diff options
Diffstat (limited to 'lib/Transforms/IPO/WholeProgramDevirt.cpp')
-rw-r--r-- | lib/Transforms/IPO/WholeProgramDevirt.cpp | 843 |
1 files changed, 843 insertions, 0 deletions
diff --git a/lib/Transforms/IPO/WholeProgramDevirt.cpp b/lib/Transforms/IPO/WholeProgramDevirt.cpp new file mode 100644 index 0000000000000..53eb4e2c90761 --- /dev/null +++ b/lib/Transforms/IPO/WholeProgramDevirt.cpp @@ -0,0 +1,843 @@ +//===- WholeProgramDevirt.cpp - Whole program virtual call optimization ---===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This pass implements whole program optimization of virtual calls in cases +// where we know (via !type metadata) that the list of callees is fixed. This +// includes the following: +// - Single implementation devirtualization: if a virtual call has a single +// possible callee, replace all calls with a direct call to that callee. +// - Virtual constant propagation: if the virtual function's return type is an +// integer <=64 bits and all possible callees are readnone, for each class and +// each list of constant arguments: evaluate the function, store the return +// value alongside the virtual table, and rewrite each virtual call as a load +// from the virtual table. +// - Uniform return value optimization: if the conditions for virtual constant +// propagation hold and each function returns the same constant value, replace +// each virtual call with that constant. +// - Unique return value optimization for i1 return values: if the conditions +// for virtual constant propagation hold and a single vtable's function +// returns 0, or a single vtable's function returns 1, replace each virtual +// call with a comparison of the vptr against that vtable's address. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Transforms/IPO/WholeProgramDevirt.h" +#include "llvm/ADT/ArrayRef.h" +#include "llvm/ADT/DenseSet.h" +#include "llvm/ADT/MapVector.h" +#include "llvm/Analysis/TypeMetadataUtils.h" +#include "llvm/IR/CallSite.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/DiagnosticInfo.h" +#include "llvm/IR/IRBuilder.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/Intrinsics.h" +#include "llvm/IR/Module.h" +#include "llvm/Pass.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Transforms/IPO.h" +#include "llvm/Transforms/Utils/Evaluator.h" +#include "llvm/Transforms/Utils/Local.h" + +#include <set> + +using namespace llvm; +using namespace wholeprogramdevirt; + +#define DEBUG_TYPE "wholeprogramdevirt" + +// Find the minimum offset that we may store a value of size Size bits at. If +// IsAfter is set, look for an offset before the object, otherwise look for an +// offset after the object. +uint64_t +wholeprogramdevirt::findLowestOffset(ArrayRef<VirtualCallTarget> Targets, + bool IsAfter, uint64_t Size) { + // Find a minimum offset taking into account only vtable sizes. + uint64_t MinByte = 0; + for (const VirtualCallTarget &Target : Targets) { + if (IsAfter) + MinByte = std::max(MinByte, Target.minAfterBytes()); + else + MinByte = std::max(MinByte, Target.minBeforeBytes()); + } + + // Build a vector of arrays of bytes covering, for each target, a slice of the + // used region (see AccumBitVector::BytesUsed in + // llvm/Transforms/IPO/WholeProgramDevirt.h) starting at MinByte. Effectively, + // this aligns the used regions to start at MinByte. + // + // In this example, A, B and C are vtables, # is a byte already allocated for + // a virtual function pointer, AAAA... (etc.) are the used regions for the + // vtables and Offset(X) is the value computed for the Offset variable below + // for X. + // + // Offset(A) + // | | + // |MinByte + // A: ################AAAAAAAA|AAAAAAAA + // B: ########BBBBBBBBBBBBBBBB|BBBB + // C: ########################|CCCCCCCCCCCCCCCC + // | Offset(B) | + // + // This code produces the slices of A, B and C that appear after the divider + // at MinByte. + std::vector<ArrayRef<uint8_t>> Used; + for (const VirtualCallTarget &Target : Targets) { + ArrayRef<uint8_t> VTUsed = IsAfter ? Target.TM->Bits->After.BytesUsed + : Target.TM->Bits->Before.BytesUsed; + uint64_t Offset = IsAfter ? MinByte - Target.minAfterBytes() + : MinByte - Target.minBeforeBytes(); + + // Disregard used regions that are smaller than Offset. These are + // effectively all-free regions that do not need to be checked. + if (VTUsed.size() > Offset) + Used.push_back(VTUsed.slice(Offset)); + } + + if (Size == 1) { + // Find a free bit in each member of Used. + for (unsigned I = 0;; ++I) { + uint8_t BitsUsed = 0; + for (auto &&B : Used) + if (I < B.size()) + BitsUsed |= B[I]; + if (BitsUsed != 0xff) + return (MinByte + I) * 8 + + countTrailingZeros(uint8_t(~BitsUsed), ZB_Undefined); + } + } else { + // Find a free (Size/8) byte region in each member of Used. + // FIXME: see if alignment helps. + for (unsigned I = 0;; ++I) { + for (auto &&B : Used) { + unsigned Byte = 0; + while ((I + Byte) < B.size() && Byte < (Size / 8)) { + if (B[I + Byte]) + goto NextI; + ++Byte; + } + } + return (MinByte + I) * 8; + NextI:; + } + } +} + +void wholeprogramdevirt::setBeforeReturnValues( + MutableArrayRef<VirtualCallTarget> Targets, uint64_t AllocBefore, + unsigned BitWidth, int64_t &OffsetByte, uint64_t &OffsetBit) { + if (BitWidth == 1) + OffsetByte = -(AllocBefore / 8 + 1); + else + OffsetByte = -((AllocBefore + 7) / 8 + (BitWidth + 7) / 8); + OffsetBit = AllocBefore % 8; + + for (VirtualCallTarget &Target : Targets) { + if (BitWidth == 1) + Target.setBeforeBit(AllocBefore); + else + Target.setBeforeBytes(AllocBefore, (BitWidth + 7) / 8); + } +} + +void wholeprogramdevirt::setAfterReturnValues( + MutableArrayRef<VirtualCallTarget> Targets, uint64_t AllocAfter, + unsigned BitWidth, int64_t &OffsetByte, uint64_t &OffsetBit) { + if (BitWidth == 1) + OffsetByte = AllocAfter / 8; + else + OffsetByte = (AllocAfter + 7) / 8; + OffsetBit = AllocAfter % 8; + + for (VirtualCallTarget &Target : Targets) { + if (BitWidth == 1) + Target.setAfterBit(AllocAfter); + else + Target.setAfterBytes(AllocAfter, (BitWidth + 7) / 8); + } +} + +VirtualCallTarget::VirtualCallTarget(Function *Fn, const TypeMemberInfo *TM) + : Fn(Fn), TM(TM), + IsBigEndian(Fn->getParent()->getDataLayout().isBigEndian()) {} + +namespace { + +// A slot in a set of virtual tables. The TypeID identifies the set of virtual +// tables, and the ByteOffset is the offset in bytes from the address point to +// the virtual function pointer. +struct VTableSlot { + Metadata *TypeID; + uint64_t ByteOffset; +}; + +} + +namespace llvm { + +template <> struct DenseMapInfo<VTableSlot> { + static VTableSlot getEmptyKey() { + return {DenseMapInfo<Metadata *>::getEmptyKey(), + DenseMapInfo<uint64_t>::getEmptyKey()}; + } + static VTableSlot getTombstoneKey() { + return {DenseMapInfo<Metadata *>::getTombstoneKey(), + DenseMapInfo<uint64_t>::getTombstoneKey()}; + } + static unsigned getHashValue(const VTableSlot &I) { + return DenseMapInfo<Metadata *>::getHashValue(I.TypeID) ^ + DenseMapInfo<uint64_t>::getHashValue(I.ByteOffset); + } + static bool isEqual(const VTableSlot &LHS, + const VTableSlot &RHS) { + return LHS.TypeID == RHS.TypeID && LHS.ByteOffset == RHS.ByteOffset; + } +}; + +} + +namespace { + +// A virtual call site. VTable is the loaded virtual table pointer, and CS is +// the indirect virtual call. +struct VirtualCallSite { + Value *VTable; + CallSite CS; + + // If non-null, this field points to the associated unsafe use count stored in + // the DevirtModule::NumUnsafeUsesForTypeTest map below. See the description + // of that field for details. + unsigned *NumUnsafeUses; + + void emitRemark() { + Function *F = CS.getCaller(); + emitOptimizationRemark(F->getContext(), DEBUG_TYPE, *F, + CS.getInstruction()->getDebugLoc(), + "devirtualized call"); + } + + void replaceAndErase(Value *New) { + emitRemark(); + CS->replaceAllUsesWith(New); + if (auto II = dyn_cast<InvokeInst>(CS.getInstruction())) { + BranchInst::Create(II->getNormalDest(), CS.getInstruction()); + II->getUnwindDest()->removePredecessor(II->getParent()); + } + CS->eraseFromParent(); + // This use is no longer unsafe. + if (NumUnsafeUses) + --*NumUnsafeUses; + } +}; + +struct DevirtModule { + Module &M; + IntegerType *Int8Ty; + PointerType *Int8PtrTy; + IntegerType *Int32Ty; + + MapVector<VTableSlot, std::vector<VirtualCallSite>> CallSlots; + + // This map keeps track of the number of "unsafe" uses of a loaded function + // pointer. The key is the associated llvm.type.test intrinsic call generated + // by this pass. An unsafe use is one that calls the loaded function pointer + // directly. Every time we eliminate an unsafe use (for example, by + // devirtualizing it or by applying virtual constant propagation), we + // decrement the value stored in this map. If a value reaches zero, we can + // eliminate the type check by RAUWing the associated llvm.type.test call with + // true. + std::map<CallInst *, unsigned> NumUnsafeUsesForTypeTest; + + DevirtModule(Module &M) + : M(M), Int8Ty(Type::getInt8Ty(M.getContext())), + Int8PtrTy(Type::getInt8PtrTy(M.getContext())), + Int32Ty(Type::getInt32Ty(M.getContext())) {} + + void scanTypeTestUsers(Function *TypeTestFunc, Function *AssumeFunc); + void scanTypeCheckedLoadUsers(Function *TypeCheckedLoadFunc); + + void buildTypeIdentifierMap( + std::vector<VTableBits> &Bits, + DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap); + bool + tryFindVirtualCallTargets(std::vector<VirtualCallTarget> &TargetsForSlot, + const std::set<TypeMemberInfo> &TypeMemberInfos, + uint64_t ByteOffset); + bool trySingleImplDevirt(ArrayRef<VirtualCallTarget> TargetsForSlot, + MutableArrayRef<VirtualCallSite> CallSites); + bool tryEvaluateFunctionsWithArgs( + MutableArrayRef<VirtualCallTarget> TargetsForSlot, + ArrayRef<ConstantInt *> Args); + bool tryUniformRetValOpt(IntegerType *RetType, + ArrayRef<VirtualCallTarget> TargetsForSlot, + MutableArrayRef<VirtualCallSite> CallSites); + bool tryUniqueRetValOpt(unsigned BitWidth, + ArrayRef<VirtualCallTarget> TargetsForSlot, + MutableArrayRef<VirtualCallSite> CallSites); + bool tryVirtualConstProp(MutableArrayRef<VirtualCallTarget> TargetsForSlot, + ArrayRef<VirtualCallSite> CallSites); + + void rebuildGlobal(VTableBits &B); + + bool run(); +}; + +struct WholeProgramDevirt : public ModulePass { + static char ID; + WholeProgramDevirt() : ModulePass(ID) { + initializeWholeProgramDevirtPass(*PassRegistry::getPassRegistry()); + } + bool runOnModule(Module &M) { + if (skipModule(M)) + return false; + + return DevirtModule(M).run(); + } +}; + +} // anonymous namespace + +INITIALIZE_PASS(WholeProgramDevirt, "wholeprogramdevirt", + "Whole program devirtualization", false, false) +char WholeProgramDevirt::ID = 0; + +ModulePass *llvm::createWholeProgramDevirtPass() { + return new WholeProgramDevirt; +} + +PreservedAnalyses WholeProgramDevirtPass::run(Module &M, + ModuleAnalysisManager &) { + if (!DevirtModule(M).run()) + return PreservedAnalyses::all(); + return PreservedAnalyses::none(); +} + +void DevirtModule::buildTypeIdentifierMap( + std::vector<VTableBits> &Bits, + DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap) { + DenseMap<GlobalVariable *, VTableBits *> GVToBits; + Bits.reserve(M.getGlobalList().size()); + SmallVector<MDNode *, 2> Types; + for (GlobalVariable &GV : M.globals()) { + Types.clear(); + GV.getMetadata(LLVMContext::MD_type, Types); + if (Types.empty()) + continue; + + VTableBits *&BitsPtr = GVToBits[&GV]; + if (!BitsPtr) { + Bits.emplace_back(); + Bits.back().GV = &GV; + Bits.back().ObjectSize = + M.getDataLayout().getTypeAllocSize(GV.getInitializer()->getType()); + BitsPtr = &Bits.back(); + } + + for (MDNode *Type : Types) { + auto TypeID = Type->getOperand(1).get(); + + uint64_t Offset = + cast<ConstantInt>( + cast<ConstantAsMetadata>(Type->getOperand(0))->getValue()) + ->getZExtValue(); + + TypeIdMap[TypeID].insert({BitsPtr, Offset}); + } + } +} + +bool DevirtModule::tryFindVirtualCallTargets( + std::vector<VirtualCallTarget> &TargetsForSlot, + const std::set<TypeMemberInfo> &TypeMemberInfos, uint64_t ByteOffset) { + for (const TypeMemberInfo &TM : TypeMemberInfos) { + if (!TM.Bits->GV->isConstant()) + return false; + + auto Init = dyn_cast<ConstantArray>(TM.Bits->GV->getInitializer()); + if (!Init) + return false; + ArrayType *VTableTy = Init->getType(); + + uint64_t ElemSize = + M.getDataLayout().getTypeAllocSize(VTableTy->getElementType()); + uint64_t GlobalSlotOffset = TM.Offset + ByteOffset; + if (GlobalSlotOffset % ElemSize != 0) + return false; + + unsigned Op = GlobalSlotOffset / ElemSize; + if (Op >= Init->getNumOperands()) + return false; + + auto Fn = dyn_cast<Function>(Init->getOperand(Op)->stripPointerCasts()); + if (!Fn) + return false; + + // We can disregard __cxa_pure_virtual as a possible call target, as + // calls to pure virtuals are UB. + if (Fn->getName() == "__cxa_pure_virtual") + continue; + + TargetsForSlot.push_back({Fn, &TM}); + } + + // Give up if we couldn't find any targets. + return !TargetsForSlot.empty(); +} + +bool DevirtModule::trySingleImplDevirt( + ArrayRef<VirtualCallTarget> TargetsForSlot, + MutableArrayRef<VirtualCallSite> CallSites) { + // See if the program contains a single implementation of this virtual + // function. + Function *TheFn = TargetsForSlot[0].Fn; + for (auto &&Target : TargetsForSlot) + if (TheFn != Target.Fn) + return false; + + // If so, update each call site to call that implementation directly. + for (auto &&VCallSite : CallSites) { + VCallSite.emitRemark(); + VCallSite.CS.setCalledFunction(ConstantExpr::getBitCast( + TheFn, VCallSite.CS.getCalledValue()->getType())); + // This use is no longer unsafe. + if (VCallSite.NumUnsafeUses) + --*VCallSite.NumUnsafeUses; + } + return true; +} + +bool DevirtModule::tryEvaluateFunctionsWithArgs( + MutableArrayRef<VirtualCallTarget> TargetsForSlot, + ArrayRef<ConstantInt *> Args) { + // Evaluate each function and store the result in each target's RetVal + // field. + for (VirtualCallTarget &Target : TargetsForSlot) { + if (Target.Fn->arg_size() != Args.size() + 1) + return false; + for (unsigned I = 0; I != Args.size(); ++I) + if (Target.Fn->getFunctionType()->getParamType(I + 1) != + Args[I]->getType()) + return false; + + Evaluator Eval(M.getDataLayout(), nullptr); + SmallVector<Constant *, 2> EvalArgs; + EvalArgs.push_back( + Constant::getNullValue(Target.Fn->getFunctionType()->getParamType(0))); + EvalArgs.insert(EvalArgs.end(), Args.begin(), Args.end()); + Constant *RetVal; + if (!Eval.EvaluateFunction(Target.Fn, RetVal, EvalArgs) || + !isa<ConstantInt>(RetVal)) + return false; + Target.RetVal = cast<ConstantInt>(RetVal)->getZExtValue(); + } + return true; +} + +bool DevirtModule::tryUniformRetValOpt( + IntegerType *RetType, ArrayRef<VirtualCallTarget> TargetsForSlot, + MutableArrayRef<VirtualCallSite> CallSites) { + // Uniform return value optimization. If all functions return the same + // constant, replace all calls with that constant. + uint64_t TheRetVal = TargetsForSlot[0].RetVal; + for (const VirtualCallTarget &Target : TargetsForSlot) + if (Target.RetVal != TheRetVal) + return false; + + auto TheRetValConst = ConstantInt::get(RetType, TheRetVal); + for (auto Call : CallSites) + Call.replaceAndErase(TheRetValConst); + return true; +} + +bool DevirtModule::tryUniqueRetValOpt( + unsigned BitWidth, ArrayRef<VirtualCallTarget> TargetsForSlot, + MutableArrayRef<VirtualCallSite> CallSites) { + // IsOne controls whether we look for a 0 or a 1. + auto tryUniqueRetValOptFor = [&](bool IsOne) { + const TypeMemberInfo *UniqueMember = 0; + for (const VirtualCallTarget &Target : TargetsForSlot) { + if (Target.RetVal == (IsOne ? 1 : 0)) { + if (UniqueMember) + return false; + UniqueMember = Target.TM; + } + } + + // We should have found a unique member or bailed out by now. We already + // checked for a uniform return value in tryUniformRetValOpt. + assert(UniqueMember); + + // Replace each call with the comparison. + for (auto &&Call : CallSites) { + IRBuilder<> B(Call.CS.getInstruction()); + Value *OneAddr = B.CreateBitCast(UniqueMember->Bits->GV, Int8PtrTy); + OneAddr = B.CreateConstGEP1_64(OneAddr, UniqueMember->Offset); + Value *Cmp = B.CreateICmp(IsOne ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE, + Call.VTable, OneAddr); + Call.replaceAndErase(Cmp); + } + return true; + }; + + if (BitWidth == 1) { + if (tryUniqueRetValOptFor(true)) + return true; + if (tryUniqueRetValOptFor(false)) + return true; + } + return false; +} + +bool DevirtModule::tryVirtualConstProp( + MutableArrayRef<VirtualCallTarget> TargetsForSlot, + ArrayRef<VirtualCallSite> CallSites) { + // This only works if the function returns an integer. + auto RetType = dyn_cast<IntegerType>(TargetsForSlot[0].Fn->getReturnType()); + if (!RetType) + return false; + unsigned BitWidth = RetType->getBitWidth(); + if (BitWidth > 64) + return false; + + // Make sure that each function does not access memory, takes at least one + // argument, does not use its first argument (which we assume is 'this'), + // and has the same return type. + for (VirtualCallTarget &Target : TargetsForSlot) { + if (!Target.Fn->doesNotAccessMemory() || Target.Fn->arg_empty() || + !Target.Fn->arg_begin()->use_empty() || + Target.Fn->getReturnType() != RetType) + return false; + } + + // Group call sites by the list of constant arguments they pass. + // The comparator ensures deterministic ordering. + struct ByAPIntValue { + bool operator()(const std::vector<ConstantInt *> &A, + const std::vector<ConstantInt *> &B) const { + return std::lexicographical_compare( + A.begin(), A.end(), B.begin(), B.end(), + [](ConstantInt *AI, ConstantInt *BI) { + return AI->getValue().ult(BI->getValue()); + }); + } + }; + std::map<std::vector<ConstantInt *>, std::vector<VirtualCallSite>, + ByAPIntValue> + VCallSitesByConstantArg; + for (auto &&VCallSite : CallSites) { + std::vector<ConstantInt *> Args; + if (VCallSite.CS.getType() != RetType) + continue; + for (auto &&Arg : + make_range(VCallSite.CS.arg_begin() + 1, VCallSite.CS.arg_end())) { + if (!isa<ConstantInt>(Arg)) + break; + Args.push_back(cast<ConstantInt>(&Arg)); + } + if (Args.size() + 1 != VCallSite.CS.arg_size()) + continue; + + VCallSitesByConstantArg[Args].push_back(VCallSite); + } + + for (auto &&CSByConstantArg : VCallSitesByConstantArg) { + if (!tryEvaluateFunctionsWithArgs(TargetsForSlot, CSByConstantArg.first)) + continue; + + if (tryUniformRetValOpt(RetType, TargetsForSlot, CSByConstantArg.second)) + continue; + + if (tryUniqueRetValOpt(BitWidth, TargetsForSlot, CSByConstantArg.second)) + continue; + + // Find an allocation offset in bits in all vtables associated with the + // type. + uint64_t AllocBefore = + findLowestOffset(TargetsForSlot, /*IsAfter=*/false, BitWidth); + uint64_t AllocAfter = + findLowestOffset(TargetsForSlot, /*IsAfter=*/true, BitWidth); + + // Calculate the total amount of padding needed to store a value at both + // ends of the object. + uint64_t TotalPaddingBefore = 0, TotalPaddingAfter = 0; + for (auto &&Target : TargetsForSlot) { + TotalPaddingBefore += std::max<int64_t>( + (AllocBefore + 7) / 8 - Target.allocatedBeforeBytes() - 1, 0); + TotalPaddingAfter += std::max<int64_t>( + (AllocAfter + 7) / 8 - Target.allocatedAfterBytes() - 1, 0); + } + + // If the amount of padding is too large, give up. + // FIXME: do something smarter here. + if (std::min(TotalPaddingBefore, TotalPaddingAfter) > 128) + continue; + + // Calculate the offset to the value as a (possibly negative) byte offset + // and (if applicable) a bit offset, and store the values in the targets. + int64_t OffsetByte; + uint64_t OffsetBit; + if (TotalPaddingBefore <= TotalPaddingAfter) + setBeforeReturnValues(TargetsForSlot, AllocBefore, BitWidth, OffsetByte, + OffsetBit); + else + setAfterReturnValues(TargetsForSlot, AllocAfter, BitWidth, OffsetByte, + OffsetBit); + + // Rewrite each call to a load from OffsetByte/OffsetBit. + for (auto Call : CSByConstantArg.second) { + IRBuilder<> B(Call.CS.getInstruction()); + Value *Addr = B.CreateConstGEP1_64(Call.VTable, OffsetByte); + if (BitWidth == 1) { + Value *Bits = B.CreateLoad(Addr); + Value *Bit = ConstantInt::get(Int8Ty, 1ULL << OffsetBit); + Value *BitsAndBit = B.CreateAnd(Bits, Bit); + auto IsBitSet = B.CreateICmpNE(BitsAndBit, ConstantInt::get(Int8Ty, 0)); + Call.replaceAndErase(IsBitSet); + } else { + Value *ValAddr = B.CreateBitCast(Addr, RetType->getPointerTo()); + Value *Val = B.CreateLoad(RetType, ValAddr); + Call.replaceAndErase(Val); + } + } + } + return true; +} + +void DevirtModule::rebuildGlobal(VTableBits &B) { + if (B.Before.Bytes.empty() && B.After.Bytes.empty()) + return; + + // Align each byte array to pointer width. + unsigned PointerSize = M.getDataLayout().getPointerSize(); + B.Before.Bytes.resize(alignTo(B.Before.Bytes.size(), PointerSize)); + B.After.Bytes.resize(alignTo(B.After.Bytes.size(), PointerSize)); + + // Before was stored in reverse order; flip it now. + for (size_t I = 0, Size = B.Before.Bytes.size(); I != Size / 2; ++I) + std::swap(B.Before.Bytes[I], B.Before.Bytes[Size - 1 - I]); + + // Build an anonymous global containing the before bytes, followed by the + // original initializer, followed by the after bytes. + auto NewInit = ConstantStruct::getAnon( + {ConstantDataArray::get(M.getContext(), B.Before.Bytes), + B.GV->getInitializer(), + ConstantDataArray::get(M.getContext(), B.After.Bytes)}); + auto NewGV = + new GlobalVariable(M, NewInit->getType(), B.GV->isConstant(), + GlobalVariable::PrivateLinkage, NewInit, "", B.GV); + NewGV->setSection(B.GV->getSection()); + NewGV->setComdat(B.GV->getComdat()); + + // Copy the original vtable's metadata to the anonymous global, adjusting + // offsets as required. + NewGV->copyMetadata(B.GV, B.Before.Bytes.size()); + + // Build an alias named after the original global, pointing at the second + // element (the original initializer). + auto Alias = GlobalAlias::create( + B.GV->getInitializer()->getType(), 0, B.GV->getLinkage(), "", + ConstantExpr::getGetElementPtr( + NewInit->getType(), NewGV, + ArrayRef<Constant *>{ConstantInt::get(Int32Ty, 0), + ConstantInt::get(Int32Ty, 1)}), + &M); + Alias->setVisibility(B.GV->getVisibility()); + Alias->takeName(B.GV); + + B.GV->replaceAllUsesWith(Alias); + B.GV->eraseFromParent(); +} + +void DevirtModule::scanTypeTestUsers(Function *TypeTestFunc, + Function *AssumeFunc) { + // Find all virtual calls via a virtual table pointer %p under an assumption + // of the form llvm.assume(llvm.type.test(%p, %md)). This indicates that %p + // points to a member of the type identifier %md. Group calls by (type ID, + // offset) pair (effectively the identity of the virtual function) and store + // to CallSlots. + DenseSet<Value *> SeenPtrs; + for (auto I = TypeTestFunc->use_begin(), E = TypeTestFunc->use_end(); + I != E;) { + auto CI = dyn_cast<CallInst>(I->getUser()); + ++I; + if (!CI) + continue; + + // Search for virtual calls based on %p and add them to DevirtCalls. + SmallVector<DevirtCallSite, 1> DevirtCalls; + SmallVector<CallInst *, 1> Assumes; + findDevirtualizableCallsForTypeTest(DevirtCalls, Assumes, CI); + + // If we found any, add them to CallSlots. Only do this if we haven't seen + // the vtable pointer before, as it may have been CSE'd with pointers from + // other call sites, and we don't want to process call sites multiple times. + if (!Assumes.empty()) { + Metadata *TypeId = + cast<MetadataAsValue>(CI->getArgOperand(1))->getMetadata(); + Value *Ptr = CI->getArgOperand(0)->stripPointerCasts(); + if (SeenPtrs.insert(Ptr).second) { + for (DevirtCallSite Call : DevirtCalls) { + CallSlots[{TypeId, Call.Offset}].push_back( + {CI->getArgOperand(0), Call.CS, nullptr}); + } + } + } + + // We no longer need the assumes or the type test. + for (auto Assume : Assumes) + Assume->eraseFromParent(); + // We can't use RecursivelyDeleteTriviallyDeadInstructions here because we + // may use the vtable argument later. + if (CI->use_empty()) + CI->eraseFromParent(); + } +} + +void DevirtModule::scanTypeCheckedLoadUsers(Function *TypeCheckedLoadFunc) { + Function *TypeTestFunc = Intrinsic::getDeclaration(&M, Intrinsic::type_test); + + for (auto I = TypeCheckedLoadFunc->use_begin(), + E = TypeCheckedLoadFunc->use_end(); + I != E;) { + auto CI = dyn_cast<CallInst>(I->getUser()); + ++I; + if (!CI) + continue; + + Value *Ptr = CI->getArgOperand(0); + Value *Offset = CI->getArgOperand(1); + Value *TypeIdValue = CI->getArgOperand(2); + Metadata *TypeId = cast<MetadataAsValue>(TypeIdValue)->getMetadata(); + + SmallVector<DevirtCallSite, 1> DevirtCalls; + SmallVector<Instruction *, 1> LoadedPtrs; + SmallVector<Instruction *, 1> Preds; + bool HasNonCallUses = false; + findDevirtualizableCallsForTypeCheckedLoad(DevirtCalls, LoadedPtrs, Preds, + HasNonCallUses, CI); + + // Start by generating "pessimistic" code that explicitly loads the function + // pointer from the vtable and performs the type check. If possible, we will + // eliminate the load and the type check later. + + // If possible, only generate the load at the point where it is used. + // This helps avoid unnecessary spills. + IRBuilder<> LoadB( + (LoadedPtrs.size() == 1 && !HasNonCallUses) ? LoadedPtrs[0] : CI); + Value *GEP = LoadB.CreateGEP(Int8Ty, Ptr, Offset); + Value *GEPPtr = LoadB.CreateBitCast(GEP, PointerType::getUnqual(Int8PtrTy)); + Value *LoadedValue = LoadB.CreateLoad(Int8PtrTy, GEPPtr); + + for (Instruction *LoadedPtr : LoadedPtrs) { + LoadedPtr->replaceAllUsesWith(LoadedValue); + LoadedPtr->eraseFromParent(); + } + + // Likewise for the type test. + IRBuilder<> CallB((Preds.size() == 1 && !HasNonCallUses) ? Preds[0] : CI); + CallInst *TypeTestCall = CallB.CreateCall(TypeTestFunc, {Ptr, TypeIdValue}); + + for (Instruction *Pred : Preds) { + Pred->replaceAllUsesWith(TypeTestCall); + Pred->eraseFromParent(); + } + + // We have already erased any extractvalue instructions that refer to the + // intrinsic call, but the intrinsic may have other non-extractvalue uses + // (although this is unlikely). In that case, explicitly build a pair and + // RAUW it. + if (!CI->use_empty()) { + Value *Pair = UndefValue::get(CI->getType()); + IRBuilder<> B(CI); + Pair = B.CreateInsertValue(Pair, LoadedValue, {0}); + Pair = B.CreateInsertValue(Pair, TypeTestCall, {1}); + CI->replaceAllUsesWith(Pair); + } + + // The number of unsafe uses is initially the number of uses. + auto &NumUnsafeUses = NumUnsafeUsesForTypeTest[TypeTestCall]; + NumUnsafeUses = DevirtCalls.size(); + + // If the function pointer has a non-call user, we cannot eliminate the type + // check, as one of those users may eventually call the pointer. Increment + // the unsafe use count to make sure it cannot reach zero. + if (HasNonCallUses) + ++NumUnsafeUses; + for (DevirtCallSite Call : DevirtCalls) { + CallSlots[{TypeId, Call.Offset}].push_back( + {Ptr, Call.CS, &NumUnsafeUses}); + } + + CI->eraseFromParent(); + } +} + +bool DevirtModule::run() { + Function *TypeTestFunc = + M.getFunction(Intrinsic::getName(Intrinsic::type_test)); + Function *TypeCheckedLoadFunc = + M.getFunction(Intrinsic::getName(Intrinsic::type_checked_load)); + Function *AssumeFunc = M.getFunction(Intrinsic::getName(Intrinsic::assume)); + + if ((!TypeTestFunc || TypeTestFunc->use_empty() || !AssumeFunc || + AssumeFunc->use_empty()) && + (!TypeCheckedLoadFunc || TypeCheckedLoadFunc->use_empty())) + return false; + + if (TypeTestFunc && AssumeFunc) + scanTypeTestUsers(TypeTestFunc, AssumeFunc); + + if (TypeCheckedLoadFunc) + scanTypeCheckedLoadUsers(TypeCheckedLoadFunc); + + // Rebuild type metadata into a map for easy lookup. + std::vector<VTableBits> Bits; + DenseMap<Metadata *, std::set<TypeMemberInfo>> TypeIdMap; + buildTypeIdentifierMap(Bits, TypeIdMap); + if (TypeIdMap.empty()) + return true; + + // For each (type, offset) pair: + bool DidVirtualConstProp = false; + for (auto &S : CallSlots) { + // Search each of the members of the type identifier for the virtual + // function implementation at offset S.first.ByteOffset, and add to + // TargetsForSlot. + std::vector<VirtualCallTarget> TargetsForSlot; + if (!tryFindVirtualCallTargets(TargetsForSlot, TypeIdMap[S.first.TypeID], + S.first.ByteOffset)) + continue; + + if (trySingleImplDevirt(TargetsForSlot, S.second)) + continue; + + DidVirtualConstProp |= tryVirtualConstProp(TargetsForSlot, S.second); + } + + // If we were able to eliminate all unsafe uses for a type checked load, + // eliminate the type test by replacing it with true. + if (TypeCheckedLoadFunc) { + auto True = ConstantInt::getTrue(M.getContext()); + for (auto &&U : NumUnsafeUsesForTypeTest) { + if (U.second == 0) { + U.first->replaceAllUsesWith(True); + U.first->eraseFromParent(); + } + } + } + + // Rebuild each global we touched as part of virtual constant propagation to + // include the before and after bytes. + if (DidVirtualConstProp) + for (VTableBits &B : Bits) + rebuildGlobal(B); + + return true; +} |