diff options
Diffstat (limited to 'clang/lib/CodeGen/CGCall.cpp')
| -rw-r--r-- | clang/lib/CodeGen/CGCall.cpp | 4611 | 
1 files changed, 4611 insertions, 0 deletions
diff --git a/clang/lib/CodeGen/CGCall.cpp b/clang/lib/CodeGen/CGCall.cpp new file mode 100644 index 0000000000000..b74f6f942426e --- /dev/null +++ b/clang/lib/CodeGen/CGCall.cpp @@ -0,0 +1,4611 @@ +//===--- CGCall.cpp - Encapsulate calling convention details --------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// These classes wrap the information about a call or function +// definition used to handle ABI compliancy. +// +//===----------------------------------------------------------------------===// + +#include "CGCall.h" +#include "ABIInfo.h" +#include "CGBlocks.h" +#include "CGCXXABI.h" +#include "CGCleanup.h" +#include "CodeGenFunction.h" +#include "CodeGenModule.h" +#include "TargetInfo.h" +#include "clang/AST/Decl.h" +#include "clang/AST/DeclCXX.h" +#include "clang/AST/DeclObjC.h" +#include "clang/Basic/CodeGenOptions.h" +#include "clang/Basic/TargetBuiltins.h" +#include "clang/Basic/TargetInfo.h" +#include "clang/CodeGen/CGFunctionInfo.h" +#include "clang/CodeGen/SwiftCallingConv.h" +#include "llvm/ADT/StringExtras.h" +#include "llvm/Transforms/Utils/Local.h" +#include "llvm/Analysis/ValueTracking.h" +#include "llvm/IR/Attributes.h" +#include "llvm/IR/CallingConv.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/InlineAsm.h" +#include "llvm/IR/IntrinsicInst.h" +#include "llvm/IR/Intrinsics.h" +using namespace clang; +using namespace CodeGen; + +/***/ + +unsigned CodeGenTypes::ClangCallConvToLLVMCallConv(CallingConv CC) { +  switch (CC) { +  default: return llvm::CallingConv::C; +  case CC_X86StdCall: return llvm::CallingConv::X86_StdCall; +  case CC_X86FastCall: return llvm::CallingConv::X86_FastCall; +  case CC_X86RegCall: return llvm::CallingConv::X86_RegCall; +  case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall; +  case CC_Win64: return llvm::CallingConv::Win64; +  case CC_X86_64SysV: return llvm::CallingConv::X86_64_SysV; +  case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS; +  case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; +  case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI; +  // TODO: Add support for __pascal to LLVM. +  case CC_X86Pascal: return llvm::CallingConv::C; +  // TODO: Add support for __vectorcall to LLVM. +  case CC_X86VectorCall: return llvm::CallingConv::X86_VectorCall; +  case CC_AArch64VectorCall: return llvm::CallingConv::AArch64_VectorCall; +  case CC_SpirFunction: return llvm::CallingConv::SPIR_FUNC; +  case CC_OpenCLKernel: return CGM.getTargetCodeGenInfo().getOpenCLKernelCallingConv(); +  case CC_PreserveMost: return llvm::CallingConv::PreserveMost; +  case CC_PreserveAll: return llvm::CallingConv::PreserveAll; +  case CC_Swift: return llvm::CallingConv::Swift; +  } +} + +/// Derives the 'this' type for codegen purposes, i.e. ignoring method CVR +/// qualification. Either or both of RD and MD may be null. A null RD indicates +/// that there is no meaningful 'this' type, and a null MD can occur when +/// calling a method pointer. +CanQualType CodeGenTypes::DeriveThisType(const CXXRecordDecl *RD, +                                         const CXXMethodDecl *MD) { +  QualType RecTy; +  if (RD) +    RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal(); +  else +    RecTy = Context.VoidTy; + +  if (MD) +    RecTy = Context.getAddrSpaceQualType(RecTy, MD->getMethodQualifiers().getAddressSpace()); +  return Context.getPointerType(CanQualType::CreateUnsafe(RecTy)); +} + +/// Returns the canonical formal type of the given C++ method. +static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) { +  return MD->getType()->getCanonicalTypeUnqualified() +           .getAs<FunctionProtoType>(); +} + +/// Returns the "extra-canonicalized" return type, which discards +/// qualifiers on the return type.  Codegen doesn't care about them, +/// and it makes ABI code a little easier to be able to assume that +/// all parameter and return types are top-level unqualified. +static CanQualType GetReturnType(QualType RetTy) { +  return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType(); +} + +/// Arrange the argument and result information for a value of the given +/// unprototyped freestanding function type. +const CGFunctionInfo & +CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) { +  // When translating an unprototyped function type, always use a +  // variadic type. +  return arrangeLLVMFunctionInfo(FTNP->getReturnType().getUnqualifiedType(), +                                 /*instanceMethod=*/false, +                                 /*chainCall=*/false, None, +                                 FTNP->getExtInfo(), {}, RequiredArgs(0)); +} + +static void addExtParameterInfosForCall( +         llvm::SmallVectorImpl<FunctionProtoType::ExtParameterInfo> ¶mInfos, +                                        const FunctionProtoType *proto, +                                        unsigned prefixArgs, +                                        unsigned totalArgs) { +  assert(proto->hasExtParameterInfos()); +  assert(paramInfos.size() <= prefixArgs); +  assert(proto->getNumParams() + prefixArgs <= totalArgs); + +  paramInfos.reserve(totalArgs); + +  // Add default infos for any prefix args that don't already have infos. +  paramInfos.resize(prefixArgs); + +  // Add infos for the prototype. +  for (const auto &ParamInfo : proto->getExtParameterInfos()) { +    paramInfos.push_back(ParamInfo); +    // pass_object_size params have no parameter info. +    if (ParamInfo.hasPassObjectSize()) +      paramInfos.emplace_back(); +  } + +  assert(paramInfos.size() <= totalArgs && +         "Did we forget to insert pass_object_size args?"); +  // Add default infos for the variadic and/or suffix arguments. +  paramInfos.resize(totalArgs); +} + +/// Adds the formal parameters in FPT to the given prefix. If any parameter in +/// FPT has pass_object_size attrs, then we'll add parameters for those, too. +static void appendParameterTypes(const CodeGenTypes &CGT, +                                 SmallVectorImpl<CanQualType> &prefix, +              SmallVectorImpl<FunctionProtoType::ExtParameterInfo> ¶mInfos, +                                 CanQual<FunctionProtoType> FPT) { +  // Fast path: don't touch param info if we don't need to. +  if (!FPT->hasExtParameterInfos()) { +    assert(paramInfos.empty() && +           "We have paramInfos, but the prototype doesn't?"); +    prefix.append(FPT->param_type_begin(), FPT->param_type_end()); +    return; +  } + +  unsigned PrefixSize = prefix.size(); +  // In the vast majority of cases, we'll have precisely FPT->getNumParams() +  // parameters; the only thing that can change this is the presence of +  // pass_object_size. So, we preallocate for the common case. +  prefix.reserve(prefix.size() + FPT->getNumParams()); + +  auto ExtInfos = FPT->getExtParameterInfos(); +  assert(ExtInfos.size() == FPT->getNumParams()); +  for (unsigned I = 0, E = FPT->getNumParams(); I != E; ++I) { +    prefix.push_back(FPT->getParamType(I)); +    if (ExtInfos[I].hasPassObjectSize()) +      prefix.push_back(CGT.getContext().getSizeType()); +  } + +  addExtParameterInfosForCall(paramInfos, FPT.getTypePtr(), PrefixSize, +                              prefix.size()); +} + +/// Arrange the LLVM function layout for a value of the given function +/// type, on top of any implicit parameters already stored. +static const CGFunctionInfo & +arrangeLLVMFunctionInfo(CodeGenTypes &CGT, bool instanceMethod, +                        SmallVectorImpl<CanQualType> &prefix, +                        CanQual<FunctionProtoType> FTP) { +  SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; +  RequiredArgs Required = RequiredArgs::forPrototypePlus(FTP, prefix.size()); +  // FIXME: Kill copy. +  appendParameterTypes(CGT, prefix, paramInfos, FTP); +  CanQualType resultType = FTP->getReturnType().getUnqualifiedType(); + +  return CGT.arrangeLLVMFunctionInfo(resultType, instanceMethod, +                                     /*chainCall=*/false, prefix, +                                     FTP->getExtInfo(), paramInfos, +                                     Required); +} + +/// Arrange the argument and result information for a value of the +/// given freestanding function type. +const CGFunctionInfo & +CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP) { +  SmallVector<CanQualType, 16> argTypes; +  return ::arrangeLLVMFunctionInfo(*this, /*instanceMethod=*/false, argTypes, +                                   FTP); +} + +static CallingConv getCallingConventionForDecl(const Decl *D, bool IsWindows) { +  // Set the appropriate calling convention for the Function. +  if (D->hasAttr<StdCallAttr>()) +    return CC_X86StdCall; + +  if (D->hasAttr<FastCallAttr>()) +    return CC_X86FastCall; + +  if (D->hasAttr<RegCallAttr>()) +    return CC_X86RegCall; + +  if (D->hasAttr<ThisCallAttr>()) +    return CC_X86ThisCall; + +  if (D->hasAttr<VectorCallAttr>()) +    return CC_X86VectorCall; + +  if (D->hasAttr<PascalAttr>()) +    return CC_X86Pascal; + +  if (PcsAttr *PCS = D->getAttr<PcsAttr>()) +    return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP); + +  if (D->hasAttr<AArch64VectorPcsAttr>()) +    return CC_AArch64VectorCall; + +  if (D->hasAttr<IntelOclBiccAttr>()) +    return CC_IntelOclBicc; + +  if (D->hasAttr<MSABIAttr>()) +    return IsWindows ? CC_C : CC_Win64; + +  if (D->hasAttr<SysVABIAttr>()) +    return IsWindows ? CC_X86_64SysV : CC_C; + +  if (D->hasAttr<PreserveMostAttr>()) +    return CC_PreserveMost; + +  if (D->hasAttr<PreserveAllAttr>()) +    return CC_PreserveAll; + +  return CC_C; +} + +/// Arrange the argument and result information for a call to an +/// unknown C++ non-static member function of the given abstract type. +/// (A null RD means we don't have any meaningful "this" argument type, +///  so fall back to a generic pointer type). +/// The member function must be an ordinary function, i.e. not a +/// constructor or destructor. +const CGFunctionInfo & +CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD, +                                   const FunctionProtoType *FTP, +                                   const CXXMethodDecl *MD) { +  SmallVector<CanQualType, 16> argTypes; + +  // Add the 'this' pointer. +  argTypes.push_back(DeriveThisType(RD, MD)); + +  return ::arrangeLLVMFunctionInfo( +      *this, true, argTypes, +      FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>()); +} + +/// Set calling convention for CUDA/HIP kernel. +static void setCUDAKernelCallingConvention(CanQualType &FTy, CodeGenModule &CGM, +                                           const FunctionDecl *FD) { +  if (FD->hasAttr<CUDAGlobalAttr>()) { +    const FunctionType *FT = FTy->getAs<FunctionType>(); +    CGM.getTargetCodeGenInfo().setCUDAKernelCallingConvention(FT); +    FTy = FT->getCanonicalTypeUnqualified(); +  } +} + +/// Arrange the argument and result information for a declaration or +/// definition of the given C++ non-static member function.  The +/// member function must be an ordinary function, i.e. not a +/// constructor or destructor. +const CGFunctionInfo & +CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) { +  assert(!isa<CXXConstructorDecl>(MD) && "wrong method for constructors!"); +  assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!"); + +  CanQualType FT = GetFormalType(MD).getAs<Type>(); +  setCUDAKernelCallingConvention(FT, CGM, MD); +  auto prototype = FT.getAs<FunctionProtoType>(); + +  if (MD->isInstance()) { +    // The abstract case is perfectly fine. +    const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(MD); +    return arrangeCXXMethodType(ThisType, prototype.getTypePtr(), MD); +  } + +  return arrangeFreeFunctionType(prototype); +} + +bool CodeGenTypes::inheritingCtorHasParams( +    const InheritedConstructor &Inherited, CXXCtorType Type) { +  // Parameters are unnecessary if we're constructing a base class subobject +  // and the inherited constructor lives in a virtual base. +  return Type == Ctor_Complete || +         !Inherited.getShadowDecl()->constructsVirtualBase() || +         !Target.getCXXABI().hasConstructorVariants(); +} + +const CGFunctionInfo & +CodeGenTypes::arrangeCXXStructorDeclaration(GlobalDecl GD) { +  auto *MD = cast<CXXMethodDecl>(GD.getDecl()); + +  SmallVector<CanQualType, 16> argTypes; +  SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; +  argTypes.push_back(DeriveThisType(MD->getParent(), MD)); + +  bool PassParams = true; + +  if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) { +    // A base class inheriting constructor doesn't get forwarded arguments +    // needed to construct a virtual base (or base class thereof). +    if (auto Inherited = CD->getInheritedConstructor()) +      PassParams = inheritingCtorHasParams(Inherited, GD.getCtorType()); +  } + +  CanQual<FunctionProtoType> FTP = GetFormalType(MD); + +  // Add the formal parameters. +  if (PassParams) +    appendParameterTypes(*this, argTypes, paramInfos, FTP); + +  CGCXXABI::AddedStructorArgs AddedArgs = +      TheCXXABI.buildStructorSignature(GD, argTypes); +  if (!paramInfos.empty()) { +    // Note: prefix implies after the first param. +    if (AddedArgs.Prefix) +      paramInfos.insert(paramInfos.begin() + 1, AddedArgs.Prefix, +                        FunctionProtoType::ExtParameterInfo{}); +    if (AddedArgs.Suffix) +      paramInfos.append(AddedArgs.Suffix, +                        FunctionProtoType::ExtParameterInfo{}); +  } + +  RequiredArgs required = +      (PassParams && MD->isVariadic() ? RequiredArgs(argTypes.size()) +                                      : RequiredArgs::All); + +  FunctionType::ExtInfo extInfo = FTP->getExtInfo(); +  CanQualType resultType = TheCXXABI.HasThisReturn(GD) +                               ? argTypes.front() +                               : TheCXXABI.hasMostDerivedReturn(GD) +                                     ? CGM.getContext().VoidPtrTy +                                     : Context.VoidTy; +  return arrangeLLVMFunctionInfo(resultType, /*instanceMethod=*/true, +                                 /*chainCall=*/false, argTypes, extInfo, +                                 paramInfos, required); +} + +static SmallVector<CanQualType, 16> +getArgTypesForCall(ASTContext &ctx, const CallArgList &args) { +  SmallVector<CanQualType, 16> argTypes; +  for (auto &arg : args) +    argTypes.push_back(ctx.getCanonicalParamType(arg.Ty)); +  return argTypes; +} + +static SmallVector<CanQualType, 16> +getArgTypesForDeclaration(ASTContext &ctx, const FunctionArgList &args) { +  SmallVector<CanQualType, 16> argTypes; +  for (auto &arg : args) +    argTypes.push_back(ctx.getCanonicalParamType(arg->getType())); +  return argTypes; +} + +static llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> +getExtParameterInfosForCall(const FunctionProtoType *proto, +                            unsigned prefixArgs, unsigned totalArgs) { +  llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> result; +  if (proto->hasExtParameterInfos()) { +    addExtParameterInfosForCall(result, proto, prefixArgs, totalArgs); +  } +  return result; +} + +/// Arrange a call to a C++ method, passing the given arguments. +/// +/// ExtraPrefixArgs is the number of ABI-specific args passed after the `this` +/// parameter. +/// ExtraSuffixArgs is the number of ABI-specific args passed at the end of +/// args. +/// PassProtoArgs indicates whether `args` has args for the parameters in the +/// given CXXConstructorDecl. +const CGFunctionInfo & +CodeGenTypes::arrangeCXXConstructorCall(const CallArgList &args, +                                        const CXXConstructorDecl *D, +                                        CXXCtorType CtorKind, +                                        unsigned ExtraPrefixArgs, +                                        unsigned ExtraSuffixArgs, +                                        bool PassProtoArgs) { +  // FIXME: Kill copy. +  SmallVector<CanQualType, 16> ArgTypes; +  for (const auto &Arg : args) +    ArgTypes.push_back(Context.getCanonicalParamType(Arg.Ty)); + +  // +1 for implicit this, which should always be args[0]. +  unsigned TotalPrefixArgs = 1 + ExtraPrefixArgs; + +  CanQual<FunctionProtoType> FPT = GetFormalType(D); +  RequiredArgs Required = PassProtoArgs +                              ? RequiredArgs::forPrototypePlus( +                                    FPT, TotalPrefixArgs + ExtraSuffixArgs) +                              : RequiredArgs::All; + +  GlobalDecl GD(D, CtorKind); +  CanQualType ResultType = TheCXXABI.HasThisReturn(GD) +                               ? ArgTypes.front() +                               : TheCXXABI.hasMostDerivedReturn(GD) +                                     ? CGM.getContext().VoidPtrTy +                                     : Context.VoidTy; + +  FunctionType::ExtInfo Info = FPT->getExtInfo(); +  llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> ParamInfos; +  // If the prototype args are elided, we should only have ABI-specific args, +  // which never have param info. +  if (PassProtoArgs && FPT->hasExtParameterInfos()) { +    // ABI-specific suffix arguments are treated the same as variadic arguments. +    addExtParameterInfosForCall(ParamInfos, FPT.getTypePtr(), TotalPrefixArgs, +                                ArgTypes.size()); +  } +  return arrangeLLVMFunctionInfo(ResultType, /*instanceMethod=*/true, +                                 /*chainCall=*/false, ArgTypes, Info, +                                 ParamInfos, Required); +} + +/// Arrange the argument and result information for the declaration or +/// definition of the given function. +const CGFunctionInfo & +CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) { +  if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) +    if (MD->isInstance()) +      return arrangeCXXMethodDeclaration(MD); + +  CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified(); + +  assert(isa<FunctionType>(FTy)); +  setCUDAKernelCallingConvention(FTy, CGM, FD); + +  // When declaring a function without a prototype, always use a +  // non-variadic type. +  if (CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>()) { +    return arrangeLLVMFunctionInfo( +        noProto->getReturnType(), /*instanceMethod=*/false, +        /*chainCall=*/false, None, noProto->getExtInfo(), {},RequiredArgs::All); +  } + +  return arrangeFreeFunctionType(FTy.castAs<FunctionProtoType>()); +} + +/// Arrange the argument and result information for the declaration or +/// definition of an Objective-C method. +const CGFunctionInfo & +CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) { +  // It happens that this is the same as a call with no optional +  // arguments, except also using the formal 'self' type. +  return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType()); +} + +/// Arrange the argument and result information for the function type +/// through which to perform a send to the given Objective-C method, +/// using the given receiver type.  The receiver type is not always +/// the 'self' type of the method or even an Objective-C pointer type. +/// This is *not* the right method for actually performing such a +/// message send, due to the possibility of optional arguments. +const CGFunctionInfo & +CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD, +                                              QualType receiverType) { +  SmallVector<CanQualType, 16> argTys; +  SmallVector<FunctionProtoType::ExtParameterInfo, 4> extParamInfos(2); +  argTys.push_back(Context.getCanonicalParamType(receiverType)); +  argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType())); +  // FIXME: Kill copy? +  for (const auto *I : MD->parameters()) { +    argTys.push_back(Context.getCanonicalParamType(I->getType())); +    auto extParamInfo = FunctionProtoType::ExtParameterInfo().withIsNoEscape( +        I->hasAttr<NoEscapeAttr>()); +    extParamInfos.push_back(extParamInfo); +  } + +  FunctionType::ExtInfo einfo; +  bool IsWindows = getContext().getTargetInfo().getTriple().isOSWindows(); +  einfo = einfo.withCallingConv(getCallingConventionForDecl(MD, IsWindows)); + +  if (getContext().getLangOpts().ObjCAutoRefCount && +      MD->hasAttr<NSReturnsRetainedAttr>()) +    einfo = einfo.withProducesResult(true); + +  RequiredArgs required = +    (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All); + +  return arrangeLLVMFunctionInfo( +      GetReturnType(MD->getReturnType()), /*instanceMethod=*/false, +      /*chainCall=*/false, argTys, einfo, extParamInfos, required); +} + +const CGFunctionInfo & +CodeGenTypes::arrangeUnprototypedObjCMessageSend(QualType returnType, +                                                 const CallArgList &args) { +  auto argTypes = getArgTypesForCall(Context, args); +  FunctionType::ExtInfo einfo; + +  return arrangeLLVMFunctionInfo( +      GetReturnType(returnType), /*instanceMethod=*/false, +      /*chainCall=*/false, argTypes, einfo, {}, RequiredArgs::All); +} + +const CGFunctionInfo & +CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) { +  // FIXME: Do we need to handle ObjCMethodDecl? +  const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); + +  if (isa<CXXConstructorDecl>(GD.getDecl()) || +      isa<CXXDestructorDecl>(GD.getDecl())) +    return arrangeCXXStructorDeclaration(GD); + +  return arrangeFunctionDeclaration(FD); +} + +/// Arrange a thunk that takes 'this' as the first parameter followed by +/// varargs.  Return a void pointer, regardless of the actual return type. +/// The body of the thunk will end in a musttail call to a function of the +/// correct type, and the caller will bitcast the function to the correct +/// prototype. +const CGFunctionInfo & +CodeGenTypes::arrangeUnprototypedMustTailThunk(const CXXMethodDecl *MD) { +  assert(MD->isVirtual() && "only methods have thunks"); +  CanQual<FunctionProtoType> FTP = GetFormalType(MD); +  CanQualType ArgTys[] = {DeriveThisType(MD->getParent(), MD)}; +  return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/false, +                                 /*chainCall=*/false, ArgTys, +                                 FTP->getExtInfo(), {}, RequiredArgs(1)); +} + +const CGFunctionInfo & +CodeGenTypes::arrangeMSCtorClosure(const CXXConstructorDecl *CD, +                                   CXXCtorType CT) { +  assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure); + +  CanQual<FunctionProtoType> FTP = GetFormalType(CD); +  SmallVector<CanQualType, 2> ArgTys; +  const CXXRecordDecl *RD = CD->getParent(); +  ArgTys.push_back(DeriveThisType(RD, CD)); +  if (CT == Ctor_CopyingClosure) +    ArgTys.push_back(*FTP->param_type_begin()); +  if (RD->getNumVBases() > 0) +    ArgTys.push_back(Context.IntTy); +  CallingConv CC = Context.getDefaultCallingConvention( +      /*IsVariadic=*/false, /*IsCXXMethod=*/true); +  return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/true, +                                 /*chainCall=*/false, ArgTys, +                                 FunctionType::ExtInfo(CC), {}, +                                 RequiredArgs::All); +} + +/// Arrange a call as unto a free function, except possibly with an +/// additional number of formal parameters considered required. +static const CGFunctionInfo & +arrangeFreeFunctionLikeCall(CodeGenTypes &CGT, +                            CodeGenModule &CGM, +                            const CallArgList &args, +                            const FunctionType *fnType, +                            unsigned numExtraRequiredArgs, +                            bool chainCall) { +  assert(args.size() >= numExtraRequiredArgs); + +  llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; + +  // In most cases, there are no optional arguments. +  RequiredArgs required = RequiredArgs::All; + +  // If we have a variadic prototype, the required arguments are the +  // extra prefix plus the arguments in the prototype. +  if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) { +    if (proto->isVariadic()) +      required = RequiredArgs::forPrototypePlus(proto, numExtraRequiredArgs); + +    if (proto->hasExtParameterInfos()) +      addExtParameterInfosForCall(paramInfos, proto, numExtraRequiredArgs, +                                  args.size()); + +  // If we don't have a prototype at all, but we're supposed to +  // explicitly use the variadic convention for unprototyped calls, +  // treat all of the arguments as required but preserve the nominal +  // possibility of variadics. +  } else if (CGM.getTargetCodeGenInfo() +                .isNoProtoCallVariadic(args, +                                       cast<FunctionNoProtoType>(fnType))) { +    required = RequiredArgs(args.size()); +  } + +  // FIXME: Kill copy. +  SmallVector<CanQualType, 16> argTypes; +  for (const auto &arg : args) +    argTypes.push_back(CGT.getContext().getCanonicalParamType(arg.Ty)); +  return CGT.arrangeLLVMFunctionInfo(GetReturnType(fnType->getReturnType()), +                                     /*instanceMethod=*/false, chainCall, +                                     argTypes, fnType->getExtInfo(), paramInfos, +                                     required); +} + +/// Figure out the rules for calling a function with the given formal +/// type using the given arguments.  The arguments are necessary +/// because the function might be unprototyped, in which case it's +/// target-dependent in crazy ways. +const CGFunctionInfo & +CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args, +                                      const FunctionType *fnType, +                                      bool chainCall) { +  return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, +                                     chainCall ? 1 : 0, chainCall); +} + +/// A block function is essentially a free function with an +/// extra implicit argument. +const CGFunctionInfo & +CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args, +                                       const FunctionType *fnType) { +  return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 1, +                                     /*chainCall=*/false); +} + +const CGFunctionInfo & +CodeGenTypes::arrangeBlockFunctionDeclaration(const FunctionProtoType *proto, +                                              const FunctionArgList ¶ms) { +  auto paramInfos = getExtParameterInfosForCall(proto, 1, params.size()); +  auto argTypes = getArgTypesForDeclaration(Context, params); + +  return arrangeLLVMFunctionInfo(GetReturnType(proto->getReturnType()), +                                 /*instanceMethod*/ false, /*chainCall*/ false, +                                 argTypes, proto->getExtInfo(), paramInfos, +                                 RequiredArgs::forPrototypePlus(proto, 1)); +} + +const CGFunctionInfo & +CodeGenTypes::arrangeBuiltinFunctionCall(QualType resultType, +                                         const CallArgList &args) { +  // FIXME: Kill copy. +  SmallVector<CanQualType, 16> argTypes; +  for (const auto &Arg : args) +    argTypes.push_back(Context.getCanonicalParamType(Arg.Ty)); +  return arrangeLLVMFunctionInfo( +      GetReturnType(resultType), /*instanceMethod=*/false, +      /*chainCall=*/false, argTypes, FunctionType::ExtInfo(), +      /*paramInfos=*/ {}, RequiredArgs::All); +} + +const CGFunctionInfo & +CodeGenTypes::arrangeBuiltinFunctionDeclaration(QualType resultType, +                                                const FunctionArgList &args) { +  auto argTypes = getArgTypesForDeclaration(Context, args); + +  return arrangeLLVMFunctionInfo( +      GetReturnType(resultType), /*instanceMethod=*/false, /*chainCall=*/false, +      argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All); +} + +const CGFunctionInfo & +CodeGenTypes::arrangeBuiltinFunctionDeclaration(CanQualType resultType, +                                              ArrayRef<CanQualType> argTypes) { +  return arrangeLLVMFunctionInfo( +      resultType, /*instanceMethod=*/false, /*chainCall=*/false, +      argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All); +} + +/// Arrange a call to a C++ method, passing the given arguments. +/// +/// numPrefixArgs is the number of ABI-specific prefix arguments we have. It +/// does not count `this`. +const CGFunctionInfo & +CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args, +                                   const FunctionProtoType *proto, +                                   RequiredArgs required, +                                   unsigned numPrefixArgs) { +  assert(numPrefixArgs + 1 <= args.size() && +         "Emitting a call with less args than the required prefix?"); +  // Add one to account for `this`. It's a bit awkward here, but we don't count +  // `this` in similar places elsewhere. +  auto paramInfos = +    getExtParameterInfosForCall(proto, numPrefixArgs + 1, args.size()); + +  // FIXME: Kill copy. +  auto argTypes = getArgTypesForCall(Context, args); + +  FunctionType::ExtInfo info = proto->getExtInfo(); +  return arrangeLLVMFunctionInfo( +      GetReturnType(proto->getReturnType()), /*instanceMethod=*/true, +      /*chainCall=*/false, argTypes, info, paramInfos, required); +} + +const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() { +  return arrangeLLVMFunctionInfo( +      getContext().VoidTy, /*instanceMethod=*/false, /*chainCall=*/false, +      None, FunctionType::ExtInfo(), {}, RequiredArgs::All); +} + +const CGFunctionInfo & +CodeGenTypes::arrangeCall(const CGFunctionInfo &signature, +                          const CallArgList &args) { +  assert(signature.arg_size() <= args.size()); +  if (signature.arg_size() == args.size()) +    return signature; + +  SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; +  auto sigParamInfos = signature.getExtParameterInfos(); +  if (!sigParamInfos.empty()) { +    paramInfos.append(sigParamInfos.begin(), sigParamInfos.end()); +    paramInfos.resize(args.size()); +  } + +  auto argTypes = getArgTypesForCall(Context, args); + +  assert(signature.getRequiredArgs().allowsOptionalArgs()); +  return arrangeLLVMFunctionInfo(signature.getReturnType(), +                                 signature.isInstanceMethod(), +                                 signature.isChainCall(), +                                 argTypes, +                                 signature.getExtInfo(), +                                 paramInfos, +                                 signature.getRequiredArgs()); +} + +namespace clang { +namespace CodeGen { +void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI); +} +} + +/// Arrange the argument and result information for an abstract value +/// of a given function type.  This is the method which all of the +/// above functions ultimately defer to. +const CGFunctionInfo & +CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType, +                                      bool instanceMethod, +                                      bool chainCall, +                                      ArrayRef<CanQualType> argTypes, +                                      FunctionType::ExtInfo info, +                     ArrayRef<FunctionProtoType::ExtParameterInfo> paramInfos, +                                      RequiredArgs required) { +  assert(llvm::all_of(argTypes, +                      [](CanQualType T) { return T.isCanonicalAsParam(); })); + +  // Lookup or create unique function info. +  llvm::FoldingSetNodeID ID; +  CGFunctionInfo::Profile(ID, instanceMethod, chainCall, info, paramInfos, +                          required, resultType, argTypes); + +  void *insertPos = nullptr; +  CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos); +  if (FI) +    return *FI; + +  unsigned CC = ClangCallConvToLLVMCallConv(info.getCC()); + +  // Construct the function info.  We co-allocate the ArgInfos. +  FI = CGFunctionInfo::create(CC, instanceMethod, chainCall, info, +                              paramInfos, resultType, argTypes, required); +  FunctionInfos.InsertNode(FI, insertPos); + +  bool inserted = FunctionsBeingProcessed.insert(FI).second; +  (void)inserted; +  assert(inserted && "Recursively being processed?"); + +  // Compute ABI information. +  if (CC == llvm::CallingConv::SPIR_KERNEL) { +    // Force target independent argument handling for the host visible +    // kernel functions. +    computeSPIRKernelABIInfo(CGM, *FI); +  } else if (info.getCC() == CC_Swift) { +    swiftcall::computeABIInfo(CGM, *FI); +  } else { +    getABIInfo().computeInfo(*FI); +  } + +  // Loop over all of the computed argument and return value info.  If any of +  // them are direct or extend without a specified coerce type, specify the +  // default now. +  ABIArgInfo &retInfo = FI->getReturnInfo(); +  if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == nullptr) +    retInfo.setCoerceToType(ConvertType(FI->getReturnType())); + +  for (auto &I : FI->arguments()) +    if (I.info.canHaveCoerceToType() && I.info.getCoerceToType() == nullptr) +      I.info.setCoerceToType(ConvertType(I.type)); + +  bool erased = FunctionsBeingProcessed.erase(FI); (void)erased; +  assert(erased && "Not in set?"); + +  return *FI; +} + +CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC, +                                       bool instanceMethod, +                                       bool chainCall, +                                       const FunctionType::ExtInfo &info, +                                       ArrayRef<ExtParameterInfo> paramInfos, +                                       CanQualType resultType, +                                       ArrayRef<CanQualType> argTypes, +                                       RequiredArgs required) { +  assert(paramInfos.empty() || paramInfos.size() == argTypes.size()); +  assert(!required.allowsOptionalArgs() || +         required.getNumRequiredArgs() <= argTypes.size()); + +  void *buffer = +    operator new(totalSizeToAlloc<ArgInfo,             ExtParameterInfo>( +                                  argTypes.size() + 1, paramInfos.size())); + +  CGFunctionInfo *FI = new(buffer) CGFunctionInfo(); +  FI->CallingConvention = llvmCC; +  FI->EffectiveCallingConvention = llvmCC; +  FI->ASTCallingConvention = info.getCC(); +  FI->InstanceMethod = instanceMethod; +  FI->ChainCall = chainCall; +  FI->NoReturn = info.getNoReturn(); +  FI->ReturnsRetained = info.getProducesResult(); +  FI->NoCallerSavedRegs = info.getNoCallerSavedRegs(); +  FI->NoCfCheck = info.getNoCfCheck(); +  FI->Required = required; +  FI->HasRegParm = info.getHasRegParm(); +  FI->RegParm = info.getRegParm(); +  FI->ArgStruct = nullptr; +  FI->ArgStructAlign = 0; +  FI->NumArgs = argTypes.size(); +  FI->HasExtParameterInfos = !paramInfos.empty(); +  FI->getArgsBuffer()[0].type = resultType; +  for (unsigned i = 0, e = argTypes.size(); i != e; ++i) +    FI->getArgsBuffer()[i + 1].type = argTypes[i]; +  for (unsigned i = 0, e = paramInfos.size(); i != e; ++i) +    FI->getExtParameterInfosBuffer()[i] = paramInfos[i]; +  return FI; +} + +/***/ + +namespace { +// ABIArgInfo::Expand implementation. + +// Specifies the way QualType passed as ABIArgInfo::Expand is expanded. +struct TypeExpansion { +  enum TypeExpansionKind { +    // Elements of constant arrays are expanded recursively. +    TEK_ConstantArray, +    // Record fields are expanded recursively (but if record is a union, only +    // the field with the largest size is expanded). +    TEK_Record, +    // For complex types, real and imaginary parts are expanded recursively. +    TEK_Complex, +    // All other types are not expandable. +    TEK_None +  }; + +  const TypeExpansionKind Kind; + +  TypeExpansion(TypeExpansionKind K) : Kind(K) {} +  virtual ~TypeExpansion() {} +}; + +struct ConstantArrayExpansion : TypeExpansion { +  QualType EltTy; +  uint64_t NumElts; + +  ConstantArrayExpansion(QualType EltTy, uint64_t NumElts) +      : TypeExpansion(TEK_ConstantArray), EltTy(EltTy), NumElts(NumElts) {} +  static bool classof(const TypeExpansion *TE) { +    return TE->Kind == TEK_ConstantArray; +  } +}; + +struct RecordExpansion : TypeExpansion { +  SmallVector<const CXXBaseSpecifier *, 1> Bases; + +  SmallVector<const FieldDecl *, 1> Fields; + +  RecordExpansion(SmallVector<const CXXBaseSpecifier *, 1> &&Bases, +                  SmallVector<const FieldDecl *, 1> &&Fields) +      : TypeExpansion(TEK_Record), Bases(std::move(Bases)), +        Fields(std::move(Fields)) {} +  static bool classof(const TypeExpansion *TE) { +    return TE->Kind == TEK_Record; +  } +}; + +struct ComplexExpansion : TypeExpansion { +  QualType EltTy; + +  ComplexExpansion(QualType EltTy) : TypeExpansion(TEK_Complex), EltTy(EltTy) {} +  static bool classof(const TypeExpansion *TE) { +    return TE->Kind == TEK_Complex; +  } +}; + +struct NoExpansion : TypeExpansion { +  NoExpansion() : TypeExpansion(TEK_None) {} +  static bool classof(const TypeExpansion *TE) { +    return TE->Kind == TEK_None; +  } +}; +}  // namespace + +static std::unique_ptr<TypeExpansion> +getTypeExpansion(QualType Ty, const ASTContext &Context) { +  if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { +    return std::make_unique<ConstantArrayExpansion>( +        AT->getElementType(), AT->getSize().getZExtValue()); +  } +  if (const RecordType *RT = Ty->getAs<RecordType>()) { +    SmallVector<const CXXBaseSpecifier *, 1> Bases; +    SmallVector<const FieldDecl *, 1> Fields; +    const RecordDecl *RD = RT->getDecl(); +    assert(!RD->hasFlexibleArrayMember() && +           "Cannot expand structure with flexible array."); +    if (RD->isUnion()) { +      // Unions can be here only in degenerative cases - all the fields are same +      // after flattening. Thus we have to use the "largest" field. +      const FieldDecl *LargestFD = nullptr; +      CharUnits UnionSize = CharUnits::Zero(); + +      for (const auto *FD : RD->fields()) { +        if (FD->isZeroLengthBitField(Context)) +          continue; +        assert(!FD->isBitField() && +               "Cannot expand structure with bit-field members."); +        CharUnits FieldSize = Context.getTypeSizeInChars(FD->getType()); +        if (UnionSize < FieldSize) { +          UnionSize = FieldSize; +          LargestFD = FD; +        } +      } +      if (LargestFD) +        Fields.push_back(LargestFD); +    } else { +      if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { +        assert(!CXXRD->isDynamicClass() && +               "cannot expand vtable pointers in dynamic classes"); +        for (const CXXBaseSpecifier &BS : CXXRD->bases()) +          Bases.push_back(&BS); +      } + +      for (const auto *FD : RD->fields()) { +        if (FD->isZeroLengthBitField(Context)) +          continue; +        assert(!FD->isBitField() && +               "Cannot expand structure with bit-field members."); +        Fields.push_back(FD); +      } +    } +    return std::make_unique<RecordExpansion>(std::move(Bases), +                                              std::move(Fields)); +  } +  if (const ComplexType *CT = Ty->getAs<ComplexType>()) { +    return std::make_unique<ComplexExpansion>(CT->getElementType()); +  } +  return std::make_unique<NoExpansion>(); +} + +static int getExpansionSize(QualType Ty, const ASTContext &Context) { +  auto Exp = getTypeExpansion(Ty, Context); +  if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { +    return CAExp->NumElts * getExpansionSize(CAExp->EltTy, Context); +  } +  if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { +    int Res = 0; +    for (auto BS : RExp->Bases) +      Res += getExpansionSize(BS->getType(), Context); +    for (auto FD : RExp->Fields) +      Res += getExpansionSize(FD->getType(), Context); +    return Res; +  } +  if (isa<ComplexExpansion>(Exp.get())) +    return 2; +  assert(isa<NoExpansion>(Exp.get())); +  return 1; +} + +void +CodeGenTypes::getExpandedTypes(QualType Ty, +                               SmallVectorImpl<llvm::Type *>::iterator &TI) { +  auto Exp = getTypeExpansion(Ty, Context); +  if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { +    for (int i = 0, n = CAExp->NumElts; i < n; i++) { +      getExpandedTypes(CAExp->EltTy, TI); +    } +  } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { +    for (auto BS : RExp->Bases) +      getExpandedTypes(BS->getType(), TI); +    for (auto FD : RExp->Fields) +      getExpandedTypes(FD->getType(), TI); +  } else if (auto CExp = dyn_cast<ComplexExpansion>(Exp.get())) { +    llvm::Type *EltTy = ConvertType(CExp->EltTy); +    *TI++ = EltTy; +    *TI++ = EltTy; +  } else { +    assert(isa<NoExpansion>(Exp.get())); +    *TI++ = ConvertType(Ty); +  } +} + +static void forConstantArrayExpansion(CodeGenFunction &CGF, +                                      ConstantArrayExpansion *CAE, +                                      Address BaseAddr, +                                      llvm::function_ref<void(Address)> Fn) { +  CharUnits EltSize = CGF.getContext().getTypeSizeInChars(CAE->EltTy); +  CharUnits EltAlign = +    BaseAddr.getAlignment().alignmentOfArrayElement(EltSize); + +  for (int i = 0, n = CAE->NumElts; i < n; i++) { +    llvm::Value *EltAddr = +      CGF.Builder.CreateConstGEP2_32(nullptr, BaseAddr.getPointer(), 0, i); +    Fn(Address(EltAddr, EltAlign)); +  } +} + +void CodeGenFunction::ExpandTypeFromArgs( +    QualType Ty, LValue LV, SmallVectorImpl<llvm::Value *>::iterator &AI) { +  assert(LV.isSimple() && +         "Unexpected non-simple lvalue during struct expansion."); + +  auto Exp = getTypeExpansion(Ty, getContext()); +  if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { +    forConstantArrayExpansion(*this, CAExp, LV.getAddress(), +                              [&](Address EltAddr) { +      LValue LV = MakeAddrLValue(EltAddr, CAExp->EltTy); +      ExpandTypeFromArgs(CAExp->EltTy, LV, AI); +    }); +  } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { +    Address This = LV.getAddress(); +    for (const CXXBaseSpecifier *BS : RExp->Bases) { +      // Perform a single step derived-to-base conversion. +      Address Base = +          GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1, +                                /*NullCheckValue=*/false, SourceLocation()); +      LValue SubLV = MakeAddrLValue(Base, BS->getType()); + +      // Recurse onto bases. +      ExpandTypeFromArgs(BS->getType(), SubLV, AI); +    } +    for (auto FD : RExp->Fields) { +      // FIXME: What are the right qualifiers here? +      LValue SubLV = EmitLValueForFieldInitialization(LV, FD); +      ExpandTypeFromArgs(FD->getType(), SubLV, AI); +    } +  } else if (isa<ComplexExpansion>(Exp.get())) { +    auto realValue = *AI++; +    auto imagValue = *AI++; +    EmitStoreOfComplex(ComplexPairTy(realValue, imagValue), LV, /*init*/ true); +  } else { +    assert(isa<NoExpansion>(Exp.get())); +    EmitStoreThroughLValue(RValue::get(*AI++), LV); +  } +} + +void CodeGenFunction::ExpandTypeToArgs( +    QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy, +    SmallVectorImpl<llvm::Value *> &IRCallArgs, unsigned &IRCallArgPos) { +  auto Exp = getTypeExpansion(Ty, getContext()); +  if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { +    Address Addr = Arg.hasLValue() ? Arg.getKnownLValue().getAddress() +                                   : Arg.getKnownRValue().getAggregateAddress(); +    forConstantArrayExpansion( +        *this, CAExp, Addr, [&](Address EltAddr) { +          CallArg EltArg = CallArg( +              convertTempToRValue(EltAddr, CAExp->EltTy, SourceLocation()), +              CAExp->EltTy); +          ExpandTypeToArgs(CAExp->EltTy, EltArg, IRFuncTy, IRCallArgs, +                           IRCallArgPos); +        }); +  } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { +    Address This = Arg.hasLValue() ? Arg.getKnownLValue().getAddress() +                                   : Arg.getKnownRValue().getAggregateAddress(); +    for (const CXXBaseSpecifier *BS : RExp->Bases) { +      // Perform a single step derived-to-base conversion. +      Address Base = +          GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1, +                                /*NullCheckValue=*/false, SourceLocation()); +      CallArg BaseArg = CallArg(RValue::getAggregate(Base), BS->getType()); + +      // Recurse onto bases. +      ExpandTypeToArgs(BS->getType(), BaseArg, IRFuncTy, IRCallArgs, +                       IRCallArgPos); +    } + +    LValue LV = MakeAddrLValue(This, Ty); +    for (auto FD : RExp->Fields) { +      CallArg FldArg = +          CallArg(EmitRValueForField(LV, FD, SourceLocation()), FD->getType()); +      ExpandTypeToArgs(FD->getType(), FldArg, IRFuncTy, IRCallArgs, +                       IRCallArgPos); +    } +  } else if (isa<ComplexExpansion>(Exp.get())) { +    ComplexPairTy CV = Arg.getKnownRValue().getComplexVal(); +    IRCallArgs[IRCallArgPos++] = CV.first; +    IRCallArgs[IRCallArgPos++] = CV.second; +  } else { +    assert(isa<NoExpansion>(Exp.get())); +    auto RV = Arg.getKnownRValue(); +    assert(RV.isScalar() && +           "Unexpected non-scalar rvalue during struct expansion."); + +    // Insert a bitcast as needed. +    llvm::Value *V = RV.getScalarVal(); +    if (IRCallArgPos < IRFuncTy->getNumParams() && +        V->getType() != IRFuncTy->getParamType(IRCallArgPos)) +      V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRCallArgPos)); + +    IRCallArgs[IRCallArgPos++] = V; +  } +} + +/// Create a temporary allocation for the purposes of coercion. +static Address CreateTempAllocaForCoercion(CodeGenFunction &CGF, llvm::Type *Ty, +                                           CharUnits MinAlign) { +  // Don't use an alignment that's worse than what LLVM would prefer. +  auto PrefAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(Ty); +  CharUnits Align = std::max(MinAlign, CharUnits::fromQuantity(PrefAlign)); + +  return CGF.CreateTempAlloca(Ty, Align); +} + +/// EnterStructPointerForCoercedAccess - Given a struct pointer that we are +/// accessing some number of bytes out of it, try to gep into the struct to get +/// at its inner goodness.  Dive as deep as possible without entering an element +/// with an in-memory size smaller than DstSize. +static Address +EnterStructPointerForCoercedAccess(Address SrcPtr, +                                   llvm::StructType *SrcSTy, +                                   uint64_t DstSize, CodeGenFunction &CGF) { +  // We can't dive into a zero-element struct. +  if (SrcSTy->getNumElements() == 0) return SrcPtr; + +  llvm::Type *FirstElt = SrcSTy->getElementType(0); + +  // If the first elt is at least as large as what we're looking for, or if the +  // first element is the same size as the whole struct, we can enter it. The +  // comparison must be made on the store size and not the alloca size. Using +  // the alloca size may overstate the size of the load. +  uint64_t FirstEltSize = +    CGF.CGM.getDataLayout().getTypeStoreSize(FirstElt); +  if (FirstEltSize < DstSize && +      FirstEltSize < CGF.CGM.getDataLayout().getTypeStoreSize(SrcSTy)) +    return SrcPtr; + +  // GEP into the first element. +  SrcPtr = CGF.Builder.CreateStructGEP(SrcPtr, 0, "coerce.dive"); + +  // If the first element is a struct, recurse. +  llvm::Type *SrcTy = SrcPtr.getElementType(); +  if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) +    return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF); + +  return SrcPtr; +} + +/// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both +/// are either integers or pointers.  This does a truncation of the value if it +/// is too large or a zero extension if it is too small. +/// +/// This behaves as if the value were coerced through memory, so on big-endian +/// targets the high bits are preserved in a truncation, while little-endian +/// targets preserve the low bits. +static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val, +                                             llvm::Type *Ty, +                                             CodeGenFunction &CGF) { +  if (Val->getType() == Ty) +    return Val; + +  if (isa<llvm::PointerType>(Val->getType())) { +    // If this is Pointer->Pointer avoid conversion to and from int. +    if (isa<llvm::PointerType>(Ty)) +      return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val"); + +    // Convert the pointer to an integer so we can play with its width. +    Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi"); +  } + +  llvm::Type *DestIntTy = Ty; +  if (isa<llvm::PointerType>(DestIntTy)) +    DestIntTy = CGF.IntPtrTy; + +  if (Val->getType() != DestIntTy) { +    const llvm::DataLayout &DL = CGF.CGM.getDataLayout(); +    if (DL.isBigEndian()) { +      // Preserve the high bits on big-endian targets. +      // That is what memory coercion does. +      uint64_t SrcSize = DL.getTypeSizeInBits(Val->getType()); +      uint64_t DstSize = DL.getTypeSizeInBits(DestIntTy); + +      if (SrcSize > DstSize) { +        Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits"); +        Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii"); +      } else { +        Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii"); +        Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits"); +      } +    } else { +      // Little-endian targets preserve the low bits. No shifts required. +      Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii"); +    } +  } + +  if (isa<llvm::PointerType>(Ty)) +    Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip"); +  return Val; +} + + + +/// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as +/// a pointer to an object of type \arg Ty, known to be aligned to +/// \arg SrcAlign bytes. +/// +/// This safely handles the case when the src type is smaller than the +/// destination type; in this situation the values of bits which not +/// present in the src are undefined. +static llvm::Value *CreateCoercedLoad(Address Src, llvm::Type *Ty, +                                      CodeGenFunction &CGF) { +  llvm::Type *SrcTy = Src.getElementType(); + +  // If SrcTy and Ty are the same, just do a load. +  if (SrcTy == Ty) +    return CGF.Builder.CreateLoad(Src); + +  uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty); + +  if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) { +    Src = EnterStructPointerForCoercedAccess(Src, SrcSTy, DstSize, CGF); +    SrcTy = Src.getType()->getElementType(); +  } + +  uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy); + +  // If the source and destination are integer or pointer types, just do an +  // extension or truncation to the desired type. +  if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) && +      (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) { +    llvm::Value *Load = CGF.Builder.CreateLoad(Src); +    return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF); +  } + +  // If load is legal, just bitcast the src pointer. +  if (SrcSize >= DstSize) { +    // Generally SrcSize is never greater than DstSize, since this means we are +    // losing bits. However, this can happen in cases where the structure has +    // additional padding, for example due to a user specified alignment. +    // +    // FIXME: Assert that we aren't truncating non-padding bits when have access +    // to that information. +    Src = CGF.Builder.CreateBitCast(Src, +                                    Ty->getPointerTo(Src.getAddressSpace())); +    return CGF.Builder.CreateLoad(Src); +  } + +  // Otherwise do coercion through memory. This is stupid, but simple. +  Address Tmp = CreateTempAllocaForCoercion(CGF, Ty, Src.getAlignment()); +  Address Casted = CGF.Builder.CreateElementBitCast(Tmp,CGF.Int8Ty); +  Address SrcCasted = CGF.Builder.CreateElementBitCast(Src,CGF.Int8Ty); +  CGF.Builder.CreateMemCpy(Casted, SrcCasted, +      llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize), +      false); +  return CGF.Builder.CreateLoad(Tmp); +} + +// Function to store a first-class aggregate into memory.  We prefer to +// store the elements rather than the aggregate to be more friendly to +// fast-isel. +// FIXME: Do we need to recurse here? +static void BuildAggStore(CodeGenFunction &CGF, llvm::Value *Val, +                          Address Dest, bool DestIsVolatile) { +  // Prefer scalar stores to first-class aggregate stores. +  if (llvm::StructType *STy = +        dyn_cast<llvm::StructType>(Val->getType())) { +    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { +      Address EltPtr = CGF.Builder.CreateStructGEP(Dest, i); +      llvm::Value *Elt = CGF.Builder.CreateExtractValue(Val, i); +      CGF.Builder.CreateStore(Elt, EltPtr, DestIsVolatile); +    } +  } else { +    CGF.Builder.CreateStore(Val, Dest, DestIsVolatile); +  } +} + +/// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src, +/// where the source and destination may have different types.  The +/// destination is known to be aligned to \arg DstAlign bytes. +/// +/// This safely handles the case when the src type is larger than the +/// destination type; the upper bits of the src will be lost. +static void CreateCoercedStore(llvm::Value *Src, +                               Address Dst, +                               bool DstIsVolatile, +                               CodeGenFunction &CGF) { +  llvm::Type *SrcTy = Src->getType(); +  llvm::Type *DstTy = Dst.getType()->getElementType(); +  if (SrcTy == DstTy) { +    CGF.Builder.CreateStore(Src, Dst, DstIsVolatile); +    return; +  } + +  uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy); + +  if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) { +    Dst = EnterStructPointerForCoercedAccess(Dst, DstSTy, SrcSize, CGF); +    DstTy = Dst.getType()->getElementType(); +  } + +  // If the source and destination are integer or pointer types, just do an +  // extension or truncation to the desired type. +  if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) && +      (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) { +    Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF); +    CGF.Builder.CreateStore(Src, Dst, DstIsVolatile); +    return; +  } + +  uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy); + +  // If store is legal, just bitcast the src pointer. +  if (SrcSize <= DstSize) { +    Dst = CGF.Builder.CreateElementBitCast(Dst, SrcTy); +    BuildAggStore(CGF, Src, Dst, DstIsVolatile); +  } else { +    // Otherwise do coercion through memory. This is stupid, but +    // simple. + +    // Generally SrcSize is never greater than DstSize, since this means we are +    // losing bits. However, this can happen in cases where the structure has +    // additional padding, for example due to a user specified alignment. +    // +    // FIXME: Assert that we aren't truncating non-padding bits when have access +    // to that information. +    Address Tmp = CreateTempAllocaForCoercion(CGF, SrcTy, Dst.getAlignment()); +    CGF.Builder.CreateStore(Src, Tmp); +    Address Casted = CGF.Builder.CreateElementBitCast(Tmp,CGF.Int8Ty); +    Address DstCasted = CGF.Builder.CreateElementBitCast(Dst,CGF.Int8Ty); +    CGF.Builder.CreateMemCpy(DstCasted, Casted, +        llvm::ConstantInt::get(CGF.IntPtrTy, DstSize), +        false); +  } +} + +static Address emitAddressAtOffset(CodeGenFunction &CGF, Address addr, +                                   const ABIArgInfo &info) { +  if (unsigned offset = info.getDirectOffset()) { +    addr = CGF.Builder.CreateElementBitCast(addr, CGF.Int8Ty); +    addr = CGF.Builder.CreateConstInBoundsByteGEP(addr, +                                             CharUnits::fromQuantity(offset)); +    addr = CGF.Builder.CreateElementBitCast(addr, info.getCoerceToType()); +  } +  return addr; +} + +namespace { + +/// Encapsulates information about the way function arguments from +/// CGFunctionInfo should be passed to actual LLVM IR function. +class ClangToLLVMArgMapping { +  static const unsigned InvalidIndex = ~0U; +  unsigned InallocaArgNo; +  unsigned SRetArgNo; +  unsigned TotalIRArgs; + +  /// Arguments of LLVM IR function corresponding to single Clang argument. +  struct IRArgs { +    unsigned PaddingArgIndex; +    // Argument is expanded to IR arguments at positions +    // [FirstArgIndex, FirstArgIndex + NumberOfArgs). +    unsigned FirstArgIndex; +    unsigned NumberOfArgs; + +    IRArgs() +        : PaddingArgIndex(InvalidIndex), FirstArgIndex(InvalidIndex), +          NumberOfArgs(0) {} +  }; + +  SmallVector<IRArgs, 8> ArgInfo; + +public: +  ClangToLLVMArgMapping(const ASTContext &Context, const CGFunctionInfo &FI, +                        bool OnlyRequiredArgs = false) +      : InallocaArgNo(InvalidIndex), SRetArgNo(InvalidIndex), TotalIRArgs(0), +        ArgInfo(OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size()) { +    construct(Context, FI, OnlyRequiredArgs); +  } + +  bool hasInallocaArg() const { return InallocaArgNo != InvalidIndex; } +  unsigned getInallocaArgNo() const { +    assert(hasInallocaArg()); +    return InallocaArgNo; +  } + +  bool hasSRetArg() const { return SRetArgNo != InvalidIndex; } +  unsigned getSRetArgNo() const { +    assert(hasSRetArg()); +    return SRetArgNo; +  } + +  unsigned totalIRArgs() const { return TotalIRArgs; } + +  bool hasPaddingArg(unsigned ArgNo) const { +    assert(ArgNo < ArgInfo.size()); +    return ArgInfo[ArgNo].PaddingArgIndex != InvalidIndex; +  } +  unsigned getPaddingArgNo(unsigned ArgNo) const { +    assert(hasPaddingArg(ArgNo)); +    return ArgInfo[ArgNo].PaddingArgIndex; +  } + +  /// Returns index of first IR argument corresponding to ArgNo, and their +  /// quantity. +  std::pair<unsigned, unsigned> getIRArgs(unsigned ArgNo) const { +    assert(ArgNo < ArgInfo.size()); +    return std::make_pair(ArgInfo[ArgNo].FirstArgIndex, +                          ArgInfo[ArgNo].NumberOfArgs); +  } + +private: +  void construct(const ASTContext &Context, const CGFunctionInfo &FI, +                 bool OnlyRequiredArgs); +}; + +void ClangToLLVMArgMapping::construct(const ASTContext &Context, +                                      const CGFunctionInfo &FI, +                                      bool OnlyRequiredArgs) { +  unsigned IRArgNo = 0; +  bool SwapThisWithSRet = false; +  const ABIArgInfo &RetAI = FI.getReturnInfo(); + +  if (RetAI.getKind() == ABIArgInfo::Indirect) { +    SwapThisWithSRet = RetAI.isSRetAfterThis(); +    SRetArgNo = SwapThisWithSRet ? 1 : IRArgNo++; +  } + +  unsigned ArgNo = 0; +  unsigned NumArgs = OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size(); +  for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(); ArgNo < NumArgs; +       ++I, ++ArgNo) { +    assert(I != FI.arg_end()); +    QualType ArgType = I->type; +    const ABIArgInfo &AI = I->info; +    // Collect data about IR arguments corresponding to Clang argument ArgNo. +    auto &IRArgs = ArgInfo[ArgNo]; + +    if (AI.getPaddingType()) +      IRArgs.PaddingArgIndex = IRArgNo++; + +    switch (AI.getKind()) { +    case ABIArgInfo::Extend: +    case ABIArgInfo::Direct: { +      // FIXME: handle sseregparm someday... +      llvm::StructType *STy = dyn_cast<llvm::StructType>(AI.getCoerceToType()); +      if (AI.isDirect() && AI.getCanBeFlattened() && STy) { +        IRArgs.NumberOfArgs = STy->getNumElements(); +      } else { +        IRArgs.NumberOfArgs = 1; +      } +      break; +    } +    case ABIArgInfo::Indirect: +      IRArgs.NumberOfArgs = 1; +      break; +    case ABIArgInfo::Ignore: +    case ABIArgInfo::InAlloca: +      // ignore and inalloca doesn't have matching LLVM parameters. +      IRArgs.NumberOfArgs = 0; +      break; +    case ABIArgInfo::CoerceAndExpand: +      IRArgs.NumberOfArgs = AI.getCoerceAndExpandTypeSequence().size(); +      break; +    case ABIArgInfo::Expand: +      IRArgs.NumberOfArgs = getExpansionSize(ArgType, Context); +      break; +    } + +    if (IRArgs.NumberOfArgs > 0) { +      IRArgs.FirstArgIndex = IRArgNo; +      IRArgNo += IRArgs.NumberOfArgs; +    } + +    // Skip over the sret parameter when it comes second.  We already handled it +    // above. +    if (IRArgNo == 1 && SwapThisWithSRet) +      IRArgNo++; +  } +  assert(ArgNo == ArgInfo.size()); + +  if (FI.usesInAlloca()) +    InallocaArgNo = IRArgNo++; + +  TotalIRArgs = IRArgNo; +} +}  // namespace + +/***/ + +bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) { +  const auto &RI = FI.getReturnInfo(); +  return RI.isIndirect() || (RI.isInAlloca() && RI.getInAllocaSRet()); +} + +bool CodeGenModule::ReturnSlotInterferesWithArgs(const CGFunctionInfo &FI) { +  return ReturnTypeUsesSRet(FI) && +         getTargetCodeGenInfo().doesReturnSlotInterfereWithArgs(); +} + +bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) { +  if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) { +    switch (BT->getKind()) { +    default: +      return false; +    case BuiltinType::Float: +      return getTarget().useObjCFPRetForRealType(TargetInfo::Float); +    case BuiltinType::Double: +      return getTarget().useObjCFPRetForRealType(TargetInfo::Double); +    case BuiltinType::LongDouble: +      return getTarget().useObjCFPRetForRealType(TargetInfo::LongDouble); +    } +  } + +  return false; +} + +bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) { +  if (const ComplexType *CT = ResultType->getAs<ComplexType>()) { +    if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) { +      if (BT->getKind() == BuiltinType::LongDouble) +        return getTarget().useObjCFP2RetForComplexLongDouble(); +    } +  } + +  return false; +} + +llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) { +  const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD); +  return GetFunctionType(FI); +} + +llvm::FunctionType * +CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) { + +  bool Inserted = FunctionsBeingProcessed.insert(&FI).second; +  (void)Inserted; +  assert(Inserted && "Recursively being processed?"); + +  llvm::Type *resultType = nullptr; +  const ABIArgInfo &retAI = FI.getReturnInfo(); +  switch (retAI.getKind()) { +  case ABIArgInfo::Expand: +    llvm_unreachable("Invalid ABI kind for return argument"); + +  case ABIArgInfo::Extend: +  case ABIArgInfo::Direct: +    resultType = retAI.getCoerceToType(); +    break; + +  case ABIArgInfo::InAlloca: +    if (retAI.getInAllocaSRet()) { +      // sret things on win32 aren't void, they return the sret pointer. +      QualType ret = FI.getReturnType(); +      llvm::Type *ty = ConvertType(ret); +      unsigned addressSpace = Context.getTargetAddressSpace(ret); +      resultType = llvm::PointerType::get(ty, addressSpace); +    } else { +      resultType = llvm::Type::getVoidTy(getLLVMContext()); +    } +    break; + +  case ABIArgInfo::Indirect: +  case ABIArgInfo::Ignore: +    resultType = llvm::Type::getVoidTy(getLLVMContext()); +    break; + +  case ABIArgInfo::CoerceAndExpand: +    resultType = retAI.getUnpaddedCoerceAndExpandType(); +    break; +  } + +  ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI, true); +  SmallVector<llvm::Type*, 8> ArgTypes(IRFunctionArgs.totalIRArgs()); + +  // Add type for sret argument. +  if (IRFunctionArgs.hasSRetArg()) { +    QualType Ret = FI.getReturnType(); +    llvm::Type *Ty = ConvertType(Ret); +    unsigned AddressSpace = Context.getTargetAddressSpace(Ret); +    ArgTypes[IRFunctionArgs.getSRetArgNo()] = +        llvm::PointerType::get(Ty, AddressSpace); +  } + +  // Add type for inalloca argument. +  if (IRFunctionArgs.hasInallocaArg()) { +    auto ArgStruct = FI.getArgStruct(); +    assert(ArgStruct); +    ArgTypes[IRFunctionArgs.getInallocaArgNo()] = ArgStruct->getPointerTo(); +  } + +  // Add in all of the required arguments. +  unsigned ArgNo = 0; +  CGFunctionInfo::const_arg_iterator it = FI.arg_begin(), +                                     ie = it + FI.getNumRequiredArgs(); +  for (; it != ie; ++it, ++ArgNo) { +    const ABIArgInfo &ArgInfo = it->info; + +    // Insert a padding type to ensure proper alignment. +    if (IRFunctionArgs.hasPaddingArg(ArgNo)) +      ArgTypes[IRFunctionArgs.getPaddingArgNo(ArgNo)] = +          ArgInfo.getPaddingType(); + +    unsigned FirstIRArg, NumIRArgs; +    std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); + +    switch (ArgInfo.getKind()) { +    case ABIArgInfo::Ignore: +    case ABIArgInfo::InAlloca: +      assert(NumIRArgs == 0); +      break; + +    case ABIArgInfo::Indirect: { +      assert(NumIRArgs == 1); +      // indirect arguments are always on the stack, which is alloca addr space. +      llvm::Type *LTy = ConvertTypeForMem(it->type); +      ArgTypes[FirstIRArg] = LTy->getPointerTo( +          CGM.getDataLayout().getAllocaAddrSpace()); +      break; +    } + +    case ABIArgInfo::Extend: +    case ABIArgInfo::Direct: { +      // Fast-isel and the optimizer generally like scalar values better than +      // FCAs, so we flatten them if this is safe to do for this argument. +      llvm::Type *argType = ArgInfo.getCoerceToType(); +      llvm::StructType *st = dyn_cast<llvm::StructType>(argType); +      if (st && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) { +        assert(NumIRArgs == st->getNumElements()); +        for (unsigned i = 0, e = st->getNumElements(); i != e; ++i) +          ArgTypes[FirstIRArg + i] = st->getElementType(i); +      } else { +        assert(NumIRArgs == 1); +        ArgTypes[FirstIRArg] = argType; +      } +      break; +    } + +    case ABIArgInfo::CoerceAndExpand: { +      auto ArgTypesIter = ArgTypes.begin() + FirstIRArg; +      for (auto EltTy : ArgInfo.getCoerceAndExpandTypeSequence()) { +        *ArgTypesIter++ = EltTy; +      } +      assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs); +      break; +    } + +    case ABIArgInfo::Expand: +      auto ArgTypesIter = ArgTypes.begin() + FirstIRArg; +      getExpandedTypes(it->type, ArgTypesIter); +      assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs); +      break; +    } +  } + +  bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased; +  assert(Erased && "Not in set?"); + +  return llvm::FunctionType::get(resultType, ArgTypes, FI.isVariadic()); +} + +llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) { +  const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); +  const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>(); + +  if (!isFuncTypeConvertible(FPT)) +    return llvm::StructType::get(getLLVMContext()); + +  return GetFunctionType(GD); +} + +static void AddAttributesFromFunctionProtoType(ASTContext &Ctx, +                                               llvm::AttrBuilder &FuncAttrs, +                                               const FunctionProtoType *FPT) { +  if (!FPT) +    return; + +  if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) && +      FPT->isNothrow()) +    FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); +} + +void CodeGenModule::ConstructDefaultFnAttrList(StringRef Name, bool HasOptnone, +                                               bool AttrOnCallSite, +                                               llvm::AttrBuilder &FuncAttrs) { +  // OptimizeNoneAttr takes precedence over -Os or -Oz. No warning needed. +  if (!HasOptnone) { +    if (CodeGenOpts.OptimizeSize) +      FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize); +    if (CodeGenOpts.OptimizeSize == 2) +      FuncAttrs.addAttribute(llvm::Attribute::MinSize); +  } + +  if (CodeGenOpts.DisableRedZone) +    FuncAttrs.addAttribute(llvm::Attribute::NoRedZone); +  if (CodeGenOpts.IndirectTlsSegRefs) +    FuncAttrs.addAttribute("indirect-tls-seg-refs"); +  if (CodeGenOpts.NoImplicitFloat) +    FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat); + +  if (AttrOnCallSite) { +    // Attributes that should go on the call site only. +    if (!CodeGenOpts.SimplifyLibCalls || +        CodeGenOpts.isNoBuiltinFunc(Name.data())) +      FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin); +    if (!CodeGenOpts.TrapFuncName.empty()) +      FuncAttrs.addAttribute("trap-func-name", CodeGenOpts.TrapFuncName); +  } else { +    StringRef FpKind; +    switch (CodeGenOpts.getFramePointer()) { +    case CodeGenOptions::FramePointerKind::None: +      FpKind = "none"; +      break; +    case CodeGenOptions::FramePointerKind::NonLeaf: +      FpKind = "non-leaf"; +      break; +    case CodeGenOptions::FramePointerKind::All: +      FpKind = "all"; +      break; +    } +    FuncAttrs.addAttribute("frame-pointer", FpKind); + +    FuncAttrs.addAttribute("less-precise-fpmad", +                           llvm::toStringRef(CodeGenOpts.LessPreciseFPMAD)); + +    if (CodeGenOpts.NullPointerIsValid) +      FuncAttrs.addAttribute("null-pointer-is-valid", "true"); +    if (!CodeGenOpts.FPDenormalMode.empty()) +      FuncAttrs.addAttribute("denormal-fp-math", CodeGenOpts.FPDenormalMode); + +    FuncAttrs.addAttribute("no-trapping-math", +                           llvm::toStringRef(CodeGenOpts.NoTrappingMath)); + +    // Strict (compliant) code is the default, so only add this attribute to +    // indicate that we are trying to workaround a problem case. +    if (!CodeGenOpts.StrictFloatCastOverflow) +      FuncAttrs.addAttribute("strict-float-cast-overflow", "false"); + +    // TODO: Are these all needed? +    // unsafe/inf/nan/nsz are handled by instruction-level FastMathFlags. +    FuncAttrs.addAttribute("no-infs-fp-math", +                           llvm::toStringRef(CodeGenOpts.NoInfsFPMath)); +    FuncAttrs.addAttribute("no-nans-fp-math", +                           llvm::toStringRef(CodeGenOpts.NoNaNsFPMath)); +    FuncAttrs.addAttribute("unsafe-fp-math", +                           llvm::toStringRef(CodeGenOpts.UnsafeFPMath)); +    FuncAttrs.addAttribute("use-soft-float", +                           llvm::toStringRef(CodeGenOpts.SoftFloat)); +    FuncAttrs.addAttribute("stack-protector-buffer-size", +                           llvm::utostr(CodeGenOpts.SSPBufferSize)); +    FuncAttrs.addAttribute("no-signed-zeros-fp-math", +                           llvm::toStringRef(CodeGenOpts.NoSignedZeros)); +    FuncAttrs.addAttribute( +        "correctly-rounded-divide-sqrt-fp-math", +        llvm::toStringRef(CodeGenOpts.CorrectlyRoundedDivSqrt)); + +    if (getLangOpts().OpenCL) +      FuncAttrs.addAttribute("denorms-are-zero", +                             llvm::toStringRef(CodeGenOpts.FlushDenorm)); + +    // TODO: Reciprocal estimate codegen options should apply to instructions? +    const std::vector<std::string> &Recips = CodeGenOpts.Reciprocals; +    if (!Recips.empty()) +      FuncAttrs.addAttribute("reciprocal-estimates", +                             llvm::join(Recips, ",")); + +    if (!CodeGenOpts.PreferVectorWidth.empty() && +        CodeGenOpts.PreferVectorWidth != "none") +      FuncAttrs.addAttribute("prefer-vector-width", +                             CodeGenOpts.PreferVectorWidth); + +    if (CodeGenOpts.StackRealignment) +      FuncAttrs.addAttribute("stackrealign"); +    if (CodeGenOpts.Backchain) +      FuncAttrs.addAttribute("backchain"); + +    if (CodeGenOpts.SpeculativeLoadHardening) +      FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening); +  } + +  if (getLangOpts().assumeFunctionsAreConvergent()) { +    // Conservatively, mark all functions and calls in CUDA and OpenCL as +    // convergent (meaning, they may call an intrinsically convergent op, such +    // as __syncthreads() / barrier(), and so can't have certain optimizations +    // applied around them).  LLVM will remove this attribute where it safely +    // can. +    FuncAttrs.addAttribute(llvm::Attribute::Convergent); +  } + +  if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) { +    // Exceptions aren't supported in CUDA device code. +    FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); + +    // Respect -fcuda-flush-denormals-to-zero. +    if (CodeGenOpts.FlushDenorm) +      FuncAttrs.addAttribute("nvptx-f32ftz", "true"); +  } + +  for (StringRef Attr : CodeGenOpts.DefaultFunctionAttrs) { +    StringRef Var, Value; +    std::tie(Var, Value) = Attr.split('='); +    FuncAttrs.addAttribute(Var, Value); +  } +} + +void CodeGenModule::AddDefaultFnAttrs(llvm::Function &F) { +  llvm::AttrBuilder FuncAttrs; +  ConstructDefaultFnAttrList(F.getName(), F.hasOptNone(), +                             /* AttrOnCallSite = */ false, FuncAttrs); +  F.addAttributes(llvm::AttributeList::FunctionIndex, FuncAttrs); +} + +void CodeGenModule::ConstructAttributeList( +    StringRef Name, const CGFunctionInfo &FI, CGCalleeInfo CalleeInfo, +    llvm::AttributeList &AttrList, unsigned &CallingConv, bool AttrOnCallSite) { +  llvm::AttrBuilder FuncAttrs; +  llvm::AttrBuilder RetAttrs; + +  CallingConv = FI.getEffectiveCallingConvention(); +  if (FI.isNoReturn()) +    FuncAttrs.addAttribute(llvm::Attribute::NoReturn); + +  // If we have information about the function prototype, we can learn +  // attributes from there. +  AddAttributesFromFunctionProtoType(getContext(), FuncAttrs, +                                     CalleeInfo.getCalleeFunctionProtoType()); + +  const Decl *TargetDecl = CalleeInfo.getCalleeDecl().getDecl(); + +  bool HasOptnone = false; +  // FIXME: handle sseregparm someday... +  if (TargetDecl) { +    if (TargetDecl->hasAttr<ReturnsTwiceAttr>()) +      FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice); +    if (TargetDecl->hasAttr<NoThrowAttr>()) +      FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); +    if (TargetDecl->hasAttr<NoReturnAttr>()) +      FuncAttrs.addAttribute(llvm::Attribute::NoReturn); +    if (TargetDecl->hasAttr<ColdAttr>()) +      FuncAttrs.addAttribute(llvm::Attribute::Cold); +    if (TargetDecl->hasAttr<NoDuplicateAttr>()) +      FuncAttrs.addAttribute(llvm::Attribute::NoDuplicate); +    if (TargetDecl->hasAttr<ConvergentAttr>()) +      FuncAttrs.addAttribute(llvm::Attribute::Convergent); + +    if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) { +      AddAttributesFromFunctionProtoType( +          getContext(), FuncAttrs, Fn->getType()->getAs<FunctionProtoType>()); +      // Don't use [[noreturn]] or _Noreturn for a call to a virtual function. +      // These attributes are not inherited by overloads. +      const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn); +      if (Fn->isNoReturn() && !(AttrOnCallSite && MD && MD->isVirtual())) +        FuncAttrs.addAttribute(llvm::Attribute::NoReturn); +    } + +    // 'const', 'pure' and 'noalias' attributed functions are also nounwind. +    if (TargetDecl->hasAttr<ConstAttr>()) { +      FuncAttrs.addAttribute(llvm::Attribute::ReadNone); +      FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); +    } else if (TargetDecl->hasAttr<PureAttr>()) { +      FuncAttrs.addAttribute(llvm::Attribute::ReadOnly); +      FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); +    } else if (TargetDecl->hasAttr<NoAliasAttr>()) { +      FuncAttrs.addAttribute(llvm::Attribute::ArgMemOnly); +      FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); +    } +    if (TargetDecl->hasAttr<RestrictAttr>()) +      RetAttrs.addAttribute(llvm::Attribute::NoAlias); +    if (TargetDecl->hasAttr<ReturnsNonNullAttr>() && +        !CodeGenOpts.NullPointerIsValid) +      RetAttrs.addAttribute(llvm::Attribute::NonNull); +    if (TargetDecl->hasAttr<AnyX86NoCallerSavedRegistersAttr>()) +      FuncAttrs.addAttribute("no_caller_saved_registers"); +    if (TargetDecl->hasAttr<AnyX86NoCfCheckAttr>()) +      FuncAttrs.addAttribute(llvm::Attribute::NoCfCheck); + +    HasOptnone = TargetDecl->hasAttr<OptimizeNoneAttr>(); +    if (auto *AllocSize = TargetDecl->getAttr<AllocSizeAttr>()) { +      Optional<unsigned> NumElemsParam; +      if (AllocSize->getNumElemsParam().isValid()) +        NumElemsParam = AllocSize->getNumElemsParam().getLLVMIndex(); +      FuncAttrs.addAllocSizeAttr(AllocSize->getElemSizeParam().getLLVMIndex(), +                                 NumElemsParam); +    } +  } + +  ConstructDefaultFnAttrList(Name, HasOptnone, AttrOnCallSite, FuncAttrs); + +  // This must run after constructing the default function attribute list +  // to ensure that the speculative load hardening attribute is removed +  // in the case where the -mspeculative-load-hardening flag was passed. +  if (TargetDecl) { +    if (TargetDecl->hasAttr<NoSpeculativeLoadHardeningAttr>()) +      FuncAttrs.removeAttribute(llvm::Attribute::SpeculativeLoadHardening); +    if (TargetDecl->hasAttr<SpeculativeLoadHardeningAttr>()) +      FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening); +  } + +  if (CodeGenOpts.EnableSegmentedStacks && +      !(TargetDecl && TargetDecl->hasAttr<NoSplitStackAttr>())) +    FuncAttrs.addAttribute("split-stack"); + +  // Add NonLazyBind attribute to function declarations when -fno-plt +  // is used. +  if (TargetDecl && CodeGenOpts.NoPLT) { +    if (auto *Fn = dyn_cast<FunctionDecl>(TargetDecl)) { +      if (!Fn->isDefined() && !AttrOnCallSite) { +        FuncAttrs.addAttribute(llvm::Attribute::NonLazyBind); +      } +    } +  } + +  if (TargetDecl && TargetDecl->hasAttr<OpenCLKernelAttr>()) { +    if (getLangOpts().OpenCLVersion <= 120) { +      // OpenCL v1.2 Work groups are always uniform +      FuncAttrs.addAttribute("uniform-work-group-size", "true"); +    } else { +      // OpenCL v2.0 Work groups may be whether uniform or not. +      // '-cl-uniform-work-group-size' compile option gets a hint +      // to the compiler that the global work-size be a multiple of +      // the work-group size specified to clEnqueueNDRangeKernel +      // (i.e. work groups are uniform). +      FuncAttrs.addAttribute("uniform-work-group-size", +                             llvm::toStringRef(CodeGenOpts.UniformWGSize)); +    } +  } + +  if (!AttrOnCallSite) { +    bool DisableTailCalls = false; + +    if (CodeGenOpts.DisableTailCalls) +      DisableTailCalls = true; +    else if (TargetDecl) { +      if (TargetDecl->hasAttr<DisableTailCallsAttr>() || +          TargetDecl->hasAttr<AnyX86InterruptAttr>()) +        DisableTailCalls = true; +      else if (CodeGenOpts.NoEscapingBlockTailCalls) { +        if (const auto *BD = dyn_cast<BlockDecl>(TargetDecl)) +          if (!BD->doesNotEscape()) +            DisableTailCalls = true; +      } +    } + +    FuncAttrs.addAttribute("disable-tail-calls", +                           llvm::toStringRef(DisableTailCalls)); +    GetCPUAndFeaturesAttributes(CalleeInfo.getCalleeDecl(), FuncAttrs); +  } + +  ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI); + +  QualType RetTy = FI.getReturnType(); +  const ABIArgInfo &RetAI = FI.getReturnInfo(); +  switch (RetAI.getKind()) { +  case ABIArgInfo::Extend: +    if (RetAI.isSignExt()) +      RetAttrs.addAttribute(llvm::Attribute::SExt); +    else +      RetAttrs.addAttribute(llvm::Attribute::ZExt); +    LLVM_FALLTHROUGH; +  case ABIArgInfo::Direct: +    if (RetAI.getInReg()) +      RetAttrs.addAttribute(llvm::Attribute::InReg); +    break; +  case ABIArgInfo::Ignore: +    break; + +  case ABIArgInfo::InAlloca: +  case ABIArgInfo::Indirect: { +    // inalloca and sret disable readnone and readonly +    FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) +      .removeAttribute(llvm::Attribute::ReadNone); +    break; +  } + +  case ABIArgInfo::CoerceAndExpand: +    break; + +  case ABIArgInfo::Expand: +    llvm_unreachable("Invalid ABI kind for return argument"); +  } + +  if (const auto *RefTy = RetTy->getAs<ReferenceType>()) { +    QualType PTy = RefTy->getPointeeType(); +    if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) +      RetAttrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy) +                                        .getQuantity()); +    else if (getContext().getTargetAddressSpace(PTy) == 0 && +             !CodeGenOpts.NullPointerIsValid) +      RetAttrs.addAttribute(llvm::Attribute::NonNull); +  } + +  bool hasUsedSRet = false; +  SmallVector<llvm::AttributeSet, 4> ArgAttrs(IRFunctionArgs.totalIRArgs()); + +  // Attach attributes to sret. +  if (IRFunctionArgs.hasSRetArg()) { +    llvm::AttrBuilder SRETAttrs; +    SRETAttrs.addAttribute(llvm::Attribute::StructRet); +    hasUsedSRet = true; +    if (RetAI.getInReg()) +      SRETAttrs.addAttribute(llvm::Attribute::InReg); +    ArgAttrs[IRFunctionArgs.getSRetArgNo()] = +        llvm::AttributeSet::get(getLLVMContext(), SRETAttrs); +  } + +  // Attach attributes to inalloca argument. +  if (IRFunctionArgs.hasInallocaArg()) { +    llvm::AttrBuilder Attrs; +    Attrs.addAttribute(llvm::Attribute::InAlloca); +    ArgAttrs[IRFunctionArgs.getInallocaArgNo()] = +        llvm::AttributeSet::get(getLLVMContext(), Attrs); +  } + +  unsigned ArgNo = 0; +  for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(), +                                          E = FI.arg_end(); +       I != E; ++I, ++ArgNo) { +    QualType ParamType = I->type; +    const ABIArgInfo &AI = I->info; +    llvm::AttrBuilder Attrs; + +    // Add attribute for padding argument, if necessary. +    if (IRFunctionArgs.hasPaddingArg(ArgNo)) { +      if (AI.getPaddingInReg()) { +        ArgAttrs[IRFunctionArgs.getPaddingArgNo(ArgNo)] = +            llvm::AttributeSet::get( +                getLLVMContext(), +                llvm::AttrBuilder().addAttribute(llvm::Attribute::InReg)); +      } +    } + +    // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we +    // have the corresponding parameter variable.  It doesn't make +    // sense to do it here because parameters are so messed up. +    switch (AI.getKind()) { +    case ABIArgInfo::Extend: +      if (AI.isSignExt()) +        Attrs.addAttribute(llvm::Attribute::SExt); +      else +        Attrs.addAttribute(llvm::Attribute::ZExt); +      LLVM_FALLTHROUGH; +    case ABIArgInfo::Direct: +      if (ArgNo == 0 && FI.isChainCall()) +        Attrs.addAttribute(llvm::Attribute::Nest); +      else if (AI.getInReg()) +        Attrs.addAttribute(llvm::Attribute::InReg); +      break; + +    case ABIArgInfo::Indirect: { +      if (AI.getInReg()) +        Attrs.addAttribute(llvm::Attribute::InReg); + +      if (AI.getIndirectByVal()) +        Attrs.addByValAttr(getTypes().ConvertTypeForMem(ParamType)); + +      CharUnits Align = AI.getIndirectAlign(); + +      // In a byval argument, it is important that the required +      // alignment of the type is honored, as LLVM might be creating a +      // *new* stack object, and needs to know what alignment to give +      // it. (Sometimes it can deduce a sensible alignment on its own, +      // but not if clang decides it must emit a packed struct, or the +      // user specifies increased alignment requirements.) +      // +      // This is different from indirect *not* byval, where the object +      // exists already, and the align attribute is purely +      // informative. +      assert(!Align.isZero()); + +      // For now, only add this when we have a byval argument. +      // TODO: be less lazy about updating test cases. +      if (AI.getIndirectByVal()) +        Attrs.addAlignmentAttr(Align.getQuantity()); + +      // byval disables readnone and readonly. +      FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) +        .removeAttribute(llvm::Attribute::ReadNone); +      break; +    } +    case ABIArgInfo::Ignore: +    case ABIArgInfo::Expand: +    case ABIArgInfo::CoerceAndExpand: +      break; + +    case ABIArgInfo::InAlloca: +      // inalloca disables readnone and readonly. +      FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) +          .removeAttribute(llvm::Attribute::ReadNone); +      continue; +    } + +    if (const auto *RefTy = ParamType->getAs<ReferenceType>()) { +      QualType PTy = RefTy->getPointeeType(); +      if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) +        Attrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy) +                                       .getQuantity()); +      else if (getContext().getTargetAddressSpace(PTy) == 0 && +               !CodeGenOpts.NullPointerIsValid) +        Attrs.addAttribute(llvm::Attribute::NonNull); +    } + +    switch (FI.getExtParameterInfo(ArgNo).getABI()) { +    case ParameterABI::Ordinary: +      break; + +    case ParameterABI::SwiftIndirectResult: { +      // Add 'sret' if we haven't already used it for something, but +      // only if the result is void. +      if (!hasUsedSRet && RetTy->isVoidType()) { +        Attrs.addAttribute(llvm::Attribute::StructRet); +        hasUsedSRet = true; +      } + +      // Add 'noalias' in either case. +      Attrs.addAttribute(llvm::Attribute::NoAlias); + +      // Add 'dereferenceable' and 'alignment'. +      auto PTy = ParamType->getPointeeType(); +      if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) { +        auto info = getContext().getTypeInfoInChars(PTy); +        Attrs.addDereferenceableAttr(info.first.getQuantity()); +        Attrs.addAttribute(llvm::Attribute::getWithAlignment( +            getLLVMContext(), info.second.getAsAlign())); +      } +      break; +    } + +    case ParameterABI::SwiftErrorResult: +      Attrs.addAttribute(llvm::Attribute::SwiftError); +      break; + +    case ParameterABI::SwiftContext: +      Attrs.addAttribute(llvm::Attribute::SwiftSelf); +      break; +    } + +    if (FI.getExtParameterInfo(ArgNo).isNoEscape()) +      Attrs.addAttribute(llvm::Attribute::NoCapture); + +    if (Attrs.hasAttributes()) { +      unsigned FirstIRArg, NumIRArgs; +      std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); +      for (unsigned i = 0; i < NumIRArgs; i++) +        ArgAttrs[FirstIRArg + i] = +            llvm::AttributeSet::get(getLLVMContext(), Attrs); +    } +  } +  assert(ArgNo == FI.arg_size()); + +  AttrList = llvm::AttributeList::get( +      getLLVMContext(), llvm::AttributeSet::get(getLLVMContext(), FuncAttrs), +      llvm::AttributeSet::get(getLLVMContext(), RetAttrs), ArgAttrs); +} + +/// An argument came in as a promoted argument; demote it back to its +/// declared type. +static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF, +                                         const VarDecl *var, +                                         llvm::Value *value) { +  llvm::Type *varType = CGF.ConvertType(var->getType()); + +  // This can happen with promotions that actually don't change the +  // underlying type, like the enum promotions. +  if (value->getType() == varType) return value; + +  assert((varType->isIntegerTy() || varType->isFloatingPointTy()) +         && "unexpected promotion type"); + +  if (isa<llvm::IntegerType>(varType)) +    return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote"); + +  return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote"); +} + +/// Returns the attribute (either parameter attribute, or function +/// attribute), which declares argument ArgNo to be non-null. +static const NonNullAttr *getNonNullAttr(const Decl *FD, const ParmVarDecl *PVD, +                                         QualType ArgType, unsigned ArgNo) { +  // FIXME: __attribute__((nonnull)) can also be applied to: +  //   - references to pointers, where the pointee is known to be +  //     nonnull (apparently a Clang extension) +  //   - transparent unions containing pointers +  // In the former case, LLVM IR cannot represent the constraint. In +  // the latter case, we have no guarantee that the transparent union +  // is in fact passed as a pointer. +  if (!ArgType->isAnyPointerType() && !ArgType->isBlockPointerType()) +    return nullptr; +  // First, check attribute on parameter itself. +  if (PVD) { +    if (auto ParmNNAttr = PVD->getAttr<NonNullAttr>()) +      return ParmNNAttr; +  } +  // Check function attributes. +  if (!FD) +    return nullptr; +  for (const auto *NNAttr : FD->specific_attrs<NonNullAttr>()) { +    if (NNAttr->isNonNull(ArgNo)) +      return NNAttr; +  } +  return nullptr; +} + +namespace { +  struct CopyBackSwiftError final : EHScopeStack::Cleanup { +    Address Temp; +    Address Arg; +    CopyBackSwiftError(Address temp, Address arg) : Temp(temp), Arg(arg) {} +    void Emit(CodeGenFunction &CGF, Flags flags) override { +      llvm::Value *errorValue = CGF.Builder.CreateLoad(Temp); +      CGF.Builder.CreateStore(errorValue, Arg); +    } +  }; +} + +void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI, +                                         llvm::Function *Fn, +                                         const FunctionArgList &Args) { +  if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) +    // Naked functions don't have prologues. +    return; + +  // If this is an implicit-return-zero function, go ahead and +  // initialize the return value.  TODO: it might be nice to have +  // a more general mechanism for this that didn't require synthesized +  // return statements. +  if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) { +    if (FD->hasImplicitReturnZero()) { +      QualType RetTy = FD->getReturnType().getUnqualifiedType(); +      llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy); +      llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy); +      Builder.CreateStore(Zero, ReturnValue); +    } +  } + +  // FIXME: We no longer need the types from FunctionArgList; lift up and +  // simplify. + +  ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), FI); +  // Flattened function arguments. +  SmallVector<llvm::Value *, 16> FnArgs; +  FnArgs.reserve(IRFunctionArgs.totalIRArgs()); +  for (auto &Arg : Fn->args()) { +    FnArgs.push_back(&Arg); +  } +  assert(FnArgs.size() == IRFunctionArgs.totalIRArgs()); + +  // If we're using inalloca, all the memory arguments are GEPs off of the last +  // parameter, which is a pointer to the complete memory area. +  Address ArgStruct = Address::invalid(); +  if (IRFunctionArgs.hasInallocaArg()) { +    ArgStruct = Address(FnArgs[IRFunctionArgs.getInallocaArgNo()], +                        FI.getArgStructAlignment()); + +    assert(ArgStruct.getType() == FI.getArgStruct()->getPointerTo()); +  } + +  // Name the struct return parameter. +  if (IRFunctionArgs.hasSRetArg()) { +    auto AI = cast<llvm::Argument>(FnArgs[IRFunctionArgs.getSRetArgNo()]); +    AI->setName("agg.result"); +    AI->addAttr(llvm::Attribute::NoAlias); +  } + +  // Track if we received the parameter as a pointer (indirect, byval, or +  // inalloca).  If already have a pointer, EmitParmDecl doesn't need to copy it +  // into a local alloca for us. +  SmallVector<ParamValue, 16> ArgVals; +  ArgVals.reserve(Args.size()); + +  // Create a pointer value for every parameter declaration.  This usually +  // entails copying one or more LLVM IR arguments into an alloca.  Don't push +  // any cleanups or do anything that might unwind.  We do that separately, so +  // we can push the cleanups in the correct order for the ABI. +  assert(FI.arg_size() == Args.size() && +         "Mismatch between function signature & arguments."); +  unsigned ArgNo = 0; +  CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin(); +  for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); +       i != e; ++i, ++info_it, ++ArgNo) { +    const VarDecl *Arg = *i; +    const ABIArgInfo &ArgI = info_it->info; + +    bool isPromoted = +      isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted(); +    // We are converting from ABIArgInfo type to VarDecl type directly, unless +    // the parameter is promoted. In this case we convert to +    // CGFunctionInfo::ArgInfo type with subsequent argument demotion. +    QualType Ty = isPromoted ? info_it->type : Arg->getType(); +    assert(hasScalarEvaluationKind(Ty) == +           hasScalarEvaluationKind(Arg->getType())); + +    unsigned FirstIRArg, NumIRArgs; +    std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); + +    switch (ArgI.getKind()) { +    case ABIArgInfo::InAlloca: { +      assert(NumIRArgs == 0); +      auto FieldIndex = ArgI.getInAllocaFieldIndex(); +      Address V = +          Builder.CreateStructGEP(ArgStruct, FieldIndex, Arg->getName()); +      ArgVals.push_back(ParamValue::forIndirect(V)); +      break; +    } + +    case ABIArgInfo::Indirect: { +      assert(NumIRArgs == 1); +      Address ParamAddr = Address(FnArgs[FirstIRArg], ArgI.getIndirectAlign()); + +      if (!hasScalarEvaluationKind(Ty)) { +        // Aggregates and complex variables are accessed by reference.  All we +        // need to do is realign the value, if requested. +        Address V = ParamAddr; +        if (ArgI.getIndirectRealign()) { +          Address AlignedTemp = CreateMemTemp(Ty, "coerce"); + +          // Copy from the incoming argument pointer to the temporary with the +          // appropriate alignment. +          // +          // FIXME: We should have a common utility for generating an aggregate +          // copy. +          CharUnits Size = getContext().getTypeSizeInChars(Ty); +          auto SizeVal = llvm::ConstantInt::get(IntPtrTy, Size.getQuantity()); +          Address Dst = Builder.CreateBitCast(AlignedTemp, Int8PtrTy); +          Address Src = Builder.CreateBitCast(ParamAddr, Int8PtrTy); +          Builder.CreateMemCpy(Dst, Src, SizeVal, false); +          V = AlignedTemp; +        } +        ArgVals.push_back(ParamValue::forIndirect(V)); +      } else { +        // Load scalar value from indirect argument. +        llvm::Value *V = +            EmitLoadOfScalar(ParamAddr, false, Ty, Arg->getBeginLoc()); + +        if (isPromoted) +          V = emitArgumentDemotion(*this, Arg, V); +        ArgVals.push_back(ParamValue::forDirect(V)); +      } +      break; +    } + +    case ABIArgInfo::Extend: +    case ABIArgInfo::Direct: { + +      // If we have the trivial case, handle it with no muss and fuss. +      if (!isa<llvm::StructType>(ArgI.getCoerceToType()) && +          ArgI.getCoerceToType() == ConvertType(Ty) && +          ArgI.getDirectOffset() == 0) { +        assert(NumIRArgs == 1); +        llvm::Value *V = FnArgs[FirstIRArg]; +        auto AI = cast<llvm::Argument>(V); + +        if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(Arg)) { +          if (getNonNullAttr(CurCodeDecl, PVD, PVD->getType(), +                             PVD->getFunctionScopeIndex()) && +              !CGM.getCodeGenOpts().NullPointerIsValid) +            AI->addAttr(llvm::Attribute::NonNull); + +          QualType OTy = PVD->getOriginalType(); +          if (const auto *ArrTy = +              getContext().getAsConstantArrayType(OTy)) { +            // A C99 array parameter declaration with the static keyword also +            // indicates dereferenceability, and if the size is constant we can +            // use the dereferenceable attribute (which requires the size in +            // bytes). +            if (ArrTy->getSizeModifier() == ArrayType::Static) { +              QualType ETy = ArrTy->getElementType(); +              uint64_t ArrSize = ArrTy->getSize().getZExtValue(); +              if (!ETy->isIncompleteType() && ETy->isConstantSizeType() && +                  ArrSize) { +                llvm::AttrBuilder Attrs; +                Attrs.addDereferenceableAttr( +                  getContext().getTypeSizeInChars(ETy).getQuantity()*ArrSize); +                AI->addAttrs(Attrs); +              } else if (getContext().getTargetAddressSpace(ETy) == 0 && +                         !CGM.getCodeGenOpts().NullPointerIsValid) { +                AI->addAttr(llvm::Attribute::NonNull); +              } +            } +          } else if (const auto *ArrTy = +                     getContext().getAsVariableArrayType(OTy)) { +            // For C99 VLAs with the static keyword, we don't know the size so +            // we can't use the dereferenceable attribute, but in addrspace(0) +            // we know that it must be nonnull. +            if (ArrTy->getSizeModifier() == VariableArrayType::Static && +                !getContext().getTargetAddressSpace(ArrTy->getElementType()) && +                !CGM.getCodeGenOpts().NullPointerIsValid) +              AI->addAttr(llvm::Attribute::NonNull); +          } + +          const auto *AVAttr = PVD->getAttr<AlignValueAttr>(); +          if (!AVAttr) +            if (const auto *TOTy = dyn_cast<TypedefType>(OTy)) +              AVAttr = TOTy->getDecl()->getAttr<AlignValueAttr>(); +          if (AVAttr && !SanOpts.has(SanitizerKind::Alignment)) { +            // If alignment-assumption sanitizer is enabled, we do *not* add +            // alignment attribute here, but emit normal alignment assumption, +            // so the UBSAN check could function. +            llvm::Value *AlignmentValue = +              EmitScalarExpr(AVAttr->getAlignment()); +            llvm::ConstantInt *AlignmentCI = +              cast<llvm::ConstantInt>(AlignmentValue); +            unsigned Alignment = std::min((unsigned)AlignmentCI->getZExtValue(), +                                          +llvm::Value::MaximumAlignment); +            AI->addAttrs(llvm::AttrBuilder().addAlignmentAttr(Alignment)); +          } +        } + +        if (Arg->getType().isRestrictQualified()) +          AI->addAttr(llvm::Attribute::NoAlias); + +        // LLVM expects swifterror parameters to be used in very restricted +        // ways.  Copy the value into a less-restricted temporary. +        if (FI.getExtParameterInfo(ArgNo).getABI() +              == ParameterABI::SwiftErrorResult) { +          QualType pointeeTy = Ty->getPointeeType(); +          assert(pointeeTy->isPointerType()); +          Address temp = +            CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp"); +          Address arg = Address(V, getContext().getTypeAlignInChars(pointeeTy)); +          llvm::Value *incomingErrorValue = Builder.CreateLoad(arg); +          Builder.CreateStore(incomingErrorValue, temp); +          V = temp.getPointer(); + +          // Push a cleanup to copy the value back at the end of the function. +          // The convention does not guarantee that the value will be written +          // back if the function exits with an unwind exception. +          EHStack.pushCleanup<CopyBackSwiftError>(NormalCleanup, temp, arg); +        } + +        // Ensure the argument is the correct type. +        if (V->getType() != ArgI.getCoerceToType()) +          V = Builder.CreateBitCast(V, ArgI.getCoerceToType()); + +        if (isPromoted) +          V = emitArgumentDemotion(*this, Arg, V); + +        // Because of merging of function types from multiple decls it is +        // possible for the type of an argument to not match the corresponding +        // type in the function type. Since we are codegening the callee +        // in here, add a cast to the argument type. +        llvm::Type *LTy = ConvertType(Arg->getType()); +        if (V->getType() != LTy) +          V = Builder.CreateBitCast(V, LTy); + +        ArgVals.push_back(ParamValue::forDirect(V)); +        break; +      } + +      Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg), +                                     Arg->getName()); + +      // Pointer to store into. +      Address Ptr = emitAddressAtOffset(*this, Alloca, ArgI); + +      // Fast-isel and the optimizer generally like scalar values better than +      // FCAs, so we flatten them if this is safe to do for this argument. +      llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType()); +      if (ArgI.isDirect() && ArgI.getCanBeFlattened() && STy && +          STy->getNumElements() > 1) { +        uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy); +        llvm::Type *DstTy = Ptr.getElementType(); +        uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy); + +        Address AddrToStoreInto = Address::invalid(); +        if (SrcSize <= DstSize) { +          AddrToStoreInto = Builder.CreateElementBitCast(Ptr, STy); +        } else { +          AddrToStoreInto = +            CreateTempAlloca(STy, Alloca.getAlignment(), "coerce"); +        } + +        assert(STy->getNumElements() == NumIRArgs); +        for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { +          auto AI = FnArgs[FirstIRArg + i]; +          AI->setName(Arg->getName() + ".coerce" + Twine(i)); +          Address EltPtr = Builder.CreateStructGEP(AddrToStoreInto, i); +          Builder.CreateStore(AI, EltPtr); +        } + +        if (SrcSize > DstSize) { +          Builder.CreateMemCpy(Ptr, AddrToStoreInto, DstSize); +        } + +      } else { +        // Simple case, just do a coerced store of the argument into the alloca. +        assert(NumIRArgs == 1); +        auto AI = FnArgs[FirstIRArg]; +        AI->setName(Arg->getName() + ".coerce"); +        CreateCoercedStore(AI, Ptr, /*DstIsVolatile=*/false, *this); +      } + +      // Match to what EmitParmDecl is expecting for this type. +      if (CodeGenFunction::hasScalarEvaluationKind(Ty)) { +        llvm::Value *V = +            EmitLoadOfScalar(Alloca, false, Ty, Arg->getBeginLoc()); +        if (isPromoted) +          V = emitArgumentDemotion(*this, Arg, V); +        ArgVals.push_back(ParamValue::forDirect(V)); +      } else { +        ArgVals.push_back(ParamValue::forIndirect(Alloca)); +      } +      break; +    } + +    case ABIArgInfo::CoerceAndExpand: { +      // Reconstruct into a temporary. +      Address alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg)); +      ArgVals.push_back(ParamValue::forIndirect(alloca)); + +      auto coercionType = ArgI.getCoerceAndExpandType(); +      alloca = Builder.CreateElementBitCast(alloca, coercionType); + +      unsigned argIndex = FirstIRArg; +      for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { +        llvm::Type *eltType = coercionType->getElementType(i); +        if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) +          continue; + +        auto eltAddr = Builder.CreateStructGEP(alloca, i); +        auto elt = FnArgs[argIndex++]; +        Builder.CreateStore(elt, eltAddr); +      } +      assert(argIndex == FirstIRArg + NumIRArgs); +      break; +    } + +    case ABIArgInfo::Expand: { +      // If this structure was expanded into multiple arguments then +      // we need to create a temporary and reconstruct it from the +      // arguments. +      Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg)); +      LValue LV = MakeAddrLValue(Alloca, Ty); +      ArgVals.push_back(ParamValue::forIndirect(Alloca)); + +      auto FnArgIter = FnArgs.begin() + FirstIRArg; +      ExpandTypeFromArgs(Ty, LV, FnArgIter); +      assert(FnArgIter == FnArgs.begin() + FirstIRArg + NumIRArgs); +      for (unsigned i = 0, e = NumIRArgs; i != e; ++i) { +        auto AI = FnArgs[FirstIRArg + i]; +        AI->setName(Arg->getName() + "." + Twine(i)); +      } +      break; +    } + +    case ABIArgInfo::Ignore: +      assert(NumIRArgs == 0); +      // Initialize the local variable appropriately. +      if (!hasScalarEvaluationKind(Ty)) { +        ArgVals.push_back(ParamValue::forIndirect(CreateMemTemp(Ty))); +      } else { +        llvm::Value *U = llvm::UndefValue::get(ConvertType(Arg->getType())); +        ArgVals.push_back(ParamValue::forDirect(U)); +      } +      break; +    } +  } + +  if (getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) { +    for (int I = Args.size() - 1; I >= 0; --I) +      EmitParmDecl(*Args[I], ArgVals[I], I + 1); +  } else { +    for (unsigned I = 0, E = Args.size(); I != E; ++I) +      EmitParmDecl(*Args[I], ArgVals[I], I + 1); +  } +} + +static void eraseUnusedBitCasts(llvm::Instruction *insn) { +  while (insn->use_empty()) { +    llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn); +    if (!bitcast) return; + +    // This is "safe" because we would have used a ConstantExpr otherwise. +    insn = cast<llvm::Instruction>(bitcast->getOperand(0)); +    bitcast->eraseFromParent(); +  } +} + +/// Try to emit a fused autorelease of a return result. +static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF, +                                                    llvm::Value *result) { +  // We must be immediately followed the cast. +  llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock(); +  if (BB->empty()) return nullptr; +  if (&BB->back() != result) return nullptr; + +  llvm::Type *resultType = result->getType(); + +  // result is in a BasicBlock and is therefore an Instruction. +  llvm::Instruction *generator = cast<llvm::Instruction>(result); + +  SmallVector<llvm::Instruction *, 4> InstsToKill; + +  // Look for: +  //  %generator = bitcast %type1* %generator2 to %type2* +  while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) { +    // We would have emitted this as a constant if the operand weren't +    // an Instruction. +    generator = cast<llvm::Instruction>(bitcast->getOperand(0)); + +    // Require the generator to be immediately followed by the cast. +    if (generator->getNextNode() != bitcast) +      return nullptr; + +    InstsToKill.push_back(bitcast); +  } + +  // Look for: +  //   %generator = call i8* @objc_retain(i8* %originalResult) +  // or +  //   %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult) +  llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator); +  if (!call) return nullptr; + +  bool doRetainAutorelease; + +  if (call->getCalledValue() == CGF.CGM.getObjCEntrypoints().objc_retain) { +    doRetainAutorelease = true; +  } else if (call->getCalledValue() == CGF.CGM.getObjCEntrypoints() +                                          .objc_retainAutoreleasedReturnValue) { +    doRetainAutorelease = false; + +    // If we emitted an assembly marker for this call (and the +    // ARCEntrypoints field should have been set if so), go looking +    // for that call.  If we can't find it, we can't do this +    // optimization.  But it should always be the immediately previous +    // instruction, unless we needed bitcasts around the call. +    if (CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker) { +      llvm::Instruction *prev = call->getPrevNode(); +      assert(prev); +      if (isa<llvm::BitCastInst>(prev)) { +        prev = prev->getPrevNode(); +        assert(prev); +      } +      assert(isa<llvm::CallInst>(prev)); +      assert(cast<llvm::CallInst>(prev)->getCalledValue() == +               CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker); +      InstsToKill.push_back(prev); +    } +  } else { +    return nullptr; +  } + +  result = call->getArgOperand(0); +  InstsToKill.push_back(call); + +  // Keep killing bitcasts, for sanity.  Note that we no longer care +  // about precise ordering as long as there's exactly one use. +  while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) { +    if (!bitcast->hasOneUse()) break; +    InstsToKill.push_back(bitcast); +    result = bitcast->getOperand(0); +  } + +  // Delete all the unnecessary instructions, from latest to earliest. +  for (auto *I : InstsToKill) +    I->eraseFromParent(); + +  // Do the fused retain/autorelease if we were asked to. +  if (doRetainAutorelease) +    result = CGF.EmitARCRetainAutoreleaseReturnValue(result); + +  // Cast back to the result type. +  return CGF.Builder.CreateBitCast(result, resultType); +} + +/// If this is a +1 of the value of an immutable 'self', remove it. +static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF, +                                          llvm::Value *result) { +  // This is only applicable to a method with an immutable 'self'. +  const ObjCMethodDecl *method = +    dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl); +  if (!method) return nullptr; +  const VarDecl *self = method->getSelfDecl(); +  if (!self->getType().isConstQualified()) return nullptr; + +  // Look for a retain call. +  llvm::CallInst *retainCall = +    dyn_cast<llvm::CallInst>(result->stripPointerCasts()); +  if (!retainCall || +      retainCall->getCalledValue() != CGF.CGM.getObjCEntrypoints().objc_retain) +    return nullptr; + +  // Look for an ordinary load of 'self'. +  llvm::Value *retainedValue = retainCall->getArgOperand(0); +  llvm::LoadInst *load = +    dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts()); +  if (!load || load->isAtomic() || load->isVolatile() || +      load->getPointerOperand() != CGF.GetAddrOfLocalVar(self).getPointer()) +    return nullptr; + +  // Okay!  Burn it all down.  This relies for correctness on the +  // assumption that the retain is emitted as part of the return and +  // that thereafter everything is used "linearly". +  llvm::Type *resultType = result->getType(); +  eraseUnusedBitCasts(cast<llvm::Instruction>(result)); +  assert(retainCall->use_empty()); +  retainCall->eraseFromParent(); +  eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue)); + +  return CGF.Builder.CreateBitCast(load, resultType); +} + +/// Emit an ARC autorelease of the result of a function. +/// +/// \return the value to actually return from the function +static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF, +                                            llvm::Value *result) { +  // If we're returning 'self', kill the initial retain.  This is a +  // heuristic attempt to "encourage correctness" in the really unfortunate +  // case where we have a return of self during a dealloc and we desperately +  // need to avoid the possible autorelease. +  if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result)) +    return self; + +  // At -O0, try to emit a fused retain/autorelease. +  if (CGF.shouldUseFusedARCCalls()) +    if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result)) +      return fused; + +  return CGF.EmitARCAutoreleaseReturnValue(result); +} + +/// Heuristically search for a dominating store to the return-value slot. +static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) { +  // Check if a User is a store which pointerOperand is the ReturnValue. +  // We are looking for stores to the ReturnValue, not for stores of the +  // ReturnValue to some other location. +  auto GetStoreIfValid = [&CGF](llvm::User *U) -> llvm::StoreInst * { +    auto *SI = dyn_cast<llvm::StoreInst>(U); +    if (!SI || SI->getPointerOperand() != CGF.ReturnValue.getPointer()) +      return nullptr; +    // These aren't actually possible for non-coerced returns, and we +    // only care about non-coerced returns on this code path. +    assert(!SI->isAtomic() && !SI->isVolatile()); +    return SI; +  }; +  // If there are multiple uses of the return-value slot, just check +  // for something immediately preceding the IP.  Sometimes this can +  // happen with how we generate implicit-returns; it can also happen +  // with noreturn cleanups. +  if (!CGF.ReturnValue.getPointer()->hasOneUse()) { +    llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock(); +    if (IP->empty()) return nullptr; +    llvm::Instruction *I = &IP->back(); + +    // Skip lifetime markers +    for (llvm::BasicBlock::reverse_iterator II = IP->rbegin(), +                                            IE = IP->rend(); +         II != IE; ++II) { +      if (llvm::IntrinsicInst *Intrinsic = +              dyn_cast<llvm::IntrinsicInst>(&*II)) { +        if (Intrinsic->getIntrinsicID() == llvm::Intrinsic::lifetime_end) { +          const llvm::Value *CastAddr = Intrinsic->getArgOperand(1); +          ++II; +          if (II == IE) +            break; +          if (isa<llvm::BitCastInst>(&*II) && (CastAddr == &*II)) +            continue; +        } +      } +      I = &*II; +      break; +    } + +    return GetStoreIfValid(I); +  } + +  llvm::StoreInst *store = +      GetStoreIfValid(CGF.ReturnValue.getPointer()->user_back()); +  if (!store) return nullptr; + +  // Now do a first-and-dirty dominance check: just walk up the +  // single-predecessors chain from the current insertion point. +  llvm::BasicBlock *StoreBB = store->getParent(); +  llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock(); +  while (IP != StoreBB) { +    if (!(IP = IP->getSinglePredecessor())) +      return nullptr; +  } + +  // Okay, the store's basic block dominates the insertion point; we +  // can do our thing. +  return store; +} + +void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI, +                                         bool EmitRetDbgLoc, +                                         SourceLocation EndLoc) { +  if (FI.isNoReturn()) { +    // Noreturn functions don't return. +    EmitUnreachable(EndLoc); +    return; +  } + +  if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) { +    // Naked functions don't have epilogues. +    Builder.CreateUnreachable(); +    return; +  } + +  // Functions with no result always return void. +  if (!ReturnValue.isValid()) { +    Builder.CreateRetVoid(); +    return; +  } + +  llvm::DebugLoc RetDbgLoc; +  llvm::Value *RV = nullptr; +  QualType RetTy = FI.getReturnType(); +  const ABIArgInfo &RetAI = FI.getReturnInfo(); + +  switch (RetAI.getKind()) { +  case ABIArgInfo::InAlloca: +    // Aggregrates get evaluated directly into the destination.  Sometimes we +    // need to return the sret value in a register, though. +    assert(hasAggregateEvaluationKind(RetTy)); +    if (RetAI.getInAllocaSRet()) { +      llvm::Function::arg_iterator EI = CurFn->arg_end(); +      --EI; +      llvm::Value *ArgStruct = &*EI; +      llvm::Value *SRet = Builder.CreateStructGEP( +          nullptr, ArgStruct, RetAI.getInAllocaFieldIndex()); +      RV = Builder.CreateAlignedLoad(SRet, getPointerAlign(), "sret"); +    } +    break; + +  case ABIArgInfo::Indirect: { +    auto AI = CurFn->arg_begin(); +    if (RetAI.isSRetAfterThis()) +      ++AI; +    switch (getEvaluationKind(RetTy)) { +    case TEK_Complex: { +      ComplexPairTy RT = +        EmitLoadOfComplex(MakeAddrLValue(ReturnValue, RetTy), EndLoc); +      EmitStoreOfComplex(RT, MakeNaturalAlignAddrLValue(&*AI, RetTy), +                         /*isInit*/ true); +      break; +    } +    case TEK_Aggregate: +      // Do nothing; aggregrates get evaluated directly into the destination. +      break; +    case TEK_Scalar: +      EmitStoreOfScalar(Builder.CreateLoad(ReturnValue), +                        MakeNaturalAlignAddrLValue(&*AI, RetTy), +                        /*isInit*/ true); +      break; +    } +    break; +  } + +  case ABIArgInfo::Extend: +  case ABIArgInfo::Direct: +    if (RetAI.getCoerceToType() == ConvertType(RetTy) && +        RetAI.getDirectOffset() == 0) { +      // The internal return value temp always will have pointer-to-return-type +      // type, just do a load. + +      // If there is a dominating store to ReturnValue, we can elide +      // the load, zap the store, and usually zap the alloca. +      if (llvm::StoreInst *SI = +              findDominatingStoreToReturnValue(*this)) { +        // Reuse the debug location from the store unless there is +        // cleanup code to be emitted between the store and return +        // instruction. +        if (EmitRetDbgLoc && !AutoreleaseResult) +          RetDbgLoc = SI->getDebugLoc(); +        // Get the stored value and nuke the now-dead store. +        RV = SI->getValueOperand(); +        SI->eraseFromParent(); + +      // Otherwise, we have to do a simple load. +      } else { +        RV = Builder.CreateLoad(ReturnValue); +      } +    } else { +      // If the value is offset in memory, apply the offset now. +      Address V = emitAddressAtOffset(*this, ReturnValue, RetAI); + +      RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this); +    } + +    // In ARC, end functions that return a retainable type with a call +    // to objc_autoreleaseReturnValue. +    if (AutoreleaseResult) { +#ifndef NDEBUG +      // Type::isObjCRetainabletype has to be called on a QualType that hasn't +      // been stripped of the typedefs, so we cannot use RetTy here. Get the +      // original return type of FunctionDecl, CurCodeDecl, and BlockDecl from +      // CurCodeDecl or BlockInfo. +      QualType RT; + +      if (auto *FD = dyn_cast<FunctionDecl>(CurCodeDecl)) +        RT = FD->getReturnType(); +      else if (auto *MD = dyn_cast<ObjCMethodDecl>(CurCodeDecl)) +        RT = MD->getReturnType(); +      else if (isa<BlockDecl>(CurCodeDecl)) +        RT = BlockInfo->BlockExpression->getFunctionType()->getReturnType(); +      else +        llvm_unreachable("Unexpected function/method type"); + +      assert(getLangOpts().ObjCAutoRefCount && +             !FI.isReturnsRetained() && +             RT->isObjCRetainableType()); +#endif +      RV = emitAutoreleaseOfResult(*this, RV); +    } + +    break; + +  case ABIArgInfo::Ignore: +    break; + +  case ABIArgInfo::CoerceAndExpand: { +    auto coercionType = RetAI.getCoerceAndExpandType(); + +    // Load all of the coerced elements out into results. +    llvm::SmallVector<llvm::Value*, 4> results; +    Address addr = Builder.CreateElementBitCast(ReturnValue, coercionType); +    for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { +      auto coercedEltType = coercionType->getElementType(i); +      if (ABIArgInfo::isPaddingForCoerceAndExpand(coercedEltType)) +        continue; + +      auto eltAddr = Builder.CreateStructGEP(addr, i); +      auto elt = Builder.CreateLoad(eltAddr); +      results.push_back(elt); +    } + +    // If we have one result, it's the single direct result type. +    if (results.size() == 1) { +      RV = results[0]; + +    // Otherwise, we need to make a first-class aggregate. +    } else { +      // Construct a return type that lacks padding elements. +      llvm::Type *returnType = RetAI.getUnpaddedCoerceAndExpandType(); + +      RV = llvm::UndefValue::get(returnType); +      for (unsigned i = 0, e = results.size(); i != e; ++i) { +        RV = Builder.CreateInsertValue(RV, results[i], i); +      } +    } +    break; +  } + +  case ABIArgInfo::Expand: +    llvm_unreachable("Invalid ABI kind for return argument"); +  } + +  llvm::Instruction *Ret; +  if (RV) { +    EmitReturnValueCheck(RV); +    Ret = Builder.CreateRet(RV); +  } else { +    Ret = Builder.CreateRetVoid(); +  } + +  if (RetDbgLoc) +    Ret->setDebugLoc(std::move(RetDbgLoc)); +} + +void CodeGenFunction::EmitReturnValueCheck(llvm::Value *RV) { +  // A current decl may not be available when emitting vtable thunks. +  if (!CurCodeDecl) +    return; + +  ReturnsNonNullAttr *RetNNAttr = nullptr; +  if (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute)) +    RetNNAttr = CurCodeDecl->getAttr<ReturnsNonNullAttr>(); + +  if (!RetNNAttr && !requiresReturnValueNullabilityCheck()) +    return; + +  // Prefer the returns_nonnull attribute if it's present. +  SourceLocation AttrLoc; +  SanitizerMask CheckKind; +  SanitizerHandler Handler; +  if (RetNNAttr) { +    assert(!requiresReturnValueNullabilityCheck() && +           "Cannot check nullability and the nonnull attribute"); +    AttrLoc = RetNNAttr->getLocation(); +    CheckKind = SanitizerKind::ReturnsNonnullAttribute; +    Handler = SanitizerHandler::NonnullReturn; +  } else { +    if (auto *DD = dyn_cast<DeclaratorDecl>(CurCodeDecl)) +      if (auto *TSI = DD->getTypeSourceInfo()) +        if (auto FTL = TSI->getTypeLoc().castAs<FunctionTypeLoc>()) +          AttrLoc = FTL.getReturnLoc().findNullabilityLoc(); +    CheckKind = SanitizerKind::NullabilityReturn; +    Handler = SanitizerHandler::NullabilityReturn; +  } + +  SanitizerScope SanScope(this); + +  // Make sure the "return" source location is valid. If we're checking a +  // nullability annotation, make sure the preconditions for the check are met. +  llvm::BasicBlock *Check = createBasicBlock("nullcheck"); +  llvm::BasicBlock *NoCheck = createBasicBlock("no.nullcheck"); +  llvm::Value *SLocPtr = Builder.CreateLoad(ReturnLocation, "return.sloc.load"); +  llvm::Value *CanNullCheck = Builder.CreateIsNotNull(SLocPtr); +  if (requiresReturnValueNullabilityCheck()) +    CanNullCheck = +        Builder.CreateAnd(CanNullCheck, RetValNullabilityPrecondition); +  Builder.CreateCondBr(CanNullCheck, Check, NoCheck); +  EmitBlock(Check); + +  // Now do the null check. +  llvm::Value *Cond = Builder.CreateIsNotNull(RV); +  llvm::Constant *StaticData[] = {EmitCheckSourceLocation(AttrLoc)}; +  llvm::Value *DynamicData[] = {SLocPtr}; +  EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, DynamicData); + +  EmitBlock(NoCheck); + +#ifndef NDEBUG +  // The return location should not be used after the check has been emitted. +  ReturnLocation = Address::invalid(); +#endif +} + +static bool isInAllocaArgument(CGCXXABI &ABI, QualType type) { +  const CXXRecordDecl *RD = type->getAsCXXRecordDecl(); +  return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory; +} + +static AggValueSlot createPlaceholderSlot(CodeGenFunction &CGF, +                                          QualType Ty) { +  // FIXME: Generate IR in one pass, rather than going back and fixing up these +  // placeholders. +  llvm::Type *IRTy = CGF.ConvertTypeForMem(Ty); +  llvm::Type *IRPtrTy = IRTy->getPointerTo(); +  llvm::Value *Placeholder = llvm::UndefValue::get(IRPtrTy->getPointerTo()); + +  // FIXME: When we generate this IR in one pass, we shouldn't need +  // this win32-specific alignment hack. +  CharUnits Align = CharUnits::fromQuantity(4); +  Placeholder = CGF.Builder.CreateAlignedLoad(IRPtrTy, Placeholder, Align); + +  return AggValueSlot::forAddr(Address(Placeholder, Align), +                               Ty.getQualifiers(), +                               AggValueSlot::IsNotDestructed, +                               AggValueSlot::DoesNotNeedGCBarriers, +                               AggValueSlot::IsNotAliased, +                               AggValueSlot::DoesNotOverlap); +} + +void CodeGenFunction::EmitDelegateCallArg(CallArgList &args, +                                          const VarDecl *param, +                                          SourceLocation loc) { +  // StartFunction converted the ABI-lowered parameter(s) into a +  // local alloca.  We need to turn that into an r-value suitable +  // for EmitCall. +  Address local = GetAddrOfLocalVar(param); + +  QualType type = param->getType(); + +  if (isInAllocaArgument(CGM.getCXXABI(), type)) { +    CGM.ErrorUnsupported(param, "forwarded non-trivially copyable parameter"); +  } + +  // GetAddrOfLocalVar returns a pointer-to-pointer for references, +  // but the argument needs to be the original pointer. +  if (type->isReferenceType()) { +    args.add(RValue::get(Builder.CreateLoad(local)), type); + +  // In ARC, move out of consumed arguments so that the release cleanup +  // entered by StartFunction doesn't cause an over-release.  This isn't +  // optimal -O0 code generation, but it should get cleaned up when +  // optimization is enabled.  This also assumes that delegate calls are +  // performed exactly once for a set of arguments, but that should be safe. +  } else if (getLangOpts().ObjCAutoRefCount && +             param->hasAttr<NSConsumedAttr>() && +             type->isObjCRetainableType()) { +    llvm::Value *ptr = Builder.CreateLoad(local); +    auto null = +      llvm::ConstantPointerNull::get(cast<llvm::PointerType>(ptr->getType())); +    Builder.CreateStore(null, local); +    args.add(RValue::get(ptr), type); + +  // For the most part, we just need to load the alloca, except that +  // aggregate r-values are actually pointers to temporaries. +  } else { +    args.add(convertTempToRValue(local, type, loc), type); +  } + +  // Deactivate the cleanup for the callee-destructed param that was pushed. +  if (hasAggregateEvaluationKind(type) && !CurFuncIsThunk && +      type->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee() && +      param->needsDestruction(getContext())) { +    EHScopeStack::stable_iterator cleanup = +        CalleeDestructedParamCleanups.lookup(cast<ParmVarDecl>(param)); +    assert(cleanup.isValid() && +           "cleanup for callee-destructed param not recorded"); +    // This unreachable is a temporary marker which will be removed later. +    llvm::Instruction *isActive = Builder.CreateUnreachable(); +    args.addArgCleanupDeactivation(cleanup, isActive); +  } +} + +static bool isProvablyNull(llvm::Value *addr) { +  return isa<llvm::ConstantPointerNull>(addr); +} + +/// Emit the actual writing-back of a writeback. +static void emitWriteback(CodeGenFunction &CGF, +                          const CallArgList::Writeback &writeback) { +  const LValue &srcLV = writeback.Source; +  Address srcAddr = srcLV.getAddress(); +  assert(!isProvablyNull(srcAddr.getPointer()) && +         "shouldn't have writeback for provably null argument"); + +  llvm::BasicBlock *contBB = nullptr; + +  // If the argument wasn't provably non-null, we need to null check +  // before doing the store. +  bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(), +                                              CGF.CGM.getDataLayout()); +  if (!provablyNonNull) { +    llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback"); +    contBB = CGF.createBasicBlock("icr.done"); + +    llvm::Value *isNull = +      CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull"); +    CGF.Builder.CreateCondBr(isNull, contBB, writebackBB); +    CGF.EmitBlock(writebackBB); +  } + +  // Load the value to writeback. +  llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary); + +  // Cast it back, in case we're writing an id to a Foo* or something. +  value = CGF.Builder.CreateBitCast(value, srcAddr.getElementType(), +                                    "icr.writeback-cast"); + +  // Perform the writeback. + +  // If we have a "to use" value, it's something we need to emit a use +  // of.  This has to be carefully threaded in: if it's done after the +  // release it's potentially undefined behavior (and the optimizer +  // will ignore it), and if it happens before the retain then the +  // optimizer could move the release there. +  if (writeback.ToUse) { +    assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong); + +    // Retain the new value.  No need to block-copy here:  the block's +    // being passed up the stack. +    value = CGF.EmitARCRetainNonBlock(value); + +    // Emit the intrinsic use here. +    CGF.EmitARCIntrinsicUse(writeback.ToUse); + +    // Load the old value (primitively). +    llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV, SourceLocation()); + +    // Put the new value in place (primitively). +    CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false); + +    // Release the old value. +    CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime()); + +  // Otherwise, we can just do a normal lvalue store. +  } else { +    CGF.EmitStoreThroughLValue(RValue::get(value), srcLV); +  } + +  // Jump to the continuation block. +  if (!provablyNonNull) +    CGF.EmitBlock(contBB); +} + +static void emitWritebacks(CodeGenFunction &CGF, +                           const CallArgList &args) { +  for (const auto &I : args.writebacks()) +    emitWriteback(CGF, I); +} + +static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF, +                                            const CallArgList &CallArgs) { +  ArrayRef<CallArgList::CallArgCleanup> Cleanups = +    CallArgs.getCleanupsToDeactivate(); +  // Iterate in reverse to increase the likelihood of popping the cleanup. +  for (const auto &I : llvm::reverse(Cleanups)) { +    CGF.DeactivateCleanupBlock(I.Cleanup, I.IsActiveIP); +    I.IsActiveIP->eraseFromParent(); +  } +} + +static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) { +  if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens())) +    if (uop->getOpcode() == UO_AddrOf) +      return uop->getSubExpr(); +  return nullptr; +} + +/// Emit an argument that's being passed call-by-writeback.  That is, +/// we are passing the address of an __autoreleased temporary; it +/// might be copy-initialized with the current value of the given +/// address, but it will definitely be copied out of after the call. +static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args, +                             const ObjCIndirectCopyRestoreExpr *CRE) { +  LValue srcLV; + +  // Make an optimistic effort to emit the address as an l-value. +  // This can fail if the argument expression is more complicated. +  if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) { +    srcLV = CGF.EmitLValue(lvExpr); + +  // Otherwise, just emit it as a scalar. +  } else { +    Address srcAddr = CGF.EmitPointerWithAlignment(CRE->getSubExpr()); + +    QualType srcAddrType = +      CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType(); +    srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType); +  } +  Address srcAddr = srcLV.getAddress(); + +  // The dest and src types don't necessarily match in LLVM terms +  // because of the crazy ObjC compatibility rules. + +  llvm::PointerType *destType = +    cast<llvm::PointerType>(CGF.ConvertType(CRE->getType())); + +  // If the address is a constant null, just pass the appropriate null. +  if (isProvablyNull(srcAddr.getPointer())) { +    args.add(RValue::get(llvm::ConstantPointerNull::get(destType)), +             CRE->getType()); +    return; +  } + +  // Create the temporary. +  Address temp = CGF.CreateTempAlloca(destType->getElementType(), +                                      CGF.getPointerAlign(), +                                      "icr.temp"); +  // Loading an l-value can introduce a cleanup if the l-value is __weak, +  // and that cleanup will be conditional if we can't prove that the l-value +  // isn't null, so we need to register a dominating point so that the cleanups +  // system will make valid IR. +  CodeGenFunction::ConditionalEvaluation condEval(CGF); + +  // Zero-initialize it if we're not doing a copy-initialization. +  bool shouldCopy = CRE->shouldCopy(); +  if (!shouldCopy) { +    llvm::Value *null = +      llvm::ConstantPointerNull::get( +        cast<llvm::PointerType>(destType->getElementType())); +    CGF.Builder.CreateStore(null, temp); +  } + +  llvm::BasicBlock *contBB = nullptr; +  llvm::BasicBlock *originBB = nullptr; + +  // If the address is *not* known to be non-null, we need to switch. +  llvm::Value *finalArgument; + +  bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(), +                                              CGF.CGM.getDataLayout()); +  if (provablyNonNull) { +    finalArgument = temp.getPointer(); +  } else { +    llvm::Value *isNull = +      CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull"); + +    finalArgument = CGF.Builder.CreateSelect(isNull, +                                   llvm::ConstantPointerNull::get(destType), +                                             temp.getPointer(), "icr.argument"); + +    // If we need to copy, then the load has to be conditional, which +    // means we need control flow. +    if (shouldCopy) { +      originBB = CGF.Builder.GetInsertBlock(); +      contBB = CGF.createBasicBlock("icr.cont"); +      llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy"); +      CGF.Builder.CreateCondBr(isNull, contBB, copyBB); +      CGF.EmitBlock(copyBB); +      condEval.begin(CGF); +    } +  } + +  llvm::Value *valueToUse = nullptr; + +  // Perform a copy if necessary. +  if (shouldCopy) { +    RValue srcRV = CGF.EmitLoadOfLValue(srcLV, SourceLocation()); +    assert(srcRV.isScalar()); + +    llvm::Value *src = srcRV.getScalarVal(); +    src = CGF.Builder.CreateBitCast(src, destType->getElementType(), +                                    "icr.cast"); + +    // Use an ordinary store, not a store-to-lvalue. +    CGF.Builder.CreateStore(src, temp); + +    // If optimization is enabled, and the value was held in a +    // __strong variable, we need to tell the optimizer that this +    // value has to stay alive until we're doing the store back. +    // This is because the temporary is effectively unretained, +    // and so otherwise we can violate the high-level semantics. +    if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 && +        srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) { +      valueToUse = src; +    } +  } + +  // Finish the control flow if we needed it. +  if (shouldCopy && !provablyNonNull) { +    llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock(); +    CGF.EmitBlock(contBB); + +    // Make a phi for the value to intrinsically use. +    if (valueToUse) { +      llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2, +                                                      "icr.to-use"); +      phiToUse->addIncoming(valueToUse, copyBB); +      phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()), +                            originBB); +      valueToUse = phiToUse; +    } + +    condEval.end(CGF); +  } + +  args.addWriteback(srcLV, temp, valueToUse); +  args.add(RValue::get(finalArgument), CRE->getType()); +} + +void CallArgList::allocateArgumentMemory(CodeGenFunction &CGF) { +  assert(!StackBase); + +  // Save the stack. +  llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stacksave); +  StackBase = CGF.Builder.CreateCall(F, {}, "inalloca.save"); +} + +void CallArgList::freeArgumentMemory(CodeGenFunction &CGF) const { +  if (StackBase) { +    // Restore the stack after the call. +    llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore); +    CGF.Builder.CreateCall(F, StackBase); +  } +} + +void CodeGenFunction::EmitNonNullArgCheck(RValue RV, QualType ArgType, +                                          SourceLocation ArgLoc, +                                          AbstractCallee AC, +                                          unsigned ParmNum) { +  if (!AC.getDecl() || !(SanOpts.has(SanitizerKind::NonnullAttribute) || +                         SanOpts.has(SanitizerKind::NullabilityArg))) +    return; + +  // The param decl may be missing in a variadic function. +  auto PVD = ParmNum < AC.getNumParams() ? AC.getParamDecl(ParmNum) : nullptr; +  unsigned ArgNo = PVD ? PVD->getFunctionScopeIndex() : ParmNum; + +  // Prefer the nonnull attribute if it's present. +  const NonNullAttr *NNAttr = nullptr; +  if (SanOpts.has(SanitizerKind::NonnullAttribute)) +    NNAttr = getNonNullAttr(AC.getDecl(), PVD, ArgType, ArgNo); + +  bool CanCheckNullability = false; +  if (SanOpts.has(SanitizerKind::NullabilityArg) && !NNAttr && PVD) { +    auto Nullability = PVD->getType()->getNullability(getContext()); +    CanCheckNullability = Nullability && +                          *Nullability == NullabilityKind::NonNull && +                          PVD->getTypeSourceInfo(); +  } + +  if (!NNAttr && !CanCheckNullability) +    return; + +  SourceLocation AttrLoc; +  SanitizerMask CheckKind; +  SanitizerHandler Handler; +  if (NNAttr) { +    AttrLoc = NNAttr->getLocation(); +    CheckKind = SanitizerKind::NonnullAttribute; +    Handler = SanitizerHandler::NonnullArg; +  } else { +    AttrLoc = PVD->getTypeSourceInfo()->getTypeLoc().findNullabilityLoc(); +    CheckKind = SanitizerKind::NullabilityArg; +    Handler = SanitizerHandler::NullabilityArg; +  } + +  SanitizerScope SanScope(this); +  assert(RV.isScalar()); +  llvm::Value *V = RV.getScalarVal(); +  llvm::Value *Cond = +      Builder.CreateICmpNE(V, llvm::Constant::getNullValue(V->getType())); +  llvm::Constant *StaticData[] = { +      EmitCheckSourceLocation(ArgLoc), EmitCheckSourceLocation(AttrLoc), +      llvm::ConstantInt::get(Int32Ty, ArgNo + 1), +  }; +  EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, None); +} + +void CodeGenFunction::EmitCallArgs( +    CallArgList &Args, ArrayRef<QualType> ArgTypes, +    llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, +    AbstractCallee AC, unsigned ParamsToSkip, EvaluationOrder Order) { +  assert((int)ArgTypes.size() == (ArgRange.end() - ArgRange.begin())); + +  // We *have* to evaluate arguments from right to left in the MS C++ ABI, +  // because arguments are destroyed left to right in the callee. As a special +  // case, there are certain language constructs that require left-to-right +  // evaluation, and in those cases we consider the evaluation order requirement +  // to trump the "destruction order is reverse construction order" guarantee. +  bool LeftToRight = +      CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee() +          ? Order == EvaluationOrder::ForceLeftToRight +          : Order != EvaluationOrder::ForceRightToLeft; + +  auto MaybeEmitImplicitObjectSize = [&](unsigned I, const Expr *Arg, +                                         RValue EmittedArg) { +    if (!AC.hasFunctionDecl() || I >= AC.getNumParams()) +      return; +    auto *PS = AC.getParamDecl(I)->getAttr<PassObjectSizeAttr>(); +    if (PS == nullptr) +      return; + +    const auto &Context = getContext(); +    auto SizeTy = Context.getSizeType(); +    auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy)); +    assert(EmittedArg.getScalarVal() && "We emitted nothing for the arg?"); +    llvm::Value *V = evaluateOrEmitBuiltinObjectSize(Arg, PS->getType(), T, +                                                     EmittedArg.getScalarVal(), +                                                     PS->isDynamic()); +    Args.add(RValue::get(V), SizeTy); +    // If we're emitting args in reverse, be sure to do so with +    // pass_object_size, as well. +    if (!LeftToRight) +      std::swap(Args.back(), *(&Args.back() - 1)); +  }; + +  // Insert a stack save if we're going to need any inalloca args. +  bool HasInAllocaArgs = false; +  if (CGM.getTarget().getCXXABI().isMicrosoft()) { +    for (ArrayRef<QualType>::iterator I = ArgTypes.begin(), E = ArgTypes.end(); +         I != E && !HasInAllocaArgs; ++I) +      HasInAllocaArgs = isInAllocaArgument(CGM.getCXXABI(), *I); +    if (HasInAllocaArgs) { +      assert(getTarget().getTriple().getArch() == llvm::Triple::x86); +      Args.allocateArgumentMemory(*this); +    } +  } + +  // Evaluate each argument in the appropriate order. +  size_t CallArgsStart = Args.size(); +  for (unsigned I = 0, E = ArgTypes.size(); I != E; ++I) { +    unsigned Idx = LeftToRight ? I : E - I - 1; +    CallExpr::const_arg_iterator Arg = ArgRange.begin() + Idx; +    unsigned InitialArgSize = Args.size(); +    // If *Arg is an ObjCIndirectCopyRestoreExpr, check that either the types of +    // the argument and parameter match or the objc method is parameterized. +    assert((!isa<ObjCIndirectCopyRestoreExpr>(*Arg) || +            getContext().hasSameUnqualifiedType((*Arg)->getType(), +                                                ArgTypes[Idx]) || +            (isa<ObjCMethodDecl>(AC.getDecl()) && +             isObjCMethodWithTypeParams(cast<ObjCMethodDecl>(AC.getDecl())))) && +           "Argument and parameter types don't match"); +    EmitCallArg(Args, *Arg, ArgTypes[Idx]); +    // In particular, we depend on it being the last arg in Args, and the +    // objectsize bits depend on there only being one arg if !LeftToRight. +    assert(InitialArgSize + 1 == Args.size() && +           "The code below depends on only adding one arg per EmitCallArg"); +    (void)InitialArgSize; +    // Since pointer argument are never emitted as LValue, it is safe to emit +    // non-null argument check for r-value only. +    if (!Args.back().hasLValue()) { +      RValue RVArg = Args.back().getKnownRValue(); +      EmitNonNullArgCheck(RVArg, ArgTypes[Idx], (*Arg)->getExprLoc(), AC, +                          ParamsToSkip + Idx); +      // @llvm.objectsize should never have side-effects and shouldn't need +      // destruction/cleanups, so we can safely "emit" it after its arg, +      // regardless of right-to-leftness +      MaybeEmitImplicitObjectSize(Idx, *Arg, RVArg); +    } +  } + +  if (!LeftToRight) { +    // Un-reverse the arguments we just evaluated so they match up with the LLVM +    // IR function. +    std::reverse(Args.begin() + CallArgsStart, Args.end()); +  } +} + +namespace { + +struct DestroyUnpassedArg final : EHScopeStack::Cleanup { +  DestroyUnpassedArg(Address Addr, QualType Ty) +      : Addr(Addr), Ty(Ty) {} + +  Address Addr; +  QualType Ty; + +  void Emit(CodeGenFunction &CGF, Flags flags) override { +    QualType::DestructionKind DtorKind = Ty.isDestructedType(); +    if (DtorKind == QualType::DK_cxx_destructor) { +      const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor(); +      assert(!Dtor->isTrivial()); +      CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*for vbase*/ false, +                                /*Delegating=*/false, Addr, Ty); +    } else { +      CGF.callCStructDestructor(CGF.MakeAddrLValue(Addr, Ty)); +    } +  } +}; + +struct DisableDebugLocationUpdates { +  CodeGenFunction &CGF; +  bool disabledDebugInfo; +  DisableDebugLocationUpdates(CodeGenFunction &CGF, const Expr *E) : CGF(CGF) { +    if ((disabledDebugInfo = isa<CXXDefaultArgExpr>(E) && CGF.getDebugInfo())) +      CGF.disableDebugInfo(); +  } +  ~DisableDebugLocationUpdates() { +    if (disabledDebugInfo) +      CGF.enableDebugInfo(); +  } +}; + +} // end anonymous namespace + +RValue CallArg::getRValue(CodeGenFunction &CGF) const { +  if (!HasLV) +    return RV; +  LValue Copy = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty), Ty); +  CGF.EmitAggregateCopy(Copy, LV, Ty, AggValueSlot::DoesNotOverlap, +                        LV.isVolatile()); +  IsUsed = true; +  return RValue::getAggregate(Copy.getAddress()); +} + +void CallArg::copyInto(CodeGenFunction &CGF, Address Addr) const { +  LValue Dst = CGF.MakeAddrLValue(Addr, Ty); +  if (!HasLV && RV.isScalar()) +    CGF.EmitStoreOfScalar(RV.getScalarVal(), Dst, /*isInit=*/true); +  else if (!HasLV && RV.isComplex()) +    CGF.EmitStoreOfComplex(RV.getComplexVal(), Dst, /*init=*/true); +  else { +    auto Addr = HasLV ? LV.getAddress() : RV.getAggregateAddress(); +    LValue SrcLV = CGF.MakeAddrLValue(Addr, Ty); +    // We assume that call args are never copied into subobjects. +    CGF.EmitAggregateCopy(Dst, SrcLV, Ty, AggValueSlot::DoesNotOverlap, +                          HasLV ? LV.isVolatileQualified() +                                : RV.isVolatileQualified()); +  } +  IsUsed = true; +} + +void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E, +                                  QualType type) { +  DisableDebugLocationUpdates Dis(*this, E); +  if (const ObjCIndirectCopyRestoreExpr *CRE +        = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) { +    assert(getLangOpts().ObjCAutoRefCount); +    return emitWritebackArg(*this, args, CRE); +  } + +  assert(type->isReferenceType() == E->isGLValue() && +         "reference binding to unmaterialized r-value!"); + +  if (E->isGLValue()) { +    assert(E->getObjectKind() == OK_Ordinary); +    return args.add(EmitReferenceBindingToExpr(E), type); +  } + +  bool HasAggregateEvalKind = hasAggregateEvaluationKind(type); + +  // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee. +  // However, we still have to push an EH-only cleanup in case we unwind before +  // we make it to the call. +  if (HasAggregateEvalKind && +      type->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee()) { +    // If we're using inalloca, use the argument memory.  Otherwise, use a +    // temporary. +    AggValueSlot Slot; +    if (args.isUsingInAlloca()) +      Slot = createPlaceholderSlot(*this, type); +    else +      Slot = CreateAggTemp(type, "agg.tmp"); + +    bool DestroyedInCallee = true, NeedsEHCleanup = true; +    if (const auto *RD = type->getAsCXXRecordDecl()) +      DestroyedInCallee = RD->hasNonTrivialDestructor(); +    else +      NeedsEHCleanup = needsEHCleanup(type.isDestructedType()); + +    if (DestroyedInCallee) +      Slot.setExternallyDestructed(); + +    EmitAggExpr(E, Slot); +    RValue RV = Slot.asRValue(); +    args.add(RV, type); + +    if (DestroyedInCallee && NeedsEHCleanup) { +      // Create a no-op GEP between the placeholder and the cleanup so we can +      // RAUW it successfully.  It also serves as a marker of the first +      // instruction where the cleanup is active. +      pushFullExprCleanup<DestroyUnpassedArg>(EHCleanup, Slot.getAddress(), +                                              type); +      // This unreachable is a temporary marker which will be removed later. +      llvm::Instruction *IsActive = Builder.CreateUnreachable(); +      args.addArgCleanupDeactivation(EHStack.getInnermostEHScope(), IsActive); +    } +    return; +  } + +  if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) && +      cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) { +    LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr()); +    assert(L.isSimple()); +    args.addUncopiedAggregate(L, type); +    return; +  } + +  args.add(EmitAnyExprToTemp(E), type); +} + +QualType CodeGenFunction::getVarArgType(const Expr *Arg) { +  // System headers on Windows define NULL to 0 instead of 0LL on Win64. MSVC +  // implicitly widens null pointer constants that are arguments to varargs +  // functions to pointer-sized ints. +  if (!getTarget().getTriple().isOSWindows()) +    return Arg->getType(); + +  if (Arg->getType()->isIntegerType() && +      getContext().getTypeSize(Arg->getType()) < +          getContext().getTargetInfo().getPointerWidth(0) && +      Arg->isNullPointerConstant(getContext(), +                                 Expr::NPC_ValueDependentIsNotNull)) { +    return getContext().getIntPtrType(); +  } + +  return Arg->getType(); +} + +// In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC +// optimizer it can aggressively ignore unwind edges. +void +CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) { +  if (CGM.getCodeGenOpts().OptimizationLevel != 0 && +      !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions) +    Inst->setMetadata("clang.arc.no_objc_arc_exceptions", +                      CGM.getNoObjCARCExceptionsMetadata()); +} + +/// Emits a call to the given no-arguments nounwind runtime function. +llvm::CallInst * +CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee, +                                         const llvm::Twine &name) { +  return EmitNounwindRuntimeCall(callee, None, name); +} + +/// Emits a call to the given nounwind runtime function. +llvm::CallInst * +CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee, +                                         ArrayRef<llvm::Value *> args, +                                         const llvm::Twine &name) { +  llvm::CallInst *call = EmitRuntimeCall(callee, args, name); +  call->setDoesNotThrow(); +  return call; +} + +/// Emits a simple call (never an invoke) to the given no-arguments +/// runtime function. +llvm::CallInst *CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee, +                                                 const llvm::Twine &name) { +  return EmitRuntimeCall(callee, None, name); +} + +// Calls which may throw must have operand bundles indicating which funclet +// they are nested within. +SmallVector<llvm::OperandBundleDef, 1> +CodeGenFunction::getBundlesForFunclet(llvm::Value *Callee) { +  SmallVector<llvm::OperandBundleDef, 1> BundleList; +  // There is no need for a funclet operand bundle if we aren't inside a +  // funclet. +  if (!CurrentFuncletPad) +    return BundleList; + +  // Skip intrinsics which cannot throw. +  auto *CalleeFn = dyn_cast<llvm::Function>(Callee->stripPointerCasts()); +  if (CalleeFn && CalleeFn->isIntrinsic() && CalleeFn->doesNotThrow()) +    return BundleList; + +  BundleList.emplace_back("funclet", CurrentFuncletPad); +  return BundleList; +} + +/// Emits a simple call (never an invoke) to the given runtime function. +llvm::CallInst *CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee, +                                                 ArrayRef<llvm::Value *> args, +                                                 const llvm::Twine &name) { +  llvm::CallInst *call = Builder.CreateCall( +      callee, args, getBundlesForFunclet(callee.getCallee()), name); +  call->setCallingConv(getRuntimeCC()); +  return call; +} + +/// Emits a call or invoke to the given noreturn runtime function. +void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke( +    llvm::FunctionCallee callee, ArrayRef<llvm::Value *> args) { +  SmallVector<llvm::OperandBundleDef, 1> BundleList = +      getBundlesForFunclet(callee.getCallee()); + +  if (getInvokeDest()) { +    llvm::InvokeInst *invoke = +      Builder.CreateInvoke(callee, +                           getUnreachableBlock(), +                           getInvokeDest(), +                           args, +                           BundleList); +    invoke->setDoesNotReturn(); +    invoke->setCallingConv(getRuntimeCC()); +  } else { +    llvm::CallInst *call = Builder.CreateCall(callee, args, BundleList); +    call->setDoesNotReturn(); +    call->setCallingConv(getRuntimeCC()); +    Builder.CreateUnreachable(); +  } +} + +/// Emits a call or invoke instruction to the given nullary runtime function. +llvm::CallBase * +CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee, +                                         const Twine &name) { +  return EmitRuntimeCallOrInvoke(callee, None, name); +} + +/// Emits a call or invoke instruction to the given runtime function. +llvm::CallBase * +CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee, +                                         ArrayRef<llvm::Value *> args, +                                         const Twine &name) { +  llvm::CallBase *call = EmitCallOrInvoke(callee, args, name); +  call->setCallingConv(getRuntimeCC()); +  return call; +} + +/// Emits a call or invoke instruction to the given function, depending +/// on the current state of the EH stack. +llvm::CallBase *CodeGenFunction::EmitCallOrInvoke(llvm::FunctionCallee Callee, +                                                  ArrayRef<llvm::Value *> Args, +                                                  const Twine &Name) { +  llvm::BasicBlock *InvokeDest = getInvokeDest(); +  SmallVector<llvm::OperandBundleDef, 1> BundleList = +      getBundlesForFunclet(Callee.getCallee()); + +  llvm::CallBase *Inst; +  if (!InvokeDest) +    Inst = Builder.CreateCall(Callee, Args, BundleList, Name); +  else { +    llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont"); +    Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, BundleList, +                                Name); +    EmitBlock(ContBB); +  } + +  // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC +  // optimizer it can aggressively ignore unwind edges. +  if (CGM.getLangOpts().ObjCAutoRefCount) +    AddObjCARCExceptionMetadata(Inst); + +  return Inst; +} + +void CodeGenFunction::deferPlaceholderReplacement(llvm::Instruction *Old, +                                                  llvm::Value *New) { +  DeferredReplacements.push_back(std::make_pair(Old, New)); +} + +RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo, +                                 const CGCallee &Callee, +                                 ReturnValueSlot ReturnValue, +                                 const CallArgList &CallArgs, +                                 llvm::CallBase **callOrInvoke, +                                 SourceLocation Loc) { +  // FIXME: We no longer need the types from CallArgs; lift up and simplify. + +  assert(Callee.isOrdinary() || Callee.isVirtual()); + +  // Handle struct-return functions by passing a pointer to the +  // location that we would like to return into. +  QualType RetTy = CallInfo.getReturnType(); +  const ABIArgInfo &RetAI = CallInfo.getReturnInfo(); + +  llvm::FunctionType *IRFuncTy = getTypes().GetFunctionType(CallInfo); + +  const Decl *TargetDecl = Callee.getAbstractInfo().getCalleeDecl().getDecl(); +  if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) +    // We can only guarantee that a function is called from the correct +    // context/function based on the appropriate target attributes, +    // so only check in the case where we have both always_inline and target +    // since otherwise we could be making a conditional call after a check for +    // the proper cpu features (and it won't cause code generation issues due to +    // function based code generation). +    if (TargetDecl->hasAttr<AlwaysInlineAttr>() && +        TargetDecl->hasAttr<TargetAttr>()) +      checkTargetFeatures(Loc, FD); + +#ifndef NDEBUG +  if (!(CallInfo.isVariadic() && CallInfo.getArgStruct())) { +    // For an inalloca varargs function, we don't expect CallInfo to match the +    // function pointer's type, because the inalloca struct a will have extra +    // fields in it for the varargs parameters.  Code later in this function +    // bitcasts the function pointer to the type derived from CallInfo. +    // +    // In other cases, we assert that the types match up (until pointers stop +    // having pointee types). +    llvm::Type *TypeFromVal; +    if (Callee.isVirtual()) +      TypeFromVal = Callee.getVirtualFunctionType(); +    else +      TypeFromVal = +          Callee.getFunctionPointer()->getType()->getPointerElementType(); +    assert(IRFuncTy == TypeFromVal); +  } +#endif + +  // 1. Set up the arguments. + +  // If we're using inalloca, insert the allocation after the stack save. +  // FIXME: Do this earlier rather than hacking it in here! +  Address ArgMemory = Address::invalid(); +  if (llvm::StructType *ArgStruct = CallInfo.getArgStruct()) { +    const llvm::DataLayout &DL = CGM.getDataLayout(); +    llvm::Instruction *IP = CallArgs.getStackBase(); +    llvm::AllocaInst *AI; +    if (IP) { +      IP = IP->getNextNode(); +      AI = new llvm::AllocaInst(ArgStruct, DL.getAllocaAddrSpace(), +                                "argmem", IP); +    } else { +      AI = CreateTempAlloca(ArgStruct, "argmem"); +    } +    auto Align = CallInfo.getArgStructAlignment(); +    AI->setAlignment(Align.getAsAlign()); +    AI->setUsedWithInAlloca(true); +    assert(AI->isUsedWithInAlloca() && !AI->isStaticAlloca()); +    ArgMemory = Address(AI, Align); +  } + +  ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), CallInfo); +  SmallVector<llvm::Value *, 16> IRCallArgs(IRFunctionArgs.totalIRArgs()); + +  // If the call returns a temporary with struct return, create a temporary +  // alloca to hold the result, unless one is given to us. +  Address SRetPtr = Address::invalid(); +  Address SRetAlloca = Address::invalid(); +  llvm::Value *UnusedReturnSizePtr = nullptr; +  if (RetAI.isIndirect() || RetAI.isInAlloca() || RetAI.isCoerceAndExpand()) { +    if (!ReturnValue.isNull()) { +      SRetPtr = ReturnValue.getValue(); +    } else { +      SRetPtr = CreateMemTemp(RetTy, "tmp", &SRetAlloca); +      if (HaveInsertPoint() && ReturnValue.isUnused()) { +        uint64_t size = +            CGM.getDataLayout().getTypeAllocSize(ConvertTypeForMem(RetTy)); +        UnusedReturnSizePtr = EmitLifetimeStart(size, SRetAlloca.getPointer()); +      } +    } +    if (IRFunctionArgs.hasSRetArg()) { +      IRCallArgs[IRFunctionArgs.getSRetArgNo()] = SRetPtr.getPointer(); +    } else if (RetAI.isInAlloca()) { +      Address Addr = +          Builder.CreateStructGEP(ArgMemory, RetAI.getInAllocaFieldIndex()); +      Builder.CreateStore(SRetPtr.getPointer(), Addr); +    } +  } + +  Address swiftErrorTemp = Address::invalid(); +  Address swiftErrorArg = Address::invalid(); + +  // When passing arguments using temporary allocas, we need to add the +  // appropriate lifetime markers. This vector keeps track of all the lifetime +  // markers that need to be ended right after the call. +  SmallVector<CallLifetimeEnd, 2> CallLifetimeEndAfterCall; + +  // Translate all of the arguments as necessary to match the IR lowering. +  assert(CallInfo.arg_size() == CallArgs.size() && +         "Mismatch between function signature & arguments."); +  unsigned ArgNo = 0; +  CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin(); +  for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end(); +       I != E; ++I, ++info_it, ++ArgNo) { +    const ABIArgInfo &ArgInfo = info_it->info; + +    // Insert a padding argument to ensure proper alignment. +    if (IRFunctionArgs.hasPaddingArg(ArgNo)) +      IRCallArgs[IRFunctionArgs.getPaddingArgNo(ArgNo)] = +          llvm::UndefValue::get(ArgInfo.getPaddingType()); + +    unsigned FirstIRArg, NumIRArgs; +    std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); + +    switch (ArgInfo.getKind()) { +    case ABIArgInfo::InAlloca: { +      assert(NumIRArgs == 0); +      assert(getTarget().getTriple().getArch() == llvm::Triple::x86); +      if (I->isAggregate()) { +        // Replace the placeholder with the appropriate argument slot GEP. +        Address Addr = I->hasLValue() +                           ? I->getKnownLValue().getAddress() +                           : I->getKnownRValue().getAggregateAddress(); +        llvm::Instruction *Placeholder = +            cast<llvm::Instruction>(Addr.getPointer()); +        CGBuilderTy::InsertPoint IP = Builder.saveIP(); +        Builder.SetInsertPoint(Placeholder); +        Addr = +            Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex()); +        Builder.restoreIP(IP); +        deferPlaceholderReplacement(Placeholder, Addr.getPointer()); +      } else { +        // Store the RValue into the argument struct. +        Address Addr = +            Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex()); +        unsigned AS = Addr.getType()->getPointerAddressSpace(); +        llvm::Type *MemType = ConvertTypeForMem(I->Ty)->getPointerTo(AS); +        // There are some cases where a trivial bitcast is not avoidable.  The +        // definition of a type later in a translation unit may change it's type +        // from {}* to (%struct.foo*)*. +        if (Addr.getType() != MemType) +          Addr = Builder.CreateBitCast(Addr, MemType); +        I->copyInto(*this, Addr); +      } +      break; +    } + +    case ABIArgInfo::Indirect: { +      assert(NumIRArgs == 1); +      if (!I->isAggregate()) { +        // Make a temporary alloca to pass the argument. +        Address Addr = CreateMemTempWithoutCast( +            I->Ty, ArgInfo.getIndirectAlign(), "indirect-arg-temp"); +        IRCallArgs[FirstIRArg] = Addr.getPointer(); + +        I->copyInto(*this, Addr); +      } else { +        // We want to avoid creating an unnecessary temporary+copy here; +        // however, we need one in three cases: +        // 1. If the argument is not byval, and we are required to copy the +        //    source.  (This case doesn't occur on any common architecture.) +        // 2. If the argument is byval, RV is not sufficiently aligned, and +        //    we cannot force it to be sufficiently aligned. +        // 3. If the argument is byval, but RV is not located in default +        //    or alloca address space. +        Address Addr = I->hasLValue() +                           ? I->getKnownLValue().getAddress() +                           : I->getKnownRValue().getAggregateAddress(); +        llvm::Value *V = Addr.getPointer(); +        CharUnits Align = ArgInfo.getIndirectAlign(); +        const llvm::DataLayout *TD = &CGM.getDataLayout(); + +        assert((FirstIRArg >= IRFuncTy->getNumParams() || +                IRFuncTy->getParamType(FirstIRArg)->getPointerAddressSpace() == +                    TD->getAllocaAddrSpace()) && +               "indirect argument must be in alloca address space"); + +        bool NeedCopy = false; + +        if (Addr.getAlignment() < Align && +            llvm::getOrEnforceKnownAlignment(V, Align.getQuantity(), *TD) < +                Align.getQuantity()) { +          NeedCopy = true; +        } else if (I->hasLValue()) { +          auto LV = I->getKnownLValue(); +          auto AS = LV.getAddressSpace(); + +          if ((!ArgInfo.getIndirectByVal() && +               (LV.getAlignment() >= +                getContext().getTypeAlignInChars(I->Ty)))) { +            NeedCopy = true; +          } +          if (!getLangOpts().OpenCL) { +            if ((ArgInfo.getIndirectByVal() && +                (AS != LangAS::Default && +                 AS != CGM.getASTAllocaAddressSpace()))) { +              NeedCopy = true; +            } +          } +          // For OpenCL even if RV is located in default or alloca address space +          // we don't want to perform address space cast for it. +          else if ((ArgInfo.getIndirectByVal() && +                    Addr.getType()->getAddressSpace() != IRFuncTy-> +                      getParamType(FirstIRArg)->getPointerAddressSpace())) { +            NeedCopy = true; +          } +        } + +        if (NeedCopy) { +          // Create an aligned temporary, and copy to it. +          Address AI = CreateMemTempWithoutCast( +              I->Ty, ArgInfo.getIndirectAlign(), "byval-temp"); +          IRCallArgs[FirstIRArg] = AI.getPointer(); + +          // Emit lifetime markers for the temporary alloca. +          uint64_t ByvalTempElementSize = +              CGM.getDataLayout().getTypeAllocSize(AI.getElementType()); +          llvm::Value *LifetimeSize = +              EmitLifetimeStart(ByvalTempElementSize, AI.getPointer()); + +          // Add cleanup code to emit the end lifetime marker after the call. +          if (LifetimeSize) // In case we disabled lifetime markers. +            CallLifetimeEndAfterCall.emplace_back(AI, LifetimeSize); + +          // Generate the copy. +          I->copyInto(*this, AI); +        } else { +          // Skip the extra memcpy call. +          auto *T = V->getType()->getPointerElementType()->getPointerTo( +              CGM.getDataLayout().getAllocaAddrSpace()); +          IRCallArgs[FirstIRArg] = getTargetHooks().performAddrSpaceCast( +              *this, V, LangAS::Default, CGM.getASTAllocaAddressSpace(), T, +              true); +        } +      } +      break; +    } + +    case ABIArgInfo::Ignore: +      assert(NumIRArgs == 0); +      break; + +    case ABIArgInfo::Extend: +    case ABIArgInfo::Direct: { +      if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) && +          ArgInfo.getCoerceToType() == ConvertType(info_it->type) && +          ArgInfo.getDirectOffset() == 0) { +        assert(NumIRArgs == 1); +        llvm::Value *V; +        if (!I->isAggregate()) +          V = I->getKnownRValue().getScalarVal(); +        else +          V = Builder.CreateLoad( +              I->hasLValue() ? I->getKnownLValue().getAddress() +                             : I->getKnownRValue().getAggregateAddress()); + +        // Implement swifterror by copying into a new swifterror argument. +        // We'll write back in the normal path out of the call. +        if (CallInfo.getExtParameterInfo(ArgNo).getABI() +              == ParameterABI::SwiftErrorResult) { +          assert(!swiftErrorTemp.isValid() && "multiple swifterror args"); + +          QualType pointeeTy = I->Ty->getPointeeType(); +          swiftErrorArg = +            Address(V, getContext().getTypeAlignInChars(pointeeTy)); + +          swiftErrorTemp = +            CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp"); +          V = swiftErrorTemp.getPointer(); +          cast<llvm::AllocaInst>(V)->setSwiftError(true); + +          llvm::Value *errorValue = Builder.CreateLoad(swiftErrorArg); +          Builder.CreateStore(errorValue, swiftErrorTemp); +        } + +        // We might have to widen integers, but we should never truncate. +        if (ArgInfo.getCoerceToType() != V->getType() && +            V->getType()->isIntegerTy()) +          V = Builder.CreateZExt(V, ArgInfo.getCoerceToType()); + +        // If the argument doesn't match, perform a bitcast to coerce it.  This +        // can happen due to trivial type mismatches. +        if (FirstIRArg < IRFuncTy->getNumParams() && +            V->getType() != IRFuncTy->getParamType(FirstIRArg)) +          V = Builder.CreateBitCast(V, IRFuncTy->getParamType(FirstIRArg)); + +        IRCallArgs[FirstIRArg] = V; +        break; +      } + +      // FIXME: Avoid the conversion through memory if possible. +      Address Src = Address::invalid(); +      if (!I->isAggregate()) { +        Src = CreateMemTemp(I->Ty, "coerce"); +        I->copyInto(*this, Src); +      } else { +        Src = I->hasLValue() ? I->getKnownLValue().getAddress() +                             : I->getKnownRValue().getAggregateAddress(); +      } + +      // If the value is offset in memory, apply the offset now. +      Src = emitAddressAtOffset(*this, Src, ArgInfo); + +      // Fast-isel and the optimizer generally like scalar values better than +      // FCAs, so we flatten them if this is safe to do for this argument. +      llvm::StructType *STy = +            dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType()); +      if (STy && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) { +        llvm::Type *SrcTy = Src.getType()->getElementType(); +        uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy); +        uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy); + +        // If the source type is smaller than the destination type of the +        // coerce-to logic, copy the source value into a temp alloca the size +        // of the destination type to allow loading all of it. The bits past +        // the source value are left undef. +        if (SrcSize < DstSize) { +          Address TempAlloca +            = CreateTempAlloca(STy, Src.getAlignment(), +                               Src.getName() + ".coerce"); +          Builder.CreateMemCpy(TempAlloca, Src, SrcSize); +          Src = TempAlloca; +        } else { +          Src = Builder.CreateBitCast(Src, +                                      STy->getPointerTo(Src.getAddressSpace())); +        } + +        assert(NumIRArgs == STy->getNumElements()); +        for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { +          Address EltPtr = Builder.CreateStructGEP(Src, i); +          llvm::Value *LI = Builder.CreateLoad(EltPtr); +          IRCallArgs[FirstIRArg + i] = LI; +        } +      } else { +        // In the simple case, just pass the coerced loaded value. +        assert(NumIRArgs == 1); +        IRCallArgs[FirstIRArg] = +          CreateCoercedLoad(Src, ArgInfo.getCoerceToType(), *this); +      } + +      break; +    } + +    case ABIArgInfo::CoerceAndExpand: { +      auto coercionType = ArgInfo.getCoerceAndExpandType(); +      auto layout = CGM.getDataLayout().getStructLayout(coercionType); + +      llvm::Value *tempSize = nullptr; +      Address addr = Address::invalid(); +      Address AllocaAddr = Address::invalid(); +      if (I->isAggregate()) { +        addr = I->hasLValue() ? I->getKnownLValue().getAddress() +                              : I->getKnownRValue().getAggregateAddress(); + +      } else { +        RValue RV = I->getKnownRValue(); +        assert(RV.isScalar()); // complex should always just be direct + +        llvm::Type *scalarType = RV.getScalarVal()->getType(); +        auto scalarSize = CGM.getDataLayout().getTypeAllocSize(scalarType); +        auto scalarAlign = CGM.getDataLayout().getPrefTypeAlignment(scalarType); + +        // Materialize to a temporary. +        addr = CreateTempAlloca( +            RV.getScalarVal()->getType(), +            CharUnits::fromQuantity(std::max( +                (unsigned)layout->getAlignment().value(), scalarAlign)), +            "tmp", +            /*ArraySize=*/nullptr, &AllocaAddr); +        tempSize = EmitLifetimeStart(scalarSize, AllocaAddr.getPointer()); + +        Builder.CreateStore(RV.getScalarVal(), addr); +      } + +      addr = Builder.CreateElementBitCast(addr, coercionType); + +      unsigned IRArgPos = FirstIRArg; +      for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { +        llvm::Type *eltType = coercionType->getElementType(i); +        if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue; +        Address eltAddr = Builder.CreateStructGEP(addr, i); +        llvm::Value *elt = Builder.CreateLoad(eltAddr); +        IRCallArgs[IRArgPos++] = elt; +      } +      assert(IRArgPos == FirstIRArg + NumIRArgs); + +      if (tempSize) { +        EmitLifetimeEnd(tempSize, AllocaAddr.getPointer()); +      } + +      break; +    } + +    case ABIArgInfo::Expand: +      unsigned IRArgPos = FirstIRArg; +      ExpandTypeToArgs(I->Ty, *I, IRFuncTy, IRCallArgs, IRArgPos); +      assert(IRArgPos == FirstIRArg + NumIRArgs); +      break; +    } +  } + +  const CGCallee &ConcreteCallee = Callee.prepareConcreteCallee(*this); +  llvm::Value *CalleePtr = ConcreteCallee.getFunctionPointer(); + +  // If we're using inalloca, set up that argument. +  if (ArgMemory.isValid()) { +    llvm::Value *Arg = ArgMemory.getPointer(); +    if (CallInfo.isVariadic()) { +      // When passing non-POD arguments by value to variadic functions, we will +      // end up with a variadic prototype and an inalloca call site.  In such +      // cases, we can't do any parameter mismatch checks.  Give up and bitcast +      // the callee. +      unsigned CalleeAS = CalleePtr->getType()->getPointerAddressSpace(); +      CalleePtr = +          Builder.CreateBitCast(CalleePtr, IRFuncTy->getPointerTo(CalleeAS)); +    } else { +      llvm::Type *LastParamTy = +          IRFuncTy->getParamType(IRFuncTy->getNumParams() - 1); +      if (Arg->getType() != LastParamTy) { +#ifndef NDEBUG +        // Assert that these structs have equivalent element types. +        llvm::StructType *FullTy = CallInfo.getArgStruct(); +        llvm::StructType *DeclaredTy = cast<llvm::StructType>( +            cast<llvm::PointerType>(LastParamTy)->getElementType()); +        assert(DeclaredTy->getNumElements() == FullTy->getNumElements()); +        for (llvm::StructType::element_iterator DI = DeclaredTy->element_begin(), +                                                DE = DeclaredTy->element_end(), +                                                FI = FullTy->element_begin(); +             DI != DE; ++DI, ++FI) +          assert(*DI == *FI); +#endif +        Arg = Builder.CreateBitCast(Arg, LastParamTy); +      } +    } +    assert(IRFunctionArgs.hasInallocaArg()); +    IRCallArgs[IRFunctionArgs.getInallocaArgNo()] = Arg; +  } + +  // 2. Prepare the function pointer. + +  // If the callee is a bitcast of a non-variadic function to have a +  // variadic function pointer type, check to see if we can remove the +  // bitcast.  This comes up with unprototyped functions. +  // +  // This makes the IR nicer, but more importantly it ensures that we +  // can inline the function at -O0 if it is marked always_inline. +  auto simplifyVariadicCallee = [](llvm::FunctionType *CalleeFT, +                                   llvm::Value *Ptr) -> llvm::Function * { +    if (!CalleeFT->isVarArg()) +      return nullptr; + +    // Get underlying value if it's a bitcast +    if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Ptr)) { +      if (CE->getOpcode() == llvm::Instruction::BitCast) +        Ptr = CE->getOperand(0); +    } + +    llvm::Function *OrigFn = dyn_cast<llvm::Function>(Ptr); +    if (!OrigFn) +      return nullptr; + +    llvm::FunctionType *OrigFT = OrigFn->getFunctionType(); + +    // If the original type is variadic, or if any of the component types +    // disagree, we cannot remove the cast. +    if (OrigFT->isVarArg() || +        OrigFT->getNumParams() != CalleeFT->getNumParams() || +        OrigFT->getReturnType() != CalleeFT->getReturnType()) +      return nullptr; + +    for (unsigned i = 0, e = OrigFT->getNumParams(); i != e; ++i) +      if (OrigFT->getParamType(i) != CalleeFT->getParamType(i)) +        return nullptr; + +    return OrigFn; +  }; + +  if (llvm::Function *OrigFn = simplifyVariadicCallee(IRFuncTy, CalleePtr)) { +    CalleePtr = OrigFn; +    IRFuncTy = OrigFn->getFunctionType(); +  } + +  // 3. Perform the actual call. + +  // Deactivate any cleanups that we're supposed to do immediately before +  // the call. +  if (!CallArgs.getCleanupsToDeactivate().empty()) +    deactivateArgCleanupsBeforeCall(*this, CallArgs); + +  // Assert that the arguments we computed match up.  The IR verifier +  // will catch this, but this is a common enough source of problems +  // during IRGen changes that it's way better for debugging to catch +  // it ourselves here. +#ifndef NDEBUG +  assert(IRCallArgs.size() == IRFuncTy->getNumParams() || IRFuncTy->isVarArg()); +  for (unsigned i = 0; i < IRCallArgs.size(); ++i) { +    // Inalloca argument can have different type. +    if (IRFunctionArgs.hasInallocaArg() && +        i == IRFunctionArgs.getInallocaArgNo()) +      continue; +    if (i < IRFuncTy->getNumParams()) +      assert(IRCallArgs[i]->getType() == IRFuncTy->getParamType(i)); +  } +#endif + +  // Update the largest vector width if any arguments have vector types. +  for (unsigned i = 0; i < IRCallArgs.size(); ++i) { +    if (auto *VT = dyn_cast<llvm::VectorType>(IRCallArgs[i]->getType())) +      LargestVectorWidth = std::max((uint64_t)LargestVectorWidth, +                                   VT->getPrimitiveSizeInBits().getFixedSize()); +  } + +  // Compute the calling convention and attributes. +  unsigned CallingConv; +  llvm::AttributeList Attrs; +  CGM.ConstructAttributeList(CalleePtr->getName(), CallInfo, +                             Callee.getAbstractInfo(), Attrs, CallingConv, +                             /*AttrOnCallSite=*/true); + +  // Apply some call-site-specific attributes. +  // TODO: work this into building the attribute set. + +  // Apply always_inline to all calls within flatten functions. +  // FIXME: should this really take priority over __try, below? +  if (CurCodeDecl && CurCodeDecl->hasAttr<FlattenAttr>() && +      !(TargetDecl && TargetDecl->hasAttr<NoInlineAttr>())) { +    Attrs = +        Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex, +                           llvm::Attribute::AlwaysInline); +  } + +  // Disable inlining inside SEH __try blocks. +  if (isSEHTryScope()) { +    Attrs = +        Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex, +                           llvm::Attribute::NoInline); +  } + +  // Decide whether to use a call or an invoke. +  bool CannotThrow; +  if (currentFunctionUsesSEHTry()) { +    // SEH cares about asynchronous exceptions, so everything can "throw." +    CannotThrow = false; +  } else if (isCleanupPadScope() && +             EHPersonality::get(*this).isMSVCXXPersonality()) { +    // The MSVC++ personality will implicitly terminate the program if an +    // exception is thrown during a cleanup outside of a try/catch. +    // We don't need to model anything in IR to get this behavior. +    CannotThrow = true; +  } else { +    // Otherwise, nounwind call sites will never throw. +    CannotThrow = Attrs.hasAttribute(llvm::AttributeList::FunctionIndex, +                                     llvm::Attribute::NoUnwind); +  } + +  // If we made a temporary, be sure to clean up after ourselves. Note that we +  // can't depend on being inside of an ExprWithCleanups, so we need to manually +  // pop this cleanup later on. Being eager about this is OK, since this +  // temporary is 'invisible' outside of the callee. +  if (UnusedReturnSizePtr) +    pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, SRetAlloca, +                                         UnusedReturnSizePtr); + +  llvm::BasicBlock *InvokeDest = CannotThrow ? nullptr : getInvokeDest(); + +  SmallVector<llvm::OperandBundleDef, 1> BundleList = +      getBundlesForFunclet(CalleePtr); + +  // Emit the actual call/invoke instruction. +  llvm::CallBase *CI; +  if (!InvokeDest) { +    CI = Builder.CreateCall(IRFuncTy, CalleePtr, IRCallArgs, BundleList); +  } else { +    llvm::BasicBlock *Cont = createBasicBlock("invoke.cont"); +    CI = Builder.CreateInvoke(IRFuncTy, CalleePtr, Cont, InvokeDest, IRCallArgs, +                              BundleList); +    EmitBlock(Cont); +  } +  if (callOrInvoke) +    *callOrInvoke = CI; + +  // Apply the attributes and calling convention. +  CI->setAttributes(Attrs); +  CI->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); + +  // Apply various metadata. + +  if (!CI->getType()->isVoidTy()) +    CI->setName("call"); + +  // Update largest vector width from the return type. +  if (auto *VT = dyn_cast<llvm::VectorType>(CI->getType())) +    LargestVectorWidth = std::max((uint64_t)LargestVectorWidth, +                                  VT->getPrimitiveSizeInBits().getFixedSize()); + +  // Insert instrumentation or attach profile metadata at indirect call sites. +  // For more details, see the comment before the definition of +  // IPVK_IndirectCallTarget in InstrProfData.inc. +  if (!CI->getCalledFunction()) +    PGO.valueProfile(Builder, llvm::IPVK_IndirectCallTarget, +                     CI, CalleePtr); + +  // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC +  // optimizer it can aggressively ignore unwind edges. +  if (CGM.getLangOpts().ObjCAutoRefCount) +    AddObjCARCExceptionMetadata(CI); + +  // Suppress tail calls if requested. +  if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(CI)) { +    if (TargetDecl && TargetDecl->hasAttr<NotTailCalledAttr>()) +      Call->setTailCallKind(llvm::CallInst::TCK_NoTail); +  } + +  // Add metadata for calls to MSAllocator functions +  if (getDebugInfo() && TargetDecl && +      TargetDecl->hasAttr<MSAllocatorAttr>()) +    getDebugInfo()->addHeapAllocSiteMetadata(CI, RetTy, Loc); + +  // 4. Finish the call. + +  // If the call doesn't return, finish the basic block and clear the +  // insertion point; this allows the rest of IRGen to discard +  // unreachable code. +  if (CI->doesNotReturn()) { +    if (UnusedReturnSizePtr) +      PopCleanupBlock(); + +    // Strip away the noreturn attribute to better diagnose unreachable UB. +    if (SanOpts.has(SanitizerKind::Unreachable)) { +      // Also remove from function since CallBase::hasFnAttr additionally checks +      // attributes of the called function. +      if (auto *F = CI->getCalledFunction()) +        F->removeFnAttr(llvm::Attribute::NoReturn); +      CI->removeAttribute(llvm::AttributeList::FunctionIndex, +                          llvm::Attribute::NoReturn); + +      // Avoid incompatibility with ASan which relies on the `noreturn` +      // attribute to insert handler calls. +      if (SanOpts.hasOneOf(SanitizerKind::Address | +                           SanitizerKind::KernelAddress)) { +        SanitizerScope SanScope(this); +        llvm::IRBuilder<>::InsertPointGuard IPGuard(Builder); +        Builder.SetInsertPoint(CI); +        auto *FnType = llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false); +        llvm::FunctionCallee Fn = +            CGM.CreateRuntimeFunction(FnType, "__asan_handle_no_return"); +        EmitNounwindRuntimeCall(Fn); +      } +    } + +    EmitUnreachable(Loc); +    Builder.ClearInsertionPoint(); + +    // FIXME: For now, emit a dummy basic block because expr emitters in +    // generally are not ready to handle emitting expressions at unreachable +    // points. +    EnsureInsertPoint(); + +    // Return a reasonable RValue. +    return GetUndefRValue(RetTy); +  } + +  // Perform the swifterror writeback. +  if (swiftErrorTemp.isValid()) { +    llvm::Value *errorResult = Builder.CreateLoad(swiftErrorTemp); +    Builder.CreateStore(errorResult, swiftErrorArg); +  } + +  // Emit any call-associated writebacks immediately.  Arguably this +  // should happen after any return-value munging. +  if (CallArgs.hasWritebacks()) +    emitWritebacks(*this, CallArgs); + +  // The stack cleanup for inalloca arguments has to run out of the normal +  // lexical order, so deactivate it and run it manually here. +  CallArgs.freeArgumentMemory(*this); + +  // Extract the return value. +  RValue Ret = [&] { +    switch (RetAI.getKind()) { +    case ABIArgInfo::CoerceAndExpand: { +      auto coercionType = RetAI.getCoerceAndExpandType(); + +      Address addr = SRetPtr; +      addr = Builder.CreateElementBitCast(addr, coercionType); + +      assert(CI->getType() == RetAI.getUnpaddedCoerceAndExpandType()); +      bool requiresExtract = isa<llvm::StructType>(CI->getType()); + +      unsigned unpaddedIndex = 0; +      for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { +        llvm::Type *eltType = coercionType->getElementType(i); +        if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue; +        Address eltAddr = Builder.CreateStructGEP(addr, i); +        llvm::Value *elt = CI; +        if (requiresExtract) +          elt = Builder.CreateExtractValue(elt, unpaddedIndex++); +        else +          assert(unpaddedIndex == 0); +        Builder.CreateStore(elt, eltAddr); +      } +      // FALLTHROUGH +      LLVM_FALLTHROUGH; +    } + +    case ABIArgInfo::InAlloca: +    case ABIArgInfo::Indirect: { +      RValue ret = convertTempToRValue(SRetPtr, RetTy, SourceLocation()); +      if (UnusedReturnSizePtr) +        PopCleanupBlock(); +      return ret; +    } + +    case ABIArgInfo::Ignore: +      // If we are ignoring an argument that had a result, make sure to +      // construct the appropriate return value for our caller. +      return GetUndefRValue(RetTy); + +    case ABIArgInfo::Extend: +    case ABIArgInfo::Direct: { +      llvm::Type *RetIRTy = ConvertType(RetTy); +      if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) { +        switch (getEvaluationKind(RetTy)) { +        case TEK_Complex: { +          llvm::Value *Real = Builder.CreateExtractValue(CI, 0); +          llvm::Value *Imag = Builder.CreateExtractValue(CI, 1); +          return RValue::getComplex(std::make_pair(Real, Imag)); +        } +        case TEK_Aggregate: { +          Address DestPtr = ReturnValue.getValue(); +          bool DestIsVolatile = ReturnValue.isVolatile(); + +          if (!DestPtr.isValid()) { +            DestPtr = CreateMemTemp(RetTy, "agg.tmp"); +            DestIsVolatile = false; +          } +          BuildAggStore(*this, CI, DestPtr, DestIsVolatile); +          return RValue::getAggregate(DestPtr); +        } +        case TEK_Scalar: { +          // If the argument doesn't match, perform a bitcast to coerce it.  This +          // can happen due to trivial type mismatches. +          llvm::Value *V = CI; +          if (V->getType() != RetIRTy) +            V = Builder.CreateBitCast(V, RetIRTy); +          return RValue::get(V); +        } +        } +        llvm_unreachable("bad evaluation kind"); +      } + +      Address DestPtr = ReturnValue.getValue(); +      bool DestIsVolatile = ReturnValue.isVolatile(); + +      if (!DestPtr.isValid()) { +        DestPtr = CreateMemTemp(RetTy, "coerce"); +        DestIsVolatile = false; +      } + +      // If the value is offset in memory, apply the offset now. +      Address StorePtr = emitAddressAtOffset(*this, DestPtr, RetAI); +      CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this); + +      return convertTempToRValue(DestPtr, RetTy, SourceLocation()); +    } + +    case ABIArgInfo::Expand: +      llvm_unreachable("Invalid ABI kind for return argument"); +    } + +    llvm_unreachable("Unhandled ABIArgInfo::Kind"); +  } (); + +  // Emit the assume_aligned check on the return value. +  if (Ret.isScalar() && TargetDecl) { +    if (const auto *AA = TargetDecl->getAttr<AssumeAlignedAttr>()) { +      llvm::Value *OffsetValue = nullptr; +      if (const auto *Offset = AA->getOffset()) +        OffsetValue = EmitScalarExpr(Offset); + +      llvm::Value *Alignment = EmitScalarExpr(AA->getAlignment()); +      llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(Alignment); +      EmitAlignmentAssumption(Ret.getScalarVal(), RetTy, Loc, AA->getLocation(), +                              AlignmentCI, OffsetValue); +    } else if (const auto *AA = TargetDecl->getAttr<AllocAlignAttr>()) { +      llvm::Value *AlignmentVal = CallArgs[AA->getParamIndex().getLLVMIndex()] +                                      .getRValue(*this) +                                      .getScalarVal(); +      EmitAlignmentAssumption(Ret.getScalarVal(), RetTy, Loc, AA->getLocation(), +                              AlignmentVal); +    } +  } + +  // Explicitly call CallLifetimeEnd::Emit just to re-use the code even though +  // we can't use the full cleanup mechanism. +  for (CallLifetimeEnd &LifetimeEnd : CallLifetimeEndAfterCall) +    LifetimeEnd.Emit(*this, /*Flags=*/{}); + +  return Ret; +} + +CGCallee CGCallee::prepareConcreteCallee(CodeGenFunction &CGF) const { +  if (isVirtual()) { +    const CallExpr *CE = getVirtualCallExpr(); +    return CGF.CGM.getCXXABI().getVirtualFunctionPointer( +        CGF, getVirtualMethodDecl(), getThisAddress(), getVirtualFunctionType(), +        CE ? CE->getBeginLoc() : SourceLocation()); +  } + +  return *this; +} + +/* VarArg handling */ + +Address CodeGenFunction::EmitVAArg(VAArgExpr *VE, Address &VAListAddr) { +  VAListAddr = VE->isMicrosoftABI() +                 ? EmitMSVAListRef(VE->getSubExpr()) +                 : EmitVAListRef(VE->getSubExpr()); +  QualType Ty = VE->getType(); +  if (VE->isMicrosoftABI()) +    return CGM.getTypes().getABIInfo().EmitMSVAArg(*this, VAListAddr, Ty); +  return CGM.getTypes().getABIInfo().EmitVAArg(*this, VAListAddr, Ty); +}  | 
