summaryrefslogtreecommitdiff
path: root/contrib/gcc/gcse.c
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/gcc/gcse.c')
-rw-r--r--contrib/gcc/gcse.c4704
1 files changed, 0 insertions, 4704 deletions
diff --git a/contrib/gcc/gcse.c b/contrib/gcc/gcse.c
deleted file mode 100644
index cddd7ac63dfaf..0000000000000
--- a/contrib/gcc/gcse.c
+++ /dev/null
@@ -1,4704 +0,0 @@
-/* Global common subexpression elimination/Partial redundancy elimination
- and global constant/copy propagation for GNU compiler.
- Copyright (C) 1997, 1998, 1999 Free Software Foundation, Inc.
-
-This file is part of GNU CC.
-
-GNU CC is free software; you can redistribute it and/or modify
-it under the terms of the GNU General Public License as published by
-the Free Software Foundation; either version 2, or (at your option)
-any later version.
-
-GNU CC is distributed in the hope that it will be useful,
-but WITHOUT ANY WARRANTY; without even the implied warranty of
-MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-GNU General Public License for more details.
-
-You should have received a copy of the GNU General Public License
-along with GNU CC; see the file COPYING. If not, write to
-the Free Software Foundation, 59 Temple Place - Suite 330,
-Boston, MA 02111-1307, USA. */
-
-/* TODO
- - reordering of memory allocation and freeing to be more space efficient
- - do rough calc of how many regs are needed in each block, and a rough
- calc of how many regs are available in each class and use that to
- throttle back the code in cases where RTX_COST is minimal.
- - dead store elimination
- - a store to the same address as a load does not kill the load if the
- source of the store is also the destination of the load. Handling this
- allows more load motion, particularly out of loops.
- - ability to realloc sbitmap vectors would allow one initial computation
- of reg_set_in_block with only subsequent additions, rather than
- recomputing it for each pass
-
-*/
-
-/* References searched while implementing this.
-
- Compilers Principles, Techniques and Tools
- Aho, Sethi, Ullman
- Addison-Wesley, 1988
-
- Global Optimization by Suppression of Partial Redundancies
- E. Morel, C. Renvoise
- communications of the acm, Vol. 22, Num. 2, Feb. 1979
-
- A Portable Machine-Independent Global Optimizer - Design and Measurements
- Frederick Chow
- Stanford Ph.D. thesis, Dec. 1983
-
- A Fast Algorithm for Code Movement Optimization
- D.M. Dhamdhere
- SIGPLAN Notices, Vol. 23, Num. 10, Oct. 1988
-
- A Solution to a Problem with Morel and Renvoise's
- Global Optimization by Suppression of Partial Redundancies
- K-H Drechsler, M.P. Stadel
- ACM TOPLAS, Vol. 10, Num. 4, Oct. 1988
-
- Practical Adaptation of the Global Optimization
- Algorithm of Morel and Renvoise
- D.M. Dhamdhere
- ACM TOPLAS, Vol. 13, Num. 2. Apr. 1991
-
- Efficiently Computing Static Single Assignment Form and the Control
- Dependence Graph
- R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and F.K. Zadeck
- ACM TOPLAS, Vol. 13, Num. 4, Oct. 1991
-
- Lazy Code Motion
- J. Knoop, O. Ruthing, B. Steffen
- ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
-
- What's In a Region? Or Computing Control Dependence Regions in Near-Linear
- Time for Reducible Flow Control
- Thomas Ball
- ACM Letters on Programming Languages and Systems,
- Vol. 2, Num. 1-4, Mar-Dec 1993
-
- An Efficient Representation for Sparse Sets
- Preston Briggs, Linda Torczon
- ACM Letters on Programming Languages and Systems,
- Vol. 2, Num. 1-4, Mar-Dec 1993
-
- A Variation of Knoop, Ruthing, and Steffen's Lazy Code Motion
- K-H Drechsler, M.P. Stadel
- ACM SIGPLAN Notices, Vol. 28, Num. 5, May 1993
-
- Partial Dead Code Elimination
- J. Knoop, O. Ruthing, B. Steffen
- ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
-
- Effective Partial Redundancy Elimination
- P. Briggs, K.D. Cooper
- ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
-
- The Program Structure Tree: Computing Control Regions in Linear Time
- R. Johnson, D. Pearson, K. Pingali
- ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
-
- Optimal Code Motion: Theory and Practice
- J. Knoop, O. Ruthing, B. Steffen
- ACM TOPLAS, Vol. 16, Num. 4, Jul. 1994
-
- The power of assignment motion
- J. Knoop, O. Ruthing, B. Steffen
- ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
-
- Global code motion / global value numbering
- C. Click
- ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
-
- Value Driven Redundancy Elimination
- L.T. Simpson
- Rice University Ph.D. thesis, Apr. 1996
-
- Value Numbering
- L.T. Simpson
- Massively Scalar Compiler Project, Rice University, Sep. 1996
-
- High Performance Compilers for Parallel Computing
- Michael Wolfe
- Addison-Wesley, 1996
-
- Advanced Compiler Design and Implementation
- Steven Muchnick
- Morgan Kaufmann, 1997
-
- People wishing to speed up the code here should read:
- Elimination Algorithms for Data Flow Analysis
- B.G. Ryder, M.C. Paull
- ACM Computing Surveys, Vol. 18, Num. 3, Sep. 1986
-
- How to Analyze Large Programs Efficiently and Informatively
- D.M. Dhamdhere, B.K. Rosen, F.K. Zadeck
- ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
-
- People wishing to do something different can find various possibilities
- in the above papers and elsewhere.
-*/
-
-#include "config.h"
-#include "system.h"
-#include "toplev.h"
-
-#include "rtl.h"
-#include "regs.h"
-#include "hard-reg-set.h"
-#include "flags.h"
-#include "real.h"
-#include "insn-config.h"
-#include "recog.h"
-#include "basic-block.h"
-#include "output.h"
-#include "expr.h"
-
-#include "obstack.h"
-#define obstack_chunk_alloc gmalloc
-#define obstack_chunk_free free
-
-/* Maximum number of passes to perform. */
-#define MAX_PASSES 1
-
-/* Propagate flow information through back edges and thus enable PRE's
- moving loop invariant calculations out of loops.
-
- Originally this tended to create worse overall code, but several
- improvements during the development of PRE seem to have made following
- back edges generally a win.
-
- Note much of the loop invariant code motion done here would normally
- be done by loop.c, which has more heuristics for when to move invariants
- out of loops. At some point we might need to move some of those
- heuristics into gcse.c. */
-#define FOLLOW_BACK_EDGES 1
-
-/* We support GCSE via Partial Redundancy Elimination. PRE optimizations
- are a superset of those done by GCSE.
-
- We perform the following steps:
-
- 1) Compute basic block information.
-
- 2) Compute table of places where registers are set.
-
- 3) Perform copy/constant propagation.
-
- 4) Perform global cse.
-
- 5) Perform another pass of copy/constant propagation.
-
- Two passes of copy/constant propagation are done because the first one
- enables more GCSE and the second one helps to clean up the copies that
- GCSE creates. This is needed more for PRE than for Classic because Classic
- GCSE will try to use an existing register containing the common
- subexpression rather than create a new one. This is harder to do for PRE
- because of the code motion (which Classic GCSE doesn't do).
-
- Expressions we are interested in GCSE-ing are of the form
- (set (pseudo-reg) (expression)).
- Function want_to_gcse_p says what these are.
-
- PRE handles moving invariant expressions out of loops (by treating them as
- partially redundant).
-
- Eventually it would be nice to replace cse.c/gcse.c with SSA (static single
- assignment) based GVN (global value numbering). L. T. Simpson's paper
- (Rice University) on value numbering is a useful reference for this.
-
- **********************
-
- We used to support multiple passes but there are diminishing returns in
- doing so. The first pass usually makes 90% of the changes that are doable.
- A second pass can make a few more changes made possible by the first pass.
- Experiments show any further passes don't make enough changes to justify
- the expense.
-
- A study of spec92 using an unlimited number of passes:
- [1 pass] = 1208 substitutions, [2] = 577, [3] = 202, [4] = 192, [5] = 83,
- [6] = 34, [7] = 17, [8] = 9, [9] = 4, [10] = 4, [11] = 2,
- [12] = 2, [13] = 1, [15] = 1, [16] = 2, [41] = 1
-
- It was found doing copy propagation between each pass enables further
- substitutions.
-
- PRE is quite expensive in complicated functions because the DFA can take
- awhile to converge. Hence we only perform one pass. Macro MAX_PASSES can
- be modified if one wants to experiment.
-
- **********************
-
- The steps for PRE are:
-
- 1) Build the hash table of expressions we wish to GCSE (expr_hash_table).
-
- 2) Perform the data flow analysis for PRE.
-
- 3) Delete the redundant instructions
-
- 4) Insert the required copies [if any] that make the partially
- redundant instructions fully redundant.
-
- 5) For other reaching expressions, insert an instruction to copy the value
- to a newly created pseudo that will reach the redundant instruction.
-
- The deletion is done first so that when we do insertions we
- know which pseudo reg to use.
-
- Various papers have argued that PRE DFA is expensive (O(n^2)) and others
- argue it is not. The number of iterations for the algorithm to converge
- is typically 2-4 so I don't view it as that expensive (relatively speaking).
-
- PRE GCSE depends heavily on the second CSE pass to clean up the copies
- we create. To make an expression reach the place where it's redundant,
- the result of the expression is copied to a new register, and the redundant
- expression is deleted by replacing it with this new register. Classic GCSE
- doesn't have this problem as much as it computes the reaching defs of
- each register in each block and thus can try to use an existing register.
-
- **********************
-
- A fair bit of simplicity is created by creating small functions for simple
- tasks, even when the function is only called in one place. This may
- measurably slow things down [or may not] by creating more function call
- overhead than is necessary. The source is laid out so that it's trivial
- to make the affected functions inline so that one can measure what speed
- up, if any, can be achieved, and maybe later when things settle things can
- be rearranged.
-
- Help stamp out big monolithic functions! */
-
-/* GCSE global vars. */
-
-/* -dG dump file. */
-static FILE *gcse_file;
-
-/* Note whether or not we should run jump optimization after gcse. We
- want to do this for two cases.
-
- * If we changed any jumps via cprop.
-
- * If we added any labels via edge splitting. */
-
-static int run_jump_opt_after_gcse;
-
-/* Element I is a list of I's predecessors/successors. */
-static int_list_ptr *s_preds;
-static int_list_ptr *s_succs;
-
-/* Element I is the number of predecessors/successors of basic block I. */
-static int *num_preds;
-static int *num_succs;
-
-/* Bitmaps are normally not included in debugging dumps.
- However it's useful to be able to print them from GDB.
- We could create special functions for this, but it's simpler to
- just allow passing stderr to the dump_foo fns. Since stderr can
- be a macro, we store a copy here. */
-static FILE *debug_stderr;
-
-/* An obstack for our working variables. */
-static struct obstack gcse_obstack;
-
-/* Non-zero for each mode that supports (set (reg) (reg)).
- This is trivially true for integer and floating point values.
- It may or may not be true for condition codes. */
-static char can_copy_p[(int) NUM_MACHINE_MODES];
-
-/* Non-zero if can_copy_p has been initialized. */
-static int can_copy_init_p;
-
-/* Hash table of expressions. */
-
-struct expr
-{
- /* The expression (SET_SRC for expressions, PATTERN for assignments). */
- rtx expr;
- /* Index in the available expression bitmaps. */
- int bitmap_index;
- /* Next entry with the same hash. */
- struct expr *next_same_hash;
- /* List of anticipatable occurrences in basic blocks in the function.
- An "anticipatable occurrence" is one that is the first occurrence in the
- basic block, the operands are not modified in the basic block prior
- to the occurrence and the output is not used between the start of
- the block and the occurrence. */
- struct occr *antic_occr;
- /* List of available occurrence in basic blocks in the function.
- An "available occurrence" is one that is the last occurrence in the
- basic block and the operands are not modified by following statements in
- the basic block [including this insn]. */
- struct occr *avail_occr;
- /* Non-null if the computation is PRE redundant.
- The value is the newly created pseudo-reg to record a copy of the
- expression in all the places that reach the redundant copy. */
- rtx reaching_reg;
-};
-
-/* Occurrence of an expression.
- There is one per basic block. If a pattern appears more than once the
- last appearance is used [or first for anticipatable expressions]. */
-
-struct occr
-{
- /* Next occurrence of this expression. */
- struct occr *next;
- /* The insn that computes the expression. */
- rtx insn;
- /* Non-zero if this [anticipatable] occurrence has been deleted. */
- char deleted_p;
- /* Non-zero if this [available] occurrence has been copied to
- reaching_reg. */
- /* ??? This is mutually exclusive with deleted_p, so they could share
- the same byte. */
- char copied_p;
-};
-
-/* Expression and copy propagation hash tables.
- Each hash table is an array of buckets.
- ??? It is known that if it were an array of entries, structure elements
- `next_same_hash' and `bitmap_index' wouldn't be necessary. However, it is
- not clear whether in the final analysis a sufficient amount of memory would
- be saved as the size of the available expression bitmaps would be larger
- [one could build a mapping table without holes afterwards though].
- Someday I'll perform the computation and figure it out.
-*/
-
-/* Total size of the expression hash table, in elements. */
-static int expr_hash_table_size;
-/* The table itself.
- This is an array of `expr_hash_table_size' elements. */
-static struct expr **expr_hash_table;
-
-/* Total size of the copy propagation hash table, in elements. */
-static int set_hash_table_size;
-/* The table itself.
- This is an array of `set_hash_table_size' elements. */
-static struct expr **set_hash_table;
-
-/* Mapping of uids to cuids.
- Only real insns get cuids. */
-static int *uid_cuid;
-
-/* Highest UID in UID_CUID. */
-static int max_uid;
-
-/* Get the cuid of an insn. */
-#define INSN_CUID(INSN) (uid_cuid[INSN_UID (INSN)])
-
-/* Number of cuids. */
-static int max_cuid;
-
-/* Mapping of cuids to insns. */
-static rtx *cuid_insn;
-
-/* Get insn from cuid. */
-#define CUID_INSN(CUID) (cuid_insn[CUID])
-
-/* Maximum register number in function prior to doing gcse + 1.
- Registers created during this pass have regno >= max_gcse_regno.
- This is named with "gcse" to not collide with global of same name. */
-static int max_gcse_regno;
-
-/* Maximum number of cse-able expressions found. */
-static int n_exprs;
-/* Maximum number of assignments for copy propagation found. */
-static int n_sets;
-
-/* Table of registers that are modified.
- For each register, each element is a list of places where the pseudo-reg
- is set.
-
- For simplicity, GCSE is done on sets of pseudo-regs only. PRE GCSE only
- requires knowledge of which blocks kill which regs [and thus could use
- a bitmap instead of the lists `reg_set_table' uses].
-
- `reg_set_table' and could be turned into an array of bitmaps
- (num-bbs x num-regs)
- [however perhaps it may be useful to keep the data as is].
- One advantage of recording things this way is that `reg_set_table' is
- fairly sparse with respect to pseudo regs but for hard regs could be
- fairly dense [relatively speaking].
- And recording sets of pseudo-regs in lists speeds
- up functions like compute_transp since in the case of pseudo-regs we only
- need to iterate over the number of times a pseudo-reg is set, not over the
- number of basic blocks [clearly there is a bit of a slow down in the cases
- where a pseudo is set more than once in a block, however it is believed
- that the net effect is to speed things up]. This isn't done for hard-regs
- because recording call-clobbered hard-regs in `reg_set_table' at each
- function call can consume a fair bit of memory, and iterating over hard-regs
- stored this way in compute_transp will be more expensive. */
-
-typedef struct reg_set {
- /* The next setting of this register. */
- struct reg_set *next;
- /* The insn where it was set. */
- rtx insn;
-} reg_set;
-static reg_set **reg_set_table;
-/* Size of `reg_set_table'.
- The table starts out at max_gcse_regno + slop, and is enlarged as
- necessary. */
-static int reg_set_table_size;
-/* Amount to grow `reg_set_table' by when it's full. */
-#define REG_SET_TABLE_SLOP 100
-
-/* Bitmap containing one bit for each register in the program.
- Used when performing GCSE to track which registers have been set since
- the start of the basic block. */
-static sbitmap reg_set_bitmap;
-
-/* For each block, a bitmap of registers set in the block.
- This is used by expr_killed_p and compute_transp.
- It is computed during hash table computation and not by compute_sets
- as it includes registers added since the last pass (or between cprop and
- gcse) and it's currently not easy to realloc sbitmap vectors. */
-static sbitmap *reg_set_in_block;
-
-/* For each block, non-zero if memory is set in that block.
- This is computed during hash table computation and is used by
- expr_killed_p and compute_transp.
- ??? Handling of memory is very simple, we don't make any attempt
- to optimize things (later).
- ??? This can be computed by compute_sets since the information
- doesn't change. */
-static char *mem_set_in_block;
-
-/* Various variables for statistics gathering. */
-
-/* Memory used in a pass.
- This isn't intended to be absolutely precise. Its intent is only
- to keep an eye on memory usage. */
-static int bytes_used;
-/* GCSE substitutions made. */
-static int gcse_subst_count;
-/* Number of copy instructions created. */
-static int gcse_create_count;
-/* Number of constants propagated. */
-static int const_prop_count;
-/* Number of copys propagated. */
-static int copy_prop_count;
-
-extern char *current_function_name;
-extern int current_function_calls_setjmp;
-
-/* These variables are used by classic GCSE.
- Normally they'd be defined a bit later, but `rd_gen' needs to
- be declared sooner. */
-
-/* A bitmap of all ones for implementing the algorithm for available
- expressions and reaching definitions. */
-/* ??? Available expression bitmaps have a different size than reaching
- definition bitmaps. This should be the larger of the two, however, it
- is not currently used for reaching definitions. */
-static sbitmap u_bitmap;
-
-/* Each block has a bitmap of each type.
- The length of each blocks bitmap is:
-
- max_cuid - for reaching definitions
- n_exprs - for available expressions
-
- Thus we view the bitmaps as 2 dimensional arrays. i.e.
- rd_kill[block_num][cuid_num]
- ae_kill[block_num][expr_num]
-*/
-
-/* For reaching defs */
-static sbitmap *rd_kill, *rd_gen, *reaching_defs, *rd_out;
-
-/* for available exprs */
-static sbitmap *ae_kill, *ae_gen, *ae_in, *ae_out;
-
-
-static void compute_can_copy PROTO ((void));
-
-static char *gmalloc PROTO ((unsigned int));
-static char *grealloc PROTO ((char *, unsigned int));
-static char *gcse_alloc PROTO ((unsigned long));
-static void alloc_gcse_mem PROTO ((rtx));
-static void free_gcse_mem PROTO ((void));
-static void alloc_reg_set_mem PROTO ((int));
-static void free_reg_set_mem PROTO ((void));
-static void record_one_set PROTO ((int, rtx));
-static void record_set_info PROTO ((rtx, rtx));
-static void compute_sets PROTO ((rtx));
-
-static void hash_scan_insn PROTO ((rtx, int, int));
-static void hash_scan_set PROTO ((rtx, rtx, int));
-static void hash_scan_clobber PROTO ((rtx, rtx));
-static void hash_scan_call PROTO ((rtx, rtx));
-static int want_to_gcse_p PROTO ((rtx));
-static int oprs_unchanged_p PROTO ((rtx, rtx, int));
-static int oprs_anticipatable_p PROTO ((rtx, rtx));
-static int oprs_available_p PROTO ((rtx, rtx));
-static void insert_expr_in_table PROTO ((rtx, enum machine_mode,
- rtx, int, int));
-static void insert_set_in_table PROTO ((rtx, rtx));
-static unsigned int hash_expr PROTO ((rtx, enum machine_mode,
- int *, int));
-static unsigned int hash_expr_1 PROTO ((rtx, enum machine_mode, int *));
-static unsigned int hash_set PROTO ((int, int));
-static int expr_equiv_p PROTO ((rtx, rtx));
-static void record_last_reg_set_info PROTO ((rtx, int));
-static void record_last_mem_set_info PROTO ((rtx));
-static void record_last_set_info PROTO ((rtx, rtx));
-static void compute_hash_table PROTO ((int));
-static void alloc_set_hash_table PROTO ((int));
-static void free_set_hash_table PROTO ((void));
-static void compute_set_hash_table PROTO ((void));
-static void alloc_expr_hash_table PROTO ((int));
-static void free_expr_hash_table PROTO ((void));
-static void compute_expr_hash_table PROTO ((void));
-static void dump_hash_table PROTO ((FILE *, const char *, struct expr **,
- int, int));
-static struct expr *lookup_expr PROTO ((rtx));
-static struct expr *lookup_set PROTO ((int, rtx));
-static struct expr *next_set PROTO ((int, struct expr *));
-static void reset_opr_set_tables PROTO ((void));
-static int oprs_not_set_p PROTO ((rtx, rtx));
-static void mark_call PROTO ((rtx));
-static void mark_set PROTO ((rtx, rtx));
-static void mark_clobber PROTO ((rtx, rtx));
-static void mark_oprs_set PROTO ((rtx));
-
-static void alloc_cprop_mem PROTO ((int, int));
-static void free_cprop_mem PROTO ((void));
-static void compute_transp PROTO ((rtx, int, sbitmap *, int));
-static void compute_transpout PROTO ((void));
-static void compute_local_properties PROTO ((sbitmap *, sbitmap *,
- sbitmap *, int));
-static void compute_cprop_avinout PROTO ((void));
-static void compute_cprop_data PROTO ((void));
-static void find_used_regs PROTO ((rtx));
-static int try_replace_reg PROTO ((rtx, rtx, rtx));
-static struct expr *find_avail_set PROTO ((int, rtx));
-static int cprop_insn PROTO ((rtx, int));
-static int cprop PROTO ((int));
-static int one_cprop_pass PROTO ((int, int));
-
-static void alloc_pre_mem PROTO ((int, int));
-static void free_pre_mem PROTO ((void));
-static void compute_pre_data PROTO ((void));
-static int pre_expr_reaches_here_p PROTO ((int, struct expr *,
- int, int, char *));
-static void insert_insn_end_bb PROTO ((struct expr *, int, int));
-static void pre_insert PROTO ((struct expr **));
-static void pre_insert_copy_insn PROTO ((struct expr *, rtx));
-static void pre_insert_copies PROTO ((void));
-static int pre_delete PROTO ((void));
-static int pre_gcse PROTO ((void));
-static int one_pre_gcse_pass PROTO ((int));
-
-static void add_label_notes PROTO ((rtx, rtx));
-
-static void alloc_rd_mem PROTO ((int, int));
-static void free_rd_mem PROTO ((void));
-static void handle_rd_kill_set PROTO ((rtx, int, int));
-static void compute_kill_rd PROTO ((void));
-static void compute_rd PROTO ((void));
-static void alloc_avail_expr_mem PROTO ((int, int));
-static void free_avail_expr_mem PROTO ((void));
-static void compute_ae_gen PROTO ((void));
-static int expr_killed_p PROTO ((rtx, int));
-static void compute_ae_kill PROTO ((void));
-static void compute_available PROTO ((void));
-static int expr_reaches_here_p PROTO ((struct occr *, struct expr *,
- int, int, char *));
-static rtx computing_insn PROTO ((struct expr *, rtx));
-static int def_reaches_here_p PROTO ((rtx, rtx));
-static int can_disregard_other_sets PROTO ((struct reg_set **, rtx, int));
-static int handle_avail_expr PROTO ((rtx, struct expr *));
-static int classic_gcse PROTO ((void));
-static int one_classic_gcse_pass PROTO ((int));
-
-
-/* Entry point for global common subexpression elimination.
- F is the first instruction in the function. */
-
-int
-gcse_main (f, file)
- rtx f;
- FILE *file;
-{
- int changed, pass;
- /* Bytes used at start of pass. */
- int initial_bytes_used;
- /* Maximum number of bytes used by a pass. */
- int max_pass_bytes;
- /* Point to release obstack data from for each pass. */
- char *gcse_obstack_bottom;
-
- /* We do not construct an accurate cfg in functions which call
- setjmp, so just punt to be safe. */
- if (current_function_calls_setjmp)
- return 0;
-
- /* Assume that we do not need to run jump optimizations after gcse. */
- run_jump_opt_after_gcse = 0;
-
- /* For calling dump_foo fns from gdb. */
- debug_stderr = stderr;
- gcse_file = file;
-
- /* Identify the basic block information for this function, including
- successors and predecessors. */
- max_gcse_regno = max_reg_num ();
- find_basic_blocks (f, max_gcse_regno, file, 1);
-
- /* Return if there's nothing to do. */
- if (n_basic_blocks <= 1)
- {
- /* Free storage allocated by find_basic_blocks. */
- free_basic_block_vars (0);
- return 0;
- }
-
- /* See what modes support reg/reg copy operations. */
- if (! can_copy_init_p)
- {
- compute_can_copy ();
- can_copy_init_p = 1;
- }
-
- gcc_obstack_init (&gcse_obstack);
-
- /* Allocate and compute predecessors/successors. */
-
- s_preds = (int_list_ptr *) alloca (n_basic_blocks * sizeof (int_list_ptr));
- s_succs = (int_list_ptr *) alloca (n_basic_blocks * sizeof (int_list_ptr));
- num_preds = (int *) alloca (n_basic_blocks * sizeof (int));
- num_succs = (int *) alloca (n_basic_blocks * sizeof (int));
- bytes_used = 4 * n_basic_blocks * sizeof (int_list_ptr);
- compute_preds_succs (s_preds, s_succs, num_preds, num_succs);
-
- if (file)
- dump_bb_data (file, s_preds, s_succs, 0);
-
- /* Record where pseudo-registers are set.
- This data is kept accurate during each pass.
- ??? We could also record hard-reg information here
- [since it's unchanging], however it is currently done during
- hash table computation.
-
- It may be tempting to compute MEM set information here too, but MEM
- sets will be subject to code motion one day and thus we need to compute
- information about memory sets when we build the hash tables. */
-
- alloc_reg_set_mem (max_gcse_regno);
- compute_sets (f);
-
- pass = 0;
- initial_bytes_used = bytes_used;
- max_pass_bytes = 0;
- gcse_obstack_bottom = gcse_alloc (1);
- changed = 1;
- while (changed && pass < MAX_PASSES)
- {
- changed = 0;
- if (file)
- fprintf (file, "GCSE pass %d\n\n", pass + 1);
-
- /* Initialize bytes_used to the space for the pred/succ lists,
- and the reg_set_table data. */
- bytes_used = initial_bytes_used;
-
- /* Each pass may create new registers, so recalculate each time. */
- max_gcse_regno = max_reg_num ();
-
- alloc_gcse_mem (f);
-
- /* Don't allow constant propagation to modify jumps
- during this pass. */
- changed = one_cprop_pass (pass + 1, 0);
-
- if (optimize_size)
- changed |= one_classic_gcse_pass (pass + 1);
- else
- changed |= one_pre_gcse_pass (pass + 1);
-
- if (max_pass_bytes < bytes_used)
- max_pass_bytes = bytes_used;
-
- free_gcse_mem ();
-
- if (file)
- {
- fprintf (file, "\n");
- fflush (file);
- }
- obstack_free (&gcse_obstack, gcse_obstack_bottom);
- pass++;
- }
-
- /* Do one last pass of copy propagation, including cprop into
- conditional jumps. */
-
- max_gcse_regno = max_reg_num ();
- alloc_gcse_mem (f);
- /* This time, go ahead and allow cprop to alter jumps. */
- one_cprop_pass (pass + 1, 1);
- free_gcse_mem ();
-
- if (file)
- {
- fprintf (file, "GCSE of %s: %d basic blocks, ",
- current_function_name, n_basic_blocks);
- fprintf (file, "%d pass%s, %d bytes\n\n",
- pass, pass > 1 ? "es" : "", max_pass_bytes);
- }
-
- /* Free our obstack. */
- obstack_free (&gcse_obstack, NULL_PTR);
- /* Free reg_set_table. */
- free_reg_set_mem ();
- /* Free storage used to record predecessor/successor data. */
- free_bb_mem ();
- /* Free storage allocated by find_basic_blocks. */
- free_basic_block_vars (0);
- return run_jump_opt_after_gcse;
-}
-
-/* Misc. utilities. */
-
-/* Compute which modes support reg/reg copy operations. */
-
-static void
-compute_can_copy ()
-{
- int i;
-#ifndef AVOID_CCMODE_COPIES
- rtx reg,insn;
-#endif
- char *free_point = (char *) oballoc (1);
-
- bzero (can_copy_p, NUM_MACHINE_MODES);
-
- start_sequence ();
- for (i = 0; i < NUM_MACHINE_MODES; i++)
- {
- switch (GET_MODE_CLASS (i))
- {
- case MODE_CC :
-#ifdef AVOID_CCMODE_COPIES
- can_copy_p[i] = 0;
-#else
- reg = gen_rtx_REG ((enum machine_mode) i, LAST_VIRTUAL_REGISTER + 1);
- insn = emit_insn (gen_rtx_SET (VOIDmode, reg, reg));
- if (recog (PATTERN (insn), insn, NULL_PTR) >= 0)
- can_copy_p[i] = 1;
-#endif
- break;
- default :
- can_copy_p[i] = 1;
- break;
- }
- }
- end_sequence ();
-
- /* Free the objects we just allocated. */
- obfree (free_point);
-}
-
-/* Cover function to xmalloc to record bytes allocated. */
-
-static char *
-gmalloc (size)
- unsigned int size;
-{
- bytes_used += size;
- return xmalloc (size);
-}
-
-/* Cover function to xrealloc.
- We don't record the additional size since we don't know it.
- It won't affect memory usage stats much anyway. */
-
-static char *
-grealloc (ptr, size)
- char *ptr;
- unsigned int size;
-{
- return xrealloc (ptr, size);
-}
-
-/* Cover function to obstack_alloc.
- We don't need to record the bytes allocated here since
- obstack_chunk_alloc is set to gmalloc. */
-
-static char *
-gcse_alloc (size)
- unsigned long size;
-{
- return (char *) obstack_alloc (&gcse_obstack, size);
-}
-
-/* Allocate memory for the cuid mapping array,
- and reg/memory set tracking tables.
-
- This is called at the start of each pass. */
-
-static void
-alloc_gcse_mem (f)
- rtx f;
-{
- int i,n;
- rtx insn;
-
- /* Find the largest UID and create a mapping from UIDs to CUIDs.
- CUIDs are like UIDs except they increase monotonically, have no gaps,
- and only apply to real insns. */
-
- max_uid = get_max_uid ();
- n = (max_uid + 1) * sizeof (int);
- uid_cuid = (int *) gmalloc (n);
- bzero ((char *) uid_cuid, n);
- for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
- {
- if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
- INSN_CUID (insn) = i++;
- else
- INSN_CUID (insn) = i;
- }
-
- /* Create a table mapping cuids to insns. */
-
- max_cuid = i;
- n = (max_cuid + 1) * sizeof (rtx);
- cuid_insn = (rtx *) gmalloc (n);
- bzero ((char *) cuid_insn, n);
- for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
- {
- if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
- {
- CUID_INSN (i) = insn;
- i++;
- }
- }
-
- /* Allocate vars to track sets of regs. */
-
- reg_set_bitmap = (sbitmap) sbitmap_alloc (max_gcse_regno);
-
- /* Allocate vars to track sets of regs, memory per block. */
-
- reg_set_in_block = (sbitmap *) sbitmap_vector_alloc (n_basic_blocks,
- max_gcse_regno);
- mem_set_in_block = (char *) gmalloc (n_basic_blocks);
-}
-
-/* Free memory allocated by alloc_gcse_mem. */
-
-static void
-free_gcse_mem ()
-{
- free (uid_cuid);
- free (cuid_insn);
-
- free (reg_set_bitmap);
-
- free (reg_set_in_block);
- free (mem_set_in_block);
-}
-
-
-/* Compute the local properties of each recorded expression.
- Local properties are those that are defined by the block, irrespective
- of other blocks.
-
- An expression is transparent in a block if its operands are not modified
- in the block.
-
- An expression is computed (locally available) in a block if it is computed
- at least once and expression would contain the same value if the
- computation was moved to the end of the block.
-
- An expression is locally anticipatable in a block if it is computed at
- least once and expression would contain the same value if the computation
- was moved to the beginning of the block.
-
- We call this routine for cprop, pre and code hoisting. They all
- compute basically the same information and thus can easily share
- this code.
-
- TRANSP, COMP, and ANTLOC are destination sbitmaps for recording
- local properties. If NULL, then it is not necessary to compute
- or record that particular property.
-
- SETP controls which hash table to look at. If zero, this routine
- looks at the expr hash table; if nonzero this routine looks at
- the set hash table. Additionally, TRANSP is computed as ~TRANSP,
- since this is really cprop's ABSALTERED. */
-
-static void
-compute_local_properties (transp, comp, antloc, setp)
- sbitmap *transp;
- sbitmap *comp;
- sbitmap *antloc;
- int setp;
-{
- int i, hash_table_size;
- struct expr **hash_table;
-
- /* Initialize any bitmaps that were passed in. */
- if (transp)
- {
- if (setp)
- sbitmap_vector_zero (transp, n_basic_blocks);
- else
- sbitmap_vector_ones (transp, n_basic_blocks);
- }
- if (comp)
- sbitmap_vector_zero (comp, n_basic_blocks);
- if (antloc)
- sbitmap_vector_zero (antloc, n_basic_blocks);
-
- /* We use the same code for cprop, pre and hoisting. For cprop
- we care about the set hash table, for pre and hoisting we
- care about the expr hash table. */
- hash_table_size = setp ? set_hash_table_size : expr_hash_table_size;
- hash_table = setp ? set_hash_table : expr_hash_table;
-
- for (i = 0; i < hash_table_size; i++)
- {
- struct expr *expr;
-
- for (expr = hash_table[i]; expr != NULL; expr = expr->next_same_hash)
- {
- struct occr *occr;
- int indx = expr->bitmap_index;
-
- /* The expression is transparent in this block if it is not killed.
- We start by assuming all are transparent [none are killed], and
- then reset the bits for those that are. */
-
- if (transp)
- compute_transp (expr->expr, indx, transp, setp);
-
- /* The occurrences recorded in antic_occr are exactly those that
- we want to set to non-zero in ANTLOC. */
-
- if (antloc)
- {
- for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
- {
- int bb = BLOCK_NUM (occr->insn);
- SET_BIT (antloc[bb], indx);
-
- /* While we're scanning the table, this is a good place to
- initialize this. */
- occr->deleted_p = 0;
- }
- }
-
- /* The occurrences recorded in avail_occr are exactly those that
- we want to set to non-zero in COMP. */
- if (comp)
- {
-
- for (occr = expr->avail_occr; occr != NULL; occr = occr->next)
- {
- int bb = BLOCK_NUM (occr->insn);
- SET_BIT (comp[bb], indx);
-
- /* While we're scanning the table, this is a good place to
- initialize this. */
- occr->copied_p = 0;
- }
- }
-
- /* While we're scanning the table, this is a good place to
- initialize this. */
- expr->reaching_reg = 0;
- }
- }
-}
-
-
-/* Register set information.
-
- `reg_set_table' records where each register is set or otherwise
- modified. */
-
-static struct obstack reg_set_obstack;
-
-static void
-alloc_reg_set_mem (n_regs)
- int n_regs;
-{
- int n;
-
- reg_set_table_size = n_regs + REG_SET_TABLE_SLOP;
- n = reg_set_table_size * sizeof (struct reg_set *);
- reg_set_table = (struct reg_set **) gmalloc (n);
- bzero ((char *) reg_set_table, n);
-
- gcc_obstack_init (&reg_set_obstack);
-}
-
-static void
-free_reg_set_mem ()
-{
- free (reg_set_table);
- obstack_free (&reg_set_obstack, NULL_PTR);
-}
-
-/* Record REGNO in the reg_set table. */
-
-static void
-record_one_set (regno, insn)
- int regno;
- rtx insn;
-{
- /* allocate a new reg_set element and link it onto the list */
- struct reg_set *new_reg_info, *reg_info_ptr1, *reg_info_ptr2;
-
- /* If the table isn't big enough, enlarge it. */
- if (regno >= reg_set_table_size)
- {
- int new_size = regno + REG_SET_TABLE_SLOP;
- reg_set_table = (struct reg_set **)
- grealloc ((char *) reg_set_table,
- new_size * sizeof (struct reg_set *));
- bzero ((char *) (reg_set_table + reg_set_table_size),
- (new_size - reg_set_table_size) * sizeof (struct reg_set *));
- reg_set_table_size = new_size;
- }
-
- new_reg_info = (struct reg_set *) obstack_alloc (&reg_set_obstack,
- sizeof (struct reg_set));
- bytes_used += sizeof (struct reg_set);
- new_reg_info->insn = insn;
- new_reg_info->next = NULL;
- if (reg_set_table[regno] == NULL)
- reg_set_table[regno] = new_reg_info;
- else
- {
- reg_info_ptr1 = reg_info_ptr2 = reg_set_table[regno];
- /* ??? One could keep a "last" pointer to speed this up. */
- while (reg_info_ptr1 != NULL)
- {
- reg_info_ptr2 = reg_info_ptr1;
- reg_info_ptr1 = reg_info_ptr1->next;
- }
- reg_info_ptr2->next = new_reg_info;
- }
-}
-
-/* For communication between next two functions (via note_stores). */
-static rtx record_set_insn;
-
-/* Called from compute_sets via note_stores to handle one
- SET or CLOBBER in an insn. */
-
-static void
-record_set_info (dest, setter)
- rtx dest, setter ATTRIBUTE_UNUSED;
-{
- if (GET_CODE (dest) == SUBREG)
- dest = SUBREG_REG (dest);
-
- if (GET_CODE (dest) == REG)
- {
- if (REGNO (dest) >= FIRST_PSEUDO_REGISTER)
- record_one_set (REGNO (dest), record_set_insn);
- }
-}
-
-/* Scan the function and record each set of each pseudo-register.
-
- This is called once, at the start of the gcse pass.
- See the comments for `reg_set_table' for further docs. */
-
-static void
-compute_sets (f)
- rtx f;
-{
- rtx insn = f;
-
- while (insn)
- {
- if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
- {
- record_set_insn = insn;
- note_stores (PATTERN (insn), record_set_info);
- }
- insn = NEXT_INSN (insn);
- }
-}
-
-/* Hash table support. */
-
-#define NEVER_SET -1
-
-/* For each register, the cuid of the first/last insn in the block to set it,
- or -1 if not set. */
-static int *reg_first_set;
-static int *reg_last_set;
-
-/* While computing "first/last set" info, this is the CUID of first/last insn
- to set memory or -1 if not set. `mem_last_set' is also used when
- performing GCSE to record whether memory has been set since the beginning
- of the block.
- Note that handling of memory is very simple, we don't make any attempt
- to optimize things (later). */
-static int mem_first_set;
-static int mem_last_set;
-
-/* Perform a quick check whether X, the source of a set, is something
- we want to consider for GCSE. */
-
-static int
-want_to_gcse_p (x)
- rtx x;
-{
- enum rtx_code code = GET_CODE (x);
-
- switch (code)
- {
- case REG:
- case SUBREG:
- case CONST_INT:
- case CONST_DOUBLE:
- case CALL:
- return 0;
-
- default:
- break;
- }
-
- return 1;
-}
-
-/* Return non-zero if the operands of expression X are unchanged from the
- start of INSN's basic block up to but not including INSN (if AVAIL_P == 0),
- or from INSN to the end of INSN's basic block (if AVAIL_P != 0). */
-
-static int
-oprs_unchanged_p (x, insn, avail_p)
- rtx x, insn;
- int avail_p;
-{
- int i;
- enum rtx_code code;
- char *fmt;
-
- /* repeat is used to turn tail-recursion into iteration. */
- repeat:
-
- if (x == 0)
- return 1;
-
- code = GET_CODE (x);
- switch (code)
- {
- case REG:
- if (avail_p)
- return (reg_last_set[REGNO (x)] == NEVER_SET
- || reg_last_set[REGNO (x)] < INSN_CUID (insn));
- else
- return (reg_first_set[REGNO (x)] == NEVER_SET
- || reg_first_set[REGNO (x)] >= INSN_CUID (insn));
-
- case MEM:
- if (avail_p)
- {
- if (mem_last_set != NEVER_SET
- && mem_last_set >= INSN_CUID (insn))
- return 0;
- }
- else
- {
- if (mem_first_set != NEVER_SET
- && mem_first_set < INSN_CUID (insn))
- return 0;
- }
- x = XEXP (x, 0);
- goto repeat;
-
- case PRE_DEC:
- case PRE_INC:
- case POST_DEC:
- case POST_INC:
- return 0;
-
- case PC:
- case CC0: /*FIXME*/
- case CONST:
- case CONST_INT:
- case CONST_DOUBLE:
- case SYMBOL_REF:
- case LABEL_REF:
- case ADDR_VEC:
- case ADDR_DIFF_VEC:
- return 1;
-
- default:
- break;
- }
-
- i = GET_RTX_LENGTH (code) - 1;
- fmt = GET_RTX_FORMAT (code);
- for (; i >= 0; i--)
- {
- if (fmt[i] == 'e')
- {
- rtx tem = XEXP (x, i);
-
- /* If we are about to do the last recursive call
- needed at this level, change it into iteration.
- This function is called enough to be worth it. */
- if (i == 0)
- {
- x = tem;
- goto repeat;
- }
- if (! oprs_unchanged_p (tem, insn, avail_p))
- return 0;
- }
- else if (fmt[i] == 'E')
- {
- int j;
- for (j = 0; j < XVECLEN (x, i); j++)
- {
- if (! oprs_unchanged_p (XVECEXP (x, i, j), insn, avail_p))
- return 0;
- }
- }
- }
-
- return 1;
-}
-
-/* Return non-zero if the operands of expression X are unchanged from
- the start of INSN's basic block up to but not including INSN. */
-
-static int
-oprs_anticipatable_p (x, insn)
- rtx x, insn;
-{
- return oprs_unchanged_p (x, insn, 0);
-}
-
-/* Return non-zero if the operands of expression X are unchanged from
- INSN to the end of INSN's basic block. */
-
-static int
-oprs_available_p (x, insn)
- rtx x, insn;
-{
- return oprs_unchanged_p (x, insn, 1);
-}
-
-/* Hash expression X.
- MODE is only used if X is a CONST_INT.
- A boolean indicating if a volatile operand is found or if the expression
- contains something we don't want to insert in the table is stored in
- DO_NOT_RECORD_P.
-
- ??? One might want to merge this with canon_hash. Later. */
-
-static unsigned int
-hash_expr (x, mode, do_not_record_p, hash_table_size)
- rtx x;
- enum machine_mode mode;
- int *do_not_record_p;
- int hash_table_size;
-{
- unsigned int hash;
-
- *do_not_record_p = 0;
-
- hash = hash_expr_1 (x, mode, do_not_record_p);
- return hash % hash_table_size;
-}
-
-/* Subroutine of hash_expr to do the actual work. */
-
-static unsigned int
-hash_expr_1 (x, mode, do_not_record_p)
- rtx x;
- enum machine_mode mode;
- int *do_not_record_p;
-{
- int i, j;
- unsigned hash = 0;
- enum rtx_code code;
- char *fmt;
-
- /* repeat is used to turn tail-recursion into iteration. */
- repeat:
-
- if (x == 0)
- return hash;
-
- code = GET_CODE (x);
- switch (code)
- {
- case REG:
- {
- register int regno = REGNO (x);
- hash += ((unsigned) REG << 7) + regno;
- return hash;
- }
-
- case CONST_INT:
- {
- unsigned HOST_WIDE_INT tem = INTVAL (x);
- hash += ((unsigned) CONST_INT << 7) + (unsigned) mode + tem;
- return hash;
- }
-
- case CONST_DOUBLE:
- /* This is like the general case, except that it only counts
- the integers representing the constant. */
- hash += (unsigned) code + (unsigned) GET_MODE (x);
- if (GET_MODE (x) != VOIDmode)
- for (i = 2; i < GET_RTX_LENGTH (CONST_DOUBLE); i++)
- {
- unsigned tem = XINT (x, i);
- hash += tem;
- }
- else
- hash += ((unsigned) CONST_DOUBLE_LOW (x)
- + (unsigned) CONST_DOUBLE_HIGH (x));
- return hash;
-
- /* Assume there is only one rtx object for any given label. */
- case LABEL_REF:
- /* We don't hash on the address of the CODE_LABEL to avoid bootstrap
- differences and differences between each stage's debugging dumps. */
- hash += ((unsigned) LABEL_REF << 7) + CODE_LABEL_NUMBER (XEXP (x, 0));
- return hash;
-
- case SYMBOL_REF:
- {
- /* Don't hash on the symbol's address to avoid bootstrap differences.
- Different hash values may cause expressions to be recorded in
- different orders and thus different registers to be used in the
- final assembler. This also avoids differences in the dump files
- between various stages. */
- unsigned int h = 0;
- unsigned char *p = (unsigned char *) XSTR (x, 0);
- while (*p)
- h += (h << 7) + *p++; /* ??? revisit */
- hash += ((unsigned) SYMBOL_REF << 7) + h;
- return hash;
- }
-
- case MEM:
- if (MEM_VOLATILE_P (x))
- {
- *do_not_record_p = 1;
- return 0;
- }
- hash += (unsigned) MEM;
- hash += MEM_ALIAS_SET (x);
- x = XEXP (x, 0);
- goto repeat;
-
- case PRE_DEC:
- case PRE_INC:
- case POST_DEC:
- case POST_INC:
- case PC:
- case CC0:
- case CALL:
- case UNSPEC_VOLATILE:
- *do_not_record_p = 1;
- return 0;
-
- case ASM_OPERANDS:
- if (MEM_VOLATILE_P (x))
- {
- *do_not_record_p = 1;
- return 0;
- }
-
- default:
- break;
- }
-
- i = GET_RTX_LENGTH (code) - 1;
- hash += (unsigned) code + (unsigned) GET_MODE (x);
- fmt = GET_RTX_FORMAT (code);
- for (; i >= 0; i--)
- {
- if (fmt[i] == 'e')
- {
- rtx tem = XEXP (x, i);
-
- /* If we are about to do the last recursive call
- needed at this level, change it into iteration.
- This function is called enough to be worth it. */
- if (i == 0)
- {
- x = tem;
- goto repeat;
- }
- hash += hash_expr_1 (tem, 0, do_not_record_p);
- if (*do_not_record_p)
- return 0;
- }
- else if (fmt[i] == 'E')
- for (j = 0; j < XVECLEN (x, i); j++)
- {
- hash += hash_expr_1 (XVECEXP (x, i, j), 0, do_not_record_p);
- if (*do_not_record_p)
- return 0;
- }
- else if (fmt[i] == 's')
- {
- register unsigned char *p = (unsigned char *) XSTR (x, i);
- if (p)
- while (*p)
- hash += *p++;
- }
- else if (fmt[i] == 'i')
- {
- register unsigned tem = XINT (x, i);
- hash += tem;
- }
- else
- abort ();
- }
-
- return hash;
-}
-
-/* Hash a set of register REGNO.
-
- Sets are hashed on the register that is set.
- This simplifies the PRE copy propagation code.
-
- ??? May need to make things more elaborate. Later, as necessary. */
-
-static unsigned int
-hash_set (regno, hash_table_size)
- int regno;
- int hash_table_size;
-{
- unsigned int hash;
-
- hash = regno;
- return hash % hash_table_size;
-}
-
-/* Return non-zero if exp1 is equivalent to exp2.
- ??? Borrowed from cse.c. Might want to remerge with cse.c. Later. */
-
-static int
-expr_equiv_p (x, y)
- rtx x, y;
-{
- register int i, j;
- register enum rtx_code code;
- register char *fmt;
-
- if (x == y)
- return 1;
- if (x == 0 || y == 0)
- return x == y;
-
- code = GET_CODE (x);
- if (code != GET_CODE (y))
- return 0;
-
- /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
- if (GET_MODE (x) != GET_MODE (y))
- return 0;
-
- switch (code)
- {
- case PC:
- case CC0:
- return x == y;
-
- case CONST_INT:
- return INTVAL (x) == INTVAL (y);
-
- case LABEL_REF:
- return XEXP (x, 0) == XEXP (y, 0);
-
- case SYMBOL_REF:
- return XSTR (x, 0) == XSTR (y, 0);
-
- case REG:
- return REGNO (x) == REGNO (y);
-
- case MEM:
- /* Can't merge two expressions in different alias sets, since we can
- decide that the expression is transparent in a block when it isn't,
- due to it being set with the different alias set. */
- if (MEM_ALIAS_SET (x) != MEM_ALIAS_SET (y))
- return 0;
- break;
-
- /* For commutative operations, check both orders. */
- case PLUS:
- case MULT:
- case AND:
- case IOR:
- case XOR:
- case NE:
- case EQ:
- return ((expr_equiv_p (XEXP (x, 0), XEXP (y, 0))
- && expr_equiv_p (XEXP (x, 1), XEXP (y, 1)))
- || (expr_equiv_p (XEXP (x, 0), XEXP (y, 1))
- && expr_equiv_p (XEXP (x, 1), XEXP (y, 0))));
-
- default:
- break;
- }
-
- /* Compare the elements. If any pair of corresponding elements
- fail to match, return 0 for the whole thing. */
-
- fmt = GET_RTX_FORMAT (code);
- for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
- {
- switch (fmt[i])
- {
- case 'e':
- if (! expr_equiv_p (XEXP (x, i), XEXP (y, i)))
- return 0;
- break;
-
- case 'E':
- if (XVECLEN (x, i) != XVECLEN (y, i))
- return 0;
- for (j = 0; j < XVECLEN (x, i); j++)
- if (! expr_equiv_p (XVECEXP (x, i, j), XVECEXP (y, i, j)))
- return 0;
- break;
-
- case 's':
- if (strcmp (XSTR (x, i), XSTR (y, i)))
- return 0;
- break;
-
- case 'i':
- if (XINT (x, i) != XINT (y, i))
- return 0;
- break;
-
- case 'w':
- if (XWINT (x, i) != XWINT (y, i))
- return 0;
- break;
-
- case '0':
- break;
-
- default:
- abort ();
- }
- }
-
- return 1;
-}
-
-/* Insert expression X in INSN in the hash table.
- If it is already present, record it as the last occurrence in INSN's
- basic block.
-
- MODE is the mode of the value X is being stored into.
- It is only used if X is a CONST_INT.
-
- ANTIC_P is non-zero if X is an anticipatable expression.
- AVAIL_P is non-zero if X is an available expression. */
-
-static void
-insert_expr_in_table (x, mode, insn, antic_p, avail_p)
- rtx x;
- enum machine_mode mode;
- rtx insn;
- int antic_p, avail_p;
-{
- int found, do_not_record_p;
- unsigned int hash;
- struct expr *cur_expr, *last_expr = NULL;
- struct occr *antic_occr, *avail_occr;
- struct occr *last_occr = NULL;
-
- hash = hash_expr (x, mode, &do_not_record_p, expr_hash_table_size);
-
- /* Do not insert expression in table if it contains volatile operands,
- or if hash_expr determines the expression is something we don't want
- to or can't handle. */
- if (do_not_record_p)
- return;
-
- cur_expr = expr_hash_table[hash];
- found = 0;
-
- while (cur_expr && ! (found = expr_equiv_p (cur_expr->expr, x)))
- {
- /* If the expression isn't found, save a pointer to the end of
- the list. */
- last_expr = cur_expr;
- cur_expr = cur_expr->next_same_hash;
- }
-
- if (! found)
- {
- cur_expr = (struct expr *) gcse_alloc (sizeof (struct expr));
- bytes_used += sizeof (struct expr);
- if (expr_hash_table[hash] == NULL)
- {
- /* This is the first pattern that hashed to this index. */
- expr_hash_table[hash] = cur_expr;
- }
- else
- {
- /* Add EXPR to end of this hash chain. */
- last_expr->next_same_hash = cur_expr;
- }
- /* Set the fields of the expr element. */
- cur_expr->expr = x;
- cur_expr->bitmap_index = n_exprs++;
- cur_expr->next_same_hash = NULL;
- cur_expr->antic_occr = NULL;
- cur_expr->avail_occr = NULL;
- }
-
- /* Now record the occurrence(s). */
-
- if (antic_p)
- {
- antic_occr = cur_expr->antic_occr;
-
- /* Search for another occurrence in the same basic block. */
- while (antic_occr && BLOCK_NUM (antic_occr->insn) != BLOCK_NUM (insn))
- {
- /* If an occurrence isn't found, save a pointer to the end of
- the list. */
- last_occr = antic_occr;
- antic_occr = antic_occr->next;
- }
-
- if (antic_occr)
- {
- /* Found another instance of the expression in the same basic block.
- Prefer the currently recorded one. We want the first one in the
- block and the block is scanned from start to end. */
- ; /* nothing to do */
- }
- else
- {
- /* First occurrence of this expression in this basic block. */
- antic_occr = (struct occr *) gcse_alloc (sizeof (struct occr));
- bytes_used += sizeof (struct occr);
- /* First occurrence of this expression in any block? */
- if (cur_expr->antic_occr == NULL)
- cur_expr->antic_occr = antic_occr;
- else
- last_occr->next = antic_occr;
- antic_occr->insn = insn;
- antic_occr->next = NULL;
- }
- }
-
- if (avail_p)
- {
- avail_occr = cur_expr->avail_occr;
-
- /* Search for another occurrence in the same basic block. */
- while (avail_occr && BLOCK_NUM (avail_occr->insn) != BLOCK_NUM (insn))
- {
- /* If an occurrence isn't found, save a pointer to the end of
- the list. */
- last_occr = avail_occr;
- avail_occr = avail_occr->next;
- }
-
- if (avail_occr)
- {
- /* Found another instance of the expression in the same basic block.
- Prefer this occurrence to the currently recorded one. We want
- the last one in the block and the block is scanned from start
- to end. */
- avail_occr->insn = insn;
- }
- else
- {
- /* First occurrence of this expression in this basic block. */
- avail_occr = (struct occr *) gcse_alloc (sizeof (struct occr));
- bytes_used += sizeof (struct occr);
- /* First occurrence of this expression in any block? */
- if (cur_expr->avail_occr == NULL)
- cur_expr->avail_occr = avail_occr;
- else
- last_occr->next = avail_occr;
- avail_occr->insn = insn;
- avail_occr->next = NULL;
- }
- }
-}
-
-/* Insert pattern X in INSN in the hash table.
- X is a SET of a reg to either another reg or a constant.
- If it is already present, record it as the last occurrence in INSN's
- basic block. */
-
-static void
-insert_set_in_table (x, insn)
- rtx x;
- rtx insn;
-{
- int found;
- unsigned int hash;
- struct expr *cur_expr, *last_expr = NULL;
- struct occr *cur_occr, *last_occr = NULL;
-
- if (GET_CODE (x) != SET
- || GET_CODE (SET_DEST (x)) != REG)
- abort ();
-
- hash = hash_set (REGNO (SET_DEST (x)), set_hash_table_size);
-
- cur_expr = set_hash_table[hash];
- found = 0;
-
- while (cur_expr && ! (found = expr_equiv_p (cur_expr->expr, x)))
- {
- /* If the expression isn't found, save a pointer to the end of
- the list. */
- last_expr = cur_expr;
- cur_expr = cur_expr->next_same_hash;
- }
-
- if (! found)
- {
- cur_expr = (struct expr *) gcse_alloc (sizeof (struct expr));
- bytes_used += sizeof (struct expr);
- if (set_hash_table[hash] == NULL)
- {
- /* This is the first pattern that hashed to this index. */
- set_hash_table[hash] = cur_expr;
- }
- else
- {
- /* Add EXPR to end of this hash chain. */
- last_expr->next_same_hash = cur_expr;
- }
- /* Set the fields of the expr element.
- We must copy X because it can be modified when copy propagation is
- performed on its operands. */
- /* ??? Should this go in a different obstack? */
- cur_expr->expr = copy_rtx (x);
- cur_expr->bitmap_index = n_sets++;
- cur_expr->next_same_hash = NULL;
- cur_expr->antic_occr = NULL;
- cur_expr->avail_occr = NULL;
- }
-
- /* Now record the occurrence. */
-
- cur_occr = cur_expr->avail_occr;
-
- /* Search for another occurrence in the same basic block. */
- while (cur_occr && BLOCK_NUM (cur_occr->insn) != BLOCK_NUM (insn))
- {
- /* If an occurrence isn't found, save a pointer to the end of
- the list. */
- last_occr = cur_occr;
- cur_occr = cur_occr->next;
- }
-
- if (cur_occr)
- {
- /* Found another instance of the expression in the same basic block.
- Prefer this occurrence to the currently recorded one. We want
- the last one in the block and the block is scanned from start
- to end. */
- cur_occr->insn = insn;
- }
- else
- {
- /* First occurrence of this expression in this basic block. */
- cur_occr = (struct occr *) gcse_alloc (sizeof (struct occr));
- bytes_used += sizeof (struct occr);
- /* First occurrence of this expression in any block? */
- if (cur_expr->avail_occr == NULL)
- cur_expr->avail_occr = cur_occr;
- else
- last_occr->next = cur_occr;
- cur_occr->insn = insn;
- cur_occr->next = NULL;
- }
-}
-
-/* Scan pattern PAT of INSN and add an entry to the hash table.
- If SET_P is non-zero, this is for the assignment hash table,
- otherwise it is for the expression hash table. */
-
-static void
-hash_scan_set (pat, insn, set_p)
- rtx pat, insn;
- int set_p;
-{
- rtx src = SET_SRC (pat);
- rtx dest = SET_DEST (pat);
-
- if (GET_CODE (src) == CALL)
- hash_scan_call (src, insn);
-
- if (GET_CODE (dest) == REG)
- {
- int regno = REGNO (dest);
- rtx tmp;
-
- /* Only record sets of pseudo-regs in the hash table. */
- if (! set_p
- && regno >= FIRST_PSEUDO_REGISTER
- /* Don't GCSE something if we can't do a reg/reg copy. */
- && can_copy_p [GET_MODE (dest)]
- /* Is SET_SRC something we want to gcse? */
- && want_to_gcse_p (src))
- {
- /* An expression is not anticipatable if its operands are
- modified before this insn. */
- int antic_p = ! optimize_size && oprs_anticipatable_p (src, insn);
- /* An expression is not available if its operands are
- subsequently modified, including this insn. */
- int avail_p = oprs_available_p (src, insn);
- insert_expr_in_table (src, GET_MODE (dest), insn, antic_p, avail_p);
- }
- /* Record sets for constant/copy propagation. */
- else if (set_p
- && regno >= FIRST_PSEUDO_REGISTER
- && ((GET_CODE (src) == REG
- && REGNO (src) >= FIRST_PSEUDO_REGISTER
- && can_copy_p [GET_MODE (dest)])
- /* ??? CONST_INT:wip */
- || GET_CODE (src) == CONST_INT
- || GET_CODE (src) == CONST_DOUBLE)
- /* A copy is not available if its src or dest is subsequently
- modified. Here we want to search from INSN+1 on, but
- oprs_available_p searches from INSN on. */
- && (insn == BLOCK_END (BLOCK_NUM (insn))
- || ((tmp = next_nonnote_insn (insn)) != NULL_RTX
- && oprs_available_p (pat, tmp))))
- insert_set_in_table (pat, insn);
- }
-}
-
-static void
-hash_scan_clobber (x, insn)
- rtx x ATTRIBUTE_UNUSED, insn ATTRIBUTE_UNUSED;
-{
- /* Currently nothing to do. */
-}
-
-static void
-hash_scan_call (x, insn)
- rtx x ATTRIBUTE_UNUSED, insn ATTRIBUTE_UNUSED;
-{
- /* Currently nothing to do. */
-}
-
-/* Process INSN and add hash table entries as appropriate.
-
- Only available expressions that set a single pseudo-reg are recorded.
-
- Single sets in a PARALLEL could be handled, but it's an extra complication
- that isn't dealt with right now. The trick is handling the CLOBBERs that
- are also in the PARALLEL. Later.
-
- If SET_P is non-zero, this is for the assignment hash table,
- otherwise it is for the expression hash table.
- If IN_LIBCALL_BLOCK nonzero, we are in a libcall block, and should
- not record any expressions. */
-
-static void
-hash_scan_insn (insn, set_p, in_libcall_block)
- rtx insn;
- int set_p;
- int in_libcall_block;
-{
- rtx pat = PATTERN (insn);
-
- /* Pick out the sets of INSN and for other forms of instructions record
- what's been modified. */
-
- if (GET_CODE (pat) == SET && ! in_libcall_block)
- hash_scan_set (pat, insn, set_p);
- else if (GET_CODE (pat) == PARALLEL)
- {
- int i;
-
- for (i = 0; i < XVECLEN (pat, 0); i++)
- {
- rtx x = XVECEXP (pat, 0, i);
-
- if (GET_CODE (x) == SET)
- {
- if (GET_CODE (SET_SRC (x)) == CALL)
- hash_scan_call (SET_SRC (x), insn);
- }
- else if (GET_CODE (x) == CLOBBER)
- hash_scan_clobber (x, insn);
- else if (GET_CODE (x) == CALL)
- hash_scan_call (x, insn);
- }
- }
- else if (GET_CODE (pat) == CLOBBER)
- hash_scan_clobber (pat, insn);
- else if (GET_CODE (pat) == CALL)
- hash_scan_call (pat, insn);
-}
-
-static void
-dump_hash_table (file, name, table, table_size, total_size)
- FILE *file;
- const char *name;
- struct expr **table;
- int table_size, total_size;
-{
- int i;
- /* Flattened out table, so it's printed in proper order. */
- struct expr **flat_table = (struct expr **) alloca (total_size * sizeof (struct expr *));
- unsigned int *hash_val = (unsigned int *) alloca (total_size * sizeof (unsigned int));
-
- bzero ((char *) flat_table, total_size * sizeof (struct expr *));
- for (i = 0; i < table_size; i++)
- {
- struct expr *expr;
-
- for (expr = table[i]; expr != NULL; expr = expr->next_same_hash)
- {
- flat_table[expr->bitmap_index] = expr;
- hash_val[expr->bitmap_index] = i;
- }
- }
-
- fprintf (file, "%s hash table (%d buckets, %d entries)\n",
- name, table_size, total_size);
-
- for (i = 0; i < total_size; i++)
- {
- struct expr *expr = flat_table[i];
-
- fprintf (file, "Index %d (hash value %d)\n ",
- expr->bitmap_index, hash_val[i]);
- print_rtl (file, expr->expr);
- fprintf (file, "\n");
- }
-
- fprintf (file, "\n");
-}
-
-/* Record register first/last/block set information for REGNO in INSN.
- reg_first_set records the first place in the block where the register
- is set and is used to compute "anticipatability".
- reg_last_set records the last place in the block where the register
- is set and is used to compute "availability".
- reg_set_in_block records whether the register is set in the block
- and is used to compute "transparency". */
-
-static void
-record_last_reg_set_info (insn, regno)
- rtx insn;
- int regno;
-{
- if (reg_first_set[regno] == NEVER_SET)
- reg_first_set[regno] = INSN_CUID (insn);
- reg_last_set[regno] = INSN_CUID (insn);
- SET_BIT (reg_set_in_block[BLOCK_NUM (insn)], regno);
-}
-
-/* Record memory first/last/block set information for INSN. */
-
-static void
-record_last_mem_set_info (insn)
- rtx insn;
-{
- if (mem_first_set == NEVER_SET)
- mem_first_set = INSN_CUID (insn);
- mem_last_set = INSN_CUID (insn);
- mem_set_in_block[BLOCK_NUM (insn)] = 1;
-}
-
-/* Used for communicating between next two routines. */
-static rtx last_set_insn;
-
-/* Called from compute_hash_table via note_stores to handle one
- SET or CLOBBER in an insn. */
-
-static void
-record_last_set_info (dest, setter)
- rtx dest, setter ATTRIBUTE_UNUSED;
-{
- if (GET_CODE (dest) == SUBREG)
- dest = SUBREG_REG (dest);
-
- if (GET_CODE (dest) == REG)
- record_last_reg_set_info (last_set_insn, REGNO (dest));
- else if (GET_CODE (dest) == MEM
- /* Ignore pushes, they clobber nothing. */
- && ! push_operand (dest, GET_MODE (dest)))
- record_last_mem_set_info (last_set_insn);
-}
-
-/* Top level function to create an expression or assignment hash table.
-
- Expression entries are placed in the hash table if
- - they are of the form (set (pseudo-reg) src),
- - src is something we want to perform GCSE on,
- - none of the operands are subsequently modified in the block
-
- Assignment entries are placed in the hash table if
- - they are of the form (set (pseudo-reg) src),
- - src is something we want to perform const/copy propagation on,
- - none of the operands or target are subsequently modified in the block
- Currently src must be a pseudo-reg or a const_int.
-
- F is the first insn.
- SET_P is non-zero for computing the assignment hash table. */
-
-static void
-compute_hash_table (set_p)
- int set_p;
-{
- int bb;
-
- /* While we compute the hash table we also compute a bit array of which
- registers are set in which blocks.
- We also compute which blocks set memory, in the absence of aliasing
- support [which is TODO].
- ??? This isn't needed during const/copy propagation, but it's cheap to
- compute. Later. */
- sbitmap_vector_zero (reg_set_in_block, n_basic_blocks);
- bzero ((char *) mem_set_in_block, n_basic_blocks);
-
- /* Some working arrays used to track first and last set in each block. */
- /* ??? One could use alloca here, but at some size a threshold is crossed
- beyond which one should use malloc. Are we at that threshold here? */
- reg_first_set = (int *) gmalloc (max_gcse_regno * sizeof (int));
- reg_last_set = (int *) gmalloc (max_gcse_regno * sizeof (int));
-
- for (bb = 0; bb < n_basic_blocks; bb++)
- {
- rtx insn;
- int regno;
- int in_libcall_block;
- int i;
-
- /* First pass over the instructions records information used to
- determine when registers and memory are first and last set.
- ??? The mem_set_in_block and hard-reg reg_set_in_block computation
- could be moved to compute_sets since they currently don't change. */
-
- for (i = 0; i < max_gcse_regno; i++)
- reg_first_set[i] = reg_last_set[i] = NEVER_SET;
- mem_first_set = NEVER_SET;
- mem_last_set = NEVER_SET;
-
- for (insn = BLOCK_HEAD (bb);
- insn && insn != NEXT_INSN (BLOCK_END (bb));
- insn = NEXT_INSN (insn))
- {
-#ifdef NON_SAVING_SETJMP
- if (NON_SAVING_SETJMP && GET_CODE (insn) == NOTE
- && NOTE_LINE_NUMBER (insn) == NOTE_INSN_SETJMP)
- {
- for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
- record_last_reg_set_info (insn, regno);
- continue;
- }
-#endif
-
- if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
- continue;
-
- if (GET_CODE (insn) == CALL_INSN)
- {
- for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
- if ((call_used_regs[regno]
- && regno != STACK_POINTER_REGNUM
-#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
- && regno != HARD_FRAME_POINTER_REGNUM
-#endif
-#if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
- && ! (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
-#endif
-#if defined (PIC_OFFSET_TABLE_REGNUM) && !defined (PIC_OFFSET_TABLE_REG_CALL_CLOBBERED)
- && ! (regno == PIC_OFFSET_TABLE_REGNUM && flag_pic)
-#endif
-
- && regno != FRAME_POINTER_REGNUM)
- || global_regs[regno])
- record_last_reg_set_info (insn, regno);
- if (! CONST_CALL_P (insn))
- record_last_mem_set_info (insn);
- }
-
- last_set_insn = insn;
- note_stores (PATTERN (insn), record_last_set_info);
- }
-
- /* The next pass builds the hash table. */
-
- for (insn = BLOCK_HEAD (bb), in_libcall_block = 0;
- insn && insn != NEXT_INSN (BLOCK_END (bb));
- insn = NEXT_INSN (insn))
- {
- if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
- {
- if (find_reg_note (insn, REG_LIBCALL, NULL_RTX))
- in_libcall_block = 1;
- else if (find_reg_note (insn, REG_RETVAL, NULL_RTX))
- in_libcall_block = 0;
- hash_scan_insn (insn, set_p, in_libcall_block);
- }
- }
- }
-
- free (reg_first_set);
- free (reg_last_set);
- /* Catch bugs early. */
- reg_first_set = reg_last_set = 0;
-}
-
-/* Allocate space for the set hash table.
- N_INSNS is the number of instructions in the function.
- It is used to determine the number of buckets to use. */
-
-static void
-alloc_set_hash_table (n_insns)
- int n_insns;
-{
- int n;
-
- set_hash_table_size = n_insns / 4;
- if (set_hash_table_size < 11)
- set_hash_table_size = 11;
- /* Attempt to maintain efficient use of hash table.
- Making it an odd number is simplest for now.
- ??? Later take some measurements. */
- set_hash_table_size |= 1;
- n = set_hash_table_size * sizeof (struct expr *);
- set_hash_table = (struct expr **) gmalloc (n);
-}
-
-/* Free things allocated by alloc_set_hash_table. */
-
-static void
-free_set_hash_table ()
-{
- free (set_hash_table);
-}
-
-/* Compute the hash table for doing copy/const propagation. */
-
-static void
-compute_set_hash_table ()
-{
- /* Initialize count of number of entries in hash table. */
- n_sets = 0;
- bzero ((char *) set_hash_table, set_hash_table_size * sizeof (struct expr *));
-
- compute_hash_table (1);
-}
-
-/* Allocate space for the expression hash table.
- N_INSNS is the number of instructions in the function.
- It is used to determine the number of buckets to use. */
-
-static void
-alloc_expr_hash_table (n_insns)
- int n_insns;
-{
- int n;
-
- expr_hash_table_size = n_insns / 2;
- /* Make sure the amount is usable. */
- if (expr_hash_table_size < 11)
- expr_hash_table_size = 11;
- /* Attempt to maintain efficient use of hash table.
- Making it an odd number is simplest for now.
- ??? Later take some measurements. */
- expr_hash_table_size |= 1;
- n = expr_hash_table_size * sizeof (struct expr *);
- expr_hash_table = (struct expr **) gmalloc (n);
-}
-
-/* Free things allocated by alloc_expr_hash_table. */
-
-static void
-free_expr_hash_table ()
-{
- free (expr_hash_table);
-}
-
-/* Compute the hash table for doing GCSE. */
-
-static void
-compute_expr_hash_table ()
-{
- /* Initialize count of number of entries in hash table. */
- n_exprs = 0;
- bzero ((char *) expr_hash_table, expr_hash_table_size * sizeof (struct expr *));
-
- compute_hash_table (0);
-}
-
-/* Expression tracking support. */
-
-/* Lookup pattern PAT in the expression table.
- The result is a pointer to the table entry, or NULL if not found. */
-
-static struct expr *
-lookup_expr (pat)
- rtx pat;
-{
- int do_not_record_p;
- unsigned int hash = hash_expr (pat, GET_MODE (pat), &do_not_record_p,
- expr_hash_table_size);
- struct expr *expr;
-
- if (do_not_record_p)
- return NULL;
-
- expr = expr_hash_table[hash];
-
- while (expr && ! expr_equiv_p (expr->expr, pat))
- expr = expr->next_same_hash;
-
- return expr;
-}
-
-/* Lookup REGNO in the set table.
- If PAT is non-NULL look for the entry that matches it, otherwise return
- the first entry for REGNO.
- The result is a pointer to the table entry, or NULL if not found. */
-
-static struct expr *
-lookup_set (regno, pat)
- int regno;
- rtx pat;
-{
- unsigned int hash = hash_set (regno, set_hash_table_size);
- struct expr *expr;
-
- expr = set_hash_table[hash];
-
- if (pat)
- {
- while (expr && ! expr_equiv_p (expr->expr, pat))
- expr = expr->next_same_hash;
- }
- else
- {
- while (expr && REGNO (SET_DEST (expr->expr)) != regno)
- expr = expr->next_same_hash;
- }
-
- return expr;
-}
-
-/* Return the next entry for REGNO in list EXPR. */
-
-static struct expr *
-next_set (regno, expr)
- int regno;
- struct expr *expr;
-{
- do
- expr = expr->next_same_hash;
- while (expr && REGNO (SET_DEST (expr->expr)) != regno);
- return expr;
-}
-
-/* Reset tables used to keep track of what's still available [since the
- start of the block]. */
-
-static void
-reset_opr_set_tables ()
-{
- /* Maintain a bitmap of which regs have been set since beginning of
- the block. */
- sbitmap_zero (reg_set_bitmap);
- /* Also keep a record of the last instruction to modify memory.
- For now this is very trivial, we only record whether any memory
- location has been modified. */
- mem_last_set = 0;
-}
-
-/* Return non-zero if the operands of X are not set before INSN in
- INSN's basic block. */
-
-static int
-oprs_not_set_p (x, insn)
- rtx x, insn;
-{
- int i;
- enum rtx_code code;
- char *fmt;
-
- /* repeat is used to turn tail-recursion into iteration. */
-repeat:
-
- if (x == 0)
- return 1;
-
- code = GET_CODE (x);
- switch (code)
- {
- case PC:
- case CC0:
- case CONST:
- case CONST_INT:
- case CONST_DOUBLE:
- case SYMBOL_REF:
- case LABEL_REF:
- case ADDR_VEC:
- case ADDR_DIFF_VEC:
- return 1;
-
- case MEM:
- if (mem_last_set != 0)
- return 0;
- x = XEXP (x, 0);
- goto repeat;
-
- case REG:
- return ! TEST_BIT (reg_set_bitmap, REGNO (x));
-
- default:
- break;
- }
-
- fmt = GET_RTX_FORMAT (code);
- for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
- {
- if (fmt[i] == 'e')
- {
- int not_set_p;
- /* If we are about to do the last recursive call
- needed at this level, change it into iteration.
- This function is called enough to be worth it. */
- if (i == 0)
- {
- x = XEXP (x, 0);
- goto repeat;
- }
- not_set_p = oprs_not_set_p (XEXP (x, i), insn);
- if (! not_set_p)
- return 0;
- }
- else if (fmt[i] == 'E')
- {
- int j;
- for (j = 0; j < XVECLEN (x, i); j++)
- {
- int not_set_p = oprs_not_set_p (XVECEXP (x, i, j), insn);
- if (! not_set_p)
- return 0;
- }
- }
- }
-
- return 1;
-}
-
-/* Mark things set by a CALL. */
-
-static void
-mark_call (insn)
- rtx insn;
-{
- mem_last_set = INSN_CUID (insn);
-}
-
-/* Mark things set by a SET. */
-
-static void
-mark_set (pat, insn)
- rtx pat, insn;
-{
- rtx dest = SET_DEST (pat);
-
- while (GET_CODE (dest) == SUBREG
- || GET_CODE (dest) == ZERO_EXTRACT
- || GET_CODE (dest) == SIGN_EXTRACT
- || GET_CODE (dest) == STRICT_LOW_PART)
- dest = XEXP (dest, 0);
-
- if (GET_CODE (dest) == REG)
- SET_BIT (reg_set_bitmap, REGNO (dest));
- else if (GET_CODE (dest) == MEM)
- mem_last_set = INSN_CUID (insn);
-
- if (GET_CODE (SET_SRC (pat)) == CALL)
- mark_call (insn);
-}
-
-/* Record things set by a CLOBBER. */
-
-static void
-mark_clobber (pat, insn)
- rtx pat, insn;
-{
- rtx clob = XEXP (pat, 0);
-
- while (GET_CODE (clob) == SUBREG || GET_CODE (clob) == STRICT_LOW_PART)
- clob = XEXP (clob, 0);
-
- if (GET_CODE (clob) == REG)
- SET_BIT (reg_set_bitmap, REGNO (clob));
- else
- mem_last_set = INSN_CUID (insn);
-}
-
-/* Record things set by INSN.
- This data is used by oprs_not_set_p. */
-
-static void
-mark_oprs_set (insn)
- rtx insn;
-{
- rtx pat = PATTERN (insn);
-
- if (GET_CODE (pat) == SET)
- mark_set (pat, insn);
- else if (GET_CODE (pat) == PARALLEL)
- {
- int i;
-
- for (i = 0; i < XVECLEN (pat, 0); i++)
- {
- rtx x = XVECEXP (pat, 0, i);
-
- if (GET_CODE (x) == SET)
- mark_set (x, insn);
- else if (GET_CODE (x) == CLOBBER)
- mark_clobber (x, insn);
- else if (GET_CODE (x) == CALL)
- mark_call (insn);
- }
- }
- else if (GET_CODE (pat) == CLOBBER)
- mark_clobber (pat, insn);
- else if (GET_CODE (pat) == CALL)
- mark_call (insn);
-}
-
-
-/* Classic GCSE reaching definition support. */
-
-/* Allocate reaching def variables. */
-
-static void
-alloc_rd_mem (n_blocks, n_insns)
- int n_blocks, n_insns;
-{
- rd_kill = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_insns);
- sbitmap_vector_zero (rd_kill, n_basic_blocks);
-
- rd_gen = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_insns);
- sbitmap_vector_zero (rd_gen, n_basic_blocks);
-
- reaching_defs = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_insns);
- sbitmap_vector_zero (reaching_defs, n_basic_blocks);
-
- rd_out = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_insns);
- sbitmap_vector_zero (rd_out, n_basic_blocks);
-}
-
-/* Free reaching def variables. */
-
-static void
-free_rd_mem ()
-{
- free (rd_kill);
- free (rd_gen);
- free (reaching_defs);
- free (rd_out);
-}
-
-/* Add INSN to the kills of BB.
- REGNO, set in BB, is killed by INSN. */
-
-static void
-handle_rd_kill_set (insn, regno, bb)
- rtx insn;
- int regno, bb;
-{
- struct reg_set *this_reg = reg_set_table[regno];
-
- while (this_reg)
- {
- if (BLOCK_NUM (this_reg->insn) != BLOCK_NUM (insn))
- SET_BIT (rd_kill[bb], INSN_CUID (this_reg->insn));
- this_reg = this_reg->next;
- }
-}
-
-/* Compute the set of kill's for reaching definitions. */
-
-static void
-compute_kill_rd ()
-{
- int bb,cuid;
-
- /* For each block
- For each set bit in `gen' of the block (i.e each insn which
- generates a definition in the block)
- Call the reg set by the insn corresponding to that bit regx
- Look at the linked list starting at reg_set_table[regx]
- For each setting of regx in the linked list, which is not in
- this block
- Set the bit in `kill' corresponding to that insn
- */
-
- for (bb = 0; bb < n_basic_blocks; bb++)
- {
- for (cuid = 0; cuid < max_cuid; cuid++)
- {
- if (TEST_BIT (rd_gen[bb], cuid))
- {
- rtx insn = CUID_INSN (cuid);
- rtx pat = PATTERN (insn);
-
- if (GET_CODE (insn) == CALL_INSN)
- {
- int regno;
-
- for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
- {
- if ((call_used_regs[regno]
- && regno != STACK_POINTER_REGNUM
-#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
- && regno != HARD_FRAME_POINTER_REGNUM
-#endif
-#if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
- && ! (regno == ARG_POINTER_REGNUM
- && fixed_regs[regno])
-#endif
-#if defined (PIC_OFFSET_TABLE_REGNUM) && !defined (PIC_OFFSET_TABLE_REG_CALL_CLOBBERED)
- && ! (regno == PIC_OFFSET_TABLE_REGNUM && flag_pic)
-#endif
- && regno != FRAME_POINTER_REGNUM)
- || global_regs[regno])
- handle_rd_kill_set (insn, regno, bb);
- }
- }
-
- if (GET_CODE (pat) == PARALLEL)
- {
- int i;
-
- /* We work backwards because ... */
- for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
- {
- enum rtx_code code = GET_CODE (XVECEXP (pat, 0, i));
- if ((code == SET || code == CLOBBER)
- && GET_CODE (XEXP (XVECEXP (pat, 0, i), 0)) == REG)
- handle_rd_kill_set (insn,
- REGNO (XEXP (XVECEXP (pat, 0, i), 0)),
- bb);
- }
- }
- else if (GET_CODE (pat) == SET)
- {
- if (GET_CODE (SET_DEST (pat)) == REG)
- {
- /* Each setting of this register outside of this block
- must be marked in the set of kills in this block. */
- handle_rd_kill_set (insn, REGNO (SET_DEST (pat)), bb);
- }
- }
- /* FIXME: CLOBBER? */
- }
- }
- }
-}
-
-/* Compute the reaching definitions as in
- Compilers Principles, Techniques, and Tools. Aho, Sethi, Ullman,
- Chapter 10. It is the same algorithm as used for computing available
- expressions but applied to the gens and kills of reaching definitions. */
-
-static void
-compute_rd ()
-{
- int bb, changed, passes;
-
- for (bb = 0; bb < n_basic_blocks; bb++)
- sbitmap_copy (rd_out[bb] /*dst*/, rd_gen[bb] /*src*/);
-
- passes = 0;
- changed = 1;
- while (changed)
- {
- changed = 0;
- for (bb = 0; bb < n_basic_blocks; bb++)
- {
- sbitmap_union_of_predecessors (reaching_defs[bb], rd_out,
- bb, s_preds);
- changed |= sbitmap_union_of_diff (rd_out[bb], rd_gen[bb],
- reaching_defs[bb], rd_kill[bb]);
- }
- passes++;
- }
-
- if (gcse_file)
- fprintf (gcse_file, "reaching def computation: %d passes\n", passes);
-}
-
-/* Classic GCSE available expression support. */
-
-/* Allocate memory for available expression computation. */
-
-static void
-alloc_avail_expr_mem (n_blocks, n_exprs)
- int n_blocks, n_exprs;
-{
- ae_kill = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_exprs);
- sbitmap_vector_zero (ae_kill, n_basic_blocks);
-
- ae_gen = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_exprs);
- sbitmap_vector_zero (ae_gen, n_basic_blocks);
-
- ae_in = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_exprs);
- sbitmap_vector_zero (ae_in, n_basic_blocks);
-
- ae_out = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_exprs);
- sbitmap_vector_zero (ae_out, n_basic_blocks);
-
- u_bitmap = (sbitmap) sbitmap_alloc (n_exprs);
- sbitmap_ones (u_bitmap);
-}
-
-static void
-free_avail_expr_mem ()
-{
- free (ae_kill);
- free (ae_gen);
- free (ae_in);
- free (ae_out);
- free (u_bitmap);
-}
-
-/* Compute the set of available expressions generated in each basic block. */
-
-static void
-compute_ae_gen ()
-{
- int i;
-
- /* For each recorded occurrence of each expression, set ae_gen[bb][expr].
- This is all we have to do because an expression is not recorded if it
- is not available, and the only expressions we want to work with are the
- ones that are recorded. */
-
- for (i = 0; i < expr_hash_table_size; i++)
- {
- struct expr *expr = expr_hash_table[i];
- while (expr != NULL)
- {
- struct occr *occr = expr->avail_occr;
- while (occr != NULL)
- {
- SET_BIT (ae_gen[BLOCK_NUM (occr->insn)], expr->bitmap_index);
- occr = occr->next;
- }
- expr = expr->next_same_hash;
- }
- }
-}
-
-/* Return non-zero if expression X is killed in BB. */
-
-static int
-expr_killed_p (x, bb)
- rtx x;
- int bb;
-{
- int i;
- enum rtx_code code;
- char *fmt;
-
- /* repeat is used to turn tail-recursion into iteration. */
- repeat:
-
- if (x == 0)
- return 1;
-
- code = GET_CODE (x);
- switch (code)
- {
- case REG:
- return TEST_BIT (reg_set_in_block[bb], REGNO (x));
-
- case MEM:
- if (mem_set_in_block[bb])
- return 1;
- x = XEXP (x, 0);
- goto repeat;
-
- case PC:
- case CC0: /*FIXME*/
- case CONST:
- case CONST_INT:
- case CONST_DOUBLE:
- case SYMBOL_REF:
- case LABEL_REF:
- case ADDR_VEC:
- case ADDR_DIFF_VEC:
- return 0;
-
- default:
- break;
- }
-
- i = GET_RTX_LENGTH (code) - 1;
- fmt = GET_RTX_FORMAT (code);
- for (; i >= 0; i--)
- {
- if (fmt[i] == 'e')
- {
- rtx tem = XEXP (x, i);
-
- /* If we are about to do the last recursive call
- needed at this level, change it into iteration.
- This function is called enough to be worth it. */
- if (i == 0)
- {
- x = tem;
- goto repeat;
- }
- if (expr_killed_p (tem, bb))
- return 1;
- }
- else if (fmt[i] == 'E')
- {
- int j;
- for (j = 0; j < XVECLEN (x, i); j++)
- {
- if (expr_killed_p (XVECEXP (x, i, j), bb))
- return 1;
- }
- }
- }
-
- return 0;
-}
-
-/* Compute the set of available expressions killed in each basic block. */
-
-static void
-compute_ae_kill ()
-{
- int bb,i;
-
- for (bb = 0; bb < n_basic_blocks; bb++)
- {
- for (i = 0; i < expr_hash_table_size; i++)
- {
- struct expr *expr = expr_hash_table[i];
-
- for ( ; expr != NULL; expr = expr->next_same_hash)
- {
- /* Skip EXPR if generated in this block. */
- if (TEST_BIT (ae_gen[bb], expr->bitmap_index))
- continue;
-
- if (expr_killed_p (expr->expr, bb))
- SET_BIT (ae_kill[bb], expr->bitmap_index);
- }
- }
- }
-}
-
-/* Compute available expressions.
-
- Implement the algorithm to find available expressions
- as given in the Aho Sethi Ullman book, pages 627-631. */
-
-static void
-compute_available ()
-{
- int bb, changed, passes;
-
- sbitmap_zero (ae_in[0]);
-
- sbitmap_copy (ae_out[0] /*dst*/, ae_gen[0] /*src*/);
-
- for (bb = 1; bb < n_basic_blocks; bb++)
- sbitmap_difference (ae_out[bb], u_bitmap, ae_kill[bb]);
-
- passes = 0;
- changed = 1;
- while (changed)
- {
- changed = 0;
- for (bb = 1; bb < n_basic_blocks; bb++)
- {
- sbitmap_intersect_of_predecessors (ae_in[bb], ae_out, bb, s_preds);
- changed |= sbitmap_union_of_diff (ae_out[bb], ae_gen[bb],
- ae_in[bb], ae_kill[bb]);
- }
- passes++;
- }
-
- if (gcse_file)
- fprintf (gcse_file, "avail expr computation: %d passes\n", passes);
-}
-
-/* Actually perform the Classic GCSE optimizations. */
-
-/* Return non-zero if occurrence OCCR of expression EXPR reaches block BB.
-
- CHECK_SELF_LOOP is non-zero if we should consider a block reaching itself
- as a positive reach. We want to do this when there are two computations
- of the expression in the block.
-
- VISITED is a pointer to a working buffer for tracking which BB's have
- been visited. It is NULL for the top-level call.
-
- We treat reaching expressions that go through blocks containing the same
- reaching expression as "not reaching". E.g. if EXPR is generated in blocks
- 2 and 3, INSN is in block 4, and 2->3->4, we treat the expression in block
- 2 as not reaching. The intent is to improve the probability of finding
- only one reaching expression and to reduce register lifetimes by picking
- the closest such expression. */
-
-static int
-expr_reaches_here_p (occr, expr, bb, check_self_loop, visited)
- struct occr *occr;
- struct expr *expr;
- int bb;
- int check_self_loop;
- char *visited;
-{
- int_list_ptr pred;
-
- if (visited == NULL)
- {
- visited = (char *) alloca (n_basic_blocks);
- bzero (visited, n_basic_blocks);
- }
-
- for (pred = s_preds[bb]; pred != NULL; pred = pred->next)
- {
- int pred_bb = INT_LIST_VAL (pred);
-
- if (visited[pred_bb])
- {
- /* This predecessor has already been visited.
- Nothing to do. */
- ;
- }
- else if (pred_bb == bb)
- {
- /* BB loops on itself. */
- if (check_self_loop
- && TEST_BIT (ae_gen[pred_bb], expr->bitmap_index)
- && BLOCK_NUM (occr->insn) == pred_bb)
- return 1;
- visited[pred_bb] = 1;
- }
- /* Ignore this predecessor if it kills the expression. */
- else if (TEST_BIT (ae_kill[pred_bb], expr->bitmap_index))
- visited[pred_bb] = 1;
- /* Does this predecessor generate this expression? */
- else if (TEST_BIT (ae_gen[pred_bb], expr->bitmap_index))
- {
- /* Is this the occurrence we're looking for?
- Note that there's only one generating occurrence per block
- so we just need to check the block number. */
- if (BLOCK_NUM (occr->insn) == pred_bb)
- return 1;
- visited[pred_bb] = 1;
- }
- /* Neither gen nor kill. */
- else
- {
- visited[pred_bb] = 1;
- if (expr_reaches_here_p (occr, expr, pred_bb, check_self_loop, visited))
- return 1;
- }
- }
-
- /* All paths have been checked. */
- return 0;
-}
-
-/* Return the instruction that computes EXPR that reaches INSN's basic block.
- If there is more than one such instruction, return NULL.
-
- Called only by handle_avail_expr. */
-
-static rtx
-computing_insn (expr, insn)
- struct expr *expr;
- rtx insn;
-{
- int bb = BLOCK_NUM (insn);
-
- if (expr->avail_occr->next == NULL)
- {
- if (BLOCK_NUM (expr->avail_occr->insn) == bb)
- {
- /* The available expression is actually itself
- (i.e. a loop in the flow graph) so do nothing. */
- return NULL;
- }
- /* (FIXME) Case that we found a pattern that was created by
- a substitution that took place. */
- return expr->avail_occr->insn;
- }
- else
- {
- /* Pattern is computed more than once.
- Search backwards from this insn to see how many of these
- computations actually reach this insn. */
- struct occr *occr;
- rtx insn_computes_expr = NULL;
- int can_reach = 0;
-
- for (occr = expr->avail_occr; occr != NULL; occr = occr->next)
- {
- if (BLOCK_NUM (occr->insn) == bb)
- {
- /* The expression is generated in this block.
- The only time we care about this is when the expression
- is generated later in the block [and thus there's a loop].
- We let the normal cse pass handle the other cases. */
- if (INSN_CUID (insn) < INSN_CUID (occr->insn))
- {
- if (expr_reaches_here_p (occr, expr, bb, 1, NULL))
- {
- can_reach++;
- if (can_reach > 1)
- return NULL;
- insn_computes_expr = occr->insn;
- }
- }
- }
- else /* Computation of the pattern outside this block. */
- {
- if (expr_reaches_here_p (occr, expr, bb, 0, NULL))
- {
- can_reach++;
- if (can_reach > 1)
- return NULL;
- insn_computes_expr = occr->insn;
- }
- }
- }
-
- if (insn_computes_expr == NULL)
- abort ();
- return insn_computes_expr;
- }
-}
-
-/* Return non-zero if the definition in DEF_INSN can reach INSN.
- Only called by can_disregard_other_sets. */
-
-static int
-def_reaches_here_p (insn, def_insn)
- rtx insn, def_insn;
-{
- rtx reg;
-
- if (TEST_BIT (reaching_defs[BLOCK_NUM (insn)], INSN_CUID (def_insn)))
- return 1;
-
- if (BLOCK_NUM (insn) == BLOCK_NUM (def_insn))
- {
- if (INSN_CUID (def_insn) < INSN_CUID (insn))
- {
- if (GET_CODE (PATTERN (def_insn)) == PARALLEL)
- return 1;
- if (GET_CODE (PATTERN (def_insn)) == CLOBBER)
- reg = XEXP (PATTERN (def_insn), 0);
- else if (GET_CODE (PATTERN (def_insn)) == SET)
- reg = SET_DEST (PATTERN (def_insn));
- else
- abort ();
- return ! reg_set_between_p (reg, NEXT_INSN (def_insn), insn);
- }
- else
- return 0;
- }
-
- return 0;
-}
-
-/* Return non-zero if *ADDR_THIS_REG can only have one value at INSN.
- The value returned is the number of definitions that reach INSN.
- Returning a value of zero means that [maybe] more than one definition
- reaches INSN and the caller can't perform whatever optimization it is
- trying. i.e. it is always safe to return zero. */
-
-static int
-can_disregard_other_sets (addr_this_reg, insn, for_combine)
- struct reg_set **addr_this_reg;
- rtx insn;
- int for_combine;
-{
- int number_of_reaching_defs = 0;
- struct reg_set *this_reg = *addr_this_reg;
-
- while (this_reg)
- {
- if (def_reaches_here_p (insn, this_reg->insn))
- {
- number_of_reaching_defs++;
- /* Ignore parallels for now. */
- if (GET_CODE (PATTERN (this_reg->insn)) == PARALLEL)
- return 0;
- if (!for_combine
- && (GET_CODE (PATTERN (this_reg->insn)) == CLOBBER
- || ! rtx_equal_p (SET_SRC (PATTERN (this_reg->insn)),
- SET_SRC (PATTERN (insn)))))
- {
- /* A setting of the reg to a different value reaches INSN. */
- return 0;
- }
- if (number_of_reaching_defs > 1)
- {
- /* If in this setting the value the register is being
- set to is equal to the previous value the register
- was set to and this setting reaches the insn we are
- trying to do the substitution on then we are ok. */
-
- if (GET_CODE (PATTERN (this_reg->insn)) == CLOBBER)
- return 0;
- if (! rtx_equal_p (SET_SRC (PATTERN (this_reg->insn)),
- SET_SRC (PATTERN (insn))))
- return 0;
- }
- *addr_this_reg = this_reg;
- }
-
- /* prev_this_reg = this_reg; */
- this_reg = this_reg->next;
- }
-
- return number_of_reaching_defs;
-}
-
-/* Expression computed by insn is available and the substitution is legal,
- so try to perform the substitution.
-
- The result is non-zero if any changes were made. */
-
-static int
-handle_avail_expr (insn, expr)
- rtx insn;
- struct expr *expr;
-{
- rtx pat, insn_computes_expr;
- rtx to;
- struct reg_set *this_reg;
- int found_setting, use_src;
- int changed = 0;
-
- /* We only handle the case where one computation of the expression
- reaches this instruction. */
- insn_computes_expr = computing_insn (expr, insn);
- if (insn_computes_expr == NULL)
- return 0;
-
- found_setting = 0;
- use_src = 0;
-
- /* At this point we know only one computation of EXPR outside of this
- block reaches this insn. Now try to find a register that the
- expression is computed into. */
-
- if (GET_CODE (SET_SRC (PATTERN (insn_computes_expr))) == REG)
- {
- /* This is the case when the available expression that reaches
- here has already been handled as an available expression. */
- int regnum_for_replacing = REGNO (SET_SRC (PATTERN (insn_computes_expr)));
- /* If the register was created by GCSE we can't use `reg_set_table',
- however we know it's set only once. */
- if (regnum_for_replacing >= max_gcse_regno
- /* If the register the expression is computed into is set only once,
- or only one set reaches this insn, we can use it. */
- || (((this_reg = reg_set_table[regnum_for_replacing]),
- this_reg->next == NULL)
- || can_disregard_other_sets (&this_reg, insn, 0)))
- {
- use_src = 1;
- found_setting = 1;
- }
- }
-
- if (!found_setting)
- {
- int regnum_for_replacing = REGNO (SET_DEST (PATTERN (insn_computes_expr)));
- /* This shouldn't happen. */
- if (regnum_for_replacing >= max_gcse_regno)
- abort ();
- this_reg = reg_set_table[regnum_for_replacing];
- /* If the register the expression is computed into is set only once,
- or only one set reaches this insn, use it. */
- if (this_reg->next == NULL
- || can_disregard_other_sets (&this_reg, insn, 0))
- found_setting = 1;
- }
-
- if (found_setting)
- {
- pat = PATTERN (insn);
- if (use_src)
- to = SET_SRC (PATTERN (insn_computes_expr));
- else
- to = SET_DEST (PATTERN (insn_computes_expr));
- changed = validate_change (insn, &SET_SRC (pat), to, 0);
-
- /* We should be able to ignore the return code from validate_change but
- to play it safe we check. */
- if (changed)
- {
- gcse_subst_count++;
- if (gcse_file != NULL)
- {
- fprintf (gcse_file, "GCSE: Replacing the source in insn %d with reg %d %s insn %d\n",
- INSN_UID (insn), REGNO (to),
- use_src ? "from" : "set in",
- INSN_UID (insn_computes_expr));
- }
-
- }
- }
- /* The register that the expr is computed into is set more than once. */
- else if (1 /*expensive_op(this_pattrn->op) && do_expensive_gcse)*/)
- {
- /* Insert an insn after insnx that copies the reg set in insnx
- into a new pseudo register call this new register REGN.
- From insnb until end of basic block or until REGB is set
- replace all uses of REGB with REGN. */
- rtx new_insn;
-
- to = gen_reg_rtx (GET_MODE (SET_DEST (PATTERN (insn_computes_expr))));
-
- /* Generate the new insn. */
- /* ??? If the change fails, we return 0, even though we created
- an insn. I think this is ok. */
- new_insn
- = emit_insn_after (gen_rtx_SET (VOIDmode, to,
- SET_DEST (PATTERN (insn_computes_expr))),
- insn_computes_expr);
- /* Keep block number table up to date. */
- set_block_num (new_insn, BLOCK_NUM (insn_computes_expr));
- /* Keep register set table up to date. */
- record_one_set (REGNO (to), new_insn);
-
- gcse_create_count++;
- if (gcse_file != NULL)
- {
- fprintf (gcse_file, "GCSE: Creating insn %d to copy value of reg %d, computed in insn %d,\n",
- INSN_UID (NEXT_INSN (insn_computes_expr)),
- REGNO (SET_SRC (PATTERN (NEXT_INSN (insn_computes_expr)))),
- INSN_UID (insn_computes_expr));
- fprintf (gcse_file, " into newly allocated reg %d\n", REGNO (to));
- }
-
- pat = PATTERN (insn);
-
- /* Do register replacement for INSN. */
- changed = validate_change (insn, &SET_SRC (pat),
- SET_DEST (PATTERN (NEXT_INSN (insn_computes_expr))),
- 0);
-
- /* We should be able to ignore the return code from validate_change but
- to play it safe we check. */
- if (changed)
- {
- gcse_subst_count++;
- if (gcse_file != NULL)
- {
- fprintf (gcse_file, "GCSE: Replacing the source in insn %d with reg %d set in insn %d\n",
- INSN_UID (insn),
- REGNO (SET_DEST (PATTERN (NEXT_INSN (insn_computes_expr)))),
- INSN_UID (insn_computes_expr));
- }
-
- }
- }
-
- return changed;
-}
-
-/* Perform classic GCSE.
- This is called by one_classic_gcse_pass after all the dataflow analysis
- has been done.
-
- The result is non-zero if a change was made. */
-
-static int
-classic_gcse ()
-{
- int bb, changed;
- rtx insn;
-
- /* Note we start at block 1. */
-
- changed = 0;
- for (bb = 1; bb < n_basic_blocks; bb++)
- {
- /* Reset tables used to keep track of what's still valid [since the
- start of the block]. */
- reset_opr_set_tables ();
-
- for (insn = BLOCK_HEAD (bb);
- insn != NULL && insn != NEXT_INSN (BLOCK_END (bb));
- insn = NEXT_INSN (insn))
- {
- /* Is insn of form (set (pseudo-reg) ...)? */
-
- if (GET_CODE (insn) == INSN
- && GET_CODE (PATTERN (insn)) == SET
- && GET_CODE (SET_DEST (PATTERN (insn))) == REG
- && REGNO (SET_DEST (PATTERN (insn))) >= FIRST_PSEUDO_REGISTER)
- {
- rtx pat = PATTERN (insn);
- rtx src = SET_SRC (pat);
- struct expr *expr;
-
- if (want_to_gcse_p (src)
- /* Is the expression recorded? */
- && ((expr = lookup_expr (src)) != NULL)
- /* Is the expression available [at the start of the
- block]? */
- && TEST_BIT (ae_in[bb], expr->bitmap_index)
- /* Are the operands unchanged since the start of the
- block? */
- && oprs_not_set_p (src, insn))
- changed |= handle_avail_expr (insn, expr);
- }
-
- /* Keep track of everything modified by this insn. */
- /* ??? Need to be careful w.r.t. mods done to INSN. */
- if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
- mark_oprs_set (insn);
- }
- }
-
- return changed;
-}
-
-/* Top level routine to perform one classic GCSE pass.
-
- Return non-zero if a change was made. */
-
-static int
-one_classic_gcse_pass (pass)
- int pass;
-{
- int changed = 0;
-
- gcse_subst_count = 0;
- gcse_create_count = 0;
-
- alloc_expr_hash_table (max_cuid);
- alloc_rd_mem (n_basic_blocks, max_cuid);
- compute_expr_hash_table ();
- if (gcse_file)
- dump_hash_table (gcse_file, "Expression", expr_hash_table,
- expr_hash_table_size, n_exprs);
- if (n_exprs > 0)
- {
- compute_kill_rd ();
- compute_rd ();
- alloc_avail_expr_mem (n_basic_blocks, n_exprs);
- compute_ae_gen ();
- compute_ae_kill ();
- compute_available ();
- changed = classic_gcse ();
- free_avail_expr_mem ();
- }
- free_rd_mem ();
- free_expr_hash_table ();
-
- if (gcse_file)
- {
- fprintf (gcse_file, "\n");
- fprintf (gcse_file, "GCSE of %s, pass %d: %d bytes needed, %d substs, %d insns created\n",
- current_function_name, pass,
- bytes_used, gcse_subst_count, gcse_create_count);
- }
-
- return changed;
-}
-
-/* Compute copy/constant propagation working variables. */
-
-/* Local properties of assignments. */
-
-static sbitmap *cprop_pavloc;
-static sbitmap *cprop_absaltered;
-
-/* Global properties of assignments (computed from the local properties). */
-
-static sbitmap *cprop_avin;
-static sbitmap *cprop_avout;
-
-/* Allocate vars used for copy/const propagation.
- N_BLOCKS is the number of basic blocks.
- N_SETS is the number of sets. */
-
-static void
-alloc_cprop_mem (n_blocks, n_sets)
- int n_blocks, n_sets;
-{
- cprop_pavloc = sbitmap_vector_alloc (n_blocks, n_sets);
- cprop_absaltered = sbitmap_vector_alloc (n_blocks, n_sets);
-
- cprop_avin = sbitmap_vector_alloc (n_blocks, n_sets);
- cprop_avout = sbitmap_vector_alloc (n_blocks, n_sets);
-}
-
-/* Free vars used by copy/const propagation. */
-
-static void
-free_cprop_mem ()
-{
- free (cprop_pavloc);
- free (cprop_absaltered);
- free (cprop_avin);
- free (cprop_avout);
-}
-
-/* For each block, compute whether X is transparent.
- X is either an expression or an assignment [though we don't care which,
- for this context an assignment is treated as an expression].
- For each block where an element of X is modified, set (SET_P == 1) or reset
- (SET_P == 0) the INDX bit in BMAP. */
-
-static void
-compute_transp (x, indx, bmap, set_p)
- rtx x;
- int indx;
- sbitmap *bmap;
- int set_p;
-{
- int bb,i;
- enum rtx_code code;
- char *fmt;
-
- /* repeat is used to turn tail-recursion into iteration. */
- repeat:
-
- if (x == 0)
- return;
-
- code = GET_CODE (x);
- switch (code)
- {
- case REG:
- {
- reg_set *r;
- int regno = REGNO (x);
-
- if (set_p)
- {
- if (regno < FIRST_PSEUDO_REGISTER)
- {
- for (bb = 0; bb < n_basic_blocks; bb++)
- if (TEST_BIT (reg_set_in_block[bb], regno))
- SET_BIT (bmap[bb], indx);
- }
- else
- {
- for (r = reg_set_table[regno]; r != NULL; r = r->next)
- {
- bb = BLOCK_NUM (r->insn);
- SET_BIT (bmap[bb], indx);
- }
- }
- }
- else
- {
- if (regno < FIRST_PSEUDO_REGISTER)
- {
- for (bb = 0; bb < n_basic_blocks; bb++)
- if (TEST_BIT (reg_set_in_block[bb], regno))
- RESET_BIT (bmap[bb], indx);
- }
- else
- {
- for (r = reg_set_table[regno]; r != NULL; r = r->next)
- {
- bb = BLOCK_NUM (r->insn);
- RESET_BIT (bmap[bb], indx);
- }
- }
- }
- return;
- }
-
- case MEM:
- if (set_p)
- {
- for (bb = 0; bb < n_basic_blocks; bb++)
- if (mem_set_in_block[bb])
- SET_BIT (bmap[bb], indx);
- }
- else
- {
- for (bb = 0; bb < n_basic_blocks; bb++)
- if (mem_set_in_block[bb])
- RESET_BIT (bmap[bb], indx);
- }
- x = XEXP (x, 0);
- goto repeat;
-
- case PC:
- case CC0: /*FIXME*/
- case CONST:
- case CONST_INT:
- case CONST_DOUBLE:
- case SYMBOL_REF:
- case LABEL_REF:
- case ADDR_VEC:
- case ADDR_DIFF_VEC:
- return;
-
- default:
- break;
- }
-
- i = GET_RTX_LENGTH (code) - 1;
- fmt = GET_RTX_FORMAT (code);
- for (; i >= 0; i--)
- {
- if (fmt[i] == 'e')
- {
- rtx tem = XEXP (x, i);
-
- /* If we are about to do the last recursive call
- needed at this level, change it into iteration.
- This function is called enough to be worth it. */
- if (i == 0)
- {
- x = tem;
- goto repeat;
- }
- compute_transp (tem, indx, bmap, set_p);
- }
- else if (fmt[i] == 'E')
- {
- int j;
- for (j = 0; j < XVECLEN (x, i); j++)
- compute_transp (XVECEXP (x, i, j), indx, bmap, set_p);
- }
- }
-}
-
-/* Compute the available expressions at the start and end of each
- basic block for cprop. This particular dataflow equation is
- used often enough that we might want to generalize it and make
- as a subroutine for other global optimizations that need available
- in/out information. */
-static void
-compute_cprop_avinout ()
-{
- int bb, changed, passes;
-
- sbitmap_zero (cprop_avin[0]);
- sbitmap_vector_ones (cprop_avout, n_basic_blocks);
-
- passes = 0;
- changed = 1;
- while (changed)
- {
- changed = 0;
- for (bb = 0; bb < n_basic_blocks; bb++)
- {
- if (bb != 0)
- sbitmap_intersect_of_predecessors (cprop_avin[bb],
- cprop_avout, bb, s_preds);
- changed |= sbitmap_union_of_diff (cprop_avout[bb],
- cprop_pavloc[bb],
- cprop_avin[bb],
- cprop_absaltered[bb]);
- }
- passes++;
- }
-
- if (gcse_file)
- fprintf (gcse_file, "cprop avail expr computation: %d passes\n", passes);
-}
-
-/* Top level routine to do the dataflow analysis needed by copy/const
- propagation. */
-
-static void
-compute_cprop_data ()
-{
- compute_local_properties (cprop_absaltered, cprop_pavloc, NULL, 1);
- compute_cprop_avinout ();
-}
-
-/* Copy/constant propagation. */
-
-struct reg_use {
- rtx reg_rtx;
-};
-
-/* Maximum number of register uses in an insn that we handle. */
-#define MAX_USES 8
-
-/* Table of uses found in an insn.
- Allocated statically to avoid alloc/free complexity and overhead. */
-static struct reg_use reg_use_table[MAX_USES];
-
-/* Index into `reg_use_table' while building it. */
-static int reg_use_count;
-
-/* Set up a list of register numbers used in INSN.
- The found uses are stored in `reg_use_table'.
- `reg_use_count' is initialized to zero before entry, and
- contains the number of uses in the table upon exit.
-
- ??? If a register appears multiple times we will record it multiple
- times. This doesn't hurt anything but it will slow things down. */
-
-static void
-find_used_regs (x)
- rtx x;
-{
- int i;
- enum rtx_code code;
- char *fmt;
-
- /* repeat is used to turn tail-recursion into iteration. */
- repeat:
-
- if (x == 0)
- return;
-
- code = GET_CODE (x);
- switch (code)
- {
- case REG:
- if (reg_use_count == MAX_USES)
- return;
- reg_use_table[reg_use_count].reg_rtx = x;
- reg_use_count++;
- return;
-
- case MEM:
- x = XEXP (x, 0);
- goto repeat;
-
- case PC:
- case CC0:
- case CONST:
- case CONST_INT:
- case CONST_DOUBLE:
- case SYMBOL_REF:
- case LABEL_REF:
- case CLOBBER:
- case ADDR_VEC:
- case ADDR_DIFF_VEC:
- case ASM_INPUT: /*FIXME*/
- return;
-
- case SET:
- if (GET_CODE (SET_DEST (x)) == MEM)
- find_used_regs (SET_DEST (x));
- x = SET_SRC (x);
- goto repeat;
-
- default:
- break;
- }
-
- /* Recursively scan the operands of this expression. */
-
- fmt = GET_RTX_FORMAT (code);
- for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
- {
- if (fmt[i] == 'e')
- {
- /* If we are about to do the last recursive call
- needed at this level, change it into iteration.
- This function is called enough to be worth it. */
- if (i == 0)
- {
- x = XEXP (x, 0);
- goto repeat;
- }
- find_used_regs (XEXP (x, i));
- }
- else if (fmt[i] == 'E')
- {
- int j;
- for (j = 0; j < XVECLEN (x, i); j++)
- find_used_regs (XVECEXP (x, i, j));
- }
- }
-}
-
-/* Try to replace all non-SET_DEST occurrences of FROM in INSN with TO.
- Returns non-zero is successful. */
-
-static int
-try_replace_reg (from, to, insn)
- rtx from, to, insn;
-{
- /* If this fails we could try to simplify the result of the
- replacement and attempt to recognize the simplified insn.
-
- But we need a general simplify_rtx that doesn't have pass
- specific state variables. I'm not aware of one at the moment. */
- return validate_replace_src (from, to, insn);
-}
-
-/* Find a set of REGNO that is available on entry to INSN's block.
- Returns NULL if not found. */
-
-static struct expr *
-find_avail_set (regno, insn)
- int regno;
- rtx insn;
-{
- struct expr *set = lookup_set (regno, NULL_RTX);
-
- while (set)
- {
- if (TEST_BIT (cprop_avin[BLOCK_NUM (insn)], set->bitmap_index))
- break;
- set = next_set (regno, set);
- }
-
- return set;
-}
-
-/* Perform constant and copy propagation on INSN.
- The result is non-zero if a change was made. */
-
-static int
-cprop_insn (insn, alter_jumps)
- rtx insn;
- int alter_jumps;
-{
- struct reg_use *reg_used;
- int changed = 0;
-
- /* Only propagate into SETs. Note that a conditional jump is a
- SET with pc_rtx as the destination. */
- if ((GET_CODE (insn) != INSN
- && GET_CODE (insn) != JUMP_INSN)
- || GET_CODE (PATTERN (insn)) != SET)
- return 0;
-
- reg_use_count = 0;
- find_used_regs (PATTERN (insn));
-
- reg_used = &reg_use_table[0];
- for ( ; reg_use_count > 0; reg_used++, reg_use_count--)
- {
- rtx pat, src;
- struct expr *set;
- int regno = REGNO (reg_used->reg_rtx);
-
- /* Ignore registers created by GCSE.
- We do this because ... */
- if (regno >= max_gcse_regno)
- continue;
-
- /* If the register has already been set in this block, there's
- nothing we can do. */
- if (! oprs_not_set_p (reg_used->reg_rtx, insn))
- continue;
-
- /* Find an assignment that sets reg_used and is available
- at the start of the block. */
- set = find_avail_set (regno, insn);
- if (! set)
- continue;
-
- pat = set->expr;
- /* ??? We might be able to handle PARALLELs. Later. */
- if (GET_CODE (pat) != SET)
- abort ();
- src = SET_SRC (pat);
-
- /* Constant propagation. */
- if (GET_CODE (src) == CONST_INT || GET_CODE (src) == CONST_DOUBLE)
- {
- /* Handle normal insns first. */
- if (GET_CODE (insn) == INSN
- && try_replace_reg (reg_used->reg_rtx, src, insn))
- {
- changed = 1;
- const_prop_count++;
- if (gcse_file != NULL)
- {
- fprintf (gcse_file, "CONST-PROP: Replacing reg %d in insn %d with constant ",
- regno, INSN_UID (insn));
- print_rtl (gcse_file, src);
- fprintf (gcse_file, "\n");
- }
-
- /* The original insn setting reg_used may or may not now be
- deletable. We leave the deletion to flow. */
- }
-
- /* Try to propagate a CONST_INT into a conditional jump.
- We're pretty specific about what we will handle in this
- code, we can extend this as necessary over time.
-
- Right now the insn in question must look like
-
- (set (pc) (if_then_else ...))
-
- Note this does not currently handle machines which use cc0. */
- else if (alter_jumps
- && GET_CODE (insn) == JUMP_INSN
- && condjump_p (insn)
- && ! simplejump_p (insn))
- {
- /* We want a copy of the JUMP_INSN so we can modify it
- in-place as needed without effecting the original. */
- rtx copy = copy_rtx (insn);
- rtx set = PATTERN (copy);
- rtx temp;
-
- /* Replace the register with the appropriate constant. */
- replace_rtx (SET_SRC (set), reg_used->reg_rtx, src);
-
- temp = simplify_ternary_operation (GET_CODE (SET_SRC (set)),
- GET_MODE (SET_SRC (set)),
- GET_MODE (XEXP (SET_SRC (set), 0)),
- XEXP (SET_SRC (set), 0),
- XEXP (SET_SRC (set), 1),
- XEXP (SET_SRC (set), 2));
-
- /* If no simplification can be made, then try the next
- register. */
- if (temp)
- SET_SRC (set) = temp;
- else
- continue;
-
- /* That may have changed the structure of TEMP, so
- force it to be rerecognized if it has not turned
- into a nop or unconditional jump. */
-
- INSN_CODE (copy) = -1;
- if ((SET_DEST (set) == pc_rtx
- && (SET_SRC (set) == pc_rtx
- || GET_CODE (SET_SRC (set)) == LABEL_REF))
- || recog (PATTERN (copy), copy, NULL) >= 0)
- {
- /* This has either become an unconditional jump
- or a nop-jump. We'd like to delete nop jumps
- here, but doing so confuses gcse. So we just
- make the replacement and let later passes
- sort things out. */
- PATTERN (insn) = set;
- INSN_CODE (insn) = -1;
-
- /* One less use of the label this insn used to jump to
- if we turned this into a NOP jump. */
- if (SET_SRC (set) == pc_rtx && JUMP_LABEL (insn) != 0)
- --LABEL_NUSES (JUMP_LABEL (insn));
-
- /* If this has turned into an unconditional jump,
- then put a barrier after it so that the unreachable
- code will be deleted. */
- if (GET_CODE (SET_SRC (set)) == LABEL_REF)
- emit_barrier_after (insn);
-
- run_jump_opt_after_gcse = 1;
-
- changed = 1;
- const_prop_count++;
- if (gcse_file != NULL)
- {
- fprintf (gcse_file, "CONST-PROP: Replacing reg %d in insn %d with constant ",
- regno, INSN_UID (insn));
- print_rtl (gcse_file, src);
- fprintf (gcse_file, "\n");
- }
- }
- }
- }
- else if (GET_CODE (src) == REG
- && REGNO (src) >= FIRST_PSEUDO_REGISTER
- && REGNO (src) != regno)
- {
- /* We know the set is available.
- Now check that SET_SRC is ANTLOC (i.e. none of the source operands
- have changed since the start of the block). */
- if (oprs_not_set_p (src, insn))
- {
- if (try_replace_reg (reg_used->reg_rtx, src, insn))
- {
- changed = 1;
- copy_prop_count++;
- if (gcse_file != NULL)
- {
- fprintf (gcse_file, "COPY-PROP: Replacing reg %d in insn %d with reg %d\n",
- regno, INSN_UID (insn), REGNO (src));
- }
-
- /* The original insn setting reg_used may or may not now be
- deletable. We leave the deletion to flow. */
- /* FIXME: If it turns out that the insn isn't deletable,
- then we may have unnecessarily extended register lifetimes
- and made things worse. */
- }
- }
- }
- }
-
- return changed;
-}
-
-/* Forward propagate copies.
- This includes copies and constants.
- Return non-zero if a change was made. */
-
-static int
-cprop (alter_jumps)
- int alter_jumps;
-{
- int bb, changed;
- rtx insn;
-
- /* Note we start at block 1. */
-
- changed = 0;
- for (bb = 1; bb < n_basic_blocks; bb++)
- {
- /* Reset tables used to keep track of what's still valid [since the
- start of the block]. */
- reset_opr_set_tables ();
-
- for (insn = BLOCK_HEAD (bb);
- insn != NULL && insn != NEXT_INSN (BLOCK_END (bb));
- insn = NEXT_INSN (insn))
- {
- if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
- {
- changed |= cprop_insn (insn, alter_jumps);
-
- /* Keep track of everything modified by this insn. */
- /* ??? Need to be careful w.r.t. mods done to INSN. */
- mark_oprs_set (insn);
- }
- }
- }
-
- if (gcse_file != NULL)
- fprintf (gcse_file, "\n");
-
- return changed;
-}
-
-/* Perform one copy/constant propagation pass.
- F is the first insn in the function.
- PASS is the pass count. */
-
-static int
-one_cprop_pass (pass, alter_jumps)
- int pass;
- int alter_jumps;
-{
- int changed = 0;
-
- const_prop_count = 0;
- copy_prop_count = 0;
-
- alloc_set_hash_table (max_cuid);
- compute_set_hash_table ();
- if (gcse_file)
- dump_hash_table (gcse_file, "SET", set_hash_table, set_hash_table_size,
- n_sets);
- if (n_sets > 0)
- {
- alloc_cprop_mem (n_basic_blocks, n_sets);
- compute_cprop_data ();
- changed = cprop (alter_jumps);
- free_cprop_mem ();
- }
- free_set_hash_table ();
-
- if (gcse_file)
- {
- fprintf (gcse_file, "CPROP of %s, pass %d: %d bytes needed, %d const props, %d copy props\n",
- current_function_name, pass,
- bytes_used, const_prop_count, copy_prop_count);
- fprintf (gcse_file, "\n");
- }
-
- return changed;
-}
-
-/* Compute PRE+LCM working variables. */
-
-/* Local properties of expressions. */
-/* Nonzero for expressions that are transparent in the block. */
-static sbitmap *transp;
-
-/* Nonzero for expressions that are transparent at the end of the block.
- This is only zero for expressions killed by abnormal critical edge
- created by a calls. */
-static sbitmap *transpout;
-
-/* Nonzero for expressions that are computed (available) in the block. */
-static sbitmap *comp;
-
-/* Nonzero for expressions that are locally anticipatable in the block. */
-static sbitmap *antloc;
-
-/* Nonzero for expressions where this block is an optimal computation
- point. */
-static sbitmap *pre_optimal;
-
-/* Nonzero for expressions which are redundant in a particular block. */
-static sbitmap *pre_redundant;
-
-static sbitmap *temp_bitmap;
-
-/* Redundant insns. */
-static sbitmap pre_redundant_insns;
-
-/* Allocate vars used for PRE analysis. */
-
-static void
-alloc_pre_mem (n_blocks, n_exprs)
- int n_blocks, n_exprs;
-{
- transp = sbitmap_vector_alloc (n_blocks, n_exprs);
- comp = sbitmap_vector_alloc (n_blocks, n_exprs);
- antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
-
- temp_bitmap = sbitmap_vector_alloc (n_blocks, n_exprs);
- pre_optimal = sbitmap_vector_alloc (n_blocks, n_exprs);
- pre_redundant = sbitmap_vector_alloc (n_blocks, n_exprs);
- transpout = sbitmap_vector_alloc (n_blocks, n_exprs);
-}
-
-/* Free vars used for PRE analysis. */
-
-static void
-free_pre_mem ()
-{
- free (transp);
- free (comp);
- free (antloc);
-
- free (pre_optimal);
- free (pre_redundant);
- free (transpout);
-}
-
-/* Top level routine to do the dataflow analysis needed by PRE. */
-
-static void
-compute_pre_data ()
-{
- compute_local_properties (transp, comp, antloc, 0);
- compute_transpout ();
- pre_lcm (n_basic_blocks, n_exprs, s_preds, s_succs, transp,
- antloc, pre_redundant, pre_optimal);
-}
-
-
-/* PRE utilities */
-
-/* Return non-zero if an occurrence of expression EXPR in OCCR_BB would reach
- block BB.
-
- VISITED is a pointer to a working buffer for tracking which BB's have
- been visited. It is NULL for the top-level call.
-
- CHECK_PRE_COMP controls whether or not we check for a computation of
- EXPR in OCCR_BB.
-
- We treat reaching expressions that go through blocks containing the same
- reaching expression as "not reaching". E.g. if EXPR is generated in blocks
- 2 and 3, INSN is in block 4, and 2->3->4, we treat the expression in block
- 2 as not reaching. The intent is to improve the probability of finding
- only one reaching expression and to reduce register lifetimes by picking
- the closest such expression. */
-
-static int
-pre_expr_reaches_here_p (occr_bb, expr, bb, check_pre_comp, visited)
- int occr_bb;
- struct expr *expr;
- int bb;
- int check_pre_comp;
- char *visited;
-{
- int_list_ptr pred;
-
- if (visited == NULL)
- {
- visited = (char *) alloca (n_basic_blocks);
- bzero (visited, n_basic_blocks);
- }
-
- for (pred = s_preds[bb]; pred != NULL; pred = pred->next)
- {
- int pred_bb = INT_LIST_VAL (pred);
-
- if (pred_bb == ENTRY_BLOCK
- /* Has predecessor has already been visited? */
- || visited[pred_bb])
- {
- /* Nothing to do. */
- }
- /* Does this predecessor generate this expression? */
- else if ((!check_pre_comp && occr_bb == pred_bb)
- || TEST_BIT (comp[pred_bb], expr->bitmap_index))
- {
- /* Is this the occurrence we're looking for?
- Note that there's only one generating occurrence per block
- so we just need to check the block number. */
- if (occr_bb == pred_bb)
- return 1;
- visited[pred_bb] = 1;
- }
- /* Ignore this predecessor if it kills the expression. */
- else if (! TEST_BIT (transp[pred_bb], expr->bitmap_index))
- visited[pred_bb] = 1;
- /* Neither gen nor kill. */
- else
- {
- visited[pred_bb] = 1;
- if (pre_expr_reaches_here_p (occr_bb, expr, pred_bb,
- check_pre_comp, visited))
- return 1;
- }
- }
-
- /* All paths have been checked. */
- return 0;
-}
-
-/* Add EXPR to the end of basic block BB.
-
- This is used by both the PRE and code hoisting.
-
- For PRE, we want to verify that the expr is either transparent
- or locally anticipatable in the target block. This check makes
- no sense for code hoisting. */
-
-static void
-insert_insn_end_bb (expr, bb, pre)
- struct expr *expr;
- int bb;
- int pre;
-{
- rtx insn = BLOCK_END (bb);
- rtx new_insn;
- rtx reg = expr->reaching_reg;
- int regno = REGNO (reg);
- rtx pat, copied_expr;
- rtx first_new_insn;
-
- start_sequence ();
- copied_expr = copy_rtx (expr->expr);
- emit_move_insn (reg, copied_expr);
- first_new_insn = get_insns ();
- pat = gen_sequence ();
- end_sequence ();
-
- /* If the last insn is a jump, insert EXPR in front [taking care to
- handle cc0, etc. properly]. */
-
- if (GET_CODE (insn) == JUMP_INSN)
- {
-#ifdef HAVE_cc0
- rtx note;
-#endif
-
- /* If this is a jump table, then we can't insert stuff here. Since
- we know the previous real insn must be the tablejump, we insert
- the new instruction just before the tablejump. */
- if (GET_CODE (PATTERN (insn)) == ADDR_VEC
- || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
- insn = prev_real_insn (insn);
-
-#ifdef HAVE_cc0
- /* FIXME: 'twould be nice to call prev_cc0_setter here but it aborts
- if cc0 isn't set. */
- note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
- if (note)
- insn = XEXP (note, 0);
- else
- {
- rtx maybe_cc0_setter = prev_nonnote_insn (insn);
- if (maybe_cc0_setter
- && GET_RTX_CLASS (GET_CODE (maybe_cc0_setter)) == 'i'
- && sets_cc0_p (PATTERN (maybe_cc0_setter)))
- insn = maybe_cc0_setter;
- }
-#endif
- /* FIXME: What if something in cc0/jump uses value set in new insn? */
- new_insn = emit_insn_before (pat, insn);
- if (BLOCK_HEAD (bb) == insn)
- BLOCK_HEAD (bb) = new_insn;
- }
- /* Likewise if the last insn is a call, as will happen in the presence
- of exception handling. */
- else if (GET_CODE (insn) == CALL_INSN)
- {
- HARD_REG_SET parm_regs;
- int nparm_regs;
- rtx p;
-
- /* Keeping in mind SMALL_REGISTER_CLASSES and parameters in registers,
- we search backward and place the instructions before the first
- parameter is loaded. Do this for everyone for consistency and a
- presumtion that we'll get better code elsewhere as well. */
-
- /* It should always be the case that we can put these instructions
- anywhere in the basic block with performing PRE optimizations.
- Check this. */
- if (pre
- && !TEST_BIT (antloc[bb], expr->bitmap_index)
- && !TEST_BIT (transp[bb], expr->bitmap_index))
- abort ();
-
- /* Since different machines initialize their parameter registers
- in different orders, assume nothing. Collect the set of all
- parameter registers. */
- CLEAR_HARD_REG_SET (parm_regs);
- nparm_regs = 0;
- for (p = CALL_INSN_FUNCTION_USAGE (insn); p ; p = XEXP (p, 1))
- if (GET_CODE (XEXP (p, 0)) == USE
- && GET_CODE (XEXP (XEXP (p, 0), 0)) == REG)
- {
- int regno = REGNO (XEXP (XEXP (p, 0), 0));
- if (regno >= FIRST_PSEUDO_REGISTER)
- abort ();
- SET_HARD_REG_BIT (parm_regs, regno);
- nparm_regs++;
- }
-
- /* Search backward for the first set of a register in this set. */
- while (nparm_regs && BLOCK_HEAD (bb) != insn)
- {
- insn = PREV_INSN (insn);
- p = single_set (insn);
- if (p && GET_CODE (SET_DEST (p)) == REG
- && REGNO (SET_DEST (p)) < FIRST_PSEUDO_REGISTER
- && TEST_HARD_REG_BIT (parm_regs, REGNO (SET_DEST (p))))
- {
- CLEAR_HARD_REG_BIT (parm_regs, REGNO (SET_DEST (p)));
- nparm_regs--;
- }
- }
-
- /* If we found all the parameter loads, then we want to insert
- before the first parameter load.
-
- If we did not find all the parameter loads, then we might have
- stopped on the head of the block, which could be a CODE_LABEL.
- If we inserted before the CODE_LABEL, then we would be putting
- the insn in the wrong basic block. In that case, put the insn
- after the CODE_LABEL.
-
- ?!? Do we need to account for NOTE_INSN_BASIC_BLOCK here? */
- if (GET_CODE (insn) != CODE_LABEL)
- {
- new_insn = emit_insn_before (pat, insn);
- if (BLOCK_HEAD (bb) == insn)
- BLOCK_HEAD (bb) = new_insn;
- }
- else
- {
- new_insn = emit_insn_after (pat, insn);
- }
- }
- else
- {
- new_insn = emit_insn_after (pat, insn);
- BLOCK_END (bb) = new_insn;
- }
-
- /* Keep block number table up to date.
- Note, PAT could be a multiple insn sequence, we have to make
- sure that each insn in the sequence is handled. */
- if (GET_CODE (pat) == SEQUENCE)
- {
- int i;
-
- for (i = 0; i < XVECLEN (pat, 0); i++)
- {
- rtx insn = XVECEXP (pat, 0, i);
- set_block_num (insn, bb);
- if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
- add_label_notes (PATTERN (insn), new_insn);
- record_set_insn = insn;
- note_stores (PATTERN (insn), record_set_info);
- }
- }
- else
- {
- add_label_notes (SET_SRC (pat), new_insn);
- set_block_num (new_insn, bb);
- /* Keep register set table up to date. */
- record_one_set (regno, new_insn);
- }
-
- gcse_create_count++;
-
- if (gcse_file)
- {
- fprintf (gcse_file, "PRE/HOIST: end of bb %d, insn %d, copying expression %d to reg %d\n",
- bb, INSN_UID (new_insn), expr->bitmap_index, regno);
- }
-}
-
-/* Insert partially redundant expressions at the ends of appropriate basic
- blocks making them fully redundant. */
-
-static void
-pre_insert (index_map)
- struct expr **index_map;
-{
- int bb, i, set_size;
- sbitmap *inserted;
-
- /* Compute INSERT = PRE_OPTIMAL & ~PRE_REDUNDANT.
- Where INSERT is nonzero, we add the expression at the end of the basic
- block if it reaches any of the deleted expressions. */
-
- set_size = pre_optimal[0]->size;
- inserted = sbitmap_vector_alloc (n_basic_blocks, n_exprs);
- sbitmap_vector_zero (inserted, n_basic_blocks);
-
- for (bb = 0; bb < n_basic_blocks; bb++)
- {
- int indx;
-
- /* This computes the number of potential insertions we need. */
- sbitmap_not (temp_bitmap[bb], pre_redundant[bb]);
- sbitmap_a_and_b (temp_bitmap[bb], temp_bitmap[bb], pre_optimal[bb]);
-
- /* TEMP_BITMAP[bb] now contains a bitmap of the expressions that we need
- to insert at the end of this basic block. */
- for (i = indx = 0; i < set_size; i++, indx += SBITMAP_ELT_BITS)
- {
- SBITMAP_ELT_TYPE insert = temp_bitmap[bb]->elms[i];
- int j;
-
- for (j = indx; insert && j < n_exprs; j++, insert >>= 1)
- {
- if ((insert & 1) != 0 && index_map[j]->reaching_reg != NULL_RTX)
- {
- struct expr *expr = index_map[j];
- struct occr *occr;
-
- /* Now look at each deleted occurence of this expression. */
- for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
- {
- if (! occr->deleted_p)
- continue;
-
- /* Insert this expression at the end of BB if it would
- reach the deleted occurence. */
- if (!TEST_BIT (inserted[bb], j)
- && pre_expr_reaches_here_p (bb, expr,
- BLOCK_NUM (occr->insn), 0,
- NULL))
- {
- SET_BIT (inserted[bb], j);
- insert_insn_end_bb (index_map[j], bb, 1);
- }
- }
- }
- }
- }
- }
-}
-
-/* Copy the result of INSN to REG.
- INDX is the expression number. */
-
-static void
-pre_insert_copy_insn (expr, insn)
- struct expr *expr;
- rtx insn;
-{
- rtx reg = expr->reaching_reg;
- int regno = REGNO (reg);
- int indx = expr->bitmap_index;
- rtx set = single_set (insn);
- rtx new_insn;
-
- if (!set)
- abort ();
- new_insn = emit_insn_after (gen_rtx_SET (VOIDmode, reg, SET_DEST (set)),
- insn);
- /* Keep block number table up to date. */
- set_block_num (new_insn, BLOCK_NUM (insn));
- /* Keep register set table up to date. */
- record_one_set (regno, new_insn);
-
- gcse_create_count++;
-
- if (gcse_file)
- {
- fprintf (gcse_file, "PRE: bb %d, insn %d, copying expression %d in insn %d to reg %d\n",
- BLOCK_NUM (insn), INSN_UID (new_insn), indx, INSN_UID (insn), regno);
- }
-}
-
-/* Copy available expressions that reach the redundant expression
- to `reaching_reg'. */
-
-static void
-pre_insert_copies ()
-{
- int i, bb;
-
- for (bb = 0; bb < n_basic_blocks; bb++)
- {
- sbitmap_a_and_b (temp_bitmap[bb], pre_optimal[bb], pre_redundant[bb]);
- }
-
- /* For each available expression in the table, copy the result to
- `reaching_reg' if the expression reaches a deleted one.
-
- ??? The current algorithm is rather brute force.
- Need to do some profiling. */
-
- for (i = 0; i < expr_hash_table_size; i++)
- {
- struct expr *expr;
-
- for (expr = expr_hash_table[i]; expr != NULL; expr = expr->next_same_hash)
- {
- struct occr *occr;
-
- /* If the basic block isn't reachable, PPOUT will be TRUE.
- However, we don't want to insert a copy here because the
- expression may not really be redundant. So only insert
- an insn if the expression was deleted.
- This test also avoids further processing if the expression
- wasn't deleted anywhere. */
- if (expr->reaching_reg == NULL)
- continue;
-
- for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
- {
- struct occr *avail;
-
- if (! occr->deleted_p)
- continue;
-
- for (avail = expr->avail_occr; avail != NULL; avail = avail->next)
- {
- rtx insn = avail->insn;
- int bb = BLOCK_NUM (insn);
-
- if (!TEST_BIT (temp_bitmap[bb], expr->bitmap_index))
- continue;
-
- /* No need to handle this one if handled already. */
- if (avail->copied_p)
- continue;
- /* Don't handle this one if it's a redundant one. */
- if (TEST_BIT (pre_redundant_insns, INSN_CUID (insn)))
- continue;
- /* Or if the expression doesn't reach the deleted one. */
- if (! pre_expr_reaches_here_p (BLOCK_NUM (avail->insn), expr,
- BLOCK_NUM (occr->insn),
- 1, NULL))
- continue;
-
- /* Copy the result of avail to reaching_reg. */
- pre_insert_copy_insn (expr, insn);
- avail->copied_p = 1;
- }
- }
- }
- }
-}
-
-/* Delete redundant computations.
- Deletion is done by changing the insn to copy the `reaching_reg' of
- the expression into the result of the SET. It is left to later passes
- (cprop, cse2, flow, combine, regmove) to propagate the copy or eliminate it.
-
- Returns non-zero if a change is made. */
-
-static int
-pre_delete ()
-{
- int i, bb, changed;
-
- /* Compute the expressions which are redundant and need to be replaced by
- copies from the reaching reg to the target reg. */
- for (bb = 0; bb < n_basic_blocks; bb++)
- {
- sbitmap_not (temp_bitmap[bb], pre_optimal[bb]);
- sbitmap_a_and_b (temp_bitmap[bb], temp_bitmap[bb], pre_redundant[bb]);
- }
-
- changed = 0;
- for (i = 0; i < expr_hash_table_size; i++)
- {
- struct expr *expr;
-
- for (expr = expr_hash_table[i]; expr != NULL; expr = expr->next_same_hash)
- {
- struct occr *occr;
- int indx = expr->bitmap_index;
-
- /* We only need to search antic_occr since we require
- ANTLOC != 0. */
-
- for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
- {
- rtx insn = occr->insn;
- rtx set;
- int bb = BLOCK_NUM (insn);
-
- if (TEST_BIT (temp_bitmap[bb], indx))
- {
- set = single_set (insn);
- if (! set)
- abort ();
-
- /* Create a pseudo-reg to store the result of reaching
- expressions into. Get the mode for the new pseudo
- from the mode of the original destination pseudo. */
- if (expr->reaching_reg == NULL)
- expr->reaching_reg
- = gen_reg_rtx (GET_MODE (SET_DEST (set)));
-
- /* In theory this should never fail since we're creating
- a reg->reg copy.
-
- However, on the x86 some of the movXX patterns actually
- contain clobbers of scratch regs. This may cause the
- insn created by validate_change to not match any pattern
- and thus cause validate_change to fail. */
- if (validate_change (insn, &SET_SRC (set),
- expr->reaching_reg, 0))
- {
- occr->deleted_p = 1;
- SET_BIT (pre_redundant_insns, INSN_CUID (insn));
- changed = 1;
- gcse_subst_count++;
- }
-
- if (gcse_file)
- {
- fprintf (gcse_file,
- "PRE: redundant insn %d (expression %d) in bb %d, reaching reg is %d\n",
- INSN_UID (insn), indx, bb, REGNO (expr->reaching_reg));
- }
- }
- }
- }
- }
-
- return changed;
-}
-
-/* Perform GCSE optimizations using PRE.
- This is called by one_pre_gcse_pass after all the dataflow analysis
- has been done.
-
- This is based on the original Morel-Renvoise paper Fred Chow's thesis,
- and lazy code motion from Knoop, Ruthing and Steffen as described in
- Advanced Compiler Design and Implementation.
-
- ??? A new pseudo reg is created to hold the reaching expression.
- The nice thing about the classical approach is that it would try to
- use an existing reg. If the register can't be adequately optimized
- [i.e. we introduce reload problems], one could add a pass here to
- propagate the new register through the block.
-
- ??? We don't handle single sets in PARALLELs because we're [currently]
- not able to copy the rest of the parallel when we insert copies to create
- full redundancies from partial redundancies. However, there's no reason
- why we can't handle PARALLELs in the cases where there are no partial
- redundancies. */
-
-static int
-pre_gcse ()
-{
- int i;
- int changed;
- struct expr **index_map;
-
- /* Compute a mapping from expression number (`bitmap_index') to
- hash table entry. */
-
- index_map = (struct expr **) alloca (n_exprs * sizeof (struct expr *));
- bzero ((char *) index_map, n_exprs * sizeof (struct expr *));
- for (i = 0; i < expr_hash_table_size; i++)
- {
- struct expr *expr;
-
- for (expr = expr_hash_table[i]; expr != NULL; expr = expr->next_same_hash)
- index_map[expr->bitmap_index] = expr;
- }
-
- /* Reset bitmap used to track which insns are redundant. */
- pre_redundant_insns = sbitmap_alloc (max_cuid);
- sbitmap_zero (pre_redundant_insns);
-
- /* Delete the redundant insns first so that
- - we know what register to use for the new insns and for the other
- ones with reaching expressions
- - we know which insns are redundant when we go to create copies */
- changed = pre_delete ();
-
- /* Insert insns in places that make partially redundant expressions
- fully redundant. */
- pre_insert (index_map);
-
- /* In other places with reaching expressions, copy the expression to the
- specially allocated pseudo-reg that reaches the redundant expression. */
- pre_insert_copies ();
-
- free (pre_redundant_insns);
-
- return changed;
-}
-
-/* Top level routine to perform one PRE GCSE pass.
-
- Return non-zero if a change was made. */
-
-static int
-one_pre_gcse_pass (pass)
- int pass;
-{
- int changed = 0;
-
- gcse_subst_count = 0;
- gcse_create_count = 0;
-
- alloc_expr_hash_table (max_cuid);
- compute_expr_hash_table ();
- if (gcse_file)
- dump_hash_table (gcse_file, "Expression", expr_hash_table,
- expr_hash_table_size, n_exprs);
- if (n_exprs > 0)
- {
- alloc_pre_mem (n_basic_blocks, n_exprs);
- compute_pre_data ();
- changed |= pre_gcse ();
- free_pre_mem ();
- }
- free_expr_hash_table ();
-
- if (gcse_file)
- {
- fprintf (gcse_file, "\n");
- fprintf (gcse_file, "PRE GCSE of %s, pass %d: %d bytes needed, %d substs, %d insns created\n",
- current_function_name, pass,
- bytes_used, gcse_subst_count, gcse_create_count);
- }
-
- return changed;
-}
-
-/* If X contains any LABEL_REF's, add REG_LABEL notes for them to INSN.
- We have to add REG_LABEL notes, because the following loop optimization
- pass requires them. */
-
-/* ??? This is very similar to the loop.c add_label_notes function. We
- could probably share code here. */
-
-/* ??? If there was a jump optimization pass after gcse and before loop,
- then we would not need to do this here, because jump would add the
- necessary REG_LABEL notes. */
-
-static void
-add_label_notes (x, insn)
- rtx x;
- rtx insn;
-{
- enum rtx_code code = GET_CODE (x);
- int i, j;
- char *fmt;
-
- if (code == LABEL_REF && !LABEL_REF_NONLOCAL_P (x))
- {
- /* This code used to ignore labels that referred to dispatch tables to
- avoid flow generating (slighly) worse code.
-
- We no longer ignore such label references (see LABEL_REF handling in
- mark_jump_label for additional information). */
- REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_LABEL, XEXP (x, 0),
- REG_NOTES (insn));
- return;
- }
-
- fmt = GET_RTX_FORMAT (code);
- for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
- {
- if (fmt[i] == 'e')
- add_label_notes (XEXP (x, i), insn);
- else if (fmt[i] == 'E')
- for (j = XVECLEN (x, i) - 1; j >= 0; j--)
- add_label_notes (XVECEXP (x, i, j), insn);
- }
-}
-
-/* Compute transparent outgoing information for each block.
-
- An expression is transparent to an edge unless it is killed by
- the edge itself. This can only happen with abnormal control flow,
- when the edge is traversed through a call. This happens with
- non-local labels and exceptions.
-
- This would not be necessary if we split the edge. While this is
- normally impossible for abnormal critical edges, with some effort
- it should be possible with exception handling, since we still have
- control over which handler should be invoked. But due to increased
- EH table sizes, this may not be worthwhile. */
-
-static void
-compute_transpout ()
-{
- int bb;
-
- sbitmap_vector_ones (transpout, n_basic_blocks);
-
- for (bb = 0; bb < n_basic_blocks; ++bb)
- {
- int i;
-
- /* Note that flow inserted a nop a the end of basic blocks that
- end in call instructions for reasons other than abnormal
- control flow. */
- if (GET_CODE (BLOCK_END (bb)) != CALL_INSN)
- continue;
-
- for (i = 0; i < expr_hash_table_size; i++)
- {
- struct expr *expr;
- for (expr = expr_hash_table[i]; expr ; expr = expr->next_same_hash)
- if (GET_CODE (expr->expr) == MEM)
- {
- rtx addr = XEXP (expr->expr, 0);
-
- if (GET_CODE (addr) == SYMBOL_REF
- && CONSTANT_POOL_ADDRESS_P (addr))
- continue;
-
- /* ??? Optimally, we would use interprocedural alias
- analysis to determine if this mem is actually killed
- by this call. */
- RESET_BIT (transpout[bb], expr->bitmap_index);
- }
- }
- }
-}