diff options
Diffstat (limited to 'lib/StaticAnalyzer/Core/RangedConstraintManager.cpp')
-rw-r--r-- | lib/StaticAnalyzer/Core/RangedConstraintManager.cpp | 204 |
1 files changed, 204 insertions, 0 deletions
diff --git a/lib/StaticAnalyzer/Core/RangedConstraintManager.cpp b/lib/StaticAnalyzer/Core/RangedConstraintManager.cpp new file mode 100644 index 0000000000000..1304116f4974b --- /dev/null +++ b/lib/StaticAnalyzer/Core/RangedConstraintManager.cpp @@ -0,0 +1,204 @@ +//== RangedConstraintManager.cpp --------------------------------*- C++ -*--==// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file defines RangedConstraintManager, a class that provides a +// range-based constraint manager interface. +// +//===----------------------------------------------------------------------===// + +#include "RangedConstraintManager.h" +#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" + +namespace clang { + +namespace ento { + +RangedConstraintManager::~RangedConstraintManager() {} + +ProgramStateRef RangedConstraintManager::assumeSym(ProgramStateRef State, + SymbolRef Sym, + bool Assumption) { + // Handle SymbolData. + if (isa<SymbolData>(Sym)) { + return assumeSymUnsupported(State, Sym, Assumption); + + // Handle symbolic expression. + } else if (const SymIntExpr *SIE = dyn_cast<SymIntExpr>(Sym)) { + // We can only simplify expressions whose RHS is an integer. + + BinaryOperator::Opcode op = SIE->getOpcode(); + if (BinaryOperator::isComparisonOp(op)) { + if (!Assumption) + op = BinaryOperator::negateComparisonOp(op); + + return assumeSymRel(State, SIE->getLHS(), op, SIE->getRHS()); + } + + } else if (const SymSymExpr *SSE = dyn_cast<SymSymExpr>(Sym)) { + // Translate "a != b" to "(b - a) != 0". + // We invert the order of the operands as a heuristic for how loop + // conditions are usually written ("begin != end") as compared to length + // calculations ("end - begin"). The more correct thing to do would be to + // canonicalize "a - b" and "b - a", which would allow us to treat + // "a != b" and "b != a" the same. + SymbolManager &SymMgr = getSymbolManager(); + BinaryOperator::Opcode Op = SSE->getOpcode(); + assert(BinaryOperator::isComparisonOp(Op)); + + // For now, we only support comparing pointers. + assert(Loc::isLocType(SSE->getLHS()->getType())); + assert(Loc::isLocType(SSE->getRHS()->getType())); + QualType DiffTy = SymMgr.getContext().getPointerDiffType(); + SymbolRef Subtraction = + SymMgr.getSymSymExpr(SSE->getRHS(), BO_Sub, SSE->getLHS(), DiffTy); + + const llvm::APSInt &Zero = getBasicVals().getValue(0, DiffTy); + Op = BinaryOperator::reverseComparisonOp(Op); + if (!Assumption) + Op = BinaryOperator::negateComparisonOp(Op); + return assumeSymRel(State, Subtraction, Op, Zero); + } + + // If we get here, there's nothing else we can do but treat the symbol as + // opaque. + return assumeSymUnsupported(State, Sym, Assumption); +} + +ProgramStateRef RangedConstraintManager::assumeSymInclusiveRange( + ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &From, + const llvm::APSInt &To, bool InRange) { + // Get the type used for calculating wraparound. + BasicValueFactory &BVF = getBasicVals(); + APSIntType WraparoundType = BVF.getAPSIntType(Sym->getType()); + + llvm::APSInt Adjustment = WraparoundType.getZeroValue(); + SymbolRef AdjustedSym = Sym; + computeAdjustment(AdjustedSym, Adjustment); + + // Convert the right-hand side integer as necessary. + APSIntType ComparisonType = std::max(WraparoundType, APSIntType(From)); + llvm::APSInt ConvertedFrom = ComparisonType.convert(From); + llvm::APSInt ConvertedTo = ComparisonType.convert(To); + + // Prefer unsigned comparisons. + if (ComparisonType.getBitWidth() == WraparoundType.getBitWidth() && + ComparisonType.isUnsigned() && !WraparoundType.isUnsigned()) + Adjustment.setIsSigned(false); + + if (InRange) + return assumeSymWithinInclusiveRange(State, AdjustedSym, ConvertedFrom, + ConvertedTo, Adjustment); + return assumeSymOutsideInclusiveRange(State, AdjustedSym, ConvertedFrom, + ConvertedTo, Adjustment); +} + +ProgramStateRef +RangedConstraintManager::assumeSymUnsupported(ProgramStateRef State, + SymbolRef Sym, bool Assumption) { + BasicValueFactory &BVF = getBasicVals(); + QualType T = Sym->getType(); + + // Non-integer types are not supported. + if (!T->isIntegralOrEnumerationType()) + return State; + + // Reverse the operation and add directly to state. + const llvm::APSInt &Zero = BVF.getValue(0, T); + if (Assumption) + return assumeSymNE(State, Sym, Zero, Zero); + else + return assumeSymEQ(State, Sym, Zero, Zero); +} + +ProgramStateRef RangedConstraintManager::assumeSymRel(ProgramStateRef State, + SymbolRef Sym, + BinaryOperator::Opcode Op, + const llvm::APSInt &Int) { + assert(BinaryOperator::isComparisonOp(Op) && + "Non-comparison ops should be rewritten as comparisons to zero."); + + // Simplification: translate an assume of a constraint of the form + // "(exp comparison_op expr) != 0" to true into an assume of + // "exp comparison_op expr" to true. (And similarly, an assume of the form + // "(exp comparison_op expr) == 0" to true into an assume of + // "exp comparison_op expr" to false.) + if (Int == 0 && (Op == BO_EQ || Op == BO_NE)) { + if (const BinarySymExpr *SE = dyn_cast<BinarySymExpr>(Sym)) + if (BinaryOperator::isComparisonOp(SE->getOpcode())) + return assumeSym(State, Sym, (Op == BO_NE ? true : false)); + } + + // Get the type used for calculating wraparound. + BasicValueFactory &BVF = getBasicVals(); + APSIntType WraparoundType = BVF.getAPSIntType(Sym->getType()); + + // We only handle simple comparisons of the form "$sym == constant" + // or "($sym+constant1) == constant2". + // The adjustment is "constant1" in the above expression. It's used to + // "slide" the solution range around for modular arithmetic. For example, + // x < 4 has the solution [0, 3]. x+2 < 4 has the solution [0-2, 3-2], which + // in modular arithmetic is [0, 1] U [UINT_MAX-1, UINT_MAX]. It's up to + // the subclasses of SimpleConstraintManager to handle the adjustment. + llvm::APSInt Adjustment = WraparoundType.getZeroValue(); + computeAdjustment(Sym, Adjustment); + + // Convert the right-hand side integer as necessary. + APSIntType ComparisonType = std::max(WraparoundType, APSIntType(Int)); + llvm::APSInt ConvertedInt = ComparisonType.convert(Int); + + // Prefer unsigned comparisons. + if (ComparisonType.getBitWidth() == WraparoundType.getBitWidth() && + ComparisonType.isUnsigned() && !WraparoundType.isUnsigned()) + Adjustment.setIsSigned(false); + + switch (Op) { + default: + llvm_unreachable("invalid operation not caught by assertion above"); + + case BO_EQ: + return assumeSymEQ(State, Sym, ConvertedInt, Adjustment); + + case BO_NE: + return assumeSymNE(State, Sym, ConvertedInt, Adjustment); + + case BO_GT: + return assumeSymGT(State, Sym, ConvertedInt, Adjustment); + + case BO_GE: + return assumeSymGE(State, Sym, ConvertedInt, Adjustment); + + case BO_LT: + return assumeSymLT(State, Sym, ConvertedInt, Adjustment); + + case BO_LE: + return assumeSymLE(State, Sym, ConvertedInt, Adjustment); + } // end switch +} + +void RangedConstraintManager::computeAdjustment(SymbolRef &Sym, + llvm::APSInt &Adjustment) { + // Is it a "($sym+constant1)" expression? + if (const SymIntExpr *SE = dyn_cast<SymIntExpr>(Sym)) { + BinaryOperator::Opcode Op = SE->getOpcode(); + if (Op == BO_Add || Op == BO_Sub) { + Sym = SE->getLHS(); + Adjustment = APSIntType(Adjustment).convert(SE->getRHS()); + + // Don't forget to negate the adjustment if it's being subtracted. + // This should happen /after/ promotion, in case the value being + // subtracted is, say, CHAR_MIN, and the promoted type is 'int'. + if (Op == BO_Sub) + Adjustment = -Adjustment; + } + } +} + +} // end of namespace ento + +} // end of namespace clang |