summaryrefslogtreecommitdiff
path: root/lib/Analysis/CFLAndersAliasAnalysis.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/Analysis/CFLAndersAliasAnalysis.cpp')
-rw-r--r--lib/Analysis/CFLAndersAliasAnalysis.cpp584
1 files changed, 584 insertions, 0 deletions
diff --git a/lib/Analysis/CFLAndersAliasAnalysis.cpp b/lib/Analysis/CFLAndersAliasAnalysis.cpp
new file mode 100644
index 0000000000000..7d5bd94133a73
--- /dev/null
+++ b/lib/Analysis/CFLAndersAliasAnalysis.cpp
@@ -0,0 +1,584 @@
+//- CFLAndersAliasAnalysis.cpp - Unification-based Alias Analysis ---*- C++-*-//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements a CFL-based, summary-based alias analysis algorithm. It
+// differs from CFLSteensAliasAnalysis in its inclusion-based nature while
+// CFLSteensAliasAnalysis is unification-based. This pass has worse performance
+// than CFLSteensAliasAnalysis (the worst case complexity of
+// CFLAndersAliasAnalysis is cubic, while the worst case complexity of
+// CFLSteensAliasAnalysis is almost linear), but it is able to yield more
+// precise analysis result. The precision of this analysis is roughly the same
+// as that of an one level context-sensitive Andersen's algorithm.
+//
+// The algorithm used here is based on recursive state machine matching scheme
+// proposed in "Demand-driven alias analysis for C" by Xin Zheng and Radu
+// Rugina. The general idea is to extend the tranditional transitive closure
+// algorithm to perform CFL matching along the way: instead of recording
+// "whether X is reachable from Y", we keep track of "whether X is reachable
+// from Y at state Z", where the "state" field indicates where we are in the CFL
+// matching process. To understand the matching better, it is advisable to have
+// the state machine shown in Figure 3 of the paper available when reading the
+// codes: all we do here is to selectively expand the transitive closure by
+// discarding edges that are not recognized by the state machine.
+//
+// There is one difference between our current implementation and the one
+// described in the paper: out algorithm eagerly computes all alias pairs after
+// the CFLGraph is built, while in the paper the authors did the computation in
+// a demand-driven fashion. We did not implement the demand-driven algorithm due
+// to the additional coding complexity and higher memory profile, but if we
+// found it necessary we may switch to it eventually.
+//
+//===----------------------------------------------------------------------===//
+
+// N.B. AliasAnalysis as a whole is phrased as a FunctionPass at the moment, and
+// CFLAndersAA is interprocedural. This is *technically* A Bad Thing, because
+// FunctionPasses are only allowed to inspect the Function that they're being
+// run on. Realistically, this likely isn't a problem until we allow
+// FunctionPasses to run concurrently.
+
+#include "llvm/Analysis/CFLAndersAliasAnalysis.h"
+#include "CFLGraph.h"
+#include "llvm/ADT/DenseSet.h"
+#include "llvm/Pass.h"
+
+using namespace llvm;
+using namespace llvm::cflaa;
+
+#define DEBUG_TYPE "cfl-anders-aa"
+
+CFLAndersAAResult::CFLAndersAAResult(const TargetLibraryInfo &TLI) : TLI(TLI) {}
+CFLAndersAAResult::CFLAndersAAResult(CFLAndersAAResult &&RHS)
+ : AAResultBase(std::move(RHS)), TLI(RHS.TLI) {}
+CFLAndersAAResult::~CFLAndersAAResult() {}
+
+static const Function *parentFunctionOfValue(const Value *Val) {
+ if (auto *Inst = dyn_cast<Instruction>(Val)) {
+ auto *Bb = Inst->getParent();
+ return Bb->getParent();
+ }
+
+ if (auto *Arg = dyn_cast<Argument>(Val))
+ return Arg->getParent();
+ return nullptr;
+}
+
+namespace {
+
+enum class MatchState : uint8_t {
+ FlowFrom = 0, // S1 in the paper
+ FlowFromMemAlias, // S2 in the paper
+ FlowTo, // S3 in the paper
+ FlowToMemAlias // S4 in the paper
+};
+
+// We use ReachabilitySet to keep track of value aliases (The nonterminal "V" in
+// the paper) during the analysis.
+class ReachabilitySet {
+ typedef std::bitset<4> StateSet;
+ typedef DenseMap<InstantiatedValue, StateSet> ValueStateMap;
+ typedef DenseMap<InstantiatedValue, ValueStateMap> ValueReachMap;
+ ValueReachMap ReachMap;
+
+public:
+ typedef ValueStateMap::const_iterator const_valuestate_iterator;
+ typedef ValueReachMap::const_iterator const_value_iterator;
+
+ // Insert edge 'From->To' at state 'State'
+ bool insert(InstantiatedValue From, InstantiatedValue To, MatchState State) {
+ auto &States = ReachMap[To][From];
+ auto Idx = static_cast<size_t>(State);
+ if (!States.test(Idx)) {
+ States.set(Idx);
+ return true;
+ }
+ return false;
+ }
+
+ // Return the set of all ('From', 'State') pair for a given node 'To'
+ iterator_range<const_valuestate_iterator>
+ reachableValueAliases(InstantiatedValue V) const {
+ auto Itr = ReachMap.find(V);
+ if (Itr == ReachMap.end())
+ return make_range<const_valuestate_iterator>(const_valuestate_iterator(),
+ const_valuestate_iterator());
+ return make_range<const_valuestate_iterator>(Itr->second.begin(),
+ Itr->second.end());
+ }
+
+ iterator_range<const_value_iterator> value_mappings() const {
+ return make_range<const_value_iterator>(ReachMap.begin(), ReachMap.end());
+ }
+};
+
+// We use AliasMemSet to keep track of all memory aliases (the nonterminal "M"
+// in the paper) during the analysis.
+class AliasMemSet {
+ typedef DenseSet<InstantiatedValue> MemSet;
+ typedef DenseMap<InstantiatedValue, MemSet> MemMapType;
+ MemMapType MemMap;
+
+public:
+ typedef MemSet::const_iterator const_mem_iterator;
+
+ bool insert(InstantiatedValue LHS, InstantiatedValue RHS) {
+ // Top-level values can never be memory aliases because one cannot take the
+ // addresses of them
+ assert(LHS.DerefLevel > 0 && RHS.DerefLevel > 0);
+ return MemMap[LHS].insert(RHS).second;
+ }
+
+ const MemSet *getMemoryAliases(InstantiatedValue V) const {
+ auto Itr = MemMap.find(V);
+ if (Itr == MemMap.end())
+ return nullptr;
+ return &Itr->second;
+ }
+};
+
+// We use AliasAttrMap to keep track of the AliasAttr of each node.
+class AliasAttrMap {
+ typedef DenseMap<InstantiatedValue, AliasAttrs> MapType;
+ MapType AttrMap;
+
+public:
+ typedef MapType::const_iterator const_iterator;
+
+ bool add(InstantiatedValue V, AliasAttrs Attr) {
+ if (Attr.none())
+ return false;
+ auto &OldAttr = AttrMap[V];
+ auto NewAttr = OldAttr | Attr;
+ if (OldAttr == NewAttr)
+ return false;
+ OldAttr = NewAttr;
+ return true;
+ }
+
+ AliasAttrs getAttrs(InstantiatedValue V) const {
+ AliasAttrs Attr;
+ auto Itr = AttrMap.find(V);
+ if (Itr != AttrMap.end())
+ Attr = Itr->second;
+ return Attr;
+ }
+
+ iterator_range<const_iterator> mappings() const {
+ return make_range<const_iterator>(AttrMap.begin(), AttrMap.end());
+ }
+};
+
+struct WorkListItem {
+ InstantiatedValue From;
+ InstantiatedValue To;
+ MatchState State;
+};
+}
+
+class CFLAndersAAResult::FunctionInfo {
+ /// Map a value to other values that may alias it
+ /// Since the alias relation is symmetric, to save some space we assume values
+ /// are properly ordered: if a and b alias each other, and a < b, then b is in
+ /// AliasMap[a] but not vice versa.
+ DenseMap<const Value *, std::vector<const Value *>> AliasMap;
+
+ /// Map a value to its corresponding AliasAttrs
+ DenseMap<const Value *, AliasAttrs> AttrMap;
+
+ /// Summary of externally visible effects.
+ AliasSummary Summary;
+
+ AliasAttrs getAttrs(const Value *) const;
+
+public:
+ FunctionInfo(const ReachabilitySet &, AliasAttrMap);
+
+ bool mayAlias(const Value *LHS, const Value *RHS) const;
+ const AliasSummary &getAliasSummary() const { return Summary; }
+};
+
+CFLAndersAAResult::FunctionInfo::FunctionInfo(const ReachabilitySet &ReachSet,
+ AliasAttrMap AMap) {
+ // Populate AttrMap
+ for (const auto &Mapping : AMap.mappings()) {
+ auto IVal = Mapping.first;
+
+ // AttrMap only cares about top-level values
+ if (IVal.DerefLevel == 0)
+ AttrMap[IVal.Val] = Mapping.second;
+ }
+
+ // Populate AliasMap
+ for (const auto &OuterMapping : ReachSet.value_mappings()) {
+ // AliasMap only cares about top-level values
+ if (OuterMapping.first.DerefLevel > 0)
+ continue;
+
+ auto Val = OuterMapping.first.Val;
+ auto &AliasList = AliasMap[Val];
+ for (const auto &InnerMapping : OuterMapping.second) {
+ // Again, AliasMap only cares about top-level values
+ if (InnerMapping.first.DerefLevel == 0)
+ AliasList.push_back(InnerMapping.first.Val);
+ }
+
+ // Sort AliasList for faster lookup
+ std::sort(AliasList.begin(), AliasList.end(), std::less<const Value *>());
+ }
+
+ // TODO: Populate function summary here
+}
+
+AliasAttrs CFLAndersAAResult::FunctionInfo::getAttrs(const Value *V) const {
+ assert(V != nullptr);
+
+ AliasAttrs Attr;
+ auto Itr = AttrMap.find(V);
+ if (Itr != AttrMap.end())
+ Attr = Itr->second;
+ return Attr;
+}
+
+bool CFLAndersAAResult::FunctionInfo::mayAlias(const Value *LHS,
+ const Value *RHS) const {
+ assert(LHS && RHS);
+
+ auto Itr = AliasMap.find(LHS);
+ if (Itr != AliasMap.end()) {
+ if (std::binary_search(Itr->second.begin(), Itr->second.end(), RHS,
+ std::less<const Value *>()))
+ return true;
+ }
+
+ // Even if LHS and RHS are not reachable, they may still alias due to their
+ // AliasAttrs
+ auto AttrsA = getAttrs(LHS);
+ auto AttrsB = getAttrs(RHS);
+
+ if (AttrsA.none() || AttrsB.none())
+ return false;
+ if (hasUnknownOrCallerAttr(AttrsA) || hasUnknownOrCallerAttr(AttrsB))
+ return true;
+ if (isGlobalOrArgAttr(AttrsA) && isGlobalOrArgAttr(AttrsB))
+ return true;
+ return false;
+}
+
+static void propagate(InstantiatedValue From, InstantiatedValue To,
+ MatchState State, ReachabilitySet &ReachSet,
+ std::vector<WorkListItem> &WorkList) {
+ if (From == To)
+ return;
+ if (ReachSet.insert(From, To, State))
+ WorkList.push_back(WorkListItem{From, To, State});
+}
+
+static void initializeWorkList(std::vector<WorkListItem> &WorkList,
+ ReachabilitySet &ReachSet,
+ const CFLGraph &Graph) {
+ for (const auto &Mapping : Graph.value_mappings()) {
+ auto Val = Mapping.first;
+ auto &ValueInfo = Mapping.second;
+ assert(ValueInfo.getNumLevels() > 0);
+
+ // Insert all immediate assignment neighbors to the worklist
+ for (unsigned I = 0, E = ValueInfo.getNumLevels(); I < E; ++I) {
+ auto Src = InstantiatedValue{Val, I};
+ // If there's an assignment edge from X to Y, it means Y is reachable from
+ // X at S2 and X is reachable from Y at S1
+ for (auto &Edge : ValueInfo.getNodeInfoAtLevel(I).Edges) {
+ propagate(Edge.Other, Src, MatchState::FlowFrom, ReachSet, WorkList);
+ propagate(Src, Edge.Other, MatchState::FlowTo, ReachSet, WorkList);
+ }
+ }
+ }
+}
+
+static Optional<InstantiatedValue> getNodeBelow(const CFLGraph &Graph,
+ InstantiatedValue V) {
+ auto NodeBelow = InstantiatedValue{V.Val, V.DerefLevel + 1};
+ if (Graph.getNode(NodeBelow))
+ return NodeBelow;
+ return None;
+}
+
+static void processWorkListItem(const WorkListItem &Item, const CFLGraph &Graph,
+ ReachabilitySet &ReachSet, AliasMemSet &MemSet,
+ std::vector<WorkListItem> &WorkList) {
+ auto FromNode = Item.From;
+ auto ToNode = Item.To;
+
+ auto NodeInfo = Graph.getNode(ToNode);
+ assert(NodeInfo != nullptr);
+
+ // TODO: propagate field offsets
+
+ // FIXME: Here is a neat trick we can do: since both ReachSet and MemSet holds
+ // relations that are symmetric, we could actually cut the storage by half by
+ // sorting FromNode and ToNode before insertion happens.
+
+ // The newly added value alias pair may pontentially generate more memory
+ // alias pairs. Check for them here.
+ auto FromNodeBelow = getNodeBelow(Graph, FromNode);
+ auto ToNodeBelow = getNodeBelow(Graph, ToNode);
+ if (FromNodeBelow && ToNodeBelow &&
+ MemSet.insert(*FromNodeBelow, *ToNodeBelow)) {
+ propagate(*FromNodeBelow, *ToNodeBelow, MatchState::FlowFromMemAlias,
+ ReachSet, WorkList);
+ for (const auto &Mapping : ReachSet.reachableValueAliases(*FromNodeBelow)) {
+ auto Src = Mapping.first;
+ if (Mapping.second.test(static_cast<size_t>(MatchState::FlowFrom)))
+ propagate(Src, *ToNodeBelow, MatchState::FlowFromMemAlias, ReachSet,
+ WorkList);
+ if (Mapping.second.test(static_cast<size_t>(MatchState::FlowTo)))
+ propagate(Src, *ToNodeBelow, MatchState::FlowToMemAlias, ReachSet,
+ WorkList);
+ }
+ }
+
+ // This is the core of the state machine walking algorithm. We expand ReachSet
+ // based on which state we are at (which in turn dictates what edges we
+ // should examine)
+ // From a high-level point of view, the state machine here guarantees two
+ // properties:
+ // - If *X and *Y are memory aliases, then X and Y are value aliases
+ // - If Y is an alias of X, then reverse assignment edges (if there is any)
+ // should precede any assignment edges on the path from X to Y.
+ switch (Item.State) {
+ case MatchState::FlowFrom: {
+ for (const auto &RevAssignEdge : NodeInfo->ReverseEdges)
+ propagate(FromNode, RevAssignEdge.Other, MatchState::FlowFrom, ReachSet,
+ WorkList);
+ for (const auto &AssignEdge : NodeInfo->Edges)
+ propagate(FromNode, AssignEdge.Other, MatchState::FlowTo, ReachSet,
+ WorkList);
+ if (auto AliasSet = MemSet.getMemoryAliases(ToNode)) {
+ for (const auto &MemAlias : *AliasSet)
+ propagate(FromNode, MemAlias, MatchState::FlowFromMemAlias, ReachSet,
+ WorkList);
+ }
+ break;
+ }
+ case MatchState::FlowFromMemAlias: {
+ for (const auto &RevAssignEdge : NodeInfo->ReverseEdges)
+ propagate(FromNode, RevAssignEdge.Other, MatchState::FlowFrom, ReachSet,
+ WorkList);
+ for (const auto &AssignEdge : NodeInfo->Edges)
+ propagate(FromNode, AssignEdge.Other, MatchState::FlowTo, ReachSet,
+ WorkList);
+ break;
+ }
+ case MatchState::FlowTo: {
+ for (const auto &AssignEdge : NodeInfo->Edges)
+ propagate(FromNode, AssignEdge.Other, MatchState::FlowTo, ReachSet,
+ WorkList);
+ if (auto AliasSet = MemSet.getMemoryAliases(ToNode)) {
+ for (const auto &MemAlias : *AliasSet)
+ propagate(FromNode, MemAlias, MatchState::FlowToMemAlias, ReachSet,
+ WorkList);
+ }
+ break;
+ }
+ case MatchState::FlowToMemAlias: {
+ for (const auto &AssignEdge : NodeInfo->Edges)
+ propagate(FromNode, AssignEdge.Other, MatchState::FlowTo, ReachSet,
+ WorkList);
+ break;
+ }
+ }
+}
+
+static AliasAttrMap buildAttrMap(const CFLGraph &Graph,
+ const ReachabilitySet &ReachSet) {
+ AliasAttrMap AttrMap;
+ std::vector<InstantiatedValue> WorkList, NextList;
+
+ // Initialize each node with its original AliasAttrs in CFLGraph
+ for (const auto &Mapping : Graph.value_mappings()) {
+ auto Val = Mapping.first;
+ auto &ValueInfo = Mapping.second;
+ for (unsigned I = 0, E = ValueInfo.getNumLevels(); I < E; ++I) {
+ auto Node = InstantiatedValue{Val, I};
+ AttrMap.add(Node, ValueInfo.getNodeInfoAtLevel(I).Attr);
+ WorkList.push_back(Node);
+ }
+ }
+
+ while (!WorkList.empty()) {
+ for (const auto &Dst : WorkList) {
+ auto DstAttr = AttrMap.getAttrs(Dst);
+ if (DstAttr.none())
+ continue;
+
+ // Propagate attr on the same level
+ for (const auto &Mapping : ReachSet.reachableValueAliases(Dst)) {
+ auto Src = Mapping.first;
+ if (AttrMap.add(Src, DstAttr))
+ NextList.push_back(Src);
+ }
+
+ // Propagate attr to the levels below
+ auto DstBelow = getNodeBelow(Graph, Dst);
+ while (DstBelow) {
+ if (AttrMap.add(*DstBelow, DstAttr)) {
+ NextList.push_back(*DstBelow);
+ break;
+ }
+ DstBelow = getNodeBelow(Graph, *DstBelow);
+ }
+ }
+ WorkList.swap(NextList);
+ NextList.clear();
+ }
+
+ return AttrMap;
+}
+
+CFLAndersAAResult::FunctionInfo
+CFLAndersAAResult::buildInfoFrom(const Function &Fn) {
+ CFLGraphBuilder<CFLAndersAAResult> GraphBuilder(
+ *this, TLI,
+ // Cast away the constness here due to GraphBuilder's API requirement
+ const_cast<Function &>(Fn));
+ auto &Graph = GraphBuilder.getCFLGraph();
+
+ ReachabilitySet ReachSet;
+ AliasMemSet MemSet;
+
+ std::vector<WorkListItem> WorkList, NextList;
+ initializeWorkList(WorkList, ReachSet, Graph);
+ // TODO: make sure we don't stop before the fix point is reached
+ while (!WorkList.empty()) {
+ for (const auto &Item : WorkList)
+ processWorkListItem(Item, Graph, ReachSet, MemSet, NextList);
+
+ NextList.swap(WorkList);
+ NextList.clear();
+ }
+
+ // Now that we have all the reachability info, propagate AliasAttrs according
+ // to it
+ auto IValueAttrMap = buildAttrMap(Graph, ReachSet);
+
+ return FunctionInfo(ReachSet, std::move(IValueAttrMap));
+}
+
+void CFLAndersAAResult::scan(const Function &Fn) {
+ auto InsertPair = Cache.insert(std::make_pair(&Fn, Optional<FunctionInfo>()));
+ (void)InsertPair;
+ assert(InsertPair.second &&
+ "Trying to scan a function that has already been cached");
+
+ // Note that we can't do Cache[Fn] = buildSetsFrom(Fn) here: the function call
+ // may get evaluated after operator[], potentially triggering a DenseMap
+ // resize and invalidating the reference returned by operator[]
+ auto FunInfo = buildInfoFrom(Fn);
+ Cache[&Fn] = std::move(FunInfo);
+ Handles.push_front(FunctionHandle(const_cast<Function *>(&Fn), this));
+}
+
+void CFLAndersAAResult::evict(const Function &Fn) { Cache.erase(&Fn); }
+
+const Optional<CFLAndersAAResult::FunctionInfo> &
+CFLAndersAAResult::ensureCached(const Function &Fn) {
+ auto Iter = Cache.find(&Fn);
+ if (Iter == Cache.end()) {
+ scan(Fn);
+ Iter = Cache.find(&Fn);
+ assert(Iter != Cache.end());
+ assert(Iter->second.hasValue());
+ }
+ return Iter->second;
+}
+
+const AliasSummary *CFLAndersAAResult::getAliasSummary(const Function &Fn) {
+ auto &FunInfo = ensureCached(Fn);
+ if (FunInfo.hasValue())
+ return &FunInfo->getAliasSummary();
+ else
+ return nullptr;
+}
+
+AliasResult CFLAndersAAResult::query(const MemoryLocation &LocA,
+ const MemoryLocation &LocB) {
+ auto *ValA = LocA.Ptr;
+ auto *ValB = LocB.Ptr;
+
+ if (!ValA->getType()->isPointerTy() || !ValB->getType()->isPointerTy())
+ return NoAlias;
+
+ auto *Fn = parentFunctionOfValue(ValA);
+ if (!Fn) {
+ Fn = parentFunctionOfValue(ValB);
+ if (!Fn) {
+ // The only times this is known to happen are when globals + InlineAsm are
+ // involved
+ DEBUG(dbgs()
+ << "CFLAndersAA: could not extract parent function information.\n");
+ return MayAlias;
+ }
+ } else {
+ assert(!parentFunctionOfValue(ValB) || parentFunctionOfValue(ValB) == Fn);
+ }
+
+ assert(Fn != nullptr);
+ auto &FunInfo = ensureCached(*Fn);
+
+ // AliasMap lookup
+ if (FunInfo->mayAlias(ValA, ValB))
+ return MayAlias;
+ return NoAlias;
+}
+
+AliasResult CFLAndersAAResult::alias(const MemoryLocation &LocA,
+ const MemoryLocation &LocB) {
+ if (LocA.Ptr == LocB.Ptr)
+ return LocA.Size == LocB.Size ? MustAlias : PartialAlias;
+
+ // Comparisons between global variables and other constants should be
+ // handled by BasicAA.
+ // CFLAndersAA may report NoAlias when comparing a GlobalValue and
+ // ConstantExpr, but every query needs to have at least one Value tied to a
+ // Function, and neither GlobalValues nor ConstantExprs are.
+ if (isa<Constant>(LocA.Ptr) && isa<Constant>(LocB.Ptr))
+ return AAResultBase::alias(LocA, LocB);
+
+ AliasResult QueryResult = query(LocA, LocB);
+ if (QueryResult == MayAlias)
+ return AAResultBase::alias(LocA, LocB);
+
+ return QueryResult;
+}
+
+char CFLAndersAA::PassID;
+
+CFLAndersAAResult CFLAndersAA::run(Function &F, AnalysisManager<Function> &AM) {
+ return CFLAndersAAResult(AM.getResult<TargetLibraryAnalysis>(F));
+}
+
+char CFLAndersAAWrapperPass::ID = 0;
+INITIALIZE_PASS(CFLAndersAAWrapperPass, "cfl-anders-aa",
+ "Inclusion-Based CFL Alias Analysis", false, true)
+
+ImmutablePass *llvm::createCFLAndersAAWrapperPass() {
+ return new CFLAndersAAWrapperPass();
+}
+
+CFLAndersAAWrapperPass::CFLAndersAAWrapperPass() : ImmutablePass(ID) {
+ initializeCFLAndersAAWrapperPassPass(*PassRegistry::getPassRegistry());
+}
+
+void CFLAndersAAWrapperPass::initializePass() {
+ auto &TLIWP = getAnalysis<TargetLibraryInfoWrapperPass>();
+ Result.reset(new CFLAndersAAResult(TLIWP.getTLI()));
+}
+
+void CFLAndersAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.setPreservesAll();
+ AU.addRequired<TargetLibraryInfoWrapperPass>();
+}