diff options
Diffstat (limited to 'lib/Support/APInt.cpp')
-rw-r--r-- | lib/Support/APInt.cpp | 312 |
1 files changed, 148 insertions, 164 deletions
diff --git a/lib/Support/APInt.cpp b/lib/Support/APInt.cpp index caa0691f92050..17144522db82e 100644 --- a/lib/Support/APInt.cpp +++ b/lib/Support/APInt.cpp @@ -122,35 +122,38 @@ APInt::APInt(unsigned numbits, StringRef Str, uint8_t radix) fromString(numbits, Str, radix); } +void APInt::reallocate(unsigned NewBitWidth) { + // If the number of words is the same we can just change the width and stop. + if (getNumWords() == getNumWords(NewBitWidth)) { + BitWidth = NewBitWidth; + return; + } + + // If we have an allocation, delete it. + if (!isSingleWord()) + delete [] U.pVal; + + // Update BitWidth. + BitWidth = NewBitWidth; + + // If we are supposed to have an allocation, create it. + if (!isSingleWord()) + U.pVal = getMemory(getNumWords()); +} + void APInt::AssignSlowCase(const APInt& RHS) { // Don't do anything for X = X if (this == &RHS) return; - if (BitWidth == RHS.getBitWidth()) { - // assume same bit-width single-word case is already handled - assert(!isSingleWord()); - memcpy(U.pVal, RHS.U.pVal, getNumWords() * APINT_WORD_SIZE); - return; - } + // Adjust the bit width and handle allocations as necessary. + reallocate(RHS.getBitWidth()); - if (isSingleWord()) { - // assume case where both are single words is already handled - assert(!RHS.isSingleWord()); - U.pVal = getMemory(RHS.getNumWords()); - memcpy(U.pVal, RHS.U.pVal, RHS.getNumWords() * APINT_WORD_SIZE); - } else if (getNumWords() == RHS.getNumWords()) - memcpy(U.pVal, RHS.U.pVal, RHS.getNumWords() * APINT_WORD_SIZE); - else if (RHS.isSingleWord()) { - delete [] U.pVal; + // Copy the data. + if (isSingleWord()) U.VAL = RHS.U.VAL; - } else { - delete [] U.pVal; - U.pVal = getMemory(RHS.getNumWords()); - memcpy(U.pVal, RHS.U.pVal, RHS.getNumWords() * APINT_WORD_SIZE); - } - BitWidth = RHS.BitWidth; - clearUnusedBits(); + else + memcpy(U.pVal, RHS.U.pVal, getNumWords() * APINT_WORD_SIZE); } /// This method 'profiles' an APInt for use with FoldingSet. @@ -1138,10 +1141,13 @@ APInt APInt::multiplicativeInverse(const APInt& modulo) const { return APInt(BitWidth, 0); // The next-to-last t is the multiplicative inverse. However, we are - // interested in a positive inverse. Calcuate a positive one from a negative + // interested in a positive inverse. Calculate a positive one from a negative // one if necessary. A simple addition of the modulo suffices because // abs(t[i]) is known to be less than *this/2 (see the link above). - return t[i].isNegative() ? t[i] + modulo : t[i]; + if (t[i].isNegative()) + t[i] += modulo; + + return std::move(t[i]); } /// Calculate the magic numbers required to implement a signed integer division @@ -1240,7 +1246,7 @@ APInt::mu APInt::magicu(unsigned LeadingZeros) const { /// from "Art of Computer Programming, Volume 2", section 4.3.1, p. 272. The /// variables here have the same names as in the algorithm. Comments explain /// the algorithm and any deviation from it. -static void KnuthDiv(unsigned *u, unsigned *v, unsigned *q, unsigned* r, +static void KnuthDiv(uint32_t *u, uint32_t *v, uint32_t *q, uint32_t* r, unsigned m, unsigned n) { assert(u && "Must provide dividend"); assert(v && "Must provide divisor"); @@ -1266,16 +1272,16 @@ static void KnuthDiv(unsigned *u, unsigned *v, unsigned *q, unsigned* r, // overflow. Note that this can require an extra word in u so that u must // be of length m+n+1. unsigned shift = countLeadingZeros(v[n-1]); - unsigned v_carry = 0; - unsigned u_carry = 0; + uint32_t v_carry = 0; + uint32_t u_carry = 0; if (shift) { for (unsigned i = 0; i < m+n; ++i) { - unsigned u_tmp = u[i] >> (32 - shift); + uint32_t u_tmp = u[i] >> (32 - shift); u[i] = (u[i] << shift) | u_carry; u_carry = u_tmp; } for (unsigned i = 0; i < n; ++i) { - unsigned v_tmp = v[i] >> (32 - shift); + uint32_t v_tmp = v[i] >> (32 - shift); v[i] = (v[i] << shift) | v_carry; v_carry = v_tmp; } @@ -1296,11 +1302,11 @@ static void KnuthDiv(unsigned *u, unsigned *v, unsigned *q, unsigned* r, // Set qp = (u[j+n]*b + u[j+n-1]) / v[n-1]. (qp=qprime=q') // Set rp = (u[j+n]*b + u[j+n-1]) % v[n-1]. (rp=rprime=r') // Now test if qp == b or qp*v[n-2] > b*rp + u[j+n-2]; if so, decrease - // qp by 1, inrease rp by v[n-1], and repeat this test if rp < b. The test + // qp by 1, increase rp by v[n-1], and repeat this test if rp < b. The test // on v[n-2] determines at high speed most of the cases in which the trial // value qp is one too large, and it eliminates all cases where qp is two // too large. - uint64_t dividend = ((uint64_t(u[j+n]) << 32) + u[j+n-1]); + uint64_t dividend = Make_64(u[j+n], u[j+n-1]); DEBUG(dbgs() << "KnuthDiv: dividend == " << dividend << '\n'); uint64_t qp = dividend / v[n-1]; uint64_t rp = dividend % v[n-1]; @@ -1323,14 +1329,14 @@ static void KnuthDiv(unsigned *u, unsigned *v, unsigned *q, unsigned* r, int64_t borrow = 0; for (unsigned i = 0; i < n; ++i) { uint64_t p = uint64_t(qp) * uint64_t(v[i]); - int64_t subres = int64_t(u[j+i]) - borrow - (unsigned)p; - u[j+i] = (unsigned)subres; - borrow = (p >> 32) - (subres >> 32); + int64_t subres = int64_t(u[j+i]) - borrow - Lo_32(p); + u[j+i] = Lo_32(subres); + borrow = Hi_32(p) - Hi_32(subres); DEBUG(dbgs() << "KnuthDiv: u[j+i] = " << u[j+i] << ", borrow = " << borrow << '\n'); } bool isNeg = u[j+n] < borrow; - u[j+n] -= (unsigned)borrow; + u[j+n] -= Lo_32(borrow); DEBUG(dbgs() << "KnuthDiv: after subtraction:"); DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]); @@ -1338,7 +1344,7 @@ static void KnuthDiv(unsigned *u, unsigned *v, unsigned *q, unsigned* r, // D5. [Test remainder.] Set q[j] = qp. If the result of step D4 was // negative, go to step D6; otherwise go on to step D7. - q[j] = (unsigned)qp; + q[j] = Lo_32(qp); if (isNeg) { // D6. [Add back]. The probability that this step is necessary is very // small, on the order of only 2/b. Make sure that test data accounts for @@ -1349,7 +1355,7 @@ static void KnuthDiv(unsigned *u, unsigned *v, unsigned *q, unsigned* r, // since it cancels with the borrow that occurred in D4. bool carry = false; for (unsigned i = 0; i < n; i++) { - unsigned limit = std::min(u[j+i],v[i]); + uint32_t limit = std::min(u[j+i],v[i]); u[j+i] += v[i] + carry; carry = u[j+i] < limit || (carry && u[j+i] == limit); } @@ -1374,7 +1380,7 @@ static void KnuthDiv(unsigned *u, unsigned *v, unsigned *q, unsigned* r, // multiplication by d by using a shift left. So, all we have to do is // shift right here. if (shift) { - unsigned carry = 0; + uint32_t carry = 0; DEBUG(dbgs() << "KnuthDiv: remainder:"); for (int i = n-1; i >= 0; i--) { r[i] = (u[i] >> shift) | carry; @@ -1403,17 +1409,16 @@ void APInt::divide(const APInt &LHS, unsigned lhsWords, const APInt &RHS, // can't use 64-bit operands here because we don't have native results of // 128-bits. Furthermore, casting the 64-bit values to 32-bit values won't // work on large-endian machines. - uint64_t mask = ~0ull >> (sizeof(unsigned)*CHAR_BIT); unsigned n = rhsWords * 2; unsigned m = (lhsWords * 2) - n; // Allocate space for the temporary values we need either on the stack, if // it will fit, or on the heap if it won't. - unsigned SPACE[128]; - unsigned *U = nullptr; - unsigned *V = nullptr; - unsigned *Q = nullptr; - unsigned *R = nullptr; + uint32_t SPACE[128]; + uint32_t *U = nullptr; + uint32_t *V = nullptr; + uint32_t *Q = nullptr; + uint32_t *R = nullptr; if ((Remainder?4:3)*n+2*m+1 <= 128) { U = &SPACE[0]; V = &SPACE[m+n+1]; @@ -1421,34 +1426,34 @@ void APInt::divide(const APInt &LHS, unsigned lhsWords, const APInt &RHS, if (Remainder) R = &SPACE[(m+n+1) + n + (m+n)]; } else { - U = new unsigned[m + n + 1]; - V = new unsigned[n]; - Q = new unsigned[m+n]; + U = new uint32_t[m + n + 1]; + V = new uint32_t[n]; + Q = new uint32_t[m+n]; if (Remainder) - R = new unsigned[n]; + R = new uint32_t[n]; } // Initialize the dividend - memset(U, 0, (m+n+1)*sizeof(unsigned)); + memset(U, 0, (m+n+1)*sizeof(uint32_t)); for (unsigned i = 0; i < lhsWords; ++i) { - uint64_t tmp = (LHS.getNumWords() == 1 ? LHS.U.VAL : LHS.U.pVal[i]); - U[i * 2] = (unsigned)(tmp & mask); - U[i * 2 + 1] = (unsigned)(tmp >> (sizeof(unsigned)*CHAR_BIT)); + uint64_t tmp = LHS.getRawData()[i]; + U[i * 2] = Lo_32(tmp); + U[i * 2 + 1] = Hi_32(tmp); } U[m+n] = 0; // this extra word is for "spill" in the Knuth algorithm. // Initialize the divisor - memset(V, 0, (n)*sizeof(unsigned)); + memset(V, 0, (n)*sizeof(uint32_t)); for (unsigned i = 0; i < rhsWords; ++i) { - uint64_t tmp = (RHS.getNumWords() == 1 ? RHS.U.VAL : RHS.U.pVal[i]); - V[i * 2] = (unsigned)(tmp & mask); - V[i * 2 + 1] = (unsigned)(tmp >> (sizeof(unsigned)*CHAR_BIT)); + uint64_t tmp = RHS.getRawData()[i]; + V[i * 2] = Lo_32(tmp); + V[i * 2 + 1] = Hi_32(tmp); } // initialize the quotient and remainder - memset(Q, 0, (m+n) * sizeof(unsigned)); + memset(Q, 0, (m+n) * sizeof(uint32_t)); if (Remainder) - memset(R, 0, n * sizeof(unsigned)); + memset(R, 0, n * sizeof(uint32_t)); // Now, adjust m and n for the Knuth division. n is the number of words in // the divisor. m is the number of words by which the dividend exceeds the @@ -1469,22 +1474,22 @@ void APInt::divide(const APInt &LHS, unsigned lhsWords, const APInt &RHS, // are using base 2^32 instead of base 10. assert(n != 0 && "Divide by zero?"); if (n == 1) { - unsigned divisor = V[0]; - unsigned remainder = 0; - for (int i = m+n-1; i >= 0; i--) { - uint64_t partial_dividend = uint64_t(remainder) << 32 | U[i]; + uint32_t divisor = V[0]; + uint32_t remainder = 0; + for (int i = m; i >= 0; i--) { + uint64_t partial_dividend = Make_64(remainder, U[i]); if (partial_dividend == 0) { Q[i] = 0; remainder = 0; } else if (partial_dividend < divisor) { Q[i] = 0; - remainder = (unsigned)partial_dividend; + remainder = Lo_32(partial_dividend); } else if (partial_dividend == divisor) { Q[i] = 1; remainder = 0; } else { - Q[i] = (unsigned)(partial_dividend / divisor); - remainder = (unsigned)(partial_dividend - (Q[i] * divisor)); + Q[i] = Lo_32(partial_dividend / divisor); + remainder = Lo_32(partial_dividend - (Q[i] * divisor)); } } if (R) @@ -1498,24 +1503,16 @@ void APInt::divide(const APInt &LHS, unsigned lhsWords, const APInt &RHS, // If the caller wants the quotient if (Quotient) { // Set up the Quotient value's memory. - if (Quotient->BitWidth != LHS.BitWidth) { - if (Quotient->isSingleWord()) - Quotient->U.VAL = 0; - else - delete [] Quotient->U.pVal; - Quotient->BitWidth = LHS.BitWidth; - if (!Quotient->isSingleWord()) - Quotient->U.pVal = getClearedMemory(Quotient->getNumWords()); - } else - Quotient->clearAllBits(); + Quotient->reallocate(LHS.BitWidth); + // Clear out any previous bits. + Quotient->clearAllBits(); // The quotient is in Q. Reconstitute the quotient into Quotient's low // order words. // This case is currently dead as all users of divide() handle trivial cases // earlier. if (lhsWords == 1) { - uint64_t tmp = - uint64_t(Q[0]) | (uint64_t(Q[1]) << (APINT_BITS_PER_WORD / 2)); + uint64_t tmp = Make_64(Q[1], Q[0]); if (Quotient->isSingleWord()) Quotient->U.VAL = tmp; else @@ -1523,30 +1520,21 @@ void APInt::divide(const APInt &LHS, unsigned lhsWords, const APInt &RHS, } else { assert(!Quotient->isSingleWord() && "Quotient APInt not large enough"); for (unsigned i = 0; i < lhsWords; ++i) - Quotient->U.pVal[i] = - uint64_t(Q[i*2]) | (uint64_t(Q[i*2+1]) << (APINT_BITS_PER_WORD / 2)); + Quotient->U.pVal[i] = Make_64(Q[i*2+1], Q[i*2]); } } // If the caller wants the remainder if (Remainder) { // Set up the Remainder value's memory. - if (Remainder->BitWidth != RHS.BitWidth) { - if (Remainder->isSingleWord()) - Remainder->U.VAL = 0; - else - delete [] Remainder->U.pVal; - Remainder->BitWidth = RHS.BitWidth; - if (!Remainder->isSingleWord()) - Remainder->U.pVal = getClearedMemory(Remainder->getNumWords()); - } else - Remainder->clearAllBits(); + Remainder->reallocate(RHS.BitWidth); + // Clear out any previous bits. + Remainder->clearAllBits(); // The remainder is in R. Reconstitute the remainder into Remainder's low // order words. if (rhsWords == 1) { - uint64_t tmp = - uint64_t(R[0]) | (uint64_t(R[1]) << (APINT_BITS_PER_WORD / 2)); + uint64_t tmp = Make_64(R[1], R[0]); if (Remainder->isSingleWord()) Remainder->U.VAL = tmp; else @@ -1554,8 +1542,7 @@ void APInt::divide(const APInt &LHS, unsigned lhsWords, const APInt &RHS, } else { assert(!Remainder->isSingleWord() && "Remainder APInt not large enough"); for (unsigned i = 0; i < rhsWords; ++i) - Remainder->U.pVal[i] = - uint64_t(R[i*2]) | (uint64_t(R[i*2+1]) << (APINT_BITS_PER_WORD / 2)); + Remainder->U.pVal[i] = Make_64(R[i*2+1], R[i*2]); } } @@ -1578,29 +1565,30 @@ APInt APInt::udiv(const APInt& RHS) const { } // Get some facts about the LHS and RHS number of bits and words - unsigned rhsBits = RHS.getActiveBits(); - unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1); + unsigned lhsWords = getNumWords(getActiveBits()); + unsigned rhsBits = RHS.getActiveBits(); + unsigned rhsWords = getNumWords(rhsBits); assert(rhsWords && "Divided by zero???"); - unsigned lhsBits = this->getActiveBits(); - unsigned lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1); // Deal with some degenerate cases if (!lhsWords) // 0 / X ===> 0 return APInt(BitWidth, 0); - else if (lhsWords < rhsWords || this->ult(RHS)) { + if (rhsBits == 1) + // X / 1 ===> X + return *this; + if (lhsWords < rhsWords || this->ult(RHS)) // X / Y ===> 0, iff X < Y return APInt(BitWidth, 0); - } else if (*this == RHS) { + if (*this == RHS) // X / X ===> 1 return APInt(BitWidth, 1); - } else if (lhsWords == 1 && rhsWords == 1) { + if (lhsWords == 1) // rhsWords is 1 if lhsWords is 1. // All high words are zero, just use native divide return APInt(BitWidth, this->U.pVal[0] / RHS.U.pVal[0]); - } // We have to compute it the hard way. Invoke the Knuth divide algorithm. - APInt Quotient(1,0); // to hold result. + APInt Quotient; // to hold result. divide(*this, lhsWords, RHS, rhsWords, &Quotient, nullptr); return Quotient; } @@ -1624,31 +1612,32 @@ APInt APInt::urem(const APInt& RHS) const { } // Get some facts about the LHS - unsigned lhsBits = getActiveBits(); - unsigned lhsWords = !lhsBits ? 0 : (whichWord(lhsBits - 1) + 1); + unsigned lhsWords = getNumWords(getActiveBits()); // Get some facts about the RHS unsigned rhsBits = RHS.getActiveBits(); - unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1); + unsigned rhsWords = getNumWords(rhsBits); assert(rhsWords && "Performing remainder operation by zero ???"); // Check the degenerate cases - if (lhsWords == 0) { + if (lhsWords == 0) // 0 % Y ===> 0 return APInt(BitWidth, 0); - } else if (lhsWords < rhsWords || this->ult(RHS)) { + if (rhsBits == 1) + // X % 1 ===> 0 + return APInt(BitWidth, 0); + if (lhsWords < rhsWords || this->ult(RHS)) // X % Y ===> X, iff X < Y return *this; - } else if (*this == RHS) { + if (*this == RHS) // X % X == 0; return APInt(BitWidth, 0); - } else if (lhsWords == 1) { + if (lhsWords == 1) // All high words are zero, just use native remainder return APInt(BitWidth, U.pVal[0] % RHS.U.pVal[0]); - } // We have to compute it the hard way. Invoke the Knuth divide algorithm. - APInt Remainder(1,0); + APInt Remainder; divide(*this, lhsWords, RHS, rhsWords, nullptr, &Remainder); return Remainder; } @@ -1667,22 +1656,23 @@ APInt APInt::srem(const APInt &RHS) const { void APInt::udivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient, APInt &Remainder) { assert(LHS.BitWidth == RHS.BitWidth && "Bit widths must be the same"); + unsigned BitWidth = LHS.BitWidth; // First, deal with the easy case if (LHS.isSingleWord()) { assert(RHS.U.VAL != 0 && "Divide by zero?"); uint64_t QuotVal = LHS.U.VAL / RHS.U.VAL; uint64_t RemVal = LHS.U.VAL % RHS.U.VAL; - Quotient = APInt(LHS.BitWidth, QuotVal); - Remainder = APInt(LHS.BitWidth, RemVal); + Quotient = APInt(BitWidth, QuotVal); + Remainder = APInt(BitWidth, RemVal); return; } // Get some size facts about the dividend and divisor - unsigned lhsBits = LHS.getActiveBits(); - unsigned lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1); + unsigned lhsWords = getNumWords(LHS.getActiveBits()); unsigned rhsBits = RHS.getActiveBits(); - unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1); + unsigned rhsWords = getNumWords(rhsBits); + assert(rhsWords && "Performing divrem operation by zero ???"); // Check the degenerate cases if (lhsWords == 0) { @@ -1691,6 +1681,11 @@ void APInt::udivrem(const APInt &LHS, const APInt &RHS, return; } + if (rhsBits == 1) { + Quotient = LHS; // X / 1 ===> X + Remainder = 0; // X % 1 ===> 0 + } + if (lhsWords < rhsWords || LHS.ult(RHS)) { Remainder = LHS; // X % Y ===> X, iff X < Y Quotient = 0; // X / Y ===> 0, iff X < Y @@ -1703,12 +1698,15 @@ void APInt::udivrem(const APInt &LHS, const APInt &RHS, return; } - if (lhsWords == 1 && rhsWords == 1) { + if (lhsWords == 1) { // rhsWords is 1 if lhsWords is 1. // There is only one word to consider so use the native versions. - uint64_t lhsValue = LHS.isSingleWord() ? LHS.U.VAL : LHS.U.pVal[0]; - uint64_t rhsValue = RHS.isSingleWord() ? RHS.U.VAL : RHS.U.pVal[0]; - Quotient = APInt(LHS.getBitWidth(), lhsValue / rhsValue); - Remainder = APInt(LHS.getBitWidth(), lhsValue % rhsValue); + uint64_t lhsValue = LHS.U.pVal[0]; + uint64_t rhsValue = RHS.U.pVal[0]; + // Make sure there is enough space to hold the results. + Quotient.reallocate(BitWidth); + Remainder.reallocate(BitWidth); + Quotient = lhsValue / rhsValue; + Remainder = lhsValue % rhsValue; return; } @@ -1723,12 +1721,12 @@ void APInt::sdivrem(const APInt &LHS, const APInt &RHS, APInt::udivrem(-LHS, -RHS, Quotient, Remainder); else { APInt::udivrem(-LHS, RHS, Quotient, Remainder); - Quotient = -Quotient; + Quotient.negate(); } - Remainder = -Remainder; + Remainder.negate(); } else if (RHS.isNegative()) { APInt::udivrem(LHS, -RHS, Quotient, Remainder); - Quotient = -Quotient; + Quotient.negate(); } else { APInt::udivrem(LHS, RHS, Quotient, Remainder); } @@ -1859,10 +1857,8 @@ void APInt::fromString(unsigned numbits, StringRef str, uint8_t radix) { *this += digit; } // If its negative, put it in two's complement form - if (isNeg) { - --(*this); - this->flipAllBits(); - } + if (isNeg) + this->negate(); } void APInt::toString(SmallVectorImpl<char> &Str, unsigned Radix, @@ -1940,8 +1936,7 @@ void APInt::toString(SmallVectorImpl<char> &Str, unsigned Radix, // They want to print the signed version and it is a negative value // Flip the bits and add one to turn it into the equivalent positive // value and put a '-' in the result. - Tmp.flipAllBits(); - ++Tmp; + Tmp.negate(); Str.push_back('-'); } @@ -1961,22 +1956,19 @@ void APInt::toString(SmallVectorImpl<char> &Str, unsigned Radix, unsigned ShiftAmt = (Radix == 16 ? 4 : (Radix == 8 ? 3 : 1)); unsigned MaskAmt = Radix - 1; - while (Tmp != 0) { + while (Tmp.getBoolValue()) { unsigned Digit = unsigned(Tmp.getRawData()[0]) & MaskAmt; Str.push_back(Digits[Digit]); Tmp.lshrInPlace(ShiftAmt); } } else { - APInt divisor(Radix == 10? 4 : 8, Radix); - while (Tmp != 0) { - APInt APdigit(1, 0); - APInt tmp2(Tmp.getBitWidth(), 0); - divide(Tmp, Tmp.getNumWords(), divisor, divisor.getNumWords(), &tmp2, - &APdigit); + APInt divisor(Tmp.getBitWidth(), Radix); + APInt APdigit; + while (Tmp.getBoolValue()) { + udivrem(Tmp, divisor, Tmp, APdigit); unsigned Digit = (unsigned)APdigit.getZExtValue(); assert(Digit < Radix && "divide failed"); Str.push_back(Digits[Digit]); - Tmp = tmp2; } } @@ -2346,13 +2338,11 @@ int APInt::tcMultiply(WordType *dst, const WordType *lhs, return overflow; } -/* DST = LHS * RHS, where DST has width the sum of the widths of the - operands. No overflow occurs. DST must be disjoint from both - operands. Returns the number of parts required to hold the - result. */ -unsigned APInt::tcFullMultiply(WordType *dst, const WordType *lhs, - const WordType *rhs, unsigned lhsParts, - unsigned rhsParts) { +/// DST = LHS * RHS, where DST has width the sum of the widths of the +/// operands. No overflow occurs. DST must be disjoint from both operands. +void APInt::tcFullMultiply(WordType *dst, const WordType *lhs, + const WordType *rhs, unsigned lhsParts, + unsigned rhsParts) { /* Put the narrower number on the LHS for less loops below. */ if (lhsParts > rhsParts) return tcFullMultiply (dst, rhs, lhs, rhsParts, lhsParts); @@ -2363,10 +2353,6 @@ unsigned APInt::tcFullMultiply(WordType *dst, const WordType *lhs, for (unsigned i = 0; i < lhsParts; i++) tcMultiplyPart(&dst[i], rhs, lhs[i], 0, rhsParts, rhsParts + 1, true); - - unsigned n = lhsParts + rhsParts; - - return n - (dst[n - 1] == 0); } /* If RHS is zero LHS and REMAINDER are left unchanged, return one. @@ -2400,22 +2386,20 @@ int APInt::tcDivide(WordType *lhs, const WordType *rhs, /* Loop, subtracting SRHS if REMAINDER is greater and adding that to the total. */ for (;;) { - int compare; - - compare = tcCompare(remainder, srhs, parts); - if (compare >= 0) { - tcSubtract(remainder, srhs, 0, parts); - lhs[n] |= mask; - } + int compare = tcCompare(remainder, srhs, parts); + if (compare >= 0) { + tcSubtract(remainder, srhs, 0, parts); + lhs[n] |= mask; + } - if (shiftCount == 0) - break; - shiftCount--; - tcShiftRight(srhs, parts, 1); - if ((mask >>= 1) == 0) { - mask = (WordType) 1 << (APINT_BITS_PER_WORD - 1); - n--; - } + if (shiftCount == 0) + break; + shiftCount--; + tcShiftRight(srhs, parts, 1); + if ((mask >>= 1) == 0) { + mask = (WordType) 1 << (APINT_BITS_PER_WORD - 1); + n--; + } } return false; |