summaryrefslogtreecommitdiff
path: root/lib/StaticAnalyzer/Core/RangedConstraintManager.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/StaticAnalyzer/Core/RangedConstraintManager.cpp')
-rw-r--r--lib/StaticAnalyzer/Core/RangedConstraintManager.cpp204
1 files changed, 204 insertions, 0 deletions
diff --git a/lib/StaticAnalyzer/Core/RangedConstraintManager.cpp b/lib/StaticAnalyzer/Core/RangedConstraintManager.cpp
new file mode 100644
index 0000000000000..1304116f4974b
--- /dev/null
+++ b/lib/StaticAnalyzer/Core/RangedConstraintManager.cpp
@@ -0,0 +1,204 @@
+//== RangedConstraintManager.cpp --------------------------------*- C++ -*--==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines RangedConstraintManager, a class that provides a
+// range-based constraint manager interface.
+//
+//===----------------------------------------------------------------------===//
+
+#include "RangedConstraintManager.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
+
+namespace clang {
+
+namespace ento {
+
+RangedConstraintManager::~RangedConstraintManager() {}
+
+ProgramStateRef RangedConstraintManager::assumeSym(ProgramStateRef State,
+ SymbolRef Sym,
+ bool Assumption) {
+ // Handle SymbolData.
+ if (isa<SymbolData>(Sym)) {
+ return assumeSymUnsupported(State, Sym, Assumption);
+
+ // Handle symbolic expression.
+ } else if (const SymIntExpr *SIE = dyn_cast<SymIntExpr>(Sym)) {
+ // We can only simplify expressions whose RHS is an integer.
+
+ BinaryOperator::Opcode op = SIE->getOpcode();
+ if (BinaryOperator::isComparisonOp(op)) {
+ if (!Assumption)
+ op = BinaryOperator::negateComparisonOp(op);
+
+ return assumeSymRel(State, SIE->getLHS(), op, SIE->getRHS());
+ }
+
+ } else if (const SymSymExpr *SSE = dyn_cast<SymSymExpr>(Sym)) {
+ // Translate "a != b" to "(b - a) != 0".
+ // We invert the order of the operands as a heuristic for how loop
+ // conditions are usually written ("begin != end") as compared to length
+ // calculations ("end - begin"). The more correct thing to do would be to
+ // canonicalize "a - b" and "b - a", which would allow us to treat
+ // "a != b" and "b != a" the same.
+ SymbolManager &SymMgr = getSymbolManager();
+ BinaryOperator::Opcode Op = SSE->getOpcode();
+ assert(BinaryOperator::isComparisonOp(Op));
+
+ // For now, we only support comparing pointers.
+ assert(Loc::isLocType(SSE->getLHS()->getType()));
+ assert(Loc::isLocType(SSE->getRHS()->getType()));
+ QualType DiffTy = SymMgr.getContext().getPointerDiffType();
+ SymbolRef Subtraction =
+ SymMgr.getSymSymExpr(SSE->getRHS(), BO_Sub, SSE->getLHS(), DiffTy);
+
+ const llvm::APSInt &Zero = getBasicVals().getValue(0, DiffTy);
+ Op = BinaryOperator::reverseComparisonOp(Op);
+ if (!Assumption)
+ Op = BinaryOperator::negateComparisonOp(Op);
+ return assumeSymRel(State, Subtraction, Op, Zero);
+ }
+
+ // If we get here, there's nothing else we can do but treat the symbol as
+ // opaque.
+ return assumeSymUnsupported(State, Sym, Assumption);
+}
+
+ProgramStateRef RangedConstraintManager::assumeSymInclusiveRange(
+ ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &From,
+ const llvm::APSInt &To, bool InRange) {
+ // Get the type used for calculating wraparound.
+ BasicValueFactory &BVF = getBasicVals();
+ APSIntType WraparoundType = BVF.getAPSIntType(Sym->getType());
+
+ llvm::APSInt Adjustment = WraparoundType.getZeroValue();
+ SymbolRef AdjustedSym = Sym;
+ computeAdjustment(AdjustedSym, Adjustment);
+
+ // Convert the right-hand side integer as necessary.
+ APSIntType ComparisonType = std::max(WraparoundType, APSIntType(From));
+ llvm::APSInt ConvertedFrom = ComparisonType.convert(From);
+ llvm::APSInt ConvertedTo = ComparisonType.convert(To);
+
+ // Prefer unsigned comparisons.
+ if (ComparisonType.getBitWidth() == WraparoundType.getBitWidth() &&
+ ComparisonType.isUnsigned() && !WraparoundType.isUnsigned())
+ Adjustment.setIsSigned(false);
+
+ if (InRange)
+ return assumeSymWithinInclusiveRange(State, AdjustedSym, ConvertedFrom,
+ ConvertedTo, Adjustment);
+ return assumeSymOutsideInclusiveRange(State, AdjustedSym, ConvertedFrom,
+ ConvertedTo, Adjustment);
+}
+
+ProgramStateRef
+RangedConstraintManager::assumeSymUnsupported(ProgramStateRef State,
+ SymbolRef Sym, bool Assumption) {
+ BasicValueFactory &BVF = getBasicVals();
+ QualType T = Sym->getType();
+
+ // Non-integer types are not supported.
+ if (!T->isIntegralOrEnumerationType())
+ return State;
+
+ // Reverse the operation and add directly to state.
+ const llvm::APSInt &Zero = BVF.getValue(0, T);
+ if (Assumption)
+ return assumeSymNE(State, Sym, Zero, Zero);
+ else
+ return assumeSymEQ(State, Sym, Zero, Zero);
+}
+
+ProgramStateRef RangedConstraintManager::assumeSymRel(ProgramStateRef State,
+ SymbolRef Sym,
+ BinaryOperator::Opcode Op,
+ const llvm::APSInt &Int) {
+ assert(BinaryOperator::isComparisonOp(Op) &&
+ "Non-comparison ops should be rewritten as comparisons to zero.");
+
+ // Simplification: translate an assume of a constraint of the form
+ // "(exp comparison_op expr) != 0" to true into an assume of
+ // "exp comparison_op expr" to true. (And similarly, an assume of the form
+ // "(exp comparison_op expr) == 0" to true into an assume of
+ // "exp comparison_op expr" to false.)
+ if (Int == 0 && (Op == BO_EQ || Op == BO_NE)) {
+ if (const BinarySymExpr *SE = dyn_cast<BinarySymExpr>(Sym))
+ if (BinaryOperator::isComparisonOp(SE->getOpcode()))
+ return assumeSym(State, Sym, (Op == BO_NE ? true : false));
+ }
+
+ // Get the type used for calculating wraparound.
+ BasicValueFactory &BVF = getBasicVals();
+ APSIntType WraparoundType = BVF.getAPSIntType(Sym->getType());
+
+ // We only handle simple comparisons of the form "$sym == constant"
+ // or "($sym+constant1) == constant2".
+ // The adjustment is "constant1" in the above expression. It's used to
+ // "slide" the solution range around for modular arithmetic. For example,
+ // x < 4 has the solution [0, 3]. x+2 < 4 has the solution [0-2, 3-2], which
+ // in modular arithmetic is [0, 1] U [UINT_MAX-1, UINT_MAX]. It's up to
+ // the subclasses of SimpleConstraintManager to handle the adjustment.
+ llvm::APSInt Adjustment = WraparoundType.getZeroValue();
+ computeAdjustment(Sym, Adjustment);
+
+ // Convert the right-hand side integer as necessary.
+ APSIntType ComparisonType = std::max(WraparoundType, APSIntType(Int));
+ llvm::APSInt ConvertedInt = ComparisonType.convert(Int);
+
+ // Prefer unsigned comparisons.
+ if (ComparisonType.getBitWidth() == WraparoundType.getBitWidth() &&
+ ComparisonType.isUnsigned() && !WraparoundType.isUnsigned())
+ Adjustment.setIsSigned(false);
+
+ switch (Op) {
+ default:
+ llvm_unreachable("invalid operation not caught by assertion above");
+
+ case BO_EQ:
+ return assumeSymEQ(State, Sym, ConvertedInt, Adjustment);
+
+ case BO_NE:
+ return assumeSymNE(State, Sym, ConvertedInt, Adjustment);
+
+ case BO_GT:
+ return assumeSymGT(State, Sym, ConvertedInt, Adjustment);
+
+ case BO_GE:
+ return assumeSymGE(State, Sym, ConvertedInt, Adjustment);
+
+ case BO_LT:
+ return assumeSymLT(State, Sym, ConvertedInt, Adjustment);
+
+ case BO_LE:
+ return assumeSymLE(State, Sym, ConvertedInt, Adjustment);
+ } // end switch
+}
+
+void RangedConstraintManager::computeAdjustment(SymbolRef &Sym,
+ llvm::APSInt &Adjustment) {
+ // Is it a "($sym+constant1)" expression?
+ if (const SymIntExpr *SE = dyn_cast<SymIntExpr>(Sym)) {
+ BinaryOperator::Opcode Op = SE->getOpcode();
+ if (Op == BO_Add || Op == BO_Sub) {
+ Sym = SE->getLHS();
+ Adjustment = APSIntType(Adjustment).convert(SE->getRHS());
+
+ // Don't forget to negate the adjustment if it's being subtracted.
+ // This should happen /after/ promotion, in case the value being
+ // subtracted is, say, CHAR_MIN, and the promoted type is 'int'.
+ if (Op == BO_Sub)
+ Adjustment = -Adjustment;
+ }
+ }
+}
+
+} // end of namespace ento
+
+} // end of namespace clang