summaryrefslogtreecommitdiff
path: root/lib/Transforms/IPO/LowerBitSets.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/Transforms/IPO/LowerBitSets.cpp')
-rw-r--r--lib/Transforms/IPO/LowerBitSets.cpp1055
1 files changed, 0 insertions, 1055 deletions
diff --git a/lib/Transforms/IPO/LowerBitSets.cpp b/lib/Transforms/IPO/LowerBitSets.cpp
deleted file mode 100644
index 7b515745c3122..0000000000000
--- a/lib/Transforms/IPO/LowerBitSets.cpp
+++ /dev/null
@@ -1,1055 +0,0 @@
-//===-- LowerBitSets.cpp - Bitset lowering pass ---------------------------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This pass lowers bitset metadata and calls to the llvm.bitset.test intrinsic.
-// See http://llvm.org/docs/LangRef.html#bitsets for more information.
-//
-//===----------------------------------------------------------------------===//
-
-#include "llvm/Transforms/IPO/LowerBitSets.h"
-#include "llvm/Transforms/IPO.h"
-#include "llvm/ADT/EquivalenceClasses.h"
-#include "llvm/ADT/Statistic.h"
-#include "llvm/ADT/Triple.h"
-#include "llvm/IR/Constant.h"
-#include "llvm/IR/Constants.h"
-#include "llvm/IR/Function.h"
-#include "llvm/IR/GlobalObject.h"
-#include "llvm/IR/GlobalVariable.h"
-#include "llvm/IR/IRBuilder.h"
-#include "llvm/IR/Instructions.h"
-#include "llvm/IR/Intrinsics.h"
-#include "llvm/IR/Module.h"
-#include "llvm/IR/Operator.h"
-#include "llvm/Pass.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/raw_ostream.h"
-#include "llvm/Transforms/Utils/BasicBlockUtils.h"
-
-using namespace llvm;
-
-#define DEBUG_TYPE "lowerbitsets"
-
-STATISTIC(ByteArraySizeBits, "Byte array size in bits");
-STATISTIC(ByteArraySizeBytes, "Byte array size in bytes");
-STATISTIC(NumByteArraysCreated, "Number of byte arrays created");
-STATISTIC(NumBitSetCallsLowered, "Number of bitset calls lowered");
-STATISTIC(NumBitSetDisjointSets, "Number of disjoint sets of bitsets");
-
-static cl::opt<bool> AvoidReuse(
- "lowerbitsets-avoid-reuse",
- cl::desc("Try to avoid reuse of byte array addresses using aliases"),
- cl::Hidden, cl::init(true));
-
-bool BitSetInfo::containsGlobalOffset(uint64_t Offset) const {
- if (Offset < ByteOffset)
- return false;
-
- if ((Offset - ByteOffset) % (uint64_t(1) << AlignLog2) != 0)
- return false;
-
- uint64_t BitOffset = (Offset - ByteOffset) >> AlignLog2;
- if (BitOffset >= BitSize)
- return false;
-
- return Bits.count(BitOffset);
-}
-
-bool BitSetInfo::containsValue(
- const DataLayout &DL,
- const DenseMap<GlobalObject *, uint64_t> &GlobalLayout, Value *V,
- uint64_t COffset) const {
- if (auto GV = dyn_cast<GlobalObject>(V)) {
- auto I = GlobalLayout.find(GV);
- if (I == GlobalLayout.end())
- return false;
- return containsGlobalOffset(I->second + COffset);
- }
-
- if (auto GEP = dyn_cast<GEPOperator>(V)) {
- APInt APOffset(DL.getPointerSizeInBits(0), 0);
- bool Result = GEP->accumulateConstantOffset(DL, APOffset);
- if (!Result)
- return false;
- COffset += APOffset.getZExtValue();
- return containsValue(DL, GlobalLayout, GEP->getPointerOperand(),
- COffset);
- }
-
- if (auto Op = dyn_cast<Operator>(V)) {
- if (Op->getOpcode() == Instruction::BitCast)
- return containsValue(DL, GlobalLayout, Op->getOperand(0), COffset);
-
- if (Op->getOpcode() == Instruction::Select)
- return containsValue(DL, GlobalLayout, Op->getOperand(1), COffset) &&
- containsValue(DL, GlobalLayout, Op->getOperand(2), COffset);
- }
-
- return false;
-}
-
-void BitSetInfo::print(raw_ostream &OS) const {
- OS << "offset " << ByteOffset << " size " << BitSize << " align "
- << (1 << AlignLog2);
-
- if (isAllOnes()) {
- OS << " all-ones\n";
- return;
- }
-
- OS << " { ";
- for (uint64_t B : Bits)
- OS << B << ' ';
- OS << "}\n";
-}
-
-BitSetInfo BitSetBuilder::build() {
- if (Min > Max)
- Min = 0;
-
- // Normalize each offset against the minimum observed offset, and compute
- // the bitwise OR of each of the offsets. The number of trailing zeros
- // in the mask gives us the log2 of the alignment of all offsets, which
- // allows us to compress the bitset by only storing one bit per aligned
- // address.
- uint64_t Mask = 0;
- for (uint64_t &Offset : Offsets) {
- Offset -= Min;
- Mask |= Offset;
- }
-
- BitSetInfo BSI;
- BSI.ByteOffset = Min;
-
- BSI.AlignLog2 = 0;
- if (Mask != 0)
- BSI.AlignLog2 = countTrailingZeros(Mask, ZB_Undefined);
-
- // Build the compressed bitset while normalizing the offsets against the
- // computed alignment.
- BSI.BitSize = ((Max - Min) >> BSI.AlignLog2) + 1;
- for (uint64_t Offset : Offsets) {
- Offset >>= BSI.AlignLog2;
- BSI.Bits.insert(Offset);
- }
-
- return BSI;
-}
-
-void GlobalLayoutBuilder::addFragment(const std::set<uint64_t> &F) {
- // Create a new fragment to hold the layout for F.
- Fragments.emplace_back();
- std::vector<uint64_t> &Fragment = Fragments.back();
- uint64_t FragmentIndex = Fragments.size() - 1;
-
- for (auto ObjIndex : F) {
- uint64_t OldFragmentIndex = FragmentMap[ObjIndex];
- if (OldFragmentIndex == 0) {
- // We haven't seen this object index before, so just add it to the current
- // fragment.
- Fragment.push_back(ObjIndex);
- } else {
- // This index belongs to an existing fragment. Copy the elements of the
- // old fragment into this one and clear the old fragment. We don't update
- // the fragment map just yet, this ensures that any further references to
- // indices from the old fragment in this fragment do not insert any more
- // indices.
- std::vector<uint64_t> &OldFragment = Fragments[OldFragmentIndex];
- Fragment.insert(Fragment.end(), OldFragment.begin(), OldFragment.end());
- OldFragment.clear();
- }
- }
-
- // Update the fragment map to point our object indices to this fragment.
- for (uint64_t ObjIndex : Fragment)
- FragmentMap[ObjIndex] = FragmentIndex;
-}
-
-void ByteArrayBuilder::allocate(const std::set<uint64_t> &Bits,
- uint64_t BitSize, uint64_t &AllocByteOffset,
- uint8_t &AllocMask) {
- // Find the smallest current allocation.
- unsigned Bit = 0;
- for (unsigned I = 1; I != BitsPerByte; ++I)
- if (BitAllocs[I] < BitAllocs[Bit])
- Bit = I;
-
- AllocByteOffset = BitAllocs[Bit];
-
- // Add our size to it.
- unsigned ReqSize = AllocByteOffset + BitSize;
- BitAllocs[Bit] = ReqSize;
- if (Bytes.size() < ReqSize)
- Bytes.resize(ReqSize);
-
- // Set our bits.
- AllocMask = 1 << Bit;
- for (uint64_t B : Bits)
- Bytes[AllocByteOffset + B] |= AllocMask;
-}
-
-namespace {
-
-struct ByteArrayInfo {
- std::set<uint64_t> Bits;
- uint64_t BitSize;
- GlobalVariable *ByteArray;
- Constant *Mask;
-};
-
-struct LowerBitSets : public ModulePass {
- static char ID;
- LowerBitSets() : ModulePass(ID) {
- initializeLowerBitSetsPass(*PassRegistry::getPassRegistry());
- }
-
- Module *M;
-
- bool LinkerSubsectionsViaSymbols;
- Triple::ArchType Arch;
- Triple::ObjectFormatType ObjectFormat;
- IntegerType *Int1Ty;
- IntegerType *Int8Ty;
- IntegerType *Int32Ty;
- Type *Int32PtrTy;
- IntegerType *Int64Ty;
- IntegerType *IntPtrTy;
-
- // The llvm.bitsets named metadata.
- NamedMDNode *BitSetNM;
-
- // Mapping from bitset identifiers to the call sites that test them.
- DenseMap<Metadata *, std::vector<CallInst *>> BitSetTestCallSites;
-
- std::vector<ByteArrayInfo> ByteArrayInfos;
-
- BitSetInfo
- buildBitSet(Metadata *BitSet,
- const DenseMap<GlobalObject *, uint64_t> &GlobalLayout);
- ByteArrayInfo *createByteArray(BitSetInfo &BSI);
- void allocateByteArrays();
- Value *createBitSetTest(IRBuilder<> &B, BitSetInfo &BSI, ByteArrayInfo *&BAI,
- Value *BitOffset);
- void lowerBitSetCalls(ArrayRef<Metadata *> BitSets,
- Constant *CombinedGlobalAddr,
- const DenseMap<GlobalObject *, uint64_t> &GlobalLayout);
- Value *
- lowerBitSetCall(CallInst *CI, BitSetInfo &BSI, ByteArrayInfo *&BAI,
- Constant *CombinedGlobal,
- const DenseMap<GlobalObject *, uint64_t> &GlobalLayout);
- void buildBitSetsFromGlobalVariables(ArrayRef<Metadata *> BitSets,
- ArrayRef<GlobalVariable *> Globals);
- unsigned getJumpTableEntrySize();
- Type *getJumpTableEntryType();
- Constant *createJumpTableEntry(GlobalObject *Src, Function *Dest,
- unsigned Distance);
- void verifyBitSetMDNode(MDNode *Op);
- void buildBitSetsFromFunctions(ArrayRef<Metadata *> BitSets,
- ArrayRef<Function *> Functions);
- void buildBitSetsFromDisjointSet(ArrayRef<Metadata *> BitSets,
- ArrayRef<GlobalObject *> Globals);
- bool buildBitSets();
- bool eraseBitSetMetadata();
-
- bool doInitialization(Module &M) override;
- bool runOnModule(Module &M) override;
-};
-
-} // anonymous namespace
-
-INITIALIZE_PASS_BEGIN(LowerBitSets, "lowerbitsets",
- "Lower bitset metadata", false, false)
-INITIALIZE_PASS_END(LowerBitSets, "lowerbitsets",
- "Lower bitset metadata", false, false)
-char LowerBitSets::ID = 0;
-
-ModulePass *llvm::createLowerBitSetsPass() { return new LowerBitSets; }
-
-bool LowerBitSets::doInitialization(Module &Mod) {
- M = &Mod;
- const DataLayout &DL = Mod.getDataLayout();
-
- Triple TargetTriple(M->getTargetTriple());
- LinkerSubsectionsViaSymbols = TargetTriple.isMacOSX();
- Arch = TargetTriple.getArch();
- ObjectFormat = TargetTriple.getObjectFormat();
-
- Int1Ty = Type::getInt1Ty(M->getContext());
- Int8Ty = Type::getInt8Ty(M->getContext());
- Int32Ty = Type::getInt32Ty(M->getContext());
- Int32PtrTy = PointerType::getUnqual(Int32Ty);
- Int64Ty = Type::getInt64Ty(M->getContext());
- IntPtrTy = DL.getIntPtrType(M->getContext(), 0);
-
- BitSetNM = M->getNamedMetadata("llvm.bitsets");
-
- BitSetTestCallSites.clear();
-
- return false;
-}
-
-/// Build a bit set for BitSet using the object layouts in
-/// GlobalLayout.
-BitSetInfo LowerBitSets::buildBitSet(
- Metadata *BitSet,
- const DenseMap<GlobalObject *, uint64_t> &GlobalLayout) {
- BitSetBuilder BSB;
-
- // Compute the byte offset of each element of this bitset.
- if (BitSetNM) {
- for (MDNode *Op : BitSetNM->operands()) {
- if (Op->getOperand(0) != BitSet || !Op->getOperand(1))
- continue;
- Constant *OpConst =
- cast<ConstantAsMetadata>(Op->getOperand(1))->getValue();
- if (auto GA = dyn_cast<GlobalAlias>(OpConst))
- OpConst = GA->getAliasee();
- auto OpGlobal = dyn_cast<GlobalObject>(OpConst);
- if (!OpGlobal)
- continue;
- uint64_t Offset =
- cast<ConstantInt>(cast<ConstantAsMetadata>(Op->getOperand(2))
- ->getValue())->getZExtValue();
-
- Offset += GlobalLayout.find(OpGlobal)->second;
-
- BSB.addOffset(Offset);
- }
- }
-
- return BSB.build();
-}
-
-/// Build a test that bit BitOffset mod sizeof(Bits)*8 is set in
-/// Bits. This pattern matches to the bt instruction on x86.
-static Value *createMaskedBitTest(IRBuilder<> &B, Value *Bits,
- Value *BitOffset) {
- auto BitsType = cast<IntegerType>(Bits->getType());
- unsigned BitWidth = BitsType->getBitWidth();
-
- BitOffset = B.CreateZExtOrTrunc(BitOffset, BitsType);
- Value *BitIndex =
- B.CreateAnd(BitOffset, ConstantInt::get(BitsType, BitWidth - 1));
- Value *BitMask = B.CreateShl(ConstantInt::get(BitsType, 1), BitIndex);
- Value *MaskedBits = B.CreateAnd(Bits, BitMask);
- return B.CreateICmpNE(MaskedBits, ConstantInt::get(BitsType, 0));
-}
-
-ByteArrayInfo *LowerBitSets::createByteArray(BitSetInfo &BSI) {
- // Create globals to stand in for byte arrays and masks. These never actually
- // get initialized, we RAUW and erase them later in allocateByteArrays() once
- // we know the offset and mask to use.
- auto ByteArrayGlobal = new GlobalVariable(
- *M, Int8Ty, /*isConstant=*/true, GlobalValue::PrivateLinkage, nullptr);
- auto MaskGlobal = new GlobalVariable(
- *M, Int8Ty, /*isConstant=*/true, GlobalValue::PrivateLinkage, nullptr);
-
- ByteArrayInfos.emplace_back();
- ByteArrayInfo *BAI = &ByteArrayInfos.back();
-
- BAI->Bits = BSI.Bits;
- BAI->BitSize = BSI.BitSize;
- BAI->ByteArray = ByteArrayGlobal;
- BAI->Mask = ConstantExpr::getPtrToInt(MaskGlobal, Int8Ty);
- return BAI;
-}
-
-void LowerBitSets::allocateByteArrays() {
- std::stable_sort(ByteArrayInfos.begin(), ByteArrayInfos.end(),
- [](const ByteArrayInfo &BAI1, const ByteArrayInfo &BAI2) {
- return BAI1.BitSize > BAI2.BitSize;
- });
-
- std::vector<uint64_t> ByteArrayOffsets(ByteArrayInfos.size());
-
- ByteArrayBuilder BAB;
- for (unsigned I = 0; I != ByteArrayInfos.size(); ++I) {
- ByteArrayInfo *BAI = &ByteArrayInfos[I];
-
- uint8_t Mask;
- BAB.allocate(BAI->Bits, BAI->BitSize, ByteArrayOffsets[I], Mask);
-
- BAI->Mask->replaceAllUsesWith(ConstantInt::get(Int8Ty, Mask));
- cast<GlobalVariable>(BAI->Mask->getOperand(0))->eraseFromParent();
- }
-
- Constant *ByteArrayConst = ConstantDataArray::get(M->getContext(), BAB.Bytes);
- auto ByteArray =
- new GlobalVariable(*M, ByteArrayConst->getType(), /*isConstant=*/true,
- GlobalValue::PrivateLinkage, ByteArrayConst);
-
- for (unsigned I = 0; I != ByteArrayInfos.size(); ++I) {
- ByteArrayInfo *BAI = &ByteArrayInfos[I];
-
- Constant *Idxs[] = {ConstantInt::get(IntPtrTy, 0),
- ConstantInt::get(IntPtrTy, ByteArrayOffsets[I])};
- Constant *GEP = ConstantExpr::getInBoundsGetElementPtr(
- ByteArrayConst->getType(), ByteArray, Idxs);
-
- // Create an alias instead of RAUW'ing the gep directly. On x86 this ensures
- // that the pc-relative displacement is folded into the lea instead of the
- // test instruction getting another displacement.
- if (LinkerSubsectionsViaSymbols) {
- BAI->ByteArray->replaceAllUsesWith(GEP);
- } else {
- GlobalAlias *Alias = GlobalAlias::create(
- Int8Ty, 0, GlobalValue::PrivateLinkage, "bits", GEP, M);
- BAI->ByteArray->replaceAllUsesWith(Alias);
- }
- BAI->ByteArray->eraseFromParent();
- }
-
- ByteArraySizeBits = BAB.BitAllocs[0] + BAB.BitAllocs[1] + BAB.BitAllocs[2] +
- BAB.BitAllocs[3] + BAB.BitAllocs[4] + BAB.BitAllocs[5] +
- BAB.BitAllocs[6] + BAB.BitAllocs[7];
- ByteArraySizeBytes = BAB.Bytes.size();
-}
-
-/// Build a test that bit BitOffset is set in BSI, where
-/// BitSetGlobal is a global containing the bits in BSI.
-Value *LowerBitSets::createBitSetTest(IRBuilder<> &B, BitSetInfo &BSI,
- ByteArrayInfo *&BAI, Value *BitOffset) {
- if (BSI.BitSize <= 64) {
- // If the bit set is sufficiently small, we can avoid a load by bit testing
- // a constant.
- IntegerType *BitsTy;
- if (BSI.BitSize <= 32)
- BitsTy = Int32Ty;
- else
- BitsTy = Int64Ty;
-
- uint64_t Bits = 0;
- for (auto Bit : BSI.Bits)
- Bits |= uint64_t(1) << Bit;
- Constant *BitsConst = ConstantInt::get(BitsTy, Bits);
- return createMaskedBitTest(B, BitsConst, BitOffset);
- } else {
- if (!BAI) {
- ++NumByteArraysCreated;
- BAI = createByteArray(BSI);
- }
-
- Constant *ByteArray = BAI->ByteArray;
- Type *Ty = BAI->ByteArray->getValueType();
- if (!LinkerSubsectionsViaSymbols && AvoidReuse) {
- // Each use of the byte array uses a different alias. This makes the
- // backend less likely to reuse previously computed byte array addresses,
- // improving the security of the CFI mechanism based on this pass.
- ByteArray = GlobalAlias::create(BAI->ByteArray->getValueType(), 0,
- GlobalValue::PrivateLinkage, "bits_use",
- ByteArray, M);
- }
-
- Value *ByteAddr = B.CreateGEP(Ty, ByteArray, BitOffset);
- Value *Byte = B.CreateLoad(ByteAddr);
-
- Value *ByteAndMask = B.CreateAnd(Byte, BAI->Mask);
- return B.CreateICmpNE(ByteAndMask, ConstantInt::get(Int8Ty, 0));
- }
-}
-
-/// Lower a llvm.bitset.test call to its implementation. Returns the value to
-/// replace the call with.
-Value *LowerBitSets::lowerBitSetCall(
- CallInst *CI, BitSetInfo &BSI, ByteArrayInfo *&BAI,
- Constant *CombinedGlobalIntAddr,
- const DenseMap<GlobalObject *, uint64_t> &GlobalLayout) {
- Value *Ptr = CI->getArgOperand(0);
- const DataLayout &DL = M->getDataLayout();
-
- if (BSI.containsValue(DL, GlobalLayout, Ptr))
- return ConstantInt::getTrue(M->getContext());
-
- Constant *OffsetedGlobalAsInt = ConstantExpr::getAdd(
- CombinedGlobalIntAddr, ConstantInt::get(IntPtrTy, BSI.ByteOffset));
-
- BasicBlock *InitialBB = CI->getParent();
-
- IRBuilder<> B(CI);
-
- Value *PtrAsInt = B.CreatePtrToInt(Ptr, IntPtrTy);
-
- if (BSI.isSingleOffset())
- return B.CreateICmpEQ(PtrAsInt, OffsetedGlobalAsInt);
-
- Value *PtrOffset = B.CreateSub(PtrAsInt, OffsetedGlobalAsInt);
-
- Value *BitOffset;
- if (BSI.AlignLog2 == 0) {
- BitOffset = PtrOffset;
- } else {
- // We need to check that the offset both falls within our range and is
- // suitably aligned. We can check both properties at the same time by
- // performing a right rotate by log2(alignment) followed by an integer
- // comparison against the bitset size. The rotate will move the lower
- // order bits that need to be zero into the higher order bits of the
- // result, causing the comparison to fail if they are nonzero. The rotate
- // also conveniently gives us a bit offset to use during the load from
- // the bitset.
- Value *OffsetSHR =
- B.CreateLShr(PtrOffset, ConstantInt::get(IntPtrTy, BSI.AlignLog2));
- Value *OffsetSHL = B.CreateShl(
- PtrOffset,
- ConstantInt::get(IntPtrTy, DL.getPointerSizeInBits(0) - BSI.AlignLog2));
- BitOffset = B.CreateOr(OffsetSHR, OffsetSHL);
- }
-
- Constant *BitSizeConst = ConstantInt::get(IntPtrTy, BSI.BitSize);
- Value *OffsetInRange = B.CreateICmpULT(BitOffset, BitSizeConst);
-
- // If the bit set is all ones, testing against it is unnecessary.
- if (BSI.isAllOnes())
- return OffsetInRange;
-
- TerminatorInst *Term = SplitBlockAndInsertIfThen(OffsetInRange, CI, false);
- IRBuilder<> ThenB(Term);
-
- // Now that we know that the offset is in range and aligned, load the
- // appropriate bit from the bitset.
- Value *Bit = createBitSetTest(ThenB, BSI, BAI, BitOffset);
-
- // The value we want is 0 if we came directly from the initial block
- // (having failed the range or alignment checks), or the loaded bit if
- // we came from the block in which we loaded it.
- B.SetInsertPoint(CI);
- PHINode *P = B.CreatePHI(Int1Ty, 2);
- P->addIncoming(ConstantInt::get(Int1Ty, 0), InitialBB);
- P->addIncoming(Bit, ThenB.GetInsertBlock());
- return P;
-}
-
-/// Given a disjoint set of bitsets and globals, layout the globals, build the
-/// bit sets and lower the llvm.bitset.test calls.
-void LowerBitSets::buildBitSetsFromGlobalVariables(
- ArrayRef<Metadata *> BitSets, ArrayRef<GlobalVariable *> Globals) {
- // Build a new global with the combined contents of the referenced globals.
- // This global is a struct whose even-indexed elements contain the original
- // contents of the referenced globals and whose odd-indexed elements contain
- // any padding required to align the next element to the next power of 2.
- std::vector<Constant *> GlobalInits;
- const DataLayout &DL = M->getDataLayout();
- for (GlobalVariable *G : Globals) {
- GlobalInits.push_back(G->getInitializer());
- uint64_t InitSize = DL.getTypeAllocSize(G->getValueType());
-
- // Compute the amount of padding required.
- uint64_t Padding = NextPowerOf2(InitSize - 1) - InitSize;
-
- // Cap at 128 was found experimentally to have a good data/instruction
- // overhead tradeoff.
- if (Padding > 128)
- Padding = RoundUpToAlignment(InitSize, 128) - InitSize;
-
- GlobalInits.push_back(
- ConstantAggregateZero::get(ArrayType::get(Int8Ty, Padding)));
- }
- if (!GlobalInits.empty())
- GlobalInits.pop_back();
- Constant *NewInit = ConstantStruct::getAnon(M->getContext(), GlobalInits);
- auto *CombinedGlobal =
- new GlobalVariable(*M, NewInit->getType(), /*isConstant=*/true,
- GlobalValue::PrivateLinkage, NewInit);
-
- StructType *NewTy = cast<StructType>(NewInit->getType());
- const StructLayout *CombinedGlobalLayout = DL.getStructLayout(NewTy);
-
- // Compute the offsets of the original globals within the new global.
- DenseMap<GlobalObject *, uint64_t> GlobalLayout;
- for (unsigned I = 0; I != Globals.size(); ++I)
- // Multiply by 2 to account for padding elements.
- GlobalLayout[Globals[I]] = CombinedGlobalLayout->getElementOffset(I * 2);
-
- lowerBitSetCalls(BitSets, CombinedGlobal, GlobalLayout);
-
- // Build aliases pointing to offsets into the combined global for each
- // global from which we built the combined global, and replace references
- // to the original globals with references to the aliases.
- for (unsigned I = 0; I != Globals.size(); ++I) {
- // Multiply by 2 to account for padding elements.
- Constant *CombinedGlobalIdxs[] = {ConstantInt::get(Int32Ty, 0),
- ConstantInt::get(Int32Ty, I * 2)};
- Constant *CombinedGlobalElemPtr = ConstantExpr::getGetElementPtr(
- NewInit->getType(), CombinedGlobal, CombinedGlobalIdxs);
- if (LinkerSubsectionsViaSymbols) {
- Globals[I]->replaceAllUsesWith(CombinedGlobalElemPtr);
- } else {
- assert(Globals[I]->getType()->getAddressSpace() == 0);
- GlobalAlias *GAlias = GlobalAlias::create(NewTy->getElementType(I * 2), 0,
- Globals[I]->getLinkage(), "",
- CombinedGlobalElemPtr, M);
- GAlias->setVisibility(Globals[I]->getVisibility());
- GAlias->takeName(Globals[I]);
- Globals[I]->replaceAllUsesWith(GAlias);
- }
- Globals[I]->eraseFromParent();
- }
-}
-
-void LowerBitSets::lowerBitSetCalls(
- ArrayRef<Metadata *> BitSets, Constant *CombinedGlobalAddr,
- const DenseMap<GlobalObject *, uint64_t> &GlobalLayout) {
- Constant *CombinedGlobalIntAddr =
- ConstantExpr::getPtrToInt(CombinedGlobalAddr, IntPtrTy);
-
- // For each bitset in this disjoint set...
- for (Metadata *BS : BitSets) {
- // Build the bitset.
- BitSetInfo BSI = buildBitSet(BS, GlobalLayout);
- DEBUG({
- if (auto BSS = dyn_cast<MDString>(BS))
- dbgs() << BSS->getString() << ": ";
- else
- dbgs() << "<unnamed>: ";
- BSI.print(dbgs());
- });
-
- ByteArrayInfo *BAI = nullptr;
-
- // Lower each call to llvm.bitset.test for this bitset.
- for (CallInst *CI : BitSetTestCallSites[BS]) {
- ++NumBitSetCallsLowered;
- Value *Lowered =
- lowerBitSetCall(CI, BSI, BAI, CombinedGlobalIntAddr, GlobalLayout);
- CI->replaceAllUsesWith(Lowered);
- CI->eraseFromParent();
- }
- }
-}
-
-void LowerBitSets::verifyBitSetMDNode(MDNode *Op) {
- if (Op->getNumOperands() != 3)
- report_fatal_error(
- "All operands of llvm.bitsets metadata must have 3 elements");
- if (!Op->getOperand(1))
- return;
-
- auto OpConstMD = dyn_cast<ConstantAsMetadata>(Op->getOperand(1));
- if (!OpConstMD)
- report_fatal_error("Bit set element must be a constant");
- auto OpGlobal = dyn_cast<GlobalObject>(OpConstMD->getValue());
- if (!OpGlobal)
- return;
-
- if (OpGlobal->isThreadLocal())
- report_fatal_error("Bit set element may not be thread-local");
- if (OpGlobal->hasSection())
- report_fatal_error("Bit set element may not have an explicit section");
-
- if (isa<GlobalVariable>(OpGlobal) && OpGlobal->isDeclarationForLinker())
- report_fatal_error("Bit set global var element must be a definition");
-
- auto OffsetConstMD = dyn_cast<ConstantAsMetadata>(Op->getOperand(2));
- if (!OffsetConstMD)
- report_fatal_error("Bit set element offset must be a constant");
- auto OffsetInt = dyn_cast<ConstantInt>(OffsetConstMD->getValue());
- if (!OffsetInt)
- report_fatal_error("Bit set element offset must be an integer constant");
-}
-
-static const unsigned kX86JumpTableEntrySize = 8;
-
-unsigned LowerBitSets::getJumpTableEntrySize() {
- if (Arch != Triple::x86 && Arch != Triple::x86_64)
- report_fatal_error("Unsupported architecture for jump tables");
-
- return kX86JumpTableEntrySize;
-}
-
-// Create a constant representing a jump table entry for the target. This
-// consists of an instruction sequence containing a relative branch to Dest. The
-// constant will be laid out at address Src+(Len*Distance) where Len is the
-// target-specific jump table entry size.
-Constant *LowerBitSets::createJumpTableEntry(GlobalObject *Src, Function *Dest,
- unsigned Distance) {
- if (Arch != Triple::x86 && Arch != Triple::x86_64)
- report_fatal_error("Unsupported architecture for jump tables");
-
- const unsigned kJmpPCRel32Code = 0xe9;
- const unsigned kInt3Code = 0xcc;
-
- ConstantInt *Jmp = ConstantInt::get(Int8Ty, kJmpPCRel32Code);
-
- // Build a constant representing the displacement between the constant's
- // address and Dest. This will resolve to a PC32 relocation referring to Dest.
- Constant *DestInt = ConstantExpr::getPtrToInt(Dest, IntPtrTy);
- Constant *SrcInt = ConstantExpr::getPtrToInt(Src, IntPtrTy);
- Constant *Disp = ConstantExpr::getSub(DestInt, SrcInt);
- ConstantInt *DispOffset =
- ConstantInt::get(IntPtrTy, Distance * kX86JumpTableEntrySize + 5);
- Constant *OffsetedDisp = ConstantExpr::getSub(Disp, DispOffset);
- OffsetedDisp = ConstantExpr::getTruncOrBitCast(OffsetedDisp, Int32Ty);
-
- ConstantInt *Int3 = ConstantInt::get(Int8Ty, kInt3Code);
-
- Constant *Fields[] = {
- Jmp, OffsetedDisp, Int3, Int3, Int3,
- };
- return ConstantStruct::getAnon(Fields, /*Packed=*/true);
-}
-
-Type *LowerBitSets::getJumpTableEntryType() {
- if (Arch != Triple::x86 && Arch != Triple::x86_64)
- report_fatal_error("Unsupported architecture for jump tables");
-
- return StructType::get(M->getContext(),
- {Int8Ty, Int32Ty, Int8Ty, Int8Ty, Int8Ty},
- /*Packed=*/true);
-}
-
-/// Given a disjoint set of bitsets and functions, build a jump table for the
-/// functions, build the bit sets and lower the llvm.bitset.test calls.
-void LowerBitSets::buildBitSetsFromFunctions(ArrayRef<Metadata *> BitSets,
- ArrayRef<Function *> Functions) {
- // Unlike the global bitset builder, the function bitset builder cannot
- // re-arrange functions in a particular order and base its calculations on the
- // layout of the functions' entry points, as we have no idea how large a
- // particular function will end up being (the size could even depend on what
- // this pass does!) Instead, we build a jump table, which is a block of code
- // consisting of one branch instruction for each of the functions in the bit
- // set that branches to the target function, and redirect any taken function
- // addresses to the corresponding jump table entry. In the object file's
- // symbol table, the symbols for the target functions also refer to the jump
- // table entries, so that addresses taken outside the module will pass any
- // verification done inside the module.
- //
- // In more concrete terms, suppose we have three functions f, g, h which are
- // members of a single bitset, and a function foo that returns their
- // addresses:
- //
- // f:
- // mov 0, %eax
- // ret
- //
- // g:
- // mov 1, %eax
- // ret
- //
- // h:
- // mov 2, %eax
- // ret
- //
- // foo:
- // mov f, %eax
- // mov g, %edx
- // mov h, %ecx
- // ret
- //
- // To create a jump table for these functions, we instruct the LLVM code
- // generator to output a jump table in the .text section. This is done by
- // representing the instructions in the jump table as an LLVM constant and
- // placing them in a global variable in the .text section. The end result will
- // (conceptually) look like this:
- //
- // f:
- // jmp .Ltmp0 ; 5 bytes
- // int3 ; 1 byte
- // int3 ; 1 byte
- // int3 ; 1 byte
- //
- // g:
- // jmp .Ltmp1 ; 5 bytes
- // int3 ; 1 byte
- // int3 ; 1 byte
- // int3 ; 1 byte
- //
- // h:
- // jmp .Ltmp2 ; 5 bytes
- // int3 ; 1 byte
- // int3 ; 1 byte
- // int3 ; 1 byte
- //
- // .Ltmp0:
- // mov 0, %eax
- // ret
- //
- // .Ltmp1:
- // mov 1, %eax
- // ret
- //
- // .Ltmp2:
- // mov 2, %eax
- // ret
- //
- // foo:
- // mov f, %eax
- // mov g, %edx
- // mov h, %ecx
- // ret
- //
- // Because the addresses of f, g, h are evenly spaced at a power of 2, in the
- // normal case the check can be carried out using the same kind of simple
- // arithmetic that we normally use for globals.
-
- assert(!Functions.empty());
-
- // Build a simple layout based on the regular layout of jump tables.
- DenseMap<GlobalObject *, uint64_t> GlobalLayout;
- unsigned EntrySize = getJumpTableEntrySize();
- for (unsigned I = 0; I != Functions.size(); ++I)
- GlobalLayout[Functions[I]] = I * EntrySize;
-
- // Create a constant to hold the jump table.
- ArrayType *JumpTableType =
- ArrayType::get(getJumpTableEntryType(), Functions.size());
- auto JumpTable = new GlobalVariable(*M, JumpTableType,
- /*isConstant=*/true,
- GlobalValue::PrivateLinkage, nullptr);
- JumpTable->setSection(ObjectFormat == Triple::MachO
- ? "__TEXT,__text,regular,pure_instructions"
- : ".text");
- lowerBitSetCalls(BitSets, JumpTable, GlobalLayout);
-
- // Build aliases pointing to offsets into the jump table, and replace
- // references to the original functions with references to the aliases.
- for (unsigned I = 0; I != Functions.size(); ++I) {
- Constant *CombinedGlobalElemPtr = ConstantExpr::getBitCast(
- ConstantExpr::getGetElementPtr(
- JumpTableType, JumpTable,
- ArrayRef<Constant *>{ConstantInt::get(IntPtrTy, 0),
- ConstantInt::get(IntPtrTy, I)}),
- Functions[I]->getType());
- if (LinkerSubsectionsViaSymbols || Functions[I]->isDeclarationForLinker()) {
- Functions[I]->replaceAllUsesWith(CombinedGlobalElemPtr);
- } else {
- assert(Functions[I]->getType()->getAddressSpace() == 0);
- GlobalAlias *GAlias = GlobalAlias::create(Functions[I]->getValueType(), 0,
- Functions[I]->getLinkage(), "",
- CombinedGlobalElemPtr, M);
- GAlias->setVisibility(Functions[I]->getVisibility());
- GAlias->takeName(Functions[I]);
- Functions[I]->replaceAllUsesWith(GAlias);
- }
- if (!Functions[I]->isDeclarationForLinker())
- Functions[I]->setLinkage(GlobalValue::PrivateLinkage);
- }
-
- // Build and set the jump table's initializer.
- std::vector<Constant *> JumpTableEntries;
- for (unsigned I = 0; I != Functions.size(); ++I)
- JumpTableEntries.push_back(
- createJumpTableEntry(JumpTable, Functions[I], I));
- JumpTable->setInitializer(
- ConstantArray::get(JumpTableType, JumpTableEntries));
-}
-
-void LowerBitSets::buildBitSetsFromDisjointSet(
- ArrayRef<Metadata *> BitSets, ArrayRef<GlobalObject *> Globals) {
- llvm::DenseMap<Metadata *, uint64_t> BitSetIndices;
- llvm::DenseMap<GlobalObject *, uint64_t> GlobalIndices;
- for (unsigned I = 0; I != BitSets.size(); ++I)
- BitSetIndices[BitSets[I]] = I;
- for (unsigned I = 0; I != Globals.size(); ++I)
- GlobalIndices[Globals[I]] = I;
-
- // For each bitset, build a set of indices that refer to globals referenced by
- // the bitset.
- std::vector<std::set<uint64_t>> BitSetMembers(BitSets.size());
- if (BitSetNM) {
- for (MDNode *Op : BitSetNM->operands()) {
- // Op = { bitset name, global, offset }
- if (!Op->getOperand(1))
- continue;
- auto I = BitSetIndices.find(Op->getOperand(0));
- if (I == BitSetIndices.end())
- continue;
-
- auto OpGlobal = dyn_cast<GlobalObject>(
- cast<ConstantAsMetadata>(Op->getOperand(1))->getValue());
- if (!OpGlobal)
- continue;
- BitSetMembers[I->second].insert(GlobalIndices[OpGlobal]);
- }
- }
-
- // Order the sets of indices by size. The GlobalLayoutBuilder works best
- // when given small index sets first.
- std::stable_sort(
- BitSetMembers.begin(), BitSetMembers.end(),
- [](const std::set<uint64_t> &O1, const std::set<uint64_t> &O2) {
- return O1.size() < O2.size();
- });
-
- // Create a GlobalLayoutBuilder and provide it with index sets as layout
- // fragments. The GlobalLayoutBuilder tries to lay out members of fragments as
- // close together as possible.
- GlobalLayoutBuilder GLB(Globals.size());
- for (auto &&MemSet : BitSetMembers)
- GLB.addFragment(MemSet);
-
- // Build the bitsets from this disjoint set.
- if (Globals.empty() || isa<GlobalVariable>(Globals[0])) {
- // Build a vector of global variables with the computed layout.
- std::vector<GlobalVariable *> OrderedGVs(Globals.size());
- auto OGI = OrderedGVs.begin();
- for (auto &&F : GLB.Fragments) {
- for (auto &&Offset : F) {
- auto GV = dyn_cast<GlobalVariable>(Globals[Offset]);
- if (!GV)
- report_fatal_error(
- "Bit set may not contain both global variables and functions");
- *OGI++ = GV;
- }
- }
-
- buildBitSetsFromGlobalVariables(BitSets, OrderedGVs);
- } else {
- // Build a vector of functions with the computed layout.
- std::vector<Function *> OrderedFns(Globals.size());
- auto OFI = OrderedFns.begin();
- for (auto &&F : GLB.Fragments) {
- for (auto &&Offset : F) {
- auto Fn = dyn_cast<Function>(Globals[Offset]);
- if (!Fn)
- report_fatal_error(
- "Bit set may not contain both global variables and functions");
- *OFI++ = Fn;
- }
- }
-
- buildBitSetsFromFunctions(BitSets, OrderedFns);
- }
-}
-
-/// Lower all bit sets in this module.
-bool LowerBitSets::buildBitSets() {
- Function *BitSetTestFunc =
- M->getFunction(Intrinsic::getName(Intrinsic::bitset_test));
- if (!BitSetTestFunc)
- return false;
-
- // Equivalence class set containing bitsets and the globals they reference.
- // This is used to partition the set of bitsets in the module into disjoint
- // sets.
- typedef EquivalenceClasses<PointerUnion<GlobalObject *, Metadata *>>
- GlobalClassesTy;
- GlobalClassesTy GlobalClasses;
-
- // Verify the bitset metadata and build a mapping from bitset identifiers to
- // their last observed index in BitSetNM. This will used later to
- // deterministically order the list of bitset identifiers.
- llvm::DenseMap<Metadata *, unsigned> BitSetIdIndices;
- if (BitSetNM) {
- for (unsigned I = 0, E = BitSetNM->getNumOperands(); I != E; ++I) {
- MDNode *Op = BitSetNM->getOperand(I);
- verifyBitSetMDNode(Op);
- BitSetIdIndices[Op->getOperand(0)] = I;
- }
- }
-
- for (const Use &U : BitSetTestFunc->uses()) {
- auto CI = cast<CallInst>(U.getUser());
-
- auto BitSetMDVal = dyn_cast<MetadataAsValue>(CI->getArgOperand(1));
- if (!BitSetMDVal)
- report_fatal_error(
- "Second argument of llvm.bitset.test must be metadata");
- auto BitSet = BitSetMDVal->getMetadata();
-
- // Add the call site to the list of call sites for this bit set. We also use
- // BitSetTestCallSites to keep track of whether we have seen this bit set
- // before. If we have, we don't need to re-add the referenced globals to the
- // equivalence class.
- std::pair<DenseMap<Metadata *, std::vector<CallInst *>>::iterator,
- bool> Ins =
- BitSetTestCallSites.insert(
- std::make_pair(BitSet, std::vector<CallInst *>()));
- Ins.first->second.push_back(CI);
- if (!Ins.second)
- continue;
-
- // Add the bitset to the equivalence class.
- GlobalClassesTy::iterator GCI = GlobalClasses.insert(BitSet);
- GlobalClassesTy::member_iterator CurSet = GlobalClasses.findLeader(GCI);
-
- if (!BitSetNM)
- continue;
-
- // Add the referenced globals to the bitset's equivalence class.
- for (MDNode *Op : BitSetNM->operands()) {
- if (Op->getOperand(0) != BitSet || !Op->getOperand(1))
- continue;
-
- auto OpGlobal = dyn_cast<GlobalObject>(
- cast<ConstantAsMetadata>(Op->getOperand(1))->getValue());
- if (!OpGlobal)
- continue;
-
- CurSet = GlobalClasses.unionSets(
- CurSet, GlobalClasses.findLeader(GlobalClasses.insert(OpGlobal)));
- }
- }
-
- if (GlobalClasses.empty())
- return false;
-
- // Build a list of disjoint sets ordered by their maximum BitSetNM index
- // for determinism.
- std::vector<std::pair<GlobalClassesTy::iterator, unsigned>> Sets;
- for (GlobalClassesTy::iterator I = GlobalClasses.begin(),
- E = GlobalClasses.end();
- I != E; ++I) {
- if (!I->isLeader()) continue;
- ++NumBitSetDisjointSets;
-
- unsigned MaxIndex = 0;
- for (GlobalClassesTy::member_iterator MI = GlobalClasses.member_begin(I);
- MI != GlobalClasses.member_end(); ++MI) {
- if ((*MI).is<Metadata *>())
- MaxIndex = std::max(MaxIndex, BitSetIdIndices[MI->get<Metadata *>()]);
- }
- Sets.emplace_back(I, MaxIndex);
- }
- std::sort(Sets.begin(), Sets.end(),
- [](const std::pair<GlobalClassesTy::iterator, unsigned> &S1,
- const std::pair<GlobalClassesTy::iterator, unsigned> &S2) {
- return S1.second < S2.second;
- });
-
- // For each disjoint set we found...
- for (const auto &S : Sets) {
- // Build the list of bitsets in this disjoint set.
- std::vector<Metadata *> BitSets;
- std::vector<GlobalObject *> Globals;
- for (GlobalClassesTy::member_iterator MI =
- GlobalClasses.member_begin(S.first);
- MI != GlobalClasses.member_end(); ++MI) {
- if ((*MI).is<Metadata *>())
- BitSets.push_back(MI->get<Metadata *>());
- else
- Globals.push_back(MI->get<GlobalObject *>());
- }
-
- // Order bitsets by BitSetNM index for determinism. This ordering is stable
- // as there is a one-to-one mapping between metadata and indices.
- std::sort(BitSets.begin(), BitSets.end(), [&](Metadata *M1, Metadata *M2) {
- return BitSetIdIndices[M1] < BitSetIdIndices[M2];
- });
-
- // Lower the bitsets in this disjoint set.
- buildBitSetsFromDisjointSet(BitSets, Globals);
- }
-
- allocateByteArrays();
-
- return true;
-}
-
-bool LowerBitSets::eraseBitSetMetadata() {
- if (!BitSetNM)
- return false;
-
- M->eraseNamedMetadata(BitSetNM);
- return true;
-}
-
-bool LowerBitSets::runOnModule(Module &M) {
- bool Changed = buildBitSets();
- Changed |= eraseBitSetMetadata();
- return Changed;
-}