summaryrefslogtreecommitdiff
path: root/include/llvm/Support/GenericDomTreeConstruction.h
diff options
context:
space:
mode:
Diffstat (limited to 'include/llvm/Support/GenericDomTreeConstruction.h')
-rw-r--r--include/llvm/Support/GenericDomTreeConstruction.h659
1 files changed, 450 insertions, 209 deletions
diff --git a/include/llvm/Support/GenericDomTreeConstruction.h b/include/llvm/Support/GenericDomTreeConstruction.h
index 449c385bc86a0..9edf03aa36210 100644
--- a/include/llvm/Support/GenericDomTreeConstruction.h
+++ b/include/llvm/Support/GenericDomTreeConstruction.h
@@ -10,10 +10,11 @@
///
/// Generic dominator tree construction - This file provides routines to
/// construct immediate dominator information for a flow-graph based on the
-/// algorithm described in this document:
+/// Semi-NCA algorithm described in this dissertation:
///
-/// A Fast Algorithm for Finding Dominators in a Flowgraph
-/// T. Lengauer & R. Tarjan, ACM TOPLAS July 1979, pgs 121-141.
+/// Linear-Time Algorithms for Dominators and Related Problems
+/// Loukas Georgiadis, Princeton University, November 2005, pp. 21-23:
+/// ftp://ftp.cs.princeton.edu/reports/2005/737.pdf
///
/// This implements the O(n*log(n)) versions of EVAL and LINK, because it turns
/// out that the theoretically slower O(n*log(n)) implementation is actually
@@ -29,256 +30,496 @@
#include "llvm/Support/GenericDomTree.h"
namespace llvm {
+namespace DomTreeBuilder {
+
+// Information record used by Semi-NCA during tree construction.
+template <typename NodeT>
+struct SemiNCAInfo {
+ using NodePtr = NodeT *;
+ using DomTreeT = DominatorTreeBase<NodeT>;
+ using TreeNodePtr = DomTreeNodeBase<NodeT> *;
+
+ struct InfoRec {
+ unsigned DFSNum = 0;
+ unsigned Parent = 0;
+ unsigned Semi = 0;
+ NodePtr Label = nullptr;
+ NodePtr IDom = nullptr;
+ };
+
+ std::vector<NodePtr> NumToNode;
+ DenseMap<NodePtr, InfoRec> NodeToInfo;
+
+ void clear() {
+ NumToNode.clear();
+ NodeToInfo.clear();
+ }
+
+ NodePtr getIDom(NodePtr BB) const {
+ auto InfoIt = NodeToInfo.find(BB);
+ if (InfoIt == NodeToInfo.end()) return nullptr;
-// External storage for depth first iterator that reuses the info lookup map
-// domtree already has. We don't have a set, but a map instead, so we are
-// converting the one argument insert calls.
-template <class NodeRef, class InfoType> struct df_iterator_dom_storage {
-public:
- using BaseSet = DenseMap<NodeRef, InfoType>;
- df_iterator_dom_storage(BaseSet &Storage) : Storage(Storage) {}
-
- using iterator = typename BaseSet::iterator;
- std::pair<iterator, bool> insert(NodeRef N) {
- return Storage.insert({N, InfoType()});
+ return InfoIt->second.IDom;
}
- void completed(NodeRef) {}
-private:
- BaseSet &Storage;
-};
+ TreeNodePtr getNodeForBlock(NodePtr BB, DomTreeT &DT) {
+ if (TreeNodePtr Node = DT.getNode(BB)) return Node;
+
+ // Haven't calculated this node yet? Get or calculate the node for the
+ // immediate dominator.
+ NodePtr IDom = getIDom(BB);
+
+ assert(IDom || DT.DomTreeNodes[nullptr]);
+ TreeNodePtr IDomNode = getNodeForBlock(IDom, DT);
-template <class GraphT>
-unsigned ReverseDFSPass(DominatorTreeBaseByGraphTraits<GraphT> &DT,
- typename GraphT::NodeRef V, unsigned N) {
- df_iterator_dom_storage<
- typename GraphT::NodeRef,
- typename DominatorTreeBaseByGraphTraits<GraphT>::InfoRec>
- DFStorage(DT.Info);
- bool IsChildOfArtificialExit = (N != 0);
- for (auto I = idf_ext_begin(V, DFStorage), E = idf_ext_end(V, DFStorage);
- I != E; ++I) {
- typename GraphT::NodeRef BB = *I;
- auto &BBInfo = DT.Info[BB];
- BBInfo.DFSNum = BBInfo.Semi = ++N;
- BBInfo.Label = BB;
- // Set the parent to the top of the visited stack. The stack includes us,
- // and is 1 based, so we subtract to account for both of these.
- if (I.getPathLength() > 1)
- BBInfo.Parent = DT.Info[I.getPath(I.getPathLength() - 2)].DFSNum;
- DT.Vertex.push_back(BB); // Vertex[n] = V;
-
- if (IsChildOfArtificialExit)
- BBInfo.Parent = 1;
-
- IsChildOfArtificialExit = false;
+ // Add a new tree node for this NodeT, and link it as a child of
+ // IDomNode
+ return (DT.DomTreeNodes[BB] = IDomNode->addChild(
+ llvm::make_unique<DomTreeNodeBase<NodeT>>(BB, IDomNode)))
+ .get();
}
- return N;
-}
-template <class GraphT>
-unsigned DFSPass(DominatorTreeBaseByGraphTraits<GraphT> &DT,
- typename GraphT::NodeRef V, unsigned N) {
- df_iterator_dom_storage<
- typename GraphT::NodeRef,
- typename DominatorTreeBaseByGraphTraits<GraphT>::InfoRec>
- DFStorage(DT.Info);
- for (auto I = df_ext_begin(V, DFStorage), E = df_ext_end(V, DFStorage);
- I != E; ++I) {
- typename GraphT::NodeRef BB = *I;
- auto &BBInfo = DT.Info[BB];
- BBInfo.DFSNum = BBInfo.Semi = ++N;
- BBInfo.Label = BB;
- // Set the parent to the top of the visited stack. The stack includes us,
- // and is 1 based, so we subtract to account for both of these.
- if (I.getPathLength() > 1)
- BBInfo.Parent = DT.Info[I.getPath(I.getPathLength() - 2)].DFSNum;
- DT.Vertex.push_back(BB); // Vertex[n] = V;
+
+ // External storage for depth first iterator that reuses the info lookup map
+ // SemiNCAInfo already has. We don't have a set, but a map instead, so we are
+ // converting the one argument insert calls.
+ struct df_iterator_dom_storage {
+ public:
+ using BaseSet = decltype(NodeToInfo);
+ df_iterator_dom_storage(BaseSet &Storage) : Storage(Storage) {}
+
+ using iterator = typename BaseSet::iterator;
+ std::pair<iterator, bool> insert(NodePtr N) {
+ return Storage.insert({N, InfoRec()});
+ }
+ void completed(NodePtr) {}
+
+ private:
+ BaseSet &Storage;
+ };
+
+ df_iterator_dom_storage getStorage() { return {NodeToInfo}; }
+
+ unsigned runReverseDFS(NodePtr V, unsigned N) {
+ auto DFStorage = getStorage();
+
+ bool IsChildOfArtificialExit = (N != 0);
+ for (auto I = idf_ext_begin(V, DFStorage), E = idf_ext_end(V, DFStorage);
+ I != E; ++I) {
+ NodePtr BB = *I;
+ auto &BBInfo = NodeToInfo[BB];
+ BBInfo.DFSNum = BBInfo.Semi = ++N;
+ BBInfo.Label = BB;
+ // Set the parent to the top of the visited stack. The stack includes us,
+ // and is 1 based, so we subtract to account for both of these.
+ if (I.getPathLength() > 1)
+ BBInfo.Parent = NodeToInfo[I.getPath(I.getPathLength() - 2)].DFSNum;
+ NumToNode.push_back(BB); // NumToNode[n] = V;
+
+ if (IsChildOfArtificialExit)
+ BBInfo.Parent = 1;
+
+ IsChildOfArtificialExit = false;
+ }
+ return N;
}
- return N;
-}
-template <class GraphT>
-typename GraphT::NodeRef Eval(DominatorTreeBaseByGraphTraits<GraphT> &DT,
- typename GraphT::NodeRef VIn,
- unsigned LastLinked) {
- using NodePtr = typename GraphT::NodeRef;
+ unsigned runForwardDFS(NodePtr V, unsigned N) {
+ auto DFStorage = getStorage();
+
+ for (auto I = df_ext_begin(V, DFStorage), E = df_ext_end(V, DFStorage);
+ I != E; ++I) {
+ NodePtr BB = *I;
+ auto &BBInfo = NodeToInfo[BB];
+ BBInfo.DFSNum = BBInfo.Semi = ++N;
+ BBInfo.Label = BB;
+ // Set the parent to the top of the visited stack. The stack includes us,
+ // and is 1 based, so we subtract to account for both of these.
+ if (I.getPathLength() > 1)
+ BBInfo.Parent = NodeToInfo[I.getPath(I.getPathLength() - 2)].DFSNum;
+ NumToNode.push_back(BB); // NumToNode[n] = V;
+ }
+ return N;
+ }
- auto &VInInfo = DT.Info[VIn];
- if (VInInfo.DFSNum < LastLinked)
- return VIn;
+ NodePtr eval(NodePtr VIn, unsigned LastLinked) {
+ auto &VInInfo = NodeToInfo[VIn];
+ if (VInInfo.DFSNum < LastLinked)
+ return VIn;
- SmallVector<NodePtr, 32> Work;
- SmallPtrSet<NodePtr, 32> Visited;
+ SmallVector<NodePtr, 32> Work;
+ SmallPtrSet<NodePtr, 32> Visited;
- if (VInInfo.Parent >= LastLinked)
- Work.push_back(VIn);
+ if (VInInfo.Parent >= LastLinked)
+ Work.push_back(VIn);
- while (!Work.empty()) {
- NodePtr V = Work.back();
- auto &VInfo = DT.Info[V];
- NodePtr VAncestor = DT.Vertex[VInfo.Parent];
+ while (!Work.empty()) {
+ NodePtr V = Work.back();
+ auto &VInfo = NodeToInfo[V];
+ NodePtr VAncestor = NumToNode[VInfo.Parent];
- // Process Ancestor first
- if (Visited.insert(VAncestor).second && VInfo.Parent >= LastLinked) {
- Work.push_back(VAncestor);
- continue;
+ // Process Ancestor first
+ if (Visited.insert(VAncestor).second && VInfo.Parent >= LastLinked) {
+ Work.push_back(VAncestor);
+ continue;
+ }
+ Work.pop_back();
+
+ // Update VInfo based on Ancestor info
+ if (VInfo.Parent < LastLinked)
+ continue;
+
+ auto &VAInfo = NodeToInfo[VAncestor];
+ NodePtr VAncestorLabel = VAInfo.Label;
+ NodePtr VLabel = VInfo.Label;
+ if (NodeToInfo[VAncestorLabel].Semi < NodeToInfo[VLabel].Semi)
+ VInfo.Label = VAncestorLabel;
+ VInfo.Parent = VAInfo.Parent;
}
- Work.pop_back();
-
- // Update VInfo based on Ancestor info
- if (VInfo.Parent < LastLinked)
- continue;
-
- auto &VAInfo = DT.Info[VAncestor];
- NodePtr VAncestorLabel = VAInfo.Label;
- NodePtr VLabel = VInfo.Label;
- if (DT.Info[VAncestorLabel].Semi < DT.Info[VLabel].Semi)
- VInfo.Label = VAncestorLabel;
- VInfo.Parent = VAInfo.Parent;
+
+ return VInInfo.Label;
}
- return VInInfo.Label;
-}
+ template <typename NodeType>
+ void runSemiNCA(DomTreeT &DT, unsigned NumBlocks) {
+ unsigned N = 0;
+ NumToNode.push_back(nullptr);
-template <class FuncT, class NodeT>
-void Calculate(DominatorTreeBaseByGraphTraits<GraphTraits<NodeT>> &DT,
- FuncT &F) {
- using GraphT = GraphTraits<NodeT>;
- using NodePtr = typename GraphT::NodeRef;
- static_assert(std::is_pointer<NodePtr>::value,
- "NodeRef should be pointer type");
- using NodeType = typename std::remove_pointer<NodePtr>::type;
+ bool MultipleRoots = (DT.Roots.size() > 1);
+ if (MultipleRoots) {
+ auto &BBInfo = NodeToInfo[nullptr];
+ BBInfo.DFSNum = BBInfo.Semi = ++N;
+ BBInfo.Label = nullptr;
- unsigned N = 0;
- bool MultipleRoots = (DT.Roots.size() > 1);
- if (MultipleRoots) {
- auto &BBInfo = DT.Info[nullptr];
- BBInfo.DFSNum = BBInfo.Semi = ++N;
- BBInfo.Label = nullptr;
+ NumToNode.push_back(nullptr); // NumToNode[n] = V;
+ }
- DT.Vertex.push_back(nullptr); // Vertex[n] = V;
- }
+ // Step #1: Number blocks in depth-first order and initialize variables used
+ // in later stages of the algorithm.
+ if (DT.isPostDominator()){
+ for (unsigned i = 0, e = static_cast<unsigned>(DT.Roots.size());
+ i != e; ++i)
+ N = runReverseDFS(DT.Roots[i], N);
+ } else {
+ N = runForwardDFS(DT.Roots[0], N);
+ }
- // Step #1: Number blocks in depth-first order and initialize variables used
- // in later stages of the algorithm.
- if (DT.isPostDominator()){
- for (unsigned i = 0, e = static_cast<unsigned>(DT.Roots.size());
- i != e; ++i)
- N = ReverseDFSPass<GraphT>(DT, DT.Roots[i], N);
- } else {
- N = DFSPass<GraphT>(DT, DT.Roots[0], N);
- }
+ // It might be that some blocks did not get a DFS number (e.g., blocks of
+ // infinite loops). In these cases an artificial exit node is required.
+ MultipleRoots |= (DT.isPostDominator() && N != NumBlocks);
- // it might be that some blocks did not get a DFS number (e.g., blocks of
- // infinite loops). In these cases an artificial exit node is required.
- MultipleRoots |= (DT.isPostDominator() && N != GraphTraits<FuncT*>::size(&F));
+ // Initialize IDoms to spanning tree parents.
+ for (unsigned i = 1; i <= N; ++i) {
+ const NodePtr V = NumToNode[i];
+ auto &VInfo = NodeToInfo[V];
+ VInfo.IDom = NumToNode[VInfo.Parent];
+ }
- // When naively implemented, the Lengauer-Tarjan algorithm requires a separate
- // bucket for each vertex. However, this is unnecessary, because each vertex
- // is only placed into a single bucket (that of its semidominator), and each
- // vertex's bucket is processed before it is added to any bucket itself.
- //
- // Instead of using a bucket per vertex, we use a single array Buckets that
- // has two purposes. Before the vertex V with preorder number i is processed,
- // Buckets[i] stores the index of the first element in V's bucket. After V's
- // bucket is processed, Buckets[i] stores the index of the next element in the
- // bucket containing V, if any.
- SmallVector<unsigned, 32> Buckets;
- Buckets.resize(N + 1);
- for (unsigned i = 1; i <= N; ++i)
- Buckets[i] = i;
-
- for (unsigned i = N; i >= 2; --i) {
- NodePtr W = DT.Vertex[i];
- auto &WInfo = DT.Info[W];
-
- // Step #2: Implicitly define the immediate dominator of vertices
- for (unsigned j = i; Buckets[j] != i; j = Buckets[j]) {
- NodePtr V = DT.Vertex[Buckets[j]];
- NodePtr U = Eval<GraphT>(DT, V, i + 1);
- DT.IDoms[V] = DT.Info[U].Semi < i ? U : W;
+ // Step #2: Calculate the semidominators of all vertices.
+ for (unsigned i = N; i >= 2; --i) {
+ NodePtr W = NumToNode[i];
+ auto &WInfo = NodeToInfo[W];
+
+ // Initialize the semi dominator to point to the parent node.
+ WInfo.Semi = WInfo.Parent;
+ for (const auto &N : inverse_children<NodeType>(W))
+ if (NodeToInfo.count(N)) { // Only if this predecessor is reachable!
+ unsigned SemiU = NodeToInfo[eval(N, i + 1)].Semi;
+ if (SemiU < WInfo.Semi)
+ WInfo.Semi = SemiU;
+ }
}
- // Step #3: Calculate the semidominators of all vertices
+ // Step #3: Explicitly define the immediate dominator of each vertex.
+ // IDom[i] = NCA(SDom[i], SpanningTreeParent(i)).
+ // Note that the parents were stored in IDoms and later got invalidated
+ // during path compression in Eval.
+ for (unsigned i = 2; i <= N; ++i) {
+ const NodePtr W = NumToNode[i];
+ auto &WInfo = NodeToInfo[W];
+ const unsigned SDomNum = NodeToInfo[NumToNode[WInfo.Semi]].DFSNum;
+ NodePtr WIDomCandidate = WInfo.IDom;
+ while (NodeToInfo[WIDomCandidate].DFSNum > SDomNum)
+ WIDomCandidate = NodeToInfo[WIDomCandidate].IDom;
+
+ WInfo.IDom = WIDomCandidate;
+ }
- // initialize the semi dominator to point to the parent node
- WInfo.Semi = WInfo.Parent;
- for (const auto &N : inverse_children<NodeT>(W))
- if (DT.Info.count(N)) { // Only if this predecessor is reachable!
- unsigned SemiU = DT.Info[Eval<GraphT>(DT, N, i + 1)].Semi;
- if (SemiU < WInfo.Semi)
- WInfo.Semi = SemiU;
- }
+ if (DT.Roots.empty()) return;
- // If V is a non-root vertex and sdom(V) = parent(V), then idom(V) is
- // necessarily parent(V). In this case, set idom(V) here and avoid placing
- // V into a bucket.
- if (WInfo.Semi == WInfo.Parent) {
- DT.IDoms[W] = DT.Vertex[WInfo.Parent];
- } else {
- Buckets[i] = Buckets[WInfo.Semi];
- Buckets[WInfo.Semi] = i;
+ // Add a node for the root. This node might be the actual root, if there is
+ // one exit block, or it may be the virtual exit (denoted by
+ // (BasicBlock *)0) which postdominates all real exits if there are multiple
+ // exit blocks, or an infinite loop.
+ NodePtr Root = !MultipleRoots ? DT.Roots[0] : nullptr;
+
+ DT.RootNode =
+ (DT.DomTreeNodes[Root] =
+ llvm::make_unique<DomTreeNodeBase<NodeT>>(Root, nullptr))
+ .get();
+
+ // Loop over all of the reachable blocks in the function...
+ for (unsigned i = 2; i <= N; ++i) {
+ NodePtr W = NumToNode[i];
+
+ // Don't replace this with 'count', the insertion side effect is important
+ if (DT.DomTreeNodes[W])
+ continue; // Haven't calculated this node yet?
+
+ NodePtr ImmDom = getIDom(W);
+
+ assert(ImmDom || DT.DomTreeNodes[nullptr]);
+
+ // Get or calculate the node for the immediate dominator
+ TreeNodePtr IDomNode = getNodeForBlock(ImmDom, DT);
+
+ // Add a new tree node for this BasicBlock, and link it as a child of
+ // IDomNode
+ DT.DomTreeNodes[W] = IDomNode->addChild(
+ llvm::make_unique<DomTreeNodeBase<NodeT>>(W, IDomNode));
}
}
- if (N >= 1) {
- NodePtr Root = DT.Vertex[1];
- for (unsigned j = 1; Buckets[j] != 1; j = Buckets[j]) {
- NodePtr V = DT.Vertex[Buckets[j]];
- DT.IDoms[V] = Root;
- }
+ void doFullDFSWalk(const DomTreeT &DT) {
+ NumToNode.push_back(nullptr);
+ unsigned Num = 0;
+ for (auto *Root : DT.Roots)
+ if (!DT.isPostDominator())
+ Num = runForwardDFS(Root, Num);
+ else
+ Num = runReverseDFS(Root, Num);
}
- // Step #4: Explicitly define the immediate dominator of each vertex
- for (unsigned i = 2; i <= N; ++i) {
- NodePtr W = DT.Vertex[i];
- NodePtr &WIDom = DT.IDoms[W];
- if (WIDom != DT.Vertex[DT.Info[W].Semi])
- WIDom = DT.IDoms[WIDom];
+ static void PrintBlockOrNullptr(raw_ostream &O, NodePtr Obj) {
+ if (!Obj)
+ O << "nullptr";
+ else
+ Obj->printAsOperand(O, false);
}
- if (DT.Roots.empty()) return;
+ // Checks if the tree contains all reachable nodes in the input graph.
+ bool verifyReachability(const DomTreeT &DT) {
+ clear();
+ doFullDFSWalk(DT);
- // Add a node for the root. This node might be the actual root, if there is
- // one exit block, or it may be the virtual exit (denoted by (BasicBlock *)0)
- // which postdominates all real exits if there are multiple exit blocks, or
- // an infinite loop.
- NodePtr Root = !MultipleRoots ? DT.Roots[0] : nullptr;
+ for (auto &NodeToTN : DT.DomTreeNodes) {
+ const TreeNodePtr TN = NodeToTN.second.get();
+ const NodePtr BB = TN->getBlock();
+ if (!BB) continue;
- DT.RootNode =
- (DT.DomTreeNodes[Root] =
- llvm::make_unique<DomTreeNodeBase<NodeType>>(Root, nullptr))
- .get();
+ if (NodeToInfo.count(BB) == 0) {
+ errs() << "DomTree node ";
+ PrintBlockOrNullptr(errs(), BB);
+ errs() << " not found by DFS walk!\n";
+ errs().flush();
- // Loop over all of the reachable blocks in the function...
- for (unsigned i = 2; i <= N; ++i) {
- NodePtr W = DT.Vertex[i];
+ return false;
+ }
+ }
- // Don't replace this with 'count', the insertion side effect is important
- if (DT.DomTreeNodes[W])
- continue; // Haven't calculated this node yet?
+ return true;
+ }
- NodePtr ImmDom = DT.getIDom(W);
+ // Check if for every parent with a level L in the tree all of its children
+ // have level L + 1.
+ static bool VerifyLevels(const DomTreeT &DT) {
+ for (auto &NodeToTN : DT.DomTreeNodes) {
+ const TreeNodePtr TN = NodeToTN.second.get();
+ const NodePtr BB = TN->getBlock();
+ if (!BB) continue;
+
+ const TreeNodePtr IDom = TN->getIDom();
+ if (!IDom && TN->getLevel() != 0) {
+ errs() << "Node without an IDom ";
+ PrintBlockOrNullptr(errs(), BB);
+ errs() << " has a nonzero level " << TN->getLevel() << "!\n";
+ errs().flush();
+
+ return false;
+ }
- assert(ImmDom || DT.DomTreeNodes[nullptr]);
+ if (IDom && TN->getLevel() != IDom->getLevel() + 1) {
+ errs() << "Node ";
+ PrintBlockOrNullptr(errs(), BB);
+ errs() << " has level " << TN->getLevel() << " while it's IDom ";
+ PrintBlockOrNullptr(errs(), IDom->getBlock());
+ errs() << " has level " << IDom->getLevel() << "!\n";
+ errs().flush();
- // Get or calculate the node for the immediate dominator
- DomTreeNodeBase<NodeType> *IDomNode = DT.getNodeForBlock(ImmDom);
+ return false;
+ }
+ }
- // Add a new tree node for this BasicBlock, and link it as a child of
- // IDomNode
- DT.DomTreeNodes[W] = IDomNode->addChild(
- llvm::make_unique<DomTreeNodeBase<NodeType>>(W, IDomNode));
+ return true;
+ }
+
+ // Checks if for every edge From -> To in the graph
+ // NCD(From, To) == IDom(To) or To.
+ bool verifyNCD(const DomTreeT &DT) {
+ clear();
+ doFullDFSWalk(DT);
+
+ for (auto &BlockToInfo : NodeToInfo) {
+ auto &Info = BlockToInfo.second;
+
+ const NodePtr From = NumToNode[Info.Parent];
+ if (!From) continue;
+
+ const NodePtr To = BlockToInfo.first;
+ const TreeNodePtr ToTN = DT.getNode(To);
+ assert(ToTN);
+
+ const NodePtr NCD = DT.findNearestCommonDominator(From, To);
+ const TreeNodePtr NCDTN = NCD ? DT.getNode(NCD) : nullptr;
+ const TreeNodePtr ToIDom = ToTN->getIDom();
+ if (NCDTN != ToTN && NCDTN != ToIDom) {
+ errs() << "NearestCommonDominator verification failed:\n\tNCD(From:";
+ PrintBlockOrNullptr(errs(), From);
+ errs() << ", To:";
+ PrintBlockOrNullptr(errs(), To);
+ errs() << ") = ";
+ PrintBlockOrNullptr(errs(), NCD);
+ errs() << ",\t (should be To or IDom[To]: ";
+ PrintBlockOrNullptr(errs(), ToIDom ? ToIDom->getBlock() : nullptr);
+ errs() << ")\n";
+ errs().flush();
+
+ return false;
+ }
+ }
+
+ return true;
+ }
+
+ // The below routines verify the correctness of the dominator tree relative to
+ // the CFG it's coming from. A tree is a dominator tree iff it has two
+ // properties, called the parent property and the sibling property. Tarjan
+ // and Lengauer prove (but don't explicitly name) the properties as part of
+ // the proofs in their 1972 paper, but the proofs are mostly part of proving
+ // things about semidominators and idoms, and some of them are simply asserted
+ // based on even earlier papers (see, e.g., lemma 2). Some papers refer to
+ // these properties as "valid" and "co-valid". See, e.g., "Dominators,
+ // directed bipolar orders, and independent spanning trees" by Loukas
+ // Georgiadis and Robert E. Tarjan, as well as "Dominator Tree Verification
+ // and Vertex-Disjoint Paths " by the same authors.
+
+ // A very simple and direct explanation of these properties can be found in
+ // "An Experimental Study of Dynamic Dominators", found at
+ // https://arxiv.org/abs/1604.02711
+
+ // The easiest way to think of the parent property is that it's a requirement
+ // of being a dominator. Let's just take immediate dominators. For PARENT to
+ // be an immediate dominator of CHILD, all paths in the CFG must go through
+ // PARENT before they hit CHILD. This implies that if you were to cut PARENT
+ // out of the CFG, there should be no paths to CHILD that are reachable. If
+ // there are, then you now have a path from PARENT to CHILD that goes around
+ // PARENT and still reaches CHILD, which by definition, means PARENT can't be
+ // a dominator of CHILD (let alone an immediate one).
+
+ // The sibling property is similar. It says that for each pair of sibling
+ // nodes in the dominator tree (LEFT and RIGHT) , they must not dominate each
+ // other. If sibling LEFT dominated sibling RIGHT, it means there are no
+ // paths in the CFG from sibling LEFT to sibling RIGHT that do not go through
+ // LEFT, and thus, LEFT is really an ancestor (in the dominator tree) of
+ // RIGHT, not a sibling.
+
+ // It is possible to verify the parent and sibling properties in
+ // linear time, but the algorithms are complex. Instead, we do it in a
+ // straightforward N^2 and N^3 way below, using direct path reachability.
+
+
+ // Checks if the tree has the parent property: if for all edges from V to W in
+ // the input graph, such that V is reachable, the parent of W in the tree is
+ // an ancestor of V in the tree.
+ //
+ // This means that if a node gets disconnected from the graph, then all of
+ // the nodes it dominated previously will now become unreachable.
+ bool verifyParentProperty(const DomTreeT &DT) {
+ for (auto &NodeToTN : DT.DomTreeNodes) {
+ const TreeNodePtr TN = NodeToTN.second.get();
+ const NodePtr BB = TN->getBlock();
+ if (!BB || TN->getChildren().empty()) continue;
+
+ clear();
+ NodeToInfo.insert({BB, {}});
+ doFullDFSWalk(DT);
+
+ for (TreeNodePtr Child : TN->getChildren())
+ if (NodeToInfo.count(Child->getBlock()) != 0) {
+ errs() << "Child ";
+ PrintBlockOrNullptr(errs(), Child->getBlock());
+ errs() << " reachable after its parent ";
+ PrintBlockOrNullptr(errs(), BB);
+ errs() << " is removed!\n";
+ errs().flush();
+
+ return false;
+ }
+ }
+
+ return true;
}
- // Free temporary memory used to construct idom's
- DT.IDoms.clear();
- DT.Info.clear();
- DT.Vertex.clear();
- DT.Vertex.shrink_to_fit();
+ // Check if the tree has sibling property: if a node V does not dominate a
+ // node W for all siblings V and W in the tree.
+ //
+ // This means that if a node gets disconnected from the graph, then all of its
+ // siblings will now still be reachable.
+ bool verifySiblingProperty(const DomTreeT &DT) {
+ for (auto &NodeToTN : DT.DomTreeNodes) {
+ const TreeNodePtr TN = NodeToTN.second.get();
+ const NodePtr BB = TN->getBlock();
+ if (!BB || TN->getChildren().empty()) continue;
+
+ const auto &Siblings = TN->getChildren();
+ for (const TreeNodePtr N : Siblings) {
+ clear();
+ NodeToInfo.insert({N->getBlock(), {}});
+ doFullDFSWalk(DT);
+
+ for (const TreeNodePtr S : Siblings) {
+ if (S == N) continue;
+
+ if (NodeToInfo.count(S->getBlock()) == 0) {
+ errs() << "Node ";
+ PrintBlockOrNullptr(errs(), S->getBlock());
+ errs() << " not reachable when its sibling ";
+ PrintBlockOrNullptr(errs(), N->getBlock());
+ errs() << " is removed!\n";
+ errs().flush();
+
+ return false;
+ }
+ }
+ }
+ }
+
+ return true;
+ }
+};
- DT.updateDFSNumbers();
+template <class FuncT, class NodeT>
+void Calculate(DominatorTreeBaseByGraphTraits<GraphTraits<NodeT>> &DT,
+ FuncT &F) {
+ using NodePtr = typename GraphTraits<NodeT>::NodeRef;
+ static_assert(std::is_pointer<NodePtr>::value,
+ "NodePtr should be a pointer type");
+ SemiNCAInfo<typename std::remove_pointer<NodePtr>::type> SNCA;
+ SNCA.template runSemiNCA<NodeT>(DT, GraphTraits<FuncT *>::size(&F));
}
+
+template <class NodeT>
+bool Verify(const DominatorTreeBaseByGraphTraits<GraphTraits<NodeT>> &DT) {
+ using NodePtr = typename GraphTraits<NodeT>::NodeRef;
+ static_assert(std::is_pointer<NodePtr>::value,
+ "NodePtr should be a pointer type");
+ SemiNCAInfo<typename std::remove_pointer<NodePtr>::type> SNCA;
+
+ return SNCA.verifyReachability(DT) && SNCA.VerifyLevels(DT) &&
+ SNCA.verifyNCD(DT) && SNCA.verifyParentProperty(DT) &&
+ SNCA.verifySiblingProperty(DT);
}
+} // namespace DomTreeBuilder
+} // namespace llvm
+
#endif