summaryrefslogtreecommitdiff
path: root/lib/Transforms/IPO/WholeProgramDevirt.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/Transforms/IPO/WholeProgramDevirt.cpp')
-rw-r--r--lib/Transforms/IPO/WholeProgramDevirt.cpp843
1 files changed, 843 insertions, 0 deletions
diff --git a/lib/Transforms/IPO/WholeProgramDevirt.cpp b/lib/Transforms/IPO/WholeProgramDevirt.cpp
new file mode 100644
index 0000000000000..53eb4e2c90761
--- /dev/null
+++ b/lib/Transforms/IPO/WholeProgramDevirt.cpp
@@ -0,0 +1,843 @@
+//===- WholeProgramDevirt.cpp - Whole program virtual call optimization ---===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This pass implements whole program optimization of virtual calls in cases
+// where we know (via !type metadata) that the list of callees is fixed. This
+// includes the following:
+// - Single implementation devirtualization: if a virtual call has a single
+// possible callee, replace all calls with a direct call to that callee.
+// - Virtual constant propagation: if the virtual function's return type is an
+// integer <=64 bits and all possible callees are readnone, for each class and
+// each list of constant arguments: evaluate the function, store the return
+// value alongside the virtual table, and rewrite each virtual call as a load
+// from the virtual table.
+// - Uniform return value optimization: if the conditions for virtual constant
+// propagation hold and each function returns the same constant value, replace
+// each virtual call with that constant.
+// - Unique return value optimization for i1 return values: if the conditions
+// for virtual constant propagation hold and a single vtable's function
+// returns 0, or a single vtable's function returns 1, replace each virtual
+// call with a comparison of the vptr against that vtable's address.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Transforms/IPO/WholeProgramDevirt.h"
+#include "llvm/ADT/ArrayRef.h"
+#include "llvm/ADT/DenseSet.h"
+#include "llvm/ADT/MapVector.h"
+#include "llvm/Analysis/TypeMetadataUtils.h"
+#include "llvm/IR/CallSite.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DiagnosticInfo.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/Module.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Transforms/IPO.h"
+#include "llvm/Transforms/Utils/Evaluator.h"
+#include "llvm/Transforms/Utils/Local.h"
+
+#include <set>
+
+using namespace llvm;
+using namespace wholeprogramdevirt;
+
+#define DEBUG_TYPE "wholeprogramdevirt"
+
+// Find the minimum offset that we may store a value of size Size bits at. If
+// IsAfter is set, look for an offset before the object, otherwise look for an
+// offset after the object.
+uint64_t
+wholeprogramdevirt::findLowestOffset(ArrayRef<VirtualCallTarget> Targets,
+ bool IsAfter, uint64_t Size) {
+ // Find a minimum offset taking into account only vtable sizes.
+ uint64_t MinByte = 0;
+ for (const VirtualCallTarget &Target : Targets) {
+ if (IsAfter)
+ MinByte = std::max(MinByte, Target.minAfterBytes());
+ else
+ MinByte = std::max(MinByte, Target.minBeforeBytes());
+ }
+
+ // Build a vector of arrays of bytes covering, for each target, a slice of the
+ // used region (see AccumBitVector::BytesUsed in
+ // llvm/Transforms/IPO/WholeProgramDevirt.h) starting at MinByte. Effectively,
+ // this aligns the used regions to start at MinByte.
+ //
+ // In this example, A, B and C are vtables, # is a byte already allocated for
+ // a virtual function pointer, AAAA... (etc.) are the used regions for the
+ // vtables and Offset(X) is the value computed for the Offset variable below
+ // for X.
+ //
+ // Offset(A)
+ // | |
+ // |MinByte
+ // A: ################AAAAAAAA|AAAAAAAA
+ // B: ########BBBBBBBBBBBBBBBB|BBBB
+ // C: ########################|CCCCCCCCCCCCCCCC
+ // | Offset(B) |
+ //
+ // This code produces the slices of A, B and C that appear after the divider
+ // at MinByte.
+ std::vector<ArrayRef<uint8_t>> Used;
+ for (const VirtualCallTarget &Target : Targets) {
+ ArrayRef<uint8_t> VTUsed = IsAfter ? Target.TM->Bits->After.BytesUsed
+ : Target.TM->Bits->Before.BytesUsed;
+ uint64_t Offset = IsAfter ? MinByte - Target.minAfterBytes()
+ : MinByte - Target.minBeforeBytes();
+
+ // Disregard used regions that are smaller than Offset. These are
+ // effectively all-free regions that do not need to be checked.
+ if (VTUsed.size() > Offset)
+ Used.push_back(VTUsed.slice(Offset));
+ }
+
+ if (Size == 1) {
+ // Find a free bit in each member of Used.
+ for (unsigned I = 0;; ++I) {
+ uint8_t BitsUsed = 0;
+ for (auto &&B : Used)
+ if (I < B.size())
+ BitsUsed |= B[I];
+ if (BitsUsed != 0xff)
+ return (MinByte + I) * 8 +
+ countTrailingZeros(uint8_t(~BitsUsed), ZB_Undefined);
+ }
+ } else {
+ // Find a free (Size/8) byte region in each member of Used.
+ // FIXME: see if alignment helps.
+ for (unsigned I = 0;; ++I) {
+ for (auto &&B : Used) {
+ unsigned Byte = 0;
+ while ((I + Byte) < B.size() && Byte < (Size / 8)) {
+ if (B[I + Byte])
+ goto NextI;
+ ++Byte;
+ }
+ }
+ return (MinByte + I) * 8;
+ NextI:;
+ }
+ }
+}
+
+void wholeprogramdevirt::setBeforeReturnValues(
+ MutableArrayRef<VirtualCallTarget> Targets, uint64_t AllocBefore,
+ unsigned BitWidth, int64_t &OffsetByte, uint64_t &OffsetBit) {
+ if (BitWidth == 1)
+ OffsetByte = -(AllocBefore / 8 + 1);
+ else
+ OffsetByte = -((AllocBefore + 7) / 8 + (BitWidth + 7) / 8);
+ OffsetBit = AllocBefore % 8;
+
+ for (VirtualCallTarget &Target : Targets) {
+ if (BitWidth == 1)
+ Target.setBeforeBit(AllocBefore);
+ else
+ Target.setBeforeBytes(AllocBefore, (BitWidth + 7) / 8);
+ }
+}
+
+void wholeprogramdevirt::setAfterReturnValues(
+ MutableArrayRef<VirtualCallTarget> Targets, uint64_t AllocAfter,
+ unsigned BitWidth, int64_t &OffsetByte, uint64_t &OffsetBit) {
+ if (BitWidth == 1)
+ OffsetByte = AllocAfter / 8;
+ else
+ OffsetByte = (AllocAfter + 7) / 8;
+ OffsetBit = AllocAfter % 8;
+
+ for (VirtualCallTarget &Target : Targets) {
+ if (BitWidth == 1)
+ Target.setAfterBit(AllocAfter);
+ else
+ Target.setAfterBytes(AllocAfter, (BitWidth + 7) / 8);
+ }
+}
+
+VirtualCallTarget::VirtualCallTarget(Function *Fn, const TypeMemberInfo *TM)
+ : Fn(Fn), TM(TM),
+ IsBigEndian(Fn->getParent()->getDataLayout().isBigEndian()) {}
+
+namespace {
+
+// A slot in a set of virtual tables. The TypeID identifies the set of virtual
+// tables, and the ByteOffset is the offset in bytes from the address point to
+// the virtual function pointer.
+struct VTableSlot {
+ Metadata *TypeID;
+ uint64_t ByteOffset;
+};
+
+}
+
+namespace llvm {
+
+template <> struct DenseMapInfo<VTableSlot> {
+ static VTableSlot getEmptyKey() {
+ return {DenseMapInfo<Metadata *>::getEmptyKey(),
+ DenseMapInfo<uint64_t>::getEmptyKey()};
+ }
+ static VTableSlot getTombstoneKey() {
+ return {DenseMapInfo<Metadata *>::getTombstoneKey(),
+ DenseMapInfo<uint64_t>::getTombstoneKey()};
+ }
+ static unsigned getHashValue(const VTableSlot &I) {
+ return DenseMapInfo<Metadata *>::getHashValue(I.TypeID) ^
+ DenseMapInfo<uint64_t>::getHashValue(I.ByteOffset);
+ }
+ static bool isEqual(const VTableSlot &LHS,
+ const VTableSlot &RHS) {
+ return LHS.TypeID == RHS.TypeID && LHS.ByteOffset == RHS.ByteOffset;
+ }
+};
+
+}
+
+namespace {
+
+// A virtual call site. VTable is the loaded virtual table pointer, and CS is
+// the indirect virtual call.
+struct VirtualCallSite {
+ Value *VTable;
+ CallSite CS;
+
+ // If non-null, this field points to the associated unsafe use count stored in
+ // the DevirtModule::NumUnsafeUsesForTypeTest map below. See the description
+ // of that field for details.
+ unsigned *NumUnsafeUses;
+
+ void emitRemark() {
+ Function *F = CS.getCaller();
+ emitOptimizationRemark(F->getContext(), DEBUG_TYPE, *F,
+ CS.getInstruction()->getDebugLoc(),
+ "devirtualized call");
+ }
+
+ void replaceAndErase(Value *New) {
+ emitRemark();
+ CS->replaceAllUsesWith(New);
+ if (auto II = dyn_cast<InvokeInst>(CS.getInstruction())) {
+ BranchInst::Create(II->getNormalDest(), CS.getInstruction());
+ II->getUnwindDest()->removePredecessor(II->getParent());
+ }
+ CS->eraseFromParent();
+ // This use is no longer unsafe.
+ if (NumUnsafeUses)
+ --*NumUnsafeUses;
+ }
+};
+
+struct DevirtModule {
+ Module &M;
+ IntegerType *Int8Ty;
+ PointerType *Int8PtrTy;
+ IntegerType *Int32Ty;
+
+ MapVector<VTableSlot, std::vector<VirtualCallSite>> CallSlots;
+
+ // This map keeps track of the number of "unsafe" uses of a loaded function
+ // pointer. The key is the associated llvm.type.test intrinsic call generated
+ // by this pass. An unsafe use is one that calls the loaded function pointer
+ // directly. Every time we eliminate an unsafe use (for example, by
+ // devirtualizing it or by applying virtual constant propagation), we
+ // decrement the value stored in this map. If a value reaches zero, we can
+ // eliminate the type check by RAUWing the associated llvm.type.test call with
+ // true.
+ std::map<CallInst *, unsigned> NumUnsafeUsesForTypeTest;
+
+ DevirtModule(Module &M)
+ : M(M), Int8Ty(Type::getInt8Ty(M.getContext())),
+ Int8PtrTy(Type::getInt8PtrTy(M.getContext())),
+ Int32Ty(Type::getInt32Ty(M.getContext())) {}
+
+ void scanTypeTestUsers(Function *TypeTestFunc, Function *AssumeFunc);
+ void scanTypeCheckedLoadUsers(Function *TypeCheckedLoadFunc);
+
+ void buildTypeIdentifierMap(
+ std::vector<VTableBits> &Bits,
+ DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap);
+ bool
+ tryFindVirtualCallTargets(std::vector<VirtualCallTarget> &TargetsForSlot,
+ const std::set<TypeMemberInfo> &TypeMemberInfos,
+ uint64_t ByteOffset);
+ bool trySingleImplDevirt(ArrayRef<VirtualCallTarget> TargetsForSlot,
+ MutableArrayRef<VirtualCallSite> CallSites);
+ bool tryEvaluateFunctionsWithArgs(
+ MutableArrayRef<VirtualCallTarget> TargetsForSlot,
+ ArrayRef<ConstantInt *> Args);
+ bool tryUniformRetValOpt(IntegerType *RetType,
+ ArrayRef<VirtualCallTarget> TargetsForSlot,
+ MutableArrayRef<VirtualCallSite> CallSites);
+ bool tryUniqueRetValOpt(unsigned BitWidth,
+ ArrayRef<VirtualCallTarget> TargetsForSlot,
+ MutableArrayRef<VirtualCallSite> CallSites);
+ bool tryVirtualConstProp(MutableArrayRef<VirtualCallTarget> TargetsForSlot,
+ ArrayRef<VirtualCallSite> CallSites);
+
+ void rebuildGlobal(VTableBits &B);
+
+ bool run();
+};
+
+struct WholeProgramDevirt : public ModulePass {
+ static char ID;
+ WholeProgramDevirt() : ModulePass(ID) {
+ initializeWholeProgramDevirtPass(*PassRegistry::getPassRegistry());
+ }
+ bool runOnModule(Module &M) {
+ if (skipModule(M))
+ return false;
+
+ return DevirtModule(M).run();
+ }
+};
+
+} // anonymous namespace
+
+INITIALIZE_PASS(WholeProgramDevirt, "wholeprogramdevirt",
+ "Whole program devirtualization", false, false)
+char WholeProgramDevirt::ID = 0;
+
+ModulePass *llvm::createWholeProgramDevirtPass() {
+ return new WholeProgramDevirt;
+}
+
+PreservedAnalyses WholeProgramDevirtPass::run(Module &M,
+ ModuleAnalysisManager &) {
+ if (!DevirtModule(M).run())
+ return PreservedAnalyses::all();
+ return PreservedAnalyses::none();
+}
+
+void DevirtModule::buildTypeIdentifierMap(
+ std::vector<VTableBits> &Bits,
+ DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap) {
+ DenseMap<GlobalVariable *, VTableBits *> GVToBits;
+ Bits.reserve(M.getGlobalList().size());
+ SmallVector<MDNode *, 2> Types;
+ for (GlobalVariable &GV : M.globals()) {
+ Types.clear();
+ GV.getMetadata(LLVMContext::MD_type, Types);
+ if (Types.empty())
+ continue;
+
+ VTableBits *&BitsPtr = GVToBits[&GV];
+ if (!BitsPtr) {
+ Bits.emplace_back();
+ Bits.back().GV = &GV;
+ Bits.back().ObjectSize =
+ M.getDataLayout().getTypeAllocSize(GV.getInitializer()->getType());
+ BitsPtr = &Bits.back();
+ }
+
+ for (MDNode *Type : Types) {
+ auto TypeID = Type->getOperand(1).get();
+
+ uint64_t Offset =
+ cast<ConstantInt>(
+ cast<ConstantAsMetadata>(Type->getOperand(0))->getValue())
+ ->getZExtValue();
+
+ TypeIdMap[TypeID].insert({BitsPtr, Offset});
+ }
+ }
+}
+
+bool DevirtModule::tryFindVirtualCallTargets(
+ std::vector<VirtualCallTarget> &TargetsForSlot,
+ const std::set<TypeMemberInfo> &TypeMemberInfos, uint64_t ByteOffset) {
+ for (const TypeMemberInfo &TM : TypeMemberInfos) {
+ if (!TM.Bits->GV->isConstant())
+ return false;
+
+ auto Init = dyn_cast<ConstantArray>(TM.Bits->GV->getInitializer());
+ if (!Init)
+ return false;
+ ArrayType *VTableTy = Init->getType();
+
+ uint64_t ElemSize =
+ M.getDataLayout().getTypeAllocSize(VTableTy->getElementType());
+ uint64_t GlobalSlotOffset = TM.Offset + ByteOffset;
+ if (GlobalSlotOffset % ElemSize != 0)
+ return false;
+
+ unsigned Op = GlobalSlotOffset / ElemSize;
+ if (Op >= Init->getNumOperands())
+ return false;
+
+ auto Fn = dyn_cast<Function>(Init->getOperand(Op)->stripPointerCasts());
+ if (!Fn)
+ return false;
+
+ // We can disregard __cxa_pure_virtual as a possible call target, as
+ // calls to pure virtuals are UB.
+ if (Fn->getName() == "__cxa_pure_virtual")
+ continue;
+
+ TargetsForSlot.push_back({Fn, &TM});
+ }
+
+ // Give up if we couldn't find any targets.
+ return !TargetsForSlot.empty();
+}
+
+bool DevirtModule::trySingleImplDevirt(
+ ArrayRef<VirtualCallTarget> TargetsForSlot,
+ MutableArrayRef<VirtualCallSite> CallSites) {
+ // See if the program contains a single implementation of this virtual
+ // function.
+ Function *TheFn = TargetsForSlot[0].Fn;
+ for (auto &&Target : TargetsForSlot)
+ if (TheFn != Target.Fn)
+ return false;
+
+ // If so, update each call site to call that implementation directly.
+ for (auto &&VCallSite : CallSites) {
+ VCallSite.emitRemark();
+ VCallSite.CS.setCalledFunction(ConstantExpr::getBitCast(
+ TheFn, VCallSite.CS.getCalledValue()->getType()));
+ // This use is no longer unsafe.
+ if (VCallSite.NumUnsafeUses)
+ --*VCallSite.NumUnsafeUses;
+ }
+ return true;
+}
+
+bool DevirtModule::tryEvaluateFunctionsWithArgs(
+ MutableArrayRef<VirtualCallTarget> TargetsForSlot,
+ ArrayRef<ConstantInt *> Args) {
+ // Evaluate each function and store the result in each target's RetVal
+ // field.
+ for (VirtualCallTarget &Target : TargetsForSlot) {
+ if (Target.Fn->arg_size() != Args.size() + 1)
+ return false;
+ for (unsigned I = 0; I != Args.size(); ++I)
+ if (Target.Fn->getFunctionType()->getParamType(I + 1) !=
+ Args[I]->getType())
+ return false;
+
+ Evaluator Eval(M.getDataLayout(), nullptr);
+ SmallVector<Constant *, 2> EvalArgs;
+ EvalArgs.push_back(
+ Constant::getNullValue(Target.Fn->getFunctionType()->getParamType(0)));
+ EvalArgs.insert(EvalArgs.end(), Args.begin(), Args.end());
+ Constant *RetVal;
+ if (!Eval.EvaluateFunction(Target.Fn, RetVal, EvalArgs) ||
+ !isa<ConstantInt>(RetVal))
+ return false;
+ Target.RetVal = cast<ConstantInt>(RetVal)->getZExtValue();
+ }
+ return true;
+}
+
+bool DevirtModule::tryUniformRetValOpt(
+ IntegerType *RetType, ArrayRef<VirtualCallTarget> TargetsForSlot,
+ MutableArrayRef<VirtualCallSite> CallSites) {
+ // Uniform return value optimization. If all functions return the same
+ // constant, replace all calls with that constant.
+ uint64_t TheRetVal = TargetsForSlot[0].RetVal;
+ for (const VirtualCallTarget &Target : TargetsForSlot)
+ if (Target.RetVal != TheRetVal)
+ return false;
+
+ auto TheRetValConst = ConstantInt::get(RetType, TheRetVal);
+ for (auto Call : CallSites)
+ Call.replaceAndErase(TheRetValConst);
+ return true;
+}
+
+bool DevirtModule::tryUniqueRetValOpt(
+ unsigned BitWidth, ArrayRef<VirtualCallTarget> TargetsForSlot,
+ MutableArrayRef<VirtualCallSite> CallSites) {
+ // IsOne controls whether we look for a 0 or a 1.
+ auto tryUniqueRetValOptFor = [&](bool IsOne) {
+ const TypeMemberInfo *UniqueMember = 0;
+ for (const VirtualCallTarget &Target : TargetsForSlot) {
+ if (Target.RetVal == (IsOne ? 1 : 0)) {
+ if (UniqueMember)
+ return false;
+ UniqueMember = Target.TM;
+ }
+ }
+
+ // We should have found a unique member or bailed out by now. We already
+ // checked for a uniform return value in tryUniformRetValOpt.
+ assert(UniqueMember);
+
+ // Replace each call with the comparison.
+ for (auto &&Call : CallSites) {
+ IRBuilder<> B(Call.CS.getInstruction());
+ Value *OneAddr = B.CreateBitCast(UniqueMember->Bits->GV, Int8PtrTy);
+ OneAddr = B.CreateConstGEP1_64(OneAddr, UniqueMember->Offset);
+ Value *Cmp = B.CreateICmp(IsOne ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE,
+ Call.VTable, OneAddr);
+ Call.replaceAndErase(Cmp);
+ }
+ return true;
+ };
+
+ if (BitWidth == 1) {
+ if (tryUniqueRetValOptFor(true))
+ return true;
+ if (tryUniqueRetValOptFor(false))
+ return true;
+ }
+ return false;
+}
+
+bool DevirtModule::tryVirtualConstProp(
+ MutableArrayRef<VirtualCallTarget> TargetsForSlot,
+ ArrayRef<VirtualCallSite> CallSites) {
+ // This only works if the function returns an integer.
+ auto RetType = dyn_cast<IntegerType>(TargetsForSlot[0].Fn->getReturnType());
+ if (!RetType)
+ return false;
+ unsigned BitWidth = RetType->getBitWidth();
+ if (BitWidth > 64)
+ return false;
+
+ // Make sure that each function does not access memory, takes at least one
+ // argument, does not use its first argument (which we assume is 'this'),
+ // and has the same return type.
+ for (VirtualCallTarget &Target : TargetsForSlot) {
+ if (!Target.Fn->doesNotAccessMemory() || Target.Fn->arg_empty() ||
+ !Target.Fn->arg_begin()->use_empty() ||
+ Target.Fn->getReturnType() != RetType)
+ return false;
+ }
+
+ // Group call sites by the list of constant arguments they pass.
+ // The comparator ensures deterministic ordering.
+ struct ByAPIntValue {
+ bool operator()(const std::vector<ConstantInt *> &A,
+ const std::vector<ConstantInt *> &B) const {
+ return std::lexicographical_compare(
+ A.begin(), A.end(), B.begin(), B.end(),
+ [](ConstantInt *AI, ConstantInt *BI) {
+ return AI->getValue().ult(BI->getValue());
+ });
+ }
+ };
+ std::map<std::vector<ConstantInt *>, std::vector<VirtualCallSite>,
+ ByAPIntValue>
+ VCallSitesByConstantArg;
+ for (auto &&VCallSite : CallSites) {
+ std::vector<ConstantInt *> Args;
+ if (VCallSite.CS.getType() != RetType)
+ continue;
+ for (auto &&Arg :
+ make_range(VCallSite.CS.arg_begin() + 1, VCallSite.CS.arg_end())) {
+ if (!isa<ConstantInt>(Arg))
+ break;
+ Args.push_back(cast<ConstantInt>(&Arg));
+ }
+ if (Args.size() + 1 != VCallSite.CS.arg_size())
+ continue;
+
+ VCallSitesByConstantArg[Args].push_back(VCallSite);
+ }
+
+ for (auto &&CSByConstantArg : VCallSitesByConstantArg) {
+ if (!tryEvaluateFunctionsWithArgs(TargetsForSlot, CSByConstantArg.first))
+ continue;
+
+ if (tryUniformRetValOpt(RetType, TargetsForSlot, CSByConstantArg.second))
+ continue;
+
+ if (tryUniqueRetValOpt(BitWidth, TargetsForSlot, CSByConstantArg.second))
+ continue;
+
+ // Find an allocation offset in bits in all vtables associated with the
+ // type.
+ uint64_t AllocBefore =
+ findLowestOffset(TargetsForSlot, /*IsAfter=*/false, BitWidth);
+ uint64_t AllocAfter =
+ findLowestOffset(TargetsForSlot, /*IsAfter=*/true, BitWidth);
+
+ // Calculate the total amount of padding needed to store a value at both
+ // ends of the object.
+ uint64_t TotalPaddingBefore = 0, TotalPaddingAfter = 0;
+ for (auto &&Target : TargetsForSlot) {
+ TotalPaddingBefore += std::max<int64_t>(
+ (AllocBefore + 7) / 8 - Target.allocatedBeforeBytes() - 1, 0);
+ TotalPaddingAfter += std::max<int64_t>(
+ (AllocAfter + 7) / 8 - Target.allocatedAfterBytes() - 1, 0);
+ }
+
+ // If the amount of padding is too large, give up.
+ // FIXME: do something smarter here.
+ if (std::min(TotalPaddingBefore, TotalPaddingAfter) > 128)
+ continue;
+
+ // Calculate the offset to the value as a (possibly negative) byte offset
+ // and (if applicable) a bit offset, and store the values in the targets.
+ int64_t OffsetByte;
+ uint64_t OffsetBit;
+ if (TotalPaddingBefore <= TotalPaddingAfter)
+ setBeforeReturnValues(TargetsForSlot, AllocBefore, BitWidth, OffsetByte,
+ OffsetBit);
+ else
+ setAfterReturnValues(TargetsForSlot, AllocAfter, BitWidth, OffsetByte,
+ OffsetBit);
+
+ // Rewrite each call to a load from OffsetByte/OffsetBit.
+ for (auto Call : CSByConstantArg.second) {
+ IRBuilder<> B(Call.CS.getInstruction());
+ Value *Addr = B.CreateConstGEP1_64(Call.VTable, OffsetByte);
+ if (BitWidth == 1) {
+ Value *Bits = B.CreateLoad(Addr);
+ Value *Bit = ConstantInt::get(Int8Ty, 1ULL << OffsetBit);
+ Value *BitsAndBit = B.CreateAnd(Bits, Bit);
+ auto IsBitSet = B.CreateICmpNE(BitsAndBit, ConstantInt::get(Int8Ty, 0));
+ Call.replaceAndErase(IsBitSet);
+ } else {
+ Value *ValAddr = B.CreateBitCast(Addr, RetType->getPointerTo());
+ Value *Val = B.CreateLoad(RetType, ValAddr);
+ Call.replaceAndErase(Val);
+ }
+ }
+ }
+ return true;
+}
+
+void DevirtModule::rebuildGlobal(VTableBits &B) {
+ if (B.Before.Bytes.empty() && B.After.Bytes.empty())
+ return;
+
+ // Align each byte array to pointer width.
+ unsigned PointerSize = M.getDataLayout().getPointerSize();
+ B.Before.Bytes.resize(alignTo(B.Before.Bytes.size(), PointerSize));
+ B.After.Bytes.resize(alignTo(B.After.Bytes.size(), PointerSize));
+
+ // Before was stored in reverse order; flip it now.
+ for (size_t I = 0, Size = B.Before.Bytes.size(); I != Size / 2; ++I)
+ std::swap(B.Before.Bytes[I], B.Before.Bytes[Size - 1 - I]);
+
+ // Build an anonymous global containing the before bytes, followed by the
+ // original initializer, followed by the after bytes.
+ auto NewInit = ConstantStruct::getAnon(
+ {ConstantDataArray::get(M.getContext(), B.Before.Bytes),
+ B.GV->getInitializer(),
+ ConstantDataArray::get(M.getContext(), B.After.Bytes)});
+ auto NewGV =
+ new GlobalVariable(M, NewInit->getType(), B.GV->isConstant(),
+ GlobalVariable::PrivateLinkage, NewInit, "", B.GV);
+ NewGV->setSection(B.GV->getSection());
+ NewGV->setComdat(B.GV->getComdat());
+
+ // Copy the original vtable's metadata to the anonymous global, adjusting
+ // offsets as required.
+ NewGV->copyMetadata(B.GV, B.Before.Bytes.size());
+
+ // Build an alias named after the original global, pointing at the second
+ // element (the original initializer).
+ auto Alias = GlobalAlias::create(
+ B.GV->getInitializer()->getType(), 0, B.GV->getLinkage(), "",
+ ConstantExpr::getGetElementPtr(
+ NewInit->getType(), NewGV,
+ ArrayRef<Constant *>{ConstantInt::get(Int32Ty, 0),
+ ConstantInt::get(Int32Ty, 1)}),
+ &M);
+ Alias->setVisibility(B.GV->getVisibility());
+ Alias->takeName(B.GV);
+
+ B.GV->replaceAllUsesWith(Alias);
+ B.GV->eraseFromParent();
+}
+
+void DevirtModule::scanTypeTestUsers(Function *TypeTestFunc,
+ Function *AssumeFunc) {
+ // Find all virtual calls via a virtual table pointer %p under an assumption
+ // of the form llvm.assume(llvm.type.test(%p, %md)). This indicates that %p
+ // points to a member of the type identifier %md. Group calls by (type ID,
+ // offset) pair (effectively the identity of the virtual function) and store
+ // to CallSlots.
+ DenseSet<Value *> SeenPtrs;
+ for (auto I = TypeTestFunc->use_begin(), E = TypeTestFunc->use_end();
+ I != E;) {
+ auto CI = dyn_cast<CallInst>(I->getUser());
+ ++I;
+ if (!CI)
+ continue;
+
+ // Search for virtual calls based on %p and add them to DevirtCalls.
+ SmallVector<DevirtCallSite, 1> DevirtCalls;
+ SmallVector<CallInst *, 1> Assumes;
+ findDevirtualizableCallsForTypeTest(DevirtCalls, Assumes, CI);
+
+ // If we found any, add them to CallSlots. Only do this if we haven't seen
+ // the vtable pointer before, as it may have been CSE'd with pointers from
+ // other call sites, and we don't want to process call sites multiple times.
+ if (!Assumes.empty()) {
+ Metadata *TypeId =
+ cast<MetadataAsValue>(CI->getArgOperand(1))->getMetadata();
+ Value *Ptr = CI->getArgOperand(0)->stripPointerCasts();
+ if (SeenPtrs.insert(Ptr).second) {
+ for (DevirtCallSite Call : DevirtCalls) {
+ CallSlots[{TypeId, Call.Offset}].push_back(
+ {CI->getArgOperand(0), Call.CS, nullptr});
+ }
+ }
+ }
+
+ // We no longer need the assumes or the type test.
+ for (auto Assume : Assumes)
+ Assume->eraseFromParent();
+ // We can't use RecursivelyDeleteTriviallyDeadInstructions here because we
+ // may use the vtable argument later.
+ if (CI->use_empty())
+ CI->eraseFromParent();
+ }
+}
+
+void DevirtModule::scanTypeCheckedLoadUsers(Function *TypeCheckedLoadFunc) {
+ Function *TypeTestFunc = Intrinsic::getDeclaration(&M, Intrinsic::type_test);
+
+ for (auto I = TypeCheckedLoadFunc->use_begin(),
+ E = TypeCheckedLoadFunc->use_end();
+ I != E;) {
+ auto CI = dyn_cast<CallInst>(I->getUser());
+ ++I;
+ if (!CI)
+ continue;
+
+ Value *Ptr = CI->getArgOperand(0);
+ Value *Offset = CI->getArgOperand(1);
+ Value *TypeIdValue = CI->getArgOperand(2);
+ Metadata *TypeId = cast<MetadataAsValue>(TypeIdValue)->getMetadata();
+
+ SmallVector<DevirtCallSite, 1> DevirtCalls;
+ SmallVector<Instruction *, 1> LoadedPtrs;
+ SmallVector<Instruction *, 1> Preds;
+ bool HasNonCallUses = false;
+ findDevirtualizableCallsForTypeCheckedLoad(DevirtCalls, LoadedPtrs, Preds,
+ HasNonCallUses, CI);
+
+ // Start by generating "pessimistic" code that explicitly loads the function
+ // pointer from the vtable and performs the type check. If possible, we will
+ // eliminate the load and the type check later.
+
+ // If possible, only generate the load at the point where it is used.
+ // This helps avoid unnecessary spills.
+ IRBuilder<> LoadB(
+ (LoadedPtrs.size() == 1 && !HasNonCallUses) ? LoadedPtrs[0] : CI);
+ Value *GEP = LoadB.CreateGEP(Int8Ty, Ptr, Offset);
+ Value *GEPPtr = LoadB.CreateBitCast(GEP, PointerType::getUnqual(Int8PtrTy));
+ Value *LoadedValue = LoadB.CreateLoad(Int8PtrTy, GEPPtr);
+
+ for (Instruction *LoadedPtr : LoadedPtrs) {
+ LoadedPtr->replaceAllUsesWith(LoadedValue);
+ LoadedPtr->eraseFromParent();
+ }
+
+ // Likewise for the type test.
+ IRBuilder<> CallB((Preds.size() == 1 && !HasNonCallUses) ? Preds[0] : CI);
+ CallInst *TypeTestCall = CallB.CreateCall(TypeTestFunc, {Ptr, TypeIdValue});
+
+ for (Instruction *Pred : Preds) {
+ Pred->replaceAllUsesWith(TypeTestCall);
+ Pred->eraseFromParent();
+ }
+
+ // We have already erased any extractvalue instructions that refer to the
+ // intrinsic call, but the intrinsic may have other non-extractvalue uses
+ // (although this is unlikely). In that case, explicitly build a pair and
+ // RAUW it.
+ if (!CI->use_empty()) {
+ Value *Pair = UndefValue::get(CI->getType());
+ IRBuilder<> B(CI);
+ Pair = B.CreateInsertValue(Pair, LoadedValue, {0});
+ Pair = B.CreateInsertValue(Pair, TypeTestCall, {1});
+ CI->replaceAllUsesWith(Pair);
+ }
+
+ // The number of unsafe uses is initially the number of uses.
+ auto &NumUnsafeUses = NumUnsafeUsesForTypeTest[TypeTestCall];
+ NumUnsafeUses = DevirtCalls.size();
+
+ // If the function pointer has a non-call user, we cannot eliminate the type
+ // check, as one of those users may eventually call the pointer. Increment
+ // the unsafe use count to make sure it cannot reach zero.
+ if (HasNonCallUses)
+ ++NumUnsafeUses;
+ for (DevirtCallSite Call : DevirtCalls) {
+ CallSlots[{TypeId, Call.Offset}].push_back(
+ {Ptr, Call.CS, &NumUnsafeUses});
+ }
+
+ CI->eraseFromParent();
+ }
+}
+
+bool DevirtModule::run() {
+ Function *TypeTestFunc =
+ M.getFunction(Intrinsic::getName(Intrinsic::type_test));
+ Function *TypeCheckedLoadFunc =
+ M.getFunction(Intrinsic::getName(Intrinsic::type_checked_load));
+ Function *AssumeFunc = M.getFunction(Intrinsic::getName(Intrinsic::assume));
+
+ if ((!TypeTestFunc || TypeTestFunc->use_empty() || !AssumeFunc ||
+ AssumeFunc->use_empty()) &&
+ (!TypeCheckedLoadFunc || TypeCheckedLoadFunc->use_empty()))
+ return false;
+
+ if (TypeTestFunc && AssumeFunc)
+ scanTypeTestUsers(TypeTestFunc, AssumeFunc);
+
+ if (TypeCheckedLoadFunc)
+ scanTypeCheckedLoadUsers(TypeCheckedLoadFunc);
+
+ // Rebuild type metadata into a map for easy lookup.
+ std::vector<VTableBits> Bits;
+ DenseMap<Metadata *, std::set<TypeMemberInfo>> TypeIdMap;
+ buildTypeIdentifierMap(Bits, TypeIdMap);
+ if (TypeIdMap.empty())
+ return true;
+
+ // For each (type, offset) pair:
+ bool DidVirtualConstProp = false;
+ for (auto &S : CallSlots) {
+ // Search each of the members of the type identifier for the virtual
+ // function implementation at offset S.first.ByteOffset, and add to
+ // TargetsForSlot.
+ std::vector<VirtualCallTarget> TargetsForSlot;
+ if (!tryFindVirtualCallTargets(TargetsForSlot, TypeIdMap[S.first.TypeID],
+ S.first.ByteOffset))
+ continue;
+
+ if (trySingleImplDevirt(TargetsForSlot, S.second))
+ continue;
+
+ DidVirtualConstProp |= tryVirtualConstProp(TargetsForSlot, S.second);
+ }
+
+ // If we were able to eliminate all unsafe uses for a type checked load,
+ // eliminate the type test by replacing it with true.
+ if (TypeCheckedLoadFunc) {
+ auto True = ConstantInt::getTrue(M.getContext());
+ for (auto &&U : NumUnsafeUsesForTypeTest) {
+ if (U.second == 0) {
+ U.first->replaceAllUsesWith(True);
+ U.first->eraseFromParent();
+ }
+ }
+ }
+
+ // Rebuild each global we touched as part of virtual constant propagation to
+ // include the before and after bytes.
+ if (DidVirtualConstProp)
+ for (VTableBits &B : Bits)
+ rebuildGlobal(B);
+
+ return true;
+}