diff options
Diffstat (limited to 'clang/lib/CodeGen/TargetInfo.cpp')
| -rw-r--r-- | clang/lib/CodeGen/TargetInfo.cpp | 9978 | 
1 files changed, 9978 insertions, 0 deletions
diff --git a/clang/lib/CodeGen/TargetInfo.cpp b/clang/lib/CodeGen/TargetInfo.cpp new file mode 100644 index 0000000000000..c2c7b8bf653b9 --- /dev/null +++ b/clang/lib/CodeGen/TargetInfo.cpp @@ -0,0 +1,9978 @@ +//===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// These classes wrap the information about a call or function +// definition used to handle ABI compliancy. +// +//===----------------------------------------------------------------------===// + +#include "TargetInfo.h" +#include "ABIInfo.h" +#include "CGBlocks.h" +#include "CGCXXABI.h" +#include "CGValue.h" +#include "CodeGenFunction.h" +#include "clang/AST/RecordLayout.h" +#include "clang/Basic/CodeGenOptions.h" +#include "clang/CodeGen/CGFunctionInfo.h" +#include "clang/CodeGen/SwiftCallingConv.h" +#include "llvm/ADT/StringExtras.h" +#include "llvm/ADT/StringSwitch.h" +#include "llvm/ADT/Triple.h" +#include "llvm/ADT/Twine.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/Type.h" +#include "llvm/Support/raw_ostream.h" +#include <algorithm>    // std::sort + +using namespace clang; +using namespace CodeGen; + +// Helper for coercing an aggregate argument or return value into an integer +// array of the same size (including padding) and alignment.  This alternate +// coercion happens only for the RenderScript ABI and can be removed after +// runtimes that rely on it are no longer supported. +// +// RenderScript assumes that the size of the argument / return value in the IR +// is the same as the size of the corresponding qualified type. This helper +// coerces the aggregate type into an array of the same size (including +// padding).  This coercion is used in lieu of expansion of struct members or +// other canonical coercions that return a coerced-type of larger size. +// +// Ty          - The argument / return value type +// Context     - The associated ASTContext +// LLVMContext - The associated LLVMContext +static ABIArgInfo coerceToIntArray(QualType Ty, +                                   ASTContext &Context, +                                   llvm::LLVMContext &LLVMContext) { +  // Alignment and Size are measured in bits. +  const uint64_t Size = Context.getTypeSize(Ty); +  const uint64_t Alignment = Context.getTypeAlign(Ty); +  llvm::Type *IntType = llvm::Type::getIntNTy(LLVMContext, Alignment); +  const uint64_t NumElements = (Size + Alignment - 1) / Alignment; +  return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements)); +} + +static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder, +                               llvm::Value *Array, +                               llvm::Value *Value, +                               unsigned FirstIndex, +                               unsigned LastIndex) { +  // Alternatively, we could emit this as a loop in the source. +  for (unsigned I = FirstIndex; I <= LastIndex; ++I) { +    llvm::Value *Cell = +        Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), Array, I); +    Builder.CreateAlignedStore(Value, Cell, CharUnits::One()); +  } +} + +static bool isAggregateTypeForABI(QualType T) { +  return !CodeGenFunction::hasScalarEvaluationKind(T) || +         T->isMemberFunctionPointerType(); +} + +ABIArgInfo +ABIInfo::getNaturalAlignIndirect(QualType Ty, bool ByRef, bool Realign, +                                 llvm::Type *Padding) const { +  return ABIArgInfo::getIndirect(getContext().getTypeAlignInChars(Ty), +                                 ByRef, Realign, Padding); +} + +ABIArgInfo +ABIInfo::getNaturalAlignIndirectInReg(QualType Ty, bool Realign) const { +  return ABIArgInfo::getIndirectInReg(getContext().getTypeAlignInChars(Ty), +                                      /*ByRef*/ false, Realign); +} + +Address ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, +                             QualType Ty) const { +  return Address::invalid(); +} + +ABIInfo::~ABIInfo() {} + +/// Does the given lowering require more than the given number of +/// registers when expanded? +/// +/// This is intended to be the basis of a reasonable basic implementation +/// of should{Pass,Return}IndirectlyForSwift. +/// +/// For most targets, a limit of four total registers is reasonable; this +/// limits the amount of code required in order to move around the value +/// in case it wasn't produced immediately prior to the call by the caller +/// (or wasn't produced in exactly the right registers) or isn't used +/// immediately within the callee.  But some targets may need to further +/// limit the register count due to an inability to support that many +/// return registers. +static bool occupiesMoreThan(CodeGenTypes &cgt, +                             ArrayRef<llvm::Type*> scalarTypes, +                             unsigned maxAllRegisters) { +  unsigned intCount = 0, fpCount = 0; +  for (llvm::Type *type : scalarTypes) { +    if (type->isPointerTy()) { +      intCount++; +    } else if (auto intTy = dyn_cast<llvm::IntegerType>(type)) { +      auto ptrWidth = cgt.getTarget().getPointerWidth(0); +      intCount += (intTy->getBitWidth() + ptrWidth - 1) / ptrWidth; +    } else { +      assert(type->isVectorTy() || type->isFloatingPointTy()); +      fpCount++; +    } +  } + +  return (intCount + fpCount > maxAllRegisters); +} + +bool SwiftABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize, +                                             llvm::Type *eltTy, +                                             unsigned numElts) const { +  // The default implementation of this assumes that the target guarantees +  // 128-bit SIMD support but nothing more. +  return (vectorSize.getQuantity() > 8 && vectorSize.getQuantity() <= 16); +} + +static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT, +                                              CGCXXABI &CXXABI) { +  const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()); +  if (!RD) { +    if (!RT->getDecl()->canPassInRegisters()) +      return CGCXXABI::RAA_Indirect; +    return CGCXXABI::RAA_Default; +  } +  return CXXABI.getRecordArgABI(RD); +} + +static CGCXXABI::RecordArgABI getRecordArgABI(QualType T, +                                              CGCXXABI &CXXABI) { +  const RecordType *RT = T->getAs<RecordType>(); +  if (!RT) +    return CGCXXABI::RAA_Default; +  return getRecordArgABI(RT, CXXABI); +} + +static bool classifyReturnType(const CGCXXABI &CXXABI, CGFunctionInfo &FI, +                               const ABIInfo &Info) { +  QualType Ty = FI.getReturnType(); + +  if (const auto *RT = Ty->getAs<RecordType>()) +    if (!isa<CXXRecordDecl>(RT->getDecl()) && +        !RT->getDecl()->canPassInRegisters()) { +      FI.getReturnInfo() = Info.getNaturalAlignIndirect(Ty); +      return true; +    } + +  return CXXABI.classifyReturnType(FI); +} + +/// Pass transparent unions as if they were the type of the first element. Sema +/// should ensure that all elements of the union have the same "machine type". +static QualType useFirstFieldIfTransparentUnion(QualType Ty) { +  if (const RecordType *UT = Ty->getAsUnionType()) { +    const RecordDecl *UD = UT->getDecl(); +    if (UD->hasAttr<TransparentUnionAttr>()) { +      assert(!UD->field_empty() && "sema created an empty transparent union"); +      return UD->field_begin()->getType(); +    } +  } +  return Ty; +} + +CGCXXABI &ABIInfo::getCXXABI() const { +  return CGT.getCXXABI(); +} + +ASTContext &ABIInfo::getContext() const { +  return CGT.getContext(); +} + +llvm::LLVMContext &ABIInfo::getVMContext() const { +  return CGT.getLLVMContext(); +} + +const llvm::DataLayout &ABIInfo::getDataLayout() const { +  return CGT.getDataLayout(); +} + +const TargetInfo &ABIInfo::getTarget() const { +  return CGT.getTarget(); +} + +const CodeGenOptions &ABIInfo::getCodeGenOpts() const { +  return CGT.getCodeGenOpts(); +} + +bool ABIInfo::isAndroid() const { return getTarget().getTriple().isAndroid(); } + +bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { +  return false; +} + +bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, +                                                uint64_t Members) const { +  return false; +} + +LLVM_DUMP_METHOD void ABIArgInfo::dump() const { +  raw_ostream &OS = llvm::errs(); +  OS << "(ABIArgInfo Kind="; +  switch (TheKind) { +  case Direct: +    OS << "Direct Type="; +    if (llvm::Type *Ty = getCoerceToType()) +      Ty->print(OS); +    else +      OS << "null"; +    break; +  case Extend: +    OS << "Extend"; +    break; +  case Ignore: +    OS << "Ignore"; +    break; +  case InAlloca: +    OS << "InAlloca Offset=" << getInAllocaFieldIndex(); +    break; +  case Indirect: +    OS << "Indirect Align=" << getIndirectAlign().getQuantity() +       << " ByVal=" << getIndirectByVal() +       << " Realign=" << getIndirectRealign(); +    break; +  case Expand: +    OS << "Expand"; +    break; +  case CoerceAndExpand: +    OS << "CoerceAndExpand Type="; +    getCoerceAndExpandType()->print(OS); +    break; +  } +  OS << ")\n"; +} + +// Dynamically round a pointer up to a multiple of the given alignment. +static llvm::Value *emitRoundPointerUpToAlignment(CodeGenFunction &CGF, +                                                  llvm::Value *Ptr, +                                                  CharUnits Align) { +  llvm::Value *PtrAsInt = Ptr; +  // OverflowArgArea = (OverflowArgArea + Align - 1) & -Align; +  PtrAsInt = CGF.Builder.CreatePtrToInt(PtrAsInt, CGF.IntPtrTy); +  PtrAsInt = CGF.Builder.CreateAdd(PtrAsInt, +        llvm::ConstantInt::get(CGF.IntPtrTy, Align.getQuantity() - 1)); +  PtrAsInt = CGF.Builder.CreateAnd(PtrAsInt, +           llvm::ConstantInt::get(CGF.IntPtrTy, -Align.getQuantity())); +  PtrAsInt = CGF.Builder.CreateIntToPtr(PtrAsInt, +                                        Ptr->getType(), +                                        Ptr->getName() + ".aligned"); +  return PtrAsInt; +} + +/// Emit va_arg for a platform using the common void* representation, +/// where arguments are simply emitted in an array of slots on the stack. +/// +/// This version implements the core direct-value passing rules. +/// +/// \param SlotSize - The size and alignment of a stack slot. +///   Each argument will be allocated to a multiple of this number of +///   slots, and all the slots will be aligned to this value. +/// \param AllowHigherAlign - The slot alignment is not a cap; +///   an argument type with an alignment greater than the slot size +///   will be emitted on a higher-alignment address, potentially +///   leaving one or more empty slots behind as padding.  If this +///   is false, the returned address might be less-aligned than +///   DirectAlign. +static Address emitVoidPtrDirectVAArg(CodeGenFunction &CGF, +                                      Address VAListAddr, +                                      llvm::Type *DirectTy, +                                      CharUnits DirectSize, +                                      CharUnits DirectAlign, +                                      CharUnits SlotSize, +                                      bool AllowHigherAlign) { +  // Cast the element type to i8* if necessary.  Some platforms define +  // va_list as a struct containing an i8* instead of just an i8*. +  if (VAListAddr.getElementType() != CGF.Int8PtrTy) +    VAListAddr = CGF.Builder.CreateElementBitCast(VAListAddr, CGF.Int8PtrTy); + +  llvm::Value *Ptr = CGF.Builder.CreateLoad(VAListAddr, "argp.cur"); + +  // If the CC aligns values higher than the slot size, do so if needed. +  Address Addr = Address::invalid(); +  if (AllowHigherAlign && DirectAlign > SlotSize) { +    Addr = Address(emitRoundPointerUpToAlignment(CGF, Ptr, DirectAlign), +                                                 DirectAlign); +  } else { +    Addr = Address(Ptr, SlotSize); +  } + +  // Advance the pointer past the argument, then store that back. +  CharUnits FullDirectSize = DirectSize.alignTo(SlotSize); +  Address NextPtr = +      CGF.Builder.CreateConstInBoundsByteGEP(Addr, FullDirectSize, "argp.next"); +  CGF.Builder.CreateStore(NextPtr.getPointer(), VAListAddr); + +  // If the argument is smaller than a slot, and this is a big-endian +  // target, the argument will be right-adjusted in its slot. +  if (DirectSize < SlotSize && CGF.CGM.getDataLayout().isBigEndian() && +      !DirectTy->isStructTy()) { +    Addr = CGF.Builder.CreateConstInBoundsByteGEP(Addr, SlotSize - DirectSize); +  } + +  Addr = CGF.Builder.CreateElementBitCast(Addr, DirectTy); +  return Addr; +} + +/// Emit va_arg for a platform using the common void* representation, +/// where arguments are simply emitted in an array of slots on the stack. +/// +/// \param IsIndirect - Values of this type are passed indirectly. +/// \param ValueInfo - The size and alignment of this type, generally +///   computed with getContext().getTypeInfoInChars(ValueTy). +/// \param SlotSizeAndAlign - The size and alignment of a stack slot. +///   Each argument will be allocated to a multiple of this number of +///   slots, and all the slots will be aligned to this value. +/// \param AllowHigherAlign - The slot alignment is not a cap; +///   an argument type with an alignment greater than the slot size +///   will be emitted on a higher-alignment address, potentially +///   leaving one or more empty slots behind as padding. +static Address emitVoidPtrVAArg(CodeGenFunction &CGF, Address VAListAddr, +                                QualType ValueTy, bool IsIndirect, +                                std::pair<CharUnits, CharUnits> ValueInfo, +                                CharUnits SlotSizeAndAlign, +                                bool AllowHigherAlign) { +  // The size and alignment of the value that was passed directly. +  CharUnits DirectSize, DirectAlign; +  if (IsIndirect) { +    DirectSize = CGF.getPointerSize(); +    DirectAlign = CGF.getPointerAlign(); +  } else { +    DirectSize = ValueInfo.first; +    DirectAlign = ValueInfo.second; +  } + +  // Cast the address we've calculated to the right type. +  llvm::Type *DirectTy = CGF.ConvertTypeForMem(ValueTy); +  if (IsIndirect) +    DirectTy = DirectTy->getPointerTo(0); + +  Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, DirectTy, +                                        DirectSize, DirectAlign, +                                        SlotSizeAndAlign, +                                        AllowHigherAlign); + +  if (IsIndirect) { +    Addr = Address(CGF.Builder.CreateLoad(Addr), ValueInfo.second); +  } + +  return Addr; + +} + +static Address emitMergePHI(CodeGenFunction &CGF, +                            Address Addr1, llvm::BasicBlock *Block1, +                            Address Addr2, llvm::BasicBlock *Block2, +                            const llvm::Twine &Name = "") { +  assert(Addr1.getType() == Addr2.getType()); +  llvm::PHINode *PHI = CGF.Builder.CreatePHI(Addr1.getType(), 2, Name); +  PHI->addIncoming(Addr1.getPointer(), Block1); +  PHI->addIncoming(Addr2.getPointer(), Block2); +  CharUnits Align = std::min(Addr1.getAlignment(), Addr2.getAlignment()); +  return Address(PHI, Align); +} + +TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; } + +// If someone can figure out a general rule for this, that would be great. +// It's probably just doomed to be platform-dependent, though. +unsigned TargetCodeGenInfo::getSizeOfUnwindException() const { +  // Verified for: +  //   x86-64     FreeBSD, Linux, Darwin +  //   x86-32     FreeBSD, Linux, Darwin +  //   PowerPC    Linux, Darwin +  //   ARM        Darwin (*not* EABI) +  //   AArch64    Linux +  return 32; +} + +bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args, +                                     const FunctionNoProtoType *fnType) const { +  // The following conventions are known to require this to be false: +  //   x86_stdcall +  //   MIPS +  // For everything else, we just prefer false unless we opt out. +  return false; +} + +void +TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib, +                                             llvm::SmallString<24> &Opt) const { +  // This assumes the user is passing a library name like "rt" instead of a +  // filename like "librt.a/so", and that they don't care whether it's static or +  // dynamic. +  Opt = "-l"; +  Opt += Lib; +} + +unsigned TargetCodeGenInfo::getOpenCLKernelCallingConv() const { +  // OpenCL kernels are called via an explicit runtime API with arguments +  // set with clSetKernelArg(), not as normal sub-functions. +  // Return SPIR_KERNEL by default as the kernel calling convention to +  // ensure the fingerprint is fixed such way that each OpenCL argument +  // gets one matching argument in the produced kernel function argument +  // list to enable feasible implementation of clSetKernelArg() with +  // aggregates etc. In case we would use the default C calling conv here, +  // clSetKernelArg() might break depending on the target-specific +  // conventions; different targets might split structs passed as values +  // to multiple function arguments etc. +  return llvm::CallingConv::SPIR_KERNEL; +} + +llvm::Constant *TargetCodeGenInfo::getNullPointer(const CodeGen::CodeGenModule &CGM, +    llvm::PointerType *T, QualType QT) const { +  return llvm::ConstantPointerNull::get(T); +} + +LangAS TargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM, +                                                   const VarDecl *D) const { +  assert(!CGM.getLangOpts().OpenCL && +         !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) && +         "Address space agnostic languages only"); +  return D ? D->getType().getAddressSpace() : LangAS::Default; +} + +llvm::Value *TargetCodeGenInfo::performAddrSpaceCast( +    CodeGen::CodeGenFunction &CGF, llvm::Value *Src, LangAS SrcAddr, +    LangAS DestAddr, llvm::Type *DestTy, bool isNonNull) const { +  // Since target may map different address spaces in AST to the same address +  // space, an address space conversion may end up as a bitcast. +  if (auto *C = dyn_cast<llvm::Constant>(Src)) +    return performAddrSpaceCast(CGF.CGM, C, SrcAddr, DestAddr, DestTy); +  // Try to preserve the source's name to make IR more readable. +  return CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( +      Src, DestTy, Src->hasName() ? Src->getName() + ".ascast" : ""); +} + +llvm::Constant * +TargetCodeGenInfo::performAddrSpaceCast(CodeGenModule &CGM, llvm::Constant *Src, +                                        LangAS SrcAddr, LangAS DestAddr, +                                        llvm::Type *DestTy) const { +  // Since target may map different address spaces in AST to the same address +  // space, an address space conversion may end up as a bitcast. +  return llvm::ConstantExpr::getPointerCast(Src, DestTy); +} + +llvm::SyncScope::ID +TargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts, +                                      SyncScope Scope, +                                      llvm::AtomicOrdering Ordering, +                                      llvm::LLVMContext &Ctx) const { +  return Ctx.getOrInsertSyncScopeID(""); /* default sync scope */ +} + +static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays); + +/// isEmptyField - Return true iff a the field is "empty", that is it +/// is an unnamed bit-field or an (array of) empty record(s). +static bool isEmptyField(ASTContext &Context, const FieldDecl *FD, +                         bool AllowArrays) { +  if (FD->isUnnamedBitfield()) +    return true; + +  QualType FT = FD->getType(); + +  // Constant arrays of empty records count as empty, strip them off. +  // Constant arrays of zero length always count as empty. +  if (AllowArrays) +    while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { +      if (AT->getSize() == 0) +        return true; +      FT = AT->getElementType(); +    } + +  const RecordType *RT = FT->getAs<RecordType>(); +  if (!RT) +    return false; + +  // C++ record fields are never empty, at least in the Itanium ABI. +  // +  // FIXME: We should use a predicate for whether this behavior is true in the +  // current ABI. +  if (isa<CXXRecordDecl>(RT->getDecl())) +    return false; + +  return isEmptyRecord(Context, FT, AllowArrays); +} + +/// isEmptyRecord - Return true iff a structure contains only empty +/// fields. Note that a structure with a flexible array member is not +/// considered empty. +static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) { +  const RecordType *RT = T->getAs<RecordType>(); +  if (!RT) +    return false; +  const RecordDecl *RD = RT->getDecl(); +  if (RD->hasFlexibleArrayMember()) +    return false; + +  // If this is a C++ record, check the bases first. +  if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) +    for (const auto &I : CXXRD->bases()) +      if (!isEmptyRecord(Context, I.getType(), true)) +        return false; + +  for (const auto *I : RD->fields()) +    if (!isEmptyField(Context, I, AllowArrays)) +      return false; +  return true; +} + +/// isSingleElementStruct - Determine if a structure is a "single +/// element struct", i.e. it has exactly one non-empty field or +/// exactly one field which is itself a single element +/// struct. Structures with flexible array members are never +/// considered single element structs. +/// +/// \return The field declaration for the single non-empty field, if +/// it exists. +static const Type *isSingleElementStruct(QualType T, ASTContext &Context) { +  const RecordType *RT = T->getAs<RecordType>(); +  if (!RT) +    return nullptr; + +  const RecordDecl *RD = RT->getDecl(); +  if (RD->hasFlexibleArrayMember()) +    return nullptr; + +  const Type *Found = nullptr; + +  // If this is a C++ record, check the bases first. +  if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { +    for (const auto &I : CXXRD->bases()) { +      // Ignore empty records. +      if (isEmptyRecord(Context, I.getType(), true)) +        continue; + +      // If we already found an element then this isn't a single-element struct. +      if (Found) +        return nullptr; + +      // If this is non-empty and not a single element struct, the composite +      // cannot be a single element struct. +      Found = isSingleElementStruct(I.getType(), Context); +      if (!Found) +        return nullptr; +    } +  } + +  // Check for single element. +  for (const auto *FD : RD->fields()) { +    QualType FT = FD->getType(); + +    // Ignore empty fields. +    if (isEmptyField(Context, FD, true)) +      continue; + +    // If we already found an element then this isn't a single-element +    // struct. +    if (Found) +      return nullptr; + +    // Treat single element arrays as the element. +    while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { +      if (AT->getSize().getZExtValue() != 1) +        break; +      FT = AT->getElementType(); +    } + +    if (!isAggregateTypeForABI(FT)) { +      Found = FT.getTypePtr(); +    } else { +      Found = isSingleElementStruct(FT, Context); +      if (!Found) +        return nullptr; +    } +  } + +  // We don't consider a struct a single-element struct if it has +  // padding beyond the element type. +  if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T)) +    return nullptr; + +  return Found; +} + +namespace { +Address EmitVAArgInstr(CodeGenFunction &CGF, Address VAListAddr, QualType Ty, +                       const ABIArgInfo &AI) { +  // This default implementation defers to the llvm backend's va_arg +  // instruction. It can handle only passing arguments directly +  // (typically only handled in the backend for primitive types), or +  // aggregates passed indirectly by pointer (NOTE: if the "byval" +  // flag has ABI impact in the callee, this implementation cannot +  // work.) + +  // Only a few cases are covered here at the moment -- those needed +  // by the default abi. +  llvm::Value *Val; + +  if (AI.isIndirect()) { +    assert(!AI.getPaddingType() && +           "Unexpected PaddingType seen in arginfo in generic VAArg emitter!"); +    assert( +        !AI.getIndirectRealign() && +        "Unexpected IndirectRealign seen in arginfo in generic VAArg emitter!"); + +    auto TyInfo = CGF.getContext().getTypeInfoInChars(Ty); +    CharUnits TyAlignForABI = TyInfo.second; + +    llvm::Type *BaseTy = +        llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty)); +    llvm::Value *Addr = +        CGF.Builder.CreateVAArg(VAListAddr.getPointer(), BaseTy); +    return Address(Addr, TyAlignForABI); +  } else { +    assert((AI.isDirect() || AI.isExtend()) && +           "Unexpected ArgInfo Kind in generic VAArg emitter!"); + +    assert(!AI.getInReg() && +           "Unexpected InReg seen in arginfo in generic VAArg emitter!"); +    assert(!AI.getPaddingType() && +           "Unexpected PaddingType seen in arginfo in generic VAArg emitter!"); +    assert(!AI.getDirectOffset() && +           "Unexpected DirectOffset seen in arginfo in generic VAArg emitter!"); +    assert(!AI.getCoerceToType() && +           "Unexpected CoerceToType seen in arginfo in generic VAArg emitter!"); + +    Address Temp = CGF.CreateMemTemp(Ty, "varet"); +    Val = CGF.Builder.CreateVAArg(VAListAddr.getPointer(), CGF.ConvertType(Ty)); +    CGF.Builder.CreateStore(Val, Temp); +    return Temp; +  } +} + +/// DefaultABIInfo - The default implementation for ABI specific +/// details. This implementation provides information which results in +/// self-consistent and sensible LLVM IR generation, but does not +/// conform to any particular ABI. +class DefaultABIInfo : public ABIInfo { +public: +  DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} + +  ABIArgInfo classifyReturnType(QualType RetTy) const; +  ABIArgInfo classifyArgumentType(QualType RetTy) const; + +  void computeInfo(CGFunctionInfo &FI) const override { +    if (!getCXXABI().classifyReturnType(FI)) +      FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); +    for (auto &I : FI.arguments()) +      I.info = classifyArgumentType(I.type); +  } + +  Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, +                    QualType Ty) const override { +    return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty)); +  } +}; + +class DefaultTargetCodeGenInfo : public TargetCodeGenInfo { +public: +  DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) +    : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} +}; + +ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const { +  Ty = useFirstFieldIfTransparentUnion(Ty); + +  if (isAggregateTypeForABI(Ty)) { +    // Records with non-trivial destructors/copy-constructors should not be +    // passed by value. +    if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) +      return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); + +    return getNaturalAlignIndirect(Ty); +  } + +  // Treat an enum type as its underlying type. +  if (const EnumType *EnumTy = Ty->getAs<EnumType>()) +    Ty = EnumTy->getDecl()->getIntegerType(); + +  return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) +                                        : ABIArgInfo::getDirect()); +} + +ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const { +  if (RetTy->isVoidType()) +    return ABIArgInfo::getIgnore(); + +  if (isAggregateTypeForABI(RetTy)) +    return getNaturalAlignIndirect(RetTy); + +  // Treat an enum type as its underlying type. +  if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) +    RetTy = EnumTy->getDecl()->getIntegerType(); + +  return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) +                                           : ABIArgInfo::getDirect()); +} + +//===----------------------------------------------------------------------===// +// WebAssembly ABI Implementation +// +// This is a very simple ABI that relies a lot on DefaultABIInfo. +//===----------------------------------------------------------------------===// + +class WebAssemblyABIInfo final : public SwiftABIInfo { +  DefaultABIInfo defaultInfo; + +public: +  explicit WebAssemblyABIInfo(CodeGen::CodeGenTypes &CGT) +      : SwiftABIInfo(CGT), defaultInfo(CGT) {} + +private: +  ABIArgInfo classifyReturnType(QualType RetTy) const; +  ABIArgInfo classifyArgumentType(QualType Ty) const; + +  // DefaultABIInfo's classifyReturnType and classifyArgumentType are +  // non-virtual, but computeInfo and EmitVAArg are virtual, so we +  // overload them. +  void computeInfo(CGFunctionInfo &FI) const override { +    if (!getCXXABI().classifyReturnType(FI)) +      FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); +    for (auto &Arg : FI.arguments()) +      Arg.info = classifyArgumentType(Arg.type); +  } + +  Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, +                    QualType Ty) const override; + +  bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, +                                    bool asReturnValue) const override { +    return occupiesMoreThan(CGT, scalars, /*total*/ 4); +  } + +  bool isSwiftErrorInRegister() const override { +    return false; +  } +}; + +class WebAssemblyTargetCodeGenInfo final : public TargetCodeGenInfo { +public: +  explicit WebAssemblyTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) +      : TargetCodeGenInfo(new WebAssemblyABIInfo(CGT)) {} + +  void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, +                           CodeGen::CodeGenModule &CGM) const override { +    TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); +    if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) { +      if (const auto *Attr = FD->getAttr<WebAssemblyImportModuleAttr>()) { +        llvm::Function *Fn = cast<llvm::Function>(GV); +        llvm::AttrBuilder B; +        B.addAttribute("wasm-import-module", Attr->getImportModule()); +        Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); +      } +      if (const auto *Attr = FD->getAttr<WebAssemblyImportNameAttr>()) { +        llvm::Function *Fn = cast<llvm::Function>(GV); +        llvm::AttrBuilder B; +        B.addAttribute("wasm-import-name", Attr->getImportName()); +        Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); +      } +    } + +    if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) { +      llvm::Function *Fn = cast<llvm::Function>(GV); +      if (!FD->doesThisDeclarationHaveABody() && !FD->hasPrototype()) +        Fn->addFnAttr("no-prototype"); +    } +  } +}; + +/// Classify argument of given type \p Ty. +ABIArgInfo WebAssemblyABIInfo::classifyArgumentType(QualType Ty) const { +  Ty = useFirstFieldIfTransparentUnion(Ty); + +  if (isAggregateTypeForABI(Ty)) { +    // Records with non-trivial destructors/copy-constructors should not be +    // passed by value. +    if (auto RAA = getRecordArgABI(Ty, getCXXABI())) +      return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); +    // Ignore empty structs/unions. +    if (isEmptyRecord(getContext(), Ty, true)) +      return ABIArgInfo::getIgnore(); +    // Lower single-element structs to just pass a regular value. TODO: We +    // could do reasonable-size multiple-element structs too, using getExpand(), +    // though watch out for things like bitfields. +    if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) +      return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); +  } + +  // Otherwise just do the default thing. +  return defaultInfo.classifyArgumentType(Ty); +} + +ABIArgInfo WebAssemblyABIInfo::classifyReturnType(QualType RetTy) const { +  if (isAggregateTypeForABI(RetTy)) { +    // Records with non-trivial destructors/copy-constructors should not be +    // returned by value. +    if (!getRecordArgABI(RetTy, getCXXABI())) { +      // Ignore empty structs/unions. +      if (isEmptyRecord(getContext(), RetTy, true)) +        return ABIArgInfo::getIgnore(); +      // Lower single-element structs to just return a regular value. TODO: We +      // could do reasonable-size multiple-element structs too, using +      // ABIArgInfo::getDirect(). +      if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) +        return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); +    } +  } + +  // Otherwise just do the default thing. +  return defaultInfo.classifyReturnType(RetTy); +} + +Address WebAssemblyABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, +                                      QualType Ty) const { +  bool IsIndirect = isAggregateTypeForABI(Ty) && +                    !isEmptyRecord(getContext(), Ty, true) && +                    !isSingleElementStruct(Ty, getContext()); +  return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, +                          getContext().getTypeInfoInChars(Ty), +                          CharUnits::fromQuantity(4), +                          /*AllowHigherAlign=*/true); +} + +//===----------------------------------------------------------------------===// +// le32/PNaCl bitcode ABI Implementation +// +// This is a simplified version of the x86_32 ABI.  Arguments and return values +// are always passed on the stack. +//===----------------------------------------------------------------------===// + +class PNaClABIInfo : public ABIInfo { + public: +  PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} + +  ABIArgInfo classifyReturnType(QualType RetTy) const; +  ABIArgInfo classifyArgumentType(QualType RetTy) const; + +  void computeInfo(CGFunctionInfo &FI) const override; +  Address EmitVAArg(CodeGenFunction &CGF, +                    Address VAListAddr, QualType Ty) const override; +}; + +class PNaClTargetCodeGenInfo : public TargetCodeGenInfo { + public: +  PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) +    : TargetCodeGenInfo(new PNaClABIInfo(CGT)) {} +}; + +void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const { +  if (!getCXXABI().classifyReturnType(FI)) +    FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); + +  for (auto &I : FI.arguments()) +    I.info = classifyArgumentType(I.type); +} + +Address PNaClABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, +                                QualType Ty) const { +  // The PNaCL ABI is a bit odd, in that varargs don't use normal +  // function classification. Structs get passed directly for varargs +  // functions, through a rewriting transform in +  // pnacl-llvm/lib/Transforms/NaCl/ExpandVarArgs.cpp, which allows +  // this target to actually support a va_arg instructions with an +  // aggregate type, unlike other targets. +  return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect()); +} + +/// Classify argument of given type \p Ty. +ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const { +  if (isAggregateTypeForABI(Ty)) { +    if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) +      return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); +    return getNaturalAlignIndirect(Ty); +  } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { +    // Treat an enum type as its underlying type. +    Ty = EnumTy->getDecl()->getIntegerType(); +  } else if (Ty->isFloatingType()) { +    // Floating-point types don't go inreg. +    return ABIArgInfo::getDirect(); +  } + +  return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) +                                        : ABIArgInfo::getDirect()); +} + +ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const { +  if (RetTy->isVoidType()) +    return ABIArgInfo::getIgnore(); + +  // In the PNaCl ABI we always return records/structures on the stack. +  if (isAggregateTypeForABI(RetTy)) +    return getNaturalAlignIndirect(RetTy); + +  // Treat an enum type as its underlying type. +  if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) +    RetTy = EnumTy->getDecl()->getIntegerType(); + +  return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) +                                           : ABIArgInfo::getDirect()); +} + +/// IsX86_MMXType - Return true if this is an MMX type. +bool IsX86_MMXType(llvm::Type *IRType) { +  // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>. +  return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 && +    cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() && +    IRType->getScalarSizeInBits() != 64; +} + +static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF, +                                          StringRef Constraint, +                                          llvm::Type* Ty) { +  bool IsMMXCons = llvm::StringSwitch<bool>(Constraint) +                     .Cases("y", "&y", "^Ym", true) +                     .Default(false); +  if (IsMMXCons && Ty->isVectorTy()) { +    if (cast<llvm::VectorType>(Ty)->getBitWidth() != 64) { +      // Invalid MMX constraint +      return nullptr; +    } + +    return llvm::Type::getX86_MMXTy(CGF.getLLVMContext()); +  } + +  // No operation needed +  return Ty; +} + +/// Returns true if this type can be passed in SSE registers with the +/// X86_VectorCall calling convention. Shared between x86_32 and x86_64. +static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) { +  if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { +    if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half) { +      if (BT->getKind() == BuiltinType::LongDouble) { +        if (&Context.getTargetInfo().getLongDoubleFormat() == +            &llvm::APFloat::x87DoubleExtended()) +          return false; +      } +      return true; +    } +  } else if (const VectorType *VT = Ty->getAs<VectorType>()) { +    // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX +    // registers specially. +    unsigned VecSize = Context.getTypeSize(VT); +    if (VecSize == 128 || VecSize == 256 || VecSize == 512) +      return true; +  } +  return false; +} + +/// Returns true if this aggregate is small enough to be passed in SSE registers +/// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64. +static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) { +  return NumMembers <= 4; +} + +/// Returns a Homogeneous Vector Aggregate ABIArgInfo, used in X86. +static ABIArgInfo getDirectX86Hva(llvm::Type* T = nullptr) { +  auto AI = ABIArgInfo::getDirect(T); +  AI.setInReg(true); +  AI.setCanBeFlattened(false); +  return AI; +} + +//===----------------------------------------------------------------------===// +// X86-32 ABI Implementation +//===----------------------------------------------------------------------===// + +/// Similar to llvm::CCState, but for Clang. +struct CCState { +  CCState(unsigned CC) : CC(CC), FreeRegs(0), FreeSSERegs(0) {} + +  unsigned CC; +  unsigned FreeRegs; +  unsigned FreeSSERegs; +}; + +enum { +  // Vectorcall only allows the first 6 parameters to be passed in registers. +  VectorcallMaxParamNumAsReg = 6 +}; + +/// X86_32ABIInfo - The X86-32 ABI information. +class X86_32ABIInfo : public SwiftABIInfo { +  enum Class { +    Integer, +    Float +  }; + +  static const unsigned MinABIStackAlignInBytes = 4; + +  bool IsDarwinVectorABI; +  bool IsRetSmallStructInRegABI; +  bool IsWin32StructABI; +  bool IsSoftFloatABI; +  bool IsMCUABI; +  unsigned DefaultNumRegisterParameters; + +  static bool isRegisterSize(unsigned Size) { +    return (Size == 8 || Size == 16 || Size == 32 || Size == 64); +  } + +  bool isHomogeneousAggregateBaseType(QualType Ty) const override { +    // FIXME: Assumes vectorcall is in use. +    return isX86VectorTypeForVectorCall(getContext(), Ty); +  } + +  bool isHomogeneousAggregateSmallEnough(const Type *Ty, +                                         uint64_t NumMembers) const override { +    // FIXME: Assumes vectorcall is in use. +    return isX86VectorCallAggregateSmallEnough(NumMembers); +  } + +  bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const; + +  /// getIndirectResult - Give a source type \arg Ty, return a suitable result +  /// such that the argument will be passed in memory. +  ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; + +  ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const; + +  /// Return the alignment to use for the given type on the stack. +  unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const; + +  Class classify(QualType Ty) const; +  ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const; +  ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; + +  /// Updates the number of available free registers, returns +  /// true if any registers were allocated. +  bool updateFreeRegs(QualType Ty, CCState &State) const; + +  bool shouldAggregateUseDirect(QualType Ty, CCState &State, bool &InReg, +                                bool &NeedsPadding) const; +  bool shouldPrimitiveUseInReg(QualType Ty, CCState &State) const; + +  bool canExpandIndirectArgument(QualType Ty) const; + +  /// Rewrite the function info so that all memory arguments use +  /// inalloca. +  void rewriteWithInAlloca(CGFunctionInfo &FI) const; + +  void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, +                           CharUnits &StackOffset, ABIArgInfo &Info, +                           QualType Type) const; +  void computeVectorCallArgs(CGFunctionInfo &FI, CCState &State, +                             bool &UsedInAlloca) const; + +public: + +  void computeInfo(CGFunctionInfo &FI) const override; +  Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, +                    QualType Ty) const override; + +  X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, +                bool RetSmallStructInRegABI, bool Win32StructABI, +                unsigned NumRegisterParameters, bool SoftFloatABI) +    : SwiftABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI), +      IsRetSmallStructInRegABI(RetSmallStructInRegABI), +      IsWin32StructABI(Win32StructABI), +      IsSoftFloatABI(SoftFloatABI), +      IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()), +      DefaultNumRegisterParameters(NumRegisterParameters) {} + +  bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, +                                    bool asReturnValue) const override { +    // LLVM's x86-32 lowering currently only assigns up to three +    // integer registers and three fp registers.  Oddly, it'll use up to +    // four vector registers for vectors, but those can overlap with the +    // scalar registers. +    return occupiesMoreThan(CGT, scalars, /*total*/ 3); +  } + +  bool isSwiftErrorInRegister() const override { +    // x86-32 lowering does not support passing swifterror in a register. +    return false; +  } +}; + +class X86_32TargetCodeGenInfo : public TargetCodeGenInfo { +public: +  X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, +                          bool RetSmallStructInRegABI, bool Win32StructABI, +                          unsigned NumRegisterParameters, bool SoftFloatABI) +      : TargetCodeGenInfo(new X86_32ABIInfo( +            CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI, +            NumRegisterParameters, SoftFloatABI)) {} + +  static bool isStructReturnInRegABI( +      const llvm::Triple &Triple, const CodeGenOptions &Opts); + +  void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, +                           CodeGen::CodeGenModule &CGM) const override; + +  int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { +    // Darwin uses different dwarf register numbers for EH. +    if (CGM.getTarget().getTriple().isOSDarwin()) return 5; +    return 4; +  } + +  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, +                               llvm::Value *Address) const override; + +  llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, +                                  StringRef Constraint, +                                  llvm::Type* Ty) const override { +    return X86AdjustInlineAsmType(CGF, Constraint, Ty); +  } + +  void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue, +                                std::string &Constraints, +                                std::vector<llvm::Type *> &ResultRegTypes, +                                std::vector<llvm::Type *> &ResultTruncRegTypes, +                                std::vector<LValue> &ResultRegDests, +                                std::string &AsmString, +                                unsigned NumOutputs) const override; + +  llvm::Constant * +  getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { +    unsigned Sig = (0xeb << 0) |  // jmp rel8 +                   (0x06 << 8) |  //           .+0x08 +                   ('v' << 16) | +                   ('2' << 24); +    return llvm::ConstantInt::get(CGM.Int32Ty, Sig); +  } + +  StringRef getARCRetainAutoreleasedReturnValueMarker() const override { +    return "movl\t%ebp, %ebp" +           "\t\t// marker for objc_retainAutoreleaseReturnValue"; +  } +}; + +} + +/// Rewrite input constraint references after adding some output constraints. +/// In the case where there is one output and one input and we add one output, +/// we need to replace all operand references greater than or equal to 1: +///     mov $0, $1 +///     mov eax, $1 +/// The result will be: +///     mov $0, $2 +///     mov eax, $2 +static void rewriteInputConstraintReferences(unsigned FirstIn, +                                             unsigned NumNewOuts, +                                             std::string &AsmString) { +  std::string Buf; +  llvm::raw_string_ostream OS(Buf); +  size_t Pos = 0; +  while (Pos < AsmString.size()) { +    size_t DollarStart = AsmString.find('$', Pos); +    if (DollarStart == std::string::npos) +      DollarStart = AsmString.size(); +    size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart); +    if (DollarEnd == std::string::npos) +      DollarEnd = AsmString.size(); +    OS << StringRef(&AsmString[Pos], DollarEnd - Pos); +    Pos = DollarEnd; +    size_t NumDollars = DollarEnd - DollarStart; +    if (NumDollars % 2 != 0 && Pos < AsmString.size()) { +      // We have an operand reference. +      size_t DigitStart = Pos; +      size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart); +      if (DigitEnd == std::string::npos) +        DigitEnd = AsmString.size(); +      StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart); +      unsigned OperandIndex; +      if (!OperandStr.getAsInteger(10, OperandIndex)) { +        if (OperandIndex >= FirstIn) +          OperandIndex += NumNewOuts; +        OS << OperandIndex; +      } else { +        OS << OperandStr; +      } +      Pos = DigitEnd; +    } +  } +  AsmString = std::move(OS.str()); +} + +/// Add output constraints for EAX:EDX because they are return registers. +void X86_32TargetCodeGenInfo::addReturnRegisterOutputs( +    CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints, +    std::vector<llvm::Type *> &ResultRegTypes, +    std::vector<llvm::Type *> &ResultTruncRegTypes, +    std::vector<LValue> &ResultRegDests, std::string &AsmString, +    unsigned NumOutputs) const { +  uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType()); + +  // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is +  // larger. +  if (!Constraints.empty()) +    Constraints += ','; +  if (RetWidth <= 32) { +    Constraints += "={eax}"; +    ResultRegTypes.push_back(CGF.Int32Ty); +  } else { +    // Use the 'A' constraint for EAX:EDX. +    Constraints += "=A"; +    ResultRegTypes.push_back(CGF.Int64Ty); +  } + +  // Truncate EAX or EAX:EDX to an integer of the appropriate size. +  llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth); +  ResultTruncRegTypes.push_back(CoerceTy); + +  // Coerce the integer by bitcasting the return slot pointer. +  ReturnSlot.setAddress(CGF.Builder.CreateBitCast(ReturnSlot.getAddress(), +                                                  CoerceTy->getPointerTo())); +  ResultRegDests.push_back(ReturnSlot); + +  rewriteInputConstraintReferences(NumOutputs, 1, AsmString); +} + +/// shouldReturnTypeInRegister - Determine if the given type should be +/// returned in a register (for the Darwin and MCU ABI). +bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty, +                                               ASTContext &Context) const { +  uint64_t Size = Context.getTypeSize(Ty); + +  // For i386, type must be register sized. +  // For the MCU ABI, it only needs to be <= 8-byte +  if ((IsMCUABI && Size > 64) || (!IsMCUABI && !isRegisterSize(Size))) +   return false; + +  if (Ty->isVectorType()) { +    // 64- and 128- bit vectors inside structures are not returned in +    // registers. +    if (Size == 64 || Size == 128) +      return false; + +    return true; +  } + +  // If this is a builtin, pointer, enum, complex type, member pointer, or +  // member function pointer it is ok. +  if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() || +      Ty->isAnyComplexType() || Ty->isEnumeralType() || +      Ty->isBlockPointerType() || Ty->isMemberPointerType()) +    return true; + +  // Arrays are treated like records. +  if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) +    return shouldReturnTypeInRegister(AT->getElementType(), Context); + +  // Otherwise, it must be a record type. +  const RecordType *RT = Ty->getAs<RecordType>(); +  if (!RT) return false; + +  // FIXME: Traverse bases here too. + +  // Structure types are passed in register if all fields would be +  // passed in a register. +  for (const auto *FD : RT->getDecl()->fields()) { +    // Empty fields are ignored. +    if (isEmptyField(Context, FD, true)) +      continue; + +    // Check fields recursively. +    if (!shouldReturnTypeInRegister(FD->getType(), Context)) +      return false; +  } +  return true; +} + +static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) { +  // Treat complex types as the element type. +  if (const ComplexType *CTy = Ty->getAs<ComplexType>()) +    Ty = CTy->getElementType(); + +  // Check for a type which we know has a simple scalar argument-passing +  // convention without any padding.  (We're specifically looking for 32 +  // and 64-bit integer and integer-equivalents, float, and double.) +  if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() && +      !Ty->isEnumeralType() && !Ty->isBlockPointerType()) +    return false; + +  uint64_t Size = Context.getTypeSize(Ty); +  return Size == 32 || Size == 64; +} + +static bool addFieldSizes(ASTContext &Context, const RecordDecl *RD, +                          uint64_t &Size) { +  for (const auto *FD : RD->fields()) { +    // Scalar arguments on the stack get 4 byte alignment on x86. If the +    // argument is smaller than 32-bits, expanding the struct will create +    // alignment padding. +    if (!is32Or64BitBasicType(FD->getType(), Context)) +      return false; + +    // FIXME: Reject bit-fields wholesale; there are two problems, we don't know +    // how to expand them yet, and the predicate for telling if a bitfield still +    // counts as "basic" is more complicated than what we were doing previously. +    if (FD->isBitField()) +      return false; + +    Size += Context.getTypeSize(FD->getType()); +  } +  return true; +} + +static bool addBaseAndFieldSizes(ASTContext &Context, const CXXRecordDecl *RD, +                                 uint64_t &Size) { +  // Don't do this if there are any non-empty bases. +  for (const CXXBaseSpecifier &Base : RD->bases()) { +    if (!addBaseAndFieldSizes(Context, Base.getType()->getAsCXXRecordDecl(), +                              Size)) +      return false; +  } +  if (!addFieldSizes(Context, RD, Size)) +    return false; +  return true; +} + +/// Test whether an argument type which is to be passed indirectly (on the +/// stack) would have the equivalent layout if it was expanded into separate +/// arguments. If so, we prefer to do the latter to avoid inhibiting +/// optimizations. +bool X86_32ABIInfo::canExpandIndirectArgument(QualType Ty) const { +  // We can only expand structure types. +  const RecordType *RT = Ty->getAs<RecordType>(); +  if (!RT) +    return false; +  const RecordDecl *RD = RT->getDecl(); +  uint64_t Size = 0; +  if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { +    if (!IsWin32StructABI) { +      // On non-Windows, we have to conservatively match our old bitcode +      // prototypes in order to be ABI-compatible at the bitcode level. +      if (!CXXRD->isCLike()) +        return false; +    } else { +      // Don't do this for dynamic classes. +      if (CXXRD->isDynamicClass()) +        return false; +    } +    if (!addBaseAndFieldSizes(getContext(), CXXRD, Size)) +      return false; +  } else { +    if (!addFieldSizes(getContext(), RD, Size)) +      return false; +  } + +  // We can do this if there was no alignment padding. +  return Size == getContext().getTypeSize(Ty); +} + +ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const { +  // If the return value is indirect, then the hidden argument is consuming one +  // integer register. +  if (State.FreeRegs) { +    --State.FreeRegs; +    if (!IsMCUABI) +      return getNaturalAlignIndirectInReg(RetTy); +  } +  return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); +} + +ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy, +                                             CCState &State) const { +  if (RetTy->isVoidType()) +    return ABIArgInfo::getIgnore(); + +  const Type *Base = nullptr; +  uint64_t NumElts = 0; +  if ((State.CC == llvm::CallingConv::X86_VectorCall || +       State.CC == llvm::CallingConv::X86_RegCall) && +      isHomogeneousAggregate(RetTy, Base, NumElts)) { +    // The LLVM struct type for such an aggregate should lower properly. +    return ABIArgInfo::getDirect(); +  } + +  if (const VectorType *VT = RetTy->getAs<VectorType>()) { +    // On Darwin, some vectors are returned in registers. +    if (IsDarwinVectorABI) { +      uint64_t Size = getContext().getTypeSize(RetTy); + +      // 128-bit vectors are a special case; they are returned in +      // registers and we need to make sure to pick a type the LLVM +      // backend will like. +      if (Size == 128) +        return ABIArgInfo::getDirect(llvm::VectorType::get( +                  llvm::Type::getInt64Ty(getVMContext()), 2)); + +      // Always return in register if it fits in a general purpose +      // register, or if it is 64 bits and has a single element. +      if ((Size == 8 || Size == 16 || Size == 32) || +          (Size == 64 && VT->getNumElements() == 1)) +        return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), +                                                            Size)); + +      return getIndirectReturnResult(RetTy, State); +    } + +    return ABIArgInfo::getDirect(); +  } + +  if (isAggregateTypeForABI(RetTy)) { +    if (const RecordType *RT = RetTy->getAs<RecordType>()) { +      // Structures with flexible arrays are always indirect. +      if (RT->getDecl()->hasFlexibleArrayMember()) +        return getIndirectReturnResult(RetTy, State); +    } + +    // If specified, structs and unions are always indirect. +    if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType()) +      return getIndirectReturnResult(RetTy, State); + +    // Ignore empty structs/unions. +    if (isEmptyRecord(getContext(), RetTy, true)) +      return ABIArgInfo::getIgnore(); + +    // Small structures which are register sized are generally returned +    // in a register. +    if (shouldReturnTypeInRegister(RetTy, getContext())) { +      uint64_t Size = getContext().getTypeSize(RetTy); + +      // As a special-case, if the struct is a "single-element" struct, and +      // the field is of type "float" or "double", return it in a +      // floating-point register. (MSVC does not apply this special case.) +      // We apply a similar transformation for pointer types to improve the +      // quality of the generated IR. +      if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) +        if ((!IsWin32StructABI && SeltTy->isRealFloatingType()) +            || SeltTy->hasPointerRepresentation()) +          return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); + +      // FIXME: We should be able to narrow this integer in cases with dead +      // padding. +      return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size)); +    } + +    return getIndirectReturnResult(RetTy, State); +  } + +  // Treat an enum type as its underlying type. +  if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) +    RetTy = EnumTy->getDecl()->getIntegerType(); + +  return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) +                                           : ABIArgInfo::getDirect()); +} + +static bool isSSEVectorType(ASTContext &Context, QualType Ty) { +  return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128; +} + +static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) { +  const RecordType *RT = Ty->getAs<RecordType>(); +  if (!RT) +    return 0; +  const RecordDecl *RD = RT->getDecl(); + +  // If this is a C++ record, check the bases first. +  if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) +    for (const auto &I : CXXRD->bases()) +      if (!isRecordWithSSEVectorType(Context, I.getType())) +        return false; + +  for (const auto *i : RD->fields()) { +    QualType FT = i->getType(); + +    if (isSSEVectorType(Context, FT)) +      return true; + +    if (isRecordWithSSEVectorType(Context, FT)) +      return true; +  } + +  return false; +} + +unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty, +                                                 unsigned Align) const { +  // Otherwise, if the alignment is less than or equal to the minimum ABI +  // alignment, just use the default; the backend will handle this. +  if (Align <= MinABIStackAlignInBytes) +    return 0; // Use default alignment. + +  // On non-Darwin, the stack type alignment is always 4. +  if (!IsDarwinVectorABI) { +    // Set explicit alignment, since we may need to realign the top. +    return MinABIStackAlignInBytes; +  } + +  // Otherwise, if the type contains an SSE vector type, the alignment is 16. +  if (Align >= 16 && (isSSEVectorType(getContext(), Ty) || +                      isRecordWithSSEVectorType(getContext(), Ty))) +    return 16; + +  return MinABIStackAlignInBytes; +} + +ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal, +                                            CCState &State) const { +  if (!ByVal) { +    if (State.FreeRegs) { +      --State.FreeRegs; // Non-byval indirects just use one pointer. +      if (!IsMCUABI) +        return getNaturalAlignIndirectInReg(Ty); +    } +    return getNaturalAlignIndirect(Ty, false); +  } + +  // Compute the byval alignment. +  unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; +  unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign); +  if (StackAlign == 0) +    return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true); + +  // If the stack alignment is less than the type alignment, realign the +  // argument. +  bool Realign = TypeAlign > StackAlign; +  return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign), +                                 /*ByVal=*/true, Realign); +} + +X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const { +  const Type *T = isSingleElementStruct(Ty, getContext()); +  if (!T) +    T = Ty.getTypePtr(); + +  if (const BuiltinType *BT = T->getAs<BuiltinType>()) { +    BuiltinType::Kind K = BT->getKind(); +    if (K == BuiltinType::Float || K == BuiltinType::Double) +      return Float; +  } +  return Integer; +} + +bool X86_32ABIInfo::updateFreeRegs(QualType Ty, CCState &State) const { +  if (!IsSoftFloatABI) { +    Class C = classify(Ty); +    if (C == Float) +      return false; +  } + +  unsigned Size = getContext().getTypeSize(Ty); +  unsigned SizeInRegs = (Size + 31) / 32; + +  if (SizeInRegs == 0) +    return false; + +  if (!IsMCUABI) { +    if (SizeInRegs > State.FreeRegs) { +      State.FreeRegs = 0; +      return false; +    } +  } else { +    // The MCU psABI allows passing parameters in-reg even if there are +    // earlier parameters that are passed on the stack. Also, +    // it does not allow passing >8-byte structs in-register, +    // even if there are 3 free registers available. +    if (SizeInRegs > State.FreeRegs || SizeInRegs > 2) +      return false; +  } + +  State.FreeRegs -= SizeInRegs; +  return true; +} + +bool X86_32ABIInfo::shouldAggregateUseDirect(QualType Ty, CCState &State, +                                             bool &InReg, +                                             bool &NeedsPadding) const { +  // On Windows, aggregates other than HFAs are never passed in registers, and +  // they do not consume register slots. Homogenous floating-point aggregates +  // (HFAs) have already been dealt with at this point. +  if (IsWin32StructABI && isAggregateTypeForABI(Ty)) +    return false; + +  NeedsPadding = false; +  InReg = !IsMCUABI; + +  if (!updateFreeRegs(Ty, State)) +    return false; + +  if (IsMCUABI) +    return true; + +  if (State.CC == llvm::CallingConv::X86_FastCall || +      State.CC == llvm::CallingConv::X86_VectorCall || +      State.CC == llvm::CallingConv::X86_RegCall) { +    if (getContext().getTypeSize(Ty) <= 32 && State.FreeRegs) +      NeedsPadding = true; + +    return false; +  } + +  return true; +} + +bool X86_32ABIInfo::shouldPrimitiveUseInReg(QualType Ty, CCState &State) const { +  if (!updateFreeRegs(Ty, State)) +    return false; + +  if (IsMCUABI) +    return false; + +  if (State.CC == llvm::CallingConv::X86_FastCall || +      State.CC == llvm::CallingConv::X86_VectorCall || +      State.CC == llvm::CallingConv::X86_RegCall) { +    if (getContext().getTypeSize(Ty) > 32) +      return false; + +    return (Ty->isIntegralOrEnumerationType() || Ty->isPointerType() || +        Ty->isReferenceType()); +  } + +  return true; +} + +ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty, +                                               CCState &State) const { +  // FIXME: Set alignment on indirect arguments. + +  Ty = useFirstFieldIfTransparentUnion(Ty); + +  // Check with the C++ ABI first. +  const RecordType *RT = Ty->getAs<RecordType>(); +  if (RT) { +    CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); +    if (RAA == CGCXXABI::RAA_Indirect) { +      return getIndirectResult(Ty, false, State); +    } else if (RAA == CGCXXABI::RAA_DirectInMemory) { +      // The field index doesn't matter, we'll fix it up later. +      return ABIArgInfo::getInAlloca(/*FieldIndex=*/0); +    } +  } + +  // Regcall uses the concept of a homogenous vector aggregate, similar +  // to other targets. +  const Type *Base = nullptr; +  uint64_t NumElts = 0; +  if (State.CC == llvm::CallingConv::X86_RegCall && +      isHomogeneousAggregate(Ty, Base, NumElts)) { + +    if (State.FreeSSERegs >= NumElts) { +      State.FreeSSERegs -= NumElts; +      if (Ty->isBuiltinType() || Ty->isVectorType()) +        return ABIArgInfo::getDirect(); +      return ABIArgInfo::getExpand(); +    } +    return getIndirectResult(Ty, /*ByVal=*/false, State); +  } + +  if (isAggregateTypeForABI(Ty)) { +    // Structures with flexible arrays are always indirect. +    // FIXME: This should not be byval! +    if (RT && RT->getDecl()->hasFlexibleArrayMember()) +      return getIndirectResult(Ty, true, State); + +    // Ignore empty structs/unions on non-Windows. +    if (!IsWin32StructABI && isEmptyRecord(getContext(), Ty, true)) +      return ABIArgInfo::getIgnore(); + +    llvm::LLVMContext &LLVMContext = getVMContext(); +    llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); +    bool NeedsPadding = false; +    bool InReg; +    if (shouldAggregateUseDirect(Ty, State, InReg, NeedsPadding)) { +      unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32; +      SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32); +      llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); +      if (InReg) +        return ABIArgInfo::getDirectInReg(Result); +      else +        return ABIArgInfo::getDirect(Result); +    } +    llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr; + +    // Expand small (<= 128-bit) record types when we know that the stack layout +    // of those arguments will match the struct. This is important because the +    // LLVM backend isn't smart enough to remove byval, which inhibits many +    // optimizations. +    // Don't do this for the MCU if there are still free integer registers +    // (see X86_64 ABI for full explanation). +    if (getContext().getTypeSize(Ty) <= 4 * 32 && +        (!IsMCUABI || State.FreeRegs == 0) && canExpandIndirectArgument(Ty)) +      return ABIArgInfo::getExpandWithPadding( +          State.CC == llvm::CallingConv::X86_FastCall || +              State.CC == llvm::CallingConv::X86_VectorCall || +              State.CC == llvm::CallingConv::X86_RegCall, +          PaddingType); + +    return getIndirectResult(Ty, true, State); +  } + +  if (const VectorType *VT = Ty->getAs<VectorType>()) { +    // On Darwin, some vectors are passed in memory, we handle this by passing +    // it as an i8/i16/i32/i64. +    if (IsDarwinVectorABI) { +      uint64_t Size = getContext().getTypeSize(Ty); +      if ((Size == 8 || Size == 16 || Size == 32) || +          (Size == 64 && VT->getNumElements() == 1)) +        return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), +                                                            Size)); +    } + +    if (IsX86_MMXType(CGT.ConvertType(Ty))) +      return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64)); + +    return ABIArgInfo::getDirect(); +  } + + +  if (const EnumType *EnumTy = Ty->getAs<EnumType>()) +    Ty = EnumTy->getDecl()->getIntegerType(); + +  bool InReg = shouldPrimitiveUseInReg(Ty, State); + +  if (Ty->isPromotableIntegerType()) { +    if (InReg) +      return ABIArgInfo::getExtendInReg(Ty); +    return ABIArgInfo::getExtend(Ty); +  } + +  if (InReg) +    return ABIArgInfo::getDirectInReg(); +  return ABIArgInfo::getDirect(); +} + +void X86_32ABIInfo::computeVectorCallArgs(CGFunctionInfo &FI, CCState &State, +                                          bool &UsedInAlloca) const { +  // Vectorcall x86 works subtly different than in x64, so the format is +  // a bit different than the x64 version.  First, all vector types (not HVAs) +  // are assigned, with the first 6 ending up in the YMM0-5 or XMM0-5 registers. +  // This differs from the x64 implementation, where the first 6 by INDEX get +  // registers. +  // After that, integers AND HVAs are assigned Left to Right in the same pass. +  // Integers are passed as ECX/EDX if one is available (in order).  HVAs will +  // first take up the remaining YMM/XMM registers. If insufficient registers +  // remain but an integer register (ECX/EDX) is available, it will be passed +  // in that, else, on the stack. +  for (auto &I : FI.arguments()) { +    // First pass do all the vector types. +    const Type *Base = nullptr; +    uint64_t NumElts = 0; +    const QualType& Ty = I.type; +    if ((Ty->isVectorType() || Ty->isBuiltinType()) && +        isHomogeneousAggregate(Ty, Base, NumElts)) { +      if (State.FreeSSERegs >= NumElts) { +        State.FreeSSERegs -= NumElts; +        I.info = ABIArgInfo::getDirect(); +      } else { +        I.info = classifyArgumentType(Ty, State); +      } +      UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca); +    } +  } + +  for (auto &I : FI.arguments()) { +    // Second pass, do the rest! +    const Type *Base = nullptr; +    uint64_t NumElts = 0; +    const QualType& Ty = I.type; +    bool IsHva = isHomogeneousAggregate(Ty, Base, NumElts); + +    if (IsHva && !Ty->isVectorType() && !Ty->isBuiltinType()) { +      // Assign true HVAs (non vector/native FP types). +      if (State.FreeSSERegs >= NumElts) { +        State.FreeSSERegs -= NumElts; +        I.info = getDirectX86Hva(); +      } else { +        I.info = getIndirectResult(Ty, /*ByVal=*/false, State); +      } +    } else if (!IsHva) { +      // Assign all Non-HVAs, so this will exclude Vector/FP args. +      I.info = classifyArgumentType(Ty, State); +      UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca); +    } +  } +} + +void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const { +  CCState State(FI.getCallingConvention()); +  if (IsMCUABI) +    State.FreeRegs = 3; +  else if (State.CC == llvm::CallingConv::X86_FastCall) +    State.FreeRegs = 2; +  else if (State.CC == llvm::CallingConv::X86_VectorCall) { +    State.FreeRegs = 2; +    State.FreeSSERegs = 6; +  } else if (FI.getHasRegParm()) +    State.FreeRegs = FI.getRegParm(); +  else if (State.CC == llvm::CallingConv::X86_RegCall) { +    State.FreeRegs = 5; +    State.FreeSSERegs = 8; +  } else +    State.FreeRegs = DefaultNumRegisterParameters; + +  if (!::classifyReturnType(getCXXABI(), FI, *this)) { +    FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State); +  } else if (FI.getReturnInfo().isIndirect()) { +    // The C++ ABI is not aware of register usage, so we have to check if the +    // return value was sret and put it in a register ourselves if appropriate. +    if (State.FreeRegs) { +      --State.FreeRegs;  // The sret parameter consumes a register. +      if (!IsMCUABI) +        FI.getReturnInfo().setInReg(true); +    } +  } + +  // The chain argument effectively gives us another free register. +  if (FI.isChainCall()) +    ++State.FreeRegs; + +  bool UsedInAlloca = false; +  if (State.CC == llvm::CallingConv::X86_VectorCall) { +    computeVectorCallArgs(FI, State, UsedInAlloca); +  } else { +    // If not vectorcall, revert to normal behavior. +    for (auto &I : FI.arguments()) { +      I.info = classifyArgumentType(I.type, State); +      UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca); +    } +  } + +  // If we needed to use inalloca for any argument, do a second pass and rewrite +  // all the memory arguments to use inalloca. +  if (UsedInAlloca) +    rewriteWithInAlloca(FI); +} + +void +X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, +                                   CharUnits &StackOffset, ABIArgInfo &Info, +                                   QualType Type) const { +  // Arguments are always 4-byte-aligned. +  CharUnits FieldAlign = CharUnits::fromQuantity(4); + +  assert(StackOffset.isMultipleOf(FieldAlign) && "unaligned inalloca struct"); +  Info = ABIArgInfo::getInAlloca(FrameFields.size()); +  FrameFields.push_back(CGT.ConvertTypeForMem(Type)); +  StackOffset += getContext().getTypeSizeInChars(Type); + +  // Insert padding bytes to respect alignment. +  CharUnits FieldEnd = StackOffset; +  StackOffset = FieldEnd.alignTo(FieldAlign); +  if (StackOffset != FieldEnd) { +    CharUnits NumBytes = StackOffset - FieldEnd; +    llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext()); +    Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity()); +    FrameFields.push_back(Ty); +  } +} + +static bool isArgInAlloca(const ABIArgInfo &Info) { +  // Leave ignored and inreg arguments alone. +  switch (Info.getKind()) { +  case ABIArgInfo::InAlloca: +    return true; +  case ABIArgInfo::Indirect: +    assert(Info.getIndirectByVal()); +    return true; +  case ABIArgInfo::Ignore: +    return false; +  case ABIArgInfo::Direct: +  case ABIArgInfo::Extend: +    if (Info.getInReg()) +      return false; +    return true; +  case ABIArgInfo::Expand: +  case ABIArgInfo::CoerceAndExpand: +    // These are aggregate types which are never passed in registers when +    // inalloca is involved. +    return true; +  } +  llvm_unreachable("invalid enum"); +} + +void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const { +  assert(IsWin32StructABI && "inalloca only supported on win32"); + +  // Build a packed struct type for all of the arguments in memory. +  SmallVector<llvm::Type *, 6> FrameFields; + +  // The stack alignment is always 4. +  CharUnits StackAlign = CharUnits::fromQuantity(4); + +  CharUnits StackOffset; +  CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end(); + +  // Put 'this' into the struct before 'sret', if necessary. +  bool IsThisCall = +      FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall; +  ABIArgInfo &Ret = FI.getReturnInfo(); +  if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall && +      isArgInAlloca(I->info)) { +    addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); +    ++I; +  } + +  // Put the sret parameter into the inalloca struct if it's in memory. +  if (Ret.isIndirect() && !Ret.getInReg()) { +    CanQualType PtrTy = getContext().getPointerType(FI.getReturnType()); +    addFieldToArgStruct(FrameFields, StackOffset, Ret, PtrTy); +    // On Windows, the hidden sret parameter is always returned in eax. +    Ret.setInAllocaSRet(IsWin32StructABI); +  } + +  // Skip the 'this' parameter in ecx. +  if (IsThisCall) +    ++I; + +  // Put arguments passed in memory into the struct. +  for (; I != E; ++I) { +    if (isArgInAlloca(I->info)) +      addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); +  } + +  FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields, +                                        /*isPacked=*/true), +                  StackAlign); +} + +Address X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF, +                                 Address VAListAddr, QualType Ty) const { + +  auto TypeInfo = getContext().getTypeInfoInChars(Ty); + +  // x86-32 changes the alignment of certain arguments on the stack. +  // +  // Just messing with TypeInfo like this works because we never pass +  // anything indirectly. +  TypeInfo.second = CharUnits::fromQuantity( +                getTypeStackAlignInBytes(Ty, TypeInfo.second.getQuantity())); + +  return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, +                          TypeInfo, CharUnits::fromQuantity(4), +                          /*AllowHigherAlign*/ true); +} + +bool X86_32TargetCodeGenInfo::isStructReturnInRegABI( +    const llvm::Triple &Triple, const CodeGenOptions &Opts) { +  assert(Triple.getArch() == llvm::Triple::x86); + +  switch (Opts.getStructReturnConvention()) { +  case CodeGenOptions::SRCK_Default: +    break; +  case CodeGenOptions::SRCK_OnStack:  // -fpcc-struct-return +    return false; +  case CodeGenOptions::SRCK_InRegs:  // -freg-struct-return +    return true; +  } + +  if (Triple.isOSDarwin() || Triple.isOSIAMCU()) +    return true; + +  switch (Triple.getOS()) { +  case llvm::Triple::DragonFly: +  case llvm::Triple::FreeBSD: +  case llvm::Triple::OpenBSD: +  case llvm::Triple::Win32: +    return true; +  default: +    return false; +  } +} + +void X86_32TargetCodeGenInfo::setTargetAttributes( +    const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { +  if (GV->isDeclaration()) +    return; +  if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { +    if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { +      llvm::Function *Fn = cast<llvm::Function>(GV); +      Fn->addFnAttr("stackrealign"); +    } +    if (FD->hasAttr<AnyX86InterruptAttr>()) { +      llvm::Function *Fn = cast<llvm::Function>(GV); +      Fn->setCallingConv(llvm::CallingConv::X86_INTR); +    } +  } +} + +bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable( +                                               CodeGen::CodeGenFunction &CGF, +                                               llvm::Value *Address) const { +  CodeGen::CGBuilderTy &Builder = CGF.Builder; + +  llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); + +  // 0-7 are the eight integer registers;  the order is different +  //   on Darwin (for EH), but the range is the same. +  // 8 is %eip. +  AssignToArrayRange(Builder, Address, Four8, 0, 8); + +  if (CGF.CGM.getTarget().getTriple().isOSDarwin()) { +    // 12-16 are st(0..4).  Not sure why we stop at 4. +    // These have size 16, which is sizeof(long double) on +    // platforms with 8-byte alignment for that type. +    llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16); +    AssignToArrayRange(Builder, Address, Sixteen8, 12, 16); + +  } else { +    // 9 is %eflags, which doesn't get a size on Darwin for some +    // reason. +    Builder.CreateAlignedStore( +        Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9), +                               CharUnits::One()); + +    // 11-16 are st(0..5).  Not sure why we stop at 5. +    // These have size 12, which is sizeof(long double) on +    // platforms with 4-byte alignment for that type. +    llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12); +    AssignToArrayRange(Builder, Address, Twelve8, 11, 16); +  } + +  return false; +} + +//===----------------------------------------------------------------------===// +// X86-64 ABI Implementation +//===----------------------------------------------------------------------===// + + +namespace { +/// The AVX ABI level for X86 targets. +enum class X86AVXABILevel { +  None, +  AVX, +  AVX512 +}; + +/// \p returns the size in bits of the largest (native) vector for \p AVXLevel. +static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) { +  switch (AVXLevel) { +  case X86AVXABILevel::AVX512: +    return 512; +  case X86AVXABILevel::AVX: +    return 256; +  case X86AVXABILevel::None: +    return 128; +  } +  llvm_unreachable("Unknown AVXLevel"); +} + +/// X86_64ABIInfo - The X86_64 ABI information. +class X86_64ABIInfo : public SwiftABIInfo { +  enum Class { +    Integer = 0, +    SSE, +    SSEUp, +    X87, +    X87Up, +    ComplexX87, +    NoClass, +    Memory +  }; + +  /// merge - Implement the X86_64 ABI merging algorithm. +  /// +  /// Merge an accumulating classification \arg Accum with a field +  /// classification \arg Field. +  /// +  /// \param Accum - The accumulating classification. This should +  /// always be either NoClass or the result of a previous merge +  /// call. In addition, this should never be Memory (the caller +  /// should just return Memory for the aggregate). +  static Class merge(Class Accum, Class Field); + +  /// postMerge - Implement the X86_64 ABI post merging algorithm. +  /// +  /// Post merger cleanup, reduces a malformed Hi and Lo pair to +  /// final MEMORY or SSE classes when necessary. +  /// +  /// \param AggregateSize - The size of the current aggregate in +  /// the classification process. +  /// +  /// \param Lo - The classification for the parts of the type +  /// residing in the low word of the containing object. +  /// +  /// \param Hi - The classification for the parts of the type +  /// residing in the higher words of the containing object. +  /// +  void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const; + +  /// classify - Determine the x86_64 register classes in which the +  /// given type T should be passed. +  /// +  /// \param Lo - The classification for the parts of the type +  /// residing in the low word of the containing object. +  /// +  /// \param Hi - The classification for the parts of the type +  /// residing in the high word of the containing object. +  /// +  /// \param OffsetBase - The bit offset of this type in the +  /// containing object.  Some parameters are classified different +  /// depending on whether they straddle an eightbyte boundary. +  /// +  /// \param isNamedArg - Whether the argument in question is a "named" +  /// argument, as used in AMD64-ABI 3.5.7. +  /// +  /// If a word is unused its result will be NoClass; if a type should +  /// be passed in Memory then at least the classification of \arg Lo +  /// will be Memory. +  /// +  /// The \arg Lo class will be NoClass iff the argument is ignored. +  /// +  /// If the \arg Lo class is ComplexX87, then the \arg Hi class will +  /// also be ComplexX87. +  void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi, +                bool isNamedArg) const; + +  llvm::Type *GetByteVectorType(QualType Ty) const; +  llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType, +                                 unsigned IROffset, QualType SourceTy, +                                 unsigned SourceOffset) const; +  llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType, +                                     unsigned IROffset, QualType SourceTy, +                                     unsigned SourceOffset) const; + +  /// getIndirectResult - Give a source type \arg Ty, return a suitable result +  /// such that the argument will be returned in memory. +  ABIArgInfo getIndirectReturnResult(QualType Ty) const; + +  /// getIndirectResult - Give a source type \arg Ty, return a suitable result +  /// such that the argument will be passed in memory. +  /// +  /// \param freeIntRegs - The number of free integer registers remaining +  /// available. +  ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const; + +  ABIArgInfo classifyReturnType(QualType RetTy) const; + +  ABIArgInfo classifyArgumentType(QualType Ty, unsigned freeIntRegs, +                                  unsigned &neededInt, unsigned &neededSSE, +                                  bool isNamedArg) const; + +  ABIArgInfo classifyRegCallStructType(QualType Ty, unsigned &NeededInt, +                                       unsigned &NeededSSE) const; + +  ABIArgInfo classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt, +                                           unsigned &NeededSSE) const; + +  bool IsIllegalVectorType(QualType Ty) const; + +  /// The 0.98 ABI revision clarified a lot of ambiguities, +  /// unfortunately in ways that were not always consistent with +  /// certain previous compilers.  In particular, platforms which +  /// required strict binary compatibility with older versions of GCC +  /// may need to exempt themselves. +  bool honorsRevision0_98() const { +    return !getTarget().getTriple().isOSDarwin(); +  } + +  /// GCC classifies <1 x long long> as SSE but some platform ABIs choose to +  /// classify it as INTEGER (for compatibility with older clang compilers). +  bool classifyIntegerMMXAsSSE() const { +    // Clang <= 3.8 did not do this. +    if (getContext().getLangOpts().getClangABICompat() <= +        LangOptions::ClangABI::Ver3_8) +      return false; + +    const llvm::Triple &Triple = getTarget().getTriple(); +    if (Triple.isOSDarwin() || Triple.getOS() == llvm::Triple::PS4) +      return false; +    if (Triple.isOSFreeBSD() && Triple.getOSMajorVersion() >= 10) +      return false; +    return true; +  } + +  // GCC classifies vectors of __int128 as memory. +  bool passInt128VectorsInMem() const { +    // Clang <= 9.0 did not do this. +    if (getContext().getLangOpts().getClangABICompat() <= +        LangOptions::ClangABI::Ver9) +      return false; + +    const llvm::Triple &T = getTarget().getTriple(); +    return T.isOSLinux() || T.isOSNetBSD(); +  } + +  X86AVXABILevel AVXLevel; +  // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on +  // 64-bit hardware. +  bool Has64BitPointers; + +public: +  X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) : +      SwiftABIInfo(CGT), AVXLevel(AVXLevel), +      Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) { +  } + +  bool isPassedUsingAVXType(QualType type) const { +    unsigned neededInt, neededSSE; +    // The freeIntRegs argument doesn't matter here. +    ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE, +                                           /*isNamedArg*/true); +    if (info.isDirect()) { +      llvm::Type *ty = info.getCoerceToType(); +      if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty)) +        return (vectorTy->getBitWidth() > 128); +    } +    return false; +  } + +  void computeInfo(CGFunctionInfo &FI) const override; + +  Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, +                    QualType Ty) const override; +  Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, +                      QualType Ty) const override; + +  bool has64BitPointers() const { +    return Has64BitPointers; +  } + +  bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, +                                    bool asReturnValue) const override { +    return occupiesMoreThan(CGT, scalars, /*total*/ 4); +  } +  bool isSwiftErrorInRegister() const override { +    return true; +  } +}; + +/// WinX86_64ABIInfo - The Windows X86_64 ABI information. +class WinX86_64ABIInfo : public SwiftABIInfo { +public: +  WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) +      : SwiftABIInfo(CGT), AVXLevel(AVXLevel), +        IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {} + +  void computeInfo(CGFunctionInfo &FI) const override; + +  Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, +                    QualType Ty) const override; + +  bool isHomogeneousAggregateBaseType(QualType Ty) const override { +    // FIXME: Assumes vectorcall is in use. +    return isX86VectorTypeForVectorCall(getContext(), Ty); +  } + +  bool isHomogeneousAggregateSmallEnough(const Type *Ty, +                                         uint64_t NumMembers) const override { +    // FIXME: Assumes vectorcall is in use. +    return isX86VectorCallAggregateSmallEnough(NumMembers); +  } + +  bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type *> scalars, +                                    bool asReturnValue) const override { +    return occupiesMoreThan(CGT, scalars, /*total*/ 4); +  } + +  bool isSwiftErrorInRegister() const override { +    return true; +  } + +private: +  ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs, bool IsReturnType, +                      bool IsVectorCall, bool IsRegCall) const; +  ABIArgInfo reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs, +                                      const ABIArgInfo ¤t) const; +  void computeVectorCallArgs(CGFunctionInfo &FI, unsigned FreeSSERegs, +                             bool IsVectorCall, bool IsRegCall) const; + +  X86AVXABILevel AVXLevel; + +  bool IsMingw64; +}; + +class X86_64TargetCodeGenInfo : public TargetCodeGenInfo { +public: +  X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) +      : TargetCodeGenInfo(new X86_64ABIInfo(CGT, AVXLevel)) {} + +  const X86_64ABIInfo &getABIInfo() const { +    return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo()); +  } + +  /// Disable tail call on x86-64. The epilogue code before the tail jump blocks +  /// the autoreleaseRV/retainRV optimization. +  bool shouldSuppressTailCallsOfRetainAutoreleasedReturnValue() const override { +    return true; +  } + +  int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { +    return 7; +  } + +  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, +                               llvm::Value *Address) const override { +    llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); + +    // 0-15 are the 16 integer registers. +    // 16 is %rip. +    AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); +    return false; +  } + +  llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, +                                  StringRef Constraint, +                                  llvm::Type* Ty) const override { +    return X86AdjustInlineAsmType(CGF, Constraint, Ty); +  } + +  bool isNoProtoCallVariadic(const CallArgList &args, +                             const FunctionNoProtoType *fnType) const override { +    // The default CC on x86-64 sets %al to the number of SSA +    // registers used, and GCC sets this when calling an unprototyped +    // function, so we override the default behavior.  However, don't do +    // that when AVX types are involved: the ABI explicitly states it is +    // undefined, and it doesn't work in practice because of how the ABI +    // defines varargs anyway. +    if (fnType->getCallConv() == CC_C) { +      bool HasAVXType = false; +      for (CallArgList::const_iterator +             it = args.begin(), ie = args.end(); it != ie; ++it) { +        if (getABIInfo().isPassedUsingAVXType(it->Ty)) { +          HasAVXType = true; +          break; +        } +      } + +      if (!HasAVXType) +        return true; +    } + +    return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType); +  } + +  llvm::Constant * +  getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { +    unsigned Sig = (0xeb << 0) | // jmp rel8 +                   (0x06 << 8) | //           .+0x08 +                   ('v' << 16) | +                   ('2' << 24); +    return llvm::ConstantInt::get(CGM.Int32Ty, Sig); +  } + +  void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, +                           CodeGen::CodeGenModule &CGM) const override { +    if (GV->isDeclaration()) +      return; +    if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { +      if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { +        llvm::Function *Fn = cast<llvm::Function>(GV); +        Fn->addFnAttr("stackrealign"); +      } +      if (FD->hasAttr<AnyX86InterruptAttr>()) { +        llvm::Function *Fn = cast<llvm::Function>(GV); +        Fn->setCallingConv(llvm::CallingConv::X86_INTR); +      } +    } +  } +}; + +static std::string qualifyWindowsLibrary(llvm::StringRef Lib) { +  // If the argument does not end in .lib, automatically add the suffix. +  // If the argument contains a space, enclose it in quotes. +  // This matches the behavior of MSVC. +  bool Quote = (Lib.find(" ") != StringRef::npos); +  std::string ArgStr = Quote ? "\"" : ""; +  ArgStr += Lib; +  if (!Lib.endswith_lower(".lib") && !Lib.endswith_lower(".a")) +    ArgStr += ".lib"; +  ArgStr += Quote ? "\"" : ""; +  return ArgStr; +} + +class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo { +public: +  WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, +        bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI, +        unsigned NumRegisterParameters) +    : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI, +        Win32StructABI, NumRegisterParameters, false) {} + +  void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, +                           CodeGen::CodeGenModule &CGM) const override; + +  void getDependentLibraryOption(llvm::StringRef Lib, +                                 llvm::SmallString<24> &Opt) const override { +    Opt = "/DEFAULTLIB:"; +    Opt += qualifyWindowsLibrary(Lib); +  } + +  void getDetectMismatchOption(llvm::StringRef Name, +                               llvm::StringRef Value, +                               llvm::SmallString<32> &Opt) const override { +    Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; +  } +}; + +static void addStackProbeTargetAttributes(const Decl *D, llvm::GlobalValue *GV, +                                          CodeGen::CodeGenModule &CGM) { +  if (llvm::Function *Fn = dyn_cast_or_null<llvm::Function>(GV)) { + +    if (CGM.getCodeGenOpts().StackProbeSize != 4096) +      Fn->addFnAttr("stack-probe-size", +                    llvm::utostr(CGM.getCodeGenOpts().StackProbeSize)); +    if (CGM.getCodeGenOpts().NoStackArgProbe) +      Fn->addFnAttr("no-stack-arg-probe"); +  } +} + +void WinX86_32TargetCodeGenInfo::setTargetAttributes( +    const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { +  X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); +  if (GV->isDeclaration()) +    return; +  addStackProbeTargetAttributes(D, GV, CGM); +} + +class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo { +public: +  WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, +                             X86AVXABILevel AVXLevel) +      : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT, AVXLevel)) {} + +  void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, +                           CodeGen::CodeGenModule &CGM) const override; + +  int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { +    return 7; +  } + +  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, +                               llvm::Value *Address) const override { +    llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); + +    // 0-15 are the 16 integer registers. +    // 16 is %rip. +    AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); +    return false; +  } + +  void getDependentLibraryOption(llvm::StringRef Lib, +                                 llvm::SmallString<24> &Opt) const override { +    Opt = "/DEFAULTLIB:"; +    Opt += qualifyWindowsLibrary(Lib); +  } + +  void getDetectMismatchOption(llvm::StringRef Name, +                               llvm::StringRef Value, +                               llvm::SmallString<32> &Opt) const override { +    Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; +  } +}; + +void WinX86_64TargetCodeGenInfo::setTargetAttributes( +    const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { +  TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); +  if (GV->isDeclaration()) +    return; +  if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { +    if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { +      llvm::Function *Fn = cast<llvm::Function>(GV); +      Fn->addFnAttr("stackrealign"); +    } +    if (FD->hasAttr<AnyX86InterruptAttr>()) { +      llvm::Function *Fn = cast<llvm::Function>(GV); +      Fn->setCallingConv(llvm::CallingConv::X86_INTR); +    } +  } + +  addStackProbeTargetAttributes(D, GV, CGM); +} +} + +void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo, +                              Class &Hi) const { +  // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done: +  // +  // (a) If one of the classes is Memory, the whole argument is passed in +  //     memory. +  // +  // (b) If X87UP is not preceded by X87, the whole argument is passed in +  //     memory. +  // +  // (c) If the size of the aggregate exceeds two eightbytes and the first +  //     eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole +  //     argument is passed in memory. NOTE: This is necessary to keep the +  //     ABI working for processors that don't support the __m256 type. +  // +  // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE. +  // +  // Some of these are enforced by the merging logic.  Others can arise +  // only with unions; for example: +  //   union { _Complex double; unsigned; } +  // +  // Note that clauses (b) and (c) were added in 0.98. +  // +  if (Hi == Memory) +    Lo = Memory; +  if (Hi == X87Up && Lo != X87 && honorsRevision0_98()) +    Lo = Memory; +  if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp)) +    Lo = Memory; +  if (Hi == SSEUp && Lo != SSE) +    Hi = SSE; +} + +X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) { +  // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is +  // classified recursively so that always two fields are +  // considered. The resulting class is calculated according to +  // the classes of the fields in the eightbyte: +  // +  // (a) If both classes are equal, this is the resulting class. +  // +  // (b) If one of the classes is NO_CLASS, the resulting class is +  // the other class. +  // +  // (c) If one of the classes is MEMORY, the result is the MEMORY +  // class. +  // +  // (d) If one of the classes is INTEGER, the result is the +  // INTEGER. +  // +  // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class, +  // MEMORY is used as class. +  // +  // (f) Otherwise class SSE is used. + +  // Accum should never be memory (we should have returned) or +  // ComplexX87 (because this cannot be passed in a structure). +  assert((Accum != Memory && Accum != ComplexX87) && +         "Invalid accumulated classification during merge."); +  if (Accum == Field || Field == NoClass) +    return Accum; +  if (Field == Memory) +    return Memory; +  if (Accum == NoClass) +    return Field; +  if (Accum == Integer || Field == Integer) +    return Integer; +  if (Field == X87 || Field == X87Up || Field == ComplexX87 || +      Accum == X87 || Accum == X87Up) +    return Memory; +  return SSE; +} + +void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase, +                             Class &Lo, Class &Hi, bool isNamedArg) const { +  // FIXME: This code can be simplified by introducing a simple value class for +  // Class pairs with appropriate constructor methods for the various +  // situations. + +  // FIXME: Some of the split computations are wrong; unaligned vectors +  // shouldn't be passed in registers for example, so there is no chance they +  // can straddle an eightbyte. Verify & simplify. + +  Lo = Hi = NoClass; + +  Class &Current = OffsetBase < 64 ? Lo : Hi; +  Current = Memory; + +  if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { +    BuiltinType::Kind k = BT->getKind(); + +    if (k == BuiltinType::Void) { +      Current = NoClass; +    } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) { +      Lo = Integer; +      Hi = Integer; +    } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) { +      Current = Integer; +    } else if (k == BuiltinType::Float || k == BuiltinType::Double) { +      Current = SSE; +    } else if (k == BuiltinType::LongDouble) { +      const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); +      if (LDF == &llvm::APFloat::IEEEquad()) { +        Lo = SSE; +        Hi = SSEUp; +      } else if (LDF == &llvm::APFloat::x87DoubleExtended()) { +        Lo = X87; +        Hi = X87Up; +      } else if (LDF == &llvm::APFloat::IEEEdouble()) { +        Current = SSE; +      } else +        llvm_unreachable("unexpected long double representation!"); +    } +    // FIXME: _Decimal32 and _Decimal64 are SSE. +    // FIXME: _float128 and _Decimal128 are (SSE, SSEUp). +    return; +  } + +  if (const EnumType *ET = Ty->getAs<EnumType>()) { +    // Classify the underlying integer type. +    classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg); +    return; +  } + +  if (Ty->hasPointerRepresentation()) { +    Current = Integer; +    return; +  } + +  if (Ty->isMemberPointerType()) { +    if (Ty->isMemberFunctionPointerType()) { +      if (Has64BitPointers) { +        // If Has64BitPointers, this is an {i64, i64}, so classify both +        // Lo and Hi now. +        Lo = Hi = Integer; +      } else { +        // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that +        // straddles an eightbyte boundary, Hi should be classified as well. +        uint64_t EB_FuncPtr = (OffsetBase) / 64; +        uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64; +        if (EB_FuncPtr != EB_ThisAdj) { +          Lo = Hi = Integer; +        } else { +          Current = Integer; +        } +      } +    } else { +      Current = Integer; +    } +    return; +  } + +  if (const VectorType *VT = Ty->getAs<VectorType>()) { +    uint64_t Size = getContext().getTypeSize(VT); +    if (Size == 1 || Size == 8 || Size == 16 || Size == 32) { +      // gcc passes the following as integer: +      // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float> +      // 2 bytes - <2 x char>, <1 x short> +      // 1 byte  - <1 x char> +      Current = Integer; + +      // If this type crosses an eightbyte boundary, it should be +      // split. +      uint64_t EB_Lo = (OffsetBase) / 64; +      uint64_t EB_Hi = (OffsetBase + Size - 1) / 64; +      if (EB_Lo != EB_Hi) +        Hi = Lo; +    } else if (Size == 64) { +      QualType ElementType = VT->getElementType(); + +      // gcc passes <1 x double> in memory. :( +      if (ElementType->isSpecificBuiltinType(BuiltinType::Double)) +        return; + +      // gcc passes <1 x long long> as SSE but clang used to unconditionally +      // pass them as integer.  For platforms where clang is the de facto +      // platform compiler, we must continue to use integer. +      if (!classifyIntegerMMXAsSSE() && +          (ElementType->isSpecificBuiltinType(BuiltinType::LongLong) || +           ElementType->isSpecificBuiltinType(BuiltinType::ULongLong) || +           ElementType->isSpecificBuiltinType(BuiltinType::Long) || +           ElementType->isSpecificBuiltinType(BuiltinType::ULong))) +        Current = Integer; +      else +        Current = SSE; + +      // If this type crosses an eightbyte boundary, it should be +      // split. +      if (OffsetBase && OffsetBase != 64) +        Hi = Lo; +    } else if (Size == 128 || +               (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) { +      QualType ElementType = VT->getElementType(); + +      // gcc passes 256 and 512 bit <X x __int128> vectors in memory. :( +      if (passInt128VectorsInMem() && Size != 128 && +          (ElementType->isSpecificBuiltinType(BuiltinType::Int128) || +           ElementType->isSpecificBuiltinType(BuiltinType::UInt128))) +        return; + +      // Arguments of 256-bits are split into four eightbyte chunks. The +      // least significant one belongs to class SSE and all the others to class +      // SSEUP. The original Lo and Hi design considers that types can't be +      // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense. +      // This design isn't correct for 256-bits, but since there're no cases +      // where the upper parts would need to be inspected, avoid adding +      // complexity and just consider Hi to match the 64-256 part. +      // +      // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in +      // registers if they are "named", i.e. not part of the "..." of a +      // variadic function. +      // +      // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are +      // split into eight eightbyte chunks, one SSE and seven SSEUP. +      Lo = SSE; +      Hi = SSEUp; +    } +    return; +  } + +  if (const ComplexType *CT = Ty->getAs<ComplexType>()) { +    QualType ET = getContext().getCanonicalType(CT->getElementType()); + +    uint64_t Size = getContext().getTypeSize(Ty); +    if (ET->isIntegralOrEnumerationType()) { +      if (Size <= 64) +        Current = Integer; +      else if (Size <= 128) +        Lo = Hi = Integer; +    } else if (ET == getContext().FloatTy) { +      Current = SSE; +    } else if (ET == getContext().DoubleTy) { +      Lo = Hi = SSE; +    } else if (ET == getContext().LongDoubleTy) { +      const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); +      if (LDF == &llvm::APFloat::IEEEquad()) +        Current = Memory; +      else if (LDF == &llvm::APFloat::x87DoubleExtended()) +        Current = ComplexX87; +      else if (LDF == &llvm::APFloat::IEEEdouble()) +        Lo = Hi = SSE; +      else +        llvm_unreachable("unexpected long double representation!"); +    } + +    // If this complex type crosses an eightbyte boundary then it +    // should be split. +    uint64_t EB_Real = (OffsetBase) / 64; +    uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64; +    if (Hi == NoClass && EB_Real != EB_Imag) +      Hi = Lo; + +    return; +  } + +  if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { +    // Arrays are treated like structures. + +    uint64_t Size = getContext().getTypeSize(Ty); + +    // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger +    // than eight eightbytes, ..., it has class MEMORY. +    if (Size > 512) +      return; + +    // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned +    // fields, it has class MEMORY. +    // +    // Only need to check alignment of array base. +    if (OffsetBase % getContext().getTypeAlign(AT->getElementType())) +      return; + +    // Otherwise implement simplified merge. We could be smarter about +    // this, but it isn't worth it and would be harder to verify. +    Current = NoClass; +    uint64_t EltSize = getContext().getTypeSize(AT->getElementType()); +    uint64_t ArraySize = AT->getSize().getZExtValue(); + +    // The only case a 256-bit wide vector could be used is when the array +    // contains a single 256-bit element. Since Lo and Hi logic isn't extended +    // to work for sizes wider than 128, early check and fallback to memory. +    // +    if (Size > 128 && +        (Size != EltSize || Size > getNativeVectorSizeForAVXABI(AVXLevel))) +      return; + +    for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) { +      Class FieldLo, FieldHi; +      classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg); +      Lo = merge(Lo, FieldLo); +      Hi = merge(Hi, FieldHi); +      if (Lo == Memory || Hi == Memory) +        break; +    } + +    postMerge(Size, Lo, Hi); +    assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification."); +    return; +  } + +  if (const RecordType *RT = Ty->getAs<RecordType>()) { +    uint64_t Size = getContext().getTypeSize(Ty); + +    // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger +    // than eight eightbytes, ..., it has class MEMORY. +    if (Size > 512) +      return; + +    // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial +    // copy constructor or a non-trivial destructor, it is passed by invisible +    // reference. +    if (getRecordArgABI(RT, getCXXABI())) +      return; + +    const RecordDecl *RD = RT->getDecl(); + +    // Assume variable sized types are passed in memory. +    if (RD->hasFlexibleArrayMember()) +      return; + +    const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); + +    // Reset Lo class, this will be recomputed. +    Current = NoClass; + +    // If this is a C++ record, classify the bases first. +    if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { +      for (const auto &I : CXXRD->bases()) { +        assert(!I.isVirtual() && !I.getType()->isDependentType() && +               "Unexpected base class!"); +        const auto *Base = +            cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); + +        // Classify this field. +        // +        // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a +        // single eightbyte, each is classified separately. Each eightbyte gets +        // initialized to class NO_CLASS. +        Class FieldLo, FieldHi; +        uint64_t Offset = +          OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base)); +        classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg); +        Lo = merge(Lo, FieldLo); +        Hi = merge(Hi, FieldHi); +        if (Lo == Memory || Hi == Memory) { +          postMerge(Size, Lo, Hi); +          return; +        } +      } +    } + +    // Classify the fields one at a time, merging the results. +    unsigned idx = 0; +    for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); +           i != e; ++i, ++idx) { +      uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); +      bool BitField = i->isBitField(); + +      // Ignore padding bit-fields. +      if (BitField && i->isUnnamedBitfield()) +        continue; + +      // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than +      // four eightbytes, or it contains unaligned fields, it has class MEMORY. +      // +      // The only case a 256-bit wide vector could be used is when the struct +      // contains a single 256-bit element. Since Lo and Hi logic isn't extended +      // to work for sizes wider than 128, early check and fallback to memory. +      // +      if (Size > 128 && (Size != getContext().getTypeSize(i->getType()) || +                         Size > getNativeVectorSizeForAVXABI(AVXLevel))) { +        Lo = Memory; +        postMerge(Size, Lo, Hi); +        return; +      } +      // Note, skip this test for bit-fields, see below. +      if (!BitField && Offset % getContext().getTypeAlign(i->getType())) { +        Lo = Memory; +        postMerge(Size, Lo, Hi); +        return; +      } + +      // Classify this field. +      // +      // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate +      // exceeds a single eightbyte, each is classified +      // separately. Each eightbyte gets initialized to class +      // NO_CLASS. +      Class FieldLo, FieldHi; + +      // Bit-fields require special handling, they do not force the +      // structure to be passed in memory even if unaligned, and +      // therefore they can straddle an eightbyte. +      if (BitField) { +        assert(!i->isUnnamedBitfield()); +        uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); +        uint64_t Size = i->getBitWidthValue(getContext()); + +        uint64_t EB_Lo = Offset / 64; +        uint64_t EB_Hi = (Offset + Size - 1) / 64; + +        if (EB_Lo) { +          assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes."); +          FieldLo = NoClass; +          FieldHi = Integer; +        } else { +          FieldLo = Integer; +          FieldHi = EB_Hi ? Integer : NoClass; +        } +      } else +        classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg); +      Lo = merge(Lo, FieldLo); +      Hi = merge(Hi, FieldHi); +      if (Lo == Memory || Hi == Memory) +        break; +    } + +    postMerge(Size, Lo, Hi); +  } +} + +ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const { +  // If this is a scalar LLVM value then assume LLVM will pass it in the right +  // place naturally. +  if (!isAggregateTypeForABI(Ty)) { +    // Treat an enum type as its underlying type. +    if (const EnumType *EnumTy = Ty->getAs<EnumType>()) +      Ty = EnumTy->getDecl()->getIntegerType(); + +    return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) +                                          : ABIArgInfo::getDirect()); +  } + +  return getNaturalAlignIndirect(Ty); +} + +bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const { +  if (const VectorType *VecTy = Ty->getAs<VectorType>()) { +    uint64_t Size = getContext().getTypeSize(VecTy); +    unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel); +    if (Size <= 64 || Size > LargestVector) +      return true; +    QualType EltTy = VecTy->getElementType(); +    if (passInt128VectorsInMem() && +        (EltTy->isSpecificBuiltinType(BuiltinType::Int128) || +         EltTy->isSpecificBuiltinType(BuiltinType::UInt128))) +      return true; +  } + +  return false; +} + +ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty, +                                            unsigned freeIntRegs) const { +  // If this is a scalar LLVM value then assume LLVM will pass it in the right +  // place naturally. +  // +  // This assumption is optimistic, as there could be free registers available +  // when we need to pass this argument in memory, and LLVM could try to pass +  // the argument in the free register. This does not seem to happen currently, +  // but this code would be much safer if we could mark the argument with +  // 'onstack'. See PR12193. +  if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) { +    // Treat an enum type as its underlying type. +    if (const EnumType *EnumTy = Ty->getAs<EnumType>()) +      Ty = EnumTy->getDecl()->getIntegerType(); + +    return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) +                                          : ABIArgInfo::getDirect()); +  } + +  if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) +    return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); + +  // Compute the byval alignment. We specify the alignment of the byval in all +  // cases so that the mid-level optimizer knows the alignment of the byval. +  unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U); + +  // Attempt to avoid passing indirect results using byval when possible. This +  // is important for good codegen. +  // +  // We do this by coercing the value into a scalar type which the backend can +  // handle naturally (i.e., without using byval). +  // +  // For simplicity, we currently only do this when we have exhausted all of the +  // free integer registers. Doing this when there are free integer registers +  // would require more care, as we would have to ensure that the coerced value +  // did not claim the unused register. That would require either reording the +  // arguments to the function (so that any subsequent inreg values came first), +  // or only doing this optimization when there were no following arguments that +  // might be inreg. +  // +  // We currently expect it to be rare (particularly in well written code) for +  // arguments to be passed on the stack when there are still free integer +  // registers available (this would typically imply large structs being passed +  // by value), so this seems like a fair tradeoff for now. +  // +  // We can revisit this if the backend grows support for 'onstack' parameter +  // attributes. See PR12193. +  if (freeIntRegs == 0) { +    uint64_t Size = getContext().getTypeSize(Ty); + +    // If this type fits in an eightbyte, coerce it into the matching integral +    // type, which will end up on the stack (with alignment 8). +    if (Align == 8 && Size <= 64) +      return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), +                                                          Size)); +  } + +  return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align)); +} + +/// The ABI specifies that a value should be passed in a full vector XMM/YMM +/// register. Pick an LLVM IR type that will be passed as a vector register. +llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const { +  // Wrapper structs/arrays that only contain vectors are passed just like +  // vectors; strip them off if present. +  if (const Type *InnerTy = isSingleElementStruct(Ty, getContext())) +    Ty = QualType(InnerTy, 0); + +  llvm::Type *IRType = CGT.ConvertType(Ty); +  if (isa<llvm::VectorType>(IRType)) { +    // Don't pass vXi128 vectors in their native type, the backend can't +    // legalize them. +    if (passInt128VectorsInMem() && +        IRType->getVectorElementType()->isIntegerTy(128)) { +      // Use a vXi64 vector. +      uint64_t Size = getContext().getTypeSize(Ty); +      return llvm::VectorType::get(llvm::Type::getInt64Ty(getVMContext()), +                                   Size / 64); +    } + +    return IRType; +  } + +  if (IRType->getTypeID() == llvm::Type::FP128TyID) +    return IRType; + +  // We couldn't find the preferred IR vector type for 'Ty'. +  uint64_t Size = getContext().getTypeSize(Ty); +  assert((Size == 128 || Size == 256 || Size == 512) && "Invalid type found!"); + + +  // Return a LLVM IR vector type based on the size of 'Ty'. +  return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()), +                               Size / 64); +} + +/// BitsContainNoUserData - Return true if the specified [start,end) bit range +/// is known to either be off the end of the specified type or being in +/// alignment padding.  The user type specified is known to be at most 128 bits +/// in size, and have passed through X86_64ABIInfo::classify with a successful +/// classification that put one of the two halves in the INTEGER class. +/// +/// It is conservatively correct to return false. +static bool BitsContainNoUserData(QualType Ty, unsigned StartBit, +                                  unsigned EndBit, ASTContext &Context) { +  // If the bytes being queried are off the end of the type, there is no user +  // data hiding here.  This handles analysis of builtins, vectors and other +  // types that don't contain interesting padding. +  unsigned TySize = (unsigned)Context.getTypeSize(Ty); +  if (TySize <= StartBit) +    return true; + +  if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { +    unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType()); +    unsigned NumElts = (unsigned)AT->getSize().getZExtValue(); + +    // Check each element to see if the element overlaps with the queried range. +    for (unsigned i = 0; i != NumElts; ++i) { +      // If the element is after the span we care about, then we're done.. +      unsigned EltOffset = i*EltSize; +      if (EltOffset >= EndBit) break; + +      unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0; +      if (!BitsContainNoUserData(AT->getElementType(), EltStart, +                                 EndBit-EltOffset, Context)) +        return false; +    } +    // If it overlaps no elements, then it is safe to process as padding. +    return true; +  } + +  if (const RecordType *RT = Ty->getAs<RecordType>()) { +    const RecordDecl *RD = RT->getDecl(); +    const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); + +    // If this is a C++ record, check the bases first. +    if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { +      for (const auto &I : CXXRD->bases()) { +        assert(!I.isVirtual() && !I.getType()->isDependentType() && +               "Unexpected base class!"); +        const auto *Base = +            cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); + +        // If the base is after the span we care about, ignore it. +        unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base)); +        if (BaseOffset >= EndBit) continue; + +        unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0; +        if (!BitsContainNoUserData(I.getType(), BaseStart, +                                   EndBit-BaseOffset, Context)) +          return false; +      } +    } + +    // Verify that no field has data that overlaps the region of interest.  Yes +    // this could be sped up a lot by being smarter about queried fields, +    // however we're only looking at structs up to 16 bytes, so we don't care +    // much. +    unsigned idx = 0; +    for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); +         i != e; ++i, ++idx) { +      unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx); + +      // If we found a field after the region we care about, then we're done. +      if (FieldOffset >= EndBit) break; + +      unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0; +      if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset, +                                 Context)) +        return false; +    } + +    // If nothing in this record overlapped the area of interest, then we're +    // clean. +    return true; +  } + +  return false; +} + +/// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a +/// float member at the specified offset.  For example, {int,{float}} has a +/// float at offset 4.  It is conservatively correct for this routine to return +/// false. +static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset, +                                  const llvm::DataLayout &TD) { +  // Base case if we find a float. +  if (IROffset == 0 && IRType->isFloatTy()) +    return true; + +  // If this is a struct, recurse into the field at the specified offset. +  if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { +    const llvm::StructLayout *SL = TD.getStructLayout(STy); +    unsigned Elt = SL->getElementContainingOffset(IROffset); +    IROffset -= SL->getElementOffset(Elt); +    return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD); +  } + +  // If this is an array, recurse into the field at the specified offset. +  if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { +    llvm::Type *EltTy = ATy->getElementType(); +    unsigned EltSize = TD.getTypeAllocSize(EltTy); +    IROffset -= IROffset/EltSize*EltSize; +    return ContainsFloatAtOffset(EltTy, IROffset, TD); +  } + +  return false; +} + + +/// GetSSETypeAtOffset - Return a type that will be passed by the backend in the +/// low 8 bytes of an XMM register, corresponding to the SSE class. +llvm::Type *X86_64ABIInfo:: +GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset, +                   QualType SourceTy, unsigned SourceOffset) const { +  // The only three choices we have are either double, <2 x float>, or float. We +  // pass as float if the last 4 bytes is just padding.  This happens for +  // structs that contain 3 floats. +  if (BitsContainNoUserData(SourceTy, SourceOffset*8+32, +                            SourceOffset*8+64, getContext())) +    return llvm::Type::getFloatTy(getVMContext()); + +  // We want to pass as <2 x float> if the LLVM IR type contains a float at +  // offset+0 and offset+4.  Walk the LLVM IR type to find out if this is the +  // case. +  if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) && +      ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout())) +    return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2); + +  return llvm::Type::getDoubleTy(getVMContext()); +} + + +/// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in +/// an 8-byte GPR.  This means that we either have a scalar or we are talking +/// about the high or low part of an up-to-16-byte struct.  This routine picks +/// the best LLVM IR type to represent this, which may be i64 or may be anything +/// else that the backend will pass in a GPR that works better (e.g. i8, %foo*, +/// etc). +/// +/// PrefType is an LLVM IR type that corresponds to (part of) the IR type for +/// the source type.  IROffset is an offset in bytes into the LLVM IR type that +/// the 8-byte value references.  PrefType may be null. +/// +/// SourceTy is the source-level type for the entire argument.  SourceOffset is +/// an offset into this that we're processing (which is always either 0 or 8). +/// +llvm::Type *X86_64ABIInfo:: +GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset, +                       QualType SourceTy, unsigned SourceOffset) const { +  // If we're dealing with an un-offset LLVM IR type, then it means that we're +  // returning an 8-byte unit starting with it.  See if we can safely use it. +  if (IROffset == 0) { +    // Pointers and int64's always fill the 8-byte unit. +    if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) || +        IRType->isIntegerTy(64)) +      return IRType; + +    // If we have a 1/2/4-byte integer, we can use it only if the rest of the +    // goodness in the source type is just tail padding.  This is allowed to +    // kick in for struct {double,int} on the int, but not on +    // struct{double,int,int} because we wouldn't return the second int.  We +    // have to do this analysis on the source type because we can't depend on +    // unions being lowered a specific way etc. +    if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) || +        IRType->isIntegerTy(32) || +        (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) { +      unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 : +          cast<llvm::IntegerType>(IRType)->getBitWidth(); + +      if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth, +                                SourceOffset*8+64, getContext())) +        return IRType; +    } +  } + +  if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { +    // If this is a struct, recurse into the field at the specified offset. +    const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy); +    if (IROffset < SL->getSizeInBytes()) { +      unsigned FieldIdx = SL->getElementContainingOffset(IROffset); +      IROffset -= SL->getElementOffset(FieldIdx); + +      return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset, +                                    SourceTy, SourceOffset); +    } +  } + +  if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { +    llvm::Type *EltTy = ATy->getElementType(); +    unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy); +    unsigned EltOffset = IROffset/EltSize*EltSize; +    return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy, +                                  SourceOffset); +  } + +  // Okay, we don't have any better idea of what to pass, so we pass this in an +  // integer register that isn't too big to fit the rest of the struct. +  unsigned TySizeInBytes = +    (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity(); + +  assert(TySizeInBytes != SourceOffset && "Empty field?"); + +  // It is always safe to classify this as an integer type up to i64 that +  // isn't larger than the structure. +  return llvm::IntegerType::get(getVMContext(), +                                std::min(TySizeInBytes-SourceOffset, 8U)*8); +} + + +/// GetX86_64ByValArgumentPair - Given a high and low type that can ideally +/// be used as elements of a two register pair to pass or return, return a +/// first class aggregate to represent them.  For example, if the low part of +/// a by-value argument should be passed as i32* and the high part as float, +/// return {i32*, float}. +static llvm::Type * +GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi, +                           const llvm::DataLayout &TD) { +  // In order to correctly satisfy the ABI, we need to the high part to start +  // at offset 8.  If the high and low parts we inferred are both 4-byte types +  // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have +  // the second element at offset 8.  Check for this: +  unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo); +  unsigned HiAlign = TD.getABITypeAlignment(Hi); +  unsigned HiStart = llvm::alignTo(LoSize, HiAlign); +  assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!"); + +  // To handle this, we have to increase the size of the low part so that the +  // second element will start at an 8 byte offset.  We can't increase the size +  // of the second element because it might make us access off the end of the +  // struct. +  if (HiStart != 8) { +    // There are usually two sorts of types the ABI generation code can produce +    // for the low part of a pair that aren't 8 bytes in size: float or +    // i8/i16/i32.  This can also include pointers when they are 32-bit (X32 and +    // NaCl). +    // Promote these to a larger type. +    if (Lo->isFloatTy()) +      Lo = llvm::Type::getDoubleTy(Lo->getContext()); +    else { +      assert((Lo->isIntegerTy() || Lo->isPointerTy()) +             && "Invalid/unknown lo type"); +      Lo = llvm::Type::getInt64Ty(Lo->getContext()); +    } +  } + +  llvm::StructType *Result = llvm::StructType::get(Lo, Hi); + +  // Verify that the second element is at an 8-byte offset. +  assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 && +         "Invalid x86-64 argument pair!"); +  return Result; +} + +ABIArgInfo X86_64ABIInfo:: +classifyReturnType(QualType RetTy) const { +  // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the +  // classification algorithm. +  X86_64ABIInfo::Class Lo, Hi; +  classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true); + +  // Check some invariants. +  assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); +  assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); + +  llvm::Type *ResType = nullptr; +  switch (Lo) { +  case NoClass: +    if (Hi == NoClass) +      return ABIArgInfo::getIgnore(); +    // If the low part is just padding, it takes no register, leave ResType +    // null. +    assert((Hi == SSE || Hi == Integer || Hi == X87Up) && +           "Unknown missing lo part"); +    break; + +  case SSEUp: +  case X87Up: +    llvm_unreachable("Invalid classification for lo word."); + +    // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via +    // hidden argument. +  case Memory: +    return getIndirectReturnResult(RetTy); + +    // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next +    // available register of the sequence %rax, %rdx is used. +  case Integer: +    ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); + +    // If we have a sign or zero extended integer, make sure to return Extend +    // so that the parameter gets the right LLVM IR attributes. +    if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { +      // Treat an enum type as its underlying type. +      if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) +        RetTy = EnumTy->getDecl()->getIntegerType(); + +      if (RetTy->isIntegralOrEnumerationType() && +          RetTy->isPromotableIntegerType()) +        return ABIArgInfo::getExtend(RetTy); +    } +    break; + +    // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next +    // available SSE register of the sequence %xmm0, %xmm1 is used. +  case SSE: +    ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); +    break; + +    // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is +    // returned on the X87 stack in %st0 as 80-bit x87 number. +  case X87: +    ResType = llvm::Type::getX86_FP80Ty(getVMContext()); +    break; + +    // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real +    // part of the value is returned in %st0 and the imaginary part in +    // %st1. +  case ComplexX87: +    assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification."); +    ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()), +                                    llvm::Type::getX86_FP80Ty(getVMContext())); +    break; +  } + +  llvm::Type *HighPart = nullptr; +  switch (Hi) { +    // Memory was handled previously and X87 should +    // never occur as a hi class. +  case Memory: +  case X87: +    llvm_unreachable("Invalid classification for hi word."); + +  case ComplexX87: // Previously handled. +  case NoClass: +    break; + +  case Integer: +    HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); +    if (Lo == NoClass)  // Return HighPart at offset 8 in memory. +      return ABIArgInfo::getDirect(HighPart, 8); +    break; +  case SSE: +    HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); +    if (Lo == NoClass)  // Return HighPart at offset 8 in memory. +      return ABIArgInfo::getDirect(HighPart, 8); +    break; + +    // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte +    // is passed in the next available eightbyte chunk if the last used +    // vector register. +    // +    // SSEUP should always be preceded by SSE, just widen. +  case SSEUp: +    assert(Lo == SSE && "Unexpected SSEUp classification."); +    ResType = GetByteVectorType(RetTy); +    break; + +    // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is +    // returned together with the previous X87 value in %st0. +  case X87Up: +    // If X87Up is preceded by X87, we don't need to do +    // anything. However, in some cases with unions it may not be +    // preceded by X87. In such situations we follow gcc and pass the +    // extra bits in an SSE reg. +    if (Lo != X87) { +      HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); +      if (Lo == NoClass)  // Return HighPart at offset 8 in memory. +        return ABIArgInfo::getDirect(HighPart, 8); +    } +    break; +  } + +  // If a high part was specified, merge it together with the low part.  It is +  // known to pass in the high eightbyte of the result.  We do this by forming a +  // first class struct aggregate with the high and low part: {low, high} +  if (HighPart) +    ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); + +  return ABIArgInfo::getDirect(ResType); +} + +ABIArgInfo X86_64ABIInfo::classifyArgumentType( +  QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE, +  bool isNamedArg) +  const +{ +  Ty = useFirstFieldIfTransparentUnion(Ty); + +  X86_64ABIInfo::Class Lo, Hi; +  classify(Ty, 0, Lo, Hi, isNamedArg); + +  // Check some invariants. +  // FIXME: Enforce these by construction. +  assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); +  assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); + +  neededInt = 0; +  neededSSE = 0; +  llvm::Type *ResType = nullptr; +  switch (Lo) { +  case NoClass: +    if (Hi == NoClass) +      return ABIArgInfo::getIgnore(); +    // If the low part is just padding, it takes no register, leave ResType +    // null. +    assert((Hi == SSE || Hi == Integer || Hi == X87Up) && +           "Unknown missing lo part"); +    break; + +    // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument +    // on the stack. +  case Memory: + +    // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or +    // COMPLEX_X87, it is passed in memory. +  case X87: +  case ComplexX87: +    if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect) +      ++neededInt; +    return getIndirectResult(Ty, freeIntRegs); + +  case SSEUp: +  case X87Up: +    llvm_unreachable("Invalid classification for lo word."); + +    // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next +    // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8 +    // and %r9 is used. +  case Integer: +    ++neededInt; + +    // Pick an 8-byte type based on the preferred type. +    ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0); + +    // If we have a sign or zero extended integer, make sure to return Extend +    // so that the parameter gets the right LLVM IR attributes. +    if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { +      // Treat an enum type as its underlying type. +      if (const EnumType *EnumTy = Ty->getAs<EnumType>()) +        Ty = EnumTy->getDecl()->getIntegerType(); + +      if (Ty->isIntegralOrEnumerationType() && +          Ty->isPromotableIntegerType()) +        return ABIArgInfo::getExtend(Ty); +    } + +    break; + +    // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next +    // available SSE register is used, the registers are taken in the +    // order from %xmm0 to %xmm7. +  case SSE: { +    llvm::Type *IRType = CGT.ConvertType(Ty); +    ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0); +    ++neededSSE; +    break; +  } +  } + +  llvm::Type *HighPart = nullptr; +  switch (Hi) { +    // Memory was handled previously, ComplexX87 and X87 should +    // never occur as hi classes, and X87Up must be preceded by X87, +    // which is passed in memory. +  case Memory: +  case X87: +  case ComplexX87: +    llvm_unreachable("Invalid classification for hi word."); + +  case NoClass: break; + +  case Integer: +    ++neededInt; +    // Pick an 8-byte type based on the preferred type. +    HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); + +    if (Lo == NoClass)  // Pass HighPart at offset 8 in memory. +      return ABIArgInfo::getDirect(HighPart, 8); +    break; + +    // X87Up generally doesn't occur here (long double is passed in +    // memory), except in situations involving unions. +  case X87Up: +  case SSE: +    HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); + +    if (Lo == NoClass)  // Pass HighPart at offset 8 in memory. +      return ABIArgInfo::getDirect(HighPart, 8); + +    ++neededSSE; +    break; + +    // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the +    // eightbyte is passed in the upper half of the last used SSE +    // register.  This only happens when 128-bit vectors are passed. +  case SSEUp: +    assert(Lo == SSE && "Unexpected SSEUp classification"); +    ResType = GetByteVectorType(Ty); +    break; +  } + +  // If a high part was specified, merge it together with the low part.  It is +  // known to pass in the high eightbyte of the result.  We do this by forming a +  // first class struct aggregate with the high and low part: {low, high} +  if (HighPart) +    ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); + +  return ABIArgInfo::getDirect(ResType); +} + +ABIArgInfo +X86_64ABIInfo::classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt, +                                             unsigned &NeededSSE) const { +  auto RT = Ty->getAs<RecordType>(); +  assert(RT && "classifyRegCallStructType only valid with struct types"); + +  if (RT->getDecl()->hasFlexibleArrayMember()) +    return getIndirectReturnResult(Ty); + +  // Sum up bases +  if (auto CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl())) { +    if (CXXRD->isDynamicClass()) { +      NeededInt = NeededSSE = 0; +      return getIndirectReturnResult(Ty); +    } + +    for (const auto &I : CXXRD->bases()) +      if (classifyRegCallStructTypeImpl(I.getType(), NeededInt, NeededSSE) +              .isIndirect()) { +        NeededInt = NeededSSE = 0; +        return getIndirectReturnResult(Ty); +      } +  } + +  // Sum up members +  for (const auto *FD : RT->getDecl()->fields()) { +    if (FD->getType()->isRecordType() && !FD->getType()->isUnionType()) { +      if (classifyRegCallStructTypeImpl(FD->getType(), NeededInt, NeededSSE) +              .isIndirect()) { +        NeededInt = NeededSSE = 0; +        return getIndirectReturnResult(Ty); +      } +    } else { +      unsigned LocalNeededInt, LocalNeededSSE; +      if (classifyArgumentType(FD->getType(), UINT_MAX, LocalNeededInt, +                               LocalNeededSSE, true) +              .isIndirect()) { +        NeededInt = NeededSSE = 0; +        return getIndirectReturnResult(Ty); +      } +      NeededInt += LocalNeededInt; +      NeededSSE += LocalNeededSSE; +    } +  } + +  return ABIArgInfo::getDirect(); +} + +ABIArgInfo X86_64ABIInfo::classifyRegCallStructType(QualType Ty, +                                                    unsigned &NeededInt, +                                                    unsigned &NeededSSE) const { + +  NeededInt = 0; +  NeededSSE = 0; + +  return classifyRegCallStructTypeImpl(Ty, NeededInt, NeededSSE); +} + +void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { + +  const unsigned CallingConv = FI.getCallingConvention(); +  // It is possible to force Win64 calling convention on any x86_64 target by +  // using __attribute__((ms_abi)). In such case to correctly emit Win64 +  // compatible code delegate this call to WinX86_64ABIInfo::computeInfo. +  if (CallingConv == llvm::CallingConv::Win64) { +    WinX86_64ABIInfo Win64ABIInfo(CGT, AVXLevel); +    Win64ABIInfo.computeInfo(FI); +    return; +  } + +  bool IsRegCall = CallingConv == llvm::CallingConv::X86_RegCall; + +  // Keep track of the number of assigned registers. +  unsigned FreeIntRegs = IsRegCall ? 11 : 6; +  unsigned FreeSSERegs = IsRegCall ? 16 : 8; +  unsigned NeededInt, NeededSSE; + +  if (!::classifyReturnType(getCXXABI(), FI, *this)) { +    if (IsRegCall && FI.getReturnType()->getTypePtr()->isRecordType() && +        !FI.getReturnType()->getTypePtr()->isUnionType()) { +      FI.getReturnInfo() = +          classifyRegCallStructType(FI.getReturnType(), NeededInt, NeededSSE); +      if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) { +        FreeIntRegs -= NeededInt; +        FreeSSERegs -= NeededSSE; +      } else { +        FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType()); +      } +    } else if (IsRegCall && FI.getReturnType()->getAs<ComplexType>()) { +      // Complex Long Double Type is passed in Memory when Regcall +      // calling convention is used. +      const ComplexType *CT = FI.getReturnType()->getAs<ComplexType>(); +      if (getContext().getCanonicalType(CT->getElementType()) == +          getContext().LongDoubleTy) +        FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType()); +    } else +      FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); +  } + +  // If the return value is indirect, then the hidden argument is consuming one +  // integer register. +  if (FI.getReturnInfo().isIndirect()) +    --FreeIntRegs; + +  // The chain argument effectively gives us another free register. +  if (FI.isChainCall()) +    ++FreeIntRegs; + +  unsigned NumRequiredArgs = FI.getNumRequiredArgs(); +  // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers +  // get assigned (in left-to-right order) for passing as follows... +  unsigned ArgNo = 0; +  for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); +       it != ie; ++it, ++ArgNo) { +    bool IsNamedArg = ArgNo < NumRequiredArgs; + +    if (IsRegCall && it->type->isStructureOrClassType()) +      it->info = classifyRegCallStructType(it->type, NeededInt, NeededSSE); +    else +      it->info = classifyArgumentType(it->type, FreeIntRegs, NeededInt, +                                      NeededSSE, IsNamedArg); + +    // AMD64-ABI 3.2.3p3: If there are no registers available for any +    // eightbyte of an argument, the whole argument is passed on the +    // stack. If registers have already been assigned for some +    // eightbytes of such an argument, the assignments get reverted. +    if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) { +      FreeIntRegs -= NeededInt; +      FreeSSERegs -= NeededSSE; +    } else { +      it->info = getIndirectResult(it->type, FreeIntRegs); +    } +  } +} + +static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF, +                                         Address VAListAddr, QualType Ty) { +  Address overflow_arg_area_p = +      CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p"); +  llvm::Value *overflow_arg_area = +    CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area"); + +  // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16 +  // byte boundary if alignment needed by type exceeds 8 byte boundary. +  // It isn't stated explicitly in the standard, but in practice we use +  // alignment greater than 16 where necessary. +  CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); +  if (Align > CharUnits::fromQuantity(8)) { +    overflow_arg_area = emitRoundPointerUpToAlignment(CGF, overflow_arg_area, +                                                      Align); +  } + +  // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area. +  llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); +  llvm::Value *Res = +    CGF.Builder.CreateBitCast(overflow_arg_area, +                              llvm::PointerType::getUnqual(LTy)); + +  // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to: +  // l->overflow_arg_area + sizeof(type). +  // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to +  // an 8 byte boundary. + +  uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8; +  llvm::Value *Offset = +      llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7)  & ~7); +  overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset, +                                            "overflow_arg_area.next"); +  CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p); + +  // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type. +  return Address(Res, Align); +} + +Address X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, +                                 QualType Ty) const { +  // Assume that va_list type is correct; should be pointer to LLVM type: +  // struct { +  //   i32 gp_offset; +  //   i32 fp_offset; +  //   i8* overflow_arg_area; +  //   i8* reg_save_area; +  // }; +  unsigned neededInt, neededSSE; + +  Ty = getContext().getCanonicalType(Ty); +  ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE, +                                       /*isNamedArg*/false); + +  // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed +  // in the registers. If not go to step 7. +  if (!neededInt && !neededSSE) +    return EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); + +  // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of +  // general purpose registers needed to pass type and num_fp to hold +  // the number of floating point registers needed. + +  // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into +  // registers. In the case: l->gp_offset > 48 - num_gp * 8 or +  // l->fp_offset > 304 - num_fp * 16 go to step 7. +  // +  // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of +  // register save space). + +  llvm::Value *InRegs = nullptr; +  Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid(); +  llvm::Value *gp_offset = nullptr, *fp_offset = nullptr; +  if (neededInt) { +    gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p"); +    gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset"); +    InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8); +    InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp"); +  } + +  if (neededSSE) { +    fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p"); +    fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset"); +    llvm::Value *FitsInFP = +      llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16); +    FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp"); +    InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP; +  } + +  llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); +  llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); +  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); +  CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); + +  // Emit code to load the value if it was passed in registers. + +  CGF.EmitBlock(InRegBlock); + +  // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with +  // an offset of l->gp_offset and/or l->fp_offset. This may require +  // copying to a temporary location in case the parameter is passed +  // in different register classes or requires an alignment greater +  // than 8 for general purpose registers and 16 for XMM registers. +  // +  // FIXME: This really results in shameful code when we end up needing to +  // collect arguments from different places; often what should result in a +  // simple assembling of a structure from scattered addresses has many more +  // loads than necessary. Can we clean this up? +  llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); +  llvm::Value *RegSaveArea = CGF.Builder.CreateLoad( +      CGF.Builder.CreateStructGEP(VAListAddr, 3), "reg_save_area"); + +  Address RegAddr = Address::invalid(); +  if (neededInt && neededSSE) { +    // FIXME: Cleanup. +    assert(AI.isDirect() && "Unexpected ABI info for mixed regs"); +    llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType()); +    Address Tmp = CGF.CreateMemTemp(Ty); +    Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST); +    assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs"); +    llvm::Type *TyLo = ST->getElementType(0); +    llvm::Type *TyHi = ST->getElementType(1); +    assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) && +           "Unexpected ABI info for mixed regs"); +    llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo); +    llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi); +    llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegSaveArea, gp_offset); +    llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegSaveArea, fp_offset); +    llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr; +    llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr; + +    // Copy the first element. +    // FIXME: Our choice of alignment here and below is probably pessimistic. +    llvm::Value *V = CGF.Builder.CreateAlignedLoad( +        TyLo, CGF.Builder.CreateBitCast(RegLoAddr, PTyLo), +        CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyLo))); +    CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); + +    // Copy the second element. +    V = CGF.Builder.CreateAlignedLoad( +        TyHi, CGF.Builder.CreateBitCast(RegHiAddr, PTyHi), +        CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyHi))); +    CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); + +    RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy); +  } else if (neededInt) { +    RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, gp_offset), +                      CharUnits::fromQuantity(8)); +    RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy); + +    // Copy to a temporary if necessary to ensure the appropriate alignment. +    std::pair<CharUnits, CharUnits> SizeAlign = +        getContext().getTypeInfoInChars(Ty); +    uint64_t TySize = SizeAlign.first.getQuantity(); +    CharUnits TyAlign = SizeAlign.second; + +    // Copy into a temporary if the type is more aligned than the +    // register save area. +    if (TyAlign.getQuantity() > 8) { +      Address Tmp = CGF.CreateMemTemp(Ty); +      CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false); +      RegAddr = Tmp; +    } + +  } else if (neededSSE == 1) { +    RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset), +                      CharUnits::fromQuantity(16)); +    RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy); +  } else { +    assert(neededSSE == 2 && "Invalid number of needed registers!"); +    // SSE registers are spaced 16 bytes apart in the register save +    // area, we need to collect the two eightbytes together. +    // The ABI isn't explicit about this, but it seems reasonable +    // to assume that the slots are 16-byte aligned, since the stack is +    // naturally 16-byte aligned and the prologue is expected to store +    // all the SSE registers to the RSA. +    Address RegAddrLo = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset), +                                CharUnits::fromQuantity(16)); +    Address RegAddrHi = +      CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo, +                                             CharUnits::fromQuantity(16)); +    llvm::Type *ST = AI.canHaveCoerceToType() +                         ? AI.getCoerceToType() +                         : llvm::StructType::get(CGF.DoubleTy, CGF.DoubleTy); +    llvm::Value *V; +    Address Tmp = CGF.CreateMemTemp(Ty); +    Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST); +    V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast( +        RegAddrLo, ST->getStructElementType(0))); +    CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); +    V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast( +        RegAddrHi, ST->getStructElementType(1))); +    CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); + +    RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy); +  } + +  // AMD64-ABI 3.5.7p5: Step 5. Set: +  // l->gp_offset = l->gp_offset + num_gp * 8 +  // l->fp_offset = l->fp_offset + num_fp * 16. +  if (neededInt) { +    llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8); +    CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset), +                            gp_offset_p); +  } +  if (neededSSE) { +    llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16); +    CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset), +                            fp_offset_p); +  } +  CGF.EmitBranch(ContBlock); + +  // Emit code to load the value if it was passed in memory. + +  CGF.EmitBlock(InMemBlock); +  Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); + +  // Return the appropriate result. + +  CGF.EmitBlock(ContBlock); +  Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock, +                                 "vaarg.addr"); +  return ResAddr; +} + +Address X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, +                                   QualType Ty) const { +  return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, +                          CGF.getContext().getTypeInfoInChars(Ty), +                          CharUnits::fromQuantity(8), +                          /*allowHigherAlign*/ false); +} + +ABIArgInfo +WinX86_64ABIInfo::reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs, +                                    const ABIArgInfo ¤t) const { +  // Assumes vectorCall calling convention. +  const Type *Base = nullptr; +  uint64_t NumElts = 0; + +  if (!Ty->isBuiltinType() && !Ty->isVectorType() && +      isHomogeneousAggregate(Ty, Base, NumElts) && FreeSSERegs >= NumElts) { +    FreeSSERegs -= NumElts; +    return getDirectX86Hva(); +  } +  return current; +} + +ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs, +                                      bool IsReturnType, bool IsVectorCall, +                                      bool IsRegCall) const { + +  if (Ty->isVoidType()) +    return ABIArgInfo::getIgnore(); + +  if (const EnumType *EnumTy = Ty->getAs<EnumType>()) +    Ty = EnumTy->getDecl()->getIntegerType(); + +  TypeInfo Info = getContext().getTypeInfo(Ty); +  uint64_t Width = Info.Width; +  CharUnits Align = getContext().toCharUnitsFromBits(Info.Align); + +  const RecordType *RT = Ty->getAs<RecordType>(); +  if (RT) { +    if (!IsReturnType) { +      if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI())) +        return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); +    } + +    if (RT->getDecl()->hasFlexibleArrayMember()) +      return getNaturalAlignIndirect(Ty, /*ByVal=*/false); + +  } + +  const Type *Base = nullptr; +  uint64_t NumElts = 0; +  // vectorcall adds the concept of a homogenous vector aggregate, similar to +  // other targets. +  if ((IsVectorCall || IsRegCall) && +      isHomogeneousAggregate(Ty, Base, NumElts)) { +    if (IsRegCall) { +      if (FreeSSERegs >= NumElts) { +        FreeSSERegs -= NumElts; +        if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType()) +          return ABIArgInfo::getDirect(); +        return ABIArgInfo::getExpand(); +      } +      return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); +    } else if (IsVectorCall) { +      if (FreeSSERegs >= NumElts && +          (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())) { +        FreeSSERegs -= NumElts; +        return ABIArgInfo::getDirect(); +      } else if (IsReturnType) { +        return ABIArgInfo::getExpand(); +      } else if (!Ty->isBuiltinType() && !Ty->isVectorType()) { +        // HVAs are delayed and reclassified in the 2nd step. +        return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); +      } +    } +  } + +  if (Ty->isMemberPointerType()) { +    // If the member pointer is represented by an LLVM int or ptr, pass it +    // directly. +    llvm::Type *LLTy = CGT.ConvertType(Ty); +    if (LLTy->isPointerTy() || LLTy->isIntegerTy()) +      return ABIArgInfo::getDirect(); +  } + +  if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) { +    // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is +    // not 1, 2, 4, or 8 bytes, must be passed by reference." +    if (Width > 64 || !llvm::isPowerOf2_64(Width)) +      return getNaturalAlignIndirect(Ty, /*ByVal=*/false); + +    // Otherwise, coerce it to a small integer. +    return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width)); +  } + +  if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { +    switch (BT->getKind()) { +    case BuiltinType::Bool: +      // Bool type is always extended to the ABI, other builtin types are not +      // extended. +      return ABIArgInfo::getExtend(Ty); + +    case BuiltinType::LongDouble: +      // Mingw64 GCC uses the old 80 bit extended precision floating point +      // unit. It passes them indirectly through memory. +      if (IsMingw64) { +        const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); +        if (LDF == &llvm::APFloat::x87DoubleExtended()) +          return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); +      } +      break; + +    case BuiltinType::Int128: +    case BuiltinType::UInt128: +      // If it's a parameter type, the normal ABI rule is that arguments larger +      // than 8 bytes are passed indirectly. GCC follows it. We follow it too, +      // even though it isn't particularly efficient. +      if (!IsReturnType) +        return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); + +      // Mingw64 GCC returns i128 in XMM0. Coerce to v2i64 to handle that. +      // Clang matches them for compatibility. +      return ABIArgInfo::getDirect( +          llvm::VectorType::get(llvm::Type::getInt64Ty(getVMContext()), 2)); + +    default: +      break; +    } +  } + +  return ABIArgInfo::getDirect(); +} + +void WinX86_64ABIInfo::computeVectorCallArgs(CGFunctionInfo &FI, +                                             unsigned FreeSSERegs, +                                             bool IsVectorCall, +                                             bool IsRegCall) const { +  unsigned Count = 0; +  for (auto &I : FI.arguments()) { +    // Vectorcall in x64 only permits the first 6 arguments to be passed +    // as XMM/YMM registers. +    if (Count < VectorcallMaxParamNumAsReg) +      I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall); +    else { +      // Since these cannot be passed in registers, pretend no registers +      // are left. +      unsigned ZeroSSERegsAvail = 0; +      I.info = classify(I.type, /*FreeSSERegs=*/ZeroSSERegsAvail, false, +                        IsVectorCall, IsRegCall); +    } +    ++Count; +  } + +  for (auto &I : FI.arguments()) { +    I.info = reclassifyHvaArgType(I.type, FreeSSERegs, I.info); +  } +} + +void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { +  const unsigned CC = FI.getCallingConvention(); +  bool IsVectorCall = CC == llvm::CallingConv::X86_VectorCall; +  bool IsRegCall = CC == llvm::CallingConv::X86_RegCall; + +  // If __attribute__((sysv_abi)) is in use, use the SysV argument +  // classification rules. +  if (CC == llvm::CallingConv::X86_64_SysV) { +    X86_64ABIInfo SysVABIInfo(CGT, AVXLevel); +    SysVABIInfo.computeInfo(FI); +    return; +  } + +  unsigned FreeSSERegs = 0; +  if (IsVectorCall) { +    // We can use up to 4 SSE return registers with vectorcall. +    FreeSSERegs = 4; +  } else if (IsRegCall) { +    // RegCall gives us 16 SSE registers. +    FreeSSERegs = 16; +  } + +  if (!getCXXABI().classifyReturnType(FI)) +    FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true, +                                  IsVectorCall, IsRegCall); + +  if (IsVectorCall) { +    // We can use up to 6 SSE register parameters with vectorcall. +    FreeSSERegs = 6; +  } else if (IsRegCall) { +    // RegCall gives us 16 SSE registers, we can reuse the return registers. +    FreeSSERegs = 16; +  } + +  if (IsVectorCall) { +    computeVectorCallArgs(FI, FreeSSERegs, IsVectorCall, IsRegCall); +  } else { +    for (auto &I : FI.arguments()) +      I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall); +  } + +} + +Address WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, +                                    QualType Ty) const { + +  bool IsIndirect = false; + +  // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is +  // not 1, 2, 4, or 8 bytes, must be passed by reference." +  if (isAggregateTypeForABI(Ty) || Ty->isMemberPointerType()) { +    uint64_t Width = getContext().getTypeSize(Ty); +    IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width); +  } + +  return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, +                          CGF.getContext().getTypeInfoInChars(Ty), +                          CharUnits::fromQuantity(8), +                          /*allowHigherAlign*/ false); +} + +// PowerPC-32 +namespace { +/// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information. +class PPC32_SVR4_ABIInfo : public DefaultABIInfo { +  bool IsSoftFloatABI; + +  CharUnits getParamTypeAlignment(QualType Ty) const; + +public: +  PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, bool SoftFloatABI) +      : DefaultABIInfo(CGT), IsSoftFloatABI(SoftFloatABI) {} + +  Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, +                    QualType Ty) const override; +}; + +class PPC32TargetCodeGenInfo : public TargetCodeGenInfo { +public: +  PPC32TargetCodeGenInfo(CodeGenTypes &CGT, bool SoftFloatABI) +      : TargetCodeGenInfo(new PPC32_SVR4_ABIInfo(CGT, SoftFloatABI)) {} + +  int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { +    // This is recovered from gcc output. +    return 1; // r1 is the dedicated stack pointer +  } + +  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, +                               llvm::Value *Address) const override; +}; +} + +CharUnits PPC32_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const { +  // Complex types are passed just like their elements +  if (const ComplexType *CTy = Ty->getAs<ComplexType>()) +    Ty = CTy->getElementType(); + +  if (Ty->isVectorType()) +    return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 +                                                                       : 4); + +  // For single-element float/vector structs, we consider the whole type +  // to have the same alignment requirements as its single element. +  const Type *AlignTy = nullptr; +  if (const Type *EltType = isSingleElementStruct(Ty, getContext())) { +    const BuiltinType *BT = EltType->getAs<BuiltinType>(); +    if ((EltType->isVectorType() && getContext().getTypeSize(EltType) == 128) || +        (BT && BT->isFloatingPoint())) +      AlignTy = EltType; +  } + +  if (AlignTy) +    return CharUnits::fromQuantity(AlignTy->isVectorType() ? 16 : 4); +  return CharUnits::fromQuantity(4); +} + +// TODO: this implementation is now likely redundant with +// DefaultABIInfo::EmitVAArg. +Address PPC32_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAList, +                                      QualType Ty) const { +  if (getTarget().getTriple().isOSDarwin()) { +    auto TI = getContext().getTypeInfoInChars(Ty); +    TI.second = getParamTypeAlignment(Ty); + +    CharUnits SlotSize = CharUnits::fromQuantity(4); +    return emitVoidPtrVAArg(CGF, VAList, Ty, +                            classifyArgumentType(Ty).isIndirect(), TI, SlotSize, +                            /*AllowHigherAlign=*/true); +  } + +  const unsigned OverflowLimit = 8; +  if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { +    // TODO: Implement this. For now ignore. +    (void)CTy; +    return Address::invalid(); // FIXME? +  } + +  // struct __va_list_tag { +  //   unsigned char gpr; +  //   unsigned char fpr; +  //   unsigned short reserved; +  //   void *overflow_arg_area; +  //   void *reg_save_area; +  // }; + +  bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64; +  bool isInt = +      Ty->isIntegerType() || Ty->isPointerType() || Ty->isAggregateType(); +  bool isF64 = Ty->isFloatingType() && getContext().getTypeSize(Ty) == 64; + +  // All aggregates are passed indirectly?  That doesn't seem consistent +  // with the argument-lowering code. +  bool isIndirect = Ty->isAggregateType(); + +  CGBuilderTy &Builder = CGF.Builder; + +  // The calling convention either uses 1-2 GPRs or 1 FPR. +  Address NumRegsAddr = Address::invalid(); +  if (isInt || IsSoftFloatABI) { +    NumRegsAddr = Builder.CreateStructGEP(VAList, 0, "gpr"); +  } else { +    NumRegsAddr = Builder.CreateStructGEP(VAList, 1, "fpr"); +  } + +  llvm::Value *NumRegs = Builder.CreateLoad(NumRegsAddr, "numUsedRegs"); + +  // "Align" the register count when TY is i64. +  if (isI64 || (isF64 && IsSoftFloatABI)) { +    NumRegs = Builder.CreateAdd(NumRegs, Builder.getInt8(1)); +    NumRegs = Builder.CreateAnd(NumRegs, Builder.getInt8((uint8_t) ~1U)); +  } + +  llvm::Value *CC = +      Builder.CreateICmpULT(NumRegs, Builder.getInt8(OverflowLimit), "cond"); + +  llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs"); +  llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow"); +  llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); + +  Builder.CreateCondBr(CC, UsingRegs, UsingOverflow); + +  llvm::Type *DirectTy = CGF.ConvertType(Ty); +  if (isIndirect) DirectTy = DirectTy->getPointerTo(0); + +  // Case 1: consume registers. +  Address RegAddr = Address::invalid(); +  { +    CGF.EmitBlock(UsingRegs); + +    Address RegSaveAreaPtr = Builder.CreateStructGEP(VAList, 4); +    RegAddr = Address(Builder.CreateLoad(RegSaveAreaPtr), +                      CharUnits::fromQuantity(8)); +    assert(RegAddr.getElementType() == CGF.Int8Ty); + +    // Floating-point registers start after the general-purpose registers. +    if (!(isInt || IsSoftFloatABI)) { +      RegAddr = Builder.CreateConstInBoundsByteGEP(RegAddr, +                                                   CharUnits::fromQuantity(32)); +    } + +    // Get the address of the saved value by scaling the number of +    // registers we've used by the number of +    CharUnits RegSize = CharUnits::fromQuantity((isInt || IsSoftFloatABI) ? 4 : 8); +    llvm::Value *RegOffset = +      Builder.CreateMul(NumRegs, Builder.getInt8(RegSize.getQuantity())); +    RegAddr = Address(Builder.CreateInBoundsGEP(CGF.Int8Ty, +                                            RegAddr.getPointer(), RegOffset), +                      RegAddr.getAlignment().alignmentOfArrayElement(RegSize)); +    RegAddr = Builder.CreateElementBitCast(RegAddr, DirectTy); + +    // Increase the used-register count. +    NumRegs = +      Builder.CreateAdd(NumRegs, +                        Builder.getInt8((isI64 || (isF64 && IsSoftFloatABI)) ? 2 : 1)); +    Builder.CreateStore(NumRegs, NumRegsAddr); + +    CGF.EmitBranch(Cont); +  } + +  // Case 2: consume space in the overflow area. +  Address MemAddr = Address::invalid(); +  { +    CGF.EmitBlock(UsingOverflow); + +    Builder.CreateStore(Builder.getInt8(OverflowLimit), NumRegsAddr); + +    // Everything in the overflow area is rounded up to a size of at least 4. +    CharUnits OverflowAreaAlign = CharUnits::fromQuantity(4); + +    CharUnits Size; +    if (!isIndirect) { +      auto TypeInfo = CGF.getContext().getTypeInfoInChars(Ty); +      Size = TypeInfo.first.alignTo(OverflowAreaAlign); +    } else { +      Size = CGF.getPointerSize(); +    } + +    Address OverflowAreaAddr = Builder.CreateStructGEP(VAList, 3); +    Address OverflowArea(Builder.CreateLoad(OverflowAreaAddr, "argp.cur"), +                         OverflowAreaAlign); +    // Round up address of argument to alignment +    CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); +    if (Align > OverflowAreaAlign) { +      llvm::Value *Ptr = OverflowArea.getPointer(); +      OverflowArea = Address(emitRoundPointerUpToAlignment(CGF, Ptr, Align), +                                                           Align); +    } + +    MemAddr = Builder.CreateElementBitCast(OverflowArea, DirectTy); + +    // Increase the overflow area. +    OverflowArea = Builder.CreateConstInBoundsByteGEP(OverflowArea, Size); +    Builder.CreateStore(OverflowArea.getPointer(), OverflowAreaAddr); +    CGF.EmitBranch(Cont); +  } + +  CGF.EmitBlock(Cont); + +  // Merge the cases with a phi. +  Address Result = emitMergePHI(CGF, RegAddr, UsingRegs, MemAddr, UsingOverflow, +                                "vaarg.addr"); + +  // Load the pointer if the argument was passed indirectly. +  if (isIndirect) { +    Result = Address(Builder.CreateLoad(Result, "aggr"), +                     getContext().getTypeAlignInChars(Ty)); +  } + +  return Result; +} + +bool +PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, +                                                llvm::Value *Address) const { +  // This is calculated from the LLVM and GCC tables and verified +  // against gcc output.  AFAIK all ABIs use the same encoding. + +  CodeGen::CGBuilderTy &Builder = CGF.Builder; + +  llvm::IntegerType *i8 = CGF.Int8Ty; +  llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); +  llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); +  llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); + +  // 0-31: r0-31, the 4-byte general-purpose registers +  AssignToArrayRange(Builder, Address, Four8, 0, 31); + +  // 32-63: fp0-31, the 8-byte floating-point registers +  AssignToArrayRange(Builder, Address, Eight8, 32, 63); + +  // 64-76 are various 4-byte special-purpose registers: +  // 64: mq +  // 65: lr +  // 66: ctr +  // 67: ap +  // 68-75 cr0-7 +  // 76: xer +  AssignToArrayRange(Builder, Address, Four8, 64, 76); + +  // 77-108: v0-31, the 16-byte vector registers +  AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); + +  // 109: vrsave +  // 110: vscr +  // 111: spe_acc +  // 112: spefscr +  // 113: sfp +  AssignToArrayRange(Builder, Address, Four8, 109, 113); + +  return false; +} + +// PowerPC-64 + +namespace { +/// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information. +class PPC64_SVR4_ABIInfo : public SwiftABIInfo { +public: +  enum ABIKind { +    ELFv1 = 0, +    ELFv2 +  }; + +private: +  static const unsigned GPRBits = 64; +  ABIKind Kind; +  bool HasQPX; +  bool IsSoftFloatABI; + +  // A vector of float or double will be promoted to <4 x f32> or <4 x f64> and +  // will be passed in a QPX register. +  bool IsQPXVectorTy(const Type *Ty) const { +    if (!HasQPX) +      return false; + +    if (const VectorType *VT = Ty->getAs<VectorType>()) { +      unsigned NumElements = VT->getNumElements(); +      if (NumElements == 1) +        return false; + +      if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) { +        if (getContext().getTypeSize(Ty) <= 256) +          return true; +      } else if (VT->getElementType()-> +                   isSpecificBuiltinType(BuiltinType::Float)) { +        if (getContext().getTypeSize(Ty) <= 128) +          return true; +      } +    } + +    return false; +  } + +  bool IsQPXVectorTy(QualType Ty) const { +    return IsQPXVectorTy(Ty.getTypePtr()); +  } + +public: +  PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind, bool HasQPX, +                     bool SoftFloatABI) +      : SwiftABIInfo(CGT), Kind(Kind), HasQPX(HasQPX), +        IsSoftFloatABI(SoftFloatABI) {} + +  bool isPromotableTypeForABI(QualType Ty) const; +  CharUnits getParamTypeAlignment(QualType Ty) const; + +  ABIArgInfo classifyReturnType(QualType RetTy) const; +  ABIArgInfo classifyArgumentType(QualType Ty) const; + +  bool isHomogeneousAggregateBaseType(QualType Ty) const override; +  bool isHomogeneousAggregateSmallEnough(const Type *Ty, +                                         uint64_t Members) const override; + +  // TODO: We can add more logic to computeInfo to improve performance. +  // Example: For aggregate arguments that fit in a register, we could +  // use getDirectInReg (as is done below for structs containing a single +  // floating-point value) to avoid pushing them to memory on function +  // entry.  This would require changing the logic in PPCISelLowering +  // when lowering the parameters in the caller and args in the callee. +  void computeInfo(CGFunctionInfo &FI) const override { +    if (!getCXXABI().classifyReturnType(FI)) +      FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); +    for (auto &I : FI.arguments()) { +      // We rely on the default argument classification for the most part. +      // One exception:  An aggregate containing a single floating-point +      // or vector item must be passed in a register if one is available. +      const Type *T = isSingleElementStruct(I.type, getContext()); +      if (T) { +        const BuiltinType *BT = T->getAs<BuiltinType>(); +        if (IsQPXVectorTy(T) || +            (T->isVectorType() && getContext().getTypeSize(T) == 128) || +            (BT && BT->isFloatingPoint())) { +          QualType QT(T, 0); +          I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT)); +          continue; +        } +      } +      I.info = classifyArgumentType(I.type); +    } +  } + +  Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, +                    QualType Ty) const override; + +  bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, +                                    bool asReturnValue) const override { +    return occupiesMoreThan(CGT, scalars, /*total*/ 4); +  } + +  bool isSwiftErrorInRegister() const override { +    return false; +  } +}; + +class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo { + +public: +  PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT, +                               PPC64_SVR4_ABIInfo::ABIKind Kind, bool HasQPX, +                               bool SoftFloatABI) +      : TargetCodeGenInfo(new PPC64_SVR4_ABIInfo(CGT, Kind, HasQPX, +                                                 SoftFloatABI)) {} + +  int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { +    // This is recovered from gcc output. +    return 1; // r1 is the dedicated stack pointer +  } + +  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, +                               llvm::Value *Address) const override; +}; + +class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo { +public: +  PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {} + +  int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { +    // This is recovered from gcc output. +    return 1; // r1 is the dedicated stack pointer +  } + +  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, +                               llvm::Value *Address) const override; +}; + +} + +// Return true if the ABI requires Ty to be passed sign- or zero- +// extended to 64 bits. +bool +PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const { +  // Treat an enum type as its underlying type. +  if (const EnumType *EnumTy = Ty->getAs<EnumType>()) +    Ty = EnumTy->getDecl()->getIntegerType(); + +  // Promotable integer types are required to be promoted by the ABI. +  if (Ty->isPromotableIntegerType()) +    return true; + +  // In addition to the usual promotable integer types, we also need to +  // extend all 32-bit types, since the ABI requires promotion to 64 bits. +  if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) +    switch (BT->getKind()) { +    case BuiltinType::Int: +    case BuiltinType::UInt: +      return true; +    default: +      break; +    } + +  return false; +} + +/// isAlignedParamType - Determine whether a type requires 16-byte or +/// higher alignment in the parameter area.  Always returns at least 8. +CharUnits PPC64_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const { +  // Complex types are passed just like their elements. +  if (const ComplexType *CTy = Ty->getAs<ComplexType>()) +    Ty = CTy->getElementType(); + +  // Only vector types of size 16 bytes need alignment (larger types are +  // passed via reference, smaller types are not aligned). +  if (IsQPXVectorTy(Ty)) { +    if (getContext().getTypeSize(Ty) > 128) +      return CharUnits::fromQuantity(32); + +    return CharUnits::fromQuantity(16); +  } else if (Ty->isVectorType()) { +    return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 : 8); +  } + +  // For single-element float/vector structs, we consider the whole type +  // to have the same alignment requirements as its single element. +  const Type *AlignAsType = nullptr; +  const Type *EltType = isSingleElementStruct(Ty, getContext()); +  if (EltType) { +    const BuiltinType *BT = EltType->getAs<BuiltinType>(); +    if (IsQPXVectorTy(EltType) || (EltType->isVectorType() && +         getContext().getTypeSize(EltType) == 128) || +        (BT && BT->isFloatingPoint())) +      AlignAsType = EltType; +  } + +  // Likewise for ELFv2 homogeneous aggregates. +  const Type *Base = nullptr; +  uint64_t Members = 0; +  if (!AlignAsType && Kind == ELFv2 && +      isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members)) +    AlignAsType = Base; + +  // With special case aggregates, only vector base types need alignment. +  if (AlignAsType && IsQPXVectorTy(AlignAsType)) { +    if (getContext().getTypeSize(AlignAsType) > 128) +      return CharUnits::fromQuantity(32); + +    return CharUnits::fromQuantity(16); +  } else if (AlignAsType) { +    return CharUnits::fromQuantity(AlignAsType->isVectorType() ? 16 : 8); +  } + +  // Otherwise, we only need alignment for any aggregate type that +  // has an alignment requirement of >= 16 bytes. +  if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) { +    if (HasQPX && getContext().getTypeAlign(Ty) >= 256) +      return CharUnits::fromQuantity(32); +    return CharUnits::fromQuantity(16); +  } + +  return CharUnits::fromQuantity(8); +} + +/// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous +/// aggregate.  Base is set to the base element type, and Members is set +/// to the number of base elements. +bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base, +                                     uint64_t &Members) const { +  if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { +    uint64_t NElements = AT->getSize().getZExtValue(); +    if (NElements == 0) +      return false; +    if (!isHomogeneousAggregate(AT->getElementType(), Base, Members)) +      return false; +    Members *= NElements; +  } else if (const RecordType *RT = Ty->getAs<RecordType>()) { +    const RecordDecl *RD = RT->getDecl(); +    if (RD->hasFlexibleArrayMember()) +      return false; + +    Members = 0; + +    // If this is a C++ record, check the bases first. +    if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { +      for (const auto &I : CXXRD->bases()) { +        // Ignore empty records. +        if (isEmptyRecord(getContext(), I.getType(), true)) +          continue; + +        uint64_t FldMembers; +        if (!isHomogeneousAggregate(I.getType(), Base, FldMembers)) +          return false; + +        Members += FldMembers; +      } +    } + +    for (const auto *FD : RD->fields()) { +      // Ignore (non-zero arrays of) empty records. +      QualType FT = FD->getType(); +      while (const ConstantArrayType *AT = +             getContext().getAsConstantArrayType(FT)) { +        if (AT->getSize().getZExtValue() == 0) +          return false; +        FT = AT->getElementType(); +      } +      if (isEmptyRecord(getContext(), FT, true)) +        continue; + +      // For compatibility with GCC, ignore empty bitfields in C++ mode. +      if (getContext().getLangOpts().CPlusPlus && +          FD->isZeroLengthBitField(getContext())) +        continue; + +      uint64_t FldMembers; +      if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers)) +        return false; + +      Members = (RD->isUnion() ? +                 std::max(Members, FldMembers) : Members + FldMembers); +    } + +    if (!Base) +      return false; + +    // Ensure there is no padding. +    if (getContext().getTypeSize(Base) * Members != +        getContext().getTypeSize(Ty)) +      return false; +  } else { +    Members = 1; +    if (const ComplexType *CT = Ty->getAs<ComplexType>()) { +      Members = 2; +      Ty = CT->getElementType(); +    } + +    // Most ABIs only support float, double, and some vector type widths. +    if (!isHomogeneousAggregateBaseType(Ty)) +      return false; + +    // The base type must be the same for all members.  Types that +    // agree in both total size and mode (float vs. vector) are +    // treated as being equivalent here. +    const Type *TyPtr = Ty.getTypePtr(); +    if (!Base) { +      Base = TyPtr; +      // If it's a non-power-of-2 vector, its size is already a power-of-2, +      // so make sure to widen it explicitly. +      if (const VectorType *VT = Base->getAs<VectorType>()) { +        QualType EltTy = VT->getElementType(); +        unsigned NumElements = +            getContext().getTypeSize(VT) / getContext().getTypeSize(EltTy); +        Base = getContext() +                   .getVectorType(EltTy, NumElements, VT->getVectorKind()) +                   .getTypePtr(); +      } +    } + +    if (Base->isVectorType() != TyPtr->isVectorType() || +        getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr)) +      return false; +  } +  return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members); +} + +bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { +  // Homogeneous aggregates for ELFv2 must have base types of float, +  // double, long double, or 128-bit vectors. +  if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { +    if (BT->getKind() == BuiltinType::Float || +        BT->getKind() == BuiltinType::Double || +        BT->getKind() == BuiltinType::LongDouble || +        (getContext().getTargetInfo().hasFloat128Type() && +          (BT->getKind() == BuiltinType::Float128))) { +      if (IsSoftFloatABI) +        return false; +      return true; +    } +  } +  if (const VectorType *VT = Ty->getAs<VectorType>()) { +    if (getContext().getTypeSize(VT) == 128 || IsQPXVectorTy(Ty)) +      return true; +  } +  return false; +} + +bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough( +    const Type *Base, uint64_t Members) const { +  // Vector and fp128 types require one register, other floating point types +  // require one or two registers depending on their size. +  uint32_t NumRegs = +      ((getContext().getTargetInfo().hasFloat128Type() && +          Base->isFloat128Type()) || +        Base->isVectorType()) ? 1 +                              : (getContext().getTypeSize(Base) + 63) / 64; + +  // Homogeneous Aggregates may occupy at most 8 registers. +  return Members * NumRegs <= 8; +} + +ABIArgInfo +PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const { +  Ty = useFirstFieldIfTransparentUnion(Ty); + +  if (Ty->isAnyComplexType()) +    return ABIArgInfo::getDirect(); + +  // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes) +  // or via reference (larger than 16 bytes). +  if (Ty->isVectorType() && !IsQPXVectorTy(Ty)) { +    uint64_t Size = getContext().getTypeSize(Ty); +    if (Size > 128) +      return getNaturalAlignIndirect(Ty, /*ByVal=*/false); +    else if (Size < 128) { +      llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); +      return ABIArgInfo::getDirect(CoerceTy); +    } +  } + +  if (isAggregateTypeForABI(Ty)) { +    if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) +      return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); + +    uint64_t ABIAlign = getParamTypeAlignment(Ty).getQuantity(); +    uint64_t TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity(); + +    // ELFv2 homogeneous aggregates are passed as array types. +    const Type *Base = nullptr; +    uint64_t Members = 0; +    if (Kind == ELFv2 && +        isHomogeneousAggregate(Ty, Base, Members)) { +      llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); +      llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); +      return ABIArgInfo::getDirect(CoerceTy); +    } + +    // If an aggregate may end up fully in registers, we do not +    // use the ByVal method, but pass the aggregate as array. +    // This is usually beneficial since we avoid forcing the +    // back-end to store the argument to memory. +    uint64_t Bits = getContext().getTypeSize(Ty); +    if (Bits > 0 && Bits <= 8 * GPRBits) { +      llvm::Type *CoerceTy; + +      // Types up to 8 bytes are passed as integer type (which will be +      // properly aligned in the argument save area doubleword). +      if (Bits <= GPRBits) +        CoerceTy = +            llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8)); +      // Larger types are passed as arrays, with the base type selected +      // according to the required alignment in the save area. +      else { +        uint64_t RegBits = ABIAlign * 8; +        uint64_t NumRegs = llvm::alignTo(Bits, RegBits) / RegBits; +        llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits); +        CoerceTy = llvm::ArrayType::get(RegTy, NumRegs); +      } + +      return ABIArgInfo::getDirect(CoerceTy); +    } + +    // All other aggregates are passed ByVal. +    return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign), +                                   /*ByVal=*/true, +                                   /*Realign=*/TyAlign > ABIAlign); +  } + +  return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) +                                     : ABIArgInfo::getDirect()); +} + +ABIArgInfo +PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const { +  if (RetTy->isVoidType()) +    return ABIArgInfo::getIgnore(); + +  if (RetTy->isAnyComplexType()) +    return ABIArgInfo::getDirect(); + +  // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes) +  // or via reference (larger than 16 bytes). +  if (RetTy->isVectorType() && !IsQPXVectorTy(RetTy)) { +    uint64_t Size = getContext().getTypeSize(RetTy); +    if (Size > 128) +      return getNaturalAlignIndirect(RetTy); +    else if (Size < 128) { +      llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); +      return ABIArgInfo::getDirect(CoerceTy); +    } +  } + +  if (isAggregateTypeForABI(RetTy)) { +    // ELFv2 homogeneous aggregates are returned as array types. +    const Type *Base = nullptr; +    uint64_t Members = 0; +    if (Kind == ELFv2 && +        isHomogeneousAggregate(RetTy, Base, Members)) { +      llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); +      llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); +      return ABIArgInfo::getDirect(CoerceTy); +    } + +    // ELFv2 small aggregates are returned in up to two registers. +    uint64_t Bits = getContext().getTypeSize(RetTy); +    if (Kind == ELFv2 && Bits <= 2 * GPRBits) { +      if (Bits == 0) +        return ABIArgInfo::getIgnore(); + +      llvm::Type *CoerceTy; +      if (Bits > GPRBits) { +        CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits); +        CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy); +      } else +        CoerceTy = +            llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8)); +      return ABIArgInfo::getDirect(CoerceTy); +    } + +    // All other aggregates are returned indirectly. +    return getNaturalAlignIndirect(RetTy); +  } + +  return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) +                                        : ABIArgInfo::getDirect()); +} + +// Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine. +Address PPC64_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, +                                      QualType Ty) const { +  auto TypeInfo = getContext().getTypeInfoInChars(Ty); +  TypeInfo.second = getParamTypeAlignment(Ty); + +  CharUnits SlotSize = CharUnits::fromQuantity(8); + +  // If we have a complex type and the base type is smaller than 8 bytes, +  // the ABI calls for the real and imaginary parts to be right-adjusted +  // in separate doublewords.  However, Clang expects us to produce a +  // pointer to a structure with the two parts packed tightly.  So generate +  // loads of the real and imaginary parts relative to the va_list pointer, +  // and store them to a temporary structure. +  if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { +    CharUnits EltSize = TypeInfo.first / 2; +    if (EltSize < SlotSize) { +      Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, CGF.Int8Ty, +                                            SlotSize * 2, SlotSize, +                                            SlotSize, /*AllowHigher*/ true); + +      Address RealAddr = Addr; +      Address ImagAddr = RealAddr; +      if (CGF.CGM.getDataLayout().isBigEndian()) { +        RealAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, +                                                          SlotSize - EltSize); +        ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(ImagAddr, +                                                      2 * SlotSize - EltSize); +      } else { +        ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize); +      } + +      llvm::Type *EltTy = CGF.ConvertTypeForMem(CTy->getElementType()); +      RealAddr = CGF.Builder.CreateElementBitCast(RealAddr, EltTy); +      ImagAddr = CGF.Builder.CreateElementBitCast(ImagAddr, EltTy); +      llvm::Value *Real = CGF.Builder.CreateLoad(RealAddr, ".vareal"); +      llvm::Value *Imag = CGF.Builder.CreateLoad(ImagAddr, ".vaimag"); + +      Address Temp = CGF.CreateMemTemp(Ty, "vacplx"); +      CGF.EmitStoreOfComplex({Real, Imag}, CGF.MakeAddrLValue(Temp, Ty), +                             /*init*/ true); +      return Temp; +    } +  } + +  // Otherwise, just use the general rule. +  return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, +                          TypeInfo, SlotSize, /*AllowHigher*/ true); +} + +static bool +PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, +                              llvm::Value *Address) { +  // This is calculated from the LLVM and GCC tables and verified +  // against gcc output.  AFAIK all ABIs use the same encoding. + +  CodeGen::CGBuilderTy &Builder = CGF.Builder; + +  llvm::IntegerType *i8 = CGF.Int8Ty; +  llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); +  llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); +  llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); + +  // 0-31: r0-31, the 8-byte general-purpose registers +  AssignToArrayRange(Builder, Address, Eight8, 0, 31); + +  // 32-63: fp0-31, the 8-byte floating-point registers +  AssignToArrayRange(Builder, Address, Eight8, 32, 63); + +  // 64-67 are various 8-byte special-purpose registers: +  // 64: mq +  // 65: lr +  // 66: ctr +  // 67: ap +  AssignToArrayRange(Builder, Address, Eight8, 64, 67); + +  // 68-76 are various 4-byte special-purpose registers: +  // 68-75 cr0-7 +  // 76: xer +  AssignToArrayRange(Builder, Address, Four8, 68, 76); + +  // 77-108: v0-31, the 16-byte vector registers +  AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); + +  // 109: vrsave +  // 110: vscr +  // 111: spe_acc +  // 112: spefscr +  // 113: sfp +  // 114: tfhar +  // 115: tfiar +  // 116: texasr +  AssignToArrayRange(Builder, Address, Eight8, 109, 116); + +  return false; +} + +bool +PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable( +  CodeGen::CodeGenFunction &CGF, +  llvm::Value *Address) const { + +  return PPC64_initDwarfEHRegSizeTable(CGF, Address); +} + +bool +PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, +                                                llvm::Value *Address) const { + +  return PPC64_initDwarfEHRegSizeTable(CGF, Address); +} + +//===----------------------------------------------------------------------===// +// AArch64 ABI Implementation +//===----------------------------------------------------------------------===// + +namespace { + +class AArch64ABIInfo : public SwiftABIInfo { +public: +  enum ABIKind { +    AAPCS = 0, +    DarwinPCS, +    Win64 +  }; + +private: +  ABIKind Kind; + +public: +  AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind) +    : SwiftABIInfo(CGT), Kind(Kind) {} + +private: +  ABIKind getABIKind() const { return Kind; } +  bool isDarwinPCS() const { return Kind == DarwinPCS; } + +  ABIArgInfo classifyReturnType(QualType RetTy) const; +  ABIArgInfo classifyArgumentType(QualType RetTy) const; +  bool isHomogeneousAggregateBaseType(QualType Ty) const override; +  bool isHomogeneousAggregateSmallEnough(const Type *Ty, +                                         uint64_t Members) const override; + +  bool isIllegalVectorType(QualType Ty) const; + +  void computeInfo(CGFunctionInfo &FI) const override { +    if (!::classifyReturnType(getCXXABI(), FI, *this)) +      FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); + +    for (auto &it : FI.arguments()) +      it.info = classifyArgumentType(it.type); +  } + +  Address EmitDarwinVAArg(Address VAListAddr, QualType Ty, +                          CodeGenFunction &CGF) const; + +  Address EmitAAPCSVAArg(Address VAListAddr, QualType Ty, +                         CodeGenFunction &CGF) const; + +  Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, +                    QualType Ty) const override { +    return Kind == Win64 ? EmitMSVAArg(CGF, VAListAddr, Ty) +                         : isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF) +                                         : EmitAAPCSVAArg(VAListAddr, Ty, CGF); +  } + +  Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, +                      QualType Ty) const override; + +  bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, +                                    bool asReturnValue) const override { +    return occupiesMoreThan(CGT, scalars, /*total*/ 4); +  } +  bool isSwiftErrorInRegister() const override { +    return true; +  } + +  bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy, +                                 unsigned elts) const override; +}; + +class AArch64TargetCodeGenInfo : public TargetCodeGenInfo { +public: +  AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind) +      : TargetCodeGenInfo(new AArch64ABIInfo(CGT, Kind)) {} + +  StringRef getARCRetainAutoreleasedReturnValueMarker() const override { +    return "mov\tfp, fp\t\t// marker for objc_retainAutoreleaseReturnValue"; +  } + +  int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { +    return 31; +  } + +  bool doesReturnSlotInterfereWithArgs() const override { return false; } + +  void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, +                           CodeGen::CodeGenModule &CGM) const override { +    const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); +    if (!FD) +      return; +    llvm::Function *Fn = cast<llvm::Function>(GV); + +    auto Kind = CGM.getCodeGenOpts().getSignReturnAddress(); +    if (Kind != CodeGenOptions::SignReturnAddressScope::None) { +      Fn->addFnAttr("sign-return-address", +                    Kind == CodeGenOptions::SignReturnAddressScope::All +                        ? "all" +                        : "non-leaf"); + +      auto Key = CGM.getCodeGenOpts().getSignReturnAddressKey(); +      Fn->addFnAttr("sign-return-address-key", +                    Key == CodeGenOptions::SignReturnAddressKeyValue::AKey +                        ? "a_key" +                        : "b_key"); +    } + +    if (CGM.getCodeGenOpts().BranchTargetEnforcement) +      Fn->addFnAttr("branch-target-enforcement"); +  } +}; + +class WindowsAArch64TargetCodeGenInfo : public AArch64TargetCodeGenInfo { +public: +  WindowsAArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind K) +      : AArch64TargetCodeGenInfo(CGT, K) {} + +  void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, +                           CodeGen::CodeGenModule &CGM) const override; + +  void getDependentLibraryOption(llvm::StringRef Lib, +                                 llvm::SmallString<24> &Opt) const override { +    Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib); +  } + +  void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value, +                               llvm::SmallString<32> &Opt) const override { +    Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; +  } +}; + +void WindowsAArch64TargetCodeGenInfo::setTargetAttributes( +    const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { +  AArch64TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); +  if (GV->isDeclaration()) +    return; +  addStackProbeTargetAttributes(D, GV, CGM); +} +} + +ABIArgInfo AArch64ABIInfo::classifyArgumentType(QualType Ty) const { +  Ty = useFirstFieldIfTransparentUnion(Ty); + +  // Handle illegal vector types here. +  if (isIllegalVectorType(Ty)) { +    uint64_t Size = getContext().getTypeSize(Ty); +    // Android promotes <2 x i8> to i16, not i32 +    if (isAndroid() && (Size <= 16)) { +      llvm::Type *ResType = llvm::Type::getInt16Ty(getVMContext()); +      return ABIArgInfo::getDirect(ResType); +    } +    if (Size <= 32) { +      llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext()); +      return ABIArgInfo::getDirect(ResType); +    } +    if (Size == 64) { +      llvm::Type *ResType = +          llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2); +      return ABIArgInfo::getDirect(ResType); +    } +    if (Size == 128) { +      llvm::Type *ResType = +          llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4); +      return ABIArgInfo::getDirect(ResType); +    } +    return getNaturalAlignIndirect(Ty, /*ByVal=*/false); +  } + +  if (!isAggregateTypeForABI(Ty)) { +    // Treat an enum type as its underlying type. +    if (const EnumType *EnumTy = Ty->getAs<EnumType>()) +      Ty = EnumTy->getDecl()->getIntegerType(); + +    return (Ty->isPromotableIntegerType() && isDarwinPCS() +                ? ABIArgInfo::getExtend(Ty) +                : ABIArgInfo::getDirect()); +  } + +  // Structures with either a non-trivial destructor or a non-trivial +  // copy constructor are always indirect. +  if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { +    return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA == +                                     CGCXXABI::RAA_DirectInMemory); +  } + +  // Empty records are always ignored on Darwin, but actually passed in C++ mode +  // elsewhere for GNU compatibility. +  uint64_t Size = getContext().getTypeSize(Ty); +  bool IsEmpty = isEmptyRecord(getContext(), Ty, true); +  if (IsEmpty || Size == 0) { +    if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS()) +      return ABIArgInfo::getIgnore(); + +    // GNU C mode. The only argument that gets ignored is an empty one with size +    // 0. +    if (IsEmpty && Size == 0) +      return ABIArgInfo::getIgnore(); +    return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); +  } + +  // Homogeneous Floating-point Aggregates (HFAs) need to be expanded. +  const Type *Base = nullptr; +  uint64_t Members = 0; +  if (isHomogeneousAggregate(Ty, Base, Members)) { +    return ABIArgInfo::getDirect( +        llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members)); +  } + +  // Aggregates <= 16 bytes are passed directly in registers or on the stack. +  if (Size <= 128) { +    // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of +    // same size and alignment. +    if (getTarget().isRenderScriptTarget()) { +      return coerceToIntArray(Ty, getContext(), getVMContext()); +    } +    unsigned Alignment; +    if (Kind == AArch64ABIInfo::AAPCS) { +      Alignment = getContext().getTypeUnadjustedAlign(Ty); +      Alignment = Alignment < 128 ? 64 : 128; +    } else { +      Alignment = getContext().getTypeAlign(Ty); +    } +    Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes + +    // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. +    // For aggregates with 16-byte alignment, we use i128. +    if (Alignment < 128 && Size == 128) { +      llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext()); +      return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64)); +    } +    return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); +  } + +  return getNaturalAlignIndirect(Ty, /*ByVal=*/false); +} + +ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy) const { +  if (RetTy->isVoidType()) +    return ABIArgInfo::getIgnore(); + +  // Large vector types should be returned via memory. +  if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) +    return getNaturalAlignIndirect(RetTy); + +  if (!isAggregateTypeForABI(RetTy)) { +    // Treat an enum type as its underlying type. +    if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) +      RetTy = EnumTy->getDecl()->getIntegerType(); + +    return (RetTy->isPromotableIntegerType() && isDarwinPCS() +                ? ABIArgInfo::getExtend(RetTy) +                : ABIArgInfo::getDirect()); +  } + +  uint64_t Size = getContext().getTypeSize(RetTy); +  if (isEmptyRecord(getContext(), RetTy, true) || Size == 0) +    return ABIArgInfo::getIgnore(); + +  const Type *Base = nullptr; +  uint64_t Members = 0; +  if (isHomogeneousAggregate(RetTy, Base, Members)) +    // Homogeneous Floating-point Aggregates (HFAs) are returned directly. +    return ABIArgInfo::getDirect(); + +  // Aggregates <= 16 bytes are returned directly in registers or on the stack. +  if (Size <= 128) { +    // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of +    // same size and alignment. +    if (getTarget().isRenderScriptTarget()) { +      return coerceToIntArray(RetTy, getContext(), getVMContext()); +    } +    unsigned Alignment = getContext().getTypeAlign(RetTy); +    Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes + +    // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. +    // For aggregates with 16-byte alignment, we use i128. +    if (Alignment < 128 && Size == 128) { +      llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext()); +      return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64)); +    } +    return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); +  } + +  return getNaturalAlignIndirect(RetTy); +} + +/// isIllegalVectorType - check whether the vector type is legal for AArch64. +bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const { +  if (const VectorType *VT = Ty->getAs<VectorType>()) { +    // Check whether VT is legal. +    unsigned NumElements = VT->getNumElements(); +    uint64_t Size = getContext().getTypeSize(VT); +    // NumElements should be power of 2. +    if (!llvm::isPowerOf2_32(NumElements)) +      return true; +    return Size != 64 && (Size != 128 || NumElements == 1); +  } +  return false; +} + +bool AArch64ABIInfo::isLegalVectorTypeForSwift(CharUnits totalSize, +                                               llvm::Type *eltTy, +                                               unsigned elts) const { +  if (!llvm::isPowerOf2_32(elts)) +    return false; +  if (totalSize.getQuantity() != 8 && +      (totalSize.getQuantity() != 16 || elts == 1)) +    return false; +  return true; +} + +bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { +  // Homogeneous aggregates for AAPCS64 must have base types of a floating +  // point type or a short-vector type. This is the same as the 32-bit ABI, +  // but with the difference that any floating-point type is allowed, +  // including __fp16. +  if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { +    if (BT->isFloatingPoint()) +      return true; +  } else if (const VectorType *VT = Ty->getAs<VectorType>()) { +    unsigned VecSize = getContext().getTypeSize(VT); +    if (VecSize == 64 || VecSize == 128) +      return true; +  } +  return false; +} + +bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, +                                                       uint64_t Members) const { +  return Members <= 4; +} + +Address AArch64ABIInfo::EmitAAPCSVAArg(Address VAListAddr, +                                            QualType Ty, +                                            CodeGenFunction &CGF) const { +  ABIArgInfo AI = classifyArgumentType(Ty); +  bool IsIndirect = AI.isIndirect(); + +  llvm::Type *BaseTy = CGF.ConvertType(Ty); +  if (IsIndirect) +    BaseTy = llvm::PointerType::getUnqual(BaseTy); +  else if (AI.getCoerceToType()) +    BaseTy = AI.getCoerceToType(); + +  unsigned NumRegs = 1; +  if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) { +    BaseTy = ArrTy->getElementType(); +    NumRegs = ArrTy->getNumElements(); +  } +  bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy(); + +  // The AArch64 va_list type and handling is specified in the Procedure Call +  // Standard, section B.4: +  // +  // struct { +  //   void *__stack; +  //   void *__gr_top; +  //   void *__vr_top; +  //   int __gr_offs; +  //   int __vr_offs; +  // }; + +  llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg"); +  llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); +  llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack"); +  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); + +  CharUnits TySize = getContext().getTypeSizeInChars(Ty); +  CharUnits TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty); + +  Address reg_offs_p = Address::invalid(); +  llvm::Value *reg_offs = nullptr; +  int reg_top_index; +  int RegSize = IsIndirect ? 8 : TySize.getQuantity(); +  if (!IsFPR) { +    // 3 is the field number of __gr_offs +    reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 3, "gr_offs_p"); +    reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs"); +    reg_top_index = 1; // field number for __gr_top +    RegSize = llvm::alignTo(RegSize, 8); +  } else { +    // 4 is the field number of __vr_offs. +    reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 4, "vr_offs_p"); +    reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs"); +    reg_top_index = 2; // field number for __vr_top +    RegSize = 16 * NumRegs; +  } + +  //======================================= +  // Find out where argument was passed +  //======================================= + +  // If reg_offs >= 0 we're already using the stack for this type of +  // argument. We don't want to keep updating reg_offs (in case it overflows, +  // though anyone passing 2GB of arguments, each at most 16 bytes, deserves +  // whatever they get). +  llvm::Value *UsingStack = nullptr; +  UsingStack = CGF.Builder.CreateICmpSGE( +      reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0)); + +  CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock); + +  // Otherwise, at least some kind of argument could go in these registers, the +  // question is whether this particular type is too big. +  CGF.EmitBlock(MaybeRegBlock); + +  // Integer arguments may need to correct register alignment (for example a +  // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we +  // align __gr_offs to calculate the potential address. +  if (!IsFPR && !IsIndirect && TyAlign.getQuantity() > 8) { +    int Align = TyAlign.getQuantity(); + +    reg_offs = CGF.Builder.CreateAdd( +        reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1), +        "align_regoffs"); +    reg_offs = CGF.Builder.CreateAnd( +        reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align), +        "aligned_regoffs"); +  } + +  // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list. +  // The fact that this is done unconditionally reflects the fact that +  // allocating an argument to the stack also uses up all the remaining +  // registers of the appropriate kind. +  llvm::Value *NewOffset = nullptr; +  NewOffset = CGF.Builder.CreateAdd( +      reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs"); +  CGF.Builder.CreateStore(NewOffset, reg_offs_p); + +  // Now we're in a position to decide whether this argument really was in +  // registers or not. +  llvm::Value *InRegs = nullptr; +  InRegs = CGF.Builder.CreateICmpSLE( +      NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg"); + +  CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock); + +  //======================================= +  // Argument was in registers +  //======================================= + +  // Now we emit the code for if the argument was originally passed in +  // registers. First start the appropriate block: +  CGF.EmitBlock(InRegBlock); + +  llvm::Value *reg_top = nullptr; +  Address reg_top_p = +      CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, "reg_top_p"); +  reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top"); +  Address BaseAddr(CGF.Builder.CreateInBoundsGEP(reg_top, reg_offs), +                   CharUnits::fromQuantity(IsFPR ? 16 : 8)); +  Address RegAddr = Address::invalid(); +  llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty); + +  if (IsIndirect) { +    // If it's been passed indirectly (actually a struct), whatever we find from +    // stored registers or on the stack will actually be a struct **. +    MemTy = llvm::PointerType::getUnqual(MemTy); +  } + +  const Type *Base = nullptr; +  uint64_t NumMembers = 0; +  bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers); +  if (IsHFA && NumMembers > 1) { +    // Homogeneous aggregates passed in registers will have their elements split +    // and stored 16-bytes apart regardless of size (they're notionally in qN, +    // qN+1, ...). We reload and store into a temporary local variable +    // contiguously. +    assert(!IsIndirect && "Homogeneous aggregates should be passed directly"); +    auto BaseTyInfo = getContext().getTypeInfoInChars(QualType(Base, 0)); +    llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0)); +    llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers); +    Address Tmp = CGF.CreateTempAlloca(HFATy, +                                       std::max(TyAlign, BaseTyInfo.second)); + +    // On big-endian platforms, the value will be right-aligned in its slot. +    int Offset = 0; +    if (CGF.CGM.getDataLayout().isBigEndian() && +        BaseTyInfo.first.getQuantity() < 16) +      Offset = 16 - BaseTyInfo.first.getQuantity(); + +    for (unsigned i = 0; i < NumMembers; ++i) { +      CharUnits BaseOffset = CharUnits::fromQuantity(16 * i + Offset); +      Address LoadAddr = +        CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, BaseOffset); +      LoadAddr = CGF.Builder.CreateElementBitCast(LoadAddr, BaseTy); + +      Address StoreAddr = CGF.Builder.CreateConstArrayGEP(Tmp, i); + +      llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr); +      CGF.Builder.CreateStore(Elem, StoreAddr); +    } + +    RegAddr = CGF.Builder.CreateElementBitCast(Tmp, MemTy); +  } else { +    // Otherwise the object is contiguous in memory. + +    // It might be right-aligned in its slot. +    CharUnits SlotSize = BaseAddr.getAlignment(); +    if (CGF.CGM.getDataLayout().isBigEndian() && !IsIndirect && +        (IsHFA || !isAggregateTypeForABI(Ty)) && +        TySize < SlotSize) { +      CharUnits Offset = SlotSize - TySize; +      BaseAddr = CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, Offset); +    } + +    RegAddr = CGF.Builder.CreateElementBitCast(BaseAddr, MemTy); +  } + +  CGF.EmitBranch(ContBlock); + +  //======================================= +  // Argument was on the stack +  //======================================= +  CGF.EmitBlock(OnStackBlock); + +  Address stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "stack_p"); +  llvm::Value *OnStackPtr = CGF.Builder.CreateLoad(stack_p, "stack"); + +  // Again, stack arguments may need realignment. In this case both integer and +  // floating-point ones might be affected. +  if (!IsIndirect && TyAlign.getQuantity() > 8) { +    int Align = TyAlign.getQuantity(); + +    OnStackPtr = CGF.Builder.CreatePtrToInt(OnStackPtr, CGF.Int64Ty); + +    OnStackPtr = CGF.Builder.CreateAdd( +        OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1), +        "align_stack"); +    OnStackPtr = CGF.Builder.CreateAnd( +        OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, -Align), +        "align_stack"); + +    OnStackPtr = CGF.Builder.CreateIntToPtr(OnStackPtr, CGF.Int8PtrTy); +  } +  Address OnStackAddr(OnStackPtr, +                      std::max(CharUnits::fromQuantity(8), TyAlign)); + +  // All stack slots are multiples of 8 bytes. +  CharUnits StackSlotSize = CharUnits::fromQuantity(8); +  CharUnits StackSize; +  if (IsIndirect) +    StackSize = StackSlotSize; +  else +    StackSize = TySize.alignTo(StackSlotSize); + +  llvm::Value *StackSizeC = CGF.Builder.getSize(StackSize); +  llvm::Value *NewStack = +      CGF.Builder.CreateInBoundsGEP(OnStackPtr, StackSizeC, "new_stack"); + +  // Write the new value of __stack for the next call to va_arg +  CGF.Builder.CreateStore(NewStack, stack_p); + +  if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) && +      TySize < StackSlotSize) { +    CharUnits Offset = StackSlotSize - TySize; +    OnStackAddr = CGF.Builder.CreateConstInBoundsByteGEP(OnStackAddr, Offset); +  } + +  OnStackAddr = CGF.Builder.CreateElementBitCast(OnStackAddr, MemTy); + +  CGF.EmitBranch(ContBlock); + +  //======================================= +  // Tidy up +  //======================================= +  CGF.EmitBlock(ContBlock); + +  Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, +                                 OnStackAddr, OnStackBlock, "vaargs.addr"); + +  if (IsIndirect) +    return Address(CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"), +                   TyAlign); + +  return ResAddr; +} + +Address AArch64ABIInfo::EmitDarwinVAArg(Address VAListAddr, QualType Ty, +                                        CodeGenFunction &CGF) const { +  // The backend's lowering doesn't support va_arg for aggregates or +  // illegal vector types.  Lower VAArg here for these cases and use +  // the LLVM va_arg instruction for everything else. +  if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty)) +    return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect()); + +  CharUnits SlotSize = CharUnits::fromQuantity(8); + +  // Empty records are ignored for parameter passing purposes. +  if (isEmptyRecord(getContext(), Ty, true)) { +    Address Addr(CGF.Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize); +    Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); +    return Addr; +  } + +  // The size of the actual thing passed, which might end up just +  // being a pointer for indirect types. +  auto TyInfo = getContext().getTypeInfoInChars(Ty); + +  // Arguments bigger than 16 bytes which aren't homogeneous +  // aggregates should be passed indirectly. +  bool IsIndirect = false; +  if (TyInfo.first.getQuantity() > 16) { +    const Type *Base = nullptr; +    uint64_t Members = 0; +    IsIndirect = !isHomogeneousAggregate(Ty, Base, Members); +  } + +  return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, +                          TyInfo, SlotSize, /*AllowHigherAlign*/ true); +} + +Address AArch64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, +                                    QualType Ty) const { +  return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, +                          CGF.getContext().getTypeInfoInChars(Ty), +                          CharUnits::fromQuantity(8), +                          /*allowHigherAlign*/ false); +} + +//===----------------------------------------------------------------------===// +// ARM ABI Implementation +//===----------------------------------------------------------------------===// + +namespace { + +class ARMABIInfo : public SwiftABIInfo { +public: +  enum ABIKind { +    APCS = 0, +    AAPCS = 1, +    AAPCS_VFP = 2, +    AAPCS16_VFP = 3, +  }; + +private: +  ABIKind Kind; + +public: +  ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) +      : SwiftABIInfo(CGT), Kind(_Kind) { +    setCCs(); +  } + +  bool isEABI() const { +    switch (getTarget().getTriple().getEnvironment()) { +    case llvm::Triple::Android: +    case llvm::Triple::EABI: +    case llvm::Triple::EABIHF: +    case llvm::Triple::GNUEABI: +    case llvm::Triple::GNUEABIHF: +    case llvm::Triple::MuslEABI: +    case llvm::Triple::MuslEABIHF: +      return true; +    default: +      return false; +    } +  } + +  bool isEABIHF() const { +    switch (getTarget().getTriple().getEnvironment()) { +    case llvm::Triple::EABIHF: +    case llvm::Triple::GNUEABIHF: +    case llvm::Triple::MuslEABIHF: +      return true; +    default: +      return false; +    } +  } + +  ABIKind getABIKind() const { return Kind; } + +private: +  ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic, +                                unsigned functionCallConv) const; +  ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic, +                                  unsigned functionCallConv) const; +  ABIArgInfo classifyHomogeneousAggregate(QualType Ty, const Type *Base, +                                          uint64_t Members) const; +  ABIArgInfo coerceIllegalVector(QualType Ty) const; +  bool isIllegalVectorType(QualType Ty) const; +  bool containsAnyFP16Vectors(QualType Ty) const; + +  bool isHomogeneousAggregateBaseType(QualType Ty) const override; +  bool isHomogeneousAggregateSmallEnough(const Type *Ty, +                                         uint64_t Members) const override; + +  bool isEffectivelyAAPCS_VFP(unsigned callConvention, bool acceptHalf) const; + +  void computeInfo(CGFunctionInfo &FI) const override; + +  Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, +                    QualType Ty) const override; + +  llvm::CallingConv::ID getLLVMDefaultCC() const; +  llvm::CallingConv::ID getABIDefaultCC() const; +  void setCCs(); + +  bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, +                                    bool asReturnValue) const override { +    return occupiesMoreThan(CGT, scalars, /*total*/ 4); +  } +  bool isSwiftErrorInRegister() const override { +    return true; +  } +  bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy, +                                 unsigned elts) const override; +}; + +class ARMTargetCodeGenInfo : public TargetCodeGenInfo { +public: +  ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) +    :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {} + +  const ARMABIInfo &getABIInfo() const { +    return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo()); +  } + +  int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { +    return 13; +  } + +  StringRef getARCRetainAutoreleasedReturnValueMarker() const override { +    return "mov\tr7, r7\t\t// marker for objc_retainAutoreleaseReturnValue"; +  } + +  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, +                               llvm::Value *Address) const override { +    llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); + +    // 0-15 are the 16 integer registers. +    AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15); +    return false; +  } + +  unsigned getSizeOfUnwindException() const override { +    if (getABIInfo().isEABI()) return 88; +    return TargetCodeGenInfo::getSizeOfUnwindException(); +  } + +  void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, +                           CodeGen::CodeGenModule &CGM) const override { +    if (GV->isDeclaration()) +      return; +    const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); +    if (!FD) +      return; + +    const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>(); +    if (!Attr) +      return; + +    const char *Kind; +    switch (Attr->getInterrupt()) { +    case ARMInterruptAttr::Generic: Kind = ""; break; +    case ARMInterruptAttr::IRQ:     Kind = "IRQ"; break; +    case ARMInterruptAttr::FIQ:     Kind = "FIQ"; break; +    case ARMInterruptAttr::SWI:     Kind = "SWI"; break; +    case ARMInterruptAttr::ABORT:   Kind = "ABORT"; break; +    case ARMInterruptAttr::UNDEF:   Kind = "UNDEF"; break; +    } + +    llvm::Function *Fn = cast<llvm::Function>(GV); + +    Fn->addFnAttr("interrupt", Kind); + +    ARMABIInfo::ABIKind ABI = cast<ARMABIInfo>(getABIInfo()).getABIKind(); +    if (ABI == ARMABIInfo::APCS) +      return; + +    // AAPCS guarantees that sp will be 8-byte aligned on any public interface, +    // however this is not necessarily true on taking any interrupt. Instruct +    // the backend to perform a realignment as part of the function prologue. +    llvm::AttrBuilder B; +    B.addStackAlignmentAttr(8); +    Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); +  } +}; + +class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo { +public: +  WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) +      : ARMTargetCodeGenInfo(CGT, K) {} + +  void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, +                           CodeGen::CodeGenModule &CGM) const override; + +  void getDependentLibraryOption(llvm::StringRef Lib, +                                 llvm::SmallString<24> &Opt) const override { +    Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib); +  } + +  void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value, +                               llvm::SmallString<32> &Opt) const override { +    Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; +  } +}; + +void WindowsARMTargetCodeGenInfo::setTargetAttributes( +    const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { +  ARMTargetCodeGenInfo::setTargetAttributes(D, GV, CGM); +  if (GV->isDeclaration()) +    return; +  addStackProbeTargetAttributes(D, GV, CGM); +} +} + +void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const { +  if (!::classifyReturnType(getCXXABI(), FI, *this)) +    FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), FI.isVariadic(), +                                            FI.getCallingConvention()); + +  for (auto &I : FI.arguments()) +    I.info = classifyArgumentType(I.type, FI.isVariadic(), +                                  FI.getCallingConvention()); + + +  // Always honor user-specified calling convention. +  if (FI.getCallingConvention() != llvm::CallingConv::C) +    return; + +  llvm::CallingConv::ID cc = getRuntimeCC(); +  if (cc != llvm::CallingConv::C) +    FI.setEffectiveCallingConvention(cc); +} + +/// Return the default calling convention that LLVM will use. +llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const { +  // The default calling convention that LLVM will infer. +  if (isEABIHF() || getTarget().getTriple().isWatchABI()) +    return llvm::CallingConv::ARM_AAPCS_VFP; +  else if (isEABI()) +    return llvm::CallingConv::ARM_AAPCS; +  else +    return llvm::CallingConv::ARM_APCS; +} + +/// Return the calling convention that our ABI would like us to use +/// as the C calling convention. +llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const { +  switch (getABIKind()) { +  case APCS: return llvm::CallingConv::ARM_APCS; +  case AAPCS: return llvm::CallingConv::ARM_AAPCS; +  case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; +  case AAPCS16_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; +  } +  llvm_unreachable("bad ABI kind"); +} + +void ARMABIInfo::setCCs() { +  assert(getRuntimeCC() == llvm::CallingConv::C); + +  // Don't muddy up the IR with a ton of explicit annotations if +  // they'd just match what LLVM will infer from the triple. +  llvm::CallingConv::ID abiCC = getABIDefaultCC(); +  if (abiCC != getLLVMDefaultCC()) +    RuntimeCC = abiCC; +} + +ABIArgInfo ARMABIInfo::coerceIllegalVector(QualType Ty) const { +  uint64_t Size = getContext().getTypeSize(Ty); +  if (Size <= 32) { +    llvm::Type *ResType = +        llvm::Type::getInt32Ty(getVMContext()); +    return ABIArgInfo::getDirect(ResType); +  } +  if (Size == 64 || Size == 128) { +    llvm::Type *ResType = llvm::VectorType::get( +        llvm::Type::getInt32Ty(getVMContext()), Size / 32); +    return ABIArgInfo::getDirect(ResType); +  } +  return getNaturalAlignIndirect(Ty, /*ByVal=*/false); +} + +ABIArgInfo ARMABIInfo::classifyHomogeneousAggregate(QualType Ty, +                                                    const Type *Base, +                                                    uint64_t Members) const { +  assert(Base && "Base class should be set for homogeneous aggregate"); +  // Base can be a floating-point or a vector. +  if (const VectorType *VT = Base->getAs<VectorType>()) { +    // FP16 vectors should be converted to integer vectors +    if (!getTarget().hasLegalHalfType() && containsAnyFP16Vectors(Ty)) { +      uint64_t Size = getContext().getTypeSize(VT); +      llvm::Type *NewVecTy = llvm::VectorType::get( +          llvm::Type::getInt32Ty(getVMContext()), Size / 32); +      llvm::Type *Ty = llvm::ArrayType::get(NewVecTy, Members); +      return ABIArgInfo::getDirect(Ty, 0, nullptr, false); +    } +  } +  return ABIArgInfo::getDirect(nullptr, 0, nullptr, false); +} + +ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, bool isVariadic, +                                            unsigned functionCallConv) const { +  // 6.1.2.1 The following argument types are VFP CPRCs: +  //   A single-precision floating-point type (including promoted +  //   half-precision types); A double-precision floating-point type; +  //   A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate +  //   with a Base Type of a single- or double-precision floating-point type, +  //   64-bit containerized vectors or 128-bit containerized vectors with one +  //   to four Elements. +  // Variadic functions should always marshal to the base standard. +  bool IsAAPCS_VFP = +      !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ false); + +  Ty = useFirstFieldIfTransparentUnion(Ty); + +  // Handle illegal vector types here. +  if (isIllegalVectorType(Ty)) +    return coerceIllegalVector(Ty); + +  // _Float16 and __fp16 get passed as if it were an int or float, but with +  // the top 16 bits unspecified. This is not done for OpenCL as it handles the +  // half type natively, and does not need to interwork with AAPCS code. +  if ((Ty->isFloat16Type() || Ty->isHalfType()) && +      !getContext().getLangOpts().NativeHalfArgsAndReturns) { +    llvm::Type *ResType = IsAAPCS_VFP ? +      llvm::Type::getFloatTy(getVMContext()) : +      llvm::Type::getInt32Ty(getVMContext()); +    return ABIArgInfo::getDirect(ResType); +  } + +  if (!isAggregateTypeForABI(Ty)) { +    // Treat an enum type as its underlying type. +    if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { +      Ty = EnumTy->getDecl()->getIntegerType(); +    } + +    return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) +                                          : ABIArgInfo::getDirect()); +  } + +  if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { +    return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); +  } + +  // Ignore empty records. +  if (isEmptyRecord(getContext(), Ty, true)) +    return ABIArgInfo::getIgnore(); + +  if (IsAAPCS_VFP) { +    // Homogeneous Aggregates need to be expanded when we can fit the aggregate +    // into VFP registers. +    const Type *Base = nullptr; +    uint64_t Members = 0; +    if (isHomogeneousAggregate(Ty, Base, Members)) +      return classifyHomogeneousAggregate(Ty, Base, Members); +  } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) { +    // WatchOS does have homogeneous aggregates. Note that we intentionally use +    // this convention even for a variadic function: the backend will use GPRs +    // if needed. +    const Type *Base = nullptr; +    uint64_t Members = 0; +    if (isHomogeneousAggregate(Ty, Base, Members)) { +      assert(Base && Members <= 4 && "unexpected homogeneous aggregate"); +      llvm::Type *Ty = +        llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members); +      return ABIArgInfo::getDirect(Ty, 0, nullptr, false); +    } +  } + +  if (getABIKind() == ARMABIInfo::AAPCS16_VFP && +      getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(16)) { +    // WatchOS is adopting the 64-bit AAPCS rule on composite types: if they're +    // bigger than 128-bits, they get placed in space allocated by the caller, +    // and a pointer is passed. +    return ABIArgInfo::getIndirect( +        CharUnits::fromQuantity(getContext().getTypeAlign(Ty) / 8), false); +  } + +  // Support byval for ARM. +  // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at +  // most 8-byte. We realign the indirect argument if type alignment is bigger +  // than ABI alignment. +  uint64_t ABIAlign = 4; +  uint64_t TyAlign; +  if (getABIKind() == ARMABIInfo::AAPCS_VFP || +      getABIKind() == ARMABIInfo::AAPCS) { +    TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty).getQuantity(); +    ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8); +  } else { +    TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity(); +  } +  if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) { +    assert(getABIKind() != ARMABIInfo::AAPCS16_VFP && "unexpected byval"); +    return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign), +                                   /*ByVal=*/true, +                                   /*Realign=*/TyAlign > ABIAlign); +  } + +  // On RenderScript, coerce Aggregates <= 64 bytes to an integer array of +  // same size and alignment. +  if (getTarget().isRenderScriptTarget()) { +    return coerceToIntArray(Ty, getContext(), getVMContext()); +  } + +  // Otherwise, pass by coercing to a structure of the appropriate size. +  llvm::Type* ElemTy; +  unsigned SizeRegs; +  // FIXME: Try to match the types of the arguments more accurately where +  // we can. +  if (TyAlign <= 4) { +    ElemTy = llvm::Type::getInt32Ty(getVMContext()); +    SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32; +  } else { +    ElemTy = llvm::Type::getInt64Ty(getVMContext()); +    SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64; +  } + +  return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs)); +} + +static bool isIntegerLikeType(QualType Ty, ASTContext &Context, +                              llvm::LLVMContext &VMContext) { +  // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure +  // is called integer-like if its size is less than or equal to one word, and +  // the offset of each of its addressable sub-fields is zero. + +  uint64_t Size = Context.getTypeSize(Ty); + +  // Check that the type fits in a word. +  if (Size > 32) +    return false; + +  // FIXME: Handle vector types! +  if (Ty->isVectorType()) +    return false; + +  // Float types are never treated as "integer like". +  if (Ty->isRealFloatingType()) +    return false; + +  // If this is a builtin or pointer type then it is ok. +  if (Ty->getAs<BuiltinType>() || Ty->isPointerType()) +    return true; + +  // Small complex integer types are "integer like". +  if (const ComplexType *CT = Ty->getAs<ComplexType>()) +    return isIntegerLikeType(CT->getElementType(), Context, VMContext); + +  // Single element and zero sized arrays should be allowed, by the definition +  // above, but they are not. + +  // Otherwise, it must be a record type. +  const RecordType *RT = Ty->getAs<RecordType>(); +  if (!RT) return false; + +  // Ignore records with flexible arrays. +  const RecordDecl *RD = RT->getDecl(); +  if (RD->hasFlexibleArrayMember()) +    return false; + +  // Check that all sub-fields are at offset 0, and are themselves "integer +  // like". +  const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); + +  bool HadField = false; +  unsigned idx = 0; +  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); +       i != e; ++i, ++idx) { +    const FieldDecl *FD = *i; + +    // Bit-fields are not addressable, we only need to verify they are "integer +    // like". We still have to disallow a subsequent non-bitfield, for example: +    //   struct { int : 0; int x } +    // is non-integer like according to gcc. +    if (FD->isBitField()) { +      if (!RD->isUnion()) +        HadField = true; + +      if (!isIntegerLikeType(FD->getType(), Context, VMContext)) +        return false; + +      continue; +    } + +    // Check if this field is at offset 0. +    if (Layout.getFieldOffset(idx) != 0) +      return false; + +    if (!isIntegerLikeType(FD->getType(), Context, VMContext)) +      return false; + +    // Only allow at most one field in a structure. This doesn't match the +    // wording above, but follows gcc in situations with a field following an +    // empty structure. +    if (!RD->isUnion()) { +      if (HadField) +        return false; + +      HadField = true; +    } +  } + +  return true; +} + +ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy, bool isVariadic, +                                          unsigned functionCallConv) const { + +  // Variadic functions should always marshal to the base standard. +  bool IsAAPCS_VFP = +      !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ true); + +  if (RetTy->isVoidType()) +    return ABIArgInfo::getIgnore(); + +  if (const VectorType *VT = RetTy->getAs<VectorType>()) { +    // Large vector types should be returned via memory. +    if (getContext().getTypeSize(RetTy) > 128) +      return getNaturalAlignIndirect(RetTy); +    // FP16 vectors should be converted to integer vectors +    if (!getTarget().hasLegalHalfType() && +        (VT->getElementType()->isFloat16Type() || +         VT->getElementType()->isHalfType())) +      return coerceIllegalVector(RetTy); +  } + +  // _Float16 and __fp16 get returned as if it were an int or float, but with +  // the top 16 bits unspecified. This is not done for OpenCL as it handles the +  // half type natively, and does not need to interwork with AAPCS code. +  if ((RetTy->isFloat16Type() || RetTy->isHalfType()) && +      !getContext().getLangOpts().NativeHalfArgsAndReturns) { +    llvm::Type *ResType = IsAAPCS_VFP ? +      llvm::Type::getFloatTy(getVMContext()) : +      llvm::Type::getInt32Ty(getVMContext()); +    return ABIArgInfo::getDirect(ResType); +  } + +  if (!isAggregateTypeForABI(RetTy)) { +    // Treat an enum type as its underlying type. +    if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) +      RetTy = EnumTy->getDecl()->getIntegerType(); + +    return RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) +                                            : ABIArgInfo::getDirect(); +  } + +  // Are we following APCS? +  if (getABIKind() == APCS) { +    if (isEmptyRecord(getContext(), RetTy, false)) +      return ABIArgInfo::getIgnore(); + +    // Complex types are all returned as packed integers. +    // +    // FIXME: Consider using 2 x vector types if the back end handles them +    // correctly. +    if (RetTy->isAnyComplexType()) +      return ABIArgInfo::getDirect(llvm::IntegerType::get( +          getVMContext(), getContext().getTypeSize(RetTy))); + +    // Integer like structures are returned in r0. +    if (isIntegerLikeType(RetTy, getContext(), getVMContext())) { +      // Return in the smallest viable integer type. +      uint64_t Size = getContext().getTypeSize(RetTy); +      if (Size <= 8) +        return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); +      if (Size <= 16) +        return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); +      return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); +    } + +    // Otherwise return in memory. +    return getNaturalAlignIndirect(RetTy); +  } + +  // Otherwise this is an AAPCS variant. + +  if (isEmptyRecord(getContext(), RetTy, true)) +    return ABIArgInfo::getIgnore(); + +  // Check for homogeneous aggregates with AAPCS-VFP. +  if (IsAAPCS_VFP) { +    const Type *Base = nullptr; +    uint64_t Members = 0; +    if (isHomogeneousAggregate(RetTy, Base, Members)) +      return classifyHomogeneousAggregate(RetTy, Base, Members); +  } + +  // Aggregates <= 4 bytes are returned in r0; other aggregates +  // are returned indirectly. +  uint64_t Size = getContext().getTypeSize(RetTy); +  if (Size <= 32) { +    // On RenderScript, coerce Aggregates <= 4 bytes to an integer array of +    // same size and alignment. +    if (getTarget().isRenderScriptTarget()) { +      return coerceToIntArray(RetTy, getContext(), getVMContext()); +    } +    if (getDataLayout().isBigEndian()) +      // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4) +      return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); + +    // Return in the smallest viable integer type. +    if (Size <= 8) +      return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); +    if (Size <= 16) +      return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); +    return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); +  } else if (Size <= 128 && getABIKind() == AAPCS16_VFP) { +    llvm::Type *Int32Ty = llvm::Type::getInt32Ty(getVMContext()); +    llvm::Type *CoerceTy = +        llvm::ArrayType::get(Int32Ty, llvm::alignTo(Size, 32) / 32); +    return ABIArgInfo::getDirect(CoerceTy); +  } + +  return getNaturalAlignIndirect(RetTy); +} + +/// isIllegalVector - check whether Ty is an illegal vector type. +bool ARMABIInfo::isIllegalVectorType(QualType Ty) const { +  if (const VectorType *VT = Ty->getAs<VectorType> ()) { +    // On targets that don't support FP16, FP16 is expanded into float, and we +    // don't want the ABI to depend on whether or not FP16 is supported in +    // hardware. Thus return false to coerce FP16 vectors into integer vectors. +    if (!getTarget().hasLegalHalfType() && +        (VT->getElementType()->isFloat16Type() || +         VT->getElementType()->isHalfType())) +      return true; +    if (isAndroid()) { +      // Android shipped using Clang 3.1, which supported a slightly different +      // vector ABI. The primary differences were that 3-element vector types +      // were legal, and so were sub 32-bit vectors (i.e. <2 x i8>). This path +      // accepts that legacy behavior for Android only. +      // Check whether VT is legal. +      unsigned NumElements = VT->getNumElements(); +      // NumElements should be power of 2 or equal to 3. +      if (!llvm::isPowerOf2_32(NumElements) && NumElements != 3) +        return true; +    } else { +      // Check whether VT is legal. +      unsigned NumElements = VT->getNumElements(); +      uint64_t Size = getContext().getTypeSize(VT); +      // NumElements should be power of 2. +      if (!llvm::isPowerOf2_32(NumElements)) +        return true; +      // Size should be greater than 32 bits. +      return Size <= 32; +    } +  } +  return false; +} + +/// Return true if a type contains any 16-bit floating point vectors +bool ARMABIInfo::containsAnyFP16Vectors(QualType Ty) const { +  if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { +    uint64_t NElements = AT->getSize().getZExtValue(); +    if (NElements == 0) +      return false; +    return containsAnyFP16Vectors(AT->getElementType()); +  } else if (const RecordType *RT = Ty->getAs<RecordType>()) { +    const RecordDecl *RD = RT->getDecl(); + +    // If this is a C++ record, check the bases first. +    if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) +      if (llvm::any_of(CXXRD->bases(), [this](const CXXBaseSpecifier &B) { +            return containsAnyFP16Vectors(B.getType()); +          })) +        return true; + +    if (llvm::any_of(RD->fields(), [this](FieldDecl *FD) { +          return FD && containsAnyFP16Vectors(FD->getType()); +        })) +      return true; + +    return false; +  } else { +    if (const VectorType *VT = Ty->getAs<VectorType>()) +      return (VT->getElementType()->isFloat16Type() || +              VT->getElementType()->isHalfType()); +    return false; +  } +} + +bool ARMABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize, +                                           llvm::Type *eltTy, +                                           unsigned numElts) const { +  if (!llvm::isPowerOf2_32(numElts)) +    return false; +  unsigned size = getDataLayout().getTypeStoreSizeInBits(eltTy); +  if (size > 64) +    return false; +  if (vectorSize.getQuantity() != 8 && +      (vectorSize.getQuantity() != 16 || numElts == 1)) +    return false; +  return true; +} + +bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { +  // Homogeneous aggregates for AAPCS-VFP must have base types of float, +  // double, or 64-bit or 128-bit vectors. +  if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { +    if (BT->getKind() == BuiltinType::Float || +        BT->getKind() == BuiltinType::Double || +        BT->getKind() == BuiltinType::LongDouble) +      return true; +  } else if (const VectorType *VT = Ty->getAs<VectorType>()) { +    unsigned VecSize = getContext().getTypeSize(VT); +    if (VecSize == 64 || VecSize == 128) +      return true; +  } +  return false; +} + +bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, +                                                   uint64_t Members) const { +  return Members <= 4; +} + +bool ARMABIInfo::isEffectivelyAAPCS_VFP(unsigned callConvention, +                                        bool acceptHalf) const { +  // Give precedence to user-specified calling conventions. +  if (callConvention != llvm::CallingConv::C) +    return (callConvention == llvm::CallingConv::ARM_AAPCS_VFP); +  else +    return (getABIKind() == AAPCS_VFP) || +           (acceptHalf && (getABIKind() == AAPCS16_VFP)); +} + +Address ARMABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, +                              QualType Ty) const { +  CharUnits SlotSize = CharUnits::fromQuantity(4); + +  // Empty records are ignored for parameter passing purposes. +  if (isEmptyRecord(getContext(), Ty, true)) { +    Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize); +    Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); +    return Addr; +  } + +  CharUnits TySize = getContext().getTypeSizeInChars(Ty); +  CharUnits TyAlignForABI = getContext().getTypeUnadjustedAlignInChars(Ty); + +  // Use indirect if size of the illegal vector is bigger than 16 bytes. +  bool IsIndirect = false; +  const Type *Base = nullptr; +  uint64_t Members = 0; +  if (TySize > CharUnits::fromQuantity(16) && isIllegalVectorType(Ty)) { +    IsIndirect = true; + +  // ARMv7k passes structs bigger than 16 bytes indirectly, in space +  // allocated by the caller. +  } else if (TySize > CharUnits::fromQuantity(16) && +             getABIKind() == ARMABIInfo::AAPCS16_VFP && +             !isHomogeneousAggregate(Ty, Base, Members)) { +    IsIndirect = true; + +  // Otherwise, bound the type's ABI alignment. +  // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for +  // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte. +  // Our callers should be prepared to handle an under-aligned address. +  } else if (getABIKind() == ARMABIInfo::AAPCS_VFP || +             getABIKind() == ARMABIInfo::AAPCS) { +    TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4)); +    TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(8)); +  } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) { +    // ARMv7k allows type alignment up to 16 bytes. +    TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4)); +    TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(16)); +  } else { +    TyAlignForABI = CharUnits::fromQuantity(4); +  } + +  std::pair<CharUnits, CharUnits> TyInfo = { TySize, TyAlignForABI }; +  return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TyInfo, +                          SlotSize, /*AllowHigherAlign*/ true); +} + +//===----------------------------------------------------------------------===// +// NVPTX ABI Implementation +//===----------------------------------------------------------------------===// + +namespace { + +class NVPTXABIInfo : public ABIInfo { +public: +  NVPTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} + +  ABIArgInfo classifyReturnType(QualType RetTy) const; +  ABIArgInfo classifyArgumentType(QualType Ty) const; + +  void computeInfo(CGFunctionInfo &FI) const override; +  Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, +                    QualType Ty) const override; +}; + +class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo { +public: +  NVPTXTargetCodeGenInfo(CodeGenTypes &CGT) +    : TargetCodeGenInfo(new NVPTXABIInfo(CGT)) {} + +  void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, +                           CodeGen::CodeGenModule &M) const override; +  bool shouldEmitStaticExternCAliases() const override; + +private: +  // Adds a NamedMDNode with F, Name, and Operand as operands, and adds the +  // resulting MDNode to the nvvm.annotations MDNode. +  static void addNVVMMetadata(llvm::Function *F, StringRef Name, int Operand); +}; + +/// Checks if the type is unsupported directly by the current target. +static bool isUnsupportedType(ASTContext &Context, QualType T) { +  if (!Context.getTargetInfo().hasFloat16Type() && T->isFloat16Type()) +    return true; +  if (!Context.getTargetInfo().hasFloat128Type() && +      (T->isFloat128Type() || +       (T->isRealFloatingType() && Context.getTypeSize(T) == 128))) +    return true; +  if (!Context.getTargetInfo().hasInt128Type() && T->isIntegerType() && +      Context.getTypeSize(T) > 64) +    return true; +  if (const auto *AT = T->getAsArrayTypeUnsafe()) +    return isUnsupportedType(Context, AT->getElementType()); +  const auto *RT = T->getAs<RecordType>(); +  if (!RT) +    return false; +  const RecordDecl *RD = RT->getDecl(); + +  // If this is a C++ record, check the bases first. +  if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) +    for (const CXXBaseSpecifier &I : CXXRD->bases()) +      if (isUnsupportedType(Context, I.getType())) +        return true; + +  for (const FieldDecl *I : RD->fields()) +    if (isUnsupportedType(Context, I->getType())) +      return true; +  return false; +} + +/// Coerce the given type into an array with maximum allowed size of elements. +static ABIArgInfo coerceToIntArrayWithLimit(QualType Ty, ASTContext &Context, +                                            llvm::LLVMContext &LLVMContext, +                                            unsigned MaxSize) { +  // Alignment and Size are measured in bits. +  const uint64_t Size = Context.getTypeSize(Ty); +  const uint64_t Alignment = Context.getTypeAlign(Ty); +  const unsigned Div = std::min<unsigned>(MaxSize, Alignment); +  llvm::Type *IntType = llvm::Type::getIntNTy(LLVMContext, Div); +  const uint64_t NumElements = (Size + Div - 1) / Div; +  return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements)); +} + +ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const { +  if (RetTy->isVoidType()) +    return ABIArgInfo::getIgnore(); + +  if (getContext().getLangOpts().OpenMP && +      getContext().getLangOpts().OpenMPIsDevice && +      isUnsupportedType(getContext(), RetTy)) +    return coerceToIntArrayWithLimit(RetTy, getContext(), getVMContext(), 64); + +  // note: this is different from default ABI +  if (!RetTy->isScalarType()) +    return ABIArgInfo::getDirect(); + +  // Treat an enum type as its underlying type. +  if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) +    RetTy = EnumTy->getDecl()->getIntegerType(); + +  return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) +                                           : ABIArgInfo::getDirect()); +} + +ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const { +  // Treat an enum type as its underlying type. +  if (const EnumType *EnumTy = Ty->getAs<EnumType>()) +    Ty = EnumTy->getDecl()->getIntegerType(); + +  // Return aggregates type as indirect by value +  if (isAggregateTypeForABI(Ty)) +    return getNaturalAlignIndirect(Ty, /* byval */ true); + +  return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) +                                        : ABIArgInfo::getDirect()); +} + +void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const { +  if (!getCXXABI().classifyReturnType(FI)) +    FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); +  for (auto &I : FI.arguments()) +    I.info = classifyArgumentType(I.type); + +  // Always honor user-specified calling convention. +  if (FI.getCallingConvention() != llvm::CallingConv::C) +    return; + +  FI.setEffectiveCallingConvention(getRuntimeCC()); +} + +Address NVPTXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, +                                QualType Ty) const { +  llvm_unreachable("NVPTX does not support varargs"); +} + +void NVPTXTargetCodeGenInfo::setTargetAttributes( +    const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { +  if (GV->isDeclaration()) +    return; +  const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); +  if (!FD) return; + +  llvm::Function *F = cast<llvm::Function>(GV); + +  // Perform special handling in OpenCL mode +  if (M.getLangOpts().OpenCL) { +    // Use OpenCL function attributes to check for kernel functions +    // By default, all functions are device functions +    if (FD->hasAttr<OpenCLKernelAttr>()) { +      // OpenCL __kernel functions get kernel metadata +      // Create !{<func-ref>, metadata !"kernel", i32 1} node +      addNVVMMetadata(F, "kernel", 1); +      // And kernel functions are not subject to inlining +      F->addFnAttr(llvm::Attribute::NoInline); +    } +  } + +  // Perform special handling in CUDA mode. +  if (M.getLangOpts().CUDA) { +    // CUDA __global__ functions get a kernel metadata entry.  Since +    // __global__ functions cannot be called from the device, we do not +    // need to set the noinline attribute. +    if (FD->hasAttr<CUDAGlobalAttr>()) { +      // Create !{<func-ref>, metadata !"kernel", i32 1} node +      addNVVMMetadata(F, "kernel", 1); +    } +    if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>()) { +      // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node +      llvm::APSInt MaxThreads(32); +      MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(M.getContext()); +      if (MaxThreads > 0) +        addNVVMMetadata(F, "maxntidx", MaxThreads.getExtValue()); + +      // min blocks is an optional argument for CUDALaunchBoundsAttr. If it was +      // not specified in __launch_bounds__ or if the user specified a 0 value, +      // we don't have to add a PTX directive. +      if (Attr->getMinBlocks()) { +        llvm::APSInt MinBlocks(32); +        MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(M.getContext()); +        if (MinBlocks > 0) +          // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node +          addNVVMMetadata(F, "minctasm", MinBlocks.getExtValue()); +      } +    } +  } +} + +void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::Function *F, StringRef Name, +                                             int Operand) { +  llvm::Module *M = F->getParent(); +  llvm::LLVMContext &Ctx = M->getContext(); + +  // Get "nvvm.annotations" metadata node +  llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations"); + +  llvm::Metadata *MDVals[] = { +      llvm::ConstantAsMetadata::get(F), llvm::MDString::get(Ctx, Name), +      llvm::ConstantAsMetadata::get( +          llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))}; +  // Append metadata to nvvm.annotations +  MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); +} + +bool NVPTXTargetCodeGenInfo::shouldEmitStaticExternCAliases() const { +  return false; +} +} + +//===----------------------------------------------------------------------===// +// SystemZ ABI Implementation +//===----------------------------------------------------------------------===// + +namespace { + +class SystemZABIInfo : public SwiftABIInfo { +  bool HasVector; + +public: +  SystemZABIInfo(CodeGenTypes &CGT, bool HV) +    : SwiftABIInfo(CGT), HasVector(HV) {} + +  bool isPromotableIntegerType(QualType Ty) const; +  bool isCompoundType(QualType Ty) const; +  bool isVectorArgumentType(QualType Ty) const; +  bool isFPArgumentType(QualType Ty) const; +  QualType GetSingleElementType(QualType Ty) const; + +  ABIArgInfo classifyReturnType(QualType RetTy) const; +  ABIArgInfo classifyArgumentType(QualType ArgTy) const; + +  void computeInfo(CGFunctionInfo &FI) const override { +    if (!getCXXABI().classifyReturnType(FI)) +      FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); +    for (auto &I : FI.arguments()) +      I.info = classifyArgumentType(I.type); +  } + +  Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, +                    QualType Ty) const override; + +  bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, +                                    bool asReturnValue) const override { +    return occupiesMoreThan(CGT, scalars, /*total*/ 4); +  } +  bool isSwiftErrorInRegister() const override { +    return false; +  } +}; + +class SystemZTargetCodeGenInfo : public TargetCodeGenInfo { +public: +  SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector) +    : TargetCodeGenInfo(new SystemZABIInfo(CGT, HasVector)) {} +}; + +} + +bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const { +  // Treat an enum type as its underlying type. +  if (const EnumType *EnumTy = Ty->getAs<EnumType>()) +    Ty = EnumTy->getDecl()->getIntegerType(); + +  // Promotable integer types are required to be promoted by the ABI. +  if (Ty->isPromotableIntegerType()) +    return true; + +  // 32-bit values must also be promoted. +  if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) +    switch (BT->getKind()) { +    case BuiltinType::Int: +    case BuiltinType::UInt: +      return true; +    default: +      return false; +    } +  return false; +} + +bool SystemZABIInfo::isCompoundType(QualType Ty) const { +  return (Ty->isAnyComplexType() || +          Ty->isVectorType() || +          isAggregateTypeForABI(Ty)); +} + +bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const { +  return (HasVector && +          Ty->isVectorType() && +          getContext().getTypeSize(Ty) <= 128); +} + +bool SystemZABIInfo::isFPArgumentType(QualType Ty) const { +  if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) +    switch (BT->getKind()) { +    case BuiltinType::Float: +    case BuiltinType::Double: +      return true; +    default: +      return false; +    } + +  return false; +} + +QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const { +  if (const RecordType *RT = Ty->getAsStructureType()) { +    const RecordDecl *RD = RT->getDecl(); +    QualType Found; + +    // If this is a C++ record, check the bases first. +    if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) +      for (const auto &I : CXXRD->bases()) { +        QualType Base = I.getType(); + +        // Empty bases don't affect things either way. +        if (isEmptyRecord(getContext(), Base, true)) +          continue; + +        if (!Found.isNull()) +          return Ty; +        Found = GetSingleElementType(Base); +      } + +    // Check the fields. +    for (const auto *FD : RD->fields()) { +      // For compatibility with GCC, ignore empty bitfields in C++ mode. +      // Unlike isSingleElementStruct(), empty structure and array fields +      // do count.  So do anonymous bitfields that aren't zero-sized. +      if (getContext().getLangOpts().CPlusPlus && +          FD->isZeroLengthBitField(getContext())) +        continue; + +      // Unlike isSingleElementStruct(), arrays do not count. +      // Nested structures still do though. +      if (!Found.isNull()) +        return Ty; +      Found = GetSingleElementType(FD->getType()); +    } + +    // Unlike isSingleElementStruct(), trailing padding is allowed. +    // An 8-byte aligned struct s { float f; } is passed as a double. +    if (!Found.isNull()) +      return Found; +  } + +  return Ty; +} + +Address SystemZABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, +                                  QualType Ty) const { +  // Assume that va_list type is correct; should be pointer to LLVM type: +  // struct { +  //   i64 __gpr; +  //   i64 __fpr; +  //   i8 *__overflow_arg_area; +  //   i8 *__reg_save_area; +  // }; + +  // Every non-vector argument occupies 8 bytes and is passed by preference +  // in either GPRs or FPRs.  Vector arguments occupy 8 or 16 bytes and are +  // always passed on the stack. +  Ty = getContext().getCanonicalType(Ty); +  auto TyInfo = getContext().getTypeInfoInChars(Ty); +  llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty); +  llvm::Type *DirectTy = ArgTy; +  ABIArgInfo AI = classifyArgumentType(Ty); +  bool IsIndirect = AI.isIndirect(); +  bool InFPRs = false; +  bool IsVector = false; +  CharUnits UnpaddedSize; +  CharUnits DirectAlign; +  if (IsIndirect) { +    DirectTy = llvm::PointerType::getUnqual(DirectTy); +    UnpaddedSize = DirectAlign = CharUnits::fromQuantity(8); +  } else { +    if (AI.getCoerceToType()) +      ArgTy = AI.getCoerceToType(); +    InFPRs = ArgTy->isFloatTy() || ArgTy->isDoubleTy(); +    IsVector = ArgTy->isVectorTy(); +    UnpaddedSize = TyInfo.first; +    DirectAlign = TyInfo.second; +  } +  CharUnits PaddedSize = CharUnits::fromQuantity(8); +  if (IsVector && UnpaddedSize > PaddedSize) +    PaddedSize = CharUnits::fromQuantity(16); +  assert((UnpaddedSize <= PaddedSize) && "Invalid argument size."); + +  CharUnits Padding = (PaddedSize - UnpaddedSize); + +  llvm::Type *IndexTy = CGF.Int64Ty; +  llvm::Value *PaddedSizeV = +    llvm::ConstantInt::get(IndexTy, PaddedSize.getQuantity()); + +  if (IsVector) { +    // Work out the address of a vector argument on the stack. +    // Vector arguments are always passed in the high bits of a +    // single (8 byte) or double (16 byte) stack slot. +    Address OverflowArgAreaPtr = +        CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr"); +    Address OverflowArgArea = +      Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"), +              TyInfo.second); +    Address MemAddr = +      CGF.Builder.CreateElementBitCast(OverflowArgArea, DirectTy, "mem_addr"); + +    // Update overflow_arg_area_ptr pointer +    llvm::Value *NewOverflowArgArea = +      CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV, +                            "overflow_arg_area"); +    CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); + +    return MemAddr; +  } + +  assert(PaddedSize.getQuantity() == 8); + +  unsigned MaxRegs, RegCountField, RegSaveIndex; +  CharUnits RegPadding; +  if (InFPRs) { +    MaxRegs = 4; // Maximum of 4 FPR arguments +    RegCountField = 1; // __fpr +    RegSaveIndex = 16; // save offset for f0 +    RegPadding = CharUnits(); // floats are passed in the high bits of an FPR +  } else { +    MaxRegs = 5; // Maximum of 5 GPR arguments +    RegCountField = 0; // __gpr +    RegSaveIndex = 2; // save offset for r2 +    RegPadding = Padding; // values are passed in the low bits of a GPR +  } + +  Address RegCountPtr = +      CGF.Builder.CreateStructGEP(VAListAddr, RegCountField, "reg_count_ptr"); +  llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count"); +  llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs); +  llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV, +                                                 "fits_in_regs"); + +  llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); +  llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); +  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); +  CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); + +  // Emit code to load the value if it was passed in registers. +  CGF.EmitBlock(InRegBlock); + +  // Work out the address of an argument register. +  llvm::Value *ScaledRegCount = +    CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count"); +  llvm::Value *RegBase = +    llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize.getQuantity() +                                      + RegPadding.getQuantity()); +  llvm::Value *RegOffset = +    CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset"); +  Address RegSaveAreaPtr = +      CGF.Builder.CreateStructGEP(VAListAddr, 3, "reg_save_area_ptr"); +  llvm::Value *RegSaveArea = +    CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area"); +  Address RawRegAddr(CGF.Builder.CreateGEP(RegSaveArea, RegOffset, +                                           "raw_reg_addr"), +                     PaddedSize); +  Address RegAddr = +    CGF.Builder.CreateElementBitCast(RawRegAddr, DirectTy, "reg_addr"); + +  // Update the register count +  llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1); +  llvm::Value *NewRegCount = +    CGF.Builder.CreateAdd(RegCount, One, "reg_count"); +  CGF.Builder.CreateStore(NewRegCount, RegCountPtr); +  CGF.EmitBranch(ContBlock); + +  // Emit code to load the value if it was passed in memory. +  CGF.EmitBlock(InMemBlock); + +  // Work out the address of a stack argument. +  Address OverflowArgAreaPtr = +      CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr"); +  Address OverflowArgArea = +    Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"), +            PaddedSize); +  Address RawMemAddr = +    CGF.Builder.CreateConstByteGEP(OverflowArgArea, Padding, "raw_mem_addr"); +  Address MemAddr = +    CGF.Builder.CreateElementBitCast(RawMemAddr, DirectTy, "mem_addr"); + +  // Update overflow_arg_area_ptr pointer +  llvm::Value *NewOverflowArgArea = +    CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV, +                          "overflow_arg_area"); +  CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); +  CGF.EmitBranch(ContBlock); + +  // Return the appropriate result. +  CGF.EmitBlock(ContBlock); +  Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, +                                 MemAddr, InMemBlock, "va_arg.addr"); + +  if (IsIndirect) +    ResAddr = Address(CGF.Builder.CreateLoad(ResAddr, "indirect_arg"), +                      TyInfo.second); + +  return ResAddr; +} + +ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const { +  if (RetTy->isVoidType()) +    return ABIArgInfo::getIgnore(); +  if (isVectorArgumentType(RetTy)) +    return ABIArgInfo::getDirect(); +  if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64) +    return getNaturalAlignIndirect(RetTy); +  return (isPromotableIntegerType(RetTy) ? ABIArgInfo::getExtend(RetTy) +                                         : ABIArgInfo::getDirect()); +} + +ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const { +  // Handle the generic C++ ABI. +  if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) +    return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); + +  // Integers and enums are extended to full register width. +  if (isPromotableIntegerType(Ty)) +    return ABIArgInfo::getExtend(Ty); + +  // Handle vector types and vector-like structure types.  Note that +  // as opposed to float-like structure types, we do not allow any +  // padding for vector-like structures, so verify the sizes match. +  uint64_t Size = getContext().getTypeSize(Ty); +  QualType SingleElementTy = GetSingleElementType(Ty); +  if (isVectorArgumentType(SingleElementTy) && +      getContext().getTypeSize(SingleElementTy) == Size) +    return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy)); + +  // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly. +  if (Size != 8 && Size != 16 && Size != 32 && Size != 64) +    return getNaturalAlignIndirect(Ty, /*ByVal=*/false); + +  // Handle small structures. +  if (const RecordType *RT = Ty->getAs<RecordType>()) { +    // Structures with flexible arrays have variable length, so really +    // fail the size test above. +    const RecordDecl *RD = RT->getDecl(); +    if (RD->hasFlexibleArrayMember()) +      return getNaturalAlignIndirect(Ty, /*ByVal=*/false); + +    // The structure is passed as an unextended integer, a float, or a double. +    llvm::Type *PassTy; +    if (isFPArgumentType(SingleElementTy)) { +      assert(Size == 32 || Size == 64); +      if (Size == 32) +        PassTy = llvm::Type::getFloatTy(getVMContext()); +      else +        PassTy = llvm::Type::getDoubleTy(getVMContext()); +    } else +      PassTy = llvm::IntegerType::get(getVMContext(), Size); +    return ABIArgInfo::getDirect(PassTy); +  } + +  // Non-structure compounds are passed indirectly. +  if (isCompoundType(Ty)) +    return getNaturalAlignIndirect(Ty, /*ByVal=*/false); + +  return ABIArgInfo::getDirect(nullptr); +} + +//===----------------------------------------------------------------------===// +// MSP430 ABI Implementation +//===----------------------------------------------------------------------===// + +namespace { + +class MSP430TargetCodeGenInfo : public TargetCodeGenInfo { +public: +  MSP430TargetCodeGenInfo(CodeGenTypes &CGT) +    : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} +  void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, +                           CodeGen::CodeGenModule &M) const override; +}; + +} + +void MSP430TargetCodeGenInfo::setTargetAttributes( +    const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { +  if (GV->isDeclaration()) +    return; +  if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { +    const auto *InterruptAttr = FD->getAttr<MSP430InterruptAttr>(); +    if (!InterruptAttr) +      return; + +    // Handle 'interrupt' attribute: +    llvm::Function *F = cast<llvm::Function>(GV); + +    // Step 1: Set ISR calling convention. +    F->setCallingConv(llvm::CallingConv::MSP430_INTR); + +    // Step 2: Add attributes goodness. +    F->addFnAttr(llvm::Attribute::NoInline); +    F->addFnAttr("interrupt", llvm::utostr(InterruptAttr->getNumber())); +  } +} + +//===----------------------------------------------------------------------===// +// MIPS ABI Implementation.  This works for both little-endian and +// big-endian variants. +//===----------------------------------------------------------------------===// + +namespace { +class MipsABIInfo : public ABIInfo { +  bool IsO32; +  unsigned MinABIStackAlignInBytes, StackAlignInBytes; +  void CoerceToIntArgs(uint64_t TySize, +                       SmallVectorImpl<llvm::Type *> &ArgList) const; +  llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const; +  llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const; +  llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const; +public: +  MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) : +    ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8), +    StackAlignInBytes(IsO32 ? 8 : 16) {} + +  ABIArgInfo classifyReturnType(QualType RetTy) const; +  ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const; +  void computeInfo(CGFunctionInfo &FI) const override; +  Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, +                    QualType Ty) const override; +  ABIArgInfo extendType(QualType Ty) const; +}; + +class MIPSTargetCodeGenInfo : public TargetCodeGenInfo { +  unsigned SizeOfUnwindException; +public: +  MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32) +    : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)), +      SizeOfUnwindException(IsO32 ? 24 : 32) {} + +  int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { +    return 29; +  } + +  void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, +                           CodeGen::CodeGenModule &CGM) const override { +    const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); +    if (!FD) return; +    llvm::Function *Fn = cast<llvm::Function>(GV); + +    if (FD->hasAttr<MipsLongCallAttr>()) +      Fn->addFnAttr("long-call"); +    else if (FD->hasAttr<MipsShortCallAttr>()) +      Fn->addFnAttr("short-call"); + +    // Other attributes do not have a meaning for declarations. +    if (GV->isDeclaration()) +      return; + +    if (FD->hasAttr<Mips16Attr>()) { +      Fn->addFnAttr("mips16"); +    } +    else if (FD->hasAttr<NoMips16Attr>()) { +      Fn->addFnAttr("nomips16"); +    } + +    if (FD->hasAttr<MicroMipsAttr>()) +      Fn->addFnAttr("micromips"); +    else if (FD->hasAttr<NoMicroMipsAttr>()) +      Fn->addFnAttr("nomicromips"); + +    const MipsInterruptAttr *Attr = FD->getAttr<MipsInterruptAttr>(); +    if (!Attr) +      return; + +    const char *Kind; +    switch (Attr->getInterrupt()) { +    case MipsInterruptAttr::eic:     Kind = "eic"; break; +    case MipsInterruptAttr::sw0:     Kind = "sw0"; break; +    case MipsInterruptAttr::sw1:     Kind = "sw1"; break; +    case MipsInterruptAttr::hw0:     Kind = "hw0"; break; +    case MipsInterruptAttr::hw1:     Kind = "hw1"; break; +    case MipsInterruptAttr::hw2:     Kind = "hw2"; break; +    case MipsInterruptAttr::hw3:     Kind = "hw3"; break; +    case MipsInterruptAttr::hw4:     Kind = "hw4"; break; +    case MipsInterruptAttr::hw5:     Kind = "hw5"; break; +    } + +    Fn->addFnAttr("interrupt", Kind); + +  } + +  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, +                               llvm::Value *Address) const override; + +  unsigned getSizeOfUnwindException() const override { +    return SizeOfUnwindException; +  } +}; +} + +void MipsABIInfo::CoerceToIntArgs( +    uint64_t TySize, SmallVectorImpl<llvm::Type *> &ArgList) const { +  llvm::IntegerType *IntTy = +    llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8); + +  // Add (TySize / MinABIStackAlignInBytes) args of IntTy. +  for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N) +    ArgList.push_back(IntTy); + +  // If necessary, add one more integer type to ArgList. +  unsigned R = TySize % (MinABIStackAlignInBytes * 8); + +  if (R) +    ArgList.push_back(llvm::IntegerType::get(getVMContext(), R)); +} + +// In N32/64, an aligned double precision floating point field is passed in +// a register. +llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const { +  SmallVector<llvm::Type*, 8> ArgList, IntArgList; + +  if (IsO32) { +    CoerceToIntArgs(TySize, ArgList); +    return llvm::StructType::get(getVMContext(), ArgList); +  } + +  if (Ty->isComplexType()) +    return CGT.ConvertType(Ty); + +  const RecordType *RT = Ty->getAs<RecordType>(); + +  // Unions/vectors are passed in integer registers. +  if (!RT || !RT->isStructureOrClassType()) { +    CoerceToIntArgs(TySize, ArgList); +    return llvm::StructType::get(getVMContext(), ArgList); +  } + +  const RecordDecl *RD = RT->getDecl(); +  const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); +  assert(!(TySize % 8) && "Size of structure must be multiple of 8."); + +  uint64_t LastOffset = 0; +  unsigned idx = 0; +  llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64); + +  // Iterate over fields in the struct/class and check if there are any aligned +  // double fields. +  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); +       i != e; ++i, ++idx) { +    const QualType Ty = i->getType(); +    const BuiltinType *BT = Ty->getAs<BuiltinType>(); + +    if (!BT || BT->getKind() != BuiltinType::Double) +      continue; + +    uint64_t Offset = Layout.getFieldOffset(idx); +    if (Offset % 64) // Ignore doubles that are not aligned. +      continue; + +    // Add ((Offset - LastOffset) / 64) args of type i64. +    for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j) +      ArgList.push_back(I64); + +    // Add double type. +    ArgList.push_back(llvm::Type::getDoubleTy(getVMContext())); +    LastOffset = Offset + 64; +  } + +  CoerceToIntArgs(TySize - LastOffset, IntArgList); +  ArgList.append(IntArgList.begin(), IntArgList.end()); + +  return llvm::StructType::get(getVMContext(), ArgList); +} + +llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset, +                                        uint64_t Offset) const { +  if (OrigOffset + MinABIStackAlignInBytes > Offset) +    return nullptr; + +  return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8); +} + +ABIArgInfo +MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const { +  Ty = useFirstFieldIfTransparentUnion(Ty); + +  uint64_t OrigOffset = Offset; +  uint64_t TySize = getContext().getTypeSize(Ty); +  uint64_t Align = getContext().getTypeAlign(Ty) / 8; + +  Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes), +                   (uint64_t)StackAlignInBytes); +  unsigned CurrOffset = llvm::alignTo(Offset, Align); +  Offset = CurrOffset + llvm::alignTo(TySize, Align * 8) / 8; + +  if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) { +    // Ignore empty aggregates. +    if (TySize == 0) +      return ABIArgInfo::getIgnore(); + +    if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { +      Offset = OrigOffset + MinABIStackAlignInBytes; +      return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); +    } + +    // If we have reached here, aggregates are passed directly by coercing to +    // another structure type. Padding is inserted if the offset of the +    // aggregate is unaligned. +    ABIArgInfo ArgInfo = +        ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0, +                              getPaddingType(OrigOffset, CurrOffset)); +    ArgInfo.setInReg(true); +    return ArgInfo; +  } + +  // Treat an enum type as its underlying type. +  if (const EnumType *EnumTy = Ty->getAs<EnumType>()) +    Ty = EnumTy->getDecl()->getIntegerType(); + +  // All integral types are promoted to the GPR width. +  if (Ty->isIntegralOrEnumerationType()) +    return extendType(Ty); + +  return ABIArgInfo::getDirect( +      nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset)); +} + +llvm::Type* +MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const { +  const RecordType *RT = RetTy->getAs<RecordType>(); +  SmallVector<llvm::Type*, 8> RTList; + +  if (RT && RT->isStructureOrClassType()) { +    const RecordDecl *RD = RT->getDecl(); +    const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); +    unsigned FieldCnt = Layout.getFieldCount(); + +    // N32/64 returns struct/classes in floating point registers if the +    // following conditions are met: +    // 1. The size of the struct/class is no larger than 128-bit. +    // 2. The struct/class has one or two fields all of which are floating +    //    point types. +    // 3. The offset of the first field is zero (this follows what gcc does). +    // +    // Any other composite results are returned in integer registers. +    // +    if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) { +      RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end(); +      for (; b != e; ++b) { +        const BuiltinType *BT = b->getType()->getAs<BuiltinType>(); + +        if (!BT || !BT->isFloatingPoint()) +          break; + +        RTList.push_back(CGT.ConvertType(b->getType())); +      } + +      if (b == e) +        return llvm::StructType::get(getVMContext(), RTList, +                                     RD->hasAttr<PackedAttr>()); + +      RTList.clear(); +    } +  } + +  CoerceToIntArgs(Size, RTList); +  return llvm::StructType::get(getVMContext(), RTList); +} + +ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const { +  uint64_t Size = getContext().getTypeSize(RetTy); + +  if (RetTy->isVoidType()) +    return ABIArgInfo::getIgnore(); + +  // O32 doesn't treat zero-sized structs differently from other structs. +  // However, N32/N64 ignores zero sized return values. +  if (!IsO32 && Size == 0) +    return ABIArgInfo::getIgnore(); + +  if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) { +    if (Size <= 128) { +      if (RetTy->isAnyComplexType()) +        return ABIArgInfo::getDirect(); + +      // O32 returns integer vectors in registers and N32/N64 returns all small +      // aggregates in registers. +      if (!IsO32 || +          (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) { +        ABIArgInfo ArgInfo = +            ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size)); +        ArgInfo.setInReg(true); +        return ArgInfo; +      } +    } + +    return getNaturalAlignIndirect(RetTy); +  } + +  // Treat an enum type as its underlying type. +  if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) +    RetTy = EnumTy->getDecl()->getIntegerType(); + +  if (RetTy->isPromotableIntegerType()) +    return ABIArgInfo::getExtend(RetTy); + +  if ((RetTy->isUnsignedIntegerOrEnumerationType() || +      RetTy->isSignedIntegerOrEnumerationType()) && Size == 32 && !IsO32) +    return ABIArgInfo::getSignExtend(RetTy); + +  return ABIArgInfo::getDirect(); +} + +void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const { +  ABIArgInfo &RetInfo = FI.getReturnInfo(); +  if (!getCXXABI().classifyReturnType(FI)) +    RetInfo = classifyReturnType(FI.getReturnType()); + +  // Check if a pointer to an aggregate is passed as a hidden argument. +  uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0; + +  for (auto &I : FI.arguments()) +    I.info = classifyArgumentType(I.type, Offset); +} + +Address MipsABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, +                               QualType OrigTy) const { +  QualType Ty = OrigTy; + +  // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64. +  // Pointers are also promoted in the same way but this only matters for N32. +  unsigned SlotSizeInBits = IsO32 ? 32 : 64; +  unsigned PtrWidth = getTarget().getPointerWidth(0); +  bool DidPromote = false; +  if ((Ty->isIntegerType() && +          getContext().getIntWidth(Ty) < SlotSizeInBits) || +      (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) { +    DidPromote = true; +    Ty = getContext().getIntTypeForBitwidth(SlotSizeInBits, +                                            Ty->isSignedIntegerType()); +  } + +  auto TyInfo = getContext().getTypeInfoInChars(Ty); + +  // The alignment of things in the argument area is never larger than +  // StackAlignInBytes. +  TyInfo.second = +    std::min(TyInfo.second, CharUnits::fromQuantity(StackAlignInBytes)); + +  // MinABIStackAlignInBytes is the size of argument slots on the stack. +  CharUnits ArgSlotSize = CharUnits::fromQuantity(MinABIStackAlignInBytes); + +  Address Addr = emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, +                          TyInfo, ArgSlotSize, /*AllowHigherAlign*/ true); + + +  // If there was a promotion, "unpromote" into a temporary. +  // TODO: can we just use a pointer into a subset of the original slot? +  if (DidPromote) { +    Address Temp = CGF.CreateMemTemp(OrigTy, "vaarg.promotion-temp"); +    llvm::Value *Promoted = CGF.Builder.CreateLoad(Addr); + +    // Truncate down to the right width. +    llvm::Type *IntTy = (OrigTy->isIntegerType() ? Temp.getElementType() +                                                 : CGF.IntPtrTy); +    llvm::Value *V = CGF.Builder.CreateTrunc(Promoted, IntTy); +    if (OrigTy->isPointerType()) +      V = CGF.Builder.CreateIntToPtr(V, Temp.getElementType()); + +    CGF.Builder.CreateStore(V, Temp); +    Addr = Temp; +  } + +  return Addr; +} + +ABIArgInfo MipsABIInfo::extendType(QualType Ty) const { +  int TySize = getContext().getTypeSize(Ty); + +  // MIPS64 ABI requires unsigned 32 bit integers to be sign extended. +  if (Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32) +    return ABIArgInfo::getSignExtend(Ty); + +  return ABIArgInfo::getExtend(Ty); +} + +bool +MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, +                                               llvm::Value *Address) const { +  // This information comes from gcc's implementation, which seems to +  // as canonical as it gets. + +  // Everything on MIPS is 4 bytes.  Double-precision FP registers +  // are aliased to pairs of single-precision FP registers. +  llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); + +  // 0-31 are the general purpose registers, $0 - $31. +  // 32-63 are the floating-point registers, $f0 - $f31. +  // 64 and 65 are the multiply/divide registers, $hi and $lo. +  // 66 is the (notional, I think) register for signal-handler return. +  AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65); + +  // 67-74 are the floating-point status registers, $fcc0 - $fcc7. +  // They are one bit wide and ignored here. + +  // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31. +  // (coprocessor 1 is the FP unit) +  // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31. +  // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31. +  // 176-181 are the DSP accumulator registers. +  AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181); +  return false; +} + +//===----------------------------------------------------------------------===// +// AVR ABI Implementation. +//===----------------------------------------------------------------------===// + +namespace { +class AVRTargetCodeGenInfo : public TargetCodeGenInfo { +public: +  AVRTargetCodeGenInfo(CodeGenTypes &CGT) +    : TargetCodeGenInfo(new DefaultABIInfo(CGT)) { } + +  void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, +                           CodeGen::CodeGenModule &CGM) const override { +    if (GV->isDeclaration()) +      return; +    const auto *FD = dyn_cast_or_null<FunctionDecl>(D); +    if (!FD) return; +    auto *Fn = cast<llvm::Function>(GV); + +    if (FD->getAttr<AVRInterruptAttr>()) +      Fn->addFnAttr("interrupt"); + +    if (FD->getAttr<AVRSignalAttr>()) +      Fn->addFnAttr("signal"); +  } +}; +} + +//===----------------------------------------------------------------------===// +// TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults. +// Currently subclassed only to implement custom OpenCL C function attribute +// handling. +//===----------------------------------------------------------------------===// + +namespace { + +class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo { +public: +  TCETargetCodeGenInfo(CodeGenTypes &CGT) +    : DefaultTargetCodeGenInfo(CGT) {} + +  void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, +                           CodeGen::CodeGenModule &M) const override; +}; + +void TCETargetCodeGenInfo::setTargetAttributes( +    const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { +  if (GV->isDeclaration()) +    return; +  const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); +  if (!FD) return; + +  llvm::Function *F = cast<llvm::Function>(GV); + +  if (M.getLangOpts().OpenCL) { +    if (FD->hasAttr<OpenCLKernelAttr>()) { +      // OpenCL C Kernel functions are not subject to inlining +      F->addFnAttr(llvm::Attribute::NoInline); +      const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>(); +      if (Attr) { +        // Convert the reqd_work_group_size() attributes to metadata. +        llvm::LLVMContext &Context = F->getContext(); +        llvm::NamedMDNode *OpenCLMetadata = +            M.getModule().getOrInsertNamedMetadata( +                "opencl.kernel_wg_size_info"); + +        SmallVector<llvm::Metadata *, 5> Operands; +        Operands.push_back(llvm::ConstantAsMetadata::get(F)); + +        Operands.push_back( +            llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( +                M.Int32Ty, llvm::APInt(32, Attr->getXDim())))); +        Operands.push_back( +            llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( +                M.Int32Ty, llvm::APInt(32, Attr->getYDim())))); +        Operands.push_back( +            llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( +                M.Int32Ty, llvm::APInt(32, Attr->getZDim())))); + +        // Add a boolean constant operand for "required" (true) or "hint" +        // (false) for implementing the work_group_size_hint attr later. +        // Currently always true as the hint is not yet implemented. +        Operands.push_back( +            llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context))); +        OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands)); +      } +    } +  } +} + +} + +//===----------------------------------------------------------------------===// +// Hexagon ABI Implementation +//===----------------------------------------------------------------------===// + +namespace { + +class HexagonABIInfo : public ABIInfo { + + +public: +  HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} + +private: + +  ABIArgInfo classifyReturnType(QualType RetTy) const; +  ABIArgInfo classifyArgumentType(QualType RetTy) const; + +  void computeInfo(CGFunctionInfo &FI) const override; + +  Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, +                    QualType Ty) const override; +}; + +class HexagonTargetCodeGenInfo : public TargetCodeGenInfo { +public: +  HexagonTargetCodeGenInfo(CodeGenTypes &CGT) +    :TargetCodeGenInfo(new HexagonABIInfo(CGT)) {} + +  int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { +    return 29; +  } +}; + +} + +void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const { +  if (!getCXXABI().classifyReturnType(FI)) +    FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); +  for (auto &I : FI.arguments()) +    I.info = classifyArgumentType(I.type); +} + +ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const { +  if (!isAggregateTypeForABI(Ty)) { +    // Treat an enum type as its underlying type. +    if (const EnumType *EnumTy = Ty->getAs<EnumType>()) +      Ty = EnumTy->getDecl()->getIntegerType(); + +    return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) +                                          : ABIArgInfo::getDirect()); +  } + +  if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) +    return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); + +  // Ignore empty records. +  if (isEmptyRecord(getContext(), Ty, true)) +    return ABIArgInfo::getIgnore(); + +  uint64_t Size = getContext().getTypeSize(Ty); +  if (Size > 64) +    return getNaturalAlignIndirect(Ty, /*ByVal=*/true); +    // Pass in the smallest viable integer type. +  else if (Size > 32) +      return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext())); +  else if (Size > 16) +      return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); +  else if (Size > 8) +      return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); +  else +      return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); +} + +ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const { +  if (RetTy->isVoidType()) +    return ABIArgInfo::getIgnore(); + +  // Large vector types should be returned via memory. +  if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 64) +    return getNaturalAlignIndirect(RetTy); + +  if (!isAggregateTypeForABI(RetTy)) { +    // Treat an enum type as its underlying type. +    if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) +      RetTy = EnumTy->getDecl()->getIntegerType(); + +    return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) +                                             : ABIArgInfo::getDirect()); +  } + +  if (isEmptyRecord(getContext(), RetTy, true)) +    return ABIArgInfo::getIgnore(); + +  // Aggregates <= 8 bytes are returned in r0; other aggregates +  // are returned indirectly. +  uint64_t Size = getContext().getTypeSize(RetTy); +  if (Size <= 64) { +    // Return in the smallest viable integer type. +    if (Size <= 8) +      return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); +    if (Size <= 16) +      return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); +    if (Size <= 32) +      return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); +    return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext())); +  } + +  return getNaturalAlignIndirect(RetTy, /*ByVal=*/true); +} + +Address HexagonABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, +                                  QualType Ty) const { +  // FIXME: Someone needs to audit that this handle alignment correctly. +  return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, +                          getContext().getTypeInfoInChars(Ty), +                          CharUnits::fromQuantity(4), +                          /*AllowHigherAlign*/ true); +} + +//===----------------------------------------------------------------------===// +// Lanai ABI Implementation +//===----------------------------------------------------------------------===// + +namespace { +class LanaiABIInfo : public DefaultABIInfo { +public: +  LanaiABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} + +  bool shouldUseInReg(QualType Ty, CCState &State) const; + +  void computeInfo(CGFunctionInfo &FI) const override { +    CCState State(FI.getCallingConvention()); +    // Lanai uses 4 registers to pass arguments unless the function has the +    // regparm attribute set. +    if (FI.getHasRegParm()) { +      State.FreeRegs = FI.getRegParm(); +    } else { +      State.FreeRegs = 4; +    } + +    if (!getCXXABI().classifyReturnType(FI)) +      FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); +    for (auto &I : FI.arguments()) +      I.info = classifyArgumentType(I.type, State); +  } + +  ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; +  ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; +}; +} // end anonymous namespace + +bool LanaiABIInfo::shouldUseInReg(QualType Ty, CCState &State) const { +  unsigned Size = getContext().getTypeSize(Ty); +  unsigned SizeInRegs = llvm::alignTo(Size, 32U) / 32U; + +  if (SizeInRegs == 0) +    return false; + +  if (SizeInRegs > State.FreeRegs) { +    State.FreeRegs = 0; +    return false; +  } + +  State.FreeRegs -= SizeInRegs; + +  return true; +} + +ABIArgInfo LanaiABIInfo::getIndirectResult(QualType Ty, bool ByVal, +                                           CCState &State) const { +  if (!ByVal) { +    if (State.FreeRegs) { +      --State.FreeRegs; // Non-byval indirects just use one pointer. +      return getNaturalAlignIndirectInReg(Ty); +    } +    return getNaturalAlignIndirect(Ty, false); +  } + +  // Compute the byval alignment. +  const unsigned MinABIStackAlignInBytes = 4; +  unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; +  return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true, +                                 /*Realign=*/TypeAlign > +                                     MinABIStackAlignInBytes); +} + +ABIArgInfo LanaiABIInfo::classifyArgumentType(QualType Ty, +                                              CCState &State) const { +  // Check with the C++ ABI first. +  const RecordType *RT = Ty->getAs<RecordType>(); +  if (RT) { +    CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); +    if (RAA == CGCXXABI::RAA_Indirect) { +      return getIndirectResult(Ty, /*ByVal=*/false, State); +    } else if (RAA == CGCXXABI::RAA_DirectInMemory) { +      return getNaturalAlignIndirect(Ty, /*ByRef=*/true); +    } +  } + +  if (isAggregateTypeForABI(Ty)) { +    // Structures with flexible arrays are always indirect. +    if (RT && RT->getDecl()->hasFlexibleArrayMember()) +      return getIndirectResult(Ty, /*ByVal=*/true, State); + +    // Ignore empty structs/unions. +    if (isEmptyRecord(getContext(), Ty, true)) +      return ABIArgInfo::getIgnore(); + +    llvm::LLVMContext &LLVMContext = getVMContext(); +    unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32; +    if (SizeInRegs <= State.FreeRegs) { +      llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); +      SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32); +      llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); +      State.FreeRegs -= SizeInRegs; +      return ABIArgInfo::getDirectInReg(Result); +    } else { +      State.FreeRegs = 0; +    } +    return getIndirectResult(Ty, true, State); +  } + +  // Treat an enum type as its underlying type. +  if (const auto *EnumTy = Ty->getAs<EnumType>()) +    Ty = EnumTy->getDecl()->getIntegerType(); + +  bool InReg = shouldUseInReg(Ty, State); +  if (Ty->isPromotableIntegerType()) { +    if (InReg) +      return ABIArgInfo::getDirectInReg(); +    return ABIArgInfo::getExtend(Ty); +  } +  if (InReg) +    return ABIArgInfo::getDirectInReg(); +  return ABIArgInfo::getDirect(); +} + +namespace { +class LanaiTargetCodeGenInfo : public TargetCodeGenInfo { +public: +  LanaiTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) +      : TargetCodeGenInfo(new LanaiABIInfo(CGT)) {} +}; +} + +//===----------------------------------------------------------------------===// +// AMDGPU ABI Implementation +//===----------------------------------------------------------------------===// + +namespace { + +class AMDGPUABIInfo final : public DefaultABIInfo { +private: +  static const unsigned MaxNumRegsForArgsRet = 16; + +  unsigned numRegsForType(QualType Ty) const; + +  bool isHomogeneousAggregateBaseType(QualType Ty) const override; +  bool isHomogeneousAggregateSmallEnough(const Type *Base, +                                         uint64_t Members) const override; + +public: +  explicit AMDGPUABIInfo(CodeGen::CodeGenTypes &CGT) : +    DefaultABIInfo(CGT) {} + +  ABIArgInfo classifyReturnType(QualType RetTy) const; +  ABIArgInfo classifyKernelArgumentType(QualType Ty) const; +  ABIArgInfo classifyArgumentType(QualType Ty, unsigned &NumRegsLeft) const; + +  void computeInfo(CGFunctionInfo &FI) const override; +}; + +bool AMDGPUABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { +  return true; +} + +bool AMDGPUABIInfo::isHomogeneousAggregateSmallEnough( +  const Type *Base, uint64_t Members) const { +  uint32_t NumRegs = (getContext().getTypeSize(Base) + 31) / 32; + +  // Homogeneous Aggregates may occupy at most 16 registers. +  return Members * NumRegs <= MaxNumRegsForArgsRet; +} + +/// Estimate number of registers the type will use when passed in registers. +unsigned AMDGPUABIInfo::numRegsForType(QualType Ty) const { +  unsigned NumRegs = 0; + +  if (const VectorType *VT = Ty->getAs<VectorType>()) { +    // Compute from the number of elements. The reported size is based on the +    // in-memory size, which includes the padding 4th element for 3-vectors. +    QualType EltTy = VT->getElementType(); +    unsigned EltSize = getContext().getTypeSize(EltTy); + +    // 16-bit element vectors should be passed as packed. +    if (EltSize == 16) +      return (VT->getNumElements() + 1) / 2; + +    unsigned EltNumRegs = (EltSize + 31) / 32; +    return EltNumRegs * VT->getNumElements(); +  } + +  if (const RecordType *RT = Ty->getAs<RecordType>()) { +    const RecordDecl *RD = RT->getDecl(); +    assert(!RD->hasFlexibleArrayMember()); + +    for (const FieldDecl *Field : RD->fields()) { +      QualType FieldTy = Field->getType(); +      NumRegs += numRegsForType(FieldTy); +    } + +    return NumRegs; +  } + +  return (getContext().getTypeSize(Ty) + 31) / 32; +} + +void AMDGPUABIInfo::computeInfo(CGFunctionInfo &FI) const { +  llvm::CallingConv::ID CC = FI.getCallingConvention(); + +  if (!getCXXABI().classifyReturnType(FI)) +    FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); + +  unsigned NumRegsLeft = MaxNumRegsForArgsRet; +  for (auto &Arg : FI.arguments()) { +    if (CC == llvm::CallingConv::AMDGPU_KERNEL) { +      Arg.info = classifyKernelArgumentType(Arg.type); +    } else { +      Arg.info = classifyArgumentType(Arg.type, NumRegsLeft); +    } +  } +} + +ABIArgInfo AMDGPUABIInfo::classifyReturnType(QualType RetTy) const { +  if (isAggregateTypeForABI(RetTy)) { +    // Records with non-trivial destructors/copy-constructors should not be +    // returned by value. +    if (!getRecordArgABI(RetTy, getCXXABI())) { +      // Ignore empty structs/unions. +      if (isEmptyRecord(getContext(), RetTy, true)) +        return ABIArgInfo::getIgnore(); + +      // Lower single-element structs to just return a regular value. +      if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) +        return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); + +      if (const RecordType *RT = RetTy->getAs<RecordType>()) { +        const RecordDecl *RD = RT->getDecl(); +        if (RD->hasFlexibleArrayMember()) +          return DefaultABIInfo::classifyReturnType(RetTy); +      } + +      // Pack aggregates <= 4 bytes into single VGPR or pair. +      uint64_t Size = getContext().getTypeSize(RetTy); +      if (Size <= 16) +        return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); + +      if (Size <= 32) +        return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); + +      if (Size <= 64) { +        llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext()); +        return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2)); +      } + +      if (numRegsForType(RetTy) <= MaxNumRegsForArgsRet) +        return ABIArgInfo::getDirect(); +    } +  } + +  // Otherwise just do the default thing. +  return DefaultABIInfo::classifyReturnType(RetTy); +} + +/// For kernels all parameters are really passed in a special buffer. It doesn't +/// make sense to pass anything byval, so everything must be direct. +ABIArgInfo AMDGPUABIInfo::classifyKernelArgumentType(QualType Ty) const { +  Ty = useFirstFieldIfTransparentUnion(Ty); + +  // TODO: Can we omit empty structs? + +  // Coerce single element structs to its element. +  if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) +    return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); + +  // If we set CanBeFlattened to true, CodeGen will expand the struct to its +  // individual elements, which confuses the Clover OpenCL backend; therefore we +  // have to set it to false here. Other args of getDirect() are just defaults. +  return ABIArgInfo::getDirect(nullptr, 0, nullptr, false); +} + +ABIArgInfo AMDGPUABIInfo::classifyArgumentType(QualType Ty, +                                               unsigned &NumRegsLeft) const { +  assert(NumRegsLeft <= MaxNumRegsForArgsRet && "register estimate underflow"); + +  Ty = useFirstFieldIfTransparentUnion(Ty); + +  if (isAggregateTypeForABI(Ty)) { +    // Records with non-trivial destructors/copy-constructors should not be +    // passed by value. +    if (auto RAA = getRecordArgABI(Ty, getCXXABI())) +      return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); + +    // Ignore empty structs/unions. +    if (isEmptyRecord(getContext(), Ty, true)) +      return ABIArgInfo::getIgnore(); + +    // Lower single-element structs to just pass a regular value. TODO: We +    // could do reasonable-size multiple-element structs too, using getExpand(), +    // though watch out for things like bitfields. +    if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) +      return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); + +    if (const RecordType *RT = Ty->getAs<RecordType>()) { +      const RecordDecl *RD = RT->getDecl(); +      if (RD->hasFlexibleArrayMember()) +        return DefaultABIInfo::classifyArgumentType(Ty); +    } + +    // Pack aggregates <= 8 bytes into single VGPR or pair. +    uint64_t Size = getContext().getTypeSize(Ty); +    if (Size <= 64) { +      unsigned NumRegs = (Size + 31) / 32; +      NumRegsLeft -= std::min(NumRegsLeft, NumRegs); + +      if (Size <= 16) +        return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); + +      if (Size <= 32) +        return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); + +      // XXX: Should this be i64 instead, and should the limit increase? +      llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext()); +      return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2)); +    } + +    if (NumRegsLeft > 0) { +      unsigned NumRegs = numRegsForType(Ty); +      if (NumRegsLeft >= NumRegs) { +        NumRegsLeft -= NumRegs; +        return ABIArgInfo::getDirect(); +      } +    } +  } + +  // Otherwise just do the default thing. +  ABIArgInfo ArgInfo = DefaultABIInfo::classifyArgumentType(Ty); +  if (!ArgInfo.isIndirect()) { +    unsigned NumRegs = numRegsForType(Ty); +    NumRegsLeft -= std::min(NumRegs, NumRegsLeft); +  } + +  return ArgInfo; +} + +class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo { +public: +  AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT) +    : TargetCodeGenInfo(new AMDGPUABIInfo(CGT)) {} +  void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, +                           CodeGen::CodeGenModule &M) const override; +  unsigned getOpenCLKernelCallingConv() const override; + +  llvm::Constant *getNullPointer(const CodeGen::CodeGenModule &CGM, +      llvm::PointerType *T, QualType QT) const override; + +  LangAS getASTAllocaAddressSpace() const override { +    return getLangASFromTargetAS( +        getABIInfo().getDataLayout().getAllocaAddrSpace()); +  } +  LangAS getGlobalVarAddressSpace(CodeGenModule &CGM, +                                  const VarDecl *D) const override; +  llvm::SyncScope::ID getLLVMSyncScopeID(const LangOptions &LangOpts, +                                         SyncScope Scope, +                                         llvm::AtomicOrdering Ordering, +                                         llvm::LLVMContext &Ctx) const override; +  llvm::Function * +  createEnqueuedBlockKernel(CodeGenFunction &CGF, +                            llvm::Function *BlockInvokeFunc, +                            llvm::Value *BlockLiteral) const override; +  bool shouldEmitStaticExternCAliases() const override; +  void setCUDAKernelCallingConvention(const FunctionType *&FT) const override; +}; +} + +static bool requiresAMDGPUProtectedVisibility(const Decl *D, +                                              llvm::GlobalValue *GV) { +  if (GV->getVisibility() != llvm::GlobalValue::HiddenVisibility) +    return false; + +  return D->hasAttr<OpenCLKernelAttr>() || +         (isa<FunctionDecl>(D) && D->hasAttr<CUDAGlobalAttr>()) || +         (isa<VarDecl>(D) && +          (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() || +           D->hasAttr<HIPPinnedShadowAttr>())); +} + +static bool requiresAMDGPUDefaultVisibility(const Decl *D, +                                            llvm::GlobalValue *GV) { +  if (GV->getVisibility() != llvm::GlobalValue::HiddenVisibility) +    return false; + +  return isa<VarDecl>(D) && D->hasAttr<HIPPinnedShadowAttr>(); +} + +void AMDGPUTargetCodeGenInfo::setTargetAttributes( +    const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { +  if (requiresAMDGPUDefaultVisibility(D, GV)) { +    GV->setVisibility(llvm::GlobalValue::DefaultVisibility); +    GV->setDSOLocal(false); +  } else if (requiresAMDGPUProtectedVisibility(D, GV)) { +    GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); +    GV->setDSOLocal(true); +  } + +  if (GV->isDeclaration()) +    return; +  const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); +  if (!FD) +    return; + +  llvm::Function *F = cast<llvm::Function>(GV); + +  const auto *ReqdWGS = M.getLangOpts().OpenCL ? +    FD->getAttr<ReqdWorkGroupSizeAttr>() : nullptr; + + +  const bool IsOpenCLKernel = M.getLangOpts().OpenCL && +                              FD->hasAttr<OpenCLKernelAttr>(); +  const bool IsHIPKernel = M.getLangOpts().HIP && +                           FD->hasAttr<CUDAGlobalAttr>(); +  if ((IsOpenCLKernel || IsHIPKernel) && +      (M.getTriple().getOS() == llvm::Triple::AMDHSA)) +    F->addFnAttr("amdgpu-implicitarg-num-bytes", "56"); + +  const auto *FlatWGS = FD->getAttr<AMDGPUFlatWorkGroupSizeAttr>(); +  if (ReqdWGS || FlatWGS) { +    unsigned Min = 0; +    unsigned Max = 0; +    if (FlatWGS) { +      Min = FlatWGS->getMin() +                ->EvaluateKnownConstInt(M.getContext()) +                .getExtValue(); +      Max = FlatWGS->getMax() +                ->EvaluateKnownConstInt(M.getContext()) +                .getExtValue(); +    } +    if (ReqdWGS && Min == 0 && Max == 0) +      Min = Max = ReqdWGS->getXDim() * ReqdWGS->getYDim() * ReqdWGS->getZDim(); + +    if (Min != 0) { +      assert(Min <= Max && "Min must be less than or equal Max"); + +      std::string AttrVal = llvm::utostr(Min) + "," + llvm::utostr(Max); +      F->addFnAttr("amdgpu-flat-work-group-size", AttrVal); +    } else +      assert(Max == 0 && "Max must be zero"); +  } else if (IsOpenCLKernel || IsHIPKernel) { +    // By default, restrict the maximum size to 256. +    F->addFnAttr("amdgpu-flat-work-group-size", "1,256"); +  } + +  if (const auto *Attr = FD->getAttr<AMDGPUWavesPerEUAttr>()) { +    unsigned Min = +        Attr->getMin()->EvaluateKnownConstInt(M.getContext()).getExtValue(); +    unsigned Max = Attr->getMax() ? Attr->getMax() +                                        ->EvaluateKnownConstInt(M.getContext()) +                                        .getExtValue() +                                  : 0; + +    if (Min != 0) { +      assert((Max == 0 || Min <= Max) && "Min must be less than or equal Max"); + +      std::string AttrVal = llvm::utostr(Min); +      if (Max != 0) +        AttrVal = AttrVal + "," + llvm::utostr(Max); +      F->addFnAttr("amdgpu-waves-per-eu", AttrVal); +    } else +      assert(Max == 0 && "Max must be zero"); +  } + +  if (const auto *Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) { +    unsigned NumSGPR = Attr->getNumSGPR(); + +    if (NumSGPR != 0) +      F->addFnAttr("amdgpu-num-sgpr", llvm::utostr(NumSGPR)); +  } + +  if (const auto *Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) { +    uint32_t NumVGPR = Attr->getNumVGPR(); + +    if (NumVGPR != 0) +      F->addFnAttr("amdgpu-num-vgpr", llvm::utostr(NumVGPR)); +  } +} + +unsigned AMDGPUTargetCodeGenInfo::getOpenCLKernelCallingConv() const { +  return llvm::CallingConv::AMDGPU_KERNEL; +} + +// Currently LLVM assumes null pointers always have value 0, +// which results in incorrectly transformed IR. Therefore, instead of +// emitting null pointers in private and local address spaces, a null +// pointer in generic address space is emitted which is casted to a +// pointer in local or private address space. +llvm::Constant *AMDGPUTargetCodeGenInfo::getNullPointer( +    const CodeGen::CodeGenModule &CGM, llvm::PointerType *PT, +    QualType QT) const { +  if (CGM.getContext().getTargetNullPointerValue(QT) == 0) +    return llvm::ConstantPointerNull::get(PT); + +  auto &Ctx = CGM.getContext(); +  auto NPT = llvm::PointerType::get(PT->getElementType(), +      Ctx.getTargetAddressSpace(LangAS::opencl_generic)); +  return llvm::ConstantExpr::getAddrSpaceCast( +      llvm::ConstantPointerNull::get(NPT), PT); +} + +LangAS +AMDGPUTargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM, +                                                  const VarDecl *D) const { +  assert(!CGM.getLangOpts().OpenCL && +         !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) && +         "Address space agnostic languages only"); +  LangAS DefaultGlobalAS = getLangASFromTargetAS( +      CGM.getContext().getTargetAddressSpace(LangAS::opencl_global)); +  if (!D) +    return DefaultGlobalAS; + +  LangAS AddrSpace = D->getType().getAddressSpace(); +  assert(AddrSpace == LangAS::Default || isTargetAddressSpace(AddrSpace)); +  if (AddrSpace != LangAS::Default) +    return AddrSpace; + +  if (CGM.isTypeConstant(D->getType(), false)) { +    if (auto ConstAS = CGM.getTarget().getConstantAddressSpace()) +      return ConstAS.getValue(); +  } +  return DefaultGlobalAS; +} + +llvm::SyncScope::ID +AMDGPUTargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts, +                                            SyncScope Scope, +                                            llvm::AtomicOrdering Ordering, +                                            llvm::LLVMContext &Ctx) const { +  std::string Name; +  switch (Scope) { +  case SyncScope::OpenCLWorkGroup: +    Name = "workgroup"; +    break; +  case SyncScope::OpenCLDevice: +    Name = "agent"; +    break; +  case SyncScope::OpenCLAllSVMDevices: +    Name = ""; +    break; +  case SyncScope::OpenCLSubGroup: +    Name = "wavefront"; +  } + +  if (Ordering != llvm::AtomicOrdering::SequentiallyConsistent) { +    if (!Name.empty()) +      Name = Twine(Twine(Name) + Twine("-")).str(); + +    Name = Twine(Twine(Name) + Twine("one-as")).str(); +  } + +  return Ctx.getOrInsertSyncScopeID(Name); +} + +bool AMDGPUTargetCodeGenInfo::shouldEmitStaticExternCAliases() const { +  return false; +} + +void AMDGPUTargetCodeGenInfo::setCUDAKernelCallingConvention( +    const FunctionType *&FT) const { +  FT = getABIInfo().getContext().adjustFunctionType( +      FT, FT->getExtInfo().withCallingConv(CC_OpenCLKernel)); +} + +//===----------------------------------------------------------------------===// +// SPARC v8 ABI Implementation. +// Based on the SPARC Compliance Definition version 2.4.1. +// +// Ensures that complex values are passed in registers. +// +namespace { +class SparcV8ABIInfo : public DefaultABIInfo { +public: +  SparcV8ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} + +private: +  ABIArgInfo classifyReturnType(QualType RetTy) const; +  void computeInfo(CGFunctionInfo &FI) const override; +}; +} // end anonymous namespace + + +ABIArgInfo +SparcV8ABIInfo::classifyReturnType(QualType Ty) const { +  if (Ty->isAnyComplexType()) { +    return ABIArgInfo::getDirect(); +  } +  else { +    return DefaultABIInfo::classifyReturnType(Ty); +  } +} + +void SparcV8ABIInfo::computeInfo(CGFunctionInfo &FI) const { + +  FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); +  for (auto &Arg : FI.arguments()) +    Arg.info = classifyArgumentType(Arg.type); +} + +namespace { +class SparcV8TargetCodeGenInfo : public TargetCodeGenInfo { +public: +  SparcV8TargetCodeGenInfo(CodeGenTypes &CGT) +    : TargetCodeGenInfo(new SparcV8ABIInfo(CGT)) {} +}; +} // end anonymous namespace + +//===----------------------------------------------------------------------===// +// SPARC v9 ABI Implementation. +// Based on the SPARC Compliance Definition version 2.4.1. +// +// Function arguments a mapped to a nominal "parameter array" and promoted to +// registers depending on their type. Each argument occupies 8 or 16 bytes in +// the array, structs larger than 16 bytes are passed indirectly. +// +// One case requires special care: +// +//   struct mixed { +//     int i; +//     float f; +//   }; +// +// When a struct mixed is passed by value, it only occupies 8 bytes in the +// parameter array, but the int is passed in an integer register, and the float +// is passed in a floating point register. This is represented as two arguments +// with the LLVM IR inreg attribute: +// +//   declare void f(i32 inreg %i, float inreg %f) +// +// The code generator will only allocate 4 bytes from the parameter array for +// the inreg arguments. All other arguments are allocated a multiple of 8 +// bytes. +// +namespace { +class SparcV9ABIInfo : public ABIInfo { +public: +  SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} + +private: +  ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const; +  void computeInfo(CGFunctionInfo &FI) const override; +  Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, +                    QualType Ty) const override; + +  // Coercion type builder for structs passed in registers. The coercion type +  // serves two purposes: +  // +  // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned' +  //    in registers. +  // 2. Expose aligned floating point elements as first-level elements, so the +  //    code generator knows to pass them in floating point registers. +  // +  // We also compute the InReg flag which indicates that the struct contains +  // aligned 32-bit floats. +  // +  struct CoerceBuilder { +    llvm::LLVMContext &Context; +    const llvm::DataLayout &DL; +    SmallVector<llvm::Type*, 8> Elems; +    uint64_t Size; +    bool InReg; + +    CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl) +      : Context(c), DL(dl), Size(0), InReg(false) {} + +    // Pad Elems with integers until Size is ToSize. +    void pad(uint64_t ToSize) { +      assert(ToSize >= Size && "Cannot remove elements"); +      if (ToSize == Size) +        return; + +      // Finish the current 64-bit word. +      uint64_t Aligned = llvm::alignTo(Size, 64); +      if (Aligned > Size && Aligned <= ToSize) { +        Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size)); +        Size = Aligned; +      } + +      // Add whole 64-bit words. +      while (Size + 64 <= ToSize) { +        Elems.push_back(llvm::Type::getInt64Ty(Context)); +        Size += 64; +      } + +      // Final in-word padding. +      if (Size < ToSize) { +        Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size)); +        Size = ToSize; +      } +    } + +    // Add a floating point element at Offset. +    void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) { +      // Unaligned floats are treated as integers. +      if (Offset % Bits) +        return; +      // The InReg flag is only required if there are any floats < 64 bits. +      if (Bits < 64) +        InReg = true; +      pad(Offset); +      Elems.push_back(Ty); +      Size = Offset + Bits; +    } + +    // Add a struct type to the coercion type, starting at Offset (in bits). +    void addStruct(uint64_t Offset, llvm::StructType *StrTy) { +      const llvm::StructLayout *Layout = DL.getStructLayout(StrTy); +      for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) { +        llvm::Type *ElemTy = StrTy->getElementType(i); +        uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i); +        switch (ElemTy->getTypeID()) { +        case llvm::Type::StructTyID: +          addStruct(ElemOffset, cast<llvm::StructType>(ElemTy)); +          break; +        case llvm::Type::FloatTyID: +          addFloat(ElemOffset, ElemTy, 32); +          break; +        case llvm::Type::DoubleTyID: +          addFloat(ElemOffset, ElemTy, 64); +          break; +        case llvm::Type::FP128TyID: +          addFloat(ElemOffset, ElemTy, 128); +          break; +        case llvm::Type::PointerTyID: +          if (ElemOffset % 64 == 0) { +            pad(ElemOffset); +            Elems.push_back(ElemTy); +            Size += 64; +          } +          break; +        default: +          break; +        } +      } +    } + +    // Check if Ty is a usable substitute for the coercion type. +    bool isUsableType(llvm::StructType *Ty) const { +      return llvm::makeArrayRef(Elems) == Ty->elements(); +    } + +    // Get the coercion type as a literal struct type. +    llvm::Type *getType() const { +      if (Elems.size() == 1) +        return Elems.front(); +      else +        return llvm::StructType::get(Context, Elems); +    } +  }; +}; +} // end anonymous namespace + +ABIArgInfo +SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const { +  if (Ty->isVoidType()) +    return ABIArgInfo::getIgnore(); + +  uint64_t Size = getContext().getTypeSize(Ty); + +  // Anything too big to fit in registers is passed with an explicit indirect +  // pointer / sret pointer. +  if (Size > SizeLimit) +    return getNaturalAlignIndirect(Ty, /*ByVal=*/false); + +  // Treat an enum type as its underlying type. +  if (const EnumType *EnumTy = Ty->getAs<EnumType>()) +    Ty = EnumTy->getDecl()->getIntegerType(); + +  // Integer types smaller than a register are extended. +  if (Size < 64 && Ty->isIntegerType()) +    return ABIArgInfo::getExtend(Ty); + +  // Other non-aggregates go in registers. +  if (!isAggregateTypeForABI(Ty)) +    return ABIArgInfo::getDirect(); + +  // If a C++ object has either a non-trivial copy constructor or a non-trivial +  // destructor, it is passed with an explicit indirect pointer / sret pointer. +  if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) +    return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); + +  // This is a small aggregate type that should be passed in registers. +  // Build a coercion type from the LLVM struct type. +  llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty)); +  if (!StrTy) +    return ABIArgInfo::getDirect(); + +  CoerceBuilder CB(getVMContext(), getDataLayout()); +  CB.addStruct(0, StrTy); +  CB.pad(llvm::alignTo(CB.DL.getTypeSizeInBits(StrTy), 64)); + +  // Try to use the original type for coercion. +  llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType(); + +  if (CB.InReg) +    return ABIArgInfo::getDirectInReg(CoerceTy); +  else +    return ABIArgInfo::getDirect(CoerceTy); +} + +Address SparcV9ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, +                                  QualType Ty) const { +  ABIArgInfo AI = classifyType(Ty, 16 * 8); +  llvm::Type *ArgTy = CGT.ConvertType(Ty); +  if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) +    AI.setCoerceToType(ArgTy); + +  CharUnits SlotSize = CharUnits::fromQuantity(8); + +  CGBuilderTy &Builder = CGF.Builder; +  Address Addr(Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize); +  llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); + +  auto TypeInfo = getContext().getTypeInfoInChars(Ty); + +  Address ArgAddr = Address::invalid(); +  CharUnits Stride; +  switch (AI.getKind()) { +  case ABIArgInfo::Expand: +  case ABIArgInfo::CoerceAndExpand: +  case ABIArgInfo::InAlloca: +    llvm_unreachable("Unsupported ABI kind for va_arg"); + +  case ABIArgInfo::Extend: { +    Stride = SlotSize; +    CharUnits Offset = SlotSize - TypeInfo.first; +    ArgAddr = Builder.CreateConstInBoundsByteGEP(Addr, Offset, "extend"); +    break; +  } + +  case ABIArgInfo::Direct: { +    auto AllocSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType()); +    Stride = CharUnits::fromQuantity(AllocSize).alignTo(SlotSize); +    ArgAddr = Addr; +    break; +  } + +  case ABIArgInfo::Indirect: +    Stride = SlotSize; +    ArgAddr = Builder.CreateElementBitCast(Addr, ArgPtrTy, "indirect"); +    ArgAddr = Address(Builder.CreateLoad(ArgAddr, "indirect.arg"), +                      TypeInfo.second); +    break; + +  case ABIArgInfo::Ignore: +    return Address(llvm::UndefValue::get(ArgPtrTy), TypeInfo.second); +  } + +  // Update VAList. +  Address NextPtr = Builder.CreateConstInBoundsByteGEP(Addr, Stride, "ap.next"); +  Builder.CreateStore(NextPtr.getPointer(), VAListAddr); + +  return Builder.CreateBitCast(ArgAddr, ArgPtrTy, "arg.addr"); +} + +void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const { +  FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8); +  for (auto &I : FI.arguments()) +    I.info = classifyType(I.type, 16 * 8); +} + +namespace { +class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo { +public: +  SparcV9TargetCodeGenInfo(CodeGenTypes &CGT) +    : TargetCodeGenInfo(new SparcV9ABIInfo(CGT)) {} + +  int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { +    return 14; +  } + +  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, +                               llvm::Value *Address) const override; +}; +} // end anonymous namespace + +bool +SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, +                                                llvm::Value *Address) const { +  // This is calculated from the LLVM and GCC tables and verified +  // against gcc output.  AFAIK all ABIs use the same encoding. + +  CodeGen::CGBuilderTy &Builder = CGF.Builder; + +  llvm::IntegerType *i8 = CGF.Int8Ty; +  llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); +  llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); + +  // 0-31: the 8-byte general-purpose registers +  AssignToArrayRange(Builder, Address, Eight8, 0, 31); + +  // 32-63: f0-31, the 4-byte floating-point registers +  AssignToArrayRange(Builder, Address, Four8, 32, 63); + +  //   Y   = 64 +  //   PSR = 65 +  //   WIM = 66 +  //   TBR = 67 +  //   PC  = 68 +  //   NPC = 69 +  //   FSR = 70 +  //   CSR = 71 +  AssignToArrayRange(Builder, Address, Eight8, 64, 71); + +  // 72-87: d0-15, the 8-byte floating-point registers +  AssignToArrayRange(Builder, Address, Eight8, 72, 87); + +  return false; +} + +// ARC ABI implementation. +namespace { + +class ARCABIInfo : public DefaultABIInfo { +public: +  using DefaultABIInfo::DefaultABIInfo; + +private: +  Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, +                    QualType Ty) const override; + +  void updateState(const ABIArgInfo &Info, QualType Ty, CCState &State) const { +    if (!State.FreeRegs) +      return; +    if (Info.isIndirect() && Info.getInReg()) +      State.FreeRegs--; +    else if (Info.isDirect() && Info.getInReg()) { +      unsigned sz = (getContext().getTypeSize(Ty) + 31) / 32; +      if (sz < State.FreeRegs) +        State.FreeRegs -= sz; +      else +        State.FreeRegs = 0; +    } +  } + +  void computeInfo(CGFunctionInfo &FI) const override { +    CCState State(FI.getCallingConvention()); +    // ARC uses 8 registers to pass arguments. +    State.FreeRegs = 8; + +    if (!getCXXABI().classifyReturnType(FI)) +      FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); +    updateState(FI.getReturnInfo(), FI.getReturnType(), State); +    for (auto &I : FI.arguments()) { +      I.info = classifyArgumentType(I.type, State.FreeRegs); +      updateState(I.info, I.type, State); +    } +  } + +  ABIArgInfo getIndirectByRef(QualType Ty, bool HasFreeRegs) const; +  ABIArgInfo getIndirectByValue(QualType Ty) const; +  ABIArgInfo classifyArgumentType(QualType Ty, uint8_t FreeRegs) const; +  ABIArgInfo classifyReturnType(QualType RetTy) const; +}; + +class ARCTargetCodeGenInfo : public TargetCodeGenInfo { +public: +  ARCTargetCodeGenInfo(CodeGenTypes &CGT) +      : TargetCodeGenInfo(new ARCABIInfo(CGT)) {} +}; + + +ABIArgInfo ARCABIInfo::getIndirectByRef(QualType Ty, bool HasFreeRegs) const { +  return HasFreeRegs ? getNaturalAlignIndirectInReg(Ty) : +                       getNaturalAlignIndirect(Ty, false); +} + +ABIArgInfo ARCABIInfo::getIndirectByValue(QualType Ty) const { +  // Compute the byval alignment. +  const unsigned MinABIStackAlignInBytes = 4; +  unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; +  return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true, +                                 TypeAlign > MinABIStackAlignInBytes); +} + +Address ARCABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, +                              QualType Ty) const { +  return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, +                          getContext().getTypeInfoInChars(Ty), +                          CharUnits::fromQuantity(4), true); +} + +ABIArgInfo ARCABIInfo::classifyArgumentType(QualType Ty, +                                            uint8_t FreeRegs) const { +  // Handle the generic C++ ABI. +  const RecordType *RT = Ty->getAs<RecordType>(); +  if (RT) { +    CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); +    if (RAA == CGCXXABI::RAA_Indirect) +      return getIndirectByRef(Ty, FreeRegs > 0); + +    if (RAA == CGCXXABI::RAA_DirectInMemory) +      return getIndirectByValue(Ty); +  } + +  // Treat an enum type as its underlying type. +  if (const EnumType *EnumTy = Ty->getAs<EnumType>()) +    Ty = EnumTy->getDecl()->getIntegerType(); + +  auto SizeInRegs = llvm::alignTo(getContext().getTypeSize(Ty), 32) / 32; + +  if (isAggregateTypeForABI(Ty)) { +    // Structures with flexible arrays are always indirect. +    if (RT && RT->getDecl()->hasFlexibleArrayMember()) +      return getIndirectByValue(Ty); + +    // Ignore empty structs/unions. +    if (isEmptyRecord(getContext(), Ty, true)) +      return ABIArgInfo::getIgnore(); + +    llvm::LLVMContext &LLVMContext = getVMContext(); + +    llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); +    SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32); +    llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); + +    return FreeRegs >= SizeInRegs ? +        ABIArgInfo::getDirectInReg(Result) : +        ABIArgInfo::getDirect(Result, 0, nullptr, false); +  } + +  return Ty->isPromotableIntegerType() ? +      (FreeRegs >= SizeInRegs ? ABIArgInfo::getExtendInReg(Ty) : +                                ABIArgInfo::getExtend(Ty)) : +      (FreeRegs >= SizeInRegs ? ABIArgInfo::getDirectInReg() : +                                ABIArgInfo::getDirect()); +} + +ABIArgInfo ARCABIInfo::classifyReturnType(QualType RetTy) const { +  if (RetTy->isAnyComplexType()) +    return ABIArgInfo::getDirectInReg(); + +  // Arguments of size > 4 registers are indirect. +  auto RetSize = llvm::alignTo(getContext().getTypeSize(RetTy), 32) / 32; +  if (RetSize > 4) +    return getIndirectByRef(RetTy, /*HasFreeRegs*/ true); + +  return DefaultABIInfo::classifyReturnType(RetTy); +} + +} // End anonymous namespace. + +//===----------------------------------------------------------------------===// +// XCore ABI Implementation +//===----------------------------------------------------------------------===// + +namespace { + +/// A SmallStringEnc instance is used to build up the TypeString by passing +/// it by reference between functions that append to it. +typedef llvm::SmallString<128> SmallStringEnc; + +/// TypeStringCache caches the meta encodings of Types. +/// +/// The reason for caching TypeStrings is two fold: +///   1. To cache a type's encoding for later uses; +///   2. As a means to break recursive member type inclusion. +/// +/// A cache Entry can have a Status of: +///   NonRecursive:   The type encoding is not recursive; +///   Recursive:      The type encoding is recursive; +///   Incomplete:     An incomplete TypeString; +///   IncompleteUsed: An incomplete TypeString that has been used in a +///                   Recursive type encoding. +/// +/// A NonRecursive entry will have all of its sub-members expanded as fully +/// as possible. Whilst it may contain types which are recursive, the type +/// itself is not recursive and thus its encoding may be safely used whenever +/// the type is encountered. +/// +/// A Recursive entry will have all of its sub-members expanded as fully as +/// possible. The type itself is recursive and it may contain other types which +/// are recursive. The Recursive encoding must not be used during the expansion +/// of a recursive type's recursive branch. For simplicity the code uses +/// IncompleteCount to reject all usage of Recursive encodings for member types. +/// +/// An Incomplete entry is always a RecordType and only encodes its +/// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and +/// are placed into the cache during type expansion as a means to identify and +/// handle recursive inclusion of types as sub-members. If there is recursion +/// the entry becomes IncompleteUsed. +/// +/// During the expansion of a RecordType's members: +/// +///   If the cache contains a NonRecursive encoding for the member type, the +///   cached encoding is used; +/// +///   If the cache contains a Recursive encoding for the member type, the +///   cached encoding is 'Swapped' out, as it may be incorrect, and... +/// +///   If the member is a RecordType, an Incomplete encoding is placed into the +///   cache to break potential recursive inclusion of itself as a sub-member; +/// +///   Once a member RecordType has been expanded, its temporary incomplete +///   entry is removed from the cache. If a Recursive encoding was swapped out +///   it is swapped back in; +/// +///   If an incomplete entry is used to expand a sub-member, the incomplete +///   entry is marked as IncompleteUsed. The cache keeps count of how many +///   IncompleteUsed entries it currently contains in IncompleteUsedCount; +/// +///   If a member's encoding is found to be a NonRecursive or Recursive viz: +///   IncompleteUsedCount==0, the member's encoding is added to the cache. +///   Else the member is part of a recursive type and thus the recursion has +///   been exited too soon for the encoding to be correct for the member. +/// +class TypeStringCache { +  enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed}; +  struct Entry { +    std::string Str;     // The encoded TypeString for the type. +    enum Status State;   // Information about the encoding in 'Str'. +    std::string Swapped; // A temporary place holder for a Recursive encoding +                         // during the expansion of RecordType's members. +  }; +  std::map<const IdentifierInfo *, struct Entry> Map; +  unsigned IncompleteCount;     // Number of Incomplete entries in the Map. +  unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map. +public: +  TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {} +  void addIncomplete(const IdentifierInfo *ID, std::string StubEnc); +  bool removeIncomplete(const IdentifierInfo *ID); +  void addIfComplete(const IdentifierInfo *ID, StringRef Str, +                     bool IsRecursive); +  StringRef lookupStr(const IdentifierInfo *ID); +}; + +/// TypeString encodings for enum & union fields must be order. +/// FieldEncoding is a helper for this ordering process. +class FieldEncoding { +  bool HasName; +  std::string Enc; +public: +  FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {} +  StringRef str() { return Enc; } +  bool operator<(const FieldEncoding &rhs) const { +    if (HasName != rhs.HasName) return HasName; +    return Enc < rhs.Enc; +  } +}; + +class XCoreABIInfo : public DefaultABIInfo { +public: +  XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} +  Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, +                    QualType Ty) const override; +}; + +class XCoreTargetCodeGenInfo : public TargetCodeGenInfo { +  mutable TypeStringCache TSC; +public: +  XCoreTargetCodeGenInfo(CodeGenTypes &CGT) +    :TargetCodeGenInfo(new XCoreABIInfo(CGT)) {} +  void emitTargetMD(const Decl *D, llvm::GlobalValue *GV, +                    CodeGen::CodeGenModule &M) const override; +}; + +} // End anonymous namespace. + +// TODO: this implementation is likely now redundant with the default +// EmitVAArg. +Address XCoreABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, +                                QualType Ty) const { +  CGBuilderTy &Builder = CGF.Builder; + +  // Get the VAList. +  CharUnits SlotSize = CharUnits::fromQuantity(4); +  Address AP(Builder.CreateLoad(VAListAddr), SlotSize); + +  // Handle the argument. +  ABIArgInfo AI = classifyArgumentType(Ty); +  CharUnits TypeAlign = getContext().getTypeAlignInChars(Ty); +  llvm::Type *ArgTy = CGT.ConvertType(Ty); +  if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) +    AI.setCoerceToType(ArgTy); +  llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); + +  Address Val = Address::invalid(); +  CharUnits ArgSize = CharUnits::Zero(); +  switch (AI.getKind()) { +  case ABIArgInfo::Expand: +  case ABIArgInfo::CoerceAndExpand: +  case ABIArgInfo::InAlloca: +    llvm_unreachable("Unsupported ABI kind for va_arg"); +  case ABIArgInfo::Ignore: +    Val = Address(llvm::UndefValue::get(ArgPtrTy), TypeAlign); +    ArgSize = CharUnits::Zero(); +    break; +  case ABIArgInfo::Extend: +  case ABIArgInfo::Direct: +    Val = Builder.CreateBitCast(AP, ArgPtrTy); +    ArgSize = CharUnits::fromQuantity( +                       getDataLayout().getTypeAllocSize(AI.getCoerceToType())); +    ArgSize = ArgSize.alignTo(SlotSize); +    break; +  case ABIArgInfo::Indirect: +    Val = Builder.CreateElementBitCast(AP, ArgPtrTy); +    Val = Address(Builder.CreateLoad(Val), TypeAlign); +    ArgSize = SlotSize; +    break; +  } + +  // Increment the VAList. +  if (!ArgSize.isZero()) { +    Address APN = Builder.CreateConstInBoundsByteGEP(AP, ArgSize); +    Builder.CreateStore(APN.getPointer(), VAListAddr); +  } + +  return Val; +} + +/// During the expansion of a RecordType, an incomplete TypeString is placed +/// into the cache as a means to identify and break recursion. +/// If there is a Recursive encoding in the cache, it is swapped out and will +/// be reinserted by removeIncomplete(). +/// All other types of encoding should have been used rather than arriving here. +void TypeStringCache::addIncomplete(const IdentifierInfo *ID, +                                    std::string StubEnc) { +  if (!ID) +    return; +  Entry &E = Map[ID]; +  assert( (E.Str.empty() || E.State == Recursive) && +         "Incorrectly use of addIncomplete"); +  assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()"); +  E.Swapped.swap(E.Str); // swap out the Recursive +  E.Str.swap(StubEnc); +  E.State = Incomplete; +  ++IncompleteCount; +} + +/// Once the RecordType has been expanded, the temporary incomplete TypeString +/// must be removed from the cache. +/// If a Recursive was swapped out by addIncomplete(), it will be replaced. +/// Returns true if the RecordType was defined recursively. +bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) { +  if (!ID) +    return false; +  auto I = Map.find(ID); +  assert(I != Map.end() && "Entry not present"); +  Entry &E = I->second; +  assert( (E.State == Incomplete || +           E.State == IncompleteUsed) && +         "Entry must be an incomplete type"); +  bool IsRecursive = false; +  if (E.State == IncompleteUsed) { +    // We made use of our Incomplete encoding, thus we are recursive. +    IsRecursive = true; +    --IncompleteUsedCount; +  } +  if (E.Swapped.empty()) +    Map.erase(I); +  else { +    // Swap the Recursive back. +    E.Swapped.swap(E.Str); +    E.Swapped.clear(); +    E.State = Recursive; +  } +  --IncompleteCount; +  return IsRecursive; +} + +/// Add the encoded TypeString to the cache only if it is NonRecursive or +/// Recursive (viz: all sub-members were expanded as fully as possible). +void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str, +                                    bool IsRecursive) { +  if (!ID || IncompleteUsedCount) +    return; // No key or it is is an incomplete sub-type so don't add. +  Entry &E = Map[ID]; +  if (IsRecursive && !E.Str.empty()) { +    assert(E.State==Recursive && E.Str.size() == Str.size() && +           "This is not the same Recursive entry"); +    // The parent container was not recursive after all, so we could have used +    // this Recursive sub-member entry after all, but we assumed the worse when +    // we started viz: IncompleteCount!=0. +    return; +  } +  assert(E.Str.empty() && "Entry already present"); +  E.Str = Str.str(); +  E.State = IsRecursive? Recursive : NonRecursive; +} + +/// Return a cached TypeString encoding for the ID. If there isn't one, or we +/// are recursively expanding a type (IncompleteCount != 0) and the cached +/// encoding is Recursive, return an empty StringRef. +StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) { +  if (!ID) +    return StringRef();   // We have no key. +  auto I = Map.find(ID); +  if (I == Map.end()) +    return StringRef();   // We have no encoding. +  Entry &E = I->second; +  if (E.State == Recursive && IncompleteCount) +    return StringRef();   // We don't use Recursive encodings for member types. + +  if (E.State == Incomplete) { +    // The incomplete type is being used to break out of recursion. +    E.State = IncompleteUsed; +    ++IncompleteUsedCount; +  } +  return E.Str; +} + +/// The XCore ABI includes a type information section that communicates symbol +/// type information to the linker. The linker uses this information to verify +/// safety/correctness of things such as array bound and pointers et al. +/// The ABI only requires C (and XC) language modules to emit TypeStrings. +/// This type information (TypeString) is emitted into meta data for all global +/// symbols: definitions, declarations, functions & variables. +/// +/// The TypeString carries type, qualifier, name, size & value details. +/// Please see 'Tools Development Guide' section 2.16.2 for format details: +/// https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf +/// The output is tested by test/CodeGen/xcore-stringtype.c. +/// +static bool getTypeString(SmallStringEnc &Enc, const Decl *D, +                          CodeGen::CodeGenModule &CGM, TypeStringCache &TSC); + +/// XCore uses emitTargetMD to emit TypeString metadata for global symbols. +void XCoreTargetCodeGenInfo::emitTargetMD(const Decl *D, llvm::GlobalValue *GV, +                                          CodeGen::CodeGenModule &CGM) const { +  SmallStringEnc Enc; +  if (getTypeString(Enc, D, CGM, TSC)) { +    llvm::LLVMContext &Ctx = CGM.getModule().getContext(); +    llvm::Metadata *MDVals[] = {llvm::ConstantAsMetadata::get(GV), +                                llvm::MDString::get(Ctx, Enc.str())}; +    llvm::NamedMDNode *MD = +      CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings"); +    MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); +  } +} + +//===----------------------------------------------------------------------===// +// SPIR ABI Implementation +//===----------------------------------------------------------------------===// + +namespace { +class SPIRTargetCodeGenInfo : public TargetCodeGenInfo { +public: +  SPIRTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) +    : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} +  unsigned getOpenCLKernelCallingConv() const override; +}; + +} // End anonymous namespace. + +namespace clang { +namespace CodeGen { +void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI) { +  DefaultABIInfo SPIRABI(CGM.getTypes()); +  SPIRABI.computeInfo(FI); +} +} +} + +unsigned SPIRTargetCodeGenInfo::getOpenCLKernelCallingConv() const { +  return llvm::CallingConv::SPIR_KERNEL; +} + +static bool appendType(SmallStringEnc &Enc, QualType QType, +                       const CodeGen::CodeGenModule &CGM, +                       TypeStringCache &TSC); + +/// Helper function for appendRecordType(). +/// Builds a SmallVector containing the encoded field types in declaration +/// order. +static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE, +                             const RecordDecl *RD, +                             const CodeGen::CodeGenModule &CGM, +                             TypeStringCache &TSC) { +  for (const auto *Field : RD->fields()) { +    SmallStringEnc Enc; +    Enc += "m("; +    Enc += Field->getName(); +    Enc += "){"; +    if (Field->isBitField()) { +      Enc += "b("; +      llvm::raw_svector_ostream OS(Enc); +      OS << Field->getBitWidthValue(CGM.getContext()); +      Enc += ':'; +    } +    if (!appendType(Enc, Field->getType(), CGM, TSC)) +      return false; +    if (Field->isBitField()) +      Enc += ')'; +    Enc += '}'; +    FE.emplace_back(!Field->getName().empty(), Enc); +  } +  return true; +} + +/// Appends structure and union types to Enc and adds encoding to cache. +/// Recursively calls appendType (via extractFieldType) for each field. +/// Union types have their fields ordered according to the ABI. +static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT, +                             const CodeGen::CodeGenModule &CGM, +                             TypeStringCache &TSC, const IdentifierInfo *ID) { +  // Append the cached TypeString if we have one. +  StringRef TypeString = TSC.lookupStr(ID); +  if (!TypeString.empty()) { +    Enc += TypeString; +    return true; +  } + +  // Start to emit an incomplete TypeString. +  size_t Start = Enc.size(); +  Enc += (RT->isUnionType()? 'u' : 's'); +  Enc += '('; +  if (ID) +    Enc += ID->getName(); +  Enc += "){"; + +  // We collect all encoded fields and order as necessary. +  bool IsRecursive = false; +  const RecordDecl *RD = RT->getDecl()->getDefinition(); +  if (RD && !RD->field_empty()) { +    // An incomplete TypeString stub is placed in the cache for this RecordType +    // so that recursive calls to this RecordType will use it whilst building a +    // complete TypeString for this RecordType. +    SmallVector<FieldEncoding, 16> FE; +    std::string StubEnc(Enc.substr(Start).str()); +    StubEnc += '}';  // StubEnc now holds a valid incomplete TypeString. +    TSC.addIncomplete(ID, std::move(StubEnc)); +    if (!extractFieldType(FE, RD, CGM, TSC)) { +      (void) TSC.removeIncomplete(ID); +      return false; +    } +    IsRecursive = TSC.removeIncomplete(ID); +    // The ABI requires unions to be sorted but not structures. +    // See FieldEncoding::operator< for sort algorithm. +    if (RT->isUnionType()) +      llvm::sort(FE); +    // We can now complete the TypeString. +    unsigned E = FE.size(); +    for (unsigned I = 0; I != E; ++I) { +      if (I) +        Enc += ','; +      Enc += FE[I].str(); +    } +  } +  Enc += '}'; +  TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive); +  return true; +} + +/// Appends enum types to Enc and adds the encoding to the cache. +static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET, +                           TypeStringCache &TSC, +                           const IdentifierInfo *ID) { +  // Append the cached TypeString if we have one. +  StringRef TypeString = TSC.lookupStr(ID); +  if (!TypeString.empty()) { +    Enc += TypeString; +    return true; +  } + +  size_t Start = Enc.size(); +  Enc += "e("; +  if (ID) +    Enc += ID->getName(); +  Enc += "){"; + +  // We collect all encoded enumerations and order them alphanumerically. +  if (const EnumDecl *ED = ET->getDecl()->getDefinition()) { +    SmallVector<FieldEncoding, 16> FE; +    for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E; +         ++I) { +      SmallStringEnc EnumEnc; +      EnumEnc += "m("; +      EnumEnc += I->getName(); +      EnumEnc += "){"; +      I->getInitVal().toString(EnumEnc); +      EnumEnc += '}'; +      FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc)); +    } +    llvm::sort(FE); +    unsigned E = FE.size(); +    for (unsigned I = 0; I != E; ++I) { +      if (I) +        Enc += ','; +      Enc += FE[I].str(); +    } +  } +  Enc += '}'; +  TSC.addIfComplete(ID, Enc.substr(Start), false); +  return true; +} + +/// Appends type's qualifier to Enc. +/// This is done prior to appending the type's encoding. +static void appendQualifier(SmallStringEnc &Enc, QualType QT) { +  // Qualifiers are emitted in alphabetical order. +  static const char *const Table[]={"","c:","r:","cr:","v:","cv:","rv:","crv:"}; +  int Lookup = 0; +  if (QT.isConstQualified()) +    Lookup += 1<<0; +  if (QT.isRestrictQualified()) +    Lookup += 1<<1; +  if (QT.isVolatileQualified()) +    Lookup += 1<<2; +  Enc += Table[Lookup]; +} + +/// Appends built-in types to Enc. +static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) { +  const char *EncType; +  switch (BT->getKind()) { +    case BuiltinType::Void: +      EncType = "0"; +      break; +    case BuiltinType::Bool: +      EncType = "b"; +      break; +    case BuiltinType::Char_U: +      EncType = "uc"; +      break; +    case BuiltinType::UChar: +      EncType = "uc"; +      break; +    case BuiltinType::SChar: +      EncType = "sc"; +      break; +    case BuiltinType::UShort: +      EncType = "us"; +      break; +    case BuiltinType::Short: +      EncType = "ss"; +      break; +    case BuiltinType::UInt: +      EncType = "ui"; +      break; +    case BuiltinType::Int: +      EncType = "si"; +      break; +    case BuiltinType::ULong: +      EncType = "ul"; +      break; +    case BuiltinType::Long: +      EncType = "sl"; +      break; +    case BuiltinType::ULongLong: +      EncType = "ull"; +      break; +    case BuiltinType::LongLong: +      EncType = "sll"; +      break; +    case BuiltinType::Float: +      EncType = "ft"; +      break; +    case BuiltinType::Double: +      EncType = "d"; +      break; +    case BuiltinType::LongDouble: +      EncType = "ld"; +      break; +    default: +      return false; +  } +  Enc += EncType; +  return true; +} + +/// Appends a pointer encoding to Enc before calling appendType for the pointee. +static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT, +                              const CodeGen::CodeGenModule &CGM, +                              TypeStringCache &TSC) { +  Enc += "p("; +  if (!appendType(Enc, PT->getPointeeType(), CGM, TSC)) +    return false; +  Enc += ')'; +  return true; +} + +/// Appends array encoding to Enc before calling appendType for the element. +static bool appendArrayType(SmallStringEnc &Enc, QualType QT, +                            const ArrayType *AT, +                            const CodeGen::CodeGenModule &CGM, +                            TypeStringCache &TSC, StringRef NoSizeEnc) { +  if (AT->getSizeModifier() != ArrayType::Normal) +    return false; +  Enc += "a("; +  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) +    CAT->getSize().toStringUnsigned(Enc); +  else +    Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "". +  Enc += ':'; +  // The Qualifiers should be attached to the type rather than the array. +  appendQualifier(Enc, QT); +  if (!appendType(Enc, AT->getElementType(), CGM, TSC)) +    return false; +  Enc += ')'; +  return true; +} + +/// Appends a function encoding to Enc, calling appendType for the return type +/// and the arguments. +static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT, +                             const CodeGen::CodeGenModule &CGM, +                             TypeStringCache &TSC) { +  Enc += "f{"; +  if (!appendType(Enc, FT->getReturnType(), CGM, TSC)) +    return false; +  Enc += "}("; +  if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) { +    // N.B. we are only interested in the adjusted param types. +    auto I = FPT->param_type_begin(); +    auto E = FPT->param_type_end(); +    if (I != E) { +      do { +        if (!appendType(Enc, *I, CGM, TSC)) +          return false; +        ++I; +        if (I != E) +          Enc += ','; +      } while (I != E); +      if (FPT->isVariadic()) +        Enc += ",va"; +    } else { +      if (FPT->isVariadic()) +        Enc += "va"; +      else +        Enc += '0'; +    } +  } +  Enc += ')'; +  return true; +} + +/// Handles the type's qualifier before dispatching a call to handle specific +/// type encodings. +static bool appendType(SmallStringEnc &Enc, QualType QType, +                       const CodeGen::CodeGenModule &CGM, +                       TypeStringCache &TSC) { + +  QualType QT = QType.getCanonicalType(); + +  if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) +    // The Qualifiers should be attached to the type rather than the array. +    // Thus we don't call appendQualifier() here. +    return appendArrayType(Enc, QT, AT, CGM, TSC, ""); + +  appendQualifier(Enc, QT); + +  if (const BuiltinType *BT = QT->getAs<BuiltinType>()) +    return appendBuiltinType(Enc, BT); + +  if (const PointerType *PT = QT->getAs<PointerType>()) +    return appendPointerType(Enc, PT, CGM, TSC); + +  if (const EnumType *ET = QT->getAs<EnumType>()) +    return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier()); + +  if (const RecordType *RT = QT->getAsStructureType()) +    return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); + +  if (const RecordType *RT = QT->getAsUnionType()) +    return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); + +  if (const FunctionType *FT = QT->getAs<FunctionType>()) +    return appendFunctionType(Enc, FT, CGM, TSC); + +  return false; +} + +static bool getTypeString(SmallStringEnc &Enc, const Decl *D, +                          CodeGen::CodeGenModule &CGM, TypeStringCache &TSC) { +  if (!D) +    return false; + +  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { +    if (FD->getLanguageLinkage() != CLanguageLinkage) +      return false; +    return appendType(Enc, FD->getType(), CGM, TSC); +  } + +  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { +    if (VD->getLanguageLinkage() != CLanguageLinkage) +      return false; +    QualType QT = VD->getType().getCanonicalType(); +    if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) { +      // Global ArrayTypes are given a size of '*' if the size is unknown. +      // The Qualifiers should be attached to the type rather than the array. +      // Thus we don't call appendQualifier() here. +      return appendArrayType(Enc, QT, AT, CGM, TSC, "*"); +    } +    return appendType(Enc, QT, CGM, TSC); +  } +  return false; +} + +//===----------------------------------------------------------------------===// +// RISCV ABI Implementation +//===----------------------------------------------------------------------===// + +namespace { +class RISCVABIInfo : public DefaultABIInfo { +private: +  // Size of the integer ('x') registers in bits. +  unsigned XLen; +  // Size of the floating point ('f') registers in bits. Note that the target +  // ISA might have a wider FLen than the selected ABI (e.g. an RV32IF target +  // with soft float ABI has FLen==0). +  unsigned FLen; +  static const int NumArgGPRs = 8; +  static const int NumArgFPRs = 8; +  bool detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff, +                                      llvm::Type *&Field1Ty, +                                      CharUnits &Field1Off, +                                      llvm::Type *&Field2Ty, +                                      CharUnits &Field2Off) const; + +public: +  RISCVABIInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen, unsigned FLen) +      : DefaultABIInfo(CGT), XLen(XLen), FLen(FLen) {} + +  // DefaultABIInfo's classifyReturnType and classifyArgumentType are +  // non-virtual, but computeInfo is virtual, so we overload it. +  void computeInfo(CGFunctionInfo &FI) const override; + +  ABIArgInfo classifyArgumentType(QualType Ty, bool IsFixed, int &ArgGPRsLeft, +                                  int &ArgFPRsLeft) const; +  ABIArgInfo classifyReturnType(QualType RetTy) const; + +  Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, +                    QualType Ty) const override; + +  ABIArgInfo extendType(QualType Ty) const; + +  bool detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty, +                                CharUnits &Field1Off, llvm::Type *&Field2Ty, +                                CharUnits &Field2Off, int &NeededArgGPRs, +                                int &NeededArgFPRs) const; +  ABIArgInfo coerceAndExpandFPCCEligibleStruct(llvm::Type *Field1Ty, +                                               CharUnits Field1Off, +                                               llvm::Type *Field2Ty, +                                               CharUnits Field2Off) const; +}; +} // end anonymous namespace + +void RISCVABIInfo::computeInfo(CGFunctionInfo &FI) const { +  QualType RetTy = FI.getReturnType(); +  if (!getCXXABI().classifyReturnType(FI)) +    FI.getReturnInfo() = classifyReturnType(RetTy); + +  // IsRetIndirect is true if classifyArgumentType indicated the value should +  // be passed indirect or if the type size is greater than 2*xlen. e.g. fp128 +  // is passed direct in LLVM IR, relying on the backend lowering code to +  // rewrite the argument list and pass indirectly on RV32. +  bool IsRetIndirect = FI.getReturnInfo().getKind() == ABIArgInfo::Indirect || +                       getContext().getTypeSize(RetTy) > (2 * XLen); + +  // We must track the number of GPRs used in order to conform to the RISC-V +  // ABI, as integer scalars passed in registers should have signext/zeroext +  // when promoted, but are anyext if passed on the stack. As GPR usage is +  // different for variadic arguments, we must also track whether we are +  // examining a vararg or not. +  int ArgGPRsLeft = IsRetIndirect ? NumArgGPRs - 1 : NumArgGPRs; +  int ArgFPRsLeft = FLen ? NumArgFPRs : 0; +  int NumFixedArgs = FI.getNumRequiredArgs(); + +  int ArgNum = 0; +  for (auto &ArgInfo : FI.arguments()) { +    bool IsFixed = ArgNum < NumFixedArgs; +    ArgInfo.info = +        classifyArgumentType(ArgInfo.type, IsFixed, ArgGPRsLeft, ArgFPRsLeft); +    ArgNum++; +  } +} + +// Returns true if the struct is a potential candidate for the floating point +// calling convention. If this function returns true, the caller is +// responsible for checking that if there is only a single field then that +// field is a float. +bool RISCVABIInfo::detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff, +                                                  llvm::Type *&Field1Ty, +                                                  CharUnits &Field1Off, +                                                  llvm::Type *&Field2Ty, +                                                  CharUnits &Field2Off) const { +  bool IsInt = Ty->isIntegralOrEnumerationType(); +  bool IsFloat = Ty->isRealFloatingType(); + +  if (IsInt || IsFloat) { +    uint64_t Size = getContext().getTypeSize(Ty); +    if (IsInt && Size > XLen) +      return false; +    // Can't be eligible if larger than the FP registers. Half precision isn't +    // currently supported on RISC-V and the ABI hasn't been confirmed, so +    // default to the integer ABI in that case. +    if (IsFloat && (Size > FLen || Size < 32)) +      return false; +    // Can't be eligible if an integer type was already found (int+int pairs +    // are not eligible). +    if (IsInt && Field1Ty && Field1Ty->isIntegerTy()) +      return false; +    if (!Field1Ty) { +      Field1Ty = CGT.ConvertType(Ty); +      Field1Off = CurOff; +      return true; +    } +    if (!Field2Ty) { +      Field2Ty = CGT.ConvertType(Ty); +      Field2Off = CurOff; +      return true; +    } +    return false; +  } + +  if (auto CTy = Ty->getAs<ComplexType>()) { +    if (Field1Ty) +      return false; +    QualType EltTy = CTy->getElementType(); +    if (getContext().getTypeSize(EltTy) > FLen) +      return false; +    Field1Ty = CGT.ConvertType(EltTy); +    Field1Off = CurOff; +    assert(CurOff.isZero() && "Unexpected offset for first field"); +    Field2Ty = Field1Ty; +    Field2Off = Field1Off + getContext().getTypeSizeInChars(EltTy); +    return true; +  } + +  if (const ConstantArrayType *ATy = getContext().getAsConstantArrayType(Ty)) { +    uint64_t ArraySize = ATy->getSize().getZExtValue(); +    QualType EltTy = ATy->getElementType(); +    CharUnits EltSize = getContext().getTypeSizeInChars(EltTy); +    for (uint64_t i = 0; i < ArraySize; ++i) { +      bool Ret = detectFPCCEligibleStructHelper(EltTy, CurOff, Field1Ty, +                                                Field1Off, Field2Ty, Field2Off); +      if (!Ret) +        return false; +      CurOff += EltSize; +    } +    return true; +  } + +  if (const auto *RTy = Ty->getAs<RecordType>()) { +    // Structures with either a non-trivial destructor or a non-trivial +    // copy constructor are not eligible for the FP calling convention. +    if (getRecordArgABI(Ty, CGT.getCXXABI())) +      return false; +    if (isEmptyRecord(getContext(), Ty, true)) +      return true; +    const RecordDecl *RD = RTy->getDecl(); +    // Unions aren't eligible unless they're empty (which is caught above). +    if (RD->isUnion()) +      return false; +    int ZeroWidthBitFieldCount = 0; +    for (const FieldDecl *FD : RD->fields()) { +      const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); +      uint64_t FieldOffInBits = Layout.getFieldOffset(FD->getFieldIndex()); +      QualType QTy = FD->getType(); +      if (FD->isBitField()) { +        unsigned BitWidth = FD->getBitWidthValue(getContext()); +        // Allow a bitfield with a type greater than XLen as long as the +        // bitwidth is XLen or less. +        if (getContext().getTypeSize(QTy) > XLen && BitWidth <= XLen) +          QTy = getContext().getIntTypeForBitwidth(XLen, false); +        if (BitWidth == 0) { +          ZeroWidthBitFieldCount++; +          continue; +        } +      } + +      bool Ret = detectFPCCEligibleStructHelper( +          QTy, CurOff + getContext().toCharUnitsFromBits(FieldOffInBits), +          Field1Ty, Field1Off, Field2Ty, Field2Off); +      if (!Ret) +        return false; + +      // As a quirk of the ABI, zero-width bitfields aren't ignored for fp+fp +      // or int+fp structs, but are ignored for a struct with an fp field and +      // any number of zero-width bitfields. +      if (Field2Ty && ZeroWidthBitFieldCount > 0) +        return false; +    } +    return Field1Ty != nullptr; +  } + +  return false; +} + +// Determine if a struct is eligible for passing according to the floating +// point calling convention (i.e., when flattened it contains a single fp +// value, fp+fp, or int+fp of appropriate size). If so, NeededArgFPRs and +// NeededArgGPRs are incremented appropriately. +bool RISCVABIInfo::detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty, +                                            CharUnits &Field1Off, +                                            llvm::Type *&Field2Ty, +                                            CharUnits &Field2Off, +                                            int &NeededArgGPRs, +                                            int &NeededArgFPRs) const { +  Field1Ty = nullptr; +  Field2Ty = nullptr; +  NeededArgGPRs = 0; +  NeededArgFPRs = 0; +  bool IsCandidate = detectFPCCEligibleStructHelper( +      Ty, CharUnits::Zero(), Field1Ty, Field1Off, Field2Ty, Field2Off); +  // Not really a candidate if we have a single int but no float. +  if (Field1Ty && !Field2Ty && !Field1Ty->isFloatingPointTy()) +    return false; +  if (!IsCandidate) +    return false; +  if (Field1Ty && Field1Ty->isFloatingPointTy()) +    NeededArgFPRs++; +  else if (Field1Ty) +    NeededArgGPRs++; +  if (Field2Ty && Field2Ty->isFloatingPointTy()) +    NeededArgFPRs++; +  else if (Field2Ty) +    NeededArgGPRs++; +  return IsCandidate; +} + +// Call getCoerceAndExpand for the two-element flattened struct described by +// Field1Ty, Field1Off, Field2Ty, Field2Off. This method will create an +// appropriate coerceToType and unpaddedCoerceToType. +ABIArgInfo RISCVABIInfo::coerceAndExpandFPCCEligibleStruct( +    llvm::Type *Field1Ty, CharUnits Field1Off, llvm::Type *Field2Ty, +    CharUnits Field2Off) const { +  SmallVector<llvm::Type *, 3> CoerceElts; +  SmallVector<llvm::Type *, 2> UnpaddedCoerceElts; +  if (!Field1Off.isZero()) +    CoerceElts.push_back(llvm::ArrayType::get( +        llvm::Type::getInt8Ty(getVMContext()), Field1Off.getQuantity())); + +  CoerceElts.push_back(Field1Ty); +  UnpaddedCoerceElts.push_back(Field1Ty); + +  if (!Field2Ty) { +    return ABIArgInfo::getCoerceAndExpand( +        llvm::StructType::get(getVMContext(), CoerceElts, !Field1Off.isZero()), +        UnpaddedCoerceElts[0]); +  } + +  CharUnits Field2Align = +      CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(Field2Ty)); +  CharUnits Field1Size = +      CharUnits::fromQuantity(getDataLayout().getTypeStoreSize(Field1Ty)); +  CharUnits Field2OffNoPadNoPack = Field1Size.alignTo(Field2Align); + +  CharUnits Padding = CharUnits::Zero(); +  if (Field2Off > Field2OffNoPadNoPack) +    Padding = Field2Off - Field2OffNoPadNoPack; +  else if (Field2Off != Field2Align && Field2Off > Field1Size) +    Padding = Field2Off - Field1Size; + +  bool IsPacked = !Field2Off.isMultipleOf(Field2Align); + +  if (!Padding.isZero()) +    CoerceElts.push_back(llvm::ArrayType::get( +        llvm::Type::getInt8Ty(getVMContext()), Padding.getQuantity())); + +  CoerceElts.push_back(Field2Ty); +  UnpaddedCoerceElts.push_back(Field2Ty); + +  auto CoerceToType = +      llvm::StructType::get(getVMContext(), CoerceElts, IsPacked); +  auto UnpaddedCoerceToType = +      llvm::StructType::get(getVMContext(), UnpaddedCoerceElts, IsPacked); + +  return ABIArgInfo::getCoerceAndExpand(CoerceToType, UnpaddedCoerceToType); +} + +ABIArgInfo RISCVABIInfo::classifyArgumentType(QualType Ty, bool IsFixed, +                                              int &ArgGPRsLeft, +                                              int &ArgFPRsLeft) const { +  assert(ArgGPRsLeft <= NumArgGPRs && "Arg GPR tracking underflow"); +  Ty = useFirstFieldIfTransparentUnion(Ty); + +  // Structures with either a non-trivial destructor or a non-trivial +  // copy constructor are always passed indirectly. +  if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { +    if (ArgGPRsLeft) +      ArgGPRsLeft -= 1; +    return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA == +                                           CGCXXABI::RAA_DirectInMemory); +  } + +  // Ignore empty structs/unions. +  if (isEmptyRecord(getContext(), Ty, true)) +    return ABIArgInfo::getIgnore(); + +  uint64_t Size = getContext().getTypeSize(Ty); + +  // Pass floating point values via FPRs if possible. +  if (IsFixed && Ty->isFloatingType() && FLen >= Size && ArgFPRsLeft) { +    ArgFPRsLeft--; +    return ABIArgInfo::getDirect(); +  } + +  // Complex types for the hard float ABI must be passed direct rather than +  // using CoerceAndExpand. +  if (IsFixed && Ty->isComplexType() && FLen && ArgFPRsLeft >= 2) { +    QualType EltTy = Ty->castAs<ComplexType>()->getElementType(); +    if (getContext().getTypeSize(EltTy) <= FLen) { +      ArgFPRsLeft -= 2; +      return ABIArgInfo::getDirect(); +    } +  } + +  if (IsFixed && FLen && Ty->isStructureOrClassType()) { +    llvm::Type *Field1Ty = nullptr; +    llvm::Type *Field2Ty = nullptr; +    CharUnits Field1Off = CharUnits::Zero(); +    CharUnits Field2Off = CharUnits::Zero(); +    int NeededArgGPRs; +    int NeededArgFPRs; +    bool IsCandidate = +        detectFPCCEligibleStruct(Ty, Field1Ty, Field1Off, Field2Ty, Field2Off, +                                 NeededArgGPRs, NeededArgFPRs); +    if (IsCandidate && NeededArgGPRs <= ArgGPRsLeft && +        NeededArgFPRs <= ArgFPRsLeft) { +      ArgGPRsLeft -= NeededArgGPRs; +      ArgFPRsLeft -= NeededArgFPRs; +      return coerceAndExpandFPCCEligibleStruct(Field1Ty, Field1Off, Field2Ty, +                                               Field2Off); +    } +  } + +  uint64_t NeededAlign = getContext().getTypeAlign(Ty); +  bool MustUseStack = false; +  // Determine the number of GPRs needed to pass the current argument +  // according to the ABI. 2*XLen-aligned varargs are passed in "aligned" +  // register pairs, so may consume 3 registers. +  int NeededArgGPRs = 1; +  if (!IsFixed && NeededAlign == 2 * XLen) +    NeededArgGPRs = 2 + (ArgGPRsLeft % 2); +  else if (Size > XLen && Size <= 2 * XLen) +    NeededArgGPRs = 2; + +  if (NeededArgGPRs > ArgGPRsLeft) { +    MustUseStack = true; +    NeededArgGPRs = ArgGPRsLeft; +  } + +  ArgGPRsLeft -= NeededArgGPRs; + +  if (!isAggregateTypeForABI(Ty) && !Ty->isVectorType()) { +    // Treat an enum type as its underlying type. +    if (const EnumType *EnumTy = Ty->getAs<EnumType>()) +      Ty = EnumTy->getDecl()->getIntegerType(); + +    // All integral types are promoted to XLen width, unless passed on the +    // stack. +    if (Size < XLen && Ty->isIntegralOrEnumerationType() && !MustUseStack) { +      return extendType(Ty); +    } + +    return ABIArgInfo::getDirect(); +  } + +  // Aggregates which are <= 2*XLen will be passed in registers if possible, +  // so coerce to integers. +  if (Size <= 2 * XLen) { +    unsigned Alignment = getContext().getTypeAlign(Ty); + +    // Use a single XLen int if possible, 2*XLen if 2*XLen alignment is +    // required, and a 2-element XLen array if only XLen alignment is required. +    if (Size <= XLen) { +      return ABIArgInfo::getDirect( +          llvm::IntegerType::get(getVMContext(), XLen)); +    } else if (Alignment == 2 * XLen) { +      return ABIArgInfo::getDirect( +          llvm::IntegerType::get(getVMContext(), 2 * XLen)); +    } else { +      return ABIArgInfo::getDirect(llvm::ArrayType::get( +          llvm::IntegerType::get(getVMContext(), XLen), 2)); +    } +  } +  return getNaturalAlignIndirect(Ty, /*ByVal=*/false); +} + +ABIArgInfo RISCVABIInfo::classifyReturnType(QualType RetTy) const { +  if (RetTy->isVoidType()) +    return ABIArgInfo::getIgnore(); + +  int ArgGPRsLeft = 2; +  int ArgFPRsLeft = FLen ? 2 : 0; + +  // The rules for return and argument types are the same, so defer to +  // classifyArgumentType. +  return classifyArgumentType(RetTy, /*IsFixed=*/true, ArgGPRsLeft, +                              ArgFPRsLeft); +} + +Address RISCVABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, +                                QualType Ty) const { +  CharUnits SlotSize = CharUnits::fromQuantity(XLen / 8); + +  // Empty records are ignored for parameter passing purposes. +  if (isEmptyRecord(getContext(), Ty, true)) { +    Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize); +    Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); +    return Addr; +  } + +  std::pair<CharUnits, CharUnits> SizeAndAlign = +      getContext().getTypeInfoInChars(Ty); + +  // Arguments bigger than 2*Xlen bytes are passed indirectly. +  bool IsIndirect = SizeAndAlign.first > 2 * SlotSize; + +  return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, SizeAndAlign, +                          SlotSize, /*AllowHigherAlign=*/true); +} + +ABIArgInfo RISCVABIInfo::extendType(QualType Ty) const { +  int TySize = getContext().getTypeSize(Ty); +  // RV64 ABI requires unsigned 32 bit integers to be sign extended. +  if (XLen == 64 && Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32) +    return ABIArgInfo::getSignExtend(Ty); +  return ABIArgInfo::getExtend(Ty); +} + +namespace { +class RISCVTargetCodeGenInfo : public TargetCodeGenInfo { +public: +  RISCVTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen, +                         unsigned FLen) +      : TargetCodeGenInfo(new RISCVABIInfo(CGT, XLen, FLen)) {} + +  void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, +                           CodeGen::CodeGenModule &CGM) const override { +    const auto *FD = dyn_cast_or_null<FunctionDecl>(D); +    if (!FD) return; + +    const auto *Attr = FD->getAttr<RISCVInterruptAttr>(); +    if (!Attr) +      return; + +    const char *Kind; +    switch (Attr->getInterrupt()) { +    case RISCVInterruptAttr::user: Kind = "user"; break; +    case RISCVInterruptAttr::supervisor: Kind = "supervisor"; break; +    case RISCVInterruptAttr::machine: Kind = "machine"; break; +    } + +    auto *Fn = cast<llvm::Function>(GV); + +    Fn->addFnAttr("interrupt", Kind); +  } +}; +} // namespace + +//===----------------------------------------------------------------------===// +// Driver code +//===----------------------------------------------------------------------===// + +bool CodeGenModule::supportsCOMDAT() const { +  return getTriple().supportsCOMDAT(); +} + +const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() { +  if (TheTargetCodeGenInfo) +    return *TheTargetCodeGenInfo; + +  // Helper to set the unique_ptr while still keeping the return value. +  auto SetCGInfo = [&](TargetCodeGenInfo *P) -> const TargetCodeGenInfo & { +    this->TheTargetCodeGenInfo.reset(P); +    return *P; +  }; + +  const llvm::Triple &Triple = getTarget().getTriple(); +  switch (Triple.getArch()) { +  default: +    return SetCGInfo(new DefaultTargetCodeGenInfo(Types)); + +  case llvm::Triple::le32: +    return SetCGInfo(new PNaClTargetCodeGenInfo(Types)); +  case llvm::Triple::mips: +  case llvm::Triple::mipsel: +    if (Triple.getOS() == llvm::Triple::NaCl) +      return SetCGInfo(new PNaClTargetCodeGenInfo(Types)); +    return SetCGInfo(new MIPSTargetCodeGenInfo(Types, true)); + +  case llvm::Triple::mips64: +  case llvm::Triple::mips64el: +    return SetCGInfo(new MIPSTargetCodeGenInfo(Types, false)); + +  case llvm::Triple::avr: +    return SetCGInfo(new AVRTargetCodeGenInfo(Types)); + +  case llvm::Triple::aarch64: +  case llvm::Triple::aarch64_be: { +    AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS; +    if (getTarget().getABI() == "darwinpcs") +      Kind = AArch64ABIInfo::DarwinPCS; +    else if (Triple.isOSWindows()) +      return SetCGInfo( +          new WindowsAArch64TargetCodeGenInfo(Types, AArch64ABIInfo::Win64)); + +    return SetCGInfo(new AArch64TargetCodeGenInfo(Types, Kind)); +  } + +  case llvm::Triple::wasm32: +  case llvm::Triple::wasm64: +    return SetCGInfo(new WebAssemblyTargetCodeGenInfo(Types)); + +  case llvm::Triple::arm: +  case llvm::Triple::armeb: +  case llvm::Triple::thumb: +  case llvm::Triple::thumbeb: { +    if (Triple.getOS() == llvm::Triple::Win32) { +      return SetCGInfo( +          new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP)); +    } + +    ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS; +    StringRef ABIStr = getTarget().getABI(); +    if (ABIStr == "apcs-gnu") +      Kind = ARMABIInfo::APCS; +    else if (ABIStr == "aapcs16") +      Kind = ARMABIInfo::AAPCS16_VFP; +    else if (CodeGenOpts.FloatABI == "hard" || +             (CodeGenOpts.FloatABI != "soft" && +              (Triple.getEnvironment() == llvm::Triple::GNUEABIHF || +               Triple.getEnvironment() == llvm::Triple::MuslEABIHF || +               Triple.getEnvironment() == llvm::Triple::EABIHF))) +      Kind = ARMABIInfo::AAPCS_VFP; + +    return SetCGInfo(new ARMTargetCodeGenInfo(Types, Kind)); +  } + +  case llvm::Triple::ppc: +    return SetCGInfo( +        new PPC32TargetCodeGenInfo(Types, CodeGenOpts.FloatABI == "soft" || +                                   getTarget().hasFeature("spe"))); +  case llvm::Triple::ppc64: +    if (Triple.isOSBinFormatELF()) { +      PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1; +      if (getTarget().getABI() == "elfv2") +        Kind = PPC64_SVR4_ABIInfo::ELFv2; +      bool HasQPX = getTarget().getABI() == "elfv1-qpx"; +      bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; + +      return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX, +                                                        IsSoftFloat)); +    } else +      return SetCGInfo(new PPC64TargetCodeGenInfo(Types)); +  case llvm::Triple::ppc64le: { +    assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!"); +    PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2; +    if (getTarget().getABI() == "elfv1" || getTarget().getABI() == "elfv1-qpx") +      Kind = PPC64_SVR4_ABIInfo::ELFv1; +    bool HasQPX = getTarget().getABI() == "elfv1-qpx"; +    bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; + +    return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX, +                                                      IsSoftFloat)); +  } + +  case llvm::Triple::nvptx: +  case llvm::Triple::nvptx64: +    return SetCGInfo(new NVPTXTargetCodeGenInfo(Types)); + +  case llvm::Triple::msp430: +    return SetCGInfo(new MSP430TargetCodeGenInfo(Types)); + +  case llvm::Triple::riscv32: +  case llvm::Triple::riscv64: { +    StringRef ABIStr = getTarget().getABI(); +    unsigned XLen = getTarget().getPointerWidth(0); +    unsigned ABIFLen = 0; +    if (ABIStr.endswith("f")) +      ABIFLen = 32; +    else if (ABIStr.endswith("d")) +      ABIFLen = 64; +    return SetCGInfo(new RISCVTargetCodeGenInfo(Types, XLen, ABIFLen)); +  } + +  case llvm::Triple::systemz: { +    bool HasVector = getTarget().getABI() == "vector"; +    return SetCGInfo(new SystemZTargetCodeGenInfo(Types, HasVector)); +  } + +  case llvm::Triple::tce: +  case llvm::Triple::tcele: +    return SetCGInfo(new TCETargetCodeGenInfo(Types)); + +  case llvm::Triple::x86: { +    bool IsDarwinVectorABI = Triple.isOSDarwin(); +    bool RetSmallStructInRegABI = +        X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts); +    bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing(); + +    if (Triple.getOS() == llvm::Triple::Win32) { +      return SetCGInfo(new WinX86_32TargetCodeGenInfo( +          Types, IsDarwinVectorABI, RetSmallStructInRegABI, +          IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters)); +    } else { +      return SetCGInfo(new X86_32TargetCodeGenInfo( +          Types, IsDarwinVectorABI, RetSmallStructInRegABI, +          IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters, +          CodeGenOpts.FloatABI == "soft")); +    } +  } + +  case llvm::Triple::x86_64: { +    StringRef ABI = getTarget().getABI(); +    X86AVXABILevel AVXLevel = +        (ABI == "avx512" +             ? X86AVXABILevel::AVX512 +             : ABI == "avx" ? X86AVXABILevel::AVX : X86AVXABILevel::None); + +    switch (Triple.getOS()) { +    case llvm::Triple::Win32: +      return SetCGInfo(new WinX86_64TargetCodeGenInfo(Types, AVXLevel)); +    default: +      return SetCGInfo(new X86_64TargetCodeGenInfo(Types, AVXLevel)); +    } +  } +  case llvm::Triple::hexagon: +    return SetCGInfo(new HexagonTargetCodeGenInfo(Types)); +  case llvm::Triple::lanai: +    return SetCGInfo(new LanaiTargetCodeGenInfo(Types)); +  case llvm::Triple::r600: +    return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types)); +  case llvm::Triple::amdgcn: +    return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types)); +  case llvm::Triple::sparc: +    return SetCGInfo(new SparcV8TargetCodeGenInfo(Types)); +  case llvm::Triple::sparcv9: +    return SetCGInfo(new SparcV9TargetCodeGenInfo(Types)); +  case llvm::Triple::xcore: +    return SetCGInfo(new XCoreTargetCodeGenInfo(Types)); +  case llvm::Triple::arc: +    return SetCGInfo(new ARCTargetCodeGenInfo(Types)); +  case llvm::Triple::spir: +  case llvm::Triple::spir64: +    return SetCGInfo(new SPIRTargetCodeGenInfo(Types)); +  } +} + +/// Create an OpenCL kernel for an enqueued block. +/// +/// The kernel has the same function type as the block invoke function. Its +/// name is the name of the block invoke function postfixed with "_kernel". +/// It simply calls the block invoke function then returns. +llvm::Function * +TargetCodeGenInfo::createEnqueuedBlockKernel(CodeGenFunction &CGF, +                                             llvm::Function *Invoke, +                                             llvm::Value *BlockLiteral) const { +  auto *InvokeFT = Invoke->getFunctionType(); +  llvm::SmallVector<llvm::Type *, 2> ArgTys; +  for (auto &P : InvokeFT->params()) +    ArgTys.push_back(P); +  auto &C = CGF.getLLVMContext(); +  std::string Name = Invoke->getName().str() + "_kernel"; +  auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false); +  auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name, +                                   &CGF.CGM.getModule()); +  auto IP = CGF.Builder.saveIP(); +  auto *BB = llvm::BasicBlock::Create(C, "entry", F); +  auto &Builder = CGF.Builder; +  Builder.SetInsertPoint(BB); +  llvm::SmallVector<llvm::Value *, 2> Args; +  for (auto &A : F->args()) +    Args.push_back(&A); +  Builder.CreateCall(Invoke, Args); +  Builder.CreateRetVoid(); +  Builder.restoreIP(IP); +  return F; +} + +/// Create an OpenCL kernel for an enqueued block. +/// +/// The type of the first argument (the block literal) is the struct type +/// of the block literal instead of a pointer type. The first argument +/// (block literal) is passed directly by value to the kernel. The kernel +/// allocates the same type of struct on stack and stores the block literal +/// to it and passes its pointer to the block invoke function. The kernel +/// has "enqueued-block" function attribute and kernel argument metadata. +llvm::Function *AMDGPUTargetCodeGenInfo::createEnqueuedBlockKernel( +    CodeGenFunction &CGF, llvm::Function *Invoke, +    llvm::Value *BlockLiteral) const { +  auto &Builder = CGF.Builder; +  auto &C = CGF.getLLVMContext(); + +  auto *BlockTy = BlockLiteral->getType()->getPointerElementType(); +  auto *InvokeFT = Invoke->getFunctionType(); +  llvm::SmallVector<llvm::Type *, 2> ArgTys; +  llvm::SmallVector<llvm::Metadata *, 8> AddressQuals; +  llvm::SmallVector<llvm::Metadata *, 8> AccessQuals; +  llvm::SmallVector<llvm::Metadata *, 8> ArgTypeNames; +  llvm::SmallVector<llvm::Metadata *, 8> ArgBaseTypeNames; +  llvm::SmallVector<llvm::Metadata *, 8> ArgTypeQuals; +  llvm::SmallVector<llvm::Metadata *, 8> ArgNames; + +  ArgTys.push_back(BlockTy); +  ArgTypeNames.push_back(llvm::MDString::get(C, "__block_literal")); +  AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(0))); +  ArgBaseTypeNames.push_back(llvm::MDString::get(C, "__block_literal")); +  ArgTypeQuals.push_back(llvm::MDString::get(C, "")); +  AccessQuals.push_back(llvm::MDString::get(C, "none")); +  ArgNames.push_back(llvm::MDString::get(C, "block_literal")); +  for (unsigned I = 1, E = InvokeFT->getNumParams(); I < E; ++I) { +    ArgTys.push_back(InvokeFT->getParamType(I)); +    ArgTypeNames.push_back(llvm::MDString::get(C, "void*")); +    AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(3))); +    AccessQuals.push_back(llvm::MDString::get(C, "none")); +    ArgBaseTypeNames.push_back(llvm::MDString::get(C, "void*")); +    ArgTypeQuals.push_back(llvm::MDString::get(C, "")); +    ArgNames.push_back( +        llvm::MDString::get(C, (Twine("local_arg") + Twine(I)).str())); +  } +  std::string Name = Invoke->getName().str() + "_kernel"; +  auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false); +  auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name, +                                   &CGF.CGM.getModule()); +  F->addFnAttr("enqueued-block"); +  auto IP = CGF.Builder.saveIP(); +  auto *BB = llvm::BasicBlock::Create(C, "entry", F); +  Builder.SetInsertPoint(BB); +  unsigned BlockAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(BlockTy); +  auto *BlockPtr = Builder.CreateAlloca(BlockTy, nullptr); +  BlockPtr->setAlignment(llvm::MaybeAlign(BlockAlign)); +  Builder.CreateAlignedStore(F->arg_begin(), BlockPtr, BlockAlign); +  auto *Cast = Builder.CreatePointerCast(BlockPtr, InvokeFT->getParamType(0)); +  llvm::SmallVector<llvm::Value *, 2> Args; +  Args.push_back(Cast); +  for (auto I = F->arg_begin() + 1, E = F->arg_end(); I != E; ++I) +    Args.push_back(I); +  Builder.CreateCall(Invoke, Args); +  Builder.CreateRetVoid(); +  Builder.restoreIP(IP); + +  F->setMetadata("kernel_arg_addr_space", llvm::MDNode::get(C, AddressQuals)); +  F->setMetadata("kernel_arg_access_qual", llvm::MDNode::get(C, AccessQuals)); +  F->setMetadata("kernel_arg_type", llvm::MDNode::get(C, ArgTypeNames)); +  F->setMetadata("kernel_arg_base_type", +                 llvm::MDNode::get(C, ArgBaseTypeNames)); +  F->setMetadata("kernel_arg_type_qual", llvm::MDNode::get(C, ArgTypeQuals)); +  if (CGF.CGM.getCodeGenOpts().EmitOpenCLArgMetadata) +    F->setMetadata("kernel_arg_name", llvm::MDNode::get(C, ArgNames)); + +  return F; +}  | 
