diff options
Diffstat (limited to 'lib/Target/NVPTX/NVPTXInstrInfo.td')
-rw-r--r-- | lib/Target/NVPTX/NVPTXInstrInfo.td | 530 |
1 files changed, 444 insertions, 86 deletions
diff --git a/lib/Target/NVPTX/NVPTXInstrInfo.td b/lib/Target/NVPTX/NVPTXInstrInfo.td index 0fbb0448e4c46..2b847414b8a8a 100644 --- a/lib/Target/NVPTX/NVPTXInstrInfo.td +++ b/lib/Target/NVPTX/NVPTXInstrInfo.td @@ -18,6 +18,10 @@ let hasSideEffects = 0 in { def NOP : NVPTXInst<(outs), (ins), "", []>; } +let OperandType = "OPERAND_IMMEDIATE" in { + def f16imm : Operand<f16>; +} + // List of vector specific properties def isVecLD : VecInstTypeEnum<1>; def isVecST : VecInstTypeEnum<2>; @@ -98,6 +102,9 @@ def CmpNAN_FTZ : PatLeaf<(i32 0x111)>; def CmpMode : Operand<i32> { let PrintMethod = "printCmpMode"; } +def VecElement : Operand<i32> { + let PrintMethod = "printVecElement"; +} //===----------------------------------------------------------------------===// // NVPTX Instruction Predicate Definitions @@ -134,6 +141,7 @@ def doMulWide : Predicate<"doMulWide">; def allowFMA : Predicate<"allowFMA()">; def noFMA : Predicate<"!allowFMA()">; +def allowUnsafeFPMath : Predicate<"allowUnsafeFPMath()">; def do_DIVF32_APPROX : Predicate<"getDivF32Level()==0">; def do_DIVF32_FULL : Predicate<"getDivF32Level()==1">; @@ -148,6 +156,7 @@ def true : Predicate<"true">; def hasPTX31 : Predicate<"Subtarget->getPTXVersion() >= 31">; +def useFP16Math: Predicate<"Subtarget->allowFP16Math()">; //===----------------------------------------------------------------------===// // Some Common Instruction Class Templates @@ -239,11 +248,11 @@ multiclass F3<string OpcStr, SDNode OpNode> { [(set Float32Regs:$dst, (OpNode Float32Regs:$a, fpimm:$b))]>; } -// Template for instructions which take three fp64 or fp32 args. The +// Template for instructions which take three FP args. The // instructions are named "<OpcStr>.f<Width>" (e.g. "add.f64"). // // Also defines ftz (flush subnormal inputs and results to sign-preserving -// zero) variants for fp32 functions. +// zero) variants for fp32/fp16 functions. // // This multiclass should be used for nodes that can be folded to make fma ops. // In this case, we use the ".rn" variant when FMA is disabled, as this behaves @@ -286,6 +295,32 @@ multiclass F3_fma_component<string OpcStr, SDNode OpNode> { [(set Float32Regs:$dst, (OpNode Float32Regs:$a, fpimm:$b))]>, Requires<[allowFMA]>; + def f16rr_ftz : + NVPTXInst<(outs Float16Regs:$dst), + (ins Float16Regs:$a, Float16Regs:$b), + !strconcat(OpcStr, ".ftz.f16 \t$dst, $a, $b;"), + [(set Float16Regs:$dst, (OpNode Float16Regs:$a, Float16Regs:$b))]>, + Requires<[useFP16Math, allowFMA, doF32FTZ]>; + def f16rr : + NVPTXInst<(outs Float16Regs:$dst), + (ins Float16Regs:$a, Float16Regs:$b), + !strconcat(OpcStr, ".f16 \t$dst, $a, $b;"), + [(set Float16Regs:$dst, (OpNode Float16Regs:$a, Float16Regs:$b))]>, + Requires<[useFP16Math, allowFMA]>; + + def f16x2rr_ftz : + NVPTXInst<(outs Float16x2Regs:$dst), + (ins Float16x2Regs:$a, Float16x2Regs:$b), + !strconcat(OpcStr, ".ftz.f16x2 \t$dst, $a, $b;"), + [(set Float16x2Regs:$dst, (OpNode Float16x2Regs:$a, Float16x2Regs:$b))]>, + Requires<[useFP16Math, allowFMA, doF32FTZ]>; + def f16x2rr : + NVPTXInst<(outs Float16x2Regs:$dst), + (ins Float16x2Regs:$a, Float16x2Regs:$b), + !strconcat(OpcStr, ".f16x2 \t$dst, $a, $b;"), + [(set Float16x2Regs:$dst, (OpNode Float16x2Regs:$a, Float16x2Regs:$b))]>, + Requires<[useFP16Math, allowFMA]>; + // These have strange names so we don't perturb existing mir tests. def _rnf64rr : NVPTXInst<(outs Float64Regs:$dst), @@ -323,6 +358,30 @@ multiclass F3_fma_component<string OpcStr, SDNode OpNode> { !strconcat(OpcStr, ".rn.f32 \t$dst, $a, $b;"), [(set Float32Regs:$dst, (OpNode Float32Regs:$a, fpimm:$b))]>, Requires<[noFMA]>; + def _rnf16rr_ftz : + NVPTXInst<(outs Float16Regs:$dst), + (ins Float16Regs:$a, Float16Regs:$b), + !strconcat(OpcStr, ".rn.ftz.f16 \t$dst, $a, $b;"), + [(set Float16Regs:$dst, (OpNode Float16Regs:$a, Float16Regs:$b))]>, + Requires<[useFP16Math, noFMA, doF32FTZ]>; + def _rnf16rr : + NVPTXInst<(outs Float16Regs:$dst), + (ins Float16Regs:$a, Float16Regs:$b), + !strconcat(OpcStr, ".rn.f16 \t$dst, $a, $b;"), + [(set Float16Regs:$dst, (OpNode Float16Regs:$a, Float16Regs:$b))]>, + Requires<[useFP16Math, noFMA]>; + def _rnf16x2rr_ftz : + NVPTXInst<(outs Float16x2Regs:$dst), + (ins Float16x2Regs:$a, Float16x2Regs:$b), + !strconcat(OpcStr, ".rn.ftz.f16x2 \t$dst, $a, $b;"), + [(set Float16x2Regs:$dst, (OpNode Float16x2Regs:$a, Float16x2Regs:$b))]>, + Requires<[useFP16Math, noFMA, doF32FTZ]>; + def _rnf16x2rr : + NVPTXInst<(outs Float16x2Regs:$dst), + (ins Float16x2Regs:$a, Float16x2Regs:$b), + !strconcat(OpcStr, ".rn.f16x2 \t$dst, $a, $b;"), + [(set Float16x2Regs:$dst, (OpNode Float16x2Regs:$a, Float16x2Regs:$b))]>, + Requires<[useFP16Math, noFMA]>; } // Template for operations which take two f32 or f64 operands. Provides three @@ -358,57 +417,57 @@ let hasSideEffects = 0 in { NVPTXInst<(outs RC:$dst), (ins Int16Regs:$src, CvtMode:$mode), !strconcat("cvt${mode:base}${mode:ftz}${mode:sat}.", - FromName, ".s8\t$dst, $src;"), []>; + FromName, ".s8 \t$dst, $src;"), []>; def _u8 : NVPTXInst<(outs RC:$dst), (ins Int16Regs:$src, CvtMode:$mode), !strconcat("cvt${mode:base}${mode:ftz}${mode:sat}.", - FromName, ".u8\t$dst, $src;"), []>; + FromName, ".u8 \t$dst, $src;"), []>; def _s16 : NVPTXInst<(outs RC:$dst), (ins Int16Regs:$src, CvtMode:$mode), !strconcat("cvt${mode:base}${mode:ftz}${mode:sat}.", - FromName, ".s16\t$dst, $src;"), []>; + FromName, ".s16 \t$dst, $src;"), []>; def _u16 : NVPTXInst<(outs RC:$dst), (ins Int16Regs:$src, CvtMode:$mode), !strconcat("cvt${mode:base}${mode:ftz}${mode:sat}.", - FromName, ".u16\t$dst, $src;"), []>; - def _f16 : - NVPTXInst<(outs RC:$dst), - (ins Int16Regs:$src, CvtMode:$mode), - !strconcat("cvt${mode:base}${mode:ftz}${mode:sat}.", - FromName, ".f16\t$dst, $src;"), []>; + FromName, ".u16 \t$dst, $src;"), []>; def _s32 : NVPTXInst<(outs RC:$dst), (ins Int32Regs:$src, CvtMode:$mode), !strconcat("cvt${mode:base}${mode:ftz}${mode:sat}.", - FromName, ".s32\t$dst, $src;"), []>; + FromName, ".s32 \t$dst, $src;"), []>; def _u32 : NVPTXInst<(outs RC:$dst), (ins Int32Regs:$src, CvtMode:$mode), !strconcat("cvt${mode:base}${mode:ftz}${mode:sat}.", - FromName, ".u32\t$dst, $src;"), []>; + FromName, ".u32 \t$dst, $src;"), []>; def _s64 : NVPTXInst<(outs RC:$dst), (ins Int64Regs:$src, CvtMode:$mode), !strconcat("cvt${mode:base}${mode:ftz}${mode:sat}.", - FromName, ".s64\t$dst, $src;"), []>; + FromName, ".s64 \t$dst, $src;"), []>; def _u64 : NVPTXInst<(outs RC:$dst), (ins Int64Regs:$src, CvtMode:$mode), !strconcat("cvt${mode:base}${mode:ftz}${mode:sat}.", - FromName, ".u64\t$dst, $src;"), []>; + FromName, ".u64 \t$dst, $src;"), []>; + def _f16 : + NVPTXInst<(outs RC:$dst), + (ins Float16Regs:$src, CvtMode:$mode), + !strconcat("cvt${mode:base}${mode:ftz}${mode:sat}.", + FromName, ".f16 \t$dst, $src;"), []>; def _f32 : NVPTXInst<(outs RC:$dst), (ins Float32Regs:$src, CvtMode:$mode), !strconcat("cvt${mode:base}${mode:ftz}${mode:sat}.", - FromName, ".f32\t$dst, $src;"), []>; + FromName, ".f32 \t$dst, $src;"), []>; def _f64 : NVPTXInst<(outs RC:$dst), (ins Float64Regs:$src, CvtMode:$mode), !strconcat("cvt${mode:base}${mode:ftz}${mode:sat}.", - FromName, ".f64\t$dst, $src;"), []>; + FromName, ".f64 \t$dst, $src;"), []>; } // Generate cvts from all types to all types. @@ -416,11 +475,11 @@ let hasSideEffects = 0 in { defm CVT_u8 : CVT_FROM_ALL<"u8", Int16Regs>; defm CVT_s16 : CVT_FROM_ALL<"s16", Int16Regs>; defm CVT_u16 : CVT_FROM_ALL<"u16", Int16Regs>; - defm CVT_f16 : CVT_FROM_ALL<"f16", Int16Regs>; defm CVT_s32 : CVT_FROM_ALL<"s32", Int32Regs>; defm CVT_u32 : CVT_FROM_ALL<"u32", Int32Regs>; defm CVT_s64 : CVT_FROM_ALL<"s64", Int64Regs>; defm CVT_u64 : CVT_FROM_ALL<"u64", Int64Regs>; + defm CVT_f16 : CVT_FROM_ALL<"f16", Float16Regs>; defm CVT_f32 : CVT_FROM_ALL<"f32", Float32Regs>; defm CVT_f64 : CVT_FROM_ALL<"f64", Float64Regs>; @@ -458,7 +517,7 @@ multiclass ADD_SUB_i1<SDNode OpNode> { defm ADD_i1 : ADD_SUB_i1<add>; defm SUB_i1 : ADD_SUB_i1<sub>; -// int16, int32, and int64 signed addition. Since nvptx is 2's compliment, we +// int16, int32, and int64 signed addition. Since nvptx is 2's complement, we // also use these for unsigned arithmetic. defm ADD : I3<"add.s", add>; defm SUB : I3<"sub.s", sub>; @@ -485,6 +544,24 @@ defm UDIV : I3<"div.u", udiv>; defm SREM : I3<"rem.s", srem>; defm UREM : I3<"rem.u", urem>; +// Integer absolute value. NumBits should be one minus the bit width of RC. +// This idiom implements the algorithm at +// http://graphics.stanford.edu/~seander/bithacks.html#IntegerAbs. +multiclass ABS<RegisterClass RC, int NumBits, string SizeName> { + def : NVPTXInst<(outs RC:$dst), (ins RC:$a), + !strconcat("abs", SizeName, " \t$dst, $a;"), + [(set RC:$dst, (xor (add (sra RC:$a, (i32 NumBits)), RC:$a), + (sra RC:$a, (i32 NumBits))))]>; +} +defm ABS_16 : ABS<Int16Regs, 15, ".s16">; +defm ABS_32 : ABS<Int32Regs, 31, ".s32">; +defm ABS_64 : ABS<Int64Regs, 63, ".s64">; + +// Integer min/max. +defm SMAX : I3<"max.s", smax>; +defm UMAX : I3<"max.u", umax>; +defm SMIN : I3<"min.s", smin>; +defm UMIN : I3<"min.u", umin>; // // Wide multiplication @@ -748,6 +825,15 @@ def DoubleConst1 : PatLeaf<(fpimm), [{ N->getValueAPF().convertToDouble() == 1.0; }]>; +// Loads FP16 constant into a register. +// +// ptxas does not have hex representation for fp16, so we can't use +// fp16 immediate values in .f16 instructions. Instead we have to load +// the constant into a register using mov.b16. +def LOAD_CONST_F16 : + NVPTXInst<(outs Float16Regs:$dst), (ins f16imm:$a), + "mov.b16 \t$dst, $a;", []>; + defm FADD : F3_fma_component<"add", fadd>; defm FSUB : F3_fma_component<"sub", fsub>; defm FMUL : F3_fma_component<"mul", fmul>; @@ -908,18 +994,9 @@ def FDIV32ri_prec : Requires<[reqPTX20]>; // -// F32 rsqrt +// FMA // -def RSQRTF32approx1r : NVPTXInst<(outs Float32Regs:$dst), (ins Float32Regs:$b), - "rsqrt.approx.f32 \t$dst, $b;", []>; - -// Convert 1.0f/sqrt(x) to rsqrt.approx.f32. (There is an rsqrt.approx.f64, but -// it's emulated in software.) -def: Pat<(fdiv FloatConst1, (int_nvvm_sqrt_f Float32Regs:$b)), - (RSQRTF32approx1r Float32Regs:$b)>, - Requires<[do_DIVF32_FULL, do_SQRTF32_APPROX, doNoF32FTZ]>; - multiclass FMA<string OpcStr, RegisterClass RC, Operand ImmCls, Predicate Pred> { def rrr : NVPTXInst<(outs RC:$dst), (ins RC:$a, RC:$b, RC:$c), !strconcat(OpcStr, " \t$dst, $a, $b, $c;"), @@ -942,6 +1019,17 @@ multiclass FMA<string OpcStr, RegisterClass RC, Operand ImmCls, Predicate Pred> Requires<[Pred]>; } +multiclass FMA_F16<string OpcStr, RegisterClass RC, Predicate Pred> { + def rrr : NVPTXInst<(outs RC:$dst), (ins RC:$a, RC:$b, RC:$c), + !strconcat(OpcStr, " \t$dst, $a, $b, $c;"), + [(set RC:$dst, (fma RC:$a, RC:$b, RC:$c))]>, + Requires<[useFP16Math, Pred]>; +} + +defm FMA16_ftz : FMA_F16<"fma.rn.ftz.f16", Float16Regs, doF32FTZ>; +defm FMA16 : FMA_F16<"fma.rn.f16", Float16Regs, true>; +defm FMA16x2_ftz : FMA_F16<"fma.rn.ftz.f16x2", Float16x2Regs, doF32FTZ>; +defm FMA16x2 : FMA_F16<"fma.rn.f16x2", Float16x2Regs, true>; defm FMA32_ftz : FMA<"fma.rn.ftz.f32", Float32Regs, f32imm, doF32FTZ>; defm FMA32 : FMA<"fma.rn.f32", Float32Regs, f32imm, true>; defm FMA64 : FMA<"fma.rn.f64", Float64Regs, f64imm, true>; @@ -949,10 +1037,12 @@ defm FMA64 : FMA<"fma.rn.f64", Float64Regs, f64imm, true>; // sin/cos def SINF: NVPTXInst<(outs Float32Regs:$dst), (ins Float32Regs:$src), "sin.approx.f32 \t$dst, $src;", - [(set Float32Regs:$dst, (fsin Float32Regs:$src))]>; + [(set Float32Regs:$dst, (fsin Float32Regs:$src))]>, + Requires<[allowUnsafeFPMath]>; def COSF: NVPTXInst<(outs Float32Regs:$dst), (ins Float32Regs:$src), "cos.approx.f32 \t$dst, $src;", - [(set Float32Regs:$dst, (fcos Float32Regs:$src))]>; + [(set Float32Regs:$dst, (fcos Float32Regs:$src))]>, + Requires<[allowUnsafeFPMath]>; // Lower (frem x, y) into (sub x, (mul (floor (div x, y)) y)), // i.e. "poor man's fmod()" @@ -1087,6 +1177,16 @@ defm SHL : SHIFT<"shl.b", shl>; defm SRA : SHIFT<"shr.s", sra>; defm SRL : SHIFT<"shr.u", srl>; +// Bit-reverse +def BREV32 : + NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$a), + "brev.b32 \t$dst, $a;", + [(set Int32Regs:$dst, (bitreverse Int32Regs:$a))]>; +def BREV64 : + NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$a), + "brev.b64 \t$dst, $a;", + [(set Int64Regs:$dst, (bitreverse Int64Regs:$a))]>; + // // Rotate: Use ptx shf instruction if available. // @@ -1294,15 +1394,15 @@ let hasSideEffects = 0 in { def rr : NVPTXInst<(outs Int1Regs:$dst), (ins RC:$a, RC:$b, CmpMode:$cmp), !strconcat("setp${cmp:base}${cmp:ftz}.", TypeStr, - "\t$dst, $a, $b;"), []>; + " \t$dst, $a, $b;"), []>; def ri : NVPTXInst<(outs Int1Regs:$dst), (ins RC:$a, ImmCls:$b, CmpMode:$cmp), !strconcat("setp${cmp:base}${cmp:ftz}.", TypeStr, - "\t$dst, $a, $b;"), []>; + " \t$dst, $a, $b;"), []>; def ir : NVPTXInst<(outs Int1Regs:$dst), (ins ImmCls:$a, RC:$b, CmpMode:$cmp), !strconcat("setp${cmp:base}${cmp:ftz}.", TypeStr, - "\t$dst, $a, $b;"), []>; + " \t$dst, $a, $b;"), []>; } } @@ -1317,6 +1417,19 @@ defm SETP_s64 : SETP<"s64", Int64Regs, i64imm>; defm SETP_u64 : SETP<"u64", Int64Regs, i64imm>; defm SETP_f32 : SETP<"f32", Float32Regs, f32imm>; defm SETP_f64 : SETP<"f64", Float64Regs, f64imm>; +def SETP_f16rr : + NVPTXInst<(outs Int1Regs:$dst), + (ins Float16Regs:$a, Float16Regs:$b, CmpMode:$cmp), + "setp${cmp:base}${cmp:ftz}.f16 \t$dst, $a, $b;", + []>, Requires<[useFP16Math]>; + +def SETP_f16x2rr : + NVPTXInst<(outs Int1Regs:$p, Int1Regs:$q), + (ins Float16x2Regs:$a, Float16x2Regs:$b, CmpMode:$cmp), + "setp${cmp:base}${cmp:ftz}.f16x2 \t$p|$q, $a, $b;", + []>, + Requires<[useFP16Math]>; + // FIXME: This doesn't appear to be correct. The "set" mnemonic has the form // "set.CmpOp{.ftz}.dtype.stype", where dtype is the type of the destination @@ -1326,13 +1439,13 @@ let hasSideEffects = 0 in { multiclass SET<string TypeStr, RegisterClass RC, Operand ImmCls> { def rr : NVPTXInst<(outs Int32Regs:$dst), (ins RC:$a, RC:$b, CmpMode:$cmp), - !strconcat("set$cmp.", TypeStr, "\t$dst, $a, $b;"), []>; + !strconcat("set$cmp.", TypeStr, " \t$dst, $a, $b;"), []>; def ri : NVPTXInst<(outs Int32Regs:$dst), (ins RC:$a, ImmCls:$b, CmpMode:$cmp), - !strconcat("set$cmp.", TypeStr, "\t$dst, $a, $b;"), []>; + !strconcat("set$cmp.", TypeStr, " \t$dst, $a, $b;"), []>; def ir : NVPTXInst<(outs Int32Regs:$dst), (ins ImmCls:$a, RC:$b, CmpMode:$cmp), - !strconcat("set$cmp.", TypeStr, "\t$dst, $a, $b;"), []>; + !strconcat("set$cmp.", TypeStr, " \t$dst, $a, $b;"), []>; } } @@ -1345,6 +1458,7 @@ defm SET_u32 : SET<"u32", Int32Regs, i32imm>; defm SET_b64 : SET<"b64", Int64Regs, i64imm>; defm SET_s64 : SET<"s64", Int64Regs, i64imm>; defm SET_u64 : SET<"u64", Int64Regs, i64imm>; +defm SET_f16 : SET<"f16", Float16Regs, f16imm>; defm SET_f32 : SET<"f32", Float32Regs, f32imm>; defm SET_f64 : SET<"f64", Float64Regs, f64imm>; @@ -1360,16 +1474,16 @@ let hasSideEffects = 0 in { multiclass SELP<string TypeStr, RegisterClass RC, Operand ImmCls> { def rr : NVPTXInst<(outs RC:$dst), (ins RC:$a, RC:$b, Int1Regs:$p), - !strconcat("selp.", TypeStr, "\t$dst, $a, $b, $p;"), []>; + !strconcat("selp.", TypeStr, " \t$dst, $a, $b, $p;"), []>; def ri : NVPTXInst<(outs RC:$dst), (ins RC:$a, ImmCls:$b, Int1Regs:$p), - !strconcat("selp.", TypeStr, "\t$dst, $a, $b, $p;"), []>; + !strconcat("selp.", TypeStr, " \t$dst, $a, $b, $p;"), []>; def ir : NVPTXInst<(outs RC:$dst), (ins ImmCls:$a, RC:$b, Int1Regs:$p), - !strconcat("selp.", TypeStr, "\t$dst, $a, $b, $p;"), []>; + !strconcat("selp.", TypeStr, " \t$dst, $a, $b, $p;"), []>; def ii : NVPTXInst<(outs RC:$dst), (ins ImmCls:$a, ImmCls:$b, Int1Regs:$p), - !strconcat("selp.", TypeStr, "\t$dst, $a, $b, $p;"), []>; + !strconcat("selp.", TypeStr, " \t$dst, $a, $b, $p;"), []>; } multiclass SELP_PATTERN<string TypeStr, RegisterClass RC, Operand ImmCls, @@ -1377,22 +1491,22 @@ let hasSideEffects = 0 in { def rr : NVPTXInst<(outs RC:$dst), (ins RC:$a, RC:$b, Int1Regs:$p), - !strconcat("selp.", TypeStr, "\t$dst, $a, $b, $p;"), + !strconcat("selp.", TypeStr, " \t$dst, $a, $b, $p;"), [(set RC:$dst, (select Int1Regs:$p, RC:$a, RC:$b))]>; def ri : NVPTXInst<(outs RC:$dst), (ins RC:$a, ImmCls:$b, Int1Regs:$p), - !strconcat("selp.", TypeStr, "\t$dst, $a, $b, $p;"), + !strconcat("selp.", TypeStr, " \t$dst, $a, $b, $p;"), [(set RC:$dst, (select Int1Regs:$p, RC:$a, ImmNode:$b))]>; def ir : NVPTXInst<(outs RC:$dst), (ins ImmCls:$a, RC:$b, Int1Regs:$p), - !strconcat("selp.", TypeStr, "\t$dst, $a, $b, $p;"), + !strconcat("selp.", TypeStr, " \t$dst, $a, $b, $p;"), [(set RC:$dst, (select Int1Regs:$p, ImmNode:$a, RC:$b))]>; def ii : NVPTXInst<(outs RC:$dst), (ins ImmCls:$a, ImmCls:$b, Int1Regs:$p), - !strconcat("selp.", TypeStr, "\t$dst, $a, $b, $p;"), + !strconcat("selp.", TypeStr, " \t$dst, $a, $b, $p;"), [(set RC:$dst, (select Int1Regs:$p, ImmNode:$a, ImmNode:$b))]>; } } @@ -1408,9 +1522,17 @@ defm SELP_u32 : SELP<"u32", Int32Regs, i32imm>; defm SELP_b64 : SELP_PATTERN<"b64", Int64Regs, i64imm, imm>; defm SELP_s64 : SELP<"s64", Int64Regs, i64imm>; defm SELP_u64 : SELP<"u64", Int64Regs, i64imm>; +defm SELP_f16 : SELP_PATTERN<"b16", Float16Regs, f16imm, fpimm>; defm SELP_f32 : SELP_PATTERN<"f32", Float32Regs, f32imm, fpimm>; defm SELP_f64 : SELP_PATTERN<"f64", Float64Regs, f64imm, fpimm>; +def SELP_f16x2rr : + NVPTXInst<(outs Float16x2Regs:$dst), + (ins Float16x2Regs:$a, Float16x2Regs:$b, Int1Regs:$p), + "selp.b32 \t$dst, $a, $b, $p;", + [(set Float16x2Regs:$dst, + (select Int1Regs:$p, Float16x2Regs:$a, Float16x2Regs:$b))]>; + //----------------------------------- // Data Movement (Load / Store, Move) //----------------------------------- @@ -1472,6 +1594,9 @@ let IsSimpleMove=1, hasSideEffects=0 in { def IMOV64rr : NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$sss), "mov.u64 \t$dst, $sss;", []>; + def FMOV16rr : NVPTXInst<(outs Float16Regs:$dst), (ins Float16Regs:$src), + // We have to use .b16 here as there's no mov.f16. + "mov.b16 \t$dst, $src;", []>; def FMOV32rr : NVPTXInst<(outs Float32Regs:$dst), (ins Float32Regs:$src), "mov.f32 \t$dst, $src;", []>; def FMOV64rr : NVPTXInst<(outs Float64Regs:$dst), (ins Float64Regs:$src), @@ -1633,6 +1758,26 @@ def : Pat<(i32 (setne Int1Regs:$a, Int1Regs:$b)), multiclass FSET_FORMAT<PatFrag OpNode, PatLeaf Mode, PatLeaf ModeFTZ> { + // f16 -> pred + def : Pat<(i1 (OpNode Float16Regs:$a, Float16Regs:$b)), + (SETP_f16rr Float16Regs:$a, Float16Regs:$b, ModeFTZ)>, + Requires<[useFP16Math,doF32FTZ]>; + def : Pat<(i1 (OpNode Float16Regs:$a, Float16Regs:$b)), + (SETP_f16rr Float16Regs:$a, Float16Regs:$b, Mode)>, + Requires<[useFP16Math]>; + def : Pat<(i1 (OpNode Float16Regs:$a, fpimm:$b)), + (SETP_f16rr Float16Regs:$a, (LOAD_CONST_F16 fpimm:$b), ModeFTZ)>, + Requires<[useFP16Math,doF32FTZ]>; + def : Pat<(i1 (OpNode Float16Regs:$a, fpimm:$b)), + (SETP_f16rr Float16Regs:$a, (LOAD_CONST_F16 fpimm:$b), Mode)>, + Requires<[useFP16Math]>; + def : Pat<(i1 (OpNode fpimm:$a, Float16Regs:$b)), + (SETP_f16rr (LOAD_CONST_F16 fpimm:$a), Float16Regs:$b, ModeFTZ)>, + Requires<[useFP16Math,doF32FTZ]>; + def : Pat<(i1 (OpNode fpimm:$a, Float16Regs:$b)), + (SETP_f16rr (LOAD_CONST_F16 fpimm:$a), Float16Regs:$b, Mode)>, + Requires<[useFP16Math]>; + // f32 -> pred def : Pat<(i1 (OpNode Float32Regs:$a, Float32Regs:$b)), (SETP_f32rr Float32Regs:$a, Float32Regs:$b, ModeFTZ)>, @@ -1658,6 +1803,26 @@ multiclass FSET_FORMAT<PatFrag OpNode, PatLeaf Mode, PatLeaf ModeFTZ> { def : Pat<(i1 (OpNode fpimm:$a, Float64Regs:$b)), (SETP_f64ir fpimm:$a, Float64Regs:$b, Mode)>; + // f16 -> i32 + def : Pat<(i32 (OpNode Float16Regs:$a, Float16Regs:$b)), + (SET_f16rr Float16Regs:$a, Float16Regs:$b, ModeFTZ)>, + Requires<[useFP16Math, doF32FTZ]>; + def : Pat<(i32 (OpNode Float16Regs:$a, Float16Regs:$b)), + (SET_f16rr Float16Regs:$a, Float16Regs:$b, Mode)>, + Requires<[useFP16Math]>; + def : Pat<(i32 (OpNode Float16Regs:$a, fpimm:$b)), + (SET_f16rr Float16Regs:$a, (LOAD_CONST_F16 fpimm:$b), ModeFTZ)>, + Requires<[useFP16Math, doF32FTZ]>; + def : Pat<(i32 (OpNode Float16Regs:$a, fpimm:$b)), + (SET_f16rr Float16Regs:$a, (LOAD_CONST_F16 fpimm:$b), Mode)>, + Requires<[useFP16Math]>; + def : Pat<(i32 (OpNode fpimm:$a, Float16Regs:$b)), + (SET_f16ir (LOAD_CONST_F16 fpimm:$a), Float16Regs:$b, ModeFTZ)>, + Requires<[useFP16Math, doF32FTZ]>; + def : Pat<(i32 (OpNode fpimm:$a, Float16Regs:$b)), + (SET_f16ir (LOAD_CONST_F16 fpimm:$a), Float16Regs:$b, Mode)>, + Requires<[useFP16Math]>; + // f32 -> i32 def : Pat<(i32 (OpNode Float32Regs:$a, Float32Regs:$b)), (SET_f32rr Float32Regs:$a, Float32Regs:$b, ModeFTZ)>, @@ -1825,40 +1990,39 @@ def RETURNNode : let mayLoad = 1 in { class LoadParamMemInst<NVPTXRegClass regclass, string opstr> : NVPTXInst<(outs regclass:$dst), (ins i32imm:$b), - !strconcat(!strconcat("ld.param", opstr), - "\t$dst, [retval0+$b];"), + !strconcat("ld.param", opstr, " \t$dst, [retval0+$b];"), []>; class LoadParamV2MemInst<NVPTXRegClass regclass, string opstr> : NVPTXInst<(outs regclass:$dst, regclass:$dst2), (ins i32imm:$b), !strconcat("ld.param.v2", opstr, - "\t{{$dst, $dst2}}, [retval0+$b];"), []>; + " \t{{$dst, $dst2}}, [retval0+$b];"), []>; class LoadParamV4MemInst<NVPTXRegClass regclass, string opstr> : NVPTXInst<(outs regclass:$dst, regclass:$dst2, regclass:$dst3, regclass:$dst4), (ins i32imm:$b), !strconcat("ld.param.v4", opstr, - "\t{{$dst, $dst2, $dst3, $dst4}}, [retval0+$b];"), + " \t{{$dst, $dst2, $dst3, $dst4}}, [retval0+$b];"), []>; } class LoadParamRegInst<NVPTXRegClass regclass, string opstr> : NVPTXInst<(outs regclass:$dst), (ins i32imm:$b), - !strconcat("mov", opstr, "\t$dst, retval$b;"), + !strconcat("mov", opstr, " \t$dst, retval$b;"), [(set regclass:$dst, (LoadParam (i32 0), (i32 imm:$b)))]>; let mayStore = 1 in { class StoreParamInst<NVPTXRegClass regclass, string opstr> : NVPTXInst<(outs), (ins regclass:$val, i32imm:$a, i32imm:$b), - !strconcat("st.param", opstr, "\t[param$a+$b], $val;"), + !strconcat("st.param", opstr, " \t[param$a+$b], $val;"), []>; class StoreParamV2Inst<NVPTXRegClass regclass, string opstr> : NVPTXInst<(outs), (ins regclass:$val, regclass:$val2, i32imm:$a, i32imm:$b), !strconcat("st.param.v2", opstr, - "\t[param$a+$b], {{$val, $val2}};"), + " \t[param$a+$b], {{$val, $val2}};"), []>; class StoreParamV4Inst<NVPTXRegClass regclass, string opstr> : @@ -1866,18 +2030,18 @@ let mayStore = 1 in { regclass:$val4, i32imm:$a, i32imm:$b), !strconcat("st.param.v4", opstr, - "\t[param$a+$b], {{$val, $val2, $val3, $val4}};"), + " \t[param$a+$b], {{$val, $val2, $val3, $val4}};"), []>; class StoreRetvalInst<NVPTXRegClass regclass, string opstr> : NVPTXInst<(outs), (ins regclass:$val, i32imm:$a), - !strconcat("st.param", opstr, "\t[func_retval0+$a], $val;"), + !strconcat("st.param", opstr, " \t[func_retval0+$a], $val;"), []>; class StoreRetvalV2Inst<NVPTXRegClass regclass, string opstr> : NVPTXInst<(outs), (ins regclass:$val, regclass:$val2, i32imm:$a), !strconcat("st.param.v2", opstr, - "\t[func_retval0+$a], {{$val, $val2}};"), + " \t[func_retval0+$a], {{$val, $val2}};"), []>; class StoreRetvalV4Inst<NVPTXRegClass regclass, string opstr> : @@ -1885,7 +2049,7 @@ let mayStore = 1 in { (ins regclass:$val, regclass:$val2, regclass:$val3, regclass:$val4, i32imm:$a), !strconcat("st.param.v4", opstr, - "\t[func_retval0+$a], {{$val, $val2, $val3, $val4}};"), + " \t[func_retval0+$a], {{$val, $val2, $val3, $val4}};"), []>; } @@ -1941,10 +2105,16 @@ def LoadParamMemV2I8 : LoadParamV2MemInst<Int16Regs, ".b8">; def LoadParamMemV4I32 : LoadParamV4MemInst<Int32Regs, ".b32">; def LoadParamMemV4I16 : LoadParamV4MemInst<Int16Regs, ".b16">; def LoadParamMemV4I8 : LoadParamV4MemInst<Int16Regs, ".b8">; +def LoadParamMemF16 : LoadParamMemInst<Float16Regs, ".b16">; +def LoadParamMemF16x2 : LoadParamMemInst<Float16x2Regs, ".b32">; def LoadParamMemF32 : LoadParamMemInst<Float32Regs, ".f32">; def LoadParamMemF64 : LoadParamMemInst<Float64Regs, ".f64">; +def LoadParamMemV2F16 : LoadParamV2MemInst<Float16Regs, ".b16">; +def LoadParamMemV2F16x2: LoadParamV2MemInst<Float16x2Regs, ".b32">; def LoadParamMemV2F32 : LoadParamV2MemInst<Float32Regs, ".f32">; def LoadParamMemV2F64 : LoadParamV2MemInst<Float64Regs, ".f64">; +def LoadParamMemV4F16 : LoadParamV4MemInst<Float16Regs, ".b16">; +def LoadParamMemV4F16x2: LoadParamV4MemInst<Float16x2Regs, ".b32">; def LoadParamMemV4F32 : LoadParamV4MemInst<Float32Regs, ".f32">; def StoreParamI64 : StoreParamInst<Int64Regs, ".b64">; @@ -1961,10 +2131,16 @@ def StoreParamV4I32 : StoreParamV4Inst<Int32Regs, ".b32">; def StoreParamV4I16 : StoreParamV4Inst<Int16Regs, ".b16">; def StoreParamV4I8 : StoreParamV4Inst<Int16Regs, ".b8">; +def StoreParamF16 : StoreParamInst<Float16Regs, ".b16">; +def StoreParamF16x2 : StoreParamInst<Float16x2Regs, ".b32">; def StoreParamF32 : StoreParamInst<Float32Regs, ".f32">; def StoreParamF64 : StoreParamInst<Float64Regs, ".f64">; +def StoreParamV2F16 : StoreParamV2Inst<Float16Regs, ".b16">; +def StoreParamV2F16x2 : StoreParamV2Inst<Float16x2Regs, ".b32">; def StoreParamV2F32 : StoreParamV2Inst<Float32Regs, ".f32">; def StoreParamV2F64 : StoreParamV2Inst<Float64Regs, ".f64">; +def StoreParamV4F16 : StoreParamV4Inst<Float16Regs, ".b16">; +def StoreParamV4F16x2 : StoreParamV4Inst<Float16x2Regs, ".b32">; def StoreParamV4F32 : StoreParamV4Inst<Float32Regs, ".f32">; def StoreRetvalI64 : StoreRetvalInst<Int64Regs, ".b64">; @@ -1981,9 +2157,15 @@ def StoreRetvalV4I8 : StoreRetvalV4Inst<Int16Regs, ".b8">; def StoreRetvalF64 : StoreRetvalInst<Float64Regs, ".f64">; def StoreRetvalF32 : StoreRetvalInst<Float32Regs, ".f32">; +def StoreRetvalF16 : StoreRetvalInst<Float16Regs, ".b16">; +def StoreRetvalF16x2 : StoreRetvalInst<Float16x2Regs, ".b32">; def StoreRetvalV2F64 : StoreRetvalV2Inst<Float64Regs, ".f64">; def StoreRetvalV2F32 : StoreRetvalV2Inst<Float32Regs, ".f32">; +def StoreRetvalV2F16 : StoreRetvalV2Inst<Float16Regs, ".b16">; +def StoreRetvalV2F16x2: StoreRetvalV2Inst<Float16x2Regs, ".b32">; def StoreRetvalV4F32 : StoreRetvalV4Inst<Float32Regs, ".f32">; +def StoreRetvalV4F16 : StoreRetvalV4Inst<Float16Regs, ".b16">; +def StoreRetvalV4F16x2: StoreRetvalV4Inst<Float16x2Regs, ".b32">; def CallArgBeginInst : NVPTXInst<(outs), (ins), "(", [(CallArgBegin)]>; def CallArgEndInst1 : NVPTXInst<(outs), (ins), ");", [(CallArgEnd (i32 1))]>; @@ -2057,17 +2239,18 @@ def DeclareScalarRegInst : class MoveParamInst<NVPTXRegClass regclass, string asmstr> : NVPTXInst<(outs regclass:$dst), (ins regclass:$src), - !strconcat("mov", asmstr, "\t$dst, $src;"), + !strconcat("mov", asmstr, " \t$dst, $src;"), [(set regclass:$dst, (MoveParam regclass:$src))]>; def MoveParamI64 : MoveParamInst<Int64Regs, ".b64">; def MoveParamI32 : MoveParamInst<Int32Regs, ".b32">; def MoveParamI16 : NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$src), - "cvt.u16.u32\t$dst, $src;", + "cvt.u16.u32 \t$dst, $src;", [(set Int16Regs:$dst, (MoveParam Int16Regs:$src))]>; def MoveParamF64 : MoveParamInst<Float64Regs, ".f64">; def MoveParamF32 : MoveParamInst<Float32Regs, ".f32">; +def MoveParamF16 : MoveParamInst<Float16Regs, ".f16">; class PseudoUseParamInst<NVPTXRegClass regclass> : NVPTXInst<(outs), (ins regclass:$src), @@ -2128,6 +2311,8 @@ let mayLoad=1, hasSideEffects=0 in { defm LD_i16 : LD<Int16Regs>; defm LD_i32 : LD<Int32Regs>; defm LD_i64 : LD<Int64Regs>; + defm LD_f16 : LD<Float16Regs>; + defm LD_f16x2 : LD<Float16x2Regs>; defm LD_f32 : LD<Float32Regs>; defm LD_f64 : LD<Float64Regs>; } @@ -2176,6 +2361,8 @@ let mayStore=1, hasSideEffects=0 in { defm ST_i16 : ST<Int16Regs>; defm ST_i32 : ST<Int32Regs>; defm ST_i64 : ST<Int64Regs>; + defm ST_f16 : ST<Float16Regs>; + defm ST_f16x2 : ST<Float16x2Regs>; defm ST_f32 : ST<Float32Regs>; defm ST_f64 : ST<Float64Regs>; } @@ -2262,6 +2449,8 @@ let mayLoad=1, hasSideEffects=0 in { defm LDV_i16 : LD_VEC<Int16Regs>; defm LDV_i32 : LD_VEC<Int32Regs>; defm LDV_i64 : LD_VEC<Int64Regs>; + defm LDV_f16 : LD_VEC<Float16Regs>; + defm LDV_f16x2 : LD_VEC<Float16x2Regs>; defm LDV_f32 : LD_VEC<Float32Regs>; defm LDV_f64 : LD_VEC<Float64Regs>; } @@ -2355,28 +2544,53 @@ let mayStore=1, hasSideEffects=0 in { defm STV_i16 : ST_VEC<Int16Regs>; defm STV_i32 : ST_VEC<Int32Regs>; defm STV_i64 : ST_VEC<Int64Regs>; + defm STV_f16 : ST_VEC<Float16Regs>; + defm STV_f16x2 : ST_VEC<Float16x2Regs>; defm STV_f32 : ST_VEC<Float32Regs>; defm STV_f64 : ST_VEC<Float64Regs>; } - //---- Conversion ---- class F_BITCONVERT<string SzStr, NVPTXRegClass regclassIn, NVPTXRegClass regclassOut> : NVPTXInst<(outs regclassOut:$d), (ins regclassIn:$a), - !strconcat("mov.b", !strconcat(SzStr, " \t $d, $a;")), + !strconcat("mov.b", !strconcat(SzStr, " \t$d, $a;")), [(set regclassOut:$d, (bitconvert regclassIn:$a))]>; +def BITCONVERT_16_I2F : F_BITCONVERT<"16", Int16Regs, Float16Regs>; +def BITCONVERT_16_F2I : F_BITCONVERT<"16", Float16Regs, Int16Regs>; def BITCONVERT_32_I2F : F_BITCONVERT<"32", Int32Regs, Float32Regs>; def BITCONVERT_32_F2I : F_BITCONVERT<"32", Float32Regs, Int32Regs>; def BITCONVERT_64_I2F : F_BITCONVERT<"64", Int64Regs, Float64Regs>; def BITCONVERT_64_F2I : F_BITCONVERT<"64", Float64Regs, Int64Regs>; +def BITCONVERT_32_I2F16x2 : F_BITCONVERT<"32", Int32Regs, Float16x2Regs>; +def BITCONVERT_32_F16x22I : F_BITCONVERT<"32", Float16x2Regs, Int32Regs>; // NOTE: pred->fp are currently sub-optimal due to an issue in TableGen where // we cannot specify floating-point literals in isel patterns. Therefore, we // use an integer selp to select either 1 or 0 and then cvt to floating-point. +// sint -> f16 +def : Pat<(f16 (sint_to_fp Int1Regs:$a)), + (CVT_f16_s32 (SELP_u32ii 1, 0, Int1Regs:$a), CvtRN)>; +def : Pat<(f16 (sint_to_fp Int16Regs:$a)), + (CVT_f16_s16 Int16Regs:$a, CvtRN)>; +def : Pat<(f16 (sint_to_fp Int32Regs:$a)), + (CVT_f16_s32 Int32Regs:$a, CvtRN)>; +def : Pat<(f16 (sint_to_fp Int64Regs:$a)), + (CVT_f16_s64 Int64Regs:$a, CvtRN)>; + +// uint -> f16 +def : Pat<(f16 (uint_to_fp Int1Regs:$a)), + (CVT_f16_u32 (SELP_u32ii 1, 0, Int1Regs:$a), CvtRN)>; +def : Pat<(f16 (uint_to_fp Int16Regs:$a)), + (CVT_f16_u16 Int16Regs:$a, CvtRN)>; +def : Pat<(f16 (uint_to_fp Int32Regs:$a)), + (CVT_f16_u32 Int32Regs:$a, CvtRN)>; +def : Pat<(f16 (uint_to_fp Int64Regs:$a)), + (CVT_f16_u64 Int64Regs:$a, CvtRN)>; + // sint -> f32 def : Pat<(f32 (sint_to_fp Int1Regs:$a)), (CVT_f32_s32 (SELP_u32ii 1, 0, Int1Regs:$a), CvtRN)>; @@ -2418,6 +2632,38 @@ def : Pat<(f64 (uint_to_fp Int64Regs:$a)), (CVT_f64_u64 Int64Regs:$a, CvtRN)>; +// f16 -> sint +def : Pat<(i1 (fp_to_sint Float16Regs:$a)), + (SETP_b16ri (BITCONVERT_16_F2I Float16Regs:$a), 0, CmpEQ)>; +def : Pat<(i16 (fp_to_sint Float16Regs:$a)), + (CVT_s16_f16 Float16Regs:$a, CvtRZI_FTZ)>, Requires<[doF32FTZ]>; +def : Pat<(i16 (fp_to_sint Float16Regs:$a)), + (CVT_s16_f16 Float16Regs:$a, CvtRZI)>; +def : Pat<(i32 (fp_to_sint Float16Regs:$a)), + (CVT_s32_f16 Float16Regs:$a, CvtRZI_FTZ)>, Requires<[doF32FTZ]>; +def : Pat<(i32 (fp_to_sint Float16Regs:$a)), + (CVT_s32_f16 Float16Regs:$a, CvtRZI)>; +def : Pat<(i64 (fp_to_sint Float16Regs:$a)), + (CVT_s64_f16 Float16Regs:$a, CvtRZI_FTZ)>, Requires<[doF32FTZ]>; +def : Pat<(i64 (fp_to_sint Float16Regs:$a)), + (CVT_s64_f16 Float16Regs:$a, CvtRZI)>; + +// f16 -> uint +def : Pat<(i1 (fp_to_uint Float16Regs:$a)), + (SETP_b16ri (BITCONVERT_16_F2I Float16Regs:$a), 0, CmpEQ)>; +def : Pat<(i16 (fp_to_uint Float16Regs:$a)), + (CVT_u16_f16 Float16Regs:$a, CvtRZI_FTZ)>, Requires<[doF32FTZ]>; +def : Pat<(i16 (fp_to_uint Float16Regs:$a)), + (CVT_u16_f16 Float16Regs:$a, CvtRZI)>; +def : Pat<(i32 (fp_to_uint Float16Regs:$a)), + (CVT_u32_f16 Float16Regs:$a, CvtRZI_FTZ)>, Requires<[doF32FTZ]>; +def : Pat<(i32 (fp_to_uint Float16Regs:$a)), + (CVT_u32_f16 Float16Regs:$a, CvtRZI)>; +def : Pat<(i64 (fp_to_uint Float16Regs:$a)), + (CVT_u64_f16 Float16Regs:$a, CvtRZI_FTZ)>, Requires<[doF32FTZ]>; +def : Pat<(i64 (fp_to_uint Float16Regs:$a)), + (CVT_u64_f16 Float16Regs:$a, CvtRZI)>; + // f32 -> sint def : Pat<(i1 (fp_to_sint Float32Regs:$a)), (SETP_b32ri (BITCONVERT_32_F2I Float32Regs:$a), 0, CmpEQ)>; @@ -2562,6 +2808,9 @@ def : Pat<(select Int32Regs:$pred, Int32Regs:$a, Int32Regs:$b), def : Pat<(select Int32Regs:$pred, Int64Regs:$a, Int64Regs:$b), (SELP_b64rr Int64Regs:$a, Int64Regs:$b, (SETP_b32ri (ANDb32ri Int32Regs:$pred, 1), 1, CmpEQ))>; +def : Pat<(select Int32Regs:$pred, Float16Regs:$a, Float16Regs:$b), + (SELP_f16rr Float16Regs:$a, Float16Regs:$b, + (SETP_b32ri (ANDb32ri Int32Regs:$pred, 1), 1, CmpEQ))>; def : Pat<(select Int32Regs:$pred, Float32Regs:$a, Float32Regs:$b), (SELP_f32rr Float32Regs:$a, Float32Regs:$b, (SETP_b32ri (ANDb32ri Int32Regs:$pred, 1), 1, CmpEQ))>; @@ -2575,77 +2824,150 @@ let hasSideEffects = 0 in { def V4I16toI64 : NVPTXInst<(outs Int64Regs:$d), (ins Int16Regs:$s1, Int16Regs:$s2, Int16Regs:$s3, Int16Regs:$s4), - "mov.b64\t$d, {{$s1, $s2, $s3, $s4}};", []>; + "mov.b64 \t$d, {{$s1, $s2, $s3, $s4}};", []>; def V2I16toI32 : NVPTXInst<(outs Int32Regs:$d), (ins Int16Regs:$s1, Int16Regs:$s2), - "mov.b32\t$d, {{$s1, $s2}};", []>; + "mov.b32 \t$d, {{$s1, $s2}};", []>; def V2I32toI64 : NVPTXInst<(outs Int64Regs:$d), (ins Int32Regs:$s1, Int32Regs:$s2), - "mov.b64\t$d, {{$s1, $s2}};", []>; + "mov.b64 \t$d, {{$s1, $s2}};", []>; def V2F32toF64 : NVPTXInst<(outs Float64Regs:$d), (ins Float32Regs:$s1, Float32Regs:$s2), - "mov.b64\t$d, {{$s1, $s2}};", []>; + "mov.b64 \t$d, {{$s1, $s2}};", []>; // unpack a larger int register to a set of smaller int registers def I64toV4I16 : NVPTXInst<(outs Int16Regs:$d1, Int16Regs:$d2, Int16Regs:$d3, Int16Regs:$d4), (ins Int64Regs:$s), - "mov.b64\t{{$d1, $d2, $d3, $d4}}, $s;", []>; + "mov.b64 \t{{$d1, $d2, $d3, $d4}}, $s;", []>; def I32toV2I16 : NVPTXInst<(outs Int16Regs:$d1, Int16Regs:$d2), (ins Int32Regs:$s), - "mov.b32\t{{$d1, $d2}}, $s;", []>; + "mov.b32 \t{{$d1, $d2}}, $s;", []>; def I64toV2I32 : NVPTXInst<(outs Int32Regs:$d1, Int32Regs:$d2), (ins Int64Regs:$s), - "mov.b64\t{{$d1, $d2}}, $s;", []>; + "mov.b64 \t{{$d1, $d2}}, $s;", []>; def F64toV2F32 : NVPTXInst<(outs Float32Regs:$d1, Float32Regs:$d2), (ins Float64Regs:$s), - "mov.b64\t{{$d1, $d2}}, $s;", []>; + "mov.b64 \t{{$d1, $d2}}, $s;", []>; + +} + +let hasSideEffects = 0 in { + // Extract element of f16x2 register. PTX does not provide any way + // to access elements of f16x2 vector directly, so we need to + // extract it using a temporary register. + def F16x2toF16_0 : NVPTXInst<(outs Float16Regs:$dst), + (ins Float16x2Regs:$src), + "{{ .reg .b16 \t%tmp_hi;\n\t" + " mov.b32 \t{$dst, %tmp_hi}, $src; }}", + [(set Float16Regs:$dst, + (extractelt (v2f16 Float16x2Regs:$src), 0))]>; + def F16x2toF16_1 : NVPTXInst<(outs Float16Regs:$dst), + (ins Float16x2Regs:$src), + "{{ .reg .b16 \t%tmp_lo;\n\t" + " mov.b32 \t{%tmp_lo, $dst}, $src; }}", + [(set Float16Regs:$dst, + (extractelt (v2f16 Float16x2Regs:$src), 1))]>; + + // Coalesce two f16 registers into f16x2 + def BuildF16x2 : NVPTXInst<(outs Float16x2Regs:$dst), + (ins Float16Regs:$a, Float16Regs:$b), + "mov.b32 \t$dst, {{$a, $b}};", + [(set Float16x2Regs:$dst, + (build_vector (f16 Float16Regs:$a), (f16 Float16Regs:$b)))]>; + + // Directly initializing underlying the b32 register is one less SASS + // instruction than than vector-packing move. + def BuildF16x2i : NVPTXInst<(outs Float16x2Regs:$dst), (ins i32imm:$src), + "mov.b32 \t$dst, $src;", + []>; + + // Split f16x2 into two f16 registers. + def SplitF16x2 : NVPTXInst<(outs Float16Regs:$lo, Float16Regs:$hi), + (ins Float16x2Regs:$src), + "mov.b32 \t{{$lo, $hi}}, $src;", + []>; + // Split an i32 into two f16 + def SplitI32toF16x2 : NVPTXInst<(outs Float16Regs:$lo, Float16Regs:$hi), + (ins Int32Regs:$src), + "mov.b32 \t{{$lo, $hi}}, $src;", + []>; } // Count leading zeros let hasSideEffects = 0 in { def CLZr32 : NVPTXInst<(outs Int32Regs:$d), (ins Int32Regs:$a), - "clz.b32\t$d, $a;", []>; + "clz.b32 \t$d, $a;", []>; def CLZr64 : NVPTXInst<(outs Int32Regs:$d), (ins Int64Regs:$a), - "clz.b64\t$d, $a;", []>; + "clz.b64 \t$d, $a;", []>; } // 32-bit has a direct PTX instruction def : Pat<(ctlz Int32Regs:$a), (CLZr32 Int32Regs:$a)>; -// For 64-bit, the result in PTX is actually 32-bit so we zero-extend -// to 64-bit to match the LLVM semantics +// The return type of the ctlz ISD node is the same as its input, but the PTX +// ctz instruction always returns a 32-bit value. For ctlz.i64, convert the +// ptx value to 64 bits to match the ISD node's semantics, unless we know we're +// truncating back down to 32 bits. def : Pat<(ctlz Int64Regs:$a), (CVT_u64_u32 (CLZr64 Int64Regs:$a), CvtNONE)>; +def : Pat<(i32 (trunc (ctlz Int64Regs:$a))), (CLZr64 Int64Regs:$a)>; -// For 16-bit, we zero-extend to 32-bit, then trunc the result back -// to 16-bits (ctlz of a 16-bit value is guaranteed to require less -// than 16 bits to store). We also need to subtract 16 because the -// high-order 16 zeros were counted. +// For 16-bit ctlz, we zero-extend to 32-bit, perform the count, then trunc the +// result back to 16-bits if necessary. We also need to subtract 16 because +// the high-order 16 zeros were counted. +// +// TODO: NVPTX has a mov.b32 b32reg, {imm, b16reg} instruction, which we could +// use to save one SASS instruction (on sm_35 anyway): +// +// mov.b32 $tmp, {0xffff, $a} +// ctlz.b32 $result, $tmp +// +// That is, instead of zero-extending the input to 32 bits, we'd "one-extend" +// and then ctlz that value. This way we don't have to subtract 16 from the +// result. Unfortunately today we don't have a way to generate +// "mov b32reg, {b16imm, b16reg}", so we don't do this optimization. def : Pat<(ctlz Int16Regs:$a), - (SUBi16ri (CVT_u16_u32 (CLZr32 - (CVT_u32_u16 Int16Regs:$a, CvtNONE)), - CvtNONE), 16)>; + (SUBi16ri (CVT_u16_u32 + (CLZr32 (CVT_u32_u16 Int16Regs:$a, CvtNONE)), CvtNONE), 16)>; +def : Pat<(i32 (zext (ctlz Int16Regs:$a))), + (SUBi32ri (CLZr32 (CVT_u32_u16 Int16Regs:$a, CvtNONE)), 16)>; // Population count let hasSideEffects = 0 in { def POPCr32 : NVPTXInst<(outs Int32Regs:$d), (ins Int32Regs:$a), - "popc.b32\t$d, $a;", []>; + "popc.b32 \t$d, $a;", []>; def POPCr64 : NVPTXInst<(outs Int32Regs:$d), (ins Int64Regs:$a), - "popc.b64\t$d, $a;", []>; + "popc.b64 \t$d, $a;", []>; } // 32-bit has a direct PTX instruction def : Pat<(ctpop Int32Regs:$a), (POPCr32 Int32Regs:$a)>; -// For 64-bit, the result in PTX is actually 32-bit so we zero-extend -// to 64-bit to match the LLVM semantics +// For 64-bit, the result in PTX is actually 32-bit so we zero-extend to 64-bit +// to match the LLVM semantics. Just as with ctlz.i64, we provide a second +// pattern that avoids the type conversion if we're truncating the result to +// i32 anyway. def : Pat<(ctpop Int64Regs:$a), (CVT_u64_u32 (POPCr64 Int64Regs:$a), CvtNONE)>; +def : Pat<(i32 (trunc (ctpop Int64Regs:$a))), (POPCr64 Int64Regs:$a)>; -// For 16-bit, we zero-extend to 32-bit, then trunc the result back -// to 16-bits (ctpop of a 16-bit value is guaranteed to require less -// than 16 bits to store) +// For 16-bit, we zero-extend to 32-bit, then trunc the result back to 16-bits. +// If we know that we're storing into an i32, we can avoid the final trunc. def : Pat<(ctpop Int16Regs:$a), (CVT_u16_u32 (POPCr32 (CVT_u32_u16 Int16Regs:$a, CvtNONE)), CvtNONE)>; +def : Pat<(i32 (zext (ctpop Int16Regs:$a))), + (POPCr32 (CVT_u32_u16 Int16Regs:$a, CvtNONE))>; + +// fpround f32 -> f16 +def : Pat<(f16 (fpround Float32Regs:$a)), + (CVT_f16_f32 Float32Regs:$a, CvtRN_FTZ)>, Requires<[doF32FTZ]>; +def : Pat<(f16 (fpround Float32Regs:$a)), + (CVT_f16_f32 Float32Regs:$a, CvtRN)>; + +// fpround f64 -> f16 +def : Pat<(f16 (fpround Float64Regs:$a)), + (CVT_f16_f64 Float64Regs:$a, CvtRN_FTZ)>, Requires<[doF32FTZ]>; +def : Pat<(f16 (fpround Float64Regs:$a)), + (CVT_f16_f64 Float64Regs:$a, CvtRN)>; // fpround f64 -> f32 def : Pat<(f32 (fpround Float64Regs:$a)), @@ -2653,6 +2975,18 @@ def : Pat<(f32 (fpround Float64Regs:$a)), def : Pat<(f32 (fpround Float64Regs:$a)), (CVT_f32_f64 Float64Regs:$a, CvtRN)>; +// fpextend f16 -> f32 +def : Pat<(f32 (fpextend Float16Regs:$a)), + (CVT_f32_f16 Float16Regs:$a, CvtNONE_FTZ)>, Requires<[doF32FTZ]>; +def : Pat<(f32 (fpextend Float16Regs:$a)), + (CVT_f32_f16 Float16Regs:$a, CvtNONE)>; + +// fpextend f16 -> f64 +def : Pat<(f64 (fpextend Float16Regs:$a)), + (CVT_f64_f16 Float16Regs:$a, CvtNONE_FTZ)>, Requires<[doF32FTZ]>; +def : Pat<(f64 (fpextend Float16Regs:$a)), + (CVT_f64_f16 Float16Regs:$a, CvtNONE)>; + // fpextend f32 -> f64 def : Pat<(f64 (fpextend Float32Regs:$a)), (CVT_f64_f32 Float32Regs:$a, CvtNONE_FTZ)>, Requires<[doF32FTZ]>; @@ -2664,6 +2998,10 @@ def retflag : SDNode<"NVPTXISD::RET_FLAG", SDTNone, // fceil, ffloor, fround, ftrunc. +def : Pat<(fceil Float16Regs:$a), + (CVT_f16_f16 Float16Regs:$a, CvtRPI_FTZ)>, Requires<[doF32FTZ]>; +def : Pat<(fceil Float16Regs:$a), + (CVT_f16_f16 Float16Regs:$a, CvtRPI)>, Requires<[doNoF32FTZ]>; def : Pat<(fceil Float32Regs:$a), (CVT_f32_f32 Float32Regs:$a, CvtRPI_FTZ)>, Requires<[doF32FTZ]>; def : Pat<(fceil Float32Regs:$a), @@ -2671,6 +3009,10 @@ def : Pat<(fceil Float32Regs:$a), def : Pat<(fceil Float64Regs:$a), (CVT_f64_f64 Float64Regs:$a, CvtRPI)>; +def : Pat<(ffloor Float16Regs:$a), + (CVT_f16_f16 Float16Regs:$a, CvtRMI_FTZ)>, Requires<[doF32FTZ]>; +def : Pat<(ffloor Float16Regs:$a), + (CVT_f16_f16 Float16Regs:$a, CvtRMI)>, Requires<[doNoF32FTZ]>; def : Pat<(ffloor Float32Regs:$a), (CVT_f32_f32 Float32Regs:$a, CvtRMI_FTZ)>, Requires<[doF32FTZ]>; def : Pat<(ffloor Float32Regs:$a), @@ -2678,6 +3020,10 @@ def : Pat<(ffloor Float32Regs:$a), def : Pat<(ffloor Float64Regs:$a), (CVT_f64_f64 Float64Regs:$a, CvtRMI)>; +def : Pat<(fround Float16Regs:$a), + (CVT_f16_f16 Float16Regs:$a, CvtRNI_FTZ)>, Requires<[doF32FTZ]>; +def : Pat<(f16 (fround Float16Regs:$a)), + (CVT_f16_f16 Float16Regs:$a, CvtRNI)>, Requires<[doNoF32FTZ]>; def : Pat<(fround Float32Regs:$a), (CVT_f32_f32 Float32Regs:$a, CvtRNI_FTZ)>, Requires<[doF32FTZ]>; def : Pat<(f32 (fround Float32Regs:$a)), @@ -2685,6 +3031,10 @@ def : Pat<(f32 (fround Float32Regs:$a)), def : Pat<(f64 (fround Float64Regs:$a)), (CVT_f64_f64 Float64Regs:$a, CvtRNI)>; +def : Pat<(ftrunc Float16Regs:$a), + (CVT_f16_f16 Float16Regs:$a, CvtRZI_FTZ)>, Requires<[doF32FTZ]>; +def : Pat<(ftrunc Float16Regs:$a), + (CVT_f16_f16 Float16Regs:$a, CvtRZI)>, Requires<[doNoF32FTZ]>; def : Pat<(ftrunc Float32Regs:$a), (CVT_f32_f32 Float32Regs:$a, CvtRZI_FTZ)>, Requires<[doF32FTZ]>; def : Pat<(ftrunc Float32Regs:$a), @@ -2696,6 +3046,10 @@ def : Pat<(ftrunc Float64Regs:$a), // strictly correct, because it causes us to ignore the rounding mode. But it // matches what CUDA's "libm" does. +def : Pat<(fnearbyint Float16Regs:$a), + (CVT_f16_f16 Float16Regs:$a, CvtRNI_FTZ)>, Requires<[doF32FTZ]>; +def : Pat<(fnearbyint Float16Regs:$a), + (CVT_f16_f16 Float16Regs:$a, CvtRNI)>, Requires<[doNoF32FTZ]>; def : Pat<(fnearbyint Float32Regs:$a), (CVT_f32_f32 Float32Regs:$a, CvtRNI_FTZ)>, Requires<[doF32FTZ]>; def : Pat<(fnearbyint Float32Regs:$a), @@ -2703,6 +3057,10 @@ def : Pat<(fnearbyint Float32Regs:$a), def : Pat<(fnearbyint Float64Regs:$a), (CVT_f64_f64 Float64Regs:$a, CvtRNI)>; +def : Pat<(frint Float16Regs:$a), + (CVT_f16_f16 Float16Regs:$a, CvtRNI_FTZ)>, Requires<[doF32FTZ]>; +def : Pat<(frint Float16Regs:$a), + (CVT_f16_f16 Float16Regs:$a, CvtRNI)>, Requires<[doNoF32FTZ]>; def : Pat<(frint Float32Regs:$a), (CVT_f32_f32 Float32Regs:$a, CvtRNI_FTZ)>, Requires<[doF32FTZ]>; def : Pat<(frint Float32Regs:$a), |