summaryrefslogtreecommitdiff
path: root/include/llvm/Type.h
diff options
context:
space:
mode:
Diffstat (limited to 'include/llvm/Type.h')
-rw-r--r--include/llvm/Type.h467
1 files changed, 467 insertions, 0 deletions
diff --git a/include/llvm/Type.h b/include/llvm/Type.h
new file mode 100644
index 0000000000000..5ce23ef4e4b75
--- /dev/null
+++ b/include/llvm/Type.h
@@ -0,0 +1,467 @@
+//===-- llvm/Type.h - Classes for handling data types -----------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+
+#ifndef LLVM_TYPE_H
+#define LLVM_TYPE_H
+
+#include "llvm/AbstractTypeUser.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/DataTypes.h"
+#include "llvm/ADT/GraphTraits.h"
+#include "llvm/ADT/iterator.h"
+#include <string>
+#include <vector>
+
+namespace llvm {
+
+class DerivedType;
+class PointerType;
+class IntegerType;
+class TypeMapBase;
+class raw_ostream;
+class Module;
+
+/// This file contains the declaration of the Type class. For more "Type" type
+/// stuff, look in DerivedTypes.h.
+///
+/// The instances of the Type class are immutable: once they are created,
+/// they are never changed. Also note that only one instance of a particular
+/// type is ever created. Thus seeing if two types are equal is a matter of
+/// doing a trivial pointer comparison. To enforce that no two equal instances
+/// are created, Type instances can only be created via static factory methods
+/// in class Type and in derived classes.
+///
+/// Once allocated, Types are never free'd, unless they are an abstract type
+/// that is resolved to a more concrete type.
+///
+/// Types themself don't have a name, and can be named either by:
+/// - using SymbolTable instance, typically from some Module,
+/// - using convenience methods in the Module class (which uses module's
+/// SymbolTable too).
+///
+/// Opaque types are simple derived types with no state. There may be many
+/// different Opaque type objects floating around, but two are only considered
+/// identical if they are pointer equals of each other. This allows us to have
+/// two opaque types that end up resolving to different concrete types later.
+///
+/// Opaque types are also kinda weird and scary and different because they have
+/// to keep a list of uses of the type. When, through linking, parsing, or
+/// bitcode reading, they become resolved, they need to find and update all
+/// users of the unknown type, causing them to reference a new, more concrete
+/// type. Opaque types are deleted when their use list dwindles to zero users.
+///
+/// @brief Root of type hierarchy
+class Type : public AbstractTypeUser {
+public:
+ //===-------------------------------------------------------------------===//
+ /// Definitions of all of the base types for the Type system. Based on this
+ /// value, you can cast to a "DerivedType" subclass (see DerivedTypes.h)
+ /// Note: If you add an element to this, you need to add an element to the
+ /// Type::getPrimitiveType function, or else things will break!
+ ///
+ enum TypeID {
+ // PrimitiveTypes .. make sure LastPrimitiveTyID stays up to date
+ VoidTyID = 0, ///< 0: type with no size
+ FloatTyID, ///< 1: 32 bit floating point type
+ DoubleTyID, ///< 2: 64 bit floating point type
+ X86_FP80TyID, ///< 3: 80 bit floating point type (X87)
+ FP128TyID, ///< 4: 128 bit floating point type (112-bit mantissa)
+ PPC_FP128TyID, ///< 5: 128 bit floating point type (two 64-bits)
+ LabelTyID, ///< 6: Labels
+ MetadataTyID, ///< 7: Metadata
+
+ // Derived types... see DerivedTypes.h file...
+ // Make sure FirstDerivedTyID stays up to date!!!
+ IntegerTyID, ///< 8: Arbitrary bit width integers
+ FunctionTyID, ///< 9: Functions
+ StructTyID, ///< 10: Structures
+ ArrayTyID, ///< 11: Arrays
+ PointerTyID, ///< 12: Pointers
+ OpaqueTyID, ///< 13: Opaque: type with unknown structure
+ VectorTyID, ///< 14: SIMD 'packed' format, or other vector type
+
+ NumTypeIDs, // Must remain as last defined ID
+ LastPrimitiveTyID = LabelTyID,
+ FirstDerivedTyID = IntegerTyID
+ };
+
+private:
+ TypeID ID : 8; // The current base type of this type.
+ bool Abstract : 1; // True if type contains an OpaqueType
+ unsigned SubclassData : 23; //Space for subclasses to store data
+
+ /// RefCount - This counts the number of PATypeHolders that are pointing to
+ /// this type. When this number falls to zero, if the type is abstract and
+ /// has no AbstractTypeUsers, the type is deleted. This is only sensical for
+ /// derived types.
+ ///
+ mutable unsigned RefCount;
+
+ const Type *getForwardedTypeInternal() const;
+
+ // Some Type instances are allocated as arrays, some aren't. So we provide
+ // this method to get the right kind of destruction for the type of Type.
+ void destroy() const; // const is a lie, this does "delete this"!
+
+protected:
+ explicit Type(TypeID id) : ID(id), Abstract(false), SubclassData(0),
+ RefCount(0), ForwardType(0), NumContainedTys(0),
+ ContainedTys(0) {}
+ virtual ~Type() {
+ assert(AbstractTypeUsers.empty() && "Abstract types remain");
+ }
+
+ /// Types can become nonabstract later, if they are refined.
+ ///
+ inline void setAbstract(bool Val) { Abstract = Val; }
+
+ unsigned getRefCount() const { return RefCount; }
+
+ unsigned getSubclassData() const { return SubclassData; }
+ void setSubclassData(unsigned val) { SubclassData = val; }
+
+ /// ForwardType - This field is used to implement the union find scheme for
+ /// abstract types. When types are refined to other types, this field is set
+ /// to the more refined type. Only abstract types can be forwarded.
+ mutable const Type *ForwardType;
+
+
+ /// AbstractTypeUsers - Implement a list of the users that need to be notified
+ /// if I am a type, and I get resolved into a more concrete type.
+ ///
+ mutable std::vector<AbstractTypeUser *> AbstractTypeUsers;
+
+ /// NumContainedTys - Keeps track of how many PATypeHandle instances there
+ /// are at the end of this type instance for the list of contained types. It
+ /// is the subclasses responsibility to set this up. Set to 0 if there are no
+ /// contained types in this type.
+ unsigned NumContainedTys;
+
+ /// ContainedTys - A pointer to the array of Types (PATypeHandle) contained
+ /// by this Type. For example, this includes the arguments of a function
+ /// type, the elements of a structure, the pointee of a pointer, the element
+ /// type of an array, etc. This pointer may be 0 for types that don't
+ /// contain other types (Integer, Double, Float). In general, the subclass
+ /// should arrange for space for the PATypeHandles to be included in the
+ /// allocation of the type object and set this pointer to the address of the
+ /// first element. This allows the Type class to manipulate the ContainedTys
+ /// without understanding the subclass's placement for this array. keeping
+ /// it here also allows the subtype_* members to be implemented MUCH more
+ /// efficiently, and dynamically very few types do not contain any elements.
+ PATypeHandle *ContainedTys;
+
+public:
+ void print(raw_ostream &O) const;
+ void print(std::ostream &O) const;
+
+ /// @brief Debugging support: print to stderr
+ void dump() const;
+
+ /// @brief Debugging support: print to stderr (use type names from context
+ /// module).
+ void dump(const Module *Context) const;
+
+ //===--------------------------------------------------------------------===//
+ // Property accessors for dealing with types... Some of these virtual methods
+ // are defined in private classes defined in Type.cpp for primitive types.
+ //
+
+ /// getTypeID - Return the type id for the type. This will return one
+ /// of the TypeID enum elements defined above.
+ ///
+ inline TypeID getTypeID() const { return ID; }
+
+ /// getDescription - Return the string representation of the type.
+ std::string getDescription() const;
+
+ /// isInteger - True if this is an instance of IntegerType.
+ ///
+ bool isInteger() const { return ID == IntegerTyID; }
+
+ /// isIntOrIntVector - Return true if this is an integer type or a vector of
+ /// integer types.
+ ///
+ bool isIntOrIntVector() const;
+
+ /// isFloatingPoint - Return true if this is one of the two floating point
+ /// types
+ bool isFloatingPoint() const { return ID == FloatTyID || ID == DoubleTyID ||
+ ID == X86_FP80TyID || ID == FP128TyID || ID == PPC_FP128TyID; }
+
+ /// isFPOrFPVector - Return true if this is a FP type or a vector of FP types.
+ ///
+ bool isFPOrFPVector() const;
+
+ /// isAbstract - True if the type is either an Opaque type, or is a derived
+ /// type that includes an opaque type somewhere in it.
+ ///
+ inline bool isAbstract() const { return Abstract; }
+
+ /// canLosslesslyBitCastTo - Return true if this type could be converted
+ /// with a lossless BitCast to type 'Ty'. For example, uint to int. BitCasts
+ /// are valid for types of the same size only where no re-interpretation of
+ /// the bits is done.
+ /// @brief Determine if this type could be losslessly bitcast to Ty
+ bool canLosslesslyBitCastTo(const Type *Ty) const;
+
+
+ /// Here are some useful little methods to query what type derived types are
+ /// Note that all other types can just compare to see if this == Type::xxxTy;
+ ///
+ inline bool isPrimitiveType() const { return ID <= LastPrimitiveTyID; }
+ inline bool isDerivedType() const { return ID >= FirstDerivedTyID; }
+
+ /// isFirstClassType - Return true if the type is "first class", meaning it
+ /// is a valid type for a Value.
+ ///
+ inline bool isFirstClassType() const {
+ // There are more first-class kinds than non-first-class kinds, so a
+ // negative test is simpler than a positive one.
+ return ID != FunctionTyID && ID != VoidTyID && ID != OpaqueTyID;
+ }
+
+ /// isSingleValueType - Return true if the type is a valid type for a
+ /// virtual register in codegen. This includes all first-class types
+ /// except struct and array types.
+ ///
+ inline bool isSingleValueType() const {
+ return (ID != VoidTyID && ID <= LastPrimitiveTyID) ||
+ ID == IntegerTyID || ID == PointerTyID || ID == VectorTyID;
+ }
+
+ /// isAggregateType - Return true if the type is an aggregate type. This
+ /// means it is valid as the first operand of an insertvalue or
+ /// extractvalue instruction. This includes struct and array types, but
+ /// does not include vector types.
+ ///
+ inline bool isAggregateType() const {
+ return ID == StructTyID || ID == ArrayTyID;
+ }
+
+ /// isSized - Return true if it makes sense to take the size of this type. To
+ /// get the actual size for a particular target, it is reasonable to use the
+ /// TargetData subsystem to do this.
+ ///
+ bool isSized() const {
+ // If it's a primitive, it is always sized.
+ if (ID == IntegerTyID || isFloatingPoint() || ID == PointerTyID)
+ return true;
+ // If it is not something that can have a size (e.g. a function or label),
+ // it doesn't have a size.
+ if (ID != StructTyID && ID != ArrayTyID && ID != VectorTyID)
+ return false;
+ // If it is something that can have a size and it's concrete, it definitely
+ // has a size, otherwise we have to try harder to decide.
+ return !isAbstract() || isSizedDerivedType();
+ }
+
+ /// getPrimitiveSizeInBits - Return the basic size of this type if it is a
+ /// primitive type. These are fixed by LLVM and are not target dependent.
+ /// This will return zero if the type does not have a size or is not a
+ /// primitive type.
+ ///
+ unsigned getPrimitiveSizeInBits() const;
+
+ /// getFPMantissaWidth - Return the width of the mantissa of this type. This
+ /// is only valid on scalar floating point types. If the FP type does not
+ /// have a stable mantissa (e.g. ppc long double), this method returns -1.
+ int getFPMantissaWidth() const {
+ assert(isFloatingPoint() && "Not a floating point type!");
+ if (ID == FloatTyID) return 24;
+ if (ID == DoubleTyID) return 53;
+ if (ID == X86_FP80TyID) return 64;
+ if (ID == FP128TyID) return 113;
+ assert(ID == PPC_FP128TyID && "unknown fp type");
+ return -1;
+ }
+
+ /// getForwardedType - Return the type that this type has been resolved to if
+ /// it has been resolved to anything. This is used to implement the
+ /// union-find algorithm for type resolution, and shouldn't be used by general
+ /// purpose clients.
+ const Type *getForwardedType() const {
+ if (!ForwardType) return 0;
+ return getForwardedTypeInternal();
+ }
+
+ /// getVAArgsPromotedType - Return the type an argument of this type
+ /// will be promoted to if passed through a variable argument
+ /// function.
+ const Type *getVAArgsPromotedType() const;
+
+ //===--------------------------------------------------------------------===//
+ // Type Iteration support
+ //
+ typedef PATypeHandle *subtype_iterator;
+ subtype_iterator subtype_begin() const { return ContainedTys; }
+ subtype_iterator subtype_end() const { return &ContainedTys[NumContainedTys];}
+
+ /// getContainedType - This method is used to implement the type iterator
+ /// (defined a the end of the file). For derived types, this returns the
+ /// types 'contained' in the derived type.
+ ///
+ const Type *getContainedType(unsigned i) const {
+ assert(i < NumContainedTys && "Index out of range!");
+ return ContainedTys[i].get();
+ }
+
+ /// getNumContainedTypes - Return the number of types in the derived type.
+ ///
+ unsigned getNumContainedTypes() const { return NumContainedTys; }
+
+ //===--------------------------------------------------------------------===//
+ // Static members exported by the Type class itself. Useful for getting
+ // instances of Type.
+ //
+
+ /// getPrimitiveType - Return a type based on an identifier.
+ static const Type *getPrimitiveType(TypeID IDNumber);
+
+ //===--------------------------------------------------------------------===//
+ // These are the builtin types that are always available...
+ //
+ static const Type *VoidTy, *LabelTy, *FloatTy, *DoubleTy, *MetadataTy;
+ static const Type *X86_FP80Ty, *FP128Ty, *PPC_FP128Ty;
+ static const IntegerType *Int1Ty, *Int8Ty, *Int16Ty, *Int32Ty, *Int64Ty;
+
+ /// Methods for support type inquiry through isa, cast, and dyn_cast:
+ static inline bool classof(const Type *) { return true; }
+
+ void addRef() const {
+ assert(isAbstract() && "Cannot add a reference to a non-abstract type!");
+ ++RefCount;
+ }
+
+ void dropRef() const {
+ assert(isAbstract() && "Cannot drop a reference to a non-abstract type!");
+ assert(RefCount && "No objects are currently referencing this object!");
+
+ // If this is the last PATypeHolder using this object, and there are no
+ // PATypeHandles using it, the type is dead, delete it now.
+ if (--RefCount == 0 && AbstractTypeUsers.empty())
+ this->destroy();
+ }
+
+ /// addAbstractTypeUser - Notify an abstract type that there is a new user of
+ /// it. This function is called primarily by the PATypeHandle class.
+ ///
+ void addAbstractTypeUser(AbstractTypeUser *U) const {
+ assert(isAbstract() && "addAbstractTypeUser: Current type not abstract!");
+ AbstractTypeUsers.push_back(U);
+ }
+
+ /// removeAbstractTypeUser - Notify an abstract type that a user of the class
+ /// no longer has a handle to the type. This function is called primarily by
+ /// the PATypeHandle class. When there are no users of the abstract type, it
+ /// is annihilated, because there is no way to get a reference to it ever
+ /// again.
+ ///
+ void removeAbstractTypeUser(AbstractTypeUser *U) const;
+
+ /// getPointerTo - Return a pointer to the current type. This is equivalent
+ /// to PointerType::get(Foo, AddrSpace).
+ PointerType *getPointerTo(unsigned AddrSpace = 0) const;
+
+private:
+ /// isSizedDerivedType - Derived types like structures and arrays are sized
+ /// iff all of the members of the type are sized as well. Since asking for
+ /// their size is relatively uncommon, move this operation out of line.
+ bool isSizedDerivedType() const;
+
+ virtual void refineAbstractType(const DerivedType *OldTy, const Type *NewTy);
+ virtual void typeBecameConcrete(const DerivedType *AbsTy);
+
+protected:
+ // PromoteAbstractToConcrete - This is an internal method used to calculate
+ // change "Abstract" from true to false when types are refined.
+ void PromoteAbstractToConcrete();
+ friend class TypeMapBase;
+};
+
+//===----------------------------------------------------------------------===//
+// Define some inline methods for the AbstractTypeUser.h:PATypeHandle class.
+// These are defined here because they MUST be inlined, yet are dependent on
+// the definition of the Type class.
+//
+inline void PATypeHandle::addUser() {
+ assert(Ty && "Type Handle has a null type!");
+ if (Ty->isAbstract())
+ Ty->addAbstractTypeUser(User);
+}
+inline void PATypeHandle::removeUser() {
+ if (Ty->isAbstract())
+ Ty->removeAbstractTypeUser(User);
+}
+
+// Define inline methods for PATypeHolder.
+
+/// get - This implements the forwarding part of the union-find algorithm for
+/// abstract types. Before every access to the Type*, we check to see if the
+/// type we are pointing to is forwarding to a new type. If so, we drop our
+/// reference to the type.
+///
+inline Type* PATypeHolder::get() const {
+ const Type *NewTy = Ty->getForwardedType();
+ if (!NewTy) return const_cast<Type*>(Ty);
+ return *const_cast<PATypeHolder*>(this) = NewTy;
+}
+
+inline void PATypeHolder::addRef() {
+ assert(Ty && "Type Holder has a null type!");
+ if (Ty->isAbstract())
+ Ty->addRef();
+}
+
+inline void PATypeHolder::dropRef() {
+ if (Ty->isAbstract())
+ Ty->dropRef();
+}
+
+
+//===----------------------------------------------------------------------===//
+// Provide specializations of GraphTraits to be able to treat a type as a
+// graph of sub types...
+
+template <> struct GraphTraits<Type*> {
+ typedef Type NodeType;
+ typedef Type::subtype_iterator ChildIteratorType;
+
+ static inline NodeType *getEntryNode(Type *T) { return T; }
+ static inline ChildIteratorType child_begin(NodeType *N) {
+ return N->subtype_begin();
+ }
+ static inline ChildIteratorType child_end(NodeType *N) {
+ return N->subtype_end();
+ }
+};
+
+template <> struct GraphTraits<const Type*> {
+ typedef const Type NodeType;
+ typedef Type::subtype_iterator ChildIteratorType;
+
+ static inline NodeType *getEntryNode(const Type *T) { return T; }
+ static inline ChildIteratorType child_begin(NodeType *N) {
+ return N->subtype_begin();
+ }
+ static inline ChildIteratorType child_end(NodeType *N) {
+ return N->subtype_end();
+ }
+};
+
+template <> inline bool isa_impl<PointerType, Type>(const Type &Ty) {
+ return Ty.getTypeID() == Type::PointerTyID;
+}
+
+std::ostream &operator<<(std::ostream &OS, const Type &T);
+raw_ostream &operator<<(raw_ostream &OS, const Type &T);
+
+} // End llvm namespace
+
+#endif