diff options
Diffstat (limited to 'lib/Analysis/ValueTracking.cpp')
-rw-r--r-- | lib/Analysis/ValueTracking.cpp | 229 |
1 files changed, 206 insertions, 23 deletions
diff --git a/lib/Analysis/ValueTracking.cpp b/lib/Analysis/ValueTracking.cpp index b0e6900b30d6b..31d3ccca36ade 100644 --- a/lib/Analysis/ValueTracking.cpp +++ b/lib/Analysis/ValueTracking.cpp @@ -325,7 +325,7 @@ void llvm::ComputeMaskedBits(Value *V, const APInt &Mask, APInt Mask2(Mask.shl(ShiftAmt)); ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero,KnownOne, TD, Depth+1); - assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?"); + assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); KnownZero = APIntOps::lshr(KnownZero, ShiftAmt); KnownOne = APIntOps::lshr(KnownOne, ShiftAmt); // high bits known zero. @@ -343,7 +343,7 @@ void llvm::ComputeMaskedBits(Value *V, const APInt &Mask, APInt Mask2(Mask.shl(ShiftAmt)); ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, TD, Depth+1); - assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?"); + assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); KnownZero = APIntOps::lshr(KnownZero, ShiftAmt); KnownOne = APIntOps::lshr(KnownOne, ShiftAmt); @@ -380,7 +380,7 @@ void llvm::ComputeMaskedBits(Value *V, const APInt &Mask, } // fall through case Instruction::Add: { - // If one of the operands has trailing zeros, than the bits that the + // If one of the operands has trailing zeros, then the bits that the // other operand has in those bit positions will be preserved in the // result. For an add, this works with either operand. For a subtract, // this only works if the known zeros are in the right operand. @@ -436,7 +436,7 @@ void llvm::ComputeMaskedBits(Value *V, const APInt &Mask, KnownZero |= KnownZero2 & Mask; - assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?"); + assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); } } break; @@ -449,7 +449,7 @@ void llvm::ComputeMaskedBits(Value *V, const APInt &Mask, KnownZero |= ~LowBits & Mask; ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, TD, Depth+1); - assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?"); + assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); break; } } @@ -833,14 +833,12 @@ bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, switch (I->getOpcode()) { default: break; - case Instruction::SExt: { + case Instruction::SExt: if (!LookThroughSExt) return false; // otherwise fall through to ZExt - } - case Instruction::ZExt: { + case Instruction::ZExt: return ComputeMultiple(I->getOperand(0), Base, Multiple, LookThroughSExt, Depth+1); - } case Instruction::Shl: case Instruction::Mul: { Value *Op0 = I->getOperand(0); @@ -950,6 +948,195 @@ bool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) { return false; } + +/// GetLinearExpression - Analyze the specified value as a linear expression: +/// "A*V + B", where A and B are constant integers. Return the scale and offset +/// values as APInts and return V as a Value*. The incoming Value is known to +/// have IntegerType. Note that this looks through extends, so the high bits +/// may not be represented in the result. +static Value *GetLinearExpression(Value *V, APInt &Scale, APInt &Offset, + const TargetData *TD, unsigned Depth) { + assert(isa<IntegerType>(V->getType()) && "Not an integer value"); + + // Limit our recursion depth. + if (Depth == 6) { + Scale = 1; + Offset = 0; + return V; + } + + if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(V)) { + if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) { + switch (BOp->getOpcode()) { + default: break; + case Instruction::Or: + // X|C == X+C if all the bits in C are unset in X. Otherwise we can't + // analyze it. + if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), TD)) + break; + // FALL THROUGH. + case Instruction::Add: + V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, TD, Depth+1); + Offset += RHSC->getValue(); + return V; + case Instruction::Mul: + V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, TD, Depth+1); + Offset *= RHSC->getValue(); + Scale *= RHSC->getValue(); + return V; + case Instruction::Shl: + V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, TD, Depth+1); + Offset <<= RHSC->getValue().getLimitedValue(); + Scale <<= RHSC->getValue().getLimitedValue(); + return V; + } + } + } + + // Since clients don't care about the high bits of the value, just scales and + // offsets, we can look through extensions. + if (isa<SExtInst>(V) || isa<ZExtInst>(V)) { + Value *CastOp = cast<CastInst>(V)->getOperand(0); + unsigned OldWidth = Scale.getBitWidth(); + unsigned SmallWidth = CastOp->getType()->getPrimitiveSizeInBits(); + Scale.trunc(SmallWidth); + Offset.trunc(SmallWidth); + Value *Result = GetLinearExpression(CastOp, Scale, Offset, TD, Depth+1); + Scale.zext(OldWidth); + Offset.zext(OldWidth); + return Result; + } + + Scale = 1; + Offset = 0; + return V; +} + +/// DecomposeGEPExpression - If V is a symbolic pointer expression, decompose it +/// into a base pointer with a constant offset and a number of scaled symbolic +/// offsets. +/// +/// The scaled symbolic offsets (represented by pairs of a Value* and a scale in +/// the VarIndices vector) are Value*'s that are known to be scaled by the +/// specified amount, but which may have other unrepresented high bits. As such, +/// the gep cannot necessarily be reconstructed from its decomposed form. +/// +/// When TargetData is around, this function is capable of analyzing everything +/// that Value::getUnderlyingObject() can look through. When not, it just looks +/// through pointer casts. +/// +const Value *llvm::DecomposeGEPExpression(const Value *V, int64_t &BaseOffs, + SmallVectorImpl<std::pair<const Value*, int64_t> > &VarIndices, + const TargetData *TD) { + // Limit recursion depth to limit compile time in crazy cases. + unsigned MaxLookup = 6; + + BaseOffs = 0; + do { + // See if this is a bitcast or GEP. + const Operator *Op = dyn_cast<Operator>(V); + if (Op == 0) { + // The only non-operator case we can handle are GlobalAliases. + if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { + if (!GA->mayBeOverridden()) { + V = GA->getAliasee(); + continue; + } + } + return V; + } + + if (Op->getOpcode() == Instruction::BitCast) { + V = Op->getOperand(0); + continue; + } + + const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op); + if (GEPOp == 0) + return V; + + // Don't attempt to analyze GEPs over unsized objects. + if (!cast<PointerType>(GEPOp->getOperand(0)->getType()) + ->getElementType()->isSized()) + return V; + + // If we are lacking TargetData information, we can't compute the offets of + // elements computed by GEPs. However, we can handle bitcast equivalent + // GEPs. + if (!TD) { + if (!GEPOp->hasAllZeroIndices()) + return V; + V = GEPOp->getOperand(0); + continue; + } + + // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices. + gep_type_iterator GTI = gep_type_begin(GEPOp); + for (User::const_op_iterator I = GEPOp->op_begin()+1, + E = GEPOp->op_end(); I != E; ++I) { + Value *Index = *I; + // Compute the (potentially symbolic) offset in bytes for this index. + if (const StructType *STy = dyn_cast<StructType>(*GTI++)) { + // For a struct, add the member offset. + unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue(); + if (FieldNo == 0) continue; + + BaseOffs += TD->getStructLayout(STy)->getElementOffset(FieldNo); + continue; + } + + // For an array/pointer, add the element offset, explicitly scaled. + if (ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) { + if (CIdx->isZero()) continue; + BaseOffs += TD->getTypeAllocSize(*GTI)*CIdx->getSExtValue(); + continue; + } + + uint64_t Scale = TD->getTypeAllocSize(*GTI); + + // Use GetLinearExpression to decompose the index into a C1*V+C2 form. + unsigned Width = cast<IntegerType>(Index->getType())->getBitWidth(); + APInt IndexScale(Width, 0), IndexOffset(Width, 0); + Index = GetLinearExpression(Index, IndexScale, IndexOffset, TD, 0); + + // The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale. + // This gives us an aggregate computation of (C1*Scale)*V + C2*Scale. + BaseOffs += IndexOffset.getZExtValue()*Scale; + Scale *= IndexScale.getZExtValue(); + + + // If we already had an occurrance of this index variable, merge this + // scale into it. For example, we want to handle: + // A[x][x] -> x*16 + x*4 -> x*20 + // This also ensures that 'x' only appears in the index list once. + for (unsigned i = 0, e = VarIndices.size(); i != e; ++i) { + if (VarIndices[i].first == Index) { + Scale += VarIndices[i].second; + VarIndices.erase(VarIndices.begin()+i); + break; + } + } + + // Make sure that we have a scale that makes sense for this target's + // pointer size. + if (unsigned ShiftBits = 64-TD->getPointerSizeInBits()) { + Scale <<= ShiftBits; + Scale >>= ShiftBits; + } + + if (Scale) + VarIndices.push_back(std::make_pair(Index, Scale)); + } + + // Analyze the base pointer next. + V = GEPOp->getOperand(0); + } while (--MaxLookup); + + // If the chain of expressions is too deep, just return early. + return V; +} + + // This is the recursive version of BuildSubAggregate. It takes a few different // arguments. Idxs is the index within the nested struct From that we are // looking at now (which is of type IndexedType). IdxSkip is the number of @@ -959,7 +1146,6 @@ bool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) { static Value *BuildSubAggregate(Value *From, Value* To, const Type *IndexedType, SmallVector<unsigned, 10> &Idxs, unsigned IdxSkip, - LLVMContext &Context, Instruction *InsertBefore) { const llvm::StructType *STy = llvm::dyn_cast<llvm::StructType>(IndexedType); if (STy) { @@ -971,7 +1157,7 @@ static Value *BuildSubAggregate(Value *From, Value* To, const Type *IndexedType, Idxs.push_back(i); Value *PrevTo = To; To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, - Context, InsertBefore); + InsertBefore); Idxs.pop_back(); if (!To) { // Couldn't find any inserted value for this index? Cleanup @@ -994,7 +1180,7 @@ static Value *BuildSubAggregate(Value *From, Value* To, const Type *IndexedType, // we might be able to find the complete struct somewhere. // Find the value that is at that particular spot - Value *V = FindInsertedValue(From, Idxs.begin(), Idxs.end(), Context); + Value *V = FindInsertedValue(From, Idxs.begin(), Idxs.end()); if (!V) return NULL; @@ -1017,7 +1203,7 @@ static Value *BuildSubAggregate(Value *From, Value* To, const Type *IndexedType, // // All inserted insertvalue instructions are inserted before InsertBefore static Value *BuildSubAggregate(Value *From, const unsigned *idx_begin, - const unsigned *idx_end, LLVMContext &Context, + const unsigned *idx_end, Instruction *InsertBefore) { assert(InsertBefore && "Must have someplace to insert!"); const Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), @@ -1027,8 +1213,7 @@ static Value *BuildSubAggregate(Value *From, const unsigned *idx_begin, SmallVector<unsigned, 10> Idxs(idx_begin, idx_end); unsigned IdxSkip = Idxs.size(); - return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, - Context, InsertBefore); + return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); } /// FindInsertedValue - Given an aggregrate and an sequence of indices, see if @@ -1038,8 +1223,7 @@ static Value *BuildSubAggregate(Value *From, const unsigned *idx_begin, /// If InsertBefore is not null, this function will duplicate (modified) /// insertvalues when a part of a nested struct is extracted. Value *llvm::FindInsertedValue(Value *V, const unsigned *idx_begin, - const unsigned *idx_end, LLVMContext &Context, - Instruction *InsertBefore) { + const unsigned *idx_end, Instruction *InsertBefore) { // Nothing to index? Just return V then (this is useful at the end of our // recursion) if (idx_begin == idx_end) @@ -1063,7 +1247,7 @@ Value *llvm::FindInsertedValue(Value *V, const unsigned *idx_begin, if (isa<ConstantArray>(C) || isa<ConstantStruct>(C)) // Recursively process this constant return FindInsertedValue(C->getOperand(*idx_begin), idx_begin + 1, - idx_end, Context, InsertBefore); + idx_end, InsertBefore); } else if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { // Loop the indices for the insertvalue instruction in parallel with the // requested indices @@ -1082,8 +1266,7 @@ Value *llvm::FindInsertedValue(Value *V, const unsigned *idx_begin, // %C = insertvalue {i32, i32 } %A, i32 11, 1 // which allows the unused 0,0 element from the nested struct to be // removed. - return BuildSubAggregate(V, idx_begin, req_idx, - Context, InsertBefore); + return BuildSubAggregate(V, idx_begin, req_idx, InsertBefore); else // We can't handle this without inserting insertvalues return 0; @@ -1094,13 +1277,13 @@ Value *llvm::FindInsertedValue(Value *V, const unsigned *idx_begin, // looking for, then. if (*req_idx != *i) return FindInsertedValue(I->getAggregateOperand(), idx_begin, idx_end, - Context, InsertBefore); + InsertBefore); } // If we end up here, the indices of the insertvalue match with those // requested (though possibly only partially). Now we recursively look at // the inserted value, passing any remaining indices. return FindInsertedValue(I->getInsertedValueOperand(), req_idx, idx_end, - Context, InsertBefore); + InsertBefore); } else if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { // If we're extracting a value from an aggregrate that was extracted from // something else, we can extract from that something else directly instead. @@ -1124,7 +1307,7 @@ Value *llvm::FindInsertedValue(Value *V, const unsigned *idx_begin, && "Number of indices added not correct?"); return FindInsertedValue(I->getAggregateOperand(), Idxs.begin(), Idxs.end(), - Context, InsertBefore); + InsertBefore); } // Otherwise, we don't know (such as, extracting from a function return value // or load instruction) |