summaryrefslogtreecommitdiff
path: root/lib/Analysis/CFLAliasAnalysis.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/Analysis/CFLAliasAnalysis.cpp')
-rw-r--r--lib/Analysis/CFLAliasAnalysis.cpp1119
1 files changed, 0 insertions, 1119 deletions
diff --git a/lib/Analysis/CFLAliasAnalysis.cpp b/lib/Analysis/CFLAliasAnalysis.cpp
deleted file mode 100644
index 4843ed6587a80..0000000000000
--- a/lib/Analysis/CFLAliasAnalysis.cpp
+++ /dev/null
@@ -1,1119 +0,0 @@
-//===- CFLAliasAnalysis.cpp - CFL-Based Alias Analysis Implementation ------==//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file implements a CFL-based context-insensitive alias analysis
-// algorithm. It does not depend on types. The algorithm is a mixture of the one
-// described in "Demand-driven alias analysis for C" by Xin Zheng and Radu
-// Rugina, and "Fast algorithms for Dyck-CFL-reachability with applications to
-// Alias Analysis" by Zhang Q, Lyu M R, Yuan H, and Su Z. -- to summarize the
-// papers, we build a graph of the uses of a variable, where each node is a
-// memory location, and each edge is an action that happened on that memory
-// location. The "actions" can be one of Dereference, Reference, or Assign.
-//
-// Two variables are considered as aliasing iff you can reach one value's node
-// from the other value's node and the language formed by concatenating all of
-// the edge labels (actions) conforms to a context-free grammar.
-//
-// Because this algorithm requires a graph search on each query, we execute the
-// algorithm outlined in "Fast algorithms..." (mentioned above)
-// in order to transform the graph into sets of variables that may alias in
-// ~nlogn time (n = number of variables.), which makes queries take constant
-// time.
-//===----------------------------------------------------------------------===//
-
-#include "llvm/Analysis/CFLAliasAnalysis.h"
-#include "StratifiedSets.h"
-#include "llvm/ADT/BitVector.h"
-#include "llvm/ADT/DenseMap.h"
-#include "llvm/ADT/None.h"
-#include "llvm/ADT/Optional.h"
-#include "llvm/Analysis/TargetLibraryInfo.h"
-#include "llvm/IR/Constants.h"
-#include "llvm/IR/Function.h"
-#include "llvm/IR/InstVisitor.h"
-#include "llvm/IR/Instructions.h"
-#include "llvm/Pass.h"
-#include "llvm/Support/Allocator.h"
-#include "llvm/Support/Compiler.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/ErrorHandling.h"
-#include "llvm/Support/raw_ostream.h"
-#include <algorithm>
-#include <cassert>
-#include <memory>
-#include <tuple>
-
-using namespace llvm;
-
-#define DEBUG_TYPE "cfl-aa"
-
-CFLAAResult::CFLAAResult(const TargetLibraryInfo &TLI) : AAResultBase(TLI) {}
-CFLAAResult::CFLAAResult(CFLAAResult &&Arg) : AAResultBase(std::move(Arg)) {}
-
-// \brief Information we have about a function and would like to keep around
-struct CFLAAResult::FunctionInfo {
- StratifiedSets<Value *> Sets;
- // Lots of functions have < 4 returns. Adjust as necessary.
- SmallVector<Value *, 4> ReturnedValues;
-
- FunctionInfo(StratifiedSets<Value *> &&S, SmallVector<Value *, 4> &&RV)
- : Sets(std::move(S)), ReturnedValues(std::move(RV)) {}
-};
-
-// Try to go from a Value* to a Function*. Never returns nullptr.
-static Optional<Function *> parentFunctionOfValue(Value *);
-
-// Returns possible functions called by the Inst* into the given
-// SmallVectorImpl. Returns true if targets found, false otherwise.
-// This is templated because InvokeInst/CallInst give us the same
-// set of functions that we care about, and I don't like repeating
-// myself.
-template <typename Inst>
-static bool getPossibleTargets(Inst *, SmallVectorImpl<Function *> &);
-
-// Some instructions need to have their users tracked. Instructions like
-// `add` require you to get the users of the Instruction* itself, other
-// instructions like `store` require you to get the users of the first
-// operand. This function gets the "proper" value to track for each
-// type of instruction we support.
-static Optional<Value *> getTargetValue(Instruction *);
-
-// There are certain instructions (i.e. FenceInst, etc.) that we ignore.
-// This notes that we should ignore those.
-static bool hasUsefulEdges(Instruction *);
-
-const StratifiedIndex StratifiedLink::SetSentinel =
- std::numeric_limits<StratifiedIndex>::max();
-
-namespace {
-// StratifiedInfo Attribute things.
-typedef unsigned StratifiedAttr;
-LLVM_CONSTEXPR unsigned MaxStratifiedAttrIndex = NumStratifiedAttrs;
-LLVM_CONSTEXPR unsigned AttrAllIndex = 0;
-LLVM_CONSTEXPR unsigned AttrGlobalIndex = 1;
-LLVM_CONSTEXPR unsigned AttrUnknownIndex = 2;
-LLVM_CONSTEXPR unsigned AttrFirstArgIndex = 3;
-LLVM_CONSTEXPR unsigned AttrLastArgIndex = MaxStratifiedAttrIndex;
-LLVM_CONSTEXPR unsigned AttrMaxNumArgs = AttrLastArgIndex - AttrFirstArgIndex;
-
-LLVM_CONSTEXPR StratifiedAttr AttrNone = 0;
-LLVM_CONSTEXPR StratifiedAttr AttrUnknown = 1 << AttrUnknownIndex;
-LLVM_CONSTEXPR StratifiedAttr AttrAll = ~AttrNone;
-
-// \brief StratifiedSets call for knowledge of "direction", so this is how we
-// represent that locally.
-enum class Level { Same, Above, Below };
-
-// \brief Edges can be one of four "weights" -- each weight must have an inverse
-// weight (Assign has Assign; Reference has Dereference).
-enum class EdgeType {
- // The weight assigned when assigning from or to a value. For example, in:
- // %b = getelementptr %a, 0
- // ...The relationships are %b assign %a, and %a assign %b. This used to be
- // two edges, but having a distinction bought us nothing.
- Assign,
-
- // The edge used when we have an edge going from some handle to a Value.
- // Examples of this include:
- // %b = load %a (%b Dereference %a)
- // %b = extractelement %a, 0 (%a Dereference %b)
- Dereference,
-
- // The edge used when our edge goes from a value to a handle that may have
- // contained it at some point. Examples:
- // %b = load %a (%a Reference %b)
- // %b = extractelement %a, 0 (%b Reference %a)
- Reference
-};
-
-// \brief Encodes the notion of a "use"
-struct Edge {
- // \brief Which value the edge is coming from
- Value *From;
-
- // \brief Which value the edge is pointing to
- Value *To;
-
- // \brief Edge weight
- EdgeType Weight;
-
- // \brief Whether we aliased any external values along the way that may be
- // invisible to the analysis (i.e. landingpad for exceptions, calls for
- // interprocedural analysis, etc.)
- StratifiedAttrs AdditionalAttrs;
-
- Edge(Value *From, Value *To, EdgeType W, StratifiedAttrs A)
- : From(From), To(To), Weight(W), AdditionalAttrs(A) {}
-};
-
-// \brief Gets the edges our graph should have, based on an Instruction*
-class GetEdgesVisitor : public InstVisitor<GetEdgesVisitor, void> {
- CFLAAResult &AA;
- SmallVectorImpl<Edge> &Output;
-
-public:
- GetEdgesVisitor(CFLAAResult &AA, SmallVectorImpl<Edge> &Output)
- : AA(AA), Output(Output) {}
-
- void visitInstruction(Instruction &) {
- llvm_unreachable("Unsupported instruction encountered");
- }
-
- void visitPtrToIntInst(PtrToIntInst &Inst) {
- auto *Ptr = Inst.getOperand(0);
- Output.push_back(Edge(Ptr, Ptr, EdgeType::Assign, AttrUnknown));
- }
-
- void visitIntToPtrInst(IntToPtrInst &Inst) {
- auto *Ptr = &Inst;
- Output.push_back(Edge(Ptr, Ptr, EdgeType::Assign, AttrUnknown));
- }
-
- void visitCastInst(CastInst &Inst) {
- Output.push_back(
- Edge(&Inst, Inst.getOperand(0), EdgeType::Assign, AttrNone));
- }
-
- void visitBinaryOperator(BinaryOperator &Inst) {
- auto *Op1 = Inst.getOperand(0);
- auto *Op2 = Inst.getOperand(1);
- Output.push_back(Edge(&Inst, Op1, EdgeType::Assign, AttrNone));
- Output.push_back(Edge(&Inst, Op2, EdgeType::Assign, AttrNone));
- }
-
- void visitAtomicCmpXchgInst(AtomicCmpXchgInst &Inst) {
- auto *Ptr = Inst.getPointerOperand();
- auto *Val = Inst.getNewValOperand();
- Output.push_back(Edge(Ptr, Val, EdgeType::Dereference, AttrNone));
- }
-
- void visitAtomicRMWInst(AtomicRMWInst &Inst) {
- auto *Ptr = Inst.getPointerOperand();
- auto *Val = Inst.getValOperand();
- Output.push_back(Edge(Ptr, Val, EdgeType::Dereference, AttrNone));
- }
-
- void visitPHINode(PHINode &Inst) {
- for (Value *Val : Inst.incoming_values()) {
- Output.push_back(Edge(&Inst, Val, EdgeType::Assign, AttrNone));
- }
- }
-
- void visitGetElementPtrInst(GetElementPtrInst &Inst) {
- auto *Op = Inst.getPointerOperand();
- Output.push_back(Edge(&Inst, Op, EdgeType::Assign, AttrNone));
- for (auto I = Inst.idx_begin(), E = Inst.idx_end(); I != E; ++I)
- Output.push_back(Edge(&Inst, *I, EdgeType::Assign, AttrNone));
- }
-
- void visitSelectInst(SelectInst &Inst) {
- // Condition is not processed here (The actual statement producing
- // the condition result is processed elsewhere). For select, the
- // condition is evaluated, but not loaded, stored, or assigned
- // simply as a result of being the condition of a select.
-
- auto *TrueVal = Inst.getTrueValue();
- Output.push_back(Edge(&Inst, TrueVal, EdgeType::Assign, AttrNone));
- auto *FalseVal = Inst.getFalseValue();
- Output.push_back(Edge(&Inst, FalseVal, EdgeType::Assign, AttrNone));
- }
-
- void visitAllocaInst(AllocaInst &) {}
-
- void visitLoadInst(LoadInst &Inst) {
- auto *Ptr = Inst.getPointerOperand();
- auto *Val = &Inst;
- Output.push_back(Edge(Val, Ptr, EdgeType::Reference, AttrNone));
- }
-
- void visitStoreInst(StoreInst &Inst) {
- auto *Ptr = Inst.getPointerOperand();
- auto *Val = Inst.getValueOperand();
- Output.push_back(Edge(Ptr, Val, EdgeType::Dereference, AttrNone));
- }
-
- void visitVAArgInst(VAArgInst &Inst) {
- // We can't fully model va_arg here. For *Ptr = Inst.getOperand(0), it does
- // two things:
- // 1. Loads a value from *((T*)*Ptr).
- // 2. Increments (stores to) *Ptr by some target-specific amount.
- // For now, we'll handle this like a landingpad instruction (by placing the
- // result in its own group, and having that group alias externals).
- auto *Val = &Inst;
- Output.push_back(Edge(Val, Val, EdgeType::Assign, AttrAll));
- }
-
- static bool isFunctionExternal(Function *Fn) {
- return Fn->isDeclaration() || !Fn->hasLocalLinkage();
- }
-
- // Gets whether the sets at Index1 above, below, or equal to the sets at
- // Index2. Returns None if they are not in the same set chain.
- static Optional<Level> getIndexRelation(const StratifiedSets<Value *> &Sets,
- StratifiedIndex Index1,
- StratifiedIndex Index2) {
- if (Index1 == Index2)
- return Level::Same;
-
- const auto *Current = &Sets.getLink(Index1);
- while (Current->hasBelow()) {
- if (Current->Below == Index2)
- return Level::Below;
- Current = &Sets.getLink(Current->Below);
- }
-
- Current = &Sets.getLink(Index1);
- while (Current->hasAbove()) {
- if (Current->Above == Index2)
- return Level::Above;
- Current = &Sets.getLink(Current->Above);
- }
-
- return NoneType();
- }
-
- bool
- tryInterproceduralAnalysis(const SmallVectorImpl<Function *> &Fns,
- Value *FuncValue,
- const iterator_range<User::op_iterator> &Args) {
- const unsigned ExpectedMaxArgs = 8;
- const unsigned MaxSupportedArgs = 50;
- assert(Fns.size() > 0);
-
- // I put this here to give us an upper bound on time taken by IPA. Is it
- // really (realistically) needed? Keep in mind that we do have an n^2 algo.
- if (std::distance(Args.begin(), Args.end()) > (int)MaxSupportedArgs)
- return false;
-
- // Exit early if we'll fail anyway
- for (auto *Fn : Fns) {
- if (isFunctionExternal(Fn) || Fn->isVarArg())
- return false;
- auto &MaybeInfo = AA.ensureCached(Fn);
- if (!MaybeInfo.hasValue())
- return false;
- }
-
- SmallVector<Value *, ExpectedMaxArgs> Arguments(Args.begin(), Args.end());
- SmallVector<StratifiedInfo, ExpectedMaxArgs> Parameters;
- for (auto *Fn : Fns) {
- auto &Info = *AA.ensureCached(Fn);
- auto &Sets = Info.Sets;
- auto &RetVals = Info.ReturnedValues;
-
- Parameters.clear();
- for (auto &Param : Fn->args()) {
- auto MaybeInfo = Sets.find(&Param);
- // Did a new parameter somehow get added to the function/slip by?
- if (!MaybeInfo.hasValue())
- return false;
- Parameters.push_back(*MaybeInfo);
- }
-
- // Adding an edge from argument -> return value for each parameter that
- // may alias the return value
- for (unsigned I = 0, E = Parameters.size(); I != E; ++I) {
- auto &ParamInfo = Parameters[I];
- auto &ArgVal = Arguments[I];
- bool AddEdge = false;
- StratifiedAttrs Externals;
- for (unsigned X = 0, XE = RetVals.size(); X != XE; ++X) {
- auto MaybeInfo = Sets.find(RetVals[X]);
- if (!MaybeInfo.hasValue())
- return false;
-
- auto &RetInfo = *MaybeInfo;
- auto RetAttrs = Sets.getLink(RetInfo.Index).Attrs;
- auto ParamAttrs = Sets.getLink(ParamInfo.Index).Attrs;
- auto MaybeRelation =
- getIndexRelation(Sets, ParamInfo.Index, RetInfo.Index);
- if (MaybeRelation.hasValue()) {
- AddEdge = true;
- Externals |= RetAttrs | ParamAttrs;
- }
- }
- if (AddEdge)
- Output.push_back(Edge(FuncValue, ArgVal, EdgeType::Assign,
- StratifiedAttrs().flip()));
- }
-
- if (Parameters.size() != Arguments.size())
- return false;
-
- // Adding edges between arguments for arguments that may end up aliasing
- // each other. This is necessary for functions such as
- // void foo(int** a, int** b) { *a = *b; }
- // (Technically, the proper sets for this would be those below
- // Arguments[I] and Arguments[X], but our algorithm will produce
- // extremely similar, and equally correct, results either way)
- for (unsigned I = 0, E = Arguments.size(); I != E; ++I) {
- auto &MainVal = Arguments[I];
- auto &MainInfo = Parameters[I];
- auto &MainAttrs = Sets.getLink(MainInfo.Index).Attrs;
- for (unsigned X = I + 1; X != E; ++X) {
- auto &SubInfo = Parameters[X];
- auto &SubVal = Arguments[X];
- auto &SubAttrs = Sets.getLink(SubInfo.Index).Attrs;
- auto MaybeRelation =
- getIndexRelation(Sets, MainInfo.Index, SubInfo.Index);
-
- if (!MaybeRelation.hasValue())
- continue;
-
- auto NewAttrs = SubAttrs | MainAttrs;
- Output.push_back(Edge(MainVal, SubVal, EdgeType::Assign, NewAttrs));
- }
- }
- }
- return true;
- }
-
- template <typename InstT> void visitCallLikeInst(InstT &Inst) {
- // TODO: Add support for noalias args/all the other fun function attributes
- // that we can tack on.
- SmallVector<Function *, 4> Targets;
- if (getPossibleTargets(&Inst, Targets)) {
- if (tryInterproceduralAnalysis(Targets, &Inst, Inst.arg_operands()))
- return;
- // Cleanup from interprocedural analysis
- Output.clear();
- }
-
- // Because the function is opaque, we need to note that anything
- // could have happened to the arguments, and that the result could alias
- // just about anything, too.
- // The goal of the loop is in part to unify many Values into one set, so we
- // don't care if the function is void there.
- for (Value *V : Inst.arg_operands())
- Output.push_back(Edge(&Inst, V, EdgeType::Assign, AttrAll));
- if (Inst.getNumArgOperands() == 0 &&
- Inst.getType() != Type::getVoidTy(Inst.getContext()))
- Output.push_back(Edge(&Inst, &Inst, EdgeType::Assign, AttrAll));
- }
-
- void visitCallInst(CallInst &Inst) { visitCallLikeInst(Inst); }
-
- void visitInvokeInst(InvokeInst &Inst) { visitCallLikeInst(Inst); }
-
- // Because vectors/aggregates are immutable and unaddressable,
- // there's nothing we can do to coax a value out of them, other
- // than calling Extract{Element,Value}. We can effectively treat
- // them as pointers to arbitrary memory locations we can store in
- // and load from.
- void visitExtractElementInst(ExtractElementInst &Inst) {
- auto *Ptr = Inst.getVectorOperand();
- auto *Val = &Inst;
- Output.push_back(Edge(Val, Ptr, EdgeType::Reference, AttrNone));
- }
-
- void visitInsertElementInst(InsertElementInst &Inst) {
- auto *Vec = Inst.getOperand(0);
- auto *Val = Inst.getOperand(1);
- Output.push_back(Edge(&Inst, Vec, EdgeType::Assign, AttrNone));
- Output.push_back(Edge(&Inst, Val, EdgeType::Dereference, AttrNone));
- }
-
- void visitLandingPadInst(LandingPadInst &Inst) {
- // Exceptions come from "nowhere", from our analysis' perspective.
- // So we place the instruction its own group, noting that said group may
- // alias externals
- Output.push_back(Edge(&Inst, &Inst, EdgeType::Assign, AttrAll));
- }
-
- void visitInsertValueInst(InsertValueInst &Inst) {
- auto *Agg = Inst.getOperand(0);
- auto *Val = Inst.getOperand(1);
- Output.push_back(Edge(&Inst, Agg, EdgeType::Assign, AttrNone));
- Output.push_back(Edge(&Inst, Val, EdgeType::Dereference, AttrNone));
- }
-
- void visitExtractValueInst(ExtractValueInst &Inst) {
- auto *Ptr = Inst.getAggregateOperand();
- Output.push_back(Edge(&Inst, Ptr, EdgeType::Reference, AttrNone));
- }
-
- void visitShuffleVectorInst(ShuffleVectorInst &Inst) {
- auto *From1 = Inst.getOperand(0);
- auto *From2 = Inst.getOperand(1);
- Output.push_back(Edge(&Inst, From1, EdgeType::Assign, AttrNone));
- Output.push_back(Edge(&Inst, From2, EdgeType::Assign, AttrNone));
- }
-
- void visitConstantExpr(ConstantExpr *CE) {
- switch (CE->getOpcode()) {
- default:
- llvm_unreachable("Unknown instruction type encountered!");
-// Build the switch statement using the Instruction.def file.
-#define HANDLE_INST(NUM, OPCODE, CLASS) \
- case Instruction::OPCODE: \
- visit##OPCODE(*(CLASS *)CE); \
- break;
-#include "llvm/IR/Instruction.def"
- }
- }
-};
-
-// For a given instruction, we need to know which Value* to get the
-// users of in order to build our graph. In some cases (i.e. add),
-// we simply need the Instruction*. In other cases (i.e. store),
-// finding the users of the Instruction* is useless; we need to find
-// the users of the first operand. This handles determining which
-// value to follow for us.
-//
-// Note: we *need* to keep this in sync with GetEdgesVisitor. Add
-// something to GetEdgesVisitor, add it here -- remove something from
-// GetEdgesVisitor, remove it here.
-class GetTargetValueVisitor
- : public InstVisitor<GetTargetValueVisitor, Value *> {
-public:
- Value *visitInstruction(Instruction &Inst) { return &Inst; }
-
- Value *visitStoreInst(StoreInst &Inst) { return Inst.getPointerOperand(); }
-
- Value *visitAtomicCmpXchgInst(AtomicCmpXchgInst &Inst) {
- return Inst.getPointerOperand();
- }
-
- Value *visitAtomicRMWInst(AtomicRMWInst &Inst) {
- return Inst.getPointerOperand();
- }
-
- Value *visitInsertElementInst(InsertElementInst &Inst) {
- return Inst.getOperand(0);
- }
-
- Value *visitInsertValueInst(InsertValueInst &Inst) {
- return Inst.getAggregateOperand();
- }
-};
-
-// Set building requires a weighted bidirectional graph.
-template <typename EdgeTypeT> class WeightedBidirectionalGraph {
-public:
- typedef std::size_t Node;
-
-private:
- const static Node StartNode = Node(0);
-
- struct Edge {
- EdgeTypeT Weight;
- Node Other;
-
- Edge(const EdgeTypeT &W, const Node &N) : Weight(W), Other(N) {}
-
- bool operator==(const Edge &E) const {
- return Weight == E.Weight && Other == E.Other;
- }
-
- bool operator!=(const Edge &E) const { return !operator==(E); }
- };
-
- struct NodeImpl {
- std::vector<Edge> Edges;
- };
-
- std::vector<NodeImpl> NodeImpls;
-
- bool inbounds(Node NodeIndex) const { return NodeIndex < NodeImpls.size(); }
-
- const NodeImpl &getNode(Node N) const { return NodeImpls[N]; }
- NodeImpl &getNode(Node N) { return NodeImpls[N]; }
-
-public:
- // ----- Various Edge iterators for the graph ----- //
-
- // \brief Iterator for edges. Because this graph is bidirected, we don't
- // allow modification of the edges using this iterator. Additionally, the
- // iterator becomes invalid if you add edges to or from the node you're
- // getting the edges of.
- struct EdgeIterator : public std::iterator<std::forward_iterator_tag,
- std::tuple<EdgeTypeT, Node *>> {
- EdgeIterator(const typename std::vector<Edge>::const_iterator &Iter)
- : Current(Iter) {}
-
- EdgeIterator(NodeImpl &Impl) : Current(Impl.begin()) {}
-
- EdgeIterator &operator++() {
- ++Current;
- return *this;
- }
-
- EdgeIterator operator++(int) {
- EdgeIterator Copy(Current);
- operator++();
- return Copy;
- }
-
- std::tuple<EdgeTypeT, Node> &operator*() {
- Store = std::make_tuple(Current->Weight, Current->Other);
- return Store;
- }
-
- bool operator==(const EdgeIterator &Other) const {
- return Current == Other.Current;
- }
-
- bool operator!=(const EdgeIterator &Other) const {
- return !operator==(Other);
- }
-
- private:
- typename std::vector<Edge>::const_iterator Current;
- std::tuple<EdgeTypeT, Node> Store;
- };
-
- // Wrapper for EdgeIterator with begin()/end() calls.
- struct EdgeIterable {
- EdgeIterable(const std::vector<Edge> &Edges)
- : BeginIter(Edges.begin()), EndIter(Edges.end()) {}
-
- EdgeIterator begin() { return EdgeIterator(BeginIter); }
-
- EdgeIterator end() { return EdgeIterator(EndIter); }
-
- private:
- typename std::vector<Edge>::const_iterator BeginIter;
- typename std::vector<Edge>::const_iterator EndIter;
- };
-
- // ----- Actual graph-related things ----- //
-
- WeightedBidirectionalGraph() {}
-
- WeightedBidirectionalGraph(WeightedBidirectionalGraph<EdgeTypeT> &&Other)
- : NodeImpls(std::move(Other.NodeImpls)) {}
-
- WeightedBidirectionalGraph<EdgeTypeT> &
- operator=(WeightedBidirectionalGraph<EdgeTypeT> &&Other) {
- NodeImpls = std::move(Other.NodeImpls);
- return *this;
- }
-
- Node addNode() {
- auto Index = NodeImpls.size();
- auto NewNode = Node(Index);
- NodeImpls.push_back(NodeImpl());
- return NewNode;
- }
-
- void addEdge(Node From, Node To, const EdgeTypeT &Weight,
- const EdgeTypeT &ReverseWeight) {
- assert(inbounds(From));
- assert(inbounds(To));
- auto &FromNode = getNode(From);
- auto &ToNode = getNode(To);
- FromNode.Edges.push_back(Edge(Weight, To));
- ToNode.Edges.push_back(Edge(ReverseWeight, From));
- }
-
- EdgeIterable edgesFor(const Node &N) const {
- const auto &Node = getNode(N);
- return EdgeIterable(Node.Edges);
- }
-
- bool empty() const { return NodeImpls.empty(); }
- std::size_t size() const { return NodeImpls.size(); }
-
- // \brief Gets an arbitrary node in the graph as a starting point for
- // traversal.
- Node getEntryNode() {
- assert(inbounds(StartNode));
- return StartNode;
- }
-};
-
-typedef WeightedBidirectionalGraph<std::pair<EdgeType, StratifiedAttrs>> GraphT;
-typedef DenseMap<Value *, GraphT::Node> NodeMapT;
-}
-
-//===----------------------------------------------------------------------===//
-// Function declarations that require types defined in the namespace above
-//===----------------------------------------------------------------------===//
-
-// Given an argument number, returns the appropriate Attr index to set.
-static StratifiedAttr argNumberToAttrIndex(StratifiedAttr);
-
-// Given a Value, potentially return which AttrIndex it maps to.
-static Optional<StratifiedAttr> valueToAttrIndex(Value *Val);
-
-// Gets the inverse of a given EdgeType.
-static EdgeType flipWeight(EdgeType);
-
-// Gets edges of the given Instruction*, writing them to the SmallVector*.
-static void argsToEdges(CFLAAResult &, Instruction *, SmallVectorImpl<Edge> &);
-
-// Gets edges of the given ConstantExpr*, writing them to the SmallVector*.
-static void argsToEdges(CFLAAResult &, ConstantExpr *, SmallVectorImpl<Edge> &);
-
-// Gets the "Level" that one should travel in StratifiedSets
-// given an EdgeType.
-static Level directionOfEdgeType(EdgeType);
-
-// Builds the graph needed for constructing the StratifiedSets for the
-// given function
-static void buildGraphFrom(CFLAAResult &, Function *,
- SmallVectorImpl<Value *> &, NodeMapT &, GraphT &);
-
-// Gets the edges of a ConstantExpr as if it was an Instruction. This
-// function also acts on any nested ConstantExprs, adding the edges
-// of those to the given SmallVector as well.
-static void constexprToEdges(CFLAAResult &, ConstantExpr &,
- SmallVectorImpl<Edge> &);
-
-// Given an Instruction, this will add it to the graph, along with any
-// Instructions that are potentially only available from said Instruction
-// For example, given the following line:
-// %0 = load i16* getelementptr ([1 x i16]* @a, 0, 0), align 2
-// addInstructionToGraph would add both the `load` and `getelementptr`
-// instructions to the graph appropriately.
-static void addInstructionToGraph(CFLAAResult &, Instruction &,
- SmallVectorImpl<Value *> &, NodeMapT &,
- GraphT &);
-
-// Notes whether it would be pointless to add the given Value to our sets.
-static bool canSkipAddingToSets(Value *Val);
-
-static Optional<Function *> parentFunctionOfValue(Value *Val) {
- if (auto *Inst = dyn_cast<Instruction>(Val)) {
- auto *Bb = Inst->getParent();
- return Bb->getParent();
- }
-
- if (auto *Arg = dyn_cast<Argument>(Val))
- return Arg->getParent();
- return NoneType();
-}
-
-template <typename Inst>
-static bool getPossibleTargets(Inst *Call,
- SmallVectorImpl<Function *> &Output) {
- if (auto *Fn = Call->getCalledFunction()) {
- Output.push_back(Fn);
- return true;
- }
-
- // TODO: If the call is indirect, we might be able to enumerate all potential
- // targets of the call and return them, rather than just failing.
- return false;
-}
-
-static Optional<Value *> getTargetValue(Instruction *Inst) {
- GetTargetValueVisitor V;
- return V.visit(Inst);
-}
-
-static bool hasUsefulEdges(Instruction *Inst) {
- bool IsNonInvokeTerminator =
- isa<TerminatorInst>(Inst) && !isa<InvokeInst>(Inst);
- return !isa<CmpInst>(Inst) && !isa<FenceInst>(Inst) && !IsNonInvokeTerminator;
-}
-
-static bool hasUsefulEdges(ConstantExpr *CE) {
- // ConstantExpr doesn't have terminators, invokes, or fences, so only needs
- // to check for compares.
- return CE->getOpcode() != Instruction::ICmp &&
- CE->getOpcode() != Instruction::FCmp;
-}
-
-static Optional<StratifiedAttr> valueToAttrIndex(Value *Val) {
- if (isa<GlobalValue>(Val))
- return AttrGlobalIndex;
-
- if (auto *Arg = dyn_cast<Argument>(Val))
- // Only pointer arguments should have the argument attribute,
- // because things can't escape through scalars without us seeing a
- // cast, and thus, interaction with them doesn't matter.
- if (!Arg->hasNoAliasAttr() && Arg->getType()->isPointerTy())
- return argNumberToAttrIndex(Arg->getArgNo());
- return NoneType();
-}
-
-static StratifiedAttr argNumberToAttrIndex(unsigned ArgNum) {
- if (ArgNum >= AttrMaxNumArgs)
- return AttrAllIndex;
- return ArgNum + AttrFirstArgIndex;
-}
-
-static EdgeType flipWeight(EdgeType Initial) {
- switch (Initial) {
- case EdgeType::Assign:
- return EdgeType::Assign;
- case EdgeType::Dereference:
- return EdgeType::Reference;
- case EdgeType::Reference:
- return EdgeType::Dereference;
- }
- llvm_unreachable("Incomplete coverage of EdgeType enum");
-}
-
-static void argsToEdges(CFLAAResult &Analysis, Instruction *Inst,
- SmallVectorImpl<Edge> &Output) {
- assert(hasUsefulEdges(Inst) &&
- "Expected instructions to have 'useful' edges");
- GetEdgesVisitor v(Analysis, Output);
- v.visit(Inst);
-}
-
-static void argsToEdges(CFLAAResult &Analysis, ConstantExpr *CE,
- SmallVectorImpl<Edge> &Output) {
- assert(hasUsefulEdges(CE) && "Expected constant expr to have 'useful' edges");
- GetEdgesVisitor v(Analysis, Output);
- v.visitConstantExpr(CE);
-}
-
-static Level directionOfEdgeType(EdgeType Weight) {
- switch (Weight) {
- case EdgeType::Reference:
- return Level::Above;
- case EdgeType::Dereference:
- return Level::Below;
- case EdgeType::Assign:
- return Level::Same;
- }
- llvm_unreachable("Incomplete switch coverage");
-}
-
-static void constexprToEdges(CFLAAResult &Analysis,
- ConstantExpr &CExprToCollapse,
- SmallVectorImpl<Edge> &Results) {
- SmallVector<ConstantExpr *, 4> Worklist;
- Worklist.push_back(&CExprToCollapse);
-
- SmallVector<Edge, 8> ConstexprEdges;
- SmallPtrSet<ConstantExpr *, 4> Visited;
- while (!Worklist.empty()) {
- auto *CExpr = Worklist.pop_back_val();
-
- if (!hasUsefulEdges(CExpr))
- continue;
-
- ConstexprEdges.clear();
- argsToEdges(Analysis, CExpr, ConstexprEdges);
- for (auto &Edge : ConstexprEdges) {
- if (auto *Nested = dyn_cast<ConstantExpr>(Edge.From))
- if (Visited.insert(Nested).second)
- Worklist.push_back(Nested);
-
- if (auto *Nested = dyn_cast<ConstantExpr>(Edge.To))
- if (Visited.insert(Nested).second)
- Worklist.push_back(Nested);
- }
-
- Results.append(ConstexprEdges.begin(), ConstexprEdges.end());
- }
-}
-
-static void addInstructionToGraph(CFLAAResult &Analysis, Instruction &Inst,
- SmallVectorImpl<Value *> &ReturnedValues,
- NodeMapT &Map, GraphT &Graph) {
- const auto findOrInsertNode = [&Map, &Graph](Value *Val) {
- auto Pair = Map.insert(std::make_pair(Val, GraphT::Node()));
- auto &Iter = Pair.first;
- if (Pair.second) {
- auto NewNode = Graph.addNode();
- Iter->second = NewNode;
- }
- return Iter->second;
- };
-
- // We don't want the edges of most "return" instructions, but we *do* want
- // to know what can be returned.
- if (isa<ReturnInst>(&Inst))
- ReturnedValues.push_back(&Inst);
-
- if (!hasUsefulEdges(&Inst))
- return;
-
- SmallVector<Edge, 8> Edges;
- argsToEdges(Analysis, &Inst, Edges);
-
- // In the case of an unused alloca (or similar), edges may be empty. Note
- // that it exists so we can potentially answer NoAlias.
- if (Edges.empty()) {
- auto MaybeVal = getTargetValue(&Inst);
- assert(MaybeVal.hasValue());
- auto *Target = *MaybeVal;
- findOrInsertNode(Target);
- return;
- }
-
- const auto addEdgeToGraph = [&Graph, &findOrInsertNode](const Edge &E) {
- auto To = findOrInsertNode(E.To);
- auto From = findOrInsertNode(E.From);
- auto FlippedWeight = flipWeight(E.Weight);
- auto Attrs = E.AdditionalAttrs;
- Graph.addEdge(From, To, std::make_pair(E.Weight, Attrs),
- std::make_pair(FlippedWeight, Attrs));
- };
-
- SmallVector<ConstantExpr *, 4> ConstantExprs;
- for (const Edge &E : Edges) {
- addEdgeToGraph(E);
- if (auto *Constexpr = dyn_cast<ConstantExpr>(E.To))
- ConstantExprs.push_back(Constexpr);
- if (auto *Constexpr = dyn_cast<ConstantExpr>(E.From))
- ConstantExprs.push_back(Constexpr);
- }
-
- for (ConstantExpr *CE : ConstantExprs) {
- Edges.clear();
- constexprToEdges(Analysis, *CE, Edges);
- std::for_each(Edges.begin(), Edges.end(), addEdgeToGraph);
- }
-}
-
-// Aside: We may remove graph construction entirely, because it doesn't really
-// buy us much that we don't already have. I'd like to add interprocedural
-// analysis prior to this however, in case that somehow requires the graph
-// produced by this for efficient execution
-static void buildGraphFrom(CFLAAResult &Analysis, Function *Fn,
- SmallVectorImpl<Value *> &ReturnedValues,
- NodeMapT &Map, GraphT &Graph) {
- for (auto &Bb : Fn->getBasicBlockList())
- for (auto &Inst : Bb.getInstList())
- addInstructionToGraph(Analysis, Inst, ReturnedValues, Map, Graph);
-}
-
-static bool canSkipAddingToSets(Value *Val) {
- // Constants can share instances, which may falsely unify multiple
- // sets, e.g. in
- // store i32* null, i32** %ptr1
- // store i32* null, i32** %ptr2
- // clearly ptr1 and ptr2 should not be unified into the same set, so
- // we should filter out the (potentially shared) instance to
- // i32* null.
- if (isa<Constant>(Val)) {
- bool Container = isa<ConstantVector>(Val) || isa<ConstantArray>(Val) ||
- isa<ConstantStruct>(Val);
- // TODO: Because all of these things are constant, we can determine whether
- // the data is *actually* mutable at graph building time. This will probably
- // come for free/cheap with offset awareness.
- bool CanStoreMutableData =
- isa<GlobalValue>(Val) || isa<ConstantExpr>(Val) || Container;
- return !CanStoreMutableData;
- }
-
- return false;
-}
-
-// Builds the graph + StratifiedSets for a function.
-CFLAAResult::FunctionInfo CFLAAResult::buildSetsFrom(Function *Fn) {
- NodeMapT Map;
- GraphT Graph;
- SmallVector<Value *, 4> ReturnedValues;
-
- buildGraphFrom(*this, Fn, ReturnedValues, Map, Graph);
-
- DenseMap<GraphT::Node, Value *> NodeValueMap;
- NodeValueMap.resize(Map.size());
- for (const auto &Pair : Map)
- NodeValueMap.insert(std::make_pair(Pair.second, Pair.first));
-
- const auto findValueOrDie = [&NodeValueMap](GraphT::Node Node) {
- auto ValIter = NodeValueMap.find(Node);
- assert(ValIter != NodeValueMap.end());
- return ValIter->second;
- };
-
- StratifiedSetsBuilder<Value *> Builder;
-
- SmallVector<GraphT::Node, 16> Worklist;
- for (auto &Pair : Map) {
- Worklist.clear();
-
- auto *Value = Pair.first;
- Builder.add(Value);
- auto InitialNode = Pair.second;
- Worklist.push_back(InitialNode);
- while (!Worklist.empty()) {
- auto Node = Worklist.pop_back_val();
- auto *CurValue = findValueOrDie(Node);
- if (canSkipAddingToSets(CurValue))
- continue;
-
- for (const auto &EdgeTuple : Graph.edgesFor(Node)) {
- auto Weight = std::get<0>(EdgeTuple);
- auto Label = Weight.first;
- auto &OtherNode = std::get<1>(EdgeTuple);
- auto *OtherValue = findValueOrDie(OtherNode);
-
- if (canSkipAddingToSets(OtherValue))
- continue;
-
- bool Added;
- switch (directionOfEdgeType(Label)) {
- case Level::Above:
- Added = Builder.addAbove(CurValue, OtherValue);
- break;
- case Level::Below:
- Added = Builder.addBelow(CurValue, OtherValue);
- break;
- case Level::Same:
- Added = Builder.addWith(CurValue, OtherValue);
- break;
- }
-
- auto Aliasing = Weight.second;
- if (auto MaybeCurIndex = valueToAttrIndex(CurValue))
- Aliasing.set(*MaybeCurIndex);
- if (auto MaybeOtherIndex = valueToAttrIndex(OtherValue))
- Aliasing.set(*MaybeOtherIndex);
- Builder.noteAttributes(CurValue, Aliasing);
- Builder.noteAttributes(OtherValue, Aliasing);
-
- if (Added)
- Worklist.push_back(OtherNode);
- }
- }
- }
-
- // There are times when we end up with parameters not in our graph (i.e. if
- // it's only used as the condition of a branch). Other bits of code depend on
- // things that were present during construction being present in the graph.
- // So, we add all present arguments here.
- for (auto &Arg : Fn->args()) {
- if (!Builder.add(&Arg))
- continue;
-
- auto Attrs = valueToAttrIndex(&Arg);
- if (Attrs.hasValue())
- Builder.noteAttributes(&Arg, *Attrs);
- }
-
- return FunctionInfo(Builder.build(), std::move(ReturnedValues));
-}
-
-void CFLAAResult::scan(Function *Fn) {
- auto InsertPair = Cache.insert(std::make_pair(Fn, Optional<FunctionInfo>()));
- (void)InsertPair;
- assert(InsertPair.second &&
- "Trying to scan a function that has already been cached");
-
- FunctionInfo Info(buildSetsFrom(Fn));
- Cache[Fn] = std::move(Info);
- Handles.push_front(FunctionHandle(Fn, this));
-}
-
-void CFLAAResult::evict(Function *Fn) { Cache.erase(Fn); }
-
-/// \brief Ensures that the given function is available in the cache.
-/// Returns the appropriate entry from the cache.
-const Optional<CFLAAResult::FunctionInfo> &
-CFLAAResult::ensureCached(Function *Fn) {
- auto Iter = Cache.find(Fn);
- if (Iter == Cache.end()) {
- scan(Fn);
- Iter = Cache.find(Fn);
- assert(Iter != Cache.end());
- assert(Iter->second.hasValue());
- }
- return Iter->second;
-}
-
-AliasResult CFLAAResult::query(const MemoryLocation &LocA,
- const MemoryLocation &LocB) {
- auto *ValA = const_cast<Value *>(LocA.Ptr);
- auto *ValB = const_cast<Value *>(LocB.Ptr);
-
- Function *Fn = nullptr;
- auto MaybeFnA = parentFunctionOfValue(ValA);
- auto MaybeFnB = parentFunctionOfValue(ValB);
- if (!MaybeFnA.hasValue() && !MaybeFnB.hasValue()) {
- // The only times this is known to happen are when globals + InlineAsm
- // are involved
- DEBUG(dbgs() << "CFLAA: could not extract parent function information.\n");
- return MayAlias;
- }
-
- if (MaybeFnA.hasValue()) {
- Fn = *MaybeFnA;
- assert((!MaybeFnB.hasValue() || *MaybeFnB == *MaybeFnA) &&
- "Interprocedural queries not supported");
- } else {
- Fn = *MaybeFnB;
- }
-
- assert(Fn != nullptr);
- auto &MaybeInfo = ensureCached(Fn);
- assert(MaybeInfo.hasValue());
-
- auto &Sets = MaybeInfo->Sets;
- auto MaybeA = Sets.find(ValA);
- if (!MaybeA.hasValue())
- return MayAlias;
-
- auto MaybeB = Sets.find(ValB);
- if (!MaybeB.hasValue())
- return MayAlias;
-
- auto SetA = *MaybeA;
- auto SetB = *MaybeB;
- auto AttrsA = Sets.getLink(SetA.Index).Attrs;
- auto AttrsB = Sets.getLink(SetB.Index).Attrs;
-
- // Stratified set attributes are used as markets to signify whether a member
- // of a StratifiedSet (or a member of a set above the current set) has
- // interacted with either arguments or globals. "Interacted with" meaning
- // its value may be different depending on the value of an argument or
- // global. The thought behind this is that, because arguments and globals
- // may alias each other, if AttrsA and AttrsB have touched args/globals,
- // we must conservatively say that they alias. However, if at least one of
- // the sets has no values that could legally be altered by changing the value
- // of an argument or global, then we don't have to be as conservative.
- if (AttrsA.any() && AttrsB.any())
- return MayAlias;
-
- // We currently unify things even if the accesses to them may not be in
- // bounds, so we can't return partial alias here because we don't
- // know whether the pointer is really within the object or not.
- // IE Given an out of bounds GEP and an alloca'd pointer, we may
- // unify the two. We can't return partial alias for this case.
- // Since we do not currently track enough information to
- // differentiate
-
- if (SetA.Index == SetB.Index)
- return MayAlias;
-
- return NoAlias;
-}
-
-CFLAAResult CFLAA::run(Function &F, AnalysisManager<Function> *AM) {
- return CFLAAResult(AM->getResult<TargetLibraryAnalysis>(F));
-}
-
-char CFLAA::PassID;
-
-char CFLAAWrapperPass::ID = 0;
-INITIALIZE_PASS_BEGIN(CFLAAWrapperPass, "cfl-aa", "CFL-Based Alias Analysis",
- false, true)
-INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
-INITIALIZE_PASS_END(CFLAAWrapperPass, "cfl-aa", "CFL-Based Alias Analysis",
- false, true)
-
-ImmutablePass *llvm::createCFLAAWrapperPass() { return new CFLAAWrapperPass(); }
-
-CFLAAWrapperPass::CFLAAWrapperPass() : ImmutablePass(ID) {
- initializeCFLAAWrapperPassPass(*PassRegistry::getPassRegistry());
-}
-
-bool CFLAAWrapperPass::doInitialization(Module &M) {
- Result.reset(
- new CFLAAResult(getAnalysis<TargetLibraryInfoWrapperPass>().getTLI()));
- return false;
-}
-
-bool CFLAAWrapperPass::doFinalization(Module &M) {
- Result.reset();
- return false;
-}
-
-void CFLAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
- AU.setPreservesAll();
- AU.addRequired<TargetLibraryInfoWrapperPass>();
-}