summaryrefslogtreecommitdiff
path: root/lib/Analysis/ExplodedGraph.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/Analysis/ExplodedGraph.cpp')
-rw-r--r--lib/Analysis/ExplodedGraph.cpp200
1 files changed, 120 insertions, 80 deletions
diff --git a/lib/Analysis/ExplodedGraph.cpp b/lib/Analysis/ExplodedGraph.cpp
index 20de6c48c387e..0dc81a4225a8b 100644
--- a/lib/Analysis/ExplodedGraph.cpp
+++ b/lib/Analysis/ExplodedGraph.cpp
@@ -13,6 +13,7 @@
//===----------------------------------------------------------------------===//
#include "clang/Analysis/PathSensitive/ExplodedGraph.h"
+#include "clang/Analysis/PathSensitive/GRState.h"
#include "clang/AST/Stmt.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/DenseMap.h"
@@ -26,193 +27,234 @@ using namespace clang;
//===----------------------------------------------------------------------===//
// An out of line virtual method to provide a home for the class vtable.
-ExplodedNodeImpl::Auditor::~Auditor() {}
+ExplodedNode::Auditor::~Auditor() {}
#ifndef NDEBUG
-static ExplodedNodeImpl::Auditor* NodeAuditor = 0;
+static ExplodedNode::Auditor* NodeAuditor = 0;
#endif
-void ExplodedNodeImpl::SetAuditor(ExplodedNodeImpl::Auditor* A) {
+void ExplodedNode::SetAuditor(ExplodedNode::Auditor* A) {
#ifndef NDEBUG
NodeAuditor = A;
#endif
}
//===----------------------------------------------------------------------===//
-// ExplodedNodeImpl.
+// ExplodedNode.
//===----------------------------------------------------------------------===//
-static inline std::vector<ExplodedNodeImpl*>& getVector(void* P) {
- return *reinterpret_cast<std::vector<ExplodedNodeImpl*>*>(P);
+static inline BumpVector<ExplodedNode*>& getVector(void* P) {
+ return *reinterpret_cast<BumpVector<ExplodedNode*>*>(P);
}
-void ExplodedNodeImpl::addPredecessor(ExplodedNodeImpl* V) {
+void ExplodedNode::addPredecessor(ExplodedNode* V, ExplodedGraph &G) {
assert (!V->isSink());
- Preds.addNode(V);
- V->Succs.addNode(this);
+ Preds.addNode(V, G);
+ V->Succs.addNode(this, G);
#ifndef NDEBUG
if (NodeAuditor) NodeAuditor->AddEdge(V, this);
#endif
}
-void ExplodedNodeImpl::NodeGroup::addNode(ExplodedNodeImpl* N) {
-
- assert ((reinterpret_cast<uintptr_t>(N) & Mask) == 0x0);
- assert (!getFlag());
-
+void ExplodedNode::NodeGroup::addNode(ExplodedNode* N, ExplodedGraph &G) {
+ assert((reinterpret_cast<uintptr_t>(N) & Mask) == 0x0);
+ assert(!getFlag());
+
if (getKind() == Size1) {
- if (ExplodedNodeImpl* NOld = getNode()) {
- std::vector<ExplodedNodeImpl*>* V = new std::vector<ExplodedNodeImpl*>();
- assert ((reinterpret_cast<uintptr_t>(V) & Mask) == 0x0);
- V->push_back(NOld);
- V->push_back(N);
+ if (ExplodedNode* NOld = getNode()) {
+ BumpVectorContext &Ctx = G.getNodeAllocator();
+ BumpVector<ExplodedNode*> *V =
+ G.getAllocator().Allocate<BumpVector<ExplodedNode*> >();
+ new (V) BumpVector<ExplodedNode*>(Ctx, 4);
+
+ assert((reinterpret_cast<uintptr_t>(V) & Mask) == 0x0);
+ V->push_back(NOld, Ctx);
+ V->push_back(N, Ctx);
P = reinterpret_cast<uintptr_t>(V) | SizeOther;
- assert (getPtr() == (void*) V);
- assert (getKind() == SizeOther);
+ assert(getPtr() == (void*) V);
+ assert(getKind() == SizeOther);
}
else {
P = reinterpret_cast<uintptr_t>(N);
- assert (getKind() == Size1);
+ assert(getKind() == Size1);
}
}
else {
- assert (getKind() == SizeOther);
- getVector(getPtr()).push_back(N);
+ assert(getKind() == SizeOther);
+ getVector(getPtr()).push_back(N, G.getNodeAllocator());
}
}
-
-unsigned ExplodedNodeImpl::NodeGroup::size() const {
+unsigned ExplodedNode::NodeGroup::size() const {
if (getFlag())
return 0;
-
+
if (getKind() == Size1)
return getNode() ? 1 : 0;
else
return getVector(getPtr()).size();
}
-ExplodedNodeImpl** ExplodedNodeImpl::NodeGroup::begin() const {
+ExplodedNode **ExplodedNode::NodeGroup::begin() const {
if (getFlag())
return NULL;
-
+
if (getKind() == Size1)
- return (ExplodedNodeImpl**) (getPtr() ? &P : NULL);
+ return (ExplodedNode**) (getPtr() ? &P : NULL);
else
- return const_cast<ExplodedNodeImpl**>(&*(getVector(getPtr()).begin()));
+ return const_cast<ExplodedNode**>(&*(getVector(getPtr()).begin()));
}
-ExplodedNodeImpl** ExplodedNodeImpl::NodeGroup::end() const {
+ExplodedNode** ExplodedNode::NodeGroup::end() const {
if (getFlag())
return NULL;
-
+
if (getKind() == Size1)
- return (ExplodedNodeImpl**) (getPtr() ? &P+1 : NULL);
+ return (ExplodedNode**) (getPtr() ? &P+1 : NULL);
else {
// Dereferencing end() is undefined behaviour. The vector is not empty, so
// we can dereference the last elem and then add 1 to the result.
- return const_cast<ExplodedNodeImpl**>(&getVector(getPtr()).back()) + 1;
+ return const_cast<ExplodedNode**>(getVector(getPtr()).end());
}
}
-ExplodedNodeImpl::NodeGroup::~NodeGroup() {
- if (getKind() == SizeOther) delete &getVector(getPtr());
+ExplodedNode *ExplodedGraph::getNode(const ProgramPoint& L,
+ const GRState* State, bool* IsNew) {
+ // Profile 'State' to determine if we already have an existing node.
+ llvm::FoldingSetNodeID profile;
+ void* InsertPos = 0;
+
+ NodeTy::Profile(profile, L, State);
+ NodeTy* V = Nodes.FindNodeOrInsertPos(profile, InsertPos);
+
+ if (!V) {
+ // Allocate a new node.
+ V = (NodeTy*) getAllocator().Allocate<NodeTy>();
+ new (V) NodeTy(L, State);
+
+ // Insert the node into the node set and return it.
+ Nodes.InsertNode(V, InsertPos);
+
+ ++NumNodes;
+
+ if (IsNew) *IsNew = true;
+ }
+ else
+ if (IsNew) *IsNew = false;
+
+ return V;
+}
+
+std::pair<ExplodedGraph*, InterExplodedGraphMap*>
+ExplodedGraph::Trim(const NodeTy* const* NBeg, const NodeTy* const* NEnd,
+ llvm::DenseMap<const void*, const void*> *InverseMap) const {
+
+ if (NBeg == NEnd)
+ return std::make_pair((ExplodedGraph*) 0,
+ (InterExplodedGraphMap*) 0);
+
+ assert (NBeg < NEnd);
+
+ llvm::OwningPtr<InterExplodedGraphMap> M(new InterExplodedGraphMap());
+
+ ExplodedGraph* G = TrimInternal(NBeg, NEnd, M.get(), InverseMap);
+
+ return std::make_pair(static_cast<ExplodedGraph*>(G), M.take());
}
-ExplodedGraphImpl*
-ExplodedGraphImpl::Trim(const ExplodedNodeImpl* const* BeginSources,
- const ExplodedNodeImpl* const* EndSources,
- InterExplodedGraphMapImpl* M,
- llvm::DenseMap<const void*, const void*> *InverseMap)
-const {
-
- typedef llvm::DenseSet<const ExplodedNodeImpl*> Pass1Ty;
+ExplodedGraph*
+ExplodedGraph::TrimInternal(const ExplodedNode* const* BeginSources,
+ const ExplodedNode* const* EndSources,
+ InterExplodedGraphMap* M,
+ llvm::DenseMap<const void*, const void*> *InverseMap) const {
+
+ typedef llvm::DenseSet<const ExplodedNode*> Pass1Ty;
Pass1Ty Pass1;
-
- typedef llvm::DenseMap<const ExplodedNodeImpl*, ExplodedNodeImpl*> Pass2Ty;
+
+ typedef llvm::DenseMap<const ExplodedNode*, ExplodedNode*> Pass2Ty;
Pass2Ty& Pass2 = M->M;
-
- llvm::SmallVector<const ExplodedNodeImpl*, 10> WL1, WL2;
+
+ llvm::SmallVector<const ExplodedNode*, 10> WL1, WL2;
// ===- Pass 1 (reverse DFS) -===
- for (const ExplodedNodeImpl* const* I = BeginSources; I != EndSources; ++I) {
+ for (const ExplodedNode* const* I = BeginSources; I != EndSources; ++I) {
assert(*I);
WL1.push_back(*I);
}
-
+
// Process the first worklist until it is empty. Because it is a std::list
// it acts like a FIFO queue.
while (!WL1.empty()) {
- const ExplodedNodeImpl *N = WL1.back();
+ const ExplodedNode *N = WL1.back();
WL1.pop_back();
-
+
// Have we already visited this node? If so, continue to the next one.
if (Pass1.count(N))
continue;
// Otherwise, mark this node as visited.
Pass1.insert(N);
-
+
// If this is a root enqueue it to the second worklist.
if (N->Preds.empty()) {
WL2.push_back(N);
continue;
}
-
+
// Visit our predecessors and enqueue them.
- for (ExplodedNodeImpl** I=N->Preds.begin(), **E=N->Preds.end(); I!=E; ++I)
+ for (ExplodedNode** I=N->Preds.begin(), **E=N->Preds.end(); I!=E; ++I)
WL1.push_back(*I);
}
-
+
// We didn't hit a root? Return with a null pointer for the new graph.
if (WL2.empty())
return 0;
// Create an empty graph.
- ExplodedGraphImpl* G = MakeEmptyGraph();
-
- // ===- Pass 2 (forward DFS to construct the new graph) -===
+ ExplodedGraph* G = MakeEmptyGraph();
+
+ // ===- Pass 2 (forward DFS to construct the new graph) -===
while (!WL2.empty()) {
- const ExplodedNodeImpl* N = WL2.back();
+ const ExplodedNode* N = WL2.back();
WL2.pop_back();
-
+
// Skip this node if we have already processed it.
if (Pass2.find(N) != Pass2.end())
continue;
-
+
// Create the corresponding node in the new graph and record the mapping
// from the old node to the new node.
- ExplodedNodeImpl* NewN = G->getNodeImpl(N->getLocation(), N->State, NULL);
+ ExplodedNode* NewN = G->getNode(N->getLocation(), N->State, NULL);
Pass2[N] = NewN;
-
+
// Also record the reverse mapping from the new node to the old node.
if (InverseMap) (*InverseMap)[NewN] = N;
-
+
// If this node is a root, designate it as such in the graph.
if (N->Preds.empty())
G->addRoot(NewN);
-
+
// In the case that some of the intended predecessors of NewN have already
// been created, we should hook them up as predecessors.
// Walk through the predecessors of 'N' and hook up their corresponding
// nodes in the new graph (if any) to the freshly created node.
- for (ExplodedNodeImpl **I=N->Preds.begin(), **E=N->Preds.end(); I!=E; ++I) {
+ for (ExplodedNode **I=N->Preds.begin(), **E=N->Preds.end(); I!=E; ++I) {
Pass2Ty::iterator PI = Pass2.find(*I);
if (PI == Pass2.end())
continue;
-
- NewN->addPredecessor(PI->second);
+
+ NewN->addPredecessor(PI->second, *G);
}
// In the case that some of the intended successors of NewN have already
// been created, we should hook them up as successors. Otherwise, enqueue
// the new nodes from the original graph that should have nodes created
// in the new graph.
- for (ExplodedNodeImpl **I=N->Succs.begin(), **E=N->Succs.end(); I!=E; ++I) {
- Pass2Ty::iterator PI = Pass2.find(*I);
+ for (ExplodedNode **I=N->Succs.begin(), **E=N->Succs.end(); I!=E; ++I) {
+ Pass2Ty::iterator PI = Pass2.find(*I);
if (PI != Pass2.end()) {
- PI->second->addPredecessor(NewN);
+ PI->second->addPredecessor(NewN, *G);
continue;
}
@@ -220,22 +262,20 @@ const {
if (Pass1.count(*I))
WL2.push_back(*I);
}
-
+
// Finally, explictly mark all nodes without any successors as sinks.
if (N->isSink())
NewN->markAsSink();
}
-
+
return G;
}
-ExplodedNodeImpl*
-InterExplodedGraphMapImpl::getMappedImplNode(const ExplodedNodeImpl* N) const {
- llvm::DenseMap<const ExplodedNodeImpl*, ExplodedNodeImpl*>::iterator I =
+ExplodedNode*
+InterExplodedGraphMap::getMappedNode(const ExplodedNode* N) const {
+ llvm::DenseMap<const ExplodedNode*, ExplodedNode*>::iterator I =
M.find(N);
return I == M.end() ? 0 : I->second;
}
-InterExplodedGraphMapImpl::InterExplodedGraphMapImpl() {}
-