summaryrefslogtreecommitdiff
path: root/contrib/bind9/doc/rfc/rfc3123.txt
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/bind9/doc/rfc/rfc3123.txt')
-rw-r--r--contrib/bind9/doc/rfc/rfc3123.txt451
1 files changed, 0 insertions, 451 deletions
diff --git a/contrib/bind9/doc/rfc/rfc3123.txt b/contrib/bind9/doc/rfc/rfc3123.txt
deleted file mode 100644
index 3b2fe00e5ee8d..0000000000000
--- a/contrib/bind9/doc/rfc/rfc3123.txt
+++ /dev/null
@@ -1,451 +0,0 @@
-
-
-
-
-
-
-Network Working Group P. Koch
-Request for Comments: 3123 Universitaet Bielefeld
-Category: Experimental June 2001
-
-
- A DNS RR Type for Lists of Address Prefixes (APL RR)
-
-Status of this Memo
-
- This memo defines an Experimental Protocol for the Internet
- community. It does not specify an Internet standard of any kind.
- Discussion and suggestions for improvement are requested.
- Distribution of this memo is unlimited.
-
-Copyright Notice
-
- Copyright (C) The Internet Society (2001). All Rights Reserved.
-
-Abstract
-
- The Domain Name System (DNS) is primarily used to translate domain
- names into IPv4 addresses using A RRs (Resource Records). Several
- approaches exist to describe networks or address ranges. This
- document specifies a new DNS RR type "APL" for address prefix lists.
-
-1. Conventions used in this document
-
- The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
- "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
- document are to be interpreted as described in [RFC2119].
-
- Domain names herein are for explanatory purposes only and should not
- be expected to lead to useful information in real life [RFC2606].
-
-2. Background
-
- The Domain Name System [RFC1034], [RFC1035] provides a mechanism to
- associate addresses and other Internet infrastructure elements with
- hierarchically built domain names. Various types of resource records
- have been defined, especially those for IPv4 and IPv6 [RFC2874]
- addresses. In [RFC1101] a method is described to publish information
- about the address space allocated to an organisation. In older BIND
- versions, a weak form of controlling access to zone data was
- implemented using TXT RRs describing address ranges.
-
- This document specifies a new RR type for address prefix lists.
-
-
-
-
-
-Koch Experimental [Page 1]
-
-RFC 3123 DNS APL RR June 2001
-
-
-3. APL RR Type
-
- An APL record has the DNS type of "APL" and a numeric value of 42
- [IANA]. The APL RR is defined in the IN class only. APL RRs cause
- no additional section processing.
-
-4. APL RDATA format
-
- The RDATA section consists of zero or more items (<apitem>) of the
- form
-
- +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
- | ADDRESSFAMILY |
- +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
- | PREFIX | N | AFDLENGTH |
- +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
- / AFDPART /
- | |
- +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
-
- ADDRESSFAMILY 16 bit unsigned value as assigned by IANA
- (see IANA Considerations)
- PREFIX 8 bit unsigned binary coded prefix length.
- Upper and lower bounds and interpretation of
- this value are address family specific.
- N negation flag, indicates the presence of the
- "!" character in the textual format. It has
- the value "1" if the "!" was given, "0" else.
- AFDLENGTH length in octets of the following address
- family dependent part (7 bit unsigned).
- AFDPART address family dependent part. See below.
-
- This document defines the AFDPARTs for address families 1 (IPv4) and
- 2 (IPv6). Future revisions may deal with additional address
- families.
-
-4.1. AFDPART for IPv4
-
- The encoding of an IPv4 address (address family 1) follows the
- encoding specified for the A RR by [RFC1035], section 3.4.1.
-
- PREFIX specifies the number of bits of the IPv4 address starting at
- the most significant bit. Legal values range from 0 to 32.
-
- Trailing zero octets do not bear any information (e.g., there is no
- semantic difference between 10.0.0.0/16 and 10/16) in an address
- prefix, so the shortest possible AFDLENGTH can be used to encode it.
- However, for DNSSEC [RFC2535] a single wire encoding must be used by
-
-
-
-Koch Experimental [Page 2]
-
-RFC 3123 DNS APL RR June 2001
-
-
- all. Therefore the sender MUST NOT include trailing zero octets in
- the AFDPART regardless of the value of PREFIX. This includes cases
- in which AFDLENGTH times 8 results in a value less than PREFIX. The
- AFDPART is padded with zero bits to match a full octet boundary.
-
- An IPv4 AFDPART has a variable length of 0 to 4 octets.
-
-4.2. AFDPART for IPv6
-
- The 128 bit IPv6 address (address family 2) is encoded in network
- byte order (high-order byte first).
-
- PREFIX specifies the number of bits of the IPv6 address starting at
- the most significant bit. Legal values range from 0 to 128.
-
- With the same reasoning as in 4.1 above, the sender MUST NOT include
- trailing zero octets in the AFDPART regardless of the value of
- PREFIX. This includes cases in which AFDLENGTH times 8 results in a
- value less than PREFIX. The AFDPART is padded with zero bits to
- match a full octet boundary.
-
- An IPv6 AFDPART has a variable length of 0 to 16 octets.
-
-5. Zone File Syntax
-
- The textual representation of an APL RR in a DNS zone file is as
- follows:
-
- <owner> IN <TTL> APL {[!]afi:address/prefix}*
-
- The data consists of zero or more strings of the address family
- indicator <afi>, immediately followed by a colon ":", an address,
- immediately followed by the "/" character, immediately followed by a
- decimal numeric value for the prefix length. Any such string may be
- preceded by a "!" character. The strings are separated by
- whitespace. The <afi> is the decimal numeric value of that
- particular address family.
-
-5.1. Textual Representation of IPv4 Addresses
-
- An IPv4 address in the <address> part of an <apitem> is in dotted
- quad notation, just as in an A RR. The <prefix> has values from the
- interval 0..32 (decimal).
-
-
-
-
-
-
-
-
-Koch Experimental [Page 3]
-
-RFC 3123 DNS APL RR June 2001
-
-
-5.2. Textual Representation of IPv6 Addresses
-
- The representation of an IPv6 address in the <address> part of an
- <apitem> follows [RFC2373], section 2.2. Legal values for <prefix>
- are from the interval 0..128 (decimal).
-
-6. APL RR usage
-
- An APL RR with empty RDATA is valid and implements an empty list.
- Multiple occurrences of the same <apitem> in a single APL RR are
- allowed and MUST NOT be merged by a DNS server or resolver.
- <apitems> MUST be kept in order and MUST NOT be rearranged or
- aggregated.
-
- A single APL RR may contain <apitems> belonging to different address
- families. The maximum number of <apitems> is upper bounded by the
- available RDATA space.
-
- RRSets consisting of more than one APL RR are legal but the
- interpretation is left to the particular application.
-
-7. Applicability Statement
-
- The APL RR defines a framework without specifying any particular
- meaning for the list of prefixes. It is expected that APL RRs will
- be used in different application scenarios which have to be
- documented separately. Those scenarios may be distinguished by
- characteristic prefixes placed in front of the DNS owner name.
-
- An APL application specification MUST include information on
-
- o the characteristic prefix, if any
-
- o how to interpret APL RRSets consisting of more than one RR
-
- o how to interpret an empty APL RR
-
- o which address families are expected to appear in the APL RRs for
- that application
-
- o how to deal with APL RR list elements which belong to other
- address families, including those not yet defined
-
- o the exact semantics of list elements negated by the "!" character
-
-
-
-
-
-
-
-Koch Experimental [Page 4]
-
-RFC 3123 DNS APL RR June 2001
-
-
- Possible applications include the publication of address ranges
- similar to [RFC1101], description of zones built following [RFC2317]
- and in-band access control to limit general access or zone transfer
- (AXFR) availability for zone data held in DNS servers.
-
- The specification of particular application scenarios is out of the
- scope of this document.
-
-8. Examples
-
- The following examples only illustrate some of the possible usages
- outlined in the previous section. None of those applications are
- hereby specified nor is it implied that any particular APL RR based
- application does exist now or will exist in the future.
-
- ; RFC 1101-like announcement of address ranges for foo.example
- foo.example. IN APL 1:192.168.32.0/21 !1:192.168.38.0/28
-
- ; CIDR blocks covered by classless delegation
- 42.168.192.IN-ADDR.ARPA. IN APL ( 1:192.168.42.0/26 1:192.168.42.64/26
- 1:192.168.42.128/25 )
-
- ; Zone transfer restriction
- _axfr.sbo.example. IN APL 1:127.0.0.1/32 1:172.16.64.0/22
-
- ; List of address ranges for multicast
- multicast.example. IN APL 1:224.0.0.0/4 2:FF00:0:0:0:0:0:0:0/8
-
- Note that since trailing zeroes are ignored in the first APL RR the
- AFDLENGTH of both <apitems> is three.
-
-9. Security Considerations
-
- Any information obtained from the DNS should be regarded as unsafe
- unless techniques specified in [RFC2535] or [RFC2845] were used. The
- definition of a new RR type does not introduce security problems into
- the DNS, but usage of information made available by APL RRs may
- compromise security. This includes disclosure of network topology
- information and in particular the use of APL RRs to construct access
- control lists.
-
-
-
-
-
-
-
-
-
-
-
-Koch Experimental [Page 5]
-
-RFC 3123 DNS APL RR June 2001
-
-
-10. IANA Considerations
-
- This section is to be interpreted as following [RFC2434].
-
- This document does not define any new namespaces. It uses the 16 bit
- identifiers for address families maintained by IANA in
- http://www.iana.org/numbers.html.
-
- The IANA assigned numeric RR type value 42 for APL [IANA].
-
-11. Acknowledgements
-
- The author would like to thank Mark Andrews, Olafur Gudmundsson, Ed
- Lewis, Thomas Narten, Erik Nordmark, and Paul Vixie for their review
- and constructive comments.
-
-12. References
-
- [RFC1034] Mockapetris, P., "Domain Names - Concepts and Facilities",
- STD 13, RFC 1034, November 1987.
-
- [RFC1035] Mockapetris, P., "Domain Names - Implementation and
- Specification", STD 13, RFC 1035, November 1987.
-
- [RFC1101] Mockapetris, P., "DNS Encoding of Network Names and Other
- Types", RFC 1101, April 1989.
-
- [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
- Requirement Levels", BCP 14, RFC 2119, March 1997.
-
- [RFC2181] Elz, R. and R. Bush, "Clarifications to the DNS
- Specification", RFC 2181, July 1997.
-
- [RFC2317] Eidnes, H., de Groot, G. and P. Vixie, "Classless IN-
- ADDR.ARPA delegation", BCP 20, RFC 2317, March 1998.
-
- [RFC2373] Hinden, R. and S. Deering, "IP Version 6 Addressing
- Architecture", RFC 2373, July 1998.
-
- [RFC2434] Narten, T. and H. Alvestrand, "Guidelines for Writing an
- IANA Considerations Section in RFCs", BCP 26, RFC 2434,
- October 1998.
-
- [RFC2535] Eastlake, D., "Domain Name System Security Extensions", RFC
- 2535, March 1999.
-
- [RFC2606] Eastlake, D. and A. Panitz, "Reserved Top Level DNS Names",
- BCP 32, RFC 2606, June 1999.
-
-
-
-Koch Experimental [Page 6]
-
-RFC 3123 DNS APL RR June 2001
-
-
- [RFC2845] Vixie, P., Gudmundsson, O., Eastlake, D. and B. Wellington,
- "Secret Key Transaction Authentication for DNS (TSIG)", RFC
- 2845, May 2000.
-
- [RFC2874] Crawford, M. and C. Huitema, "DNS Extensions to Support
- IPv6 Address Aggregation and Renumbering", RFC 2874, July
- 2000.
-
- [IANA] http://www.iana.org/assignments/dns-parameters
-
-13. Author's Address
-
- Peter Koch
- Universitaet Bielefeld
- Technische Fakultaet
- D-33594 Bielefeld
- Germany
-
- Phone: +49 521 106 2902
- EMail: pk@TechFak.Uni-Bielefeld.DE
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-Koch Experimental [Page 7]
-
-RFC 3123 DNS APL RR June 2001
-
-
-14. Full Copyright Statement
-
- Copyright (C) The Internet Society (2001). All Rights Reserved.
-
- This document and translations of it may be copied and furnished to
- others, and derivative works that comment on or otherwise explain it
- or assist in its implementation may be prepared, copied, published
- and distributed, in whole or in part, without restriction of any
- kind, provided that the above copyright notice and this paragraph are
- included on all such copies and derivative works. However, this
- document itself may not be modified in any way, such as by removing
- the copyright notice or references to the Internet Society or other
- Internet organizations, except as needed for the purpose of
- developing Internet standards in which case the procedures for
- copyrights defined in the Internet Standards process must be
- followed, or as required to translate it into languages other than
- English.
-
- The limited permissions granted above are perpetual and will not be
- revoked by the Internet Society or its successors or assigns.
-
- This document and the information contained herein is provided on an
- "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
- TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
- BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
- HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
- MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
-
-Acknowledgement
-
- Funding for the RFC Editor function is currently provided by the
- Internet Society.
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-Koch Experimental [Page 8]
-