summaryrefslogtreecommitdiff
path: root/include/llvm/Target/TargetInstrDesc.h
diff options
context:
space:
mode:
Diffstat (limited to 'include/llvm/Target/TargetInstrDesc.h')
-rw-r--r--include/llvm/Target/TargetInstrDesc.h520
1 files changed, 0 insertions, 520 deletions
diff --git a/include/llvm/Target/TargetInstrDesc.h b/include/llvm/Target/TargetInstrDesc.h
deleted file mode 100644
index 6e20e8a1ba83d..0000000000000
--- a/include/llvm/Target/TargetInstrDesc.h
+++ /dev/null
@@ -1,520 +0,0 @@
-//===-- llvm/Target/TargetInstrDesc.h - Instruction Descriptors -*- C++ -*-===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file defines the TargetOperandInfo and TargetInstrDesc classes, which
-// are used to describe target instructions and their operands.
-//
-//===----------------------------------------------------------------------===//
-
-#ifndef LLVM_TARGET_TARGETINSTRDESC_H
-#define LLVM_TARGET_TARGETINSTRDESC_H
-
-#include "llvm/Support/DataTypes.h"
-
-namespace llvm {
-
-class TargetRegisterClass;
-class TargetRegisterInfo;
-
-//===----------------------------------------------------------------------===//
-// Machine Operand Flags and Description
-//===----------------------------------------------------------------------===//
-
-namespace TOI {
- // Operand constraints
- enum OperandConstraint {
- TIED_TO = 0, // Must be allocated the same register as.
- EARLY_CLOBBER // Operand is an early clobber register operand
- };
-
- /// OperandFlags - These are flags set on operands, but should be considered
- /// private, all access should go through the TargetOperandInfo accessors.
- /// See the accessors for a description of what these are.
- enum OperandFlags {
- LookupPtrRegClass = 0,
- Predicate,
- OptionalDef
- };
-}
-
-/// TargetOperandInfo - This holds information about one operand of a machine
-/// instruction, indicating the register class for register operands, etc.
-///
-class TargetOperandInfo {
-public:
- /// RegClass - This specifies the register class enumeration of the operand
- /// if the operand is a register. If isLookupPtrRegClass is set, then this is
- /// an index that is passed to TargetRegisterInfo::getPointerRegClass(x) to
- /// get a dynamic register class.
- ///
- /// NOTE: This member should be considered to be private, all access should go
- /// through "getRegClass(TRI)" below.
- short RegClass;
-
- /// Flags - These are flags from the TOI::OperandFlags enum.
- unsigned short Flags;
-
- /// Lower 16 bits are used to specify which constraints are set. The higher 16
- /// bits are used to specify the value of constraints (4 bits each).
- unsigned Constraints;
- /// Currently no other information.
-
- /// getRegClass - Get the register class for the operand, handling resolution
- /// of "symbolic" pointer register classes etc. If this is not a register
- /// operand, this returns null.
- const TargetRegisterClass *getRegClass(const TargetRegisterInfo *TRI) const;
-
-
- /// isLookupPtrRegClass - Set if this operand is a pointer value and it
- /// requires a callback to look up its register class.
- bool isLookupPtrRegClass() const { return Flags&(1 <<TOI::LookupPtrRegClass);}
-
- /// isPredicate - Set if this is one of the operands that made up of
- /// the predicate operand that controls an isPredicable() instruction.
- bool isPredicate() const { return Flags & (1 << TOI::Predicate); }
-
- /// isOptionalDef - Set if this operand is a optional def.
- ///
- bool isOptionalDef() const { return Flags & (1 << TOI::OptionalDef); }
-};
-
-
-//===----------------------------------------------------------------------===//
-// Machine Instruction Flags and Description
-//===----------------------------------------------------------------------===//
-
-/// TargetInstrDesc flags - These should be considered private to the
-/// implementation of the TargetInstrDesc class. Clients should use the
-/// predicate methods on TargetInstrDesc, not use these directly. These
-/// all correspond to bitfields in the TargetInstrDesc::Flags field.
-namespace TID {
- enum {
- Variadic = 0,
- HasOptionalDef,
- Return,
- Call,
- Barrier,
- Terminator,
- Branch,
- IndirectBranch,
- Compare,
- MoveImm,
- Bitcast,
- DelaySlot,
- FoldableAsLoad,
- MayLoad,
- MayStore,
- Predicable,
- NotDuplicable,
- UnmodeledSideEffects,
- Commutable,
- ConvertibleTo3Addr,
- UsesCustomInserter,
- Rematerializable,
- CheapAsAMove,
- ExtraSrcRegAllocReq,
- ExtraDefRegAllocReq
- };
-}
-
-/// TargetInstrDesc - Describe properties that are true of each
-/// instruction in the target description file. This captures information about
-/// side effects, register use and many other things. There is one instance of
-/// this struct for each target instruction class, and the MachineInstr class
-/// points to this struct directly to describe itself.
-class TargetInstrDesc {
-public:
- unsigned short Opcode; // The opcode number
- unsigned short NumOperands; // Num of args (may be more if variable_ops)
- unsigned short NumDefs; // Num of args that are definitions
- unsigned short SchedClass; // enum identifying instr sched class
- const char * Name; // Name of the instruction record in td file
- unsigned Flags; // Flags identifying machine instr class
- uint64_t TSFlags; // Target Specific Flag values
- const unsigned *ImplicitUses; // Registers implicitly read by this instr
- const unsigned *ImplicitDefs; // Registers implicitly defined by this instr
- const TargetRegisterClass **RCBarriers; // Reg classes completely "clobbered"
- const TargetOperandInfo *OpInfo; // 'NumOperands' entries about operands
-
- /// getOperandConstraint - Returns the value of the specific constraint if
- /// it is set. Returns -1 if it is not set.
- int getOperandConstraint(unsigned OpNum,
- TOI::OperandConstraint Constraint) const {
- if (OpNum < NumOperands &&
- (OpInfo[OpNum].Constraints & (1 << Constraint))) {
- unsigned Pos = 16 + Constraint * 4;
- return (int)(OpInfo[OpNum].Constraints >> Pos) & 0xf;
- }
- return -1;
- }
-
- /// getRegClass - Returns the register class constraint for OpNum, or NULL.
- const TargetRegisterClass *getRegClass(unsigned OpNum,
- const TargetRegisterInfo *TRI) const {
- return OpNum < NumOperands ? OpInfo[OpNum].getRegClass(TRI) : 0;
- }
-
- /// getOpcode - Return the opcode number for this descriptor.
- unsigned getOpcode() const {
- return Opcode;
- }
-
- /// getName - Return the name of the record in the .td file for this
- /// instruction, for example "ADD8ri".
- const char *getName() const {
- return Name;
- }
-
- /// getNumOperands - Return the number of declared MachineOperands for this
- /// MachineInstruction. Note that variadic (isVariadic() returns true)
- /// instructions may have additional operands at the end of the list, and note
- /// that the machine instruction may include implicit register def/uses as
- /// well.
- unsigned getNumOperands() const {
- return NumOperands;
- }
-
- /// getNumDefs - Return the number of MachineOperands that are register
- /// definitions. Register definitions always occur at the start of the
- /// machine operand list. This is the number of "outs" in the .td file,
- /// and does not include implicit defs.
- unsigned getNumDefs() const {
- return NumDefs;
- }
-
- /// isVariadic - Return true if this instruction can have a variable number of
- /// operands. In this case, the variable operands will be after the normal
- /// operands but before the implicit definitions and uses (if any are
- /// present).
- bool isVariadic() const {
- return Flags & (1 << TID::Variadic);
- }
-
- /// hasOptionalDef - Set if this instruction has an optional definition, e.g.
- /// ARM instructions which can set condition code if 's' bit is set.
- bool hasOptionalDef() const {
- return Flags & (1 << TID::HasOptionalDef);
- }
-
- /// getImplicitUses - Return a list of registers that are potentially
- /// read by any instance of this machine instruction. For example, on X86,
- /// the "adc" instruction adds two register operands and adds the carry bit in
- /// from the flags register. In this case, the instruction is marked as
- /// implicitly reading the flags. Likewise, the variable shift instruction on
- /// X86 is marked as implicitly reading the 'CL' register, which it always
- /// does.
- ///
- /// This method returns null if the instruction has no implicit uses.
- const unsigned *getImplicitUses() const {
- return ImplicitUses;
- }
-
- /// getNumImplicitUses - Return the number of implicit uses this instruction
- /// has.
- unsigned getNumImplicitUses() const {
- if (ImplicitUses == 0) return 0;
- unsigned i = 0;
- for (; ImplicitUses[i]; ++i) /*empty*/;
- return i;
- }
-
-
- /// getImplicitDefs - Return a list of registers that are potentially
- /// written by any instance of this machine instruction. For example, on X86,
- /// many instructions implicitly set the flags register. In this case, they
- /// are marked as setting the FLAGS. Likewise, many instructions always
- /// deposit their result in a physical register. For example, the X86 divide
- /// instruction always deposits the quotient and remainder in the EAX/EDX
- /// registers. For that instruction, this will return a list containing the
- /// EAX/EDX/EFLAGS registers.
- ///
- /// This method returns null if the instruction has no implicit defs.
- const unsigned *getImplicitDefs() const {
- return ImplicitDefs;
- }
-
- /// getNumImplicitDefs - Return the number of implicit defs this instruction
- /// has.
- unsigned getNumImplicitDefs() const {
- if (ImplicitDefs == 0) return 0;
- unsigned i = 0;
- for (; ImplicitDefs[i]; ++i) /*empty*/;
- return i;
- }
-
- /// hasImplicitUseOfPhysReg - Return true if this instruction implicitly
- /// uses the specified physical register.
- bool hasImplicitUseOfPhysReg(unsigned Reg) const {
- if (const unsigned *ImpUses = ImplicitUses)
- for (; *ImpUses; ++ImpUses)
- if (*ImpUses == Reg) return true;
- return false;
- }
-
- /// hasImplicitDefOfPhysReg - Return true if this instruction implicitly
- /// defines the specified physical register.
- bool hasImplicitDefOfPhysReg(unsigned Reg) const {
- if (const unsigned *ImpDefs = ImplicitDefs)
- for (; *ImpDefs; ++ImpDefs)
- if (*ImpDefs == Reg) return true;
- return false;
- }
-
- /// getRegClassBarriers - Return a list of register classes that are
- /// completely clobbered by this machine instruction. For example, on X86
- /// the call instructions will completely clobber all the registers in the
- /// fp stack and XMM classes.
- ///
- /// This method returns null if the instruction doesn't completely clobber
- /// any register class.
- const TargetRegisterClass **getRegClassBarriers() const {
- return RCBarriers;
- }
-
- /// getSchedClass - Return the scheduling class for this instruction. The
- /// scheduling class is an index into the InstrItineraryData table. This
- /// returns zero if there is no known scheduling information for the
- /// instruction.
- ///
- unsigned getSchedClass() const {
- return SchedClass;
- }
-
- bool isReturn() const {
- return Flags & (1 << TID::Return);
- }
-
- bool isCall() const {
- return Flags & (1 << TID::Call);
- }
-
- /// isBarrier - Returns true if the specified instruction stops control flow
- /// from executing the instruction immediately following it. Examples include
- /// unconditional branches and return instructions.
- bool isBarrier() const {
- return Flags & (1 << TID::Barrier);
- }
-
- /// isTerminator - Returns true if this instruction part of the terminator for
- /// a basic block. Typically this is things like return and branch
- /// instructions.
- ///
- /// Various passes use this to insert code into the bottom of a basic block,
- /// but before control flow occurs.
- bool isTerminator() const {
- return Flags & (1 << TID::Terminator);
- }
-
- /// isBranch - Returns true if this is a conditional, unconditional, or
- /// indirect branch. Predicates below can be used to discriminate between
- /// these cases, and the TargetInstrInfo::AnalyzeBranch method can be used to
- /// get more information.
- bool isBranch() const {
- return Flags & (1 << TID::Branch);
- }
-
- /// isIndirectBranch - Return true if this is an indirect branch, such as a
- /// branch through a register.
- bool isIndirectBranch() const {
- return Flags & (1 << TID::IndirectBranch);
- }
-
- /// isConditionalBranch - Return true if this is a branch which may fall
- /// through to the next instruction or may transfer control flow to some other
- /// block. The TargetInstrInfo::AnalyzeBranch method can be used to get more
- /// information about this branch.
- bool isConditionalBranch() const {
- return isBranch() & !isBarrier() & !isIndirectBranch();
- }
-
- /// isUnconditionalBranch - Return true if this is a branch which always
- /// transfers control flow to some other block. The
- /// TargetInstrInfo::AnalyzeBranch method can be used to get more information
- /// about this branch.
- bool isUnconditionalBranch() const {
- return isBranch() & isBarrier() & !isIndirectBranch();
- }
-
- // isPredicable - Return true if this instruction has a predicate operand that
- // controls execution. It may be set to 'always', or may be set to other
- /// values. There are various methods in TargetInstrInfo that can be used to
- /// control and modify the predicate in this instruction.
- bool isPredicable() const {
- return Flags & (1 << TID::Predicable);
- }
-
- /// isCompare - Return true if this instruction is a comparison.
- bool isCompare() const {
- return Flags & (1 << TID::Compare);
- }
-
- /// isMoveImmediate - Return true if this instruction is a move immediate
- /// (including conditional moves) instruction.
- bool isMoveImmediate() const {
- return Flags & (1 << TID::MoveImm);
- }
-
- /// isBitcast - Return true if this instruction is a bitcast instruction.
- ///
- bool isBitcast() const {
- return Flags & (1 << TID::Bitcast);
- }
-
- /// isNotDuplicable - Return true if this instruction cannot be safely
- /// duplicated. For example, if the instruction has a unique labels attached
- /// to it, duplicating it would cause multiple definition errors.
- bool isNotDuplicable() const {
- return Flags & (1 << TID::NotDuplicable);
- }
-
- /// hasDelaySlot - Returns true if the specified instruction has a delay slot
- /// which must be filled by the code generator.
- bool hasDelaySlot() const {
- return Flags & (1 << TID::DelaySlot);
- }
-
- /// canFoldAsLoad - Return true for instructions that can be folded as
- /// memory operands in other instructions. The most common use for this
- /// is instructions that are simple loads from memory that don't modify
- /// the loaded value in any way, but it can also be used for instructions
- /// that can be expressed as constant-pool loads, such as V_SETALLONES
- /// on x86, to allow them to be folded when it is beneficial.
- /// This should only be set on instructions that return a value in their
- /// only virtual register definition.
- bool canFoldAsLoad() const {
- return Flags & (1 << TID::FoldableAsLoad);
- }
-
- //===--------------------------------------------------------------------===//
- // Side Effect Analysis
- //===--------------------------------------------------------------------===//
-
- /// mayLoad - Return true if this instruction could possibly read memory.
- /// Instructions with this flag set are not necessarily simple load
- /// instructions, they may load a value and modify it, for example.
- bool mayLoad() const {
- return Flags & (1 << TID::MayLoad);
- }
-
-
- /// mayStore - Return true if this instruction could possibly modify memory.
- /// Instructions with this flag set are not necessarily simple store
- /// instructions, they may store a modified value based on their operands, or
- /// may not actually modify anything, for example.
- bool mayStore() const {
- return Flags & (1 << TID::MayStore);
- }
-
- /// hasUnmodeledSideEffects - Return true if this instruction has side
- /// effects that are not modeled by other flags. This does not return true
- /// for instructions whose effects are captured by:
- ///
- /// 1. Their operand list and implicit definition/use list. Register use/def
- /// info is explicit for instructions.
- /// 2. Memory accesses. Use mayLoad/mayStore.
- /// 3. Calling, branching, returning: use isCall/isReturn/isBranch.
- ///
- /// Examples of side effects would be modifying 'invisible' machine state like
- /// a control register, flushing a cache, modifying a register invisible to
- /// LLVM, etc.
- ///
- bool hasUnmodeledSideEffects() const {
- return Flags & (1 << TID::UnmodeledSideEffects);
- }
-
- //===--------------------------------------------------------------------===//
- // Flags that indicate whether an instruction can be modified by a method.
- //===--------------------------------------------------------------------===//
-
- /// isCommutable - Return true if this may be a 2- or 3-address
- /// instruction (of the form "X = op Y, Z, ..."), which produces the same
- /// result if Y and Z are exchanged. If this flag is set, then the
- /// TargetInstrInfo::commuteInstruction method may be used to hack on the
- /// instruction.
- ///
- /// Note that this flag may be set on instructions that are only commutable
- /// sometimes. In these cases, the call to commuteInstruction will fail.
- /// Also note that some instructions require non-trivial modification to
- /// commute them.
- bool isCommutable() const {
- return Flags & (1 << TID::Commutable);
- }
-
- /// isConvertibleTo3Addr - Return true if this is a 2-address instruction
- /// which can be changed into a 3-address instruction if needed. Doing this
- /// transformation can be profitable in the register allocator, because it
- /// means that the instruction can use a 2-address form if possible, but
- /// degrade into a less efficient form if the source and dest register cannot
- /// be assigned to the same register. For example, this allows the x86
- /// backend to turn a "shl reg, 3" instruction into an LEA instruction, which
- /// is the same speed as the shift but has bigger code size.
- ///
- /// If this returns true, then the target must implement the
- /// TargetInstrInfo::convertToThreeAddress method for this instruction, which
- /// is allowed to fail if the transformation isn't valid for this specific
- /// instruction (e.g. shl reg, 4 on x86).
- ///
- bool isConvertibleTo3Addr() const {
- return Flags & (1 << TID::ConvertibleTo3Addr);
- }
-
- /// usesCustomInsertionHook - Return true if this instruction requires
- /// custom insertion support when the DAG scheduler is inserting it into a
- /// machine basic block. If this is true for the instruction, it basically
- /// means that it is a pseudo instruction used at SelectionDAG time that is
- /// expanded out into magic code by the target when MachineInstrs are formed.
- ///
- /// If this is true, the TargetLoweringInfo::InsertAtEndOfBasicBlock method
- /// is used to insert this into the MachineBasicBlock.
- bool usesCustomInsertionHook() const {
- return Flags & (1 << TID::UsesCustomInserter);
- }
-
- /// isRematerializable - Returns true if this instruction is a candidate for
- /// remat. This flag is deprecated, please don't use it anymore. If this
- /// flag is set, the isReallyTriviallyReMaterializable() method is called to
- /// verify the instruction is really rematable.
- bool isRematerializable() const {
- return Flags & (1 << TID::Rematerializable);
- }
-
- /// isAsCheapAsAMove - Returns true if this instruction has the same cost (or
- /// less) than a move instruction. This is useful during certain types of
- /// optimizations (e.g., remat during two-address conversion or machine licm)
- /// where we would like to remat or hoist the instruction, but not if it costs
- /// more than moving the instruction into the appropriate register. Note, we
- /// are not marking copies from and to the same register class with this flag.
- bool isAsCheapAsAMove() const {
- return Flags & (1 << TID::CheapAsAMove);
- }
-
- /// hasExtraSrcRegAllocReq - Returns true if this instruction source operands
- /// have special register allocation requirements that are not captured by the
- /// operand register classes. e.g. ARM::STRD's two source registers must be an
- /// even / odd pair, ARM::STM registers have to be in ascending order.
- /// Post-register allocation passes should not attempt to change allocations
- /// for sources of instructions with this flag.
- bool hasExtraSrcRegAllocReq() const {
- return Flags & (1 << TID::ExtraSrcRegAllocReq);
- }
-
- /// hasExtraDefRegAllocReq - Returns true if this instruction def operands
- /// have special register allocation requirements that are not captured by the
- /// operand register classes. e.g. ARM::LDRD's two def registers must be an
- /// even / odd pair, ARM::LDM registers have to be in ascending order.
- /// Post-register allocation passes should not attempt to change allocations
- /// for definitions of instructions with this flag.
- bool hasExtraDefRegAllocReq() const {
- return Flags & (1 << TID::ExtraDefRegAllocReq);
- }
-};
-
-} // end namespace llvm
-
-#endif