summaryrefslogtreecommitdiff
path: root/lib/Transforms/InstCombine/InstCombineAndOrXor.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/Transforms/InstCombine/InstCombineAndOrXor.cpp')
-rw-r--r--lib/Transforms/InstCombine/InstCombineAndOrXor.cpp109
1 files changed, 47 insertions, 62 deletions
diff --git a/lib/Transforms/InstCombine/InstCombineAndOrXor.cpp b/lib/Transforms/InstCombine/InstCombineAndOrXor.cpp
index b114801cc1c02..82dc88f1b3ad6 100644
--- a/lib/Transforms/InstCombine/InstCombineAndOrXor.cpp
+++ b/lib/Transforms/InstCombine/InstCombineAndOrXor.cpp
@@ -23,21 +23,6 @@ using namespace PatternMatch;
#define DEBUG_TYPE "instcombine"
-static inline Value *dyn_castNotVal(Value *V) {
- // If this is not(not(x)) don't return that this is a not: we want the two
- // not's to be folded first.
- if (BinaryOperator::isNot(V)) {
- Value *Operand = BinaryOperator::getNotArgument(V);
- if (!IsFreeToInvert(Operand, Operand->hasOneUse()))
- return Operand;
- }
-
- // Constants can be considered to be not'ed values...
- if (ConstantInt *C = dyn_cast<ConstantInt>(V))
- return ConstantInt::get(C->getType(), ~C->getValue());
- return nullptr;
-}
-
/// Similar to getICmpCode but for FCmpInst. This encodes a fcmp predicate into
/// a four bit mask.
static unsigned getFCmpCode(FCmpInst::Predicate CC) {
@@ -713,9 +698,8 @@ Value *InstCombiner::simplifyRangeCheck(ICmpInst *Cmp0, ICmpInst *Cmp1,
}
// This simplification is only valid if the upper range is not negative.
- bool IsNegative, IsNotNegative;
- ComputeSignBit(RangeEnd, IsNotNegative, IsNegative, /*Depth=*/0, Cmp1);
- if (!IsNotNegative)
+ KnownBits Known = computeKnownBits(RangeEnd, /*Depth=*/0, Cmp1);
+ if (!Known.isNonNegative())
return nullptr;
if (Inverted)
@@ -1013,26 +997,22 @@ Value *InstCombiner::FoldAndOfFCmps(FCmpInst *LHS, FCmpInst *RHS) {
/// (~A & ~B) == (~(A | B))
/// (~A | ~B) == (~(A & B))
static Instruction *matchDeMorgansLaws(BinaryOperator &I,
- InstCombiner::BuilderTy *Builder) {
+ InstCombiner::BuilderTy &Builder) {
auto Opcode = I.getOpcode();
assert((Opcode == Instruction::And || Opcode == Instruction::Or) &&
"Trying to match De Morgan's Laws with something other than and/or");
+
// Flip the logic operation.
- if (Opcode == Instruction::And)
- Opcode = Instruction::Or;
- else
- Opcode = Instruction::And;
+ Opcode = (Opcode == Instruction::And) ? Instruction::Or : Instruction::And;
- Value *Op0 = I.getOperand(0);
- Value *Op1 = I.getOperand(1);
- // TODO: Use pattern matchers instead of dyn_cast.
- if (Value *Op0NotVal = dyn_castNotVal(Op0))
- if (Value *Op1NotVal = dyn_castNotVal(Op1))
- if (Op0->hasOneUse() && Op1->hasOneUse()) {
- Value *LogicOp = Builder->CreateBinOp(Opcode, Op0NotVal, Op1NotVal,
- I.getName() + ".demorgan");
- return BinaryOperator::CreateNot(LogicOp);
- }
+ Value *A, *B;
+ if (match(I.getOperand(0), m_OneUse(m_Not(m_Value(A)))) &&
+ match(I.getOperand(1), m_OneUse(m_Not(m_Value(B)))) &&
+ !IsFreeToInvert(A, A->hasOneUse()) &&
+ !IsFreeToInvert(B, B->hasOneUse())) {
+ Value *AndOr = Builder.CreateBinOp(Opcode, A, B, I.getName() + ".demorgan");
+ return BinaryOperator::CreateNot(AndOr);
+ }
return nullptr;
}
@@ -1376,7 +1356,7 @@ Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
if (Instruction *FoldedLogic = foldOpWithConstantIntoOperand(I))
return FoldedLogic;
- if (Instruction *DeMorgan = matchDeMorgansLaws(I, Builder))
+ if (Instruction *DeMorgan = matchDeMorgansLaws(I, *Builder))
return DeMorgan;
{
@@ -2005,18 +1985,6 @@ Instruction *InstCombiner::visitOr(BinaryOperator &I) {
if (Value *V = SimplifyBSwap(I))
return replaceInstUsesWith(I, V);
- if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
- ConstantInt *C1 = nullptr; Value *X = nullptr;
- // (X ^ C1) | C2 --> (X | C2) ^ (C1&~C2)
- if (match(Op0, m_Xor(m_Value(X), m_ConstantInt(C1))) &&
- Op0->hasOneUse()) {
- Value *Or = Builder->CreateOr(X, RHS);
- Or->takeName(Op0);
- return BinaryOperator::CreateXor(Or,
- Builder->getInt(C1->getValue() & ~RHS->getValue()));
- }
- }
-
if (isa<Constant>(Op1))
if (Instruction *FoldedLogic = foldOpWithConstantIntoOperand(I))
return FoldedLogic;
@@ -2167,7 +2135,7 @@ Instruction *InstCombiner::visitOr(BinaryOperator &I) {
if (match(Op0, m_And(m_Or(m_Specific(Op1), m_Value(C)), m_Value(A))))
return BinaryOperator::CreateOr(Op1, Builder->CreateAnd(A, C));
- if (Instruction *DeMorgan = matchDeMorgansLaws(I, Builder))
+ if (Instruction *DeMorgan = matchDeMorgansLaws(I, *Builder))
return DeMorgan;
// Canonicalize xor to the RHS.
@@ -2399,27 +2367,44 @@ Instruction *InstCombiner::visitXor(BinaryOperator &I) {
}
// Is this a 'not' (~) fed by a binary operator?
- BinaryOperator *NotOp;
- if (match(&I, m_Not(m_BinOp(NotOp)))) {
- if (NotOp->getOpcode() == Instruction::And ||
- NotOp->getOpcode() == Instruction::Or) {
+ BinaryOperator *NotVal;
+ if (match(&I, m_Not(m_BinOp(NotVal)))) {
+ if (NotVal->getOpcode() == Instruction::And ||
+ NotVal->getOpcode() == Instruction::Or) {
// Apply DeMorgan's Law when inverts are free:
// ~(X & Y) --> (~X | ~Y)
// ~(X | Y) --> (~X & ~Y)
- if (IsFreeToInvert(NotOp->getOperand(0),
- NotOp->getOperand(0)->hasOneUse()) &&
- IsFreeToInvert(NotOp->getOperand(1),
- NotOp->getOperand(1)->hasOneUse())) {
- Value *NotX = Builder->CreateNot(NotOp->getOperand(0), "notlhs");
- Value *NotY = Builder->CreateNot(NotOp->getOperand(1), "notrhs");
- if (NotOp->getOpcode() == Instruction::And)
+ if (IsFreeToInvert(NotVal->getOperand(0),
+ NotVal->getOperand(0)->hasOneUse()) &&
+ IsFreeToInvert(NotVal->getOperand(1),
+ NotVal->getOperand(1)->hasOneUse())) {
+ Value *NotX = Builder->CreateNot(NotVal->getOperand(0), "notlhs");
+ Value *NotY = Builder->CreateNot(NotVal->getOperand(1), "notrhs");
+ if (NotVal->getOpcode() == Instruction::And)
return BinaryOperator::CreateOr(NotX, NotY);
return BinaryOperator::CreateAnd(NotX, NotY);
}
- } else if (NotOp->getOpcode() == Instruction::AShr) {
- // ~(~X >>s Y) --> (X >>s Y)
- if (Value *Op0NotVal = dyn_castNotVal(NotOp->getOperand(0)))
- return BinaryOperator::CreateAShr(Op0NotVal, NotOp->getOperand(1));
+ }
+
+ // ~(~X >>s Y) --> (X >>s Y)
+ if (match(NotVal, m_AShr(m_Not(m_Value(X)), m_Value(Y))))
+ return BinaryOperator::CreateAShr(X, Y);
+
+ // If we are inverting a right-shifted constant, we may be able to eliminate
+ // the 'not' by inverting the constant and using the opposite shift type.
+ // Canonicalization rules ensure that only a negative constant uses 'ashr',
+ // but we must check that in case that transform has not fired yet.
+ const APInt *C;
+ if (match(NotVal, m_AShr(m_APInt(C), m_Value(Y))) && C->isNegative()) {
+ // ~(C >>s Y) --> ~C >>u Y (when inverting the replicated sign bits)
+ Constant *NotC = ConstantInt::get(I.getType(), ~(*C));
+ return BinaryOperator::CreateLShr(NotC, Y);
+ }
+
+ if (match(NotVal, m_LShr(m_APInt(C), m_Value(Y))) && C->isNonNegative()) {
+ // ~(C >>u Y) --> ~C >>s Y (when inverting the replicated sign bits)
+ Constant *NotC = ConstantInt::get(I.getType(), ~(*C));
+ return BinaryOperator::CreateAShr(NotC, Y);
}
}