summaryrefslogtreecommitdiff
path: root/include/llvm/Analysis/LoopAccessAnalysis.h
diff options
context:
space:
mode:
Diffstat (limited to 'include/llvm/Analysis/LoopAccessAnalysis.h')
-rw-r--r--include/llvm/Analysis/LoopAccessAnalysis.h552
1 files changed, 552 insertions, 0 deletions
diff --git a/include/llvm/Analysis/LoopAccessAnalysis.h b/include/llvm/Analysis/LoopAccessAnalysis.h
new file mode 100644
index 0000000000000..c14e1451f338b
--- /dev/null
+++ b/include/llvm/Analysis/LoopAccessAnalysis.h
@@ -0,0 +1,552 @@
+//===- llvm/Analysis/LoopAccessAnalysis.h -----------------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the interface for the loop memory dependence framework that
+// was originally developed for the Loop Vectorizer.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_ANALYSIS_LOOPACCESSANALYSIS_H
+#define LLVM_ANALYSIS_LOOPACCESSANALYSIS_H
+
+#include "llvm/ADT/EquivalenceClasses.h"
+#include "llvm/ADT/Optional.h"
+#include "llvm/ADT/SetVector.h"
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/Analysis/AliasSetTracker.h"
+#include "llvm/Analysis/ScalarEvolutionExpressions.h"
+#include "llvm/IR/ValueHandle.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/raw_ostream.h"
+
+namespace llvm {
+
+class Value;
+class DataLayout;
+class AliasAnalysis;
+class ScalarEvolution;
+class Loop;
+class SCEV;
+
+/// Optimization analysis message produced during vectorization. Messages inform
+/// the user why vectorization did not occur.
+class LoopAccessReport {
+ std::string Message;
+ const Instruction *Instr;
+
+protected:
+ LoopAccessReport(const Twine &Message, const Instruction *I)
+ : Message(Message.str()), Instr(I) {}
+
+public:
+ LoopAccessReport(const Instruction *I = nullptr) : Instr(I) {}
+
+ template <typename A> LoopAccessReport &operator<<(const A &Value) {
+ raw_string_ostream Out(Message);
+ Out << Value;
+ return *this;
+ }
+
+ const Instruction *getInstr() const { return Instr; }
+
+ std::string &str() { return Message; }
+ const std::string &str() const { return Message; }
+ operator Twine() { return Message; }
+
+ /// \brief Emit an analysis note for \p PassName with the debug location from
+ /// the instruction in \p Message if available. Otherwise use the location of
+ /// \p TheLoop.
+ static void emitAnalysis(const LoopAccessReport &Message,
+ const Function *TheFunction,
+ const Loop *TheLoop,
+ const char *PassName);
+};
+
+/// \brief Collection of parameters shared beetween the Loop Vectorizer and the
+/// Loop Access Analysis.
+struct VectorizerParams {
+ /// \brief Maximum SIMD width.
+ static const unsigned MaxVectorWidth;
+
+ /// \brief VF as overridden by the user.
+ static unsigned VectorizationFactor;
+ /// \brief Interleave factor as overridden by the user.
+ static unsigned VectorizationInterleave;
+ /// \brief True if force-vector-interleave was specified by the user.
+ static bool isInterleaveForced();
+
+ /// \\brief When performing memory disambiguation checks at runtime do not
+ /// make more than this number of comparisons.
+ static unsigned RuntimeMemoryCheckThreshold;
+};
+
+/// \brief Checks memory dependences among accesses to the same underlying
+/// object to determine whether there vectorization is legal or not (and at
+/// which vectorization factor).
+///
+/// Note: This class will compute a conservative dependence for access to
+/// different underlying pointers. Clients, such as the loop vectorizer, will
+/// sometimes deal these potential dependencies by emitting runtime checks.
+///
+/// We use the ScalarEvolution framework to symbolically evalutate access
+/// functions pairs. Since we currently don't restructure the loop we can rely
+/// on the program order of memory accesses to determine their safety.
+/// At the moment we will only deem accesses as safe for:
+/// * A negative constant distance assuming program order.
+///
+/// Safe: tmp = a[i + 1]; OR a[i + 1] = x;
+/// a[i] = tmp; y = a[i];
+///
+/// The latter case is safe because later checks guarantuee that there can't
+/// be a cycle through a phi node (that is, we check that "x" and "y" is not
+/// the same variable: a header phi can only be an induction or a reduction, a
+/// reduction can't have a memory sink, an induction can't have a memory
+/// source). This is important and must not be violated (or we have to
+/// resort to checking for cycles through memory).
+///
+/// * A positive constant distance assuming program order that is bigger
+/// than the biggest memory access.
+///
+/// tmp = a[i] OR b[i] = x
+/// a[i+2] = tmp y = b[i+2];
+///
+/// Safe distance: 2 x sizeof(a[0]), and 2 x sizeof(b[0]), respectively.
+///
+/// * Zero distances and all accesses have the same size.
+///
+class MemoryDepChecker {
+public:
+ typedef PointerIntPair<Value *, 1, bool> MemAccessInfo;
+ typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet;
+ /// \brief Set of potential dependent memory accesses.
+ typedef EquivalenceClasses<MemAccessInfo> DepCandidates;
+
+ /// \brief Dependece between memory access instructions.
+ struct Dependence {
+ /// \brief The type of the dependence.
+ enum DepType {
+ // No dependence.
+ NoDep,
+ // We couldn't determine the direction or the distance.
+ Unknown,
+ // Lexically forward.
+ Forward,
+ // Forward, but if vectorized, is likely to prevent store-to-load
+ // forwarding.
+ ForwardButPreventsForwarding,
+ // Lexically backward.
+ Backward,
+ // Backward, but the distance allows a vectorization factor of
+ // MaxSafeDepDistBytes.
+ BackwardVectorizable,
+ // Same, but may prevent store-to-load forwarding.
+ BackwardVectorizableButPreventsForwarding
+ };
+
+ /// \brief String version of the types.
+ static const char *DepName[];
+
+ /// \brief Index of the source of the dependence in the InstMap vector.
+ unsigned Source;
+ /// \brief Index of the destination of the dependence in the InstMap vector.
+ unsigned Destination;
+ /// \brief The type of the dependence.
+ DepType Type;
+
+ Dependence(unsigned Source, unsigned Destination, DepType Type)
+ : Source(Source), Destination(Destination), Type(Type) {}
+
+ /// \brief Dependence types that don't prevent vectorization.
+ static bool isSafeForVectorization(DepType Type);
+
+ /// \brief Dependence types that can be queried from the analysis.
+ static bool isInterestingDependence(DepType Type);
+
+ /// \brief Lexically backward dependence types.
+ bool isPossiblyBackward() const;
+
+ /// \brief Print the dependence. \p Instr is used to map the instruction
+ /// indices to instructions.
+ void print(raw_ostream &OS, unsigned Depth,
+ const SmallVectorImpl<Instruction *> &Instrs) const;
+ };
+
+ MemoryDepChecker(ScalarEvolution *Se, const Loop *L)
+ : SE(Se), InnermostLoop(L), AccessIdx(0),
+ ShouldRetryWithRuntimeCheck(false), SafeForVectorization(true),
+ RecordInterestingDependences(true) {}
+
+ /// \brief Register the location (instructions are given increasing numbers)
+ /// of a write access.
+ void addAccess(StoreInst *SI) {
+ Value *Ptr = SI->getPointerOperand();
+ Accesses[MemAccessInfo(Ptr, true)].push_back(AccessIdx);
+ InstMap.push_back(SI);
+ ++AccessIdx;
+ }
+
+ /// \brief Register the location (instructions are given increasing numbers)
+ /// of a write access.
+ void addAccess(LoadInst *LI) {
+ Value *Ptr = LI->getPointerOperand();
+ Accesses[MemAccessInfo(Ptr, false)].push_back(AccessIdx);
+ InstMap.push_back(LI);
+ ++AccessIdx;
+ }
+
+ /// \brief Check whether the dependencies between the accesses are safe.
+ ///
+ /// Only checks sets with elements in \p CheckDeps.
+ bool areDepsSafe(DepCandidates &AccessSets, MemAccessInfoSet &CheckDeps,
+ const ValueToValueMap &Strides);
+
+ /// \brief No memory dependence was encountered that would inhibit
+ /// vectorization.
+ bool isSafeForVectorization() const { return SafeForVectorization; }
+
+ /// \brief The maximum number of bytes of a vector register we can vectorize
+ /// the accesses safely with.
+ unsigned getMaxSafeDepDistBytes() { return MaxSafeDepDistBytes; }
+
+ /// \brief In same cases when the dependency check fails we can still
+ /// vectorize the loop with a dynamic array access check.
+ bool shouldRetryWithRuntimeCheck() { return ShouldRetryWithRuntimeCheck; }
+
+ /// \brief Returns the interesting dependences. If null is returned we
+ /// exceeded the MaxInterestingDependence threshold and this information is
+ /// not available.
+ const SmallVectorImpl<Dependence> *getInterestingDependences() const {
+ return RecordInterestingDependences ? &InterestingDependences : nullptr;
+ }
+
+ void clearInterestingDependences() { InterestingDependences.clear(); }
+
+ /// \brief The vector of memory access instructions. The indices are used as
+ /// instruction identifiers in the Dependence class.
+ const SmallVectorImpl<Instruction *> &getMemoryInstructions() const {
+ return InstMap;
+ }
+
+ /// \brief Find the set of instructions that read or write via \p Ptr.
+ SmallVector<Instruction *, 4> getInstructionsForAccess(Value *Ptr,
+ bool isWrite) const;
+
+private:
+ ScalarEvolution *SE;
+ const Loop *InnermostLoop;
+
+ /// \brief Maps access locations (ptr, read/write) to program order.
+ DenseMap<MemAccessInfo, std::vector<unsigned> > Accesses;
+
+ /// \brief Memory access instructions in program order.
+ SmallVector<Instruction *, 16> InstMap;
+
+ /// \brief The program order index to be used for the next instruction.
+ unsigned AccessIdx;
+
+ // We can access this many bytes in parallel safely.
+ unsigned MaxSafeDepDistBytes;
+
+ /// \brief If we see a non-constant dependence distance we can still try to
+ /// vectorize this loop with runtime checks.
+ bool ShouldRetryWithRuntimeCheck;
+
+ /// \brief No memory dependence was encountered that would inhibit
+ /// vectorization.
+ bool SafeForVectorization;
+
+ //// \brief True if InterestingDependences reflects the dependences in the
+ //// loop. If false we exceeded MaxInterestingDependence and
+ //// InterestingDependences is invalid.
+ bool RecordInterestingDependences;
+
+ /// \brief Interesting memory dependences collected during the analysis as
+ /// defined by isInterestingDependence. Only valid if
+ /// RecordInterestingDependences is true.
+ SmallVector<Dependence, 8> InterestingDependences;
+
+ /// \brief Check whether there is a plausible dependence between the two
+ /// accesses.
+ ///
+ /// Access \p A must happen before \p B in program order. The two indices
+ /// identify the index into the program order map.
+ ///
+ /// This function checks whether there is a plausible dependence (or the
+ /// absence of such can't be proved) between the two accesses. If there is a
+ /// plausible dependence but the dependence distance is bigger than one
+ /// element access it records this distance in \p MaxSafeDepDistBytes (if this
+ /// distance is smaller than any other distance encountered so far).
+ /// Otherwise, this function returns true signaling a possible dependence.
+ Dependence::DepType isDependent(const MemAccessInfo &A, unsigned AIdx,
+ const MemAccessInfo &B, unsigned BIdx,
+ const ValueToValueMap &Strides);
+
+ /// \brief Check whether the data dependence could prevent store-load
+ /// forwarding.
+ bool couldPreventStoreLoadForward(unsigned Distance, unsigned TypeByteSize);
+};
+
+/// \brief Drive the analysis of memory accesses in the loop
+///
+/// This class is responsible for analyzing the memory accesses of a loop. It
+/// collects the accesses and then its main helper the AccessAnalysis class
+/// finds and categorizes the dependences in buildDependenceSets.
+///
+/// For memory dependences that can be analyzed at compile time, it determines
+/// whether the dependence is part of cycle inhibiting vectorization. This work
+/// is delegated to the MemoryDepChecker class.
+///
+/// For memory dependences that cannot be determined at compile time, it
+/// generates run-time checks to prove independence. This is done by
+/// AccessAnalysis::canCheckPtrAtRT and the checks are maintained by the
+/// RuntimePointerCheck class.
+class LoopAccessInfo {
+public:
+ /// This struct holds information about the memory runtime legality check that
+ /// a group of pointers do not overlap.
+ struct RuntimePointerCheck {
+ RuntimePointerCheck() : Need(false) {}
+
+ /// Reset the state of the pointer runtime information.
+ void reset() {
+ Need = false;
+ Pointers.clear();
+ Starts.clear();
+ Ends.clear();
+ IsWritePtr.clear();
+ DependencySetId.clear();
+ AliasSetId.clear();
+ }
+
+ /// Insert a pointer and calculate the start and end SCEVs.
+ void insert(ScalarEvolution *SE, Loop *Lp, Value *Ptr, bool WritePtr,
+ unsigned DepSetId, unsigned ASId,
+ const ValueToValueMap &Strides);
+
+ /// \brief No run-time memory checking is necessary.
+ bool empty() const { return Pointers.empty(); }
+
+ /// \brief Decide whether we need to issue a run-time check for pointer at
+ /// index \p I and \p J to prove their independence.
+ ///
+ /// If \p PtrPartition is set, it contains the partition number for
+ /// pointers (-1 if the pointer belongs to multiple partitions). In this
+ /// case omit checks between pointers belonging to the same partition.
+ bool needsChecking(unsigned I, unsigned J,
+ const SmallVectorImpl<int> *PtrPartition) const;
+
+ /// \brief Return true if any pointer requires run-time checking according
+ /// to needsChecking.
+ bool needsAnyChecking(const SmallVectorImpl<int> *PtrPartition) const;
+
+ /// \brief Print the list run-time memory checks necessary.
+ ///
+ /// If \p PtrPartition is set, it contains the partition number for
+ /// pointers (-1 if the pointer belongs to multiple partitions). In this
+ /// case omit checks between pointers belonging to the same partition.
+ void print(raw_ostream &OS, unsigned Depth = 0,
+ const SmallVectorImpl<int> *PtrPartition = nullptr) const;
+
+ /// This flag indicates if we need to add the runtime check.
+ bool Need;
+ /// Holds the pointers that we need to check.
+ SmallVector<TrackingVH<Value>, 2> Pointers;
+ /// Holds the pointer value at the beginning of the loop.
+ SmallVector<const SCEV*, 2> Starts;
+ /// Holds the pointer value at the end of the loop.
+ SmallVector<const SCEV*, 2> Ends;
+ /// Holds the information if this pointer is used for writing to memory.
+ SmallVector<bool, 2> IsWritePtr;
+ /// Holds the id of the set of pointers that could be dependent because of a
+ /// shared underlying object.
+ SmallVector<unsigned, 2> DependencySetId;
+ /// Holds the id of the disjoint alias set to which this pointer belongs.
+ SmallVector<unsigned, 2> AliasSetId;
+ };
+
+ LoopAccessInfo(Loop *L, ScalarEvolution *SE, const DataLayout &DL,
+ const TargetLibraryInfo *TLI, AliasAnalysis *AA,
+ DominatorTree *DT, LoopInfo *LI,
+ const ValueToValueMap &Strides);
+
+ /// Return true we can analyze the memory accesses in the loop and there are
+ /// no memory dependence cycles.
+ bool canVectorizeMemory() const { return CanVecMem; }
+
+ const RuntimePointerCheck *getRuntimePointerCheck() const {
+ return &PtrRtCheck;
+ }
+
+ /// \brief Number of memchecks required to prove independence of otherwise
+ /// may-alias pointers.
+ unsigned getNumRuntimePointerChecks() const { return NumComparisons; }
+
+ /// Return true if the block BB needs to be predicated in order for the loop
+ /// to be vectorized.
+ static bool blockNeedsPredication(BasicBlock *BB, Loop *TheLoop,
+ DominatorTree *DT);
+
+ /// Returns true if the value V is uniform within the loop.
+ bool isUniform(Value *V) const;
+
+ unsigned getMaxSafeDepDistBytes() const { return MaxSafeDepDistBytes; }
+ unsigned getNumStores() const { return NumStores; }
+ unsigned getNumLoads() const { return NumLoads;}
+
+ /// \brief Add code that checks at runtime if the accessed arrays overlap.
+ ///
+ /// Returns a pair of instructions where the first element is the first
+ /// instruction generated in possibly a sequence of instructions and the
+ /// second value is the final comparator value or NULL if no check is needed.
+ ///
+ /// If \p PtrPartition is set, it contains the partition number for pointers
+ /// (-1 if the pointer belongs to multiple partitions). In this case omit
+ /// checks between pointers belonging to the same partition.
+ std::pair<Instruction *, Instruction *>
+ addRuntimeCheck(Instruction *Loc,
+ const SmallVectorImpl<int> *PtrPartition = nullptr) const;
+
+ /// \brief The diagnostics report generated for the analysis. E.g. why we
+ /// couldn't analyze the loop.
+ const Optional<LoopAccessReport> &getReport() const { return Report; }
+
+ /// \brief the Memory Dependence Checker which can determine the
+ /// loop-independent and loop-carried dependences between memory accesses.
+ const MemoryDepChecker &getDepChecker() const { return DepChecker; }
+
+ /// \brief Return the list of instructions that use \p Ptr to read or write
+ /// memory.
+ SmallVector<Instruction *, 4> getInstructionsForAccess(Value *Ptr,
+ bool isWrite) const {
+ return DepChecker.getInstructionsForAccess(Ptr, isWrite);
+ }
+
+ /// \brief Print the information about the memory accesses in the loop.
+ void print(raw_ostream &OS, unsigned Depth = 0) const;
+
+ /// \brief Used to ensure that if the analysis was run with speculating the
+ /// value of symbolic strides, the client queries it with the same assumption.
+ /// Only used in DEBUG build but we don't want NDEBUG-dependent ABI.
+ unsigned NumSymbolicStrides;
+
+ /// \brief Checks existence of store to invariant address inside loop.
+ /// If the loop has any store to invariant address, then it returns true,
+ /// else returns false.
+ bool hasStoreToLoopInvariantAddress() const {
+ return StoreToLoopInvariantAddress;
+ }
+
+private:
+ /// \brief Analyze the loop. Substitute symbolic strides using Strides.
+ void analyzeLoop(const ValueToValueMap &Strides);
+
+ /// \brief Check if the structure of the loop allows it to be analyzed by this
+ /// pass.
+ bool canAnalyzeLoop();
+
+ void emitAnalysis(LoopAccessReport &Message);
+
+ /// We need to check that all of the pointers in this list are disjoint
+ /// at runtime.
+ RuntimePointerCheck PtrRtCheck;
+
+ /// \brief the Memory Dependence Checker which can determine the
+ /// loop-independent and loop-carried dependences between memory accesses.
+ MemoryDepChecker DepChecker;
+
+ /// \brief Number of memchecks required to prove independence of otherwise
+ /// may-alias pointers
+ unsigned NumComparisons;
+
+ Loop *TheLoop;
+ ScalarEvolution *SE;
+ const DataLayout &DL;
+ const TargetLibraryInfo *TLI;
+ AliasAnalysis *AA;
+ DominatorTree *DT;
+ LoopInfo *LI;
+
+ unsigned NumLoads;
+ unsigned NumStores;
+
+ unsigned MaxSafeDepDistBytes;
+
+ /// \brief Cache the result of analyzeLoop.
+ bool CanVecMem;
+
+ /// \brief Indicator for storing to uniform addresses.
+ /// If a loop has write to a loop invariant address then it should be true.
+ bool StoreToLoopInvariantAddress;
+
+ /// \brief The diagnostics report generated for the analysis. E.g. why we
+ /// couldn't analyze the loop.
+ Optional<LoopAccessReport> Report;
+};
+
+Value *stripIntegerCast(Value *V);
+
+///\brief Return the SCEV corresponding to a pointer with the symbolic stride
+///replaced with constant one.
+///
+/// If \p OrigPtr is not null, use it to look up the stride value instead of \p
+/// Ptr. \p PtrToStride provides the mapping between the pointer value and its
+/// stride as collected by LoopVectorizationLegality::collectStridedAccess.
+const SCEV *replaceSymbolicStrideSCEV(ScalarEvolution *SE,
+ const ValueToValueMap &PtrToStride,
+ Value *Ptr, Value *OrigPtr = nullptr);
+
+/// \brief This analysis provides dependence information for the memory accesses
+/// of a loop.
+///
+/// It runs the analysis for a loop on demand. This can be initiated by
+/// querying the loop access info via LAA::getInfo. getInfo return a
+/// LoopAccessInfo object. See this class for the specifics of what information
+/// is provided.
+class LoopAccessAnalysis : public FunctionPass {
+public:
+ static char ID;
+
+ LoopAccessAnalysis() : FunctionPass(ID) {
+ initializeLoopAccessAnalysisPass(*PassRegistry::getPassRegistry());
+ }
+
+ bool runOnFunction(Function &F) override;
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override;
+
+ /// \brief Query the result of the loop access information for the loop \p L.
+ ///
+ /// If the client speculates (and then issues run-time checks) for the values
+ /// of symbolic strides, \p Strides provides the mapping (see
+ /// replaceSymbolicStrideSCEV). If there is no cached result available run
+ /// the analysis.
+ const LoopAccessInfo &getInfo(Loop *L, const ValueToValueMap &Strides);
+
+ void releaseMemory() override {
+ // Invalidate the cache when the pass is freed.
+ LoopAccessInfoMap.clear();
+ }
+
+ /// \brief Print the result of the analysis when invoked with -analyze.
+ void print(raw_ostream &OS, const Module *M = nullptr) const override;
+
+private:
+ /// \brief The cache.
+ DenseMap<Loop *, std::unique_ptr<LoopAccessInfo>> LoopAccessInfoMap;
+
+ // The used analysis passes.
+ ScalarEvolution *SE;
+ const TargetLibraryInfo *TLI;
+ AliasAnalysis *AA;
+ DominatorTree *DT;
+ LoopInfo *LI;
+};
+} // End llvm namespace
+
+#endif