summaryrefslogtreecommitdiff
path: root/lib/CodeGen/TargetInfo.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/CodeGen/TargetInfo.cpp')
-rw-r--r--lib/CodeGen/TargetInfo.cpp206
1 files changed, 180 insertions, 26 deletions
diff --git a/lib/CodeGen/TargetInfo.cpp b/lib/CodeGen/TargetInfo.cpp
index 391eb53d25002..d2fc3888ef292 100644
--- a/lib/CodeGen/TargetInfo.cpp
+++ b/lib/CodeGen/TargetInfo.cpp
@@ -871,6 +871,14 @@ static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) {
return NumMembers <= 4;
}
+/// Returns a Homogeneous Vector Aggregate ABIArgInfo, used in X86.
+static ABIArgInfo getDirectX86Hva(llvm::Type* T = nullptr) {
+ auto AI = ABIArgInfo::getDirect(T);
+ AI.setInReg(true);
+ AI.setCanBeFlattened(false);
+ return AI;
+}
+
//===----------------------------------------------------------------------===//
// X86-32 ABI Implementation
//===----------------------------------------------------------------------===//
@@ -884,6 +892,11 @@ struct CCState {
unsigned FreeSSERegs;
};
+enum {
+ // Vectorcall only allows the first 6 parameters to be passed in registers.
+ VectorcallMaxParamNumAsReg = 6
+};
+
/// X86_32ABIInfo - The X86-32 ABI information.
class X86_32ABIInfo : public SwiftABIInfo {
enum Class {
@@ -929,6 +942,8 @@ class X86_32ABIInfo : public SwiftABIInfo {
Class classify(QualType Ty) const;
ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const;
ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const;
+ ABIArgInfo reclassifyHvaArgType(QualType RetTy, CCState &State,
+ const ABIArgInfo& current) const;
/// \brief Updates the number of available free registers, returns
/// true if any registers were allocated.
bool updateFreeRegs(QualType Ty, CCState &State) const;
@@ -946,6 +961,8 @@ class X86_32ABIInfo : public SwiftABIInfo {
void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
CharUnits &StackOffset, ABIArgInfo &Info,
QualType Type) const;
+ void computeVectorCallArgs(CGFunctionInfo &FI, CCState &State,
+ bool &UsedInAlloca) const;
public:
@@ -1494,6 +1511,27 @@ bool X86_32ABIInfo::shouldPrimitiveUseInReg(QualType Ty, CCState &State) const {
return true;
}
+ABIArgInfo
+X86_32ABIInfo::reclassifyHvaArgType(QualType Ty, CCState &State,
+ const ABIArgInfo &current) const {
+ // Assumes vectorCall calling convention.
+ const Type *Base = nullptr;
+ uint64_t NumElts = 0;
+
+ if (!Ty->isBuiltinType() && !Ty->isVectorType() &&
+ isHomogeneousAggregate(Ty, Base, NumElts)) {
+ if (State.FreeSSERegs >= NumElts) {
+ // HVA types get passed directly in registers if there is room.
+ State.FreeSSERegs -= NumElts;
+ return getDirectX86Hva();
+ }
+ // If there's no room, the HVA gets passed as normal indirect
+ // structure.
+ return getIndirectResult(Ty, /*ByVal=*/false, State);
+ }
+ return current;
+}
+
ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty,
CCState &State) const {
// FIXME: Set alignment on indirect arguments.
@@ -1513,19 +1551,34 @@ ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty,
}
// vectorcall adds the concept of a homogenous vector aggregate, similar
- // to other targets.
+ // to other targets, regcall uses some of the HVA rules.
const Type *Base = nullptr;
uint64_t NumElts = 0;
if ((State.CC == llvm::CallingConv::X86_VectorCall ||
State.CC == llvm::CallingConv::X86_RegCall) &&
isHomogeneousAggregate(Ty, Base, NumElts)) {
- if (State.FreeSSERegs >= NumElts) {
- State.FreeSSERegs -= NumElts;
- if (Ty->isBuiltinType() || Ty->isVectorType())
+
+ if (State.CC == llvm::CallingConv::X86_RegCall) {
+ if (State.FreeSSERegs >= NumElts) {
+ State.FreeSSERegs -= NumElts;
+ if (Ty->isBuiltinType() || Ty->isVectorType())
+ return ABIArgInfo::getDirect();
+ return ABIArgInfo::getExpand();
+
+ }
+ return getIndirectResult(Ty, /*ByVal=*/false, State);
+ } else if (State.CC == llvm::CallingConv::X86_VectorCall) {
+ if (State.FreeSSERegs >= NumElts && (Ty->isBuiltinType() || Ty->isVectorType())) {
+ // Actual floating-point types get registers first time through if
+ // there is registers available
+ State.FreeSSERegs -= NumElts;
return ABIArgInfo::getDirect();
- return ABIArgInfo::getExpand();
+ } else if (!Ty->isBuiltinType() && !Ty->isVectorType()) {
+ // HVA Types only get registers after everything else has been
+ // set, so it gets set as indirect for now.
+ return ABIArgInfo::getIndirect(getContext().getTypeAlignInChars(Ty));
+ }
}
- return getIndirectResult(Ty, /*ByVal=*/false, State);
}
if (isAggregateTypeForABI(Ty)) {
@@ -1604,6 +1657,36 @@ ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty,
return ABIArgInfo::getDirect();
}
+void X86_32ABIInfo::computeVectorCallArgs(CGFunctionInfo &FI, CCState &State,
+ bool &UsedInAlloca) const {
+ // Vectorcall only allows the first 6 parameters to be passed in registers,
+ // and homogeneous vector aggregates are only put into registers as a second
+ // priority.
+ unsigned Count = 0;
+ CCState ZeroState = State;
+ ZeroState.FreeRegs = ZeroState.FreeSSERegs = 0;
+ // HVAs must be done as a second priority for registers, so the deferred
+ // items are dealt with by going through the pattern a second time.
+ for (auto &I : FI.arguments()) {
+ if (Count < VectorcallMaxParamNumAsReg)
+ I.info = classifyArgumentType(I.type, State);
+ else
+ // Parameters after the 6th cannot be passed in registers,
+ // so pretend there are no registers left for them.
+ I.info = classifyArgumentType(I.type, ZeroState);
+ UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca);
+ ++Count;
+ }
+ Count = 0;
+ // Go through the arguments a second time to get HVAs registers if there
+ // are still some available.
+ for (auto &I : FI.arguments()) {
+ if (Count < VectorcallMaxParamNumAsReg)
+ I.info = reclassifyHvaArgType(I.type, State, I.info);
+ ++Count;
+ }
+}
+
void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const {
CCState State(FI.getCallingConvention());
if (IsMCUABI)
@@ -1638,9 +1721,14 @@ void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const {
++State.FreeRegs;
bool UsedInAlloca = false;
- for (auto &I : FI.arguments()) {
- I.info = classifyArgumentType(I.type, State);
- UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca);
+ if (State.CC == llvm::CallingConv::X86_VectorCall) {
+ computeVectorCallArgs(FI, State, UsedInAlloca);
+ } else {
+ // If not vectorcall, revert to normal behavior.
+ for (auto &I : FI.arguments()) {
+ I.info = classifyArgumentType(I.type, State);
+ UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca);
+ }
}
// If we needed to use inalloca for any argument, do a second pass and rewrite
@@ -2070,10 +2158,14 @@ public:
}
private:
- ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs,
- bool IsReturnType) const;
-
- bool IsMingw64;
+ ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs, bool IsReturnType,
+ bool IsVectorCall, bool IsRegCall) const;
+ ABIArgInfo reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs,
+ const ABIArgInfo &current) const;
+ void computeVectorCallArgs(CGFunctionInfo &FI, unsigned FreeSSERegs,
+ bool IsVectorCall, bool IsRegCall) const;
+
+ bool IsMingw64;
};
class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
@@ -3679,8 +3771,24 @@ Address X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
/*allowHigherAlign*/ false);
}
+ABIArgInfo
+WinX86_64ABIInfo::reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs,
+ const ABIArgInfo &current) const {
+ // Assumes vectorCall calling convention.
+ const Type *Base = nullptr;
+ uint64_t NumElts = 0;
+
+ if (!Ty->isBuiltinType() && !Ty->isVectorType() &&
+ isHomogeneousAggregate(Ty, Base, NumElts) && FreeSSERegs >= NumElts) {
+ FreeSSERegs -= NumElts;
+ return getDirectX86Hva();
+ }
+ return current;
+}
+
ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs,
- bool IsReturnType) const {
+ bool IsReturnType, bool IsVectorCall,
+ bool IsRegCall) const {
if (Ty->isVoidType())
return ABIArgInfo::getIgnore();
@@ -3704,21 +3812,34 @@ ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs,
}
- // vectorcall adds the concept of a homogenous vector aggregate, similar to
- // other targets.
const Type *Base = nullptr;
uint64_t NumElts = 0;
- if (FreeSSERegs && isHomogeneousAggregate(Ty, Base, NumElts)) {
- if (FreeSSERegs >= NumElts) {
- FreeSSERegs -= NumElts;
- if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())
+ // vectorcall adds the concept of a homogenous vector aggregate, similar to
+ // other targets.
+ if ((IsVectorCall || IsRegCall) &&
+ isHomogeneousAggregate(Ty, Base, NumElts)) {
+ if (IsRegCall) {
+ if (FreeSSERegs >= NumElts) {
+ FreeSSERegs -= NumElts;
+ if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())
+ return ABIArgInfo::getDirect();
+ return ABIArgInfo::getExpand();
+ }
+ return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
+ } else if (IsVectorCall) {
+ if (FreeSSERegs >= NumElts &&
+ (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())) {
+ FreeSSERegs -= NumElts;
return ABIArgInfo::getDirect();
- return ABIArgInfo::getExpand();
+ } else if (IsReturnType) {
+ return ABIArgInfo::getExpand();
+ } else if (!Ty->isBuiltinType() && !Ty->isVectorType()) {
+ // HVAs are delayed and reclassified in the 2nd step.
+ return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
+ }
}
- return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
}
-
if (Ty->isMemberPointerType()) {
// If the member pointer is represented by an LLVM int or ptr, pass it
// directly.
@@ -3754,6 +3875,32 @@ ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs,
return ABIArgInfo::getDirect();
}
+void WinX86_64ABIInfo::computeVectorCallArgs(CGFunctionInfo &FI,
+ unsigned FreeSSERegs,
+ bool IsVectorCall,
+ bool IsRegCall) const {
+ unsigned Count = 0;
+ for (auto &I : FI.arguments()) {
+ if (Count < VectorcallMaxParamNumAsReg)
+ I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall);
+ else {
+ // Since these cannot be passed in registers, pretend no registers
+ // are left.
+ unsigned ZeroSSERegsAvail = 0;
+ I.info = classify(I.type, /*FreeSSERegs=*/ZeroSSERegsAvail, false,
+ IsVectorCall, IsRegCall);
+ }
+ ++Count;
+ }
+
+ Count = 0;
+ for (auto &I : FI.arguments()) {
+ if (Count < VectorcallMaxParamNumAsReg)
+ I.info = reclassifyHvaArgType(I.type, FreeSSERegs, I.info);
+ ++Count;
+ }
+}
+
void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
bool IsVectorCall =
FI.getCallingConvention() == llvm::CallingConv::X86_VectorCall;
@@ -3769,17 +3916,24 @@ void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
}
if (!getCXXABI().classifyReturnType(FI))
- FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true);
+ FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true,
+ IsVectorCall, IsRegCall);
if (IsVectorCall) {
// We can use up to 6 SSE register parameters with vectorcall.
FreeSSERegs = 6;
} else if (IsRegCall) {
+ // RegCall gives us 16 SSE registers, we can reuse the return registers.
FreeSSERegs = 16;
}
- for (auto &I : FI.arguments())
- I.info = classify(I.type, FreeSSERegs, false);
+ if (IsVectorCall) {
+ computeVectorCallArgs(FI, FreeSSERegs, IsVectorCall, IsRegCall);
+ } else {
+ for (auto &I : FI.arguments())
+ I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall);
+ }
+
}
Address WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,