYNSYM : SHT_SYMTAB,
- Config->Wordsize,
- StrTabSec.isDynamic() ? ".dynsym" : ".symtab"),
- StrTabSec(StrTabSec) {}
+SymbolTableBaseSection::SymbolTableBaseSection(StringTableSection &strTabSec)
+ : SyntheticSection(strTabSec.isDynamic() ? (uint64_t)SHF_ALLOC : 0,
+ strTabSec.isDynamic() ? SHT_DYNSYM : SHT_SYMTAB,
+ config->wordsize,
+ strTabSec.isDynamic() ? ".dynsym" : ".symtab"),
+ strTabSec(strTabSec) {}
// Orders symbols according to their positions in the GOT,
// in compliance with MIPS ABI rules.
// See "Global Offset Table" in Chapter 5 in the following document
// for detailed description:
// ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
-static bool sortMipsSymbols(const SymbolTableEntry &L,
- const SymbolTableEntry &R) {
+static bool sortMipsSymbols(const SymbolTableEntry &l,
+ const SymbolTableEntry &r) {
// Sort entries related to non-local preemptible symbols by GOT indexes.
// All other entries go to the beginning of a dynsym in arbitrary order.
- if (L.Sym->isInGot() && R.Sym->isInGot())
- return L.Sym->GotIndex < R.Sym->GotIndex;
- if (!L.Sym->isInGot() && !R.Sym->isInGot())
+ if (l.sym->isInGot() && r.sym->isInGot())
+ return l.sym->gotIndex < r.sym->gotIndex;
+ if (!l.sym->isInGot() && !r.sym->isInGot())
return false;
- return !L.Sym->isInGot();
+ return !l.sym->isInGot();
}
void SymbolTableBaseSection::finalizeContents() {
- if (OutputSection *Sec = StrTabSec.getParent())
- getParent()->Link = Sec->SectionIndex;
+ if (OutputSection *sec = strTabSec.getParent())
+ getParent()->link = sec->sectionIndex;
- if (this->Type != SHT_DYNSYM) {
+ if (this->type != SHT_DYNSYM) {
sortSymTabSymbols();
return;
}
@@ -1881,18 +1892,22 @@ void SymbolTableBaseSection::finalizeContents() {
// Section's Info field has the index of the first non-local symbol.
// Because the first symbol entry is a null entry, 1 is the first.
- getParent()->Info = 1;
+ getParent()->info = 1;
- if (In.GnuHashTab) {
+ if (getPartition().gnuHashTab) {
// NB: It also sorts Symbols to meet the GNU hash table requirements.
- In.GnuHashTab->addSymbols(Symbols);
- } else if (Config->EMachine == EM_MIPS) {
- std::stable_sort(Symbols.begin(), Symbols.end(), sortMipsSymbols);
+ getPartition().gnuHashTab->addSymbols(symbols);
+ } else if (config->emachine == EM_MIPS) {
+ llvm::stable_sort(symbols, sortMipsSymbols);
}
- size_t I = 0;
- for (const SymbolTableEntry &S : Symbols)
- S.Sym->DynsymIndex = ++I;
+ // Only the main partition's dynsym indexes are stored in the symbols
+ // themselves. All other partitions use a lookup table.
+ if (this == mainPart->dynSymTab) {
+ size_t i = 0;
+ for (const SymbolTableEntry &s : symbols)
+ s.sym->dynsymIndex = ++i;
+ }
}
// The ELF spec requires that all local symbols precede global symbols, so we
@@ -1904,193 +1919,210 @@ void SymbolTableBaseSection::finalizeContents() {
// coming from.
void SymbolTableBaseSection::sortSymTabSymbols() {
// Move all local symbols before global symbols.
- auto E = std::stable_partition(
- Symbols.begin(), Symbols.end(), [](const SymbolTableEntry &S) {
- return S.Sym->isLocal() || S.Sym->computeBinding() == STB_LOCAL;
+ auto e = std::stable_partition(
+ symbols.begin(), symbols.end(), [](const SymbolTableEntry &s) {
+ return s.sym->isLocal() || s.sym->computeBinding() == STB_LOCAL;
});
- size_t NumLocals = E - Symbols.begin();
- getParent()->Info = NumLocals + 1;
+ size_t numLocals = e - symbols.begin();
+ getParent()->info = numLocals + 1;
// We want to group the local symbols by file. For that we rebuild the local
// part of the symbols vector. We do not need to care about the STT_FILE
// symbols, they are already naturally placed first in each group. That
// happens because STT_FILE is always the first symbol in the object and hence
// precede all other local symbols we add for a file.
- MapVector<InputFile *, std::vector<SymbolTableEntry>> Arr;
- for (const SymbolTableEntry &S : llvm::make_range(Symbols.begin(), E))
- Arr[S.Sym->File].push_back(S);
+ MapVector<InputFile *, std::vector<SymbolTableEntry>> arr;
+ for (const SymbolTableEntry &s : llvm::make_range(symbols.begin(), e))
+ arr[s.sym->file].push_back(s);
- auto I = Symbols.begin();
- for (std::pair<InputFile *, std::vector<SymbolTableEntry>> &P : Arr)
- for (SymbolTableEntry &Entry : P.second)
- *I++ = Entry;
+ auto i = symbols.begin();
+ for (std::pair<InputFile *, std::vector<SymbolTableEntry>> &p : arr)
+ for (SymbolTableEntry &entry : p.second)
+ *i++ = entry;
}
-void SymbolTableBaseSection::addSymbol(Symbol *B) {
+void SymbolTableBaseSection::addSymbol(Symbol *b) {
// Adding a local symbol to a .dynsym is a bug.
- assert(this->Type != SHT_DYNSYM || !B->isLocal());
+ assert(this->type != SHT_DYNSYM || !b->isLocal());
- bool HashIt = B->isLocal();
- Symbols.push_back({B, StrTabSec.addString(B->getName(), HashIt)});
+ bool hashIt = b->isLocal();
+ symbols.push_back({b, strTabSec.addString(b->getName(), hashIt)});
}
-size_t SymbolTableBaseSection::getSymbolIndex(Symbol *Sym) {
- // Initializes symbol lookup tables lazily. This is used only
- // for -r or -emit-relocs.
- llvm::call_once(OnceFlag, [&] {
- SymbolIndexMap.reserve(Symbols.size());
- size_t I = 0;
- for (const SymbolTableEntry &E : Symbols) {
- if (E.Sym->Type == STT_SECTION)
- SectionIndexMap[E.Sym->getOutputSection()] = ++I;
+size_t SymbolTableBaseSection::getSymbolIndex(Symbol *sym) {
+ if (this == mainPart->dynSymTab)
+ return sym->dynsymIndex;
+
+ // Initializes symbol lookup tables lazily. This is used only for -r,
+ // -emit-relocs and dynsyms in partitions other than the main one.
+ llvm::call_once(onceFlag, [&] {
+ symbolIndexMap.reserve(symbols.size());
+ size_t i = 0;
+ for (const SymbolTableEntry &e : symbols) {
+ if (e.sym->type == STT_SECTION)
+ sectionIndexMap[e.sym->getOutputSection()] = ++i;
else
- SymbolIndexMap[E.Sym] = ++I;
+ symbolIndexMap[e.sym] = ++i;
}
});
// Section symbols are mapped based on their output sections
// to maintain their semantics.
- if (Sym->Type == STT_SECTION)
- return SectionIndexMap.lookup(Sym->getOutputSection());
- return SymbolIndexMap.lookup(Sym);
+ if (sym->type == STT_SECTION)
+ return sectionIndexMap.lookup(sym->getOutputSection());
+ return symbolIndexMap.lookup(sym);
}
template <class ELFT>
-SymbolTableSection<ELFT>::SymbolTableSection(StringTableSection &StrTabSec)
- : SymbolTableBaseSection(StrTabSec) {
- this->Entsize = sizeof(Elf_Sym);
+SymbolTableSection<ELFT>::SymbolTableSection(StringTableSection &strTabSec)
+ : SymbolTableBaseSection(strTabSec) {
+ this->entsize = sizeof(Elf_Sym);
}
-static BssSection *getCommonSec(Symbol *Sym) {
- if (!Config->DefineCommon)
- if (auto *D = dyn_cast<Defined>(Sym))
- return dyn_cast_or_null<BssSection>(D->Section);
+static BssSection *getCommonSec(Symbol *sym) {
+ if (!config->defineCommon)
+ if (auto *d = dyn_cast<Defined>(sym))
+ return dyn_cast_or_null<BssSection>(d->section);
return nullptr;
}
-static uint32_t getSymSectionIndex(Symbol *Sym) {
- if (getCommonSec(Sym))
+static uint32_t getSymSectionIndex(Symbol *sym) {
+ if (getCommonSec(sym))
return SHN_COMMON;
- if (!isa<Defined>(Sym) || Sym->NeedsPltAddr)
+ if (!isa<Defined>(sym) || sym->needsPltAddr)
return SHN_UNDEF;
- if (const OutputSection *OS = Sym->getOutputSection())
- return OS->SectionIndex >= SHN_LORESERVE ? (uint32_t)SHN_XINDEX
- : OS->SectionIndex;
+ if (const OutputSection *os = sym->getOutputSection())
+ return os->sectionIndex >= SHN_LORESERVE ? (uint32_t)SHN_XINDEX
+ : os->sectionIndex;
return SHN_ABS;
}
// Write the internal symbol table contents to the output symbol table.
-template <class ELFT> void SymbolTableSection<ELFT>::writeTo(uint8_t *Buf) {
+template <class ELFT> void SymbolTableSection<ELFT>::writeTo(uint8_t *buf) {
// The first entry is a null entry as per the ELF spec.
- memset(Buf, 0, sizeof(Elf_Sym));
- Buf += sizeof(Elf_Sym);
+ memset(buf, 0, sizeof(Elf_Sym));
+ buf += sizeof(Elf_Sym);
- auto *ESym = reinterpret_cast<Elf_Sym *>(Buf);
+ auto *eSym = reinterpret_cast<Elf_Sym *>(buf);
- for (SymbolTableEntry &Ent : Symbols) {
- Symbol *Sym = Ent.Sym;
+ for (SymbolTableEntry &ent : symbols) {
+ Symbol *sym = ent.sym;
+ bool isDefinedHere = type == SHT_SYMTAB || sym->partition == partition;
// Set st_info and st_other.
- ESym->st_other = 0;
- if (Sym->isLocal()) {
- ESym->setBindingAndType(STB_LOCAL, Sym->Type);
+ eSym->st_other = 0;
+ if (sym->isLocal()) {
+ eSym->setBindingAndType(STB_LOCAL, sym->type);
} else {
- ESym->setBindingAndType(Sym->computeBinding(), Sym->Type);
- ESym->setVisibility(Sym->Visibility);
+ eSym->setBindingAndType(sym->computeBinding(), sym->type);
+ eSym->setVisibility(sym->visibility);
}
- ESym->st_name = Ent.StrTabOffset;
- ESym->st_shndx = getSymSectionIndex(Ent.Sym);
+ // The 3 most significant bits of st_other are used by OpenPOWER ABI.
+ // See getPPC64GlobalEntryToLocalEntryOffset() for more details.
+ if (config->emachine == EM_PPC64)
+ eSym->st_other |= sym->stOther & 0xe0;
+
+ eSym->st_name = ent.strTabOffset;
+ if (isDefinedHere)
+ eSym->st_shndx = getSymSectionIndex(ent.sym);
+ else
+ eSym->st_shndx = 0;
// Copy symbol size if it is a defined symbol. st_size is not significant
// for undefined symbols, so whether copying it or not is up to us if that's
// the case. We'll leave it as zero because by not setting a value, we can
// get the exact same outputs for two sets of input files that differ only
// in undefined symbol size in DSOs.
- if (ESym->st_shndx == SHN_UNDEF)
- ESym->st_size = 0;
+ if (eSym->st_shndx == SHN_UNDEF || !isDefinedHere)
+ eSym->st_size = 0;
else
- ESym->st_size = Sym->getSize();
+ eSym->st_size = sym->getSize();
// st_value is usually an address of a symbol, but that has a
// special meaining for uninstantiated common symbols (this can
// occur if -r is given).
- if (BssSection *CommonSec = getCommonSec(Ent.Sym))
- ESym->st_value = CommonSec->Alignment;
+ if (BssSection *commonSec = getCommonSec(ent.sym))
+ eSym->st_value = commonSec->alignment;
+ else if (isDefinedHere)
+ eSym->st_value = sym->getVA();
else
- ESym->st_value = Sym->getVA();
+ eSym->st_value = 0;
- ++ESym;
+ ++eSym;
}
// On MIPS we need to mark symbol which has a PLT entry and requires
// pointer equality by STO_MIPS_PLT flag. That is necessary to help
// dynamic linker distinguish such symbols and MIPS lazy-binding stubs.
// https://sourceware.org/ml/binutils/2008-07/txt00000.txt
- if (Config->EMachine == EM_MIPS) {
- auto *ESym = reinterpret_cast<Elf_Sym *>(Buf);
+ if (config->emachine == EM_MIPS) {
+ auto *eSym = reinterpret_cast<Elf_Sym *>(buf);
- for (SymbolTableEntry &Ent : Symbols) {
- Symbol *Sym = Ent.Sym;
- if (Sym->isInPlt() && Sym->NeedsPltAddr)
- ESym->st_other |= STO_MIPS_PLT;
+ for (SymbolTableEntry &ent : symbols) {
+ Symbol *sym = ent.sym;
+ if (sym->isInPlt() && sym->needsPltAddr)
+ eSym->st_other |= STO_MIPS_PLT;
if (isMicroMips()) {
- // Set STO_MIPS_MICROMIPS flag and less-significant bit for
- // a defined microMIPS symbol and symbol should point to its
- // PLT entry (in case of microMIPS, PLT entries always contain
- // microMIPS code).
- if (Sym->isDefined() &&
- ((Sym->StOther & STO_MIPS_MICROMIPS) || Sym->NeedsPltAddr)) {
- if (StrTabSec.isDynamic())
- ESym->st_value |= 1;
- ESym->st_other |= STO_MIPS_MICROMIPS;
+ // We already set the less-significant bit for symbols
+ // marked by the `STO_MIPS_MICROMIPS` flag and for microMIPS PLT
+ // records. That allows us to distinguish such symbols in
+ // the `MIPS<ELFT>::relocateOne()` routine. Now we should
+ // clear that bit for non-dynamic symbol table, so tools
+ // like `objdump` will be able to deal with a correct
+ // symbol position.
+ if (sym->isDefined() &&
+ ((sym->stOther & STO_MIPS_MICROMIPS) || sym->needsPltAddr)) {
+ if (!strTabSec.isDynamic())
+ eSym->st_value &= ~1;
+ eSym->st_other |= STO_MIPS_MICROMIPS;
}
}
- if (Config->Relocatable)
- if (auto *D = dyn_cast<Defined>(Sym))
- if (isMipsPIC<ELFT>(D))
- ESym->st_other |= STO_MIPS_PIC;
- ++ESym;
+ if (config->relocatable)
+ if (auto *d = dyn_cast<Defined>(sym))
+ if (isMipsPIC<ELFT>(d))
+ eSym->st_other |= STO_MIPS_PIC;
+ ++eSym;
}
}
}
SymtabShndxSection::SymtabShndxSection()
- : SyntheticSection(0, SHT_SYMTAB_SHNDX, 4, ".symtab_shndxr") {
- this->Entsize = 4;
+ : SyntheticSection(0, SHT_SYMTAB_SHNDX, 4, ".symtab_shndx") {
+ this->entsize = 4;
}
-void SymtabShndxSection::writeTo(uint8_t *Buf) {
+void SymtabShndxSection::writeTo(uint8_t *buf) {
// We write an array of 32 bit values, where each value has 1:1 association
// with an entry in .symtab. If the corresponding entry contains SHN_XINDEX,
// we need to write actual index, otherwise, we must write SHN_UNDEF(0).
- Buf += 4; // Ignore .symtab[0] entry.
- for (const SymbolTableEntry &Entry : In.SymTab->getSymbols()) {
- if (getSymSectionIndex(Entry.Sym) == SHN_XINDEX)
- write32(Buf, Entry.Sym->getOutputSection()->SectionIndex);
- Buf += 4;
+ buf += 4; // Ignore .symtab[0] entry.
+ for (const SymbolTableEntry &entry : in.symTab->getSymbols()) {
+ if (getSymSectionIndex(entry.sym) == SHN_XINDEX)
+ write32(buf, entry.sym->getOutputSection()->sectionIndex);
+ buf += 4;
}
}
-bool SymtabShndxSection::empty() const {
+bool SymtabShndxSection::isNeeded() const {
// SHT_SYMTAB can hold symbols with section indices values up to
// SHN_LORESERVE. If we need more, we want to use extension SHT_SYMTAB_SHNDX
// section. Problem is that we reveal the final section indices a bit too
// late, and we do not know them here. For simplicity, we just always create
- // a .symtab_shndxr section when the amount of output sections is huge.
- size_t Size = 0;
- for (BaseCommand *Base : Script->SectionCommands)
- if (isa<OutputSection>(Base))
- ++Size;
- return Size < SHN_LORESERVE;
+ // a .symtab_shndx section when the amount of output sections is huge.
+ size_t size = 0;
+ for (BaseCommand *base : script->sectionCommands)
+ if (isa<OutputSection>(base))
+ ++size;
+ return size >= SHN_LORESERVE;
}
void SymtabShndxSection::finalizeContents() {
- getParent()->Link = In.SymTab->getParent()->SectionIndex;
+ getParent()->link = in.symTab->getParent()->sectionIndex;
}
size_t SymtabShndxSection::getSize() const {
- return In.SymTab->getNumSymbols() * 4;
+ return in.symTab->getNumSymbols() * 4;
}
// .hash and .gnu.hash sections contain on-disk hash tables that map
@@ -2125,45 +2157,45 @@ size_t SymtabShndxSection::getSize() const {
// about .gnu.hash, you want to specify -hash-style=gnu. Otherwise, a
// safe bet is to specify -hash-style=both for backward compatibilty.
GnuHashTableSection::GnuHashTableSection()
- : SyntheticSection(SHF_ALLOC, SHT_GNU_HASH, Config->Wordsize, ".gnu.hash") {
+ : SyntheticSection(SHF_ALLOC, SHT_GNU_HASH, config->wordsize, ".gnu.hash") {
}
void GnuHashTableSection::finalizeContents() {
- if (OutputSection *Sec = In.DynSymTab->getParent())
- getParent()->Link = Sec->SectionIndex;
+ if (OutputSection *sec = getPartition().dynSymTab->getParent())
+ getParent()->link = sec->sectionIndex;
// Computes bloom filter size in word size. We want to allocate 12
// bits for each symbol. It must be a power of two.
- if (Symbols.empty()) {
- MaskWords = 1;
+ if (symbols.empty()) {
+ maskWords = 1;
} else {
- uint64_t NumBits = Symbols.size() * 12;
- MaskWords = NextPowerOf2(NumBits / (Config->Wordsize * 8));
+ uint64_t numBits = symbols.size() * 12;
+ maskWords = NextPowerOf2(numBits / (config->wordsize * 8));
}
- Size = 16; // Header
- Size += Config->Wordsize * MaskWords; // Bloom filter
- Size += NBuckets * 4; // Hash buckets
- Size += Symbols.size() * 4; // Hash values
+ size = 16; // Header
+ size += config->wordsize * maskWords; // Bloom filter
+ size += nBuckets * 4; // Hash buckets
+ size += symbols.size() * 4; // Hash values
}
-void GnuHashTableSection::writeTo(uint8_t *Buf) {
+void GnuHashTableSection::writeTo(uint8_t *buf) {
// The output buffer is not guaranteed to be zero-cleared because we pre-
// fill executable sections with trap instructions. This is a precaution
// for that case, which happens only when -no-rosegment is given.
- memset(Buf, 0, Size);
+ memset(buf, 0, size);
// Write a header.
- write32(Buf, NBuckets);
- write32(Buf + 4, In.DynSymTab->getNumSymbols() - Symbols.size());
- write32(Buf + 8, MaskWords);
- write32(Buf + 12, Shift2);
- Buf += 16;
+ write32(buf, nBuckets);
+ write32(buf + 4, getPartition().dynSymTab->getNumSymbols() - symbols.size());
+ write32(buf + 8, maskWords);
+ write32(buf + 12, Shift2);
+ buf += 16;
// Write a bloom filter and a hash table.
- writeBloomFilter(Buf);
- Buf += Config->Wordsize * MaskWords;
- writeHashTable(Buf);
+ writeBloomFilter(buf);
+ buf += config->wordsize * maskWords;
+ writeHashTable(buf);
}
// This function writes a 2-bit bloom filter. This bloom filter alone
@@ -2173,57 +2205,58 @@ void GnuHashTableSection::writeTo(uint8_t *Buf) {
//
// [1] Ulrich Drepper (2011), "How To Write Shared Libraries" (Ver. 4.1.2),
// p.9, https://www.akkadia.org/drepper/dsohowto.pdf
-void GnuHashTableSection::writeBloomFilter(uint8_t *Buf) {
- unsigned C = Config->Is64 ? 64 : 32;
- for (const Entry &Sym : Symbols) {
+void GnuHashTableSection::writeBloomFilter(uint8_t *buf) {
+ unsigned c = config->is64 ? 64 : 32;
+ for (const Entry &sym : symbols) {
// When C = 64, we choose a word with bits [6:...] and set 1 to two bits in
// the word using bits [0:5] and [26:31].
- size_t I = (Sym.Hash / C) & (MaskWords - 1);
- uint64_t Val = readUint(Buf + I * Config->Wordsize);
- Val |= uint64_t(1) << (Sym.Hash % C);
- Val |= uint64_t(1) << ((Sym.Hash >> Shift2) % C);
- writeUint(Buf + I * Config->Wordsize, Val);
+ size_t i = (sym.hash / c) & (maskWords - 1);
+ uint64_t val = readUint(buf + i * config->wordsize);
+ val |= uint64_t(1) << (sym.hash % c);
+ val |= uint64_t(1) << ((sym.hash >> Shift2) % c);
+ writeUint(buf + i * config->wordsize, val);
}
}
-void GnuHashTableSection::writeHashTable(uint8_t *Buf) {
- uint32_t *Buckets = reinterpret_cast<uint32_t *>(Buf);
- uint32_t OldBucket = -1;
- uint32_t *Values = Buckets + NBuckets;
- for (auto I = Symbols.begin(), E = Symbols.end(); I != E; ++I) {
+void GnuHashTableSection::writeHashTable(uint8_t *buf) {
+ uint32_t *buckets = reinterpret_cast<uint32_t *>(buf);
+ uint32_t oldBucket = -1;
+ uint32_t *values = buckets + nBuckets;
+ for (auto i = symbols.begin(), e = symbols.end(); i != e; ++i) {
// Write a hash value. It represents a sequence of chains that share the
// same hash modulo value. The last element of each chain is terminated by
// LSB 1.
- uint32_t Hash = I->Hash;
- bool IsLastInChain = (I + 1) == E || I->BucketIdx != (I + 1)->BucketIdx;
- Hash = IsLastInChain ? Hash | 1 : Hash & ~1;
- write32(Values++, Hash);
+ uint32_t hash = i->hash;
+ bool isLastInChain = (i + 1) == e || i->bucketIdx != (i + 1)->bucketIdx;
+ hash = isLastInChain ? hash | 1 : hash & ~1;
+ write32(values++, hash);
- if (I->BucketIdx == OldBucket)
+ if (i->bucketIdx == oldBucket)
continue;
// Write a hash bucket. Hash buckets contain indices in the following hash
// value table.
- write32(Buckets + I->BucketIdx, I->Sym->DynsymIndex);
- OldBucket = I->BucketIdx;
+ write32(buckets + i->bucketIdx,
+ getPartition().dynSymTab->getSymbolIndex(i->sym));
+ oldBucket = i->bucketIdx;
}
}
-static uint32_t hashGnu(StringRef Name) {
- uint32_t H = 5381;
- for (uint8_t C : Name)
- H = (H << 5) + H + C;
- return H;
+static uint32_t hashGnu(StringRef name) {
+ uint32_t h = 5381;
+ for (uint8_t c : name)
+ h = (h << 5) + h + c;
+ return h;
}
// Add symbols to this symbol hash table. Note that this function
// destructively sort a given vector -- which is needed because
// GNU-style hash table places some sorting requirements.
-void GnuHashTableSection::addSymbols(std::vector<SymbolTableEntry> &V) {
+void GnuHashTableSection::addSymbols(std::vector<SymbolTableEntry> &v) {
// We cannot use 'auto' for Mid because GCC 6.1 cannot deduce
// its type correctly.
- std::vector<SymbolTableEntry>::iterator Mid =
- std::stable_partition(V.begin(), V.end(), [](const SymbolTableEntry &S) {
- return !S.Sym->isDefined();
+ std::vector<SymbolTableEntry>::iterator mid =
+ std::stable_partition(v.begin(), v.end(), [&](const SymbolTableEntry &s) {
+ return !s.sym->isDefined() || s.sym->partition != partition;
});
// We chose load factor 4 for the on-disk hash table. For each hash
@@ -2235,138 +2268,143 @@ void GnuHashTableSection::addSymbols(std::vector<SymbolTableEntry> &V) {
// Android loader as of 2018 doesn't like a .gnu.hash containing such
// table. If that's the case, we create a hash table with one unused
// dummy slot.
- NBuckets = std::max<size_t>((V.end() - Mid) / 4, 1);
+ nBuckets = std::max<size_t>((v.end() - mid) / 4, 1);
- if (Mid == V.end())
+ if (mid == v.end())
return;
- for (SymbolTableEntry &Ent : llvm::make_range(Mid, V.end())) {
- Symbol *B = Ent.Sym;
- uint32_t Hash = hashGnu(B->getName());
- uint32_t BucketIdx = Hash % NBuckets;
- Symbols.push_back({B, Ent.StrTabOffset, Hash, BucketIdx});
+ for (SymbolTableEntry &ent : llvm::make_range(mid, v.end())) {
+ Symbol *b = ent.sym;
+ uint32_t hash = hashGnu(b->getName());
+ uint32_t bucketIdx = hash % nBuckets;
+ symbols.push_back({b, ent.strTabOffset, hash, bucketIdx});
}
- std::stable_sort(
- Symbols.begin(), Symbols.end(),
- [](const Entry &L, const Entry &R) { return L.BucketIdx < R.BucketIdx; });
+ llvm::stable_sort(symbols, [](const Entry &l, const Entry &r) {
+ return l.bucketIdx < r.bucketIdx;
+ });
- V.erase(Mid, V.end());
- for (const Entry &Ent : Symbols)
- V.push_back({Ent.Sym, Ent.StrTabOffset});
+ v.erase(mid, v.end());
+ for (const Entry &ent : symbols)
+ v.push_back({ent.sym, ent.strTabOffset});
}
HashTableSection::HashTableSection()
: SyntheticSection(SHF_ALLOC, SHT_HASH, 4, ".hash") {
- this->Entsize = 4;
+ this->entsize = 4;
}
void HashTableSection::finalizeContents() {
- if (OutputSection *Sec = In.DynSymTab->getParent())
- getParent()->Link = Sec->SectionIndex;
+ SymbolTableBaseSection *symTab = getPartition().dynSymTab;
- unsigned NumEntries = 2; // nbucket and nchain.
- NumEntries += In.DynSymTab->getNumSymbols(); // The chain entries.
+ if (OutputSection *sec = symTab->getParent())
+ getParent()->link = sec->sectionIndex;
+
+ unsigned numEntries = 2; // nbucket and nchain.
+ numEntries += symTab->getNumSymbols(); // The chain entries.
// Create as many buckets as there are symbols.
- NumEntries += In.DynSymTab->getNumSymbols();
- this->Size = NumEntries * 4;
+ numEntries += symTab->getNumSymbols();
+ this->size = numEntries * 4;
}
-void HashTableSection::writeTo(uint8_t *Buf) {
+void HashTableSection::writeTo(uint8_t *buf) {
+ SymbolTableBaseSection *symTab = getPartition().dynSymTab;
+
// See comment in GnuHashTableSection::writeTo.
- memset(Buf, 0, Size);
+ memset(buf, 0, size);
- unsigned NumSymbols = In.DynSymTab->getNumSymbols();
+ unsigned numSymbols = symTab->getNumSymbols();
- uint32_t *P = reinterpret_cast<uint32_t *>(Buf);
- write32(P++, NumSymbols); // nbucket
- write32(P++, NumSymbols); // nchain
+ uint32_t *p = reinterpret_cast<uint32_t *>(buf);
+ write32(p++, numSymbols); // nbucket
+ write32(p++, numSymbols); // nchain
- uint32_t *Buckets = P;
- uint32_t *Chains = P + NumSymbols;
+ uint32_t *buckets = p;
+ uint32_t *chains = p + numSymbols;
- for (const SymbolTableEntry &S : In.DynSymTab->getSymbols()) {
- Symbol *Sym = S.Sym;
- StringRef Name = Sym->getName();
- unsigned I = Sym->DynsymIndex;
- uint32_t Hash = hashSysV(Name) % NumSymbols;
- Chains[I] = Buckets[Hash];
- write32(Buckets + Hash, I);
+ for (const SymbolTableEntry &s : symTab->getSymbols()) {
+ Symbol *sym = s.sym;
+ StringRef name = sym->getName();
+ unsigned i = sym->dynsymIndex;
+ uint32_t hash = hashSysV(name) % numSymbols;
+ chains[i] = buckets[hash];
+ write32(buckets + hash, i);
}
}
// On PowerPC64 the lazy symbol resolvers go into the `global linkage table`
// in the .glink section, rather then the typical .plt section.
-PltSection::PltSection(bool IsIplt)
- : SyntheticSection(SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS, 16,
- Config->EMachine == EM_PPC64 ? ".glink" : ".plt"),
- HeaderSize(!IsIplt || Config->ZRetpolineplt ? Target->PltHeaderSize : 0),
- IsIplt(IsIplt) {
+PltSection::PltSection(bool isIplt)
+ : SyntheticSection(
+ SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS, 16,
+ (config->emachine == EM_PPC || config->emachine == EM_PPC64)
+ ? ".glink"
+ : ".plt"),
+ headerSize(!isIplt || config->zRetpolineplt ? target->pltHeaderSize : 0),
+ isIplt(isIplt) {
// The PLT needs to be writable on SPARC as the dynamic linker will
// modify the instructions in the PLT entries.
- if (Config->EMachine == EM_SPARCV9)
- this->Flags |= SHF_WRITE;
+ if (config->emachine == EM_SPARCV9)
+ this->flags |= SHF_WRITE;
}
-void PltSection::writeTo(uint8_t *Buf) {
+void PltSection::writeTo(uint8_t *buf) {
+ if (config->emachine == EM_PPC) {
+ writePPC32GlinkSection(buf, entries.size());
+ return;
+ }
+
// At beginning of PLT or retpoline IPLT, we have code to call the dynamic
// linker to resolve dynsyms at runtime. Write such code.
- if (HeaderSize > 0)
- Target->writePltHeader(Buf);
- size_t Off = HeaderSize;
- // The IPlt is immediately after the Plt, account for this in RelOff
- unsigned PltOff = getPltRelocOff();
+ if (headerSize)
+ target->writePltHeader(buf);
+ size_t off = headerSize;
+
+ RelocationBaseSection *relSec = isIplt ? in.relaIplt : in.relaPlt;
- for (auto &I : Entries) {
- const Symbol *B = I.first;
- unsigned RelOff = I.second + PltOff;
- uint64_t Got = B->getGotPltVA();
- uint64_t Plt = this->getVA() + Off;
- Target->writePlt(Buf + Off, Got, Plt, B->PltIndex, RelOff);
- Off += Target->PltEntrySize;
+ // The IPlt is immediately after the Plt, account for this in relOff
+ size_t pltOff = isIplt ? in.plt->getSize() : 0;
+
+ for (size_t i = 0, e = entries.size(); i != e; ++i) {
+ const Symbol *b = entries[i];
+ unsigned relOff = relSec->entsize * i + pltOff;
+ uint64_t got = b->getGotPltVA();
+ uint64_t plt = this->getVA() + off;
+ target->writePlt(buf + off, got, plt, b->pltIndex, relOff);
+ off += target->pltEntrySize;
}
}
-template <class ELFT> void PltSection::addEntry(Symbol &Sym) {
- Sym.PltIndex = Entries.size();
- RelocationBaseSection *PltRelocSection = In.RelaPlt;
- if (IsIplt) {
- PltRelocSection = In.RelaIplt;
- Sym.IsInIplt = true;
- }
- unsigned RelOff =
- static_cast<RelocationSection<ELFT> *>(PltRelocSection)->getRelocOffset();
- Entries.push_back(std::make_pair(&Sym, RelOff));
+template <class ELFT> void PltSection::addEntry(Symbol &sym) {
+ sym.pltIndex = entries.size();
+ entries.push_back(&sym);
}
size_t PltSection::getSize() const {
- return HeaderSize + Entries.size() * Target->PltEntrySize;
+ return headerSize + entries.size() * target->pltEntrySize;
}
// Some architectures such as additional symbols in the PLT section. For
// example ARM uses mapping symbols to aid disassembly
void PltSection::addSymbols() {
// The PLT may have symbols defined for the Header, the IPLT has no header
- if (!IsIplt)
- Target->addPltHeaderSymbols(*this);
- size_t Off = HeaderSize;
- for (size_t I = 0; I < Entries.size(); ++I) {
- Target->addPltSymbols(*this, Off);
- Off += Target->PltEntrySize;
- }
-}
+ if (!isIplt)
+ target->addPltHeaderSymbols(*this);
-unsigned PltSection::getPltRelocOff() const {
- return IsIplt ? In.Plt->getSize() : 0;
+ size_t off = headerSize;
+ for (size_t i = 0; i < entries.size(); ++i) {
+ target->addPltSymbols(*this, off);
+ off += target->pltEntrySize;
+ }
}
// The string hash function for .gdb_index.
-static uint32_t computeGdbHash(StringRef S) {
- uint32_t H = 0;
- for (uint8_t C : S)
- H = H * 67 + toLower(C) - 113;
- return H;
+static uint32_t computeGdbHash(StringRef s) {
+ uint32_t h = 0;
+ for (uint8_t c : s)
+ h = h * 67 + toLower(c) - 113;
+ return h;
}
GdbIndexSection::GdbIndexSection()
@@ -2375,367 +2413,384 @@ GdbIndexSection::GdbIndexSection()
// Returns the desired size of an on-disk hash table for a .gdb_index section.
// There's a tradeoff between size and collision rate. We aim 75% utilization.
size_t GdbIndexSection::computeSymtabSize() const {
- return std::max<size_t>(NextPowerOf2(Symbols.size() * 4 / 3), 1024);
+ return std::max<size_t>(NextPowerOf2(symbols.size() * 4 / 3), 1024);
}
// Compute the output section size.
void GdbIndexSection::initOutputSize() {
- Size = sizeof(GdbIndexHeader) + computeSymtabSize() * 8;
+ size = sizeof(GdbIndexHeader) + computeSymtabSize() * 8;
- for (GdbChunk &Chunk : Chunks)
- Size += Chunk.CompilationUnits.size() * 16 + Chunk.AddressAreas.size() * 20;
+ for (GdbChunk &chunk : chunks)
+ size += chunk.compilationUnits.size() * 16 + chunk.addressAreas.size() * 20;
// Add the constant pool size if exists.
- if (!Symbols.empty()) {
- GdbSymbol &Sym = Symbols.back();
- Size += Sym.NameOff + Sym.Name.size() + 1;
+ if (!symbols.empty()) {
+ GdbSymbol &sym = symbols.back();
+ size += sym.nameOff + sym.name.size() + 1;
}
}
static std::vector<InputSection *> getDebugInfoSections() {
- std::vector<InputSection *> Ret;
- for (InputSectionBase *S : InputSections)
- if (InputSection *IS = dyn_cast<InputSection>(S))
- if (IS->Name == ".debug_info")
- Ret.push_back(IS);
- return Ret;
+ std::vector<InputSection *> ret;
+ for (InputSectionBase *s : inputSections)
+ if (InputSection *isec = dyn_cast<InputSection>(s))
+ if (isec->name == ".debug_info")
+ ret.push_back(isec);
+ return ret;
}
-static std::vector<GdbIndexSection::CuEntry> readCuList(DWARFContext &Dwarf) {
- std::vector<GdbIndexSection::CuEntry> Ret;
- for (std::unique_ptr<DWARFUnit> &Cu : Dwarf.compile_units())
- Ret.push_back({Cu->getOffset(), Cu->getLength() + 4});
- return Ret;
+static std::vector<GdbIndexSection::CuEntry> readCuList(DWARFContext &dwarf) {
+ std::vector<GdbIndexSection::CuEntry> ret;
+ for (std::unique_ptr<DWARFUnit> &cu : dwarf.compile_units())
+ ret.push_back({cu->getOffset(), cu->getLength() + 4});
+ return ret;
}
static std::vector<GdbIndexSection::AddressEntry>
-readAddressAreas(DWARFContext &Dwarf, InputSection *Sec) {
- std::vector<GdbIndexSection::AddressEntry> Ret;
-
- uint32_t CuIdx = 0;
- for (std::unique_ptr<DWARFUnit> &Cu : Dwarf.compile_units()) {
- Expected<DWARFAddressRangesVector> Ranges = Cu->collectAddressRanges();
- if (!Ranges) {
- error(toString(Sec) + ": " + toString(Ranges.takeError()));
+readAddressAreas(DWARFContext &dwarf, InputSection *sec) {
+ std::vector<GdbIndexSection::AddressEntry> ret;
+
+ uint32_t cuIdx = 0;
+ for (std::unique_ptr<DWARFUnit> &cu : dwarf.compile_units()) {
+ Expected<DWARFAddressRangesVector> ranges = cu->collectAddressRanges();
+ if (!ranges) {
+ error(toString(sec) + ": " + toString(ranges.takeError()));
return {};
}
- ArrayRef<InputSectionBase *> Sections = Sec->File->getSections();
- for (DWARFAddressRange &R : *Ranges) {
- InputSectionBase *S = Sections[R.SectionIndex];
- if (!S || S == &InputSection::Discarded || !S->Live)
+ ArrayRef<InputSectionBase *> sections = sec->file->getSections();
+ for (DWARFAddressRange &r : *ranges) {
+ if (r.SectionIndex == -1ULL)
+ continue;
+ InputSectionBase *s = sections[r.SectionIndex];
+ if (!s || s == &InputSection::discarded || !s->isLive())
continue;
// Range list with zero size has no effect.
- if (R.LowPC == R.HighPC)
+ if (r.LowPC == r.HighPC)
continue;
- auto *IS = cast<InputSection>(S);
- uint64_t Offset = IS->getOffsetInFile();
- Ret.push_back({IS, R.LowPC - Offset, R.HighPC - Offset, CuIdx});
+ auto *isec = cast<InputSection>(s);
+ uint64_t offset = isec->getOffsetInFile();
+ ret.push_back({isec, r.LowPC - offset, r.HighPC - offset, cuIdx});
}
- ++CuIdx;
+ ++cuIdx;
}
- return Ret;
+ return ret;
}
template <class ELFT>
static std::vector<GdbIndexSection::NameAttrEntry>
-readPubNamesAndTypes(const LLDDwarfObj<ELFT> &Obj,
- const std::vector<GdbIndexSection::CuEntry> &CUs) {
- const DWARFSection &PubNames = Obj.getGnuPubNamesSection();
- const DWARFSection &PubTypes = Obj.getGnuPubTypesSection();
-
- std::vector<GdbIndexSection::NameAttrEntry> Ret;
- for (const DWARFSection *Pub : {&PubNames, &PubTypes}) {
- DWARFDebugPubTable Table(Obj, *Pub, Config->IsLE, true);
- for (const DWARFDebugPubTable::Set &Set : Table.getData()) {
- // The value written into the constant pool is Kind << 24 | CuIndex. As we
+readPubNamesAndTypes(const LLDDwarfObj<ELFT> &obj,
+ const std::vector<GdbIndexSection::CuEntry> &cUs) {
+ const DWARFSection &pubNames = obj.getGnuPubNamesSection();
+ const DWARFSection &pubTypes = obj.getGnuPubTypesSection();
+
+ std::vector<GdbIndexSection::NameAttrEntry> ret;
+ for (const DWARFSection *pub : {&pubNames, &pubTypes}) {
+ DWARFDebugPubTable table(obj, *pub, config->isLE, true);
+ for (const DWARFDebugPubTable::Set &set : table.getData()) {
+ // The value written into the constant pool is kind << 24 | cuIndex. As we
// don't know how many compilation units precede this object to compute
- // CuIndex, we compute (Kind << 24 | CuIndexInThisObject) instead, and add
+ // cuIndex, we compute (kind << 24 | cuIndexInThisObject) instead, and add
// the number of preceding compilation units later.
- uint32_t I =
- lower_bound(CUs, Set.Offset,
- [](GdbIndexSection::CuEntry CU, uint32_t Offset) {
- return CU.CuOffset < Offset;
+ uint32_t i =
+ lower_bound(cUs, set.Offset,
+ [](GdbIndexSection::CuEntry cu, uint32_t offset) {
+ return cu.cuOffset < offset;
}) -
- CUs.begin();
- for (const DWARFDebugPubTable::Entry &Ent : Set.Entries)
- Ret.push_back({{Ent.Name, computeGdbHash(Ent.Name)},
- (Ent.Descriptor.toBits() << 24) | I});
+ cUs.begin();
+ for (const DWARFDebugPubTable::Entry &ent : set.Entries)
+ ret.push_back({{ent.Name, computeGdbHash(ent.Name)},
+ (ent.Descriptor.toBits() << 24) | i});
}
}
- return Ret;
+ return ret;
}
// Create a list of symbols from a given list of symbol names and types
// by uniquifying them by name.
static std::vector<GdbIndexSection::GdbSymbol>
-createSymbols(ArrayRef<std::vector<GdbIndexSection::NameAttrEntry>> NameAttrs,
- const std::vector<GdbIndexSection::GdbChunk> &Chunks) {
- typedef GdbIndexSection::GdbSymbol GdbSymbol;
- typedef GdbIndexSection::NameAttrEntry NameAttrEntry;
+createSymbols(ArrayRef<std::vector<GdbIndexSection::NameAttrEntry>> nameAttrs,
+ const std::vector<GdbIndexSection::GdbChunk> &chunks) {
+ using GdbSymbol = GdbIndexSection::GdbSymbol;
+ using NameAttrEntry = GdbIndexSection::NameAttrEntry;
// For each chunk, compute the number of compilation units preceding it.
- uint32_t CuIdx = 0;
- std::vector<uint32_t> CuIdxs(Chunks.size());
- for (uint32_t I = 0, E = Chunks.size(); I != E; ++I) {
- CuIdxs[I] = CuIdx;
- CuIdx += Chunks[I].CompilationUnits.size();
+ uint32_t cuIdx = 0;
+ std::vector<uint32_t> cuIdxs(chunks.size());
+ for (uint32_t i = 0, e = chunks.size(); i != e; ++i) {
+ cuIdxs[i] = cuIdx;
+ cuIdx += chunks[i].compilationUnits.size();
}
// The number of symbols we will handle in this function is of the order
// of millions for very large executables, so we use multi-threading to
// speed it up.
- size_t NumShards = 32;
- size_t Concurrency = 1;
- if (ThreadsEnabled)
- Concurrency =
- std::min<size_t>(PowerOf2Floor(hardware_concurrency()), NumShards);
+ size_t numShards = 32;
+ size_t concurrency = 1;
+ if (threadsEnabled)
+ concurrency =
+ std::min<size_t>(PowerOf2Floor(hardware_concurrency()), numShards);
// A sharded map to uniquify symbols by name.
- std::vector<DenseMap<CachedHashStringRef, size_t>> Map(NumShards);
- size_t Shift = 32 - countTrailingZeros(NumShards);
+ std::vector<DenseMap<CachedHashStringRef, size_t>> map(numShards);
+ size_t shift = 32 - countTrailingZeros(numShards);
// Instantiate GdbSymbols while uniqufying them by name.
- std::vector<std::vector<GdbSymbol>> Symbols(NumShards);
- parallelForEachN(0, Concurrency, [&](size_t ThreadId) {
- uint32_t I = 0;
- for (ArrayRef<NameAttrEntry> Entries : NameAttrs) {
- for (const NameAttrEntry &Ent : Entries) {
- size_t ShardId = Ent.Name.hash() >> Shift;
- if ((ShardId & (Concurrency - 1)) != ThreadId)
+ std::vector<std::vector<GdbSymbol>> symbols(numShards);
+ parallelForEachN(0, concurrency, [&](size_t threadId) {
+ uint32_t i = 0;
+ for (ArrayRef<NameAttrEntry> entries : nameAttrs) {
+ for (const NameAttrEntry &ent : entries) {
+ size_t shardId = ent.name.hash() >> shift;
+ if ((shardId & (concurrency - 1)) != threadId)
continue;
- uint32_t V = Ent.CuIndexAndAttrs + CuIdxs[I];
- size_t &Idx = Map[ShardId][Ent.Name];
- if (Idx) {
- Symbols[ShardId][Idx - 1].CuVector.push_back(V);
+ uint32_t v = ent.cuIndexAndAttrs + cuIdxs[i];
+ size_t &idx = map[shardId][ent.name];
+ if (idx) {
+ symbols[shardId][idx - 1].cuVector.push_back(v);
continue;
}
- Idx = Symbols[ShardId].size() + 1;
- Symbols[ShardId].push_back({Ent.Name, {V}, 0, 0});
+ idx = symbols[shardId].size() + 1;
+ symbols[shardId].push_back({ent.name, {v}, 0, 0});
}
- ++I;
+ ++i;
}
});
- size_t NumSymbols = 0;
- for (ArrayRef<GdbSymbol> V : Symbols)
- NumSymbols += V.size();
+ size_t numSymbols = 0;
+ for (ArrayRef<GdbSymbol> v : symbols)
+ numSymbols += v.size();
// The return type is a flattened vector, so we'll copy each vector
// contents to Ret.
- std::vector<GdbSymbol> Ret;
- Ret.reserve(NumSymbols);
- for (std::vector<GdbSymbol> &Vec : Symbols)
- for (GdbSymbol &Sym : Vec)
- Ret.push_back(std::move(Sym));
+ std::vector<GdbSymbol> ret;
+ ret.reserve(numSymbols);
+ for (std::vector<GdbSymbol> &vec : symbols)
+ for (GdbSymbol &sym : vec)
+ ret.push_back(std::move(sym));
// CU vectors and symbol names are adjacent in the output file.
// We can compute their offsets in the output file now.
- size_t Off = 0;
- for (GdbSymbol &Sym : Ret) {
- Sym.CuVectorOff = Off;
- Off += (Sym.CuVector.size() + 1) * 4;
+ size_t off = 0;
+ for (GdbSymbol &sym : ret) {
+ sym.cuVectorOff = off;
+ off += (sym.cuVector.size() + 1) * 4;
}
- for (GdbSymbol &Sym : Ret) {
- Sym.NameOff = Off;
- Off += Sym.Name.size() + 1;
+ for (GdbSymbol &sym : ret) {
+ sym.nameOff = off;
+ off += sym.name.size() + 1;
}
- return Ret;
+ return ret;
}
// Returns a newly-created .gdb_index section.
template <class ELFT> GdbIndexSection *GdbIndexSection::create() {
- std::vector<InputSection *> Sections = getDebugInfoSections();
+ std::vector<InputSection *> sections = getDebugInfoSections();
// .debug_gnu_pub{names,types} are useless in executables.
// They are present in input object files solely for creating
// a .gdb_index. So we can remove them from the output.
- for (InputSectionBase *S : InputSections)
- if (S->Name == ".debug_gnu_pubnames" || S->Name == ".debug_gnu_pubtypes")
- S->Live = false;
-
- std::vector<GdbChunk> Chunks(Sections.size());
- std::vector<std::vector<NameAttrEntry>> NameAttrs(Sections.size());
-
- parallelForEachN(0, Sections.size(), [&](size_t I) {
- ObjFile<ELFT> *File = Sections[I]->getFile<ELFT>();
- DWARFContext Dwarf(make_unique<LLDDwarfObj<ELFT>>(File));
-
- Chunks[I].Sec = Sections[I];
- Chunks[I].CompilationUnits = readCuList(Dwarf);
- Chunks[I].AddressAreas = readAddressAreas(Dwarf, Sections[I]);
- NameAttrs[I] = readPubNamesAndTypes<ELFT>(
- static_cast<const LLDDwarfObj<ELFT> &>(Dwarf.getDWARFObj()),
- Chunks[I].CompilationUnits);
+ for (InputSectionBase *s : inputSections)
+ if (s->name == ".debug_gnu_pubnames" || s->name == ".debug_gnu_pubtypes")
+ s->markDead();
+
+ std::vector<GdbChunk> chunks(sections.size());
+ std::vector<std::vector<NameAttrEntry>> nameAttrs(sections.size());
+
+ parallelForEachN(0, sections.size(), [&](size_t i) {
+ ObjFile<ELFT> *file = sections[i]->getFile<ELFT>();
+ DWARFContext dwarf(make_unique<LLDDwarfObj<ELFT>>(file));
+
+ chunks[i].sec = sections[i];
+ chunks[i].compilationUnits = readCuList(dwarf);
+ chunks[i].addressAreas = readAddressAreas(dwarf, sections[i]);
+ nameAttrs[i] = readPubNamesAndTypes<ELFT>(
+ static_cast<const LLDDwarfObj<ELFT> &>(dwarf.getDWARFObj()),
+ chunks[i].compilationUnits);
});
- auto *Ret = make<GdbIndexSection>();
- Ret->Chunks = std::move(Chunks);
- Ret->Symbols = createSymbols(NameAttrs, Ret->Chunks);
- Ret->initOutputSize();
- return Ret;
+ auto *ret = make<GdbIndexSection>();
+ ret->chunks = std::move(chunks);
+ ret->symbols = createSymbols(nameAttrs, ret->chunks);
+ ret->initOutputSize();
+ return ret;
}
-void GdbIndexSection::writeTo(uint8_t *Buf) {
+void GdbIndexSection::writeTo(uint8_t *buf) {
// Write the header.
- auto *Hdr = reinterpret_cast<GdbIndexHeader *>(Buf);
- uint8_t *Start = Buf;
- Hdr->Version = 7;
- Buf += sizeof(*Hdr);
+ auto *hdr = reinterpret_cast<GdbIndexHeader *>(buf);
+ uint8_t *start = buf;
+ hdr->version = 7;
+ buf += sizeof(*hdr);
// Write the CU list.
- Hdr->CuListOff = Buf - Start;
- for (GdbChunk &Chunk : Chunks) {
- for (CuEntry &Cu : Chunk.CompilationUnits) {
- write64le(Buf, Chunk.Sec->OutSecOff + Cu.CuOffset);
- write64le(Buf + 8, Cu.CuLength);
- Buf += 16;
+ hdr->cuListOff = buf - start;
+ for (GdbChunk &chunk : chunks) {
+ for (CuEntry &cu : chunk.compilationUnits) {
+ write64le(buf, chunk.sec->outSecOff + cu.cuOffset);
+ write64le(buf + 8, cu.cuLength);
+ buf += 16;
}
}
// Write the address area.
- Hdr->CuTypesOff = Buf - Start;
- Hdr->AddressAreaOff = Buf - Start;
- uint32_t CuOff = 0;
- for (GdbChunk &Chunk : Chunks) {
- for (AddressEntry &E : Chunk.AddressAreas) {
- uint64_t BaseAddr = E.Section->getVA(0);
- write64le(Buf, BaseAddr + E.LowAddress);
- write64le(Buf + 8, BaseAddr + E.HighAddress);
- write32le(Buf + 16, E.CuIndex + CuOff);
- Buf += 20;
+ hdr->cuTypesOff = buf - start;
+ hdr->addressAreaOff = buf - start;
+ uint32_t cuOff = 0;
+ for (GdbChunk &chunk : chunks) {
+ for (AddressEntry &e : chunk.addressAreas) {
+ uint64_t baseAddr = e.section->getVA(0);
+ write64le(buf, baseAddr + e.lowAddress);
+ write64le(buf + 8, baseAddr + e.highAddress);
+ write32le(buf + 16, e.cuIndex + cuOff);
+ buf += 20;
}
- CuOff += Chunk.CompilationUnits.size();
+ cuOff += chunk.compilationUnits.size();
}
// Write the on-disk open-addressing hash table containing symbols.
- Hdr->SymtabOff = Buf - Start;
- size_t SymtabSize = computeSymtabSize();
- uint32_t Mask = SymtabSize - 1;
+ hdr->symtabOff = buf - start;
+ size_t symtabSize = computeSymtabSize();
+ uint32_t mask = symtabSize - 1;
- for (GdbSymbol &Sym : Symbols) {
- uint32_t H = Sym.Name.hash();
- uint32_t I = H & Mask;
- uint32_t Step = ((H * 17) & Mask) | 1;
+ for (GdbSymbol &sym : symbols) {
+ uint32_t h = sym.name.hash();
+ uint32_t i = h & mask;
+ uint32_t step = ((h * 17) & mask) | 1;
- while (read32le(Buf + I * 8))
- I = (I + Step) & Mask;
+ while (read32le(buf + i * 8))
+ i = (i + step) & mask;
- write32le(Buf + I * 8, Sym.NameOff);
- write32le(Buf + I * 8 + 4, Sym.CuVectorOff);
+ write32le(buf + i * 8, sym.nameOff);
+ write32le(buf + i * 8 + 4, sym.cuVectorOff);
}
- Buf += SymtabSize * 8;
+ buf += symtabSize * 8;
// Write the string pool.
- Hdr->ConstantPoolOff = Buf - Start;
- parallelForEach(Symbols, [&](GdbSymbol &Sym) {
- memcpy(Buf + Sym.NameOff, Sym.Name.data(), Sym.Name.size());
+ hdr->constantPoolOff = buf - start;
+ parallelForEach(symbols, [&](GdbSymbol &sym) {
+ memcpy(buf + sym.nameOff, sym.name.data(), sym.name.size());
});
// Write the CU vectors.
- for (GdbSymbol &Sym : Symbols) {
- write32le(Buf, Sym.CuVector.size());
- Buf += 4;
- for (uint32_t Val : Sym.CuVector) {
- write32le(Buf, Val);
- Buf += 4;
+ for (GdbSymbol &sym : symbols) {
+ write32le(buf, sym.cuVector.size());
+ buf += 4;
+ for (uint32_t val : sym.cuVector) {
+ write32le(buf, val);
+ buf += 4;
}
}
}
-bool GdbIndexSection::empty() const { return Chunks.empty(); }
+bool GdbIndexSection::isNeeded() const { return !chunks.empty(); }
EhFrameHeader::EhFrameHeader()
: SyntheticSection(SHF_ALLOC, SHT_PROGBITS, 4, ".eh_frame_hdr") {}
+void EhFrameHeader::writeTo(uint8_t *buf) {
+ // Unlike most sections, the EhFrameHeader section is written while writing
+ // another section, namely EhFrameSection, which calls the write() function
+ // below from its writeTo() function. This is necessary because the contents
+ // of EhFrameHeader depend on the relocated contents of EhFrameSection and we
+ // don't know which order the sections will be written in.
+}
+
// .eh_frame_hdr contains a binary search table of pointers to FDEs.
// Each entry of the search table consists of two values,
// the starting PC from where FDEs covers, and the FDE's address.
// It is sorted by PC.
-void EhFrameHeader::writeTo(uint8_t *Buf) {
- typedef EhFrameSection::FdeData FdeData;
+void EhFrameHeader::write() {
+ uint8_t *buf = Out::bufferStart + getParent()->offset + outSecOff;
+ using FdeData = EhFrameSection::FdeData;
- std::vector<FdeData> Fdes = In.EhFrame->getFdeData();
+ std::vector<FdeData> fdes = getPartition().ehFrame->getFdeData();
- Buf[0] = 1;
- Buf[1] = DW_EH_PE_pcrel | DW_EH_PE_sdata4;
- Buf[2] = DW_EH_PE_udata4;
- Buf[3] = DW_EH_PE_datarel | DW_EH_PE_sdata4;
- write32(Buf + 4, In.EhFrame->getParent()->Addr - this->getVA() - 4);
- write32(Buf + 8, Fdes.size());
- Buf += 12;
+ buf[0] = 1;
+ buf[1] = DW_EH_PE_pcrel | DW_EH_PE_sdata4;
+ buf[2] = DW_EH_PE_udata4;
+ buf[3] = DW_EH_PE_datarel | DW_EH_PE_sdata4;
+ write32(buf + 4,
+ getPartition().ehFrame->getParent()->addr - this->getVA() - 4);
+ write32(buf + 8, fdes.size());
+ buf += 12;
- for (FdeData &Fde : Fdes) {
- write32(Buf, Fde.PcRel);
- write32(Buf + 4, Fde.FdeVARel);
- Buf += 8;
+ for (FdeData &fde : fdes) {
+ write32(buf, fde.pcRel);
+ write32(buf + 4, fde.fdeVARel);
+ buf += 8;
}
}
size_t EhFrameHeader::getSize() const {
// .eh_frame_hdr has a 12 bytes header followed by an array of FDEs.
- return 12 + In.EhFrame->NumFdes * 8;
+ return 12 + getPartition().ehFrame->numFdes * 8;
}
-bool EhFrameHeader::empty() const { return In.EhFrame->empty(); }
+bool EhFrameHeader::isNeeded() const {
+ return isLive() && getPartition().ehFrame->isNeeded();
+}
VersionDefinitionSection::VersionDefinitionSection()
: SyntheticSection(SHF_ALLOC, SHT_GNU_verdef, sizeof(uint32_t),
".gnu.version_d") {}
-static StringRef getFileDefName() {
- if (!Config->SoName.empty())
- return Config->SoName;
- return Config->OutputFile;
+StringRef VersionDefinitionSection::getFileDefName() {
+ if (!getPartition().name.empty())
+ return getPartition().name;
+ if (!config->soName.empty())
+ return config->soName;
+ return config->outputFile;
}
void VersionDefinitionSection::finalizeContents() {
- FileDefNameOff = In.DynStrTab->addString(getFileDefName());
- for (VersionDefinition &V : Config->VersionDefinitions)
- V.NameOff = In.DynStrTab->addString(V.Name);
+ fileDefNameOff = getPartition().dynStrTab->addString(getFileDefName());
+ for (VersionDefinition &v : config->versionDefinitions)
+ verDefNameOffs.push_back(getPartition().dynStrTab->addString(v.name));
- if (OutputSection *Sec = In.DynStrTab->getParent())
- getParent()->Link = Sec->SectionIndex;
+ if (OutputSection *sec = getPartition().dynStrTab->getParent())
+ getParent()->link = sec->sectionIndex;
// sh_info should be set to the number of definitions. This fact is missed in
// documentation, but confirmed by binutils community:
// https://sourceware.org/ml/binutils/2014-11/msg00355.html
- getParent()->Info = getVerDefNum();
+ getParent()->info = getVerDefNum();
}
-void VersionDefinitionSection::writeOne(uint8_t *Buf, uint32_t Index,
- StringRef Name, size_t NameOff) {
- uint16_t Flags = Index == 1 ? VER_FLG_BASE : 0;
+void VersionDefinitionSection::writeOne(uint8_t *buf, uint32_t index,
+ StringRef name, size_t nameOff) {
+ uint16_t flags = index == 1 ? VER_FLG_BASE : 0;
// Write a verdef.
- write16(Buf, 1); // vd_version
- write16(Buf + 2, Flags); // vd_flags
- write16(Buf + 4, Index); // vd_ndx
- write16(Buf + 6, 1); // vd_cnt
- write32(Buf + 8, hashSysV(Name)); // vd_hash
- write32(Buf + 12, 20); // vd_aux
- write32(Buf + 16, 28); // vd_next
+ write16(buf, 1); // vd_version
+ write16(buf + 2, flags); // vd_flags
+ write16(buf + 4, index); // vd_ndx
+ write16(buf + 6, 1); // vd_cnt
+ write32(buf + 8, hashSysV(name)); // vd_hash
+ write32(buf + 12, 20); // vd_aux
+ write32(buf + 16, 28); // vd_next
// Write a veraux.
- write32(Buf + 20, NameOff); // vda_name
- write32(Buf + 24, 0); // vda_next
+ write32(buf + 20, nameOff); // vda_name
+ write32(buf + 24, 0); // vda_next
}
-void VersionDefinitionSection::writeTo(uint8_t *Buf) {
- writeOne(Buf, 1, getFileDefName(), FileDefNameOff);
+void VersionDefinitionSection::writeTo(uint8_t *buf) {
+ writeOne(buf, 1, getFileDefName(), fileDefNameOff);
- for (VersionDefinition &V : Config->VersionDefinitions) {
- Buf += EntrySize;
- writeOne(Buf, V.Id, V.Name, V.NameOff);
+ auto nameOffIt = verDefNameOffs.begin();
+ for (VersionDefinition &v : config->versionDefinitions) {
+ buf += EntrySize;
+ writeOne(buf, v.id, v.name, *nameOffIt++);
}
// Need to terminate the last version definition.
- write32(Buf + 16, 0); // vd_next
+ write32(buf + 16, 0); // vd_next
}
size_t VersionDefinitionSection::getSize() const {
@@ -2743,160 +2798,161 @@ size_t VersionDefinitionSection::getSize() const {
}
// .gnu.version is a table where each entry is 2 byte long.
-template <class ELFT>
-VersionTableSection<ELFT>::VersionTableSection()
+VersionTableSection::VersionTableSection()
: SyntheticSection(SHF_ALLOC, SHT_GNU_versym, sizeof(uint16_t),
".gnu.version") {
- this->Entsize = 2;
+ this->entsize = 2;
}
-template <class ELFT> void VersionTableSection<ELFT>::finalizeContents() {
+void VersionTableSection::finalizeContents() {
// At the moment of june 2016 GNU docs does not mention that sh_link field
// should be set, but Sun docs do. Also readelf relies on this field.
- getParent()->Link = In.DynSymTab->getParent()->SectionIndex;
+ getParent()->link = getPartition().dynSymTab->getParent()->sectionIndex;
}
-template <class ELFT> size_t VersionTableSection<ELFT>::getSize() const {
- return (In.DynSymTab->getSymbols().size() + 1) * 2;
+size_t VersionTableSection::getSize() const {
+ return (getPartition().dynSymTab->getSymbols().size() + 1) * 2;
}
-template <class ELFT> void VersionTableSection<ELFT>::writeTo(uint8_t *Buf) {
- Buf += 2;
- for (const SymbolTableEntry &S : In.DynSymTab->getSymbols()) {
- write16(Buf, S.Sym->VersionId);
- Buf += 2;
+void VersionTableSection::writeTo(uint8_t *buf) {
+ buf += 2;
+ for (const SymbolTableEntry &s : getPartition().dynSymTab->getSymbols()) {
+ write16(buf, s.sym->versionId);
+ buf += 2;
}
}
-template <class ELFT> bool VersionTableSection<ELFT>::empty() const {
- return !In.VerDef && InX<ELFT>::VerNeed->empty();
+bool VersionTableSection::isNeeded() const {
+ return getPartition().verDef || getPartition().verNeed->isNeeded();
+}
+
+void elf::addVerneed(Symbol *ss) {
+ auto &file = cast<SharedFile>(*ss->file);
+ if (ss->verdefIndex == VER_NDX_GLOBAL) {
+ ss->versionId = VER_NDX_GLOBAL;
+ return;
+ }
+
+ if (file.vernauxs.empty())
+ file.vernauxs.resize(file.verdefs.size());
+
+ // Select a version identifier for the vernaux data structure, if we haven't
+ // already allocated one. The verdef identifiers cover the range
+ // [1..getVerDefNum()]; this causes the vernaux identifiers to start from
+ // getVerDefNum()+1.
+ if (file.vernauxs[ss->verdefIndex] == 0)
+ file.vernauxs[ss->verdefIndex] = ++SharedFile::vernauxNum + getVerDefNum();
+
+ ss->versionId = file.vernauxs[ss->verdefIndex];
}
template <class ELFT>
VersionNeedSection<ELFT>::VersionNeedSection()
: SyntheticSection(SHF_ALLOC, SHT_GNU_verneed, sizeof(uint32_t),
- ".gnu.version_r") {
- // Identifiers in verneed section start at 2 because 0 and 1 are reserved
- // for VER_NDX_LOCAL and VER_NDX_GLOBAL.
- // First identifiers are reserved by verdef section if it exist.
- NextIndex = getVerDefNum() + 1;
-}
+ ".gnu.version_r") {}
-template <class ELFT> void VersionNeedSection<ELFT>::addSymbol(Symbol *SS) {
- auto &File = cast<SharedFile<ELFT>>(*SS->File);
- if (SS->VerdefIndex == VER_NDX_GLOBAL) {
- SS->VersionId = VER_NDX_GLOBAL;
- return;
+template <class ELFT> void VersionNeedSection<ELFT>::finalizeContents() {
+ for (SharedFile *f : sharedFiles) {
+ if (f->vernauxs.empty())
+ continue;
+ verneeds.emplace_back();
+ Verneed &vn = verneeds.back();
+ vn.nameStrTab = getPartition().dynStrTab->addString(f->soName);
+ for (unsigned i = 0; i != f->vernauxs.size(); ++i) {
+ if (f->vernauxs[i] == 0)
+ continue;
+ auto *verdef =
+ reinterpret_cast<const typename ELFT::Verdef *>(f->verdefs[i]);
+ vn.vernauxs.push_back(
+ {verdef->vd_hash, f->vernauxs[i],
+ getPartition().dynStrTab->addString(f->getStringTable().data() +
+ verdef->getAux()->vda_name)});
+ }
}
- // If we don't already know that we need an Elf_Verneed for this DSO, prepare
- // to create one by adding it to our needed list and creating a dynstr entry
- // for the soname.
- if (File.VerdefMap.empty())
- Needed.push_back({&File, In.DynStrTab->addString(File.SoName)});
- const typename ELFT::Verdef *Ver = File.Verdefs[SS->VerdefIndex];
- typename SharedFile<ELFT>::NeededVer &NV = File.VerdefMap[Ver];
-
- // If we don't already know that we need an Elf_Vernaux for this Elf_Verdef,
- // prepare to create one by allocating a version identifier and creating a
- // dynstr entry for the version name.
- if (NV.Index == 0) {
- NV.StrTab = In.DynStrTab->addString(File.getStringTable().data() +
- Ver->getAux()->vda_name);
- NV.Index = NextIndex++;
- }
- SS->VersionId = NV.Index;
+ if (OutputSection *sec = getPartition().dynStrTab->getParent())
+ getParent()->link = sec->sectionIndex;
+ getParent()->info = verneeds.size();
}
-template <class ELFT> void VersionNeedSection<ELFT>::writeTo(uint8_t *Buf) {
+template <class ELFT> void VersionNeedSection<ELFT>::writeTo(uint8_t *buf) {
// The Elf_Verneeds need to appear first, followed by the Elf_Vernauxs.
- auto *Verneed = reinterpret_cast<Elf_Verneed *>(Buf);
- auto *Vernaux = reinterpret_cast<Elf_Vernaux *>(Verneed + Needed.size());
+ auto *verneed = reinterpret_cast<Elf_Verneed *>(buf);
+ auto *vernaux = reinterpret_cast<Elf_Vernaux *>(verneed + verneeds.size());
- for (std::pair<SharedFile<ELFT> *, size_t> &P : Needed) {
+ for (auto &vn : verneeds) {
// Create an Elf_Verneed for this DSO.
- Verneed->vn_version = 1;
- Verneed->vn_cnt = P.first->VerdefMap.size();
- Verneed->vn_file = P.second;
- Verneed->vn_aux =
- reinterpret_cast<char *>(Vernaux) - reinterpret_cast<char *>(Verneed);
- Verneed->vn_next = sizeof(Elf_Verneed);
- ++Verneed;
-
- // Create the Elf_Vernauxs for this Elf_Verneed. The loop iterates over
- // VerdefMap, which will only contain references to needed version
- // definitions. Each Elf_Vernaux is based on the information contained in
- // the Elf_Verdef in the source DSO. This loop iterates over a std::map of
- // pointers, but is deterministic because the pointers refer to Elf_Verdef
- // data structures within a single input file.
- for (auto &NV : P.first->VerdefMap) {
- Vernaux->vna_hash = NV.first->vd_hash;
- Vernaux->vna_flags = 0;
- Vernaux->vna_other = NV.second.Index;
- Vernaux->vna_name = NV.second.StrTab;
- Vernaux->vna_next = sizeof(Elf_Vernaux);
- ++Vernaux;
+ verneed->vn_version = 1;
+ verneed->vn_cnt = vn.vernauxs.size();
+ verneed->vn_file = vn.nameStrTab;
+ verneed->vn_aux =
+ reinterpret_cast<char *>(vernaux) - reinterpret_cast<char *>(verneed);
+ verneed->vn_next = sizeof(Elf_Verneed);
+ ++verneed;
+
+ // Create the Elf_Vernauxs for this Elf_Verneed.
+ for (auto &vna : vn.vernauxs) {
+ vernaux->vna_hash = vna.hash;
+ vernaux->vna_flags = 0;
+ vernaux->vna_other = vna.verneedIndex;
+ vernaux->vna_name = vna.nameStrTab;
+ vernaux->vna_next = sizeof(Elf_Vernaux);
+ ++vernaux;
}
- Vernaux[-1].vna_next = 0;
+ vernaux[-1].vna_next = 0;
}
- Verneed[-1].vn_next = 0;
-}
-
-template <class ELFT> void VersionNeedSection<ELFT>::finalizeContents() {
- if (OutputSection *Sec = In.DynStrTab->getParent())
- getParent()->Link = Sec->SectionIndex;
- getParent()->Info = Needed.size();
+ verneed[-1].vn_next = 0;
}
template <class ELFT> size_t VersionNeedSection<ELFT>::getSize() const {
- unsigned Size = Needed.size() * sizeof(Elf_Verneed);
- for (const std::pair<SharedFile<ELFT> *, size_t> &P : Needed)
- Size += P.first->VerdefMap.size() * sizeof(Elf_Vernaux);
- return Size;
+ return verneeds.size() * sizeof(Elf_Verneed) +
+ SharedFile::vernauxNum * sizeof(Elf_Vernaux);
}
-template <class ELFT> bool VersionNeedSection<ELFT>::empty() const {
- return getNeedNum() == 0;
+template <class ELFT> bool VersionNeedSection<ELFT>::isNeeded() const {
+ return SharedFile::vernauxNum != 0;
}
-void MergeSyntheticSection::addSection(MergeInputSection *MS) {
- MS->Parent = this;
- Sections.push_back(MS);
+void MergeSyntheticSection::addSection(MergeInputSection *ms) {
+ ms->parent = this;
+ sections.push_back(ms);
+ assert(alignment == ms->alignment || !(ms->flags & SHF_STRINGS));
+ alignment = std::max(alignment, ms->alignment);
}
-MergeTailSection::MergeTailSection(StringRef Name, uint32_t Type,
- uint64_t Flags, uint32_t Alignment)
- : MergeSyntheticSection(Name, Type, Flags, Alignment),
- Builder(StringTableBuilder::RAW, Alignment) {}
+MergeTailSection::MergeTailSection(StringRef name, uint32_t type,
+ uint64_t flags, uint32_t alignment)
+ : MergeSyntheticSection(name, type, flags, alignment),
+ builder(StringTableBuilder::RAW, alignment) {}
-size_t MergeTailSection::getSize() const { return Builder.getSize(); }
+size_t MergeTailSection::getSize() const { return builder.getSize(); }
-void MergeTailSection::writeTo(uint8_t *Buf) { Builder.write(Buf); }
+void MergeTailSection::writeTo(uint8_t *buf) { builder.write(buf); }
void MergeTailSection::finalizeContents() {
// Add all string pieces to the string table builder to create section
// contents.
- for (MergeInputSection *Sec : Sections)
- for (size_t I = 0, E = Sec->Pieces.size(); I != E; ++I)
- if (Sec->Pieces[I].Live)
- Builder.add(Sec->getData(I));
+ for (MergeInputSection *sec : sections)
+ for (size_t i = 0, e = sec->pieces.size(); i != e; ++i)
+ if (sec->pieces[i].live)
+ builder.add(sec->getData(i));
// Fix the string table content. After this, the contents will never change.
- Builder.finalize();
+ builder.finalize();
// finalize() fixed tail-optimized strings, so we can now get
// offsets of strings. Get an offset for each string and save it
- // to a corresponding StringPiece for easy access.
- for (MergeInputSection *Sec : Sections)
- for (size_t I = 0, E = Sec->Pieces.size(); I != E; ++I)
- if (Sec->Pieces[I].Live)
- Sec->Pieces[I].OutputOff = Builder.getOffset(Sec->getData(I));
+ // to a corresponding SectionPiece for easy access.
+ for (MergeInputSection *sec : sections)
+ for (size_t i = 0, e = sec->pieces.size(); i != e; ++i)
+ if (sec->pieces[i].live)
+ sec->pieces[i].outputOff = builder.getOffset(sec->getData(i));
}
-void MergeNoTailSection::writeTo(uint8_t *Buf) {
- for (size_t I = 0; I < NumShards; ++I)
- Shards[I].write(Buf + ShardOffsets[I]);
+void MergeNoTailSection::writeTo(uint8_t *buf) {
+ for (size_t i = 0; i < numShards; ++i)
+ shards[i].write(buf + shardOffsets[i]);
}
// This function is very hot (i.e. it can take several seconds to finish)
@@ -2909,66 +2965,68 @@ void MergeNoTailSection::writeTo(uint8_t *Buf) {
// We do it in parallel.
void MergeNoTailSection::finalizeContents() {
// Initializes string table builders.
- for (size_t I = 0; I < NumShards; ++I)
- Shards.emplace_back(StringTableBuilder::RAW, Alignment);
+ for (size_t i = 0; i < numShards; ++i)
+ shards.emplace_back(StringTableBuilder::RAW, alignment);
// Concurrency level. Must be a power of 2 to avoid expensive modulo
// operations in the following tight loop.
- size_t Concurrency = 1;
- if (ThreadsEnabled)
- Concurrency =
- std::min<size_t>(PowerOf2Floor(hardware_concurrency()), NumShards);
+ size_t concurrency = 1;
+ if (threadsEnabled)
+ concurrency =
+ std::min<size_t>(PowerOf2Floor(hardware_concurrency()), numShards);
// Add section pieces to the builders.
- parallelForEachN(0, Concurrency, [&](size_t ThreadId) {
- for (MergeInputSection *Sec : Sections) {
- for (size_t I = 0, E = Sec->Pieces.size(); I != E; ++I) {
- size_t ShardId = getShardId(Sec->Pieces[I].Hash);
- if ((ShardId & (Concurrency - 1)) == ThreadId && Sec->Pieces[I].Live)
- Sec->Pieces[I].OutputOff = Shards[ShardId].add(Sec->getData(I));
+ parallelForEachN(0, concurrency, [&](size_t threadId) {
+ for (MergeInputSection *sec : sections) {
+ for (size_t i = 0, e = sec->pieces.size(); i != e; ++i) {
+ if (!sec->pieces[i].live)
+ continue;
+ size_t shardId = getShardId(sec->pieces[i].hash);
+ if ((shardId & (concurrency - 1)) == threadId)
+ sec->pieces[i].outputOff = shards[shardId].add(sec->getData(i));
}
}
});
// Compute an in-section offset for each shard.
- size_t Off = 0;
- for (size_t I = 0; I < NumShards; ++I) {
- Shards[I].finalizeInOrder();
- if (Shards[I].getSize() > 0)
- Off = alignTo(Off, Alignment);
- ShardOffsets[I] = Off;
- Off += Shards[I].getSize();
+ size_t off = 0;
+ for (size_t i = 0; i < numShards; ++i) {
+ shards[i].finalizeInOrder();
+ if (shards[i].getSize() > 0)
+ off = alignTo(off, alignment);
+ shardOffsets[i] = off;
+ off += shards[i].getSize();
}
- Size = Off;
+ size = off;
// So far, section pieces have offsets from beginning of shards, but
// we want offsets from beginning of the whole section. Fix them.
- parallelForEach(Sections, [&](MergeInputSection *Sec) {
- for (size_t I = 0, E = Sec->Pieces.size(); I != E; ++I)
- if (Sec->Pieces[I].Live)
- Sec->Pieces[I].OutputOff +=
- ShardOffsets[getShardId(Sec->Pieces[I].Hash)];
+ parallelForEach(sections, [&](MergeInputSection *sec) {
+ for (size_t i = 0, e = sec->pieces.size(); i != e; ++i)
+ if (sec->pieces[i].live)
+ sec->pieces[i].outputOff +=
+ shardOffsets[getShardId(sec->pieces[i].hash)];
});
}
-static MergeSyntheticSection *createMergeSynthetic(StringRef Name,
- uint32_t Type,
- uint64_t Flags,
- uint32_t Alignment) {
- bool ShouldTailMerge = (Flags & SHF_STRINGS) && Config->Optimize >= 2;
- if (ShouldTailMerge)
- return make<MergeTailSection>(Name, Type, Flags, Alignment);
- return make<MergeNoTailSection>(Name, Type, Flags, Alignment);
+static MergeSyntheticSection *createMergeSynthetic(StringRef name,
+ uint32_t type,
+ uint64_t flags,
+ uint32_t alignment) {
+ bool shouldTailMerge = (flags & SHF_STRINGS) && config->optimize >= 2;
+ if (shouldTailMerge)
+ return make<MergeTailSection>(name, type, flags, alignment);
+ return make<MergeNoTailSection>(name, type, flags, alignment);
}
template <class ELFT> void elf::splitSections() {
// splitIntoPieces needs to be called on each MergeInputSection
// before calling finalizeContents().
- parallelForEach(InputSections, [](InputSectionBase *Sec) {
- if (auto *S = dyn_cast<MergeInputSection>(Sec))
- S->splitIntoPieces();
- else if (auto *Eh = dyn_cast<EhInputSection>(Sec))
- Eh->split<ELFT>();
+ parallelForEach(inputSections, [](InputSectionBase *sec) {
+ if (auto *s = dyn_cast<MergeInputSection>(sec))
+ s->splitIntoPieces();
+ else if (auto *eh = dyn_cast<EhInputSection>(sec))
+ eh->split<ELFT>();
});
}
@@ -2980,23 +3038,22 @@ template <class ELFT> void elf::splitSections() {
// that it replaces. It then finalizes each synthetic section in order
// to compute an output offset for each piece of each input section.
void elf::mergeSections() {
- std::vector<MergeSyntheticSection *> MergeSections;
- for (InputSectionBase *&S : InputSections) {
- MergeInputSection *MS = dyn_cast<MergeInputSection>(S);
- if (!MS)
+ std::vector<MergeSyntheticSection *> mergeSections;
+ for (InputSectionBase *&s : inputSections) {
+ MergeInputSection *ms = dyn_cast<MergeInputSection>(s);
+ if (!ms)
continue;
// We do not want to handle sections that are not alive, so just remove
// them instead of trying to merge.
- if (!MS->Live) {
- S = nullptr;
+ if (!ms->isLive()) {
+ s = nullptr;
continue;
}
- StringRef OutsecName = getOutputSectionName(MS);
- uint32_t Alignment = std::max<uint32_t>(MS->Alignment, MS->Entsize);
+ StringRef outsecName = getOutputSectionName(ms);
- auto I = llvm::find_if(MergeSections, [=](MergeSyntheticSection *Sec) {
+ auto i = llvm::find_if(mergeSections, [=](MergeSyntheticSection *sec) {
// While we could create a single synthetic section for two different
// values of Entsize, it is better to take Entsize into consideration.
//
@@ -3005,98 +3062,285 @@ void elf::mergeSections() {
//
// Using Entsize in here also allows us to propagate it to the synthetic
// section.
- return Sec->Name == OutsecName && Sec->Flags == MS->Flags &&
- Sec->Entsize == MS->Entsize && Sec->Alignment == Alignment;
+ //
+ // SHF_STRINGS section with different alignments should not be merged.
+ return sec->name == outsecName && sec->flags == ms->flags &&
+ sec->entsize == ms->entsize &&
+ (sec->alignment == ms->alignment || !(sec->flags & SHF_STRINGS));
});
- if (I == MergeSections.end()) {
- MergeSyntheticSection *Syn =
- createMergeSynthetic(OutsecName, MS->Type, MS->Flags, Alignment);
- MergeSections.push_back(Syn);
- I = std::prev(MergeSections.end());
- S = Syn;
- Syn->Entsize = MS->Entsize;
+ if (i == mergeSections.end()) {
+ MergeSyntheticSection *syn =
+ createMergeSynthetic(outsecName, ms->type, ms->flags, ms->alignment);
+ mergeSections.push_back(syn);
+ i = std::prev(mergeSections.end());
+ s = syn;
+ syn->entsize = ms->entsize;
} else {
- S = nullptr;
+ s = nullptr;
}
- (*I)->addSection(MS);
+ (*i)->addSection(ms);
}
- for (auto *MS : MergeSections)
- MS->finalizeContents();
+ for (auto *ms : mergeSections)
+ ms->finalizeContents();
- std::vector<InputSectionBase *> &V = InputSections;
- V.erase(std::remove(V.begin(), V.end(), nullptr), V.end());
+ std::vector<InputSectionBase *> &v = inputSections;
+ v.erase(std::remove(v.begin(), v.end(), nullptr), v.end());
}
MipsRldMapSection::MipsRldMapSection()
- : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, Config->Wordsize,
+ : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, config->wordsize,
".rld_map") {}
-ARMExidxSentinelSection::ARMExidxSentinelSection()
+ARMExidxSyntheticSection::ARMExidxSyntheticSection()
: SyntheticSection(SHF_ALLOC | SHF_LINK_ORDER, SHT_ARM_EXIDX,
- Config->Wordsize, ".ARM.exidx") {}
-
-// Write a terminating sentinel entry to the end of the .ARM.exidx table.
-// This section will have been sorted last in the .ARM.exidx table.
-// This table entry will have the form:
-// | PREL31 upper bound of code that has exception tables | EXIDX_CANTUNWIND |
-// The sentinel must have the PREL31 value of an address higher than any
-// address described by any other table entry.
-void ARMExidxSentinelSection::writeTo(uint8_t *Buf) {
- assert(Highest);
- uint64_t S = Highest->getVA(Highest->getSize());
- uint64_t P = getVA();
- Target->relocateOne(Buf, R_ARM_PREL31, S - P);
- write32le(Buf + 4, 1);
-}
-
-// The sentinel has to be removed if there are no other .ARM.exidx entries.
-bool ARMExidxSentinelSection::empty() const {
- for (InputSection *IS : getInputSections(getParent()))
- if (!isa<ARMExidxSentinelSection>(IS))
+ config->wordsize, ".ARM.exidx") {}
+
+static InputSection *findExidxSection(InputSection *isec) {
+ for (InputSection *d : isec->dependentSections)
+ if (d->type == SHT_ARM_EXIDX)
+ return d;
+ return nullptr;
+}
+
+bool ARMExidxSyntheticSection::addSection(InputSection *isec) {
+ if (isec->type == SHT_ARM_EXIDX) {
+ exidxSections.push_back(isec);
+ return true;
+ }
+
+ if ((isec->flags & SHF_ALLOC) && (isec->flags & SHF_EXECINSTR) &&
+ isec->getSize() > 0) {
+ executableSections.push_back(isec);
+ if (empty && findExidxSection(isec))
+ empty = false;
+ return false;
+ }
+
+ // FIXME: we do not output a relocation section when --emit-relocs is used
+ // as we do not have relocation sections for linker generated table entries
+ // and we would have to erase at a late stage relocations from merged entries.
+ // Given that exception tables are already position independent and a binary
+ // analyzer could derive the relocations we choose to erase the relocations.
+ if (config->emitRelocs && isec->type == SHT_REL)
+ if (InputSectionBase *ex = isec->getRelocatedSection())
+ if (isa<InputSection>(ex) && ex->type == SHT_ARM_EXIDX)
+ return true;
+
+ return false;
+}
+
+// References to .ARM.Extab Sections have bit 31 clear and are not the
+// special EXIDX_CANTUNWIND bit-pattern.
+static bool isExtabRef(uint32_t unwind) {
+ return (unwind & 0x80000000) == 0 && unwind != 0x1;
+}
+
+// Return true if the .ARM.exidx section Cur can be merged into the .ARM.exidx
+// section Prev, where Cur follows Prev in the table. This can be done if the
+// unwinding instructions in Cur are identical to Prev. Linker generated
+// EXIDX_CANTUNWIND entries are represented by nullptr as they do not have an
+// InputSection.
+static bool isDuplicateArmExidxSec(InputSection *prev, InputSection *cur) {
+
+ struct ExidxEntry {
+ ulittle32_t fn;
+ ulittle32_t unwind;
+ };
+ // Get the last table Entry from the previous .ARM.exidx section. If Prev is
+ // nullptr then it will be a synthesized EXIDX_CANTUNWIND entry.
+ ExidxEntry prevEntry = {ulittle32_t(0), ulittle32_t(1)};
+ if (prev)
+ prevEntry = prev->getDataAs<ExidxEntry>().back();
+ if (isExtabRef(prevEntry.unwind))
+ return false;
+
+ // We consider the unwind instructions of an .ARM.exidx table entry
+ // a duplicate if the previous unwind instructions if:
+ // - Both are the special EXIDX_CANTUNWIND.
+ // - Both are the same inline unwind instructions.
+ // We do not attempt to follow and check links into .ARM.extab tables as
+ // consecutive identical entries are rare and the effort to check that they
+ // are identical is high.
+
+ // If Cur is nullptr then this is synthesized EXIDX_CANTUNWIND entry.
+ if (cur == nullptr)
+ return prevEntry.unwind == 1;
+
+ for (const ExidxEntry entry : cur->getDataAs<ExidxEntry>())
+ if (isExtabRef(entry.unwind) || entry.unwind != prevEntry.unwind)
return false;
+
+ // All table entries in this .ARM.exidx Section can be merged into the
+ // previous Section.
return true;
}
-bool ARMExidxSentinelSection::classof(const SectionBase *D) {
- return D->kind() == InputSectionBase::Synthetic && D->Type == SHT_ARM_EXIDX;
+// The .ARM.exidx table must be sorted in ascending order of the address of the
+// functions the table describes. Optionally duplicate adjacent table entries
+// can be removed. At the end of the function the ExecutableSections must be
+// sorted in ascending order of address, Sentinel is set to the InputSection
+// with the highest address and any InputSections that have mergeable
+// .ARM.exidx table entries are removed from it.
+void ARMExidxSyntheticSection::finalizeContents() {
+ // Sort the executable sections that may or may not have associated
+ // .ARM.exidx sections by order of ascending address. This requires the
+ // relative positions of InputSections to be known.
+ auto compareByFilePosition = [](const InputSection *a,
+ const InputSection *b) {
+ OutputSection *aOut = a->getParent();
+ OutputSection *bOut = b->getParent();
+
+ if (aOut != bOut)
+ return aOut->sectionIndex < bOut->sectionIndex;
+ return a->outSecOff < b->outSecOff;
+ };
+ llvm::stable_sort(executableSections, compareByFilePosition);
+ sentinel = executableSections.back();
+ // Optionally merge adjacent duplicate entries.
+ if (config->mergeArmExidx) {
+ std::vector<InputSection *> selectedSections;
+ selectedSections.reserve(executableSections.size());
+ selectedSections.push_back(executableSections[0]);
+ size_t prev = 0;
+ for (size_t i = 1; i < executableSections.size(); ++i) {
+ InputSection *ex1 = findExidxSection(executableSections[prev]);
+ InputSection *ex2 = findExidxSection(executableSections[i]);
+ if (!isDuplicateArmExidxSec(ex1, ex2)) {
+ selectedSections.push_back(executableSections[i]);
+ prev = i;
+ }
+ }
+ executableSections = std::move(selectedSections);
+ }
+
+ size_t offset = 0;
+ size = 0;
+ for (InputSection *isec : executableSections) {
+ if (InputSection *d = findExidxSection(isec)) {
+ d->outSecOff = offset;
+ d->parent = getParent();
+ offset += d->getSize();
+ } else {
+ offset += 8;
+ }
+ }
+ // Size includes Sentinel.
+ size = offset + 8;
+}
+
+InputSection *ARMExidxSyntheticSection::getLinkOrderDep() const {
+ return executableSections.front();
}
-ThunkSection::ThunkSection(OutputSection *OS, uint64_t Off)
+// To write the .ARM.exidx table from the ExecutableSections we have three cases
+// 1.) The InputSection has a .ARM.exidx InputSection in its dependent sections.
+// We write the .ARM.exidx section contents and apply its relocations.
+// 2.) The InputSection does not have a dependent .ARM.exidx InputSection. We
+// must write the contents of an EXIDX_CANTUNWIND directly. We use the
+// start of the InputSection as the purpose of the linker generated
+// section is to terminate the address range of the previous entry.
+// 3.) A trailing EXIDX_CANTUNWIND sentinel section is required at the end of
+// the table to terminate the address range of the final entry.
+void ARMExidxSyntheticSection::writeTo(uint8_t *buf) {
+
+ const uint8_t cantUnwindData[8] = {0, 0, 0, 0, // PREL31 to target
+ 1, 0, 0, 0}; // EXIDX_CANTUNWIND
+
+ uint64_t offset = 0;
+ for (InputSection *isec : executableSections) {
+ assert(isec->getParent() != nullptr);
+ if (InputSection *d = findExidxSection(isec)) {
+ memcpy(buf + offset, d->data().data(), d->data().size());
+ d->relocateAlloc(buf, buf + d->getSize());
+ offset += d->getSize();
+ } else {
+ // A Linker generated CANTUNWIND section.
+ memcpy(buf + offset, cantUnwindData, sizeof(cantUnwindData));
+ uint64_t s = isec->getVA();
+ uint64_t p = getVA() + offset;
+ target->relocateOne(buf + offset, R_ARM_PREL31, s - p);
+ offset += 8;
+ }
+ }
+ // Write Sentinel.
+ memcpy(buf + offset, cantUnwindData, sizeof(cantUnwindData));
+ uint64_t s = sentinel->getVA(sentinel->getSize());
+ uint64_t p = getVA() + offset;
+ target->relocateOne(buf + offset, R_ARM_PREL31, s - p);
+ assert(size == offset + 8);
+}
+
+bool ARMExidxSyntheticSection::classof(const SectionBase *d) {
+ return d->kind() == InputSectionBase::Synthetic && d->type == SHT_ARM_EXIDX;
+}
+
+ThunkSection::ThunkSection(OutputSection *os, uint64_t off)
: SyntheticSection(SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS,
- Config->Wordsize, ".text.thunk") {
- this->Parent = OS;
- this->OutSecOff = Off;
+ config->wordsize, ".text.thunk") {
+ this->parent = os;
+ this->outSecOff = off;
}
-void ThunkSection::addThunk(Thunk *T) {
- Thunks.push_back(T);
- T->addSymbols(*this);
+void ThunkSection::addThunk(Thunk *t) {
+ thunks.push_back(t);
+ t->addSymbols(*this);
}
-void ThunkSection::writeTo(uint8_t *Buf) {
- for (Thunk *T : Thunks)
- T->writeTo(Buf + T->Offset);
+void ThunkSection::writeTo(uint8_t *buf) {
+ for (Thunk *t : thunks)
+ t->writeTo(buf + t->offset);
}
InputSection *ThunkSection::getTargetInputSection() const {
- if (Thunks.empty())
+ if (thunks.empty())
return nullptr;
- const Thunk *T = Thunks.front();
- return T->getTargetInputSection();
+ const Thunk *t = thunks.front();
+ return t->getTargetInputSection();
}
bool ThunkSection::assignOffsets() {
- uint64_t Off = 0;
- for (Thunk *T : Thunks) {
- Off = alignTo(Off, T->Alignment);
- T->setOffset(Off);
- uint32_t Size = T->size();
- T->getThunkTargetSym()->Size = Size;
- Off += Size;
- }
- bool Changed = Off != Size;
- Size = Off;
- return Changed;
+ uint64_t off = 0;
+ for (Thunk *t : thunks) {
+ off = alignTo(off, t->alignment);
+ t->setOffset(off);
+ uint32_t size = t->size();
+ t->getThunkTargetSym()->size = size;
+ off += size;
+ }
+ bool changed = off != size;
+ size = off;
+ return changed;
+}
+
+PPC32Got2Section::PPC32Got2Section()
+ : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, 4, ".got2") {}
+
+bool PPC32Got2Section::isNeeded() const {
+ // See the comment below. This is not needed if there is no other
+ // InputSection.
+ for (BaseCommand *base : getParent()->sectionCommands)
+ if (auto *isd = dyn_cast<InputSectionDescription>(base))
+ for (InputSection *isec : isd->sections)
+ if (isec != this)
+ return true;
+ return false;
+}
+
+void PPC32Got2Section::finalizeContents() {
+ // PPC32 may create multiple GOT sections for -fPIC/-fPIE, one per file in
+ // .got2 . This function computes outSecOff of each .got2 to be used in
+ // PPC32PltCallStub::writeTo(). The purpose of this empty synthetic section is
+ // to collect input sections named ".got2".
+ uint32_t offset = 0;
+ for (BaseCommand *base : getParent()->sectionCommands)
+ if (auto *isd = dyn_cast<InputSectionDescription>(base)) {
+ for (InputSection *isec : isd->sections) {
+ if (isec == this)
+ continue;
+ isec->file->ppc32Got2OutSecOff = offset;
+ offset += (uint32_t)isec->getSize();
+ }
+ }
}
// If linking position-dependent code then the table will store the addresses
@@ -3105,48 +3349,188 @@ bool ThunkSection::assignOffsets() {
// allocated and filled in by the dynamic linker.
PPC64LongBranchTargetSection::PPC64LongBranchTargetSection()
: SyntheticSection(SHF_ALLOC | SHF_WRITE,
- Config->Pic ? SHT_NOBITS : SHT_PROGBITS, 8,
+ config->isPic ? SHT_NOBITS : SHT_PROGBITS, 8,
".branch_lt") {}
-void PPC64LongBranchTargetSection::addEntry(Symbol &Sym) {
- assert(Sym.PPC64BranchltIndex == 0xffff);
- Sym.PPC64BranchltIndex = Entries.size();
- Entries.push_back(&Sym);
+void PPC64LongBranchTargetSection::addEntry(Symbol &sym) {
+ assert(sym.ppc64BranchltIndex == 0xffff);
+ sym.ppc64BranchltIndex = entries.size();
+ entries.push_back(&sym);
}
size_t PPC64LongBranchTargetSection::getSize() const {
- return Entries.size() * 8;
+ return entries.size() * 8;
}
-void PPC64LongBranchTargetSection::writeTo(uint8_t *Buf) {
- assert(Target->GotPltEntrySize == 8);
+void PPC64LongBranchTargetSection::writeTo(uint8_t *buf) {
// If linking non-pic we have the final addresses of the targets and they get
// written to the table directly. For pic the dynamic linker will allocate
// the section and fill it it.
- if (Config->Pic)
+ if (config->isPic)
return;
- for (const Symbol *Sym : Entries) {
- assert(Sym->getVA());
+ for (const Symbol *sym : entries) {
+ assert(sym->getVA());
// Need calls to branch to the local entry-point since a long-branch
// must be a local-call.
- write64(Buf,
- Sym->getVA() + getPPC64GlobalEntryToLocalEntryOffset(Sym->StOther));
- Buf += Target->GotPltEntrySize;
+ write64(buf,
+ sym->getVA() + getPPC64GlobalEntryToLocalEntryOffset(sym->stOther));
+ buf += 8;
}
}
-bool PPC64LongBranchTargetSection::empty() const {
+bool PPC64LongBranchTargetSection::isNeeded() const {
// `removeUnusedSyntheticSections()` is called before thunk allocation which
// is too early to determine if this section will be empty or not. We need
// Finalized to keep the section alive until after thunk creation. Finalized
// only gets set to true once `finalizeSections()` is called after thunk
// creation. Becuase of this, if we don't create any long-branch thunks we end
// up with an empty .branch_lt section in the binary.
- return Finalized && Entries.empty();
+ return !finalized || !entries.empty();
}
-InStruct elf::In;
+RISCVSdataSection::RISCVSdataSection()
+ : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, 1, ".sdata") {}
+
+bool RISCVSdataSection::isNeeded() const {
+ if (!ElfSym::riscvGlobalPointer)
+ return false;
+
+ // __global_pointer$ is defined relative to .sdata . If the section does not
+ // exist, create a dummy one.
+ for (BaseCommand *base : getParent()->sectionCommands)
+ if (auto *isd = dyn_cast<InputSectionDescription>(base))
+ for (InputSection *isec : isd->sections)
+ if (isec != this)
+ return false;
+ return true;
+}
+
+static uint8_t getAbiVersion() {
+ // MIPS non-PIC executable gets ABI version 1.
+ if (config->emachine == EM_MIPS) {
+ if (!config->isPic && !config->relocatable &&
+ (config->eflags & (EF_MIPS_PIC | EF_MIPS_CPIC)) == EF_MIPS_CPIC)
+ return 1;
+ return 0;
+ }
+
+ if (config->emachine == EM_AMDGPU) {
+ uint8_t ver = objectFiles[0]->abiVersion;
+ for (InputFile *file : makeArrayRef(objectFiles).slice(1))
+ if (file->abiVersion != ver)
+ error("incompatible ABI version: " + toString(file));
+ return ver;
+ }
+
+ return 0;
+}
+
+template <typename ELFT> void elf::writeEhdr(uint8_t *buf, Partition &part) {
+ // For executable segments, the trap instructions are written before writing
+ // the header. Setting Elf header bytes to zero ensures that any unused bytes
+ // in header are zero-cleared, instead of having trap instructions.
+ memset(buf, 0, sizeof(typename ELFT::Ehdr));
+ memcpy(buf, "\177ELF", 4);
+
+ auto *eHdr = reinterpret_cast<typename ELFT::Ehdr *>(buf);
+ eHdr->e_ident[EI_CLASS] = config->is64 ? ELFCLASS64 : ELFCLASS32;
+ eHdr->e_ident[EI_DATA] = config->isLE ? ELFDATA2LSB : ELFDATA2MSB;
+ eHdr->e_ident[EI_VERSION] = EV_CURRENT;
+ eHdr->e_ident[EI_OSABI] = config->osabi;
+ eHdr->e_ident[EI_ABIVERSION] = getAbiVersion();
+ eHdr->e_machine = config->emachine;
+ eHdr->e_version = EV_CURRENT;
+ eHdr->e_flags = config->eflags;
+ eHdr->e_ehsize = sizeof(typename ELFT::Ehdr);
+ eHdr->e_phnum = part.phdrs.size();
+ eHdr->e_shentsize = sizeof(typename ELFT::Shdr);
+
+ if (!config->relocatable) {
+ eHdr->e_phoff = sizeof(typename ELFT::Ehdr);
+ eHdr->e_phentsize = sizeof(typename ELFT::Phdr);
+ }
+}
+
+template <typename ELFT> void elf::writePhdrs(uint8_t *buf, Partition &part) {
+ // Write the program header table.
+ auto *hBuf = reinterpret_cast<typename ELFT::Phdr *>(buf);
+ for (PhdrEntry *p : part.phdrs) {
+ hBuf->p_type = p->p_type;
+ hBuf->p_flags = p->p_flags;
+ hBuf->p_offset = p->p_offset;
+ hBuf->p_vaddr = p->p_vaddr;
+ hBuf->p_paddr = p->p_paddr;
+ hBuf->p_filesz = p->p_filesz;
+ hBuf->p_memsz = p->p_memsz;
+ hBuf->p_align = p->p_align;
+ ++hBuf;
+ }
+}
+
+template <typename ELFT>
+PartitionElfHeaderSection<ELFT>::PartitionElfHeaderSection()
+ : SyntheticSection(SHF_ALLOC, SHT_LLVM_PART_EHDR, 1, "") {}
+
+template <typename ELFT>
+size_t PartitionElfHeaderSection<ELFT>::getSize() const {
+ return sizeof(typename ELFT::Ehdr);
+}
+
+template <typename ELFT>
+void PartitionElfHeaderSection<ELFT>::writeTo(uint8_t *buf) {
+ writeEhdr<ELFT>(buf, getPartition());
+
+ // Loadable partitions are always ET_DYN.
+ auto *eHdr = reinterpret_cast<typename ELFT::Ehdr *>(buf);
+ eHdr->e_type = ET_DYN;
+}
+
+template <typename ELFT>
+PartitionProgramHeadersSection<ELFT>::PartitionProgramHeadersSection()
+ : SyntheticSection(SHF_ALLOC, SHT_LLVM_PART_PHDR, 1, ".phdrs") {}
+
+template <typename ELFT>
+size_t PartitionProgramHeadersSection<ELFT>::getSize() const {
+ return sizeof(typename ELFT::Phdr) * getPartition().phdrs.size();
+}
+
+template <typename ELFT>
+void PartitionProgramHeadersSection<ELFT>::writeTo(uint8_t *buf) {
+ writePhdrs<ELFT>(buf, getPartition());
+}
+
+PartitionIndexSection::PartitionIndexSection()
+ : SyntheticSection(SHF_ALLOC, SHT_PROGBITS, 4, ".rodata") {}
+
+size_t PartitionIndexSection::getSize() const {
+ return 12 * (partitions.size() - 1);
+}
+
+void PartitionIndexSection::finalizeContents() {
+ for (size_t i = 1; i != partitions.size(); ++i)
+ partitions[i].nameStrTab = mainPart->dynStrTab->addString(partitions[i].name);
+}
+
+void PartitionIndexSection::writeTo(uint8_t *buf) {
+ uint64_t va = getVA();
+ for (size_t i = 1; i != partitions.size(); ++i) {
+ write32(buf, mainPart->dynStrTab->getVA() + partitions[i].nameStrTab - va);
+ write32(buf + 4, partitions[i].elfHeader->getVA() - (va + 4));
+
+ SyntheticSection *next =
+ i == partitions.size() - 1 ? in.partEnd : partitions[i + 1].elfHeader;
+ write32(buf + 8, next->getVA() - partitions[i].elfHeader->getVA());
+
+ va += 12;
+ buf += 12;
+ }
+}
+
+InStruct elf::in;
+
+std::vector<Partition> elf::partitions;
+Partition *elf::mainPart;
template GdbIndexSection *GdbIndexSection::create<ELF32LE>();
template GdbIndexSection *GdbIndexSection::create<ELF32BE>();
@@ -3168,11 +3552,6 @@ template void PltSection::addEntry<ELF32BE>(Symbol &Sym);
template void PltSection::addEntry<ELF64LE>(Symbol &Sym);
template void PltSection::addEntry<ELF64BE>(Symbol &Sym);
-template void MipsGotSection::build<ELF32LE>();
-template void MipsGotSection::build<ELF32BE>();
-template void MipsGotSection::build<ELF64LE>();
-template void MipsGotSection::build<ELF64BE>();
-
template class elf::MipsAbiFlagsSection<ELF32LE>;
template class elf::MipsAbiFlagsSection<ELF32BE>;
template class elf::MipsAbiFlagsSection<ELF64LE>;
@@ -3213,12 +3592,27 @@ template class elf::SymbolTableSection<ELF32BE>;
template class elf::SymbolTableSection<ELF64LE>;
template class elf::SymbolTableSection<ELF64BE>;
-template class elf::VersionTableSection<ELF32LE>;
-template class elf::VersionTableSection<ELF32BE>;
-template class elf::VersionTableSection<ELF64LE>;
-template class elf::VersionTableSection<ELF64BE>;
-
template class elf::VersionNeedSection<ELF32LE>;
template class elf::VersionNeedSection<ELF32BE>;
template class elf::VersionNeedSection<ELF64LE>;
template class elf::VersionNeedSection<ELF64BE>;
+
+template void elf::writeEhdr<ELF32LE>(uint8_t *Buf, Partition &Part);
+template void elf::writeEhdr<ELF32BE>(uint8_t *Buf, Partition &Part);
+template void elf::writeEhdr<ELF64LE>(uint8_t *Buf, Partition &Part);
+template void elf::writeEhdr<ELF64BE>(uint8_t *Buf, Partition &Part);
+
+template void elf::writePhdrs<ELF32LE>(uint8_t *Buf, Partition &Part);
+template void elf::writePhdrs<ELF32BE>(uint8_t *Buf, Partition &Part);
+template void elf::writePhdrs<ELF64LE>(uint8_t *Buf, Partition &Part);
+template void elf::writePhdrs<ELF64BE>(uint8_t *Buf, Partition &Part);
+
+template class elf::PartitionElfHeaderSection<ELF32LE>;
+template class elf::PartitionElfHeaderSection<ELF32BE>;
+template class elf::PartitionElfHeaderSection<ELF64LE>;
+template class elf::PartitionElfHeaderSection<ELF64BE>;
+
+template class elf::PartitionProgramHeadersSection<ELF32LE>;
+template class elf::PartitionProgramHeadersSection<ELF32BE>;
+template class elf::PartitionProgramHeadersSection<ELF64LE>;
+template class elf::PartitionProgramHeadersSection<ELF64BE>;