summaryrefslogtreecommitdiff
path: root/lib/Transforms/Scalar/GVN.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/Transforms/Scalar/GVN.cpp')
-rw-r--r--lib/Transforms/Scalar/GVN.cpp1738
1 files changed, 1738 insertions, 0 deletions
diff --git a/lib/Transforms/Scalar/GVN.cpp b/lib/Transforms/Scalar/GVN.cpp
new file mode 100644
index 0000000000000..733dfa97a1547
--- /dev/null
+++ b/lib/Transforms/Scalar/GVN.cpp
@@ -0,0 +1,1738 @@
+//===- GVN.cpp - Eliminate redundant values and loads ---------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This pass performs global value numbering to eliminate fully redundant
+// instructions. It also performs simple dead load elimination.
+//
+// Note that this pass does the value numbering itself; it does not use the
+// ValueNumbering analysis passes.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "gvn"
+#include "llvm/Transforms/Scalar.h"
+#include "llvm/BasicBlock.h"
+#include "llvm/Constants.h"
+#include "llvm/DerivedTypes.h"
+#include "llvm/Function.h"
+#include "llvm/IntrinsicInst.h"
+#include "llvm/Value.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/DepthFirstIterator.h"
+#include "llvm/ADT/PostOrderIterator.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Analysis/Dominators.h"
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/Analysis/MemoryDependenceAnalysis.h"
+#include "llvm/Support/CFG.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Transforms/Utils/BasicBlockUtils.h"
+#include <cstdio>
+using namespace llvm;
+
+STATISTIC(NumGVNInstr, "Number of instructions deleted");
+STATISTIC(NumGVNLoad, "Number of loads deleted");
+STATISTIC(NumGVNPRE, "Number of instructions PRE'd");
+STATISTIC(NumGVNBlocks, "Number of blocks merged");
+STATISTIC(NumPRELoad, "Number of loads PRE'd");
+
+static cl::opt<bool> EnablePRE("enable-pre",
+ cl::init(true), cl::Hidden);
+cl::opt<bool> EnableLoadPRE("enable-load-pre", cl::init(true));
+
+//===----------------------------------------------------------------------===//
+// ValueTable Class
+//===----------------------------------------------------------------------===//
+
+/// This class holds the mapping between values and value numbers. It is used
+/// as an efficient mechanism to determine the expression-wise equivalence of
+/// two values.
+namespace {
+ struct VISIBILITY_HIDDEN Expression {
+ enum ExpressionOpcode { ADD, SUB, MUL, UDIV, SDIV, FDIV, UREM, SREM,
+ FREM, SHL, LSHR, ASHR, AND, OR, XOR, ICMPEQ,
+ ICMPNE, ICMPUGT, ICMPUGE, ICMPULT, ICMPULE,
+ ICMPSGT, ICMPSGE, ICMPSLT, ICMPSLE, FCMPOEQ,
+ FCMPOGT, FCMPOGE, FCMPOLT, FCMPOLE, FCMPONE,
+ FCMPORD, FCMPUNO, FCMPUEQ, FCMPUGT, FCMPUGE,
+ FCMPULT, FCMPULE, FCMPUNE, EXTRACT, INSERT,
+ SHUFFLE, SELECT, TRUNC, ZEXT, SEXT, FPTOUI,
+ FPTOSI, UITOFP, SITOFP, FPTRUNC, FPEXT,
+ PTRTOINT, INTTOPTR, BITCAST, GEP, CALL, CONSTANT,
+ EMPTY, TOMBSTONE };
+
+ ExpressionOpcode opcode;
+ const Type* type;
+ uint32_t firstVN;
+ uint32_t secondVN;
+ uint32_t thirdVN;
+ SmallVector<uint32_t, 4> varargs;
+ Value* function;
+
+ Expression() { }
+ Expression(ExpressionOpcode o) : opcode(o) { }
+
+ bool operator==(const Expression &other) const {
+ if (opcode != other.opcode)
+ return false;
+ else if (opcode == EMPTY || opcode == TOMBSTONE)
+ return true;
+ else if (type != other.type)
+ return false;
+ else if (function != other.function)
+ return false;
+ else if (firstVN != other.firstVN)
+ return false;
+ else if (secondVN != other.secondVN)
+ return false;
+ else if (thirdVN != other.thirdVN)
+ return false;
+ else {
+ if (varargs.size() != other.varargs.size())
+ return false;
+
+ for (size_t i = 0; i < varargs.size(); ++i)
+ if (varargs[i] != other.varargs[i])
+ return false;
+
+ return true;
+ }
+ }
+
+ bool operator!=(const Expression &other) const {
+ return !(*this == other);
+ }
+ };
+
+ class VISIBILITY_HIDDEN ValueTable {
+ private:
+ DenseMap<Value*, uint32_t> valueNumbering;
+ DenseMap<Expression, uint32_t> expressionNumbering;
+ AliasAnalysis* AA;
+ MemoryDependenceAnalysis* MD;
+ DominatorTree* DT;
+
+ uint32_t nextValueNumber;
+
+ Expression::ExpressionOpcode getOpcode(BinaryOperator* BO);
+ Expression::ExpressionOpcode getOpcode(CmpInst* C);
+ Expression::ExpressionOpcode getOpcode(CastInst* C);
+ Expression create_expression(BinaryOperator* BO);
+ Expression create_expression(CmpInst* C);
+ Expression create_expression(ShuffleVectorInst* V);
+ Expression create_expression(ExtractElementInst* C);
+ Expression create_expression(InsertElementInst* V);
+ Expression create_expression(SelectInst* V);
+ Expression create_expression(CastInst* C);
+ Expression create_expression(GetElementPtrInst* G);
+ Expression create_expression(CallInst* C);
+ Expression create_expression(Constant* C);
+ public:
+ ValueTable() : nextValueNumber(1) { }
+ uint32_t lookup_or_add(Value* V);
+ uint32_t lookup(Value* V) const;
+ void add(Value* V, uint32_t num);
+ void clear();
+ void erase(Value* v);
+ unsigned size();
+ void setAliasAnalysis(AliasAnalysis* A) { AA = A; }
+ AliasAnalysis *getAliasAnalysis() const { return AA; }
+ void setMemDep(MemoryDependenceAnalysis* M) { MD = M; }
+ void setDomTree(DominatorTree* D) { DT = D; }
+ uint32_t getNextUnusedValueNumber() { return nextValueNumber; }
+ void verifyRemoved(const Value *) const;
+ };
+}
+
+namespace llvm {
+template <> struct DenseMapInfo<Expression> {
+ static inline Expression getEmptyKey() {
+ return Expression(Expression::EMPTY);
+ }
+
+ static inline Expression getTombstoneKey() {
+ return Expression(Expression::TOMBSTONE);
+ }
+
+ static unsigned getHashValue(const Expression e) {
+ unsigned hash = e.opcode;
+
+ hash = e.firstVN + hash * 37;
+ hash = e.secondVN + hash * 37;
+ hash = e.thirdVN + hash * 37;
+
+ hash = ((unsigned)((uintptr_t)e.type >> 4) ^
+ (unsigned)((uintptr_t)e.type >> 9)) +
+ hash * 37;
+
+ for (SmallVector<uint32_t, 4>::const_iterator I = e.varargs.begin(),
+ E = e.varargs.end(); I != E; ++I)
+ hash = *I + hash * 37;
+
+ hash = ((unsigned)((uintptr_t)e.function >> 4) ^
+ (unsigned)((uintptr_t)e.function >> 9)) +
+ hash * 37;
+
+ return hash;
+ }
+ static bool isEqual(const Expression &LHS, const Expression &RHS) {
+ return LHS == RHS;
+ }
+ static bool isPod() { return true; }
+};
+}
+
+//===----------------------------------------------------------------------===//
+// ValueTable Internal Functions
+//===----------------------------------------------------------------------===//
+Expression::ExpressionOpcode ValueTable::getOpcode(BinaryOperator* BO) {
+ switch(BO->getOpcode()) {
+ default: // THIS SHOULD NEVER HAPPEN
+ assert(0 && "Binary operator with unknown opcode?");
+ case Instruction::Add: return Expression::ADD;
+ case Instruction::Sub: return Expression::SUB;
+ case Instruction::Mul: return Expression::MUL;
+ case Instruction::UDiv: return Expression::UDIV;
+ case Instruction::SDiv: return Expression::SDIV;
+ case Instruction::FDiv: return Expression::FDIV;
+ case Instruction::URem: return Expression::UREM;
+ case Instruction::SRem: return Expression::SREM;
+ case Instruction::FRem: return Expression::FREM;
+ case Instruction::Shl: return Expression::SHL;
+ case Instruction::LShr: return Expression::LSHR;
+ case Instruction::AShr: return Expression::ASHR;
+ case Instruction::And: return Expression::AND;
+ case Instruction::Or: return Expression::OR;
+ case Instruction::Xor: return Expression::XOR;
+ }
+}
+
+Expression::ExpressionOpcode ValueTable::getOpcode(CmpInst* C) {
+ if (isa<ICmpInst>(C) || isa<VICmpInst>(C)) {
+ switch (C->getPredicate()) {
+ default: // THIS SHOULD NEVER HAPPEN
+ assert(0 && "Comparison with unknown predicate?");
+ case ICmpInst::ICMP_EQ: return Expression::ICMPEQ;
+ case ICmpInst::ICMP_NE: return Expression::ICMPNE;
+ case ICmpInst::ICMP_UGT: return Expression::ICMPUGT;
+ case ICmpInst::ICMP_UGE: return Expression::ICMPUGE;
+ case ICmpInst::ICMP_ULT: return Expression::ICMPULT;
+ case ICmpInst::ICMP_ULE: return Expression::ICMPULE;
+ case ICmpInst::ICMP_SGT: return Expression::ICMPSGT;
+ case ICmpInst::ICMP_SGE: return Expression::ICMPSGE;
+ case ICmpInst::ICMP_SLT: return Expression::ICMPSLT;
+ case ICmpInst::ICMP_SLE: return Expression::ICMPSLE;
+ }
+ }
+ assert((isa<FCmpInst>(C) || isa<VFCmpInst>(C)) && "Unknown compare");
+ switch (C->getPredicate()) {
+ default: // THIS SHOULD NEVER HAPPEN
+ assert(0 && "Comparison with unknown predicate?");
+ case FCmpInst::FCMP_OEQ: return Expression::FCMPOEQ;
+ case FCmpInst::FCMP_OGT: return Expression::FCMPOGT;
+ case FCmpInst::FCMP_OGE: return Expression::FCMPOGE;
+ case FCmpInst::FCMP_OLT: return Expression::FCMPOLT;
+ case FCmpInst::FCMP_OLE: return Expression::FCMPOLE;
+ case FCmpInst::FCMP_ONE: return Expression::FCMPONE;
+ case FCmpInst::FCMP_ORD: return Expression::FCMPORD;
+ case FCmpInst::FCMP_UNO: return Expression::FCMPUNO;
+ case FCmpInst::FCMP_UEQ: return Expression::FCMPUEQ;
+ case FCmpInst::FCMP_UGT: return Expression::FCMPUGT;
+ case FCmpInst::FCMP_UGE: return Expression::FCMPUGE;
+ case FCmpInst::FCMP_ULT: return Expression::FCMPULT;
+ case FCmpInst::FCMP_ULE: return Expression::FCMPULE;
+ case FCmpInst::FCMP_UNE: return Expression::FCMPUNE;
+ }
+}
+
+Expression::ExpressionOpcode ValueTable::getOpcode(CastInst* C) {
+ switch(C->getOpcode()) {
+ default: // THIS SHOULD NEVER HAPPEN
+ assert(0 && "Cast operator with unknown opcode?");
+ case Instruction::Trunc: return Expression::TRUNC;
+ case Instruction::ZExt: return Expression::ZEXT;
+ case Instruction::SExt: return Expression::SEXT;
+ case Instruction::FPToUI: return Expression::FPTOUI;
+ case Instruction::FPToSI: return Expression::FPTOSI;
+ case Instruction::UIToFP: return Expression::UITOFP;
+ case Instruction::SIToFP: return Expression::SITOFP;
+ case Instruction::FPTrunc: return Expression::FPTRUNC;
+ case Instruction::FPExt: return Expression::FPEXT;
+ case Instruction::PtrToInt: return Expression::PTRTOINT;
+ case Instruction::IntToPtr: return Expression::INTTOPTR;
+ case Instruction::BitCast: return Expression::BITCAST;
+ }
+}
+
+Expression ValueTable::create_expression(CallInst* C) {
+ Expression e;
+
+ e.type = C->getType();
+ e.firstVN = 0;
+ e.secondVN = 0;
+ e.thirdVN = 0;
+ e.function = C->getCalledFunction();
+ e.opcode = Expression::CALL;
+
+ for (CallInst::op_iterator I = C->op_begin()+1, E = C->op_end();
+ I != E; ++I)
+ e.varargs.push_back(lookup_or_add(*I));
+
+ return e;
+}
+
+Expression ValueTable::create_expression(BinaryOperator* BO) {
+ Expression e;
+
+ e.firstVN = lookup_or_add(BO->getOperand(0));
+ e.secondVN = lookup_or_add(BO->getOperand(1));
+ e.thirdVN = 0;
+ e.function = 0;
+ e.type = BO->getType();
+ e.opcode = getOpcode(BO);
+
+ return e;
+}
+
+Expression ValueTable::create_expression(CmpInst* C) {
+ Expression e;
+
+ e.firstVN = lookup_or_add(C->getOperand(0));
+ e.secondVN = lookup_or_add(C->getOperand(1));
+ e.thirdVN = 0;
+ e.function = 0;
+ e.type = C->getType();
+ e.opcode = getOpcode(C);
+
+ return e;
+}
+
+Expression ValueTable::create_expression(CastInst* C) {
+ Expression e;
+
+ e.firstVN = lookup_or_add(C->getOperand(0));
+ e.secondVN = 0;
+ e.thirdVN = 0;
+ e.function = 0;
+ e.type = C->getType();
+ e.opcode = getOpcode(C);
+
+ return e;
+}
+
+Expression ValueTable::create_expression(ShuffleVectorInst* S) {
+ Expression e;
+
+ e.firstVN = lookup_or_add(S->getOperand(0));
+ e.secondVN = lookup_or_add(S->getOperand(1));
+ e.thirdVN = lookup_or_add(S->getOperand(2));
+ e.function = 0;
+ e.type = S->getType();
+ e.opcode = Expression::SHUFFLE;
+
+ return e;
+}
+
+Expression ValueTable::create_expression(ExtractElementInst* E) {
+ Expression e;
+
+ e.firstVN = lookup_or_add(E->getOperand(0));
+ e.secondVN = lookup_or_add(E->getOperand(1));
+ e.thirdVN = 0;
+ e.function = 0;
+ e.type = E->getType();
+ e.opcode = Expression::EXTRACT;
+
+ return e;
+}
+
+Expression ValueTable::create_expression(InsertElementInst* I) {
+ Expression e;
+
+ e.firstVN = lookup_or_add(I->getOperand(0));
+ e.secondVN = lookup_or_add(I->getOperand(1));
+ e.thirdVN = lookup_or_add(I->getOperand(2));
+ e.function = 0;
+ e.type = I->getType();
+ e.opcode = Expression::INSERT;
+
+ return e;
+}
+
+Expression ValueTable::create_expression(SelectInst* I) {
+ Expression e;
+
+ e.firstVN = lookup_or_add(I->getCondition());
+ e.secondVN = lookup_or_add(I->getTrueValue());
+ e.thirdVN = lookup_or_add(I->getFalseValue());
+ e.function = 0;
+ e.type = I->getType();
+ e.opcode = Expression::SELECT;
+
+ return e;
+}
+
+Expression ValueTable::create_expression(GetElementPtrInst* G) {
+ Expression e;
+
+ e.firstVN = lookup_or_add(G->getPointerOperand());
+ e.secondVN = 0;
+ e.thirdVN = 0;
+ e.function = 0;
+ e.type = G->getType();
+ e.opcode = Expression::GEP;
+
+ for (GetElementPtrInst::op_iterator I = G->idx_begin(), E = G->idx_end();
+ I != E; ++I)
+ e.varargs.push_back(lookup_or_add(*I));
+
+ return e;
+}
+
+//===----------------------------------------------------------------------===//
+// ValueTable External Functions
+//===----------------------------------------------------------------------===//
+
+/// add - Insert a value into the table with a specified value number.
+void ValueTable::add(Value* V, uint32_t num) {
+ valueNumbering.insert(std::make_pair(V, num));
+}
+
+/// lookup_or_add - Returns the value number for the specified value, assigning
+/// it a new number if it did not have one before.
+uint32_t ValueTable::lookup_or_add(Value* V) {
+ DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V);
+ if (VI != valueNumbering.end())
+ return VI->second;
+
+ if (CallInst* C = dyn_cast<CallInst>(V)) {
+ if (AA->doesNotAccessMemory(C)) {
+ Expression e = create_expression(C);
+
+ DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
+ if (EI != expressionNumbering.end()) {
+ valueNumbering.insert(std::make_pair(V, EI->second));
+ return EI->second;
+ } else {
+ expressionNumbering.insert(std::make_pair(e, nextValueNumber));
+ valueNumbering.insert(std::make_pair(V, nextValueNumber));
+
+ return nextValueNumber++;
+ }
+ } else if (AA->onlyReadsMemory(C)) {
+ Expression e = create_expression(C);
+
+ if (expressionNumbering.find(e) == expressionNumbering.end()) {
+ expressionNumbering.insert(std::make_pair(e, nextValueNumber));
+ valueNumbering.insert(std::make_pair(V, nextValueNumber));
+ return nextValueNumber++;
+ }
+
+ MemDepResult local_dep = MD->getDependency(C);
+
+ if (!local_dep.isDef() && !local_dep.isNonLocal()) {
+ valueNumbering.insert(std::make_pair(V, nextValueNumber));
+ return nextValueNumber++;
+ }
+
+ if (local_dep.isDef()) {
+ CallInst* local_cdep = cast<CallInst>(local_dep.getInst());
+
+ if (local_cdep->getNumOperands() != C->getNumOperands()) {
+ valueNumbering.insert(std::make_pair(V, nextValueNumber));
+ return nextValueNumber++;
+ }
+
+ for (unsigned i = 1; i < C->getNumOperands(); ++i) {
+ uint32_t c_vn = lookup_or_add(C->getOperand(i));
+ uint32_t cd_vn = lookup_or_add(local_cdep->getOperand(i));
+ if (c_vn != cd_vn) {
+ valueNumbering.insert(std::make_pair(V, nextValueNumber));
+ return nextValueNumber++;
+ }
+ }
+
+ uint32_t v = lookup_or_add(local_cdep);
+ valueNumbering.insert(std::make_pair(V, v));
+ return v;
+ }
+
+ // Non-local case.
+ const MemoryDependenceAnalysis::NonLocalDepInfo &deps =
+ MD->getNonLocalCallDependency(CallSite(C));
+ // FIXME: call/call dependencies for readonly calls should return def, not
+ // clobber! Move the checking logic to MemDep!
+ CallInst* cdep = 0;
+
+ // Check to see if we have a single dominating call instruction that is
+ // identical to C.
+ for (unsigned i = 0, e = deps.size(); i != e; ++i) {
+ const MemoryDependenceAnalysis::NonLocalDepEntry *I = &deps[i];
+ // Ignore non-local dependencies.
+ if (I->second.isNonLocal())
+ continue;
+
+ // We don't handle non-depedencies. If we already have a call, reject
+ // instruction dependencies.
+ if (I->second.isClobber() || cdep != 0) {
+ cdep = 0;
+ break;
+ }
+
+ CallInst *NonLocalDepCall = dyn_cast<CallInst>(I->second.getInst());
+ // FIXME: All duplicated with non-local case.
+ if (NonLocalDepCall && DT->properlyDominates(I->first, C->getParent())){
+ cdep = NonLocalDepCall;
+ continue;
+ }
+
+ cdep = 0;
+ break;
+ }
+
+ if (!cdep) {
+ valueNumbering.insert(std::make_pair(V, nextValueNumber));
+ return nextValueNumber++;
+ }
+
+ if (cdep->getNumOperands() != C->getNumOperands()) {
+ valueNumbering.insert(std::make_pair(V, nextValueNumber));
+ return nextValueNumber++;
+ }
+ for (unsigned i = 1; i < C->getNumOperands(); ++i) {
+ uint32_t c_vn = lookup_or_add(C->getOperand(i));
+ uint32_t cd_vn = lookup_or_add(cdep->getOperand(i));
+ if (c_vn != cd_vn) {
+ valueNumbering.insert(std::make_pair(V, nextValueNumber));
+ return nextValueNumber++;
+ }
+ }
+
+ uint32_t v = lookup_or_add(cdep);
+ valueNumbering.insert(std::make_pair(V, v));
+ return v;
+
+ } else {
+ valueNumbering.insert(std::make_pair(V, nextValueNumber));
+ return nextValueNumber++;
+ }
+ } else if (BinaryOperator* BO = dyn_cast<BinaryOperator>(V)) {
+ Expression e = create_expression(BO);
+
+ DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
+ if (EI != expressionNumbering.end()) {
+ valueNumbering.insert(std::make_pair(V, EI->second));
+ return EI->second;
+ } else {
+ expressionNumbering.insert(std::make_pair(e, nextValueNumber));
+ valueNumbering.insert(std::make_pair(V, nextValueNumber));
+
+ return nextValueNumber++;
+ }
+ } else if (CmpInst* C = dyn_cast<CmpInst>(V)) {
+ Expression e = create_expression(C);
+
+ DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
+ if (EI != expressionNumbering.end()) {
+ valueNumbering.insert(std::make_pair(V, EI->second));
+ return EI->second;
+ } else {
+ expressionNumbering.insert(std::make_pair(e, nextValueNumber));
+ valueNumbering.insert(std::make_pair(V, nextValueNumber));
+
+ return nextValueNumber++;
+ }
+ } else if (ShuffleVectorInst* U = dyn_cast<ShuffleVectorInst>(V)) {
+ Expression e = create_expression(U);
+
+ DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
+ if (EI != expressionNumbering.end()) {
+ valueNumbering.insert(std::make_pair(V, EI->second));
+ return EI->second;
+ } else {
+ expressionNumbering.insert(std::make_pair(e, nextValueNumber));
+ valueNumbering.insert(std::make_pair(V, nextValueNumber));
+
+ return nextValueNumber++;
+ }
+ } else if (ExtractElementInst* U = dyn_cast<ExtractElementInst>(V)) {
+ Expression e = create_expression(U);
+
+ DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
+ if (EI != expressionNumbering.end()) {
+ valueNumbering.insert(std::make_pair(V, EI->second));
+ return EI->second;
+ } else {
+ expressionNumbering.insert(std::make_pair(e, nextValueNumber));
+ valueNumbering.insert(std::make_pair(V, nextValueNumber));
+
+ return nextValueNumber++;
+ }
+ } else if (InsertElementInst* U = dyn_cast<InsertElementInst>(V)) {
+ Expression e = create_expression(U);
+
+ DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
+ if (EI != expressionNumbering.end()) {
+ valueNumbering.insert(std::make_pair(V, EI->second));
+ return EI->second;
+ } else {
+ expressionNumbering.insert(std::make_pair(e, nextValueNumber));
+ valueNumbering.insert(std::make_pair(V, nextValueNumber));
+
+ return nextValueNumber++;
+ }
+ } else if (SelectInst* U = dyn_cast<SelectInst>(V)) {
+ Expression e = create_expression(U);
+
+ DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
+ if (EI != expressionNumbering.end()) {
+ valueNumbering.insert(std::make_pair(V, EI->second));
+ return EI->second;
+ } else {
+ expressionNumbering.insert(std::make_pair(e, nextValueNumber));
+ valueNumbering.insert(std::make_pair(V, nextValueNumber));
+
+ return nextValueNumber++;
+ }
+ } else if (CastInst* U = dyn_cast<CastInst>(V)) {
+ Expression e = create_expression(U);
+
+ DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
+ if (EI != expressionNumbering.end()) {
+ valueNumbering.insert(std::make_pair(V, EI->second));
+ return EI->second;
+ } else {
+ expressionNumbering.insert(std::make_pair(e, nextValueNumber));
+ valueNumbering.insert(std::make_pair(V, nextValueNumber));
+
+ return nextValueNumber++;
+ }
+ } else if (GetElementPtrInst* U = dyn_cast<GetElementPtrInst>(V)) {
+ Expression e = create_expression(U);
+
+ DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
+ if (EI != expressionNumbering.end()) {
+ valueNumbering.insert(std::make_pair(V, EI->second));
+ return EI->second;
+ } else {
+ expressionNumbering.insert(std::make_pair(e, nextValueNumber));
+ valueNumbering.insert(std::make_pair(V, nextValueNumber));
+
+ return nextValueNumber++;
+ }
+ } else {
+ valueNumbering.insert(std::make_pair(V, nextValueNumber));
+ return nextValueNumber++;
+ }
+}
+
+/// lookup - Returns the value number of the specified value. Fails if
+/// the value has not yet been numbered.
+uint32_t ValueTable::lookup(Value* V) const {
+ DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V);
+ assert(VI != valueNumbering.end() && "Value not numbered?");
+ return VI->second;
+}
+
+/// clear - Remove all entries from the ValueTable
+void ValueTable::clear() {
+ valueNumbering.clear();
+ expressionNumbering.clear();
+ nextValueNumber = 1;
+}
+
+/// erase - Remove a value from the value numbering
+void ValueTable::erase(Value* V) {
+ valueNumbering.erase(V);
+}
+
+/// verifyRemoved - Verify that the value is removed from all internal data
+/// structures.
+void ValueTable::verifyRemoved(const Value *V) const {
+ for (DenseMap<Value*, uint32_t>::iterator
+ I = valueNumbering.begin(), E = valueNumbering.end(); I != E; ++I) {
+ assert(I->first != V && "Inst still occurs in value numbering map!");
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// GVN Pass
+//===----------------------------------------------------------------------===//
+
+namespace {
+ struct VISIBILITY_HIDDEN ValueNumberScope {
+ ValueNumberScope* parent;
+ DenseMap<uint32_t, Value*> table;
+
+ ValueNumberScope(ValueNumberScope* p) : parent(p) { }
+ };
+}
+
+namespace {
+
+ class VISIBILITY_HIDDEN GVN : public FunctionPass {
+ bool runOnFunction(Function &F);
+ public:
+ static char ID; // Pass identification, replacement for typeid
+ GVN() : FunctionPass(&ID) { }
+
+ private:
+ MemoryDependenceAnalysis *MD;
+ DominatorTree *DT;
+
+ ValueTable VN;
+ DenseMap<BasicBlock*, ValueNumberScope*> localAvail;
+
+ typedef DenseMap<Value*, SmallPtrSet<Instruction*, 4> > PhiMapType;
+ PhiMapType phiMap;
+
+
+ // This transformation requires dominator postdominator info
+ virtual void getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.addRequired<DominatorTree>();
+ AU.addRequired<MemoryDependenceAnalysis>();
+ AU.addRequired<AliasAnalysis>();
+
+ AU.addPreserved<DominatorTree>();
+ AU.addPreserved<AliasAnalysis>();
+ }
+
+ // Helper fuctions
+ // FIXME: eliminate or document these better
+ bool processLoad(LoadInst* L,
+ SmallVectorImpl<Instruction*> &toErase);
+ bool processInstruction(Instruction* I,
+ SmallVectorImpl<Instruction*> &toErase);
+ bool processNonLocalLoad(LoadInst* L,
+ SmallVectorImpl<Instruction*> &toErase);
+ bool processBlock(BasicBlock* BB);
+ Value *GetValueForBlock(BasicBlock *BB, Instruction* orig,
+ DenseMap<BasicBlock*, Value*> &Phis,
+ bool top_level = false);
+ void dump(DenseMap<uint32_t, Value*>& d);
+ bool iterateOnFunction(Function &F);
+ Value* CollapsePhi(PHINode* p);
+ bool isSafeReplacement(PHINode* p, Instruction* inst);
+ bool performPRE(Function& F);
+ Value* lookupNumber(BasicBlock* BB, uint32_t num);
+ bool mergeBlockIntoPredecessor(BasicBlock* BB);
+ Value* AttemptRedundancyElimination(Instruction* orig, unsigned valno);
+ void cleanupGlobalSets();
+ void verifyRemoved(const Instruction *I) const;
+ };
+
+ char GVN::ID = 0;
+}
+
+// createGVNPass - The public interface to this file...
+FunctionPass *llvm::createGVNPass() { return new GVN(); }
+
+static RegisterPass<GVN> X("gvn",
+ "Global Value Numbering");
+
+void GVN::dump(DenseMap<uint32_t, Value*>& d) {
+ printf("{\n");
+ for (DenseMap<uint32_t, Value*>::iterator I = d.begin(),
+ E = d.end(); I != E; ++I) {
+ printf("%d\n", I->first);
+ I->second->dump();
+ }
+ printf("}\n");
+}
+
+Value* GVN::CollapsePhi(PHINode* p) {
+ Value* constVal = p->hasConstantValue();
+ if (!constVal) return 0;
+
+ Instruction* inst = dyn_cast<Instruction>(constVal);
+ if (!inst)
+ return constVal;
+
+ if (DT->dominates(inst, p))
+ if (isSafeReplacement(p, inst))
+ return inst;
+ return 0;
+}
+
+bool GVN::isSafeReplacement(PHINode* p, Instruction* inst) {
+ if (!isa<PHINode>(inst))
+ return true;
+
+ for (Instruction::use_iterator UI = p->use_begin(), E = p->use_end();
+ UI != E; ++UI)
+ if (PHINode* use_phi = dyn_cast<PHINode>(UI))
+ if (use_phi->getParent() == inst->getParent())
+ return false;
+
+ return true;
+}
+
+/// GetValueForBlock - Get the value to use within the specified basic block.
+/// available values are in Phis.
+Value *GVN::GetValueForBlock(BasicBlock *BB, Instruction* orig,
+ DenseMap<BasicBlock*, Value*> &Phis,
+ bool top_level) {
+
+ // If we have already computed this value, return the previously computed val.
+ DenseMap<BasicBlock*, Value*>::iterator V = Phis.find(BB);
+ if (V != Phis.end() && !top_level) return V->second;
+
+ // If the block is unreachable, just return undef, since this path
+ // can't actually occur at runtime.
+ if (!DT->isReachableFromEntry(BB))
+ return Phis[BB] = UndefValue::get(orig->getType());
+
+ if (BasicBlock *Pred = BB->getSinglePredecessor()) {
+ Value *ret = GetValueForBlock(Pred, orig, Phis);
+ Phis[BB] = ret;
+ return ret;
+ }
+
+ // Get the number of predecessors of this block so we can reserve space later.
+ // If there is already a PHI in it, use the #preds from it, otherwise count.
+ // Getting it from the PHI is constant time.
+ unsigned NumPreds;
+ if (PHINode *ExistingPN = dyn_cast<PHINode>(BB->begin()))
+ NumPreds = ExistingPN->getNumIncomingValues();
+ else
+ NumPreds = std::distance(pred_begin(BB), pred_end(BB));
+
+ // Otherwise, the idom is the loop, so we need to insert a PHI node. Do so
+ // now, then get values to fill in the incoming values for the PHI.
+ PHINode *PN = PHINode::Create(orig->getType(), orig->getName()+".rle",
+ BB->begin());
+ PN->reserveOperandSpace(NumPreds);
+
+ Phis.insert(std::make_pair(BB, PN));
+
+ // Fill in the incoming values for the block.
+ for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
+ Value* val = GetValueForBlock(*PI, orig, Phis);
+ PN->addIncoming(val, *PI);
+ }
+
+ VN.getAliasAnalysis()->copyValue(orig, PN);
+
+ // Attempt to collapse PHI nodes that are trivially redundant
+ Value* v = CollapsePhi(PN);
+ if (!v) {
+ // Cache our phi construction results
+ if (LoadInst* L = dyn_cast<LoadInst>(orig))
+ phiMap[L->getPointerOperand()].insert(PN);
+ else
+ phiMap[orig].insert(PN);
+
+ return PN;
+ }
+
+ PN->replaceAllUsesWith(v);
+ if (isa<PointerType>(v->getType()))
+ MD->invalidateCachedPointerInfo(v);
+
+ for (DenseMap<BasicBlock*, Value*>::iterator I = Phis.begin(),
+ E = Phis.end(); I != E; ++I)
+ if (I->second == PN)
+ I->second = v;
+
+ DEBUG(cerr << "GVN removed: " << *PN);
+ MD->removeInstruction(PN);
+ PN->eraseFromParent();
+ DEBUG(verifyRemoved(PN));
+
+ Phis[BB] = v;
+ return v;
+}
+
+/// IsValueFullyAvailableInBlock - Return true if we can prove that the value
+/// we're analyzing is fully available in the specified block. As we go, keep
+/// track of which blocks we know are fully alive in FullyAvailableBlocks. This
+/// map is actually a tri-state map with the following values:
+/// 0) we know the block *is not* fully available.
+/// 1) we know the block *is* fully available.
+/// 2) we do not know whether the block is fully available or not, but we are
+/// currently speculating that it will be.
+/// 3) we are speculating for this block and have used that to speculate for
+/// other blocks.
+static bool IsValueFullyAvailableInBlock(BasicBlock *BB,
+ DenseMap<BasicBlock*, char> &FullyAvailableBlocks) {
+ // Optimistically assume that the block is fully available and check to see
+ // if we already know about this block in one lookup.
+ std::pair<DenseMap<BasicBlock*, char>::iterator, char> IV =
+ FullyAvailableBlocks.insert(std::make_pair(BB, 2));
+
+ // If the entry already existed for this block, return the precomputed value.
+ if (!IV.second) {
+ // If this is a speculative "available" value, mark it as being used for
+ // speculation of other blocks.
+ if (IV.first->second == 2)
+ IV.first->second = 3;
+ return IV.first->second != 0;
+ }
+
+ // Otherwise, see if it is fully available in all predecessors.
+ pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
+
+ // If this block has no predecessors, it isn't live-in here.
+ if (PI == PE)
+ goto SpeculationFailure;
+
+ for (; PI != PE; ++PI)
+ // If the value isn't fully available in one of our predecessors, then it
+ // isn't fully available in this block either. Undo our previous
+ // optimistic assumption and bail out.
+ if (!IsValueFullyAvailableInBlock(*PI, FullyAvailableBlocks))
+ goto SpeculationFailure;
+
+ return true;
+
+// SpeculationFailure - If we get here, we found out that this is not, after
+// all, a fully-available block. We have a problem if we speculated on this and
+// used the speculation to mark other blocks as available.
+SpeculationFailure:
+ char &BBVal = FullyAvailableBlocks[BB];
+
+ // If we didn't speculate on this, just return with it set to false.
+ if (BBVal == 2) {
+ BBVal = 0;
+ return false;
+ }
+
+ // If we did speculate on this value, we could have blocks set to 1 that are
+ // incorrect. Walk the (transitive) successors of this block and mark them as
+ // 0 if set to one.
+ SmallVector<BasicBlock*, 32> BBWorklist;
+ BBWorklist.push_back(BB);
+
+ while (!BBWorklist.empty()) {
+ BasicBlock *Entry = BBWorklist.pop_back_val();
+ // Note that this sets blocks to 0 (unavailable) if they happen to not
+ // already be in FullyAvailableBlocks. This is safe.
+ char &EntryVal = FullyAvailableBlocks[Entry];
+ if (EntryVal == 0) continue; // Already unavailable.
+
+ // Mark as unavailable.
+ EntryVal = 0;
+
+ for (succ_iterator I = succ_begin(Entry), E = succ_end(Entry); I != E; ++I)
+ BBWorklist.push_back(*I);
+ }
+
+ return false;
+}
+
+/// processNonLocalLoad - Attempt to eliminate a load whose dependencies are
+/// non-local by performing PHI construction.
+bool GVN::processNonLocalLoad(LoadInst *LI,
+ SmallVectorImpl<Instruction*> &toErase) {
+ // Find the non-local dependencies of the load.
+ SmallVector<MemoryDependenceAnalysis::NonLocalDepEntry, 64> Deps;
+ MD->getNonLocalPointerDependency(LI->getOperand(0), true, LI->getParent(),
+ Deps);
+ //DEBUG(cerr << "INVESTIGATING NONLOCAL LOAD: " << Deps.size() << *LI);
+
+ // If we had to process more than one hundred blocks to find the
+ // dependencies, this load isn't worth worrying about. Optimizing
+ // it will be too expensive.
+ if (Deps.size() > 100)
+ return false;
+
+ // If we had a phi translation failure, we'll have a single entry which is a
+ // clobber in the current block. Reject this early.
+ if (Deps.size() == 1 && Deps[0].second.isClobber())
+ return false;
+
+ // Filter out useless results (non-locals, etc). Keep track of the blocks
+ // where we have a value available in repl, also keep track of whether we see
+ // dependencies that produce an unknown value for the load (such as a call
+ // that could potentially clobber the load).
+ SmallVector<std::pair<BasicBlock*, Value*>, 16> ValuesPerBlock;
+ SmallVector<BasicBlock*, 16> UnavailableBlocks;
+
+ for (unsigned i = 0, e = Deps.size(); i != e; ++i) {
+ BasicBlock *DepBB = Deps[i].first;
+ MemDepResult DepInfo = Deps[i].second;
+
+ if (DepInfo.isClobber()) {
+ UnavailableBlocks.push_back(DepBB);
+ continue;
+ }
+
+ Instruction *DepInst = DepInfo.getInst();
+
+ // Loading the allocation -> undef.
+ if (isa<AllocationInst>(DepInst)) {
+ ValuesPerBlock.push_back(std::make_pair(DepBB,
+ UndefValue::get(LI->getType())));
+ continue;
+ }
+
+ if (StoreInst* S = dyn_cast<StoreInst>(DepInst)) {
+ // Reject loads and stores that are to the same address but are of
+ // different types.
+ // NOTE: 403.gcc does have this case (e.g. in readonly_fields_p) because
+ // of bitfield access, it would be interesting to optimize for it at some
+ // point.
+ if (S->getOperand(0)->getType() != LI->getType()) {
+ UnavailableBlocks.push_back(DepBB);
+ continue;
+ }
+
+ ValuesPerBlock.push_back(std::make_pair(DepBB, S->getOperand(0)));
+
+ } else if (LoadInst* LD = dyn_cast<LoadInst>(DepInst)) {
+ if (LD->getType() != LI->getType()) {
+ UnavailableBlocks.push_back(DepBB);
+ continue;
+ }
+ ValuesPerBlock.push_back(std::make_pair(DepBB, LD));
+ } else {
+ UnavailableBlocks.push_back(DepBB);
+ continue;
+ }
+ }
+
+ // If we have no predecessors that produce a known value for this load, exit
+ // early.
+ if (ValuesPerBlock.empty()) return false;
+
+ // If all of the instructions we depend on produce a known value for this
+ // load, then it is fully redundant and we can use PHI insertion to compute
+ // its value. Insert PHIs and remove the fully redundant value now.
+ if (UnavailableBlocks.empty()) {
+ // Use cached PHI construction information from previous runs
+ SmallPtrSet<Instruction*, 4> &p = phiMap[LI->getPointerOperand()];
+ // FIXME: What does phiMap do? Are we positive it isn't getting invalidated?
+ for (SmallPtrSet<Instruction*, 4>::iterator I = p.begin(), E = p.end();
+ I != E; ++I) {
+ if ((*I)->getParent() == LI->getParent()) {
+ DEBUG(cerr << "GVN REMOVING NONLOCAL LOAD #1: " << *LI);
+ LI->replaceAllUsesWith(*I);
+ if (isa<PointerType>((*I)->getType()))
+ MD->invalidateCachedPointerInfo(*I);
+ toErase.push_back(LI);
+ NumGVNLoad++;
+ return true;
+ }
+
+ ValuesPerBlock.push_back(std::make_pair((*I)->getParent(), *I));
+ }
+
+ DEBUG(cerr << "GVN REMOVING NONLOCAL LOAD: " << *LI);
+
+ DenseMap<BasicBlock*, Value*> BlockReplValues;
+ BlockReplValues.insert(ValuesPerBlock.begin(), ValuesPerBlock.end());
+ // Perform PHI construction.
+ Value* v = GetValueForBlock(LI->getParent(), LI, BlockReplValues, true);
+ LI->replaceAllUsesWith(v);
+
+ if (isa<PHINode>(v))
+ v->takeName(LI);
+ if (isa<PointerType>(v->getType()))
+ MD->invalidateCachedPointerInfo(v);
+ toErase.push_back(LI);
+ NumGVNLoad++;
+ return true;
+ }
+
+ if (!EnablePRE || !EnableLoadPRE)
+ return false;
+
+ // Okay, we have *some* definitions of the value. This means that the value
+ // is available in some of our (transitive) predecessors. Lets think about
+ // doing PRE of this load. This will involve inserting a new load into the
+ // predecessor when it's not available. We could do this in general, but
+ // prefer to not increase code size. As such, we only do this when we know
+ // that we only have to insert *one* load (which means we're basically moving
+ // the load, not inserting a new one).
+
+ SmallPtrSet<BasicBlock *, 4> Blockers;
+ for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
+ Blockers.insert(UnavailableBlocks[i]);
+
+ // Lets find first basic block with more than one predecessor. Walk backwards
+ // through predecessors if needed.
+ BasicBlock *LoadBB = LI->getParent();
+ BasicBlock *TmpBB = LoadBB;
+
+ bool isSinglePred = false;
+ while (TmpBB->getSinglePredecessor()) {
+ isSinglePred = true;
+ TmpBB = TmpBB->getSinglePredecessor();
+ if (!TmpBB) // If haven't found any, bail now.
+ return false;
+ if (TmpBB == LoadBB) // Infinite (unreachable) loop.
+ return false;
+ if (Blockers.count(TmpBB))
+ return false;
+ }
+
+ assert(TmpBB);
+ LoadBB = TmpBB;
+
+ // If we have a repl set with LI itself in it, this means we have a loop where
+ // at least one of the values is LI. Since this means that we won't be able
+ // to eliminate LI even if we insert uses in the other predecessors, we will
+ // end up increasing code size. Reject this by scanning for LI.
+ for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i)
+ if (ValuesPerBlock[i].second == LI)
+ return false;
+
+ if (isSinglePred) {
+ bool isHot = false;
+ for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i)
+ if (Instruction *I = dyn_cast<Instruction>(ValuesPerBlock[i].second))
+ // "Hot" Instruction is in some loop (because it dominates its dep.
+ // instruction).
+ if (DT->dominates(LI, I)) {
+ isHot = true;
+ break;
+ }
+
+ // We are interested only in "hot" instructions. We don't want to do any
+ // mis-optimizations here.
+ if (!isHot)
+ return false;
+ }
+
+ // Okay, we have some hope :). Check to see if the loaded value is fully
+ // available in all but one predecessor.
+ // FIXME: If we could restructure the CFG, we could make a common pred with
+ // all the preds that don't have an available LI and insert a new load into
+ // that one block.
+ BasicBlock *UnavailablePred = 0;
+
+ DenseMap<BasicBlock*, char> FullyAvailableBlocks;
+ for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i)
+ FullyAvailableBlocks[ValuesPerBlock[i].first] = true;
+ for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
+ FullyAvailableBlocks[UnavailableBlocks[i]] = false;
+
+ for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB);
+ PI != E; ++PI) {
+ if (IsValueFullyAvailableInBlock(*PI, FullyAvailableBlocks))
+ continue;
+
+ // If this load is not available in multiple predecessors, reject it.
+ if (UnavailablePred && UnavailablePred != *PI)
+ return false;
+ UnavailablePred = *PI;
+ }
+
+ assert(UnavailablePred != 0 &&
+ "Fully available value should be eliminated above!");
+
+ // If the loaded pointer is PHI node defined in this block, do PHI translation
+ // to get its value in the predecessor.
+ Value *LoadPtr = LI->getOperand(0)->DoPHITranslation(LoadBB, UnavailablePred);
+
+ // Make sure the value is live in the predecessor. If it was defined by a
+ // non-PHI instruction in this block, we don't know how to recompute it above.
+ if (Instruction *LPInst = dyn_cast<Instruction>(LoadPtr))
+ if (!DT->dominates(LPInst->getParent(), UnavailablePred)) {
+ DEBUG(cerr << "COULDN'T PRE LOAD BECAUSE PTR IS UNAVAILABLE IN PRED: "
+ << *LPInst << *LI << "\n");
+ return false;
+ }
+
+ // We don't currently handle critical edges :(
+ if (UnavailablePred->getTerminator()->getNumSuccessors() != 1) {
+ DEBUG(cerr << "COULD NOT PRE LOAD BECAUSE OF CRITICAL EDGE '"
+ << UnavailablePred->getName() << "': " << *LI);
+ return false;
+ }
+
+ // Okay, we can eliminate this load by inserting a reload in the predecessor
+ // and using PHI construction to get the value in the other predecessors, do
+ // it.
+ DEBUG(cerr << "GVN REMOVING PRE LOAD: " << *LI);
+
+ Value *NewLoad = new LoadInst(LoadPtr, LI->getName()+".pre", false,
+ LI->getAlignment(),
+ UnavailablePred->getTerminator());
+
+ SmallPtrSet<Instruction*, 4> &p = phiMap[LI->getPointerOperand()];
+ for (SmallPtrSet<Instruction*, 4>::iterator I = p.begin(), E = p.end();
+ I != E; ++I)
+ ValuesPerBlock.push_back(std::make_pair((*I)->getParent(), *I));
+
+ DenseMap<BasicBlock*, Value*> BlockReplValues;
+ BlockReplValues.insert(ValuesPerBlock.begin(), ValuesPerBlock.end());
+ BlockReplValues[UnavailablePred] = NewLoad;
+
+ // Perform PHI construction.
+ Value* v = GetValueForBlock(LI->getParent(), LI, BlockReplValues, true);
+ LI->replaceAllUsesWith(v);
+ if (isa<PHINode>(v))
+ v->takeName(LI);
+ if (isa<PointerType>(v->getType()))
+ MD->invalidateCachedPointerInfo(v);
+ toErase.push_back(LI);
+ NumPRELoad++;
+ return true;
+}
+
+/// processLoad - Attempt to eliminate a load, first by eliminating it
+/// locally, and then attempting non-local elimination if that fails.
+bool GVN::processLoad(LoadInst *L, SmallVectorImpl<Instruction*> &toErase) {
+ if (L->isVolatile())
+ return false;
+
+ Value* pointer = L->getPointerOperand();
+
+ // ... to a pointer that has been loaded from before...
+ MemDepResult dep = MD->getDependency(L);
+
+ // If the value isn't available, don't do anything!
+ if (dep.isClobber()) {
+ DEBUG(
+ // fast print dep, using operator<< on instruction would be too slow
+ DOUT << "GVN: load ";
+ WriteAsOperand(*DOUT.stream(), L);
+ Instruction *I = dep.getInst();
+ DOUT << " is clobbered by " << *I;
+ );
+ return false;
+ }
+
+ // If it is defined in another block, try harder.
+ if (dep.isNonLocal())
+ return processNonLocalLoad(L, toErase);
+
+ Instruction *DepInst = dep.getInst();
+ if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInst)) {
+ // Only forward substitute stores to loads of the same type.
+ // FIXME: Could do better!
+ if (DepSI->getPointerOperand()->getType() != pointer->getType())
+ return false;
+
+ // Remove it!
+ L->replaceAllUsesWith(DepSI->getOperand(0));
+ if (isa<PointerType>(DepSI->getOperand(0)->getType()))
+ MD->invalidateCachedPointerInfo(DepSI->getOperand(0));
+ toErase.push_back(L);
+ NumGVNLoad++;
+ return true;
+ }
+
+ if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInst)) {
+ // Only forward substitute stores to loads of the same type.
+ // FIXME: Could do better! load i32 -> load i8 -> truncate on little endian.
+ if (DepLI->getType() != L->getType())
+ return false;
+
+ // Remove it!
+ L->replaceAllUsesWith(DepLI);
+ if (isa<PointerType>(DepLI->getType()))
+ MD->invalidateCachedPointerInfo(DepLI);
+ toErase.push_back(L);
+ NumGVNLoad++;
+ return true;
+ }
+
+ // If this load really doesn't depend on anything, then we must be loading an
+ // undef value. This can happen when loading for a fresh allocation with no
+ // intervening stores, for example.
+ if (isa<AllocationInst>(DepInst)) {
+ L->replaceAllUsesWith(UndefValue::get(L->getType()));
+ toErase.push_back(L);
+ NumGVNLoad++;
+ return true;
+ }
+
+ return false;
+}
+
+Value* GVN::lookupNumber(BasicBlock* BB, uint32_t num) {
+ DenseMap<BasicBlock*, ValueNumberScope*>::iterator I = localAvail.find(BB);
+ if (I == localAvail.end())
+ return 0;
+
+ ValueNumberScope* locals = I->second;
+
+ while (locals) {
+ DenseMap<uint32_t, Value*>::iterator I = locals->table.find(num);
+ if (I != locals->table.end())
+ return I->second;
+ else
+ locals = locals->parent;
+ }
+
+ return 0;
+}
+
+/// AttemptRedundancyElimination - If the "fast path" of redundancy elimination
+/// by inheritance from the dominator fails, see if we can perform phi
+/// construction to eliminate the redundancy.
+Value* GVN::AttemptRedundancyElimination(Instruction* orig, unsigned valno) {
+ BasicBlock* BaseBlock = orig->getParent();
+
+ SmallPtrSet<BasicBlock*, 4> Visited;
+ SmallVector<BasicBlock*, 8> Stack;
+ Stack.push_back(BaseBlock);
+
+ DenseMap<BasicBlock*, Value*> Results;
+
+ // Walk backwards through our predecessors, looking for instances of the
+ // value number we're looking for. Instances are recorded in the Results
+ // map, which is then used to perform phi construction.
+ while (!Stack.empty()) {
+ BasicBlock* Current = Stack.back();
+ Stack.pop_back();
+
+ // If we've walked all the way to a proper dominator, then give up. Cases
+ // where the instance is in the dominator will have been caught by the fast
+ // path, and any cases that require phi construction further than this are
+ // probably not worth it anyways. Note that this is a SIGNIFICANT compile
+ // time improvement.
+ if (DT->properlyDominates(Current, orig->getParent())) return 0;
+
+ DenseMap<BasicBlock*, ValueNumberScope*>::iterator LA =
+ localAvail.find(Current);
+ if (LA == localAvail.end()) return 0;
+ DenseMap<uint32_t, Value*>::iterator V = LA->second->table.find(valno);
+
+ if (V != LA->second->table.end()) {
+ // Found an instance, record it.
+ Results.insert(std::make_pair(Current, V->second));
+ continue;
+ }
+
+ // If we reach the beginning of the function, then give up.
+ if (pred_begin(Current) == pred_end(Current))
+ return 0;
+
+ for (pred_iterator PI = pred_begin(Current), PE = pred_end(Current);
+ PI != PE; ++PI)
+ if (Visited.insert(*PI))
+ Stack.push_back(*PI);
+ }
+
+ // If we didn't find instances, give up. Otherwise, perform phi construction.
+ if (Results.size() == 0)
+ return 0;
+ else
+ return GetValueForBlock(BaseBlock, orig, Results, true);
+}
+
+/// processInstruction - When calculating availability, handle an instruction
+/// by inserting it into the appropriate sets
+bool GVN::processInstruction(Instruction *I,
+ SmallVectorImpl<Instruction*> &toErase) {
+ if (LoadInst* L = dyn_cast<LoadInst>(I)) {
+ bool changed = processLoad(L, toErase);
+
+ if (!changed) {
+ unsigned num = VN.lookup_or_add(L);
+ localAvail[I->getParent()]->table.insert(std::make_pair(num, L));
+ }
+
+ return changed;
+ }
+
+ uint32_t nextNum = VN.getNextUnusedValueNumber();
+ unsigned num = VN.lookup_or_add(I);
+
+ if (BranchInst* BI = dyn_cast<BranchInst>(I)) {
+ localAvail[I->getParent()]->table.insert(std::make_pair(num, I));
+
+ if (!BI->isConditional() || isa<Constant>(BI->getCondition()))
+ return false;
+
+ Value* branchCond = BI->getCondition();
+ uint32_t condVN = VN.lookup_or_add(branchCond);
+
+ BasicBlock* trueSucc = BI->getSuccessor(0);
+ BasicBlock* falseSucc = BI->getSuccessor(1);
+
+ if (trueSucc->getSinglePredecessor())
+ localAvail[trueSucc]->table[condVN] = ConstantInt::getTrue();
+ if (falseSucc->getSinglePredecessor())
+ localAvail[falseSucc]->table[condVN] = ConstantInt::getFalse();
+
+ return false;
+
+ // Allocations are always uniquely numbered, so we can save time and memory
+ // by fast failing them.
+ } else if (isa<AllocationInst>(I) || isa<TerminatorInst>(I)) {
+ localAvail[I->getParent()]->table.insert(std::make_pair(num, I));
+ return false;
+ }
+
+ // Collapse PHI nodes
+ if (PHINode* p = dyn_cast<PHINode>(I)) {
+ Value* constVal = CollapsePhi(p);
+
+ if (constVal) {
+ for (PhiMapType::iterator PI = phiMap.begin(), PE = phiMap.end();
+ PI != PE; ++PI)
+ PI->second.erase(p);
+
+ p->replaceAllUsesWith(constVal);
+ if (isa<PointerType>(constVal->getType()))
+ MD->invalidateCachedPointerInfo(constVal);
+ VN.erase(p);
+
+ toErase.push_back(p);
+ } else {
+ localAvail[I->getParent()]->table.insert(std::make_pair(num, I));
+ }
+
+ // If the number we were assigned was a brand new VN, then we don't
+ // need to do a lookup to see if the number already exists
+ // somewhere in the domtree: it can't!
+ } else if (num == nextNum) {
+ localAvail[I->getParent()]->table.insert(std::make_pair(num, I));
+
+ // Perform fast-path value-number based elimination of values inherited from
+ // dominators.
+ } else if (Value* repl = lookupNumber(I->getParent(), num)) {
+ // Remove it!
+ VN.erase(I);
+ I->replaceAllUsesWith(repl);
+ if (isa<PointerType>(repl->getType()))
+ MD->invalidateCachedPointerInfo(repl);
+ toErase.push_back(I);
+ return true;
+
+#if 0
+ // Perform slow-pathvalue-number based elimination with phi construction.
+ } else if (Value* repl = AttemptRedundancyElimination(I, num)) {
+ // Remove it!
+ VN.erase(I);
+ I->replaceAllUsesWith(repl);
+ if (isa<PointerType>(repl->getType()))
+ MD->invalidateCachedPointerInfo(repl);
+ toErase.push_back(I);
+ return true;
+#endif
+ } else {
+ localAvail[I->getParent()]->table.insert(std::make_pair(num, I));
+ }
+
+ return false;
+}
+
+/// runOnFunction - This is the main transformation entry point for a function.
+bool GVN::runOnFunction(Function& F) {
+ MD = &getAnalysis<MemoryDependenceAnalysis>();
+ DT = &getAnalysis<DominatorTree>();
+ VN.setAliasAnalysis(&getAnalysis<AliasAnalysis>());
+ VN.setMemDep(MD);
+ VN.setDomTree(DT);
+
+ bool changed = false;
+ bool shouldContinue = true;
+
+ // Merge unconditional branches, allowing PRE to catch more
+ // optimization opportunities.
+ for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ) {
+ BasicBlock* BB = FI;
+ ++FI;
+ bool removedBlock = MergeBlockIntoPredecessor(BB, this);
+ if (removedBlock) NumGVNBlocks++;
+
+ changed |= removedBlock;
+ }
+
+ unsigned Iteration = 0;
+
+ while (shouldContinue) {
+ DEBUG(cerr << "GVN iteration: " << Iteration << "\n");
+ shouldContinue = iterateOnFunction(F);
+ changed |= shouldContinue;
+ ++Iteration;
+ }
+
+ if (EnablePRE) {
+ bool PREChanged = true;
+ while (PREChanged) {
+ PREChanged = performPRE(F);
+ changed |= PREChanged;
+ }
+ }
+ // FIXME: Should perform GVN again after PRE does something. PRE can move
+ // computations into blocks where they become fully redundant. Note that
+ // we can't do this until PRE's critical edge splitting updates memdep.
+ // Actually, when this happens, we should just fully integrate PRE into GVN.
+
+ cleanupGlobalSets();
+
+ return changed;
+}
+
+
+bool GVN::processBlock(BasicBlock* BB) {
+ // FIXME: Kill off toErase by doing erasing eagerly in a helper function (and
+ // incrementing BI before processing an instruction).
+ SmallVector<Instruction*, 8> toErase;
+ bool changed_function = false;
+
+ for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();
+ BI != BE;) {
+ changed_function |= processInstruction(BI, toErase);
+ if (toErase.empty()) {
+ ++BI;
+ continue;
+ }
+
+ // If we need some instructions deleted, do it now.
+ NumGVNInstr += toErase.size();
+
+ // Avoid iterator invalidation.
+ bool AtStart = BI == BB->begin();
+ if (!AtStart)
+ --BI;
+
+ for (SmallVector<Instruction*, 4>::iterator I = toErase.begin(),
+ E = toErase.end(); I != E; ++I) {
+ DEBUG(cerr << "GVN removed: " << **I);
+ MD->removeInstruction(*I);
+ (*I)->eraseFromParent();
+ DEBUG(verifyRemoved(*I));
+ }
+ toErase.clear();
+
+ if (AtStart)
+ BI = BB->begin();
+ else
+ ++BI;
+ }
+
+ return changed_function;
+}
+
+/// performPRE - Perform a purely local form of PRE that looks for diamond
+/// control flow patterns and attempts to perform simple PRE at the join point.
+bool GVN::performPRE(Function& F) {
+ bool Changed = false;
+ SmallVector<std::pair<TerminatorInst*, unsigned>, 4> toSplit;
+ DenseMap<BasicBlock*, Value*> predMap;
+ for (df_iterator<BasicBlock*> DI = df_begin(&F.getEntryBlock()),
+ DE = df_end(&F.getEntryBlock()); DI != DE; ++DI) {
+ BasicBlock* CurrentBlock = *DI;
+
+ // Nothing to PRE in the entry block.
+ if (CurrentBlock == &F.getEntryBlock()) continue;
+
+ for (BasicBlock::iterator BI = CurrentBlock->begin(),
+ BE = CurrentBlock->end(); BI != BE; ) {
+ Instruction *CurInst = BI++;
+
+ if (isa<AllocationInst>(CurInst) || isa<TerminatorInst>(CurInst) ||
+ isa<PHINode>(CurInst) || (CurInst->getType() == Type::VoidTy) ||
+ CurInst->mayReadFromMemory() || CurInst->mayHaveSideEffects() ||
+ isa<DbgInfoIntrinsic>(CurInst))
+ continue;
+
+ uint32_t valno = VN.lookup(CurInst);
+
+ // Look for the predecessors for PRE opportunities. We're
+ // only trying to solve the basic diamond case, where
+ // a value is computed in the successor and one predecessor,
+ // but not the other. We also explicitly disallow cases
+ // where the successor is its own predecessor, because they're
+ // more complicated to get right.
+ unsigned numWith = 0;
+ unsigned numWithout = 0;
+ BasicBlock* PREPred = 0;
+ predMap.clear();
+
+ for (pred_iterator PI = pred_begin(CurrentBlock),
+ PE = pred_end(CurrentBlock); PI != PE; ++PI) {
+ // We're not interested in PRE where the block is its
+ // own predecessor, on in blocks with predecessors
+ // that are not reachable.
+ if (*PI == CurrentBlock) {
+ numWithout = 2;
+ break;
+ } else if (!localAvail.count(*PI)) {
+ numWithout = 2;
+ break;
+ }
+
+ DenseMap<uint32_t, Value*>::iterator predV =
+ localAvail[*PI]->table.find(valno);
+ if (predV == localAvail[*PI]->table.end()) {
+ PREPred = *PI;
+ numWithout++;
+ } else if (predV->second == CurInst) {
+ numWithout = 2;
+ } else {
+ predMap[*PI] = predV->second;
+ numWith++;
+ }
+ }
+
+ // Don't do PRE when it might increase code size, i.e. when
+ // we would need to insert instructions in more than one pred.
+ if (numWithout != 1 || numWith == 0)
+ continue;
+
+ // We can't do PRE safely on a critical edge, so instead we schedule
+ // the edge to be split and perform the PRE the next time we iterate
+ // on the function.
+ unsigned succNum = 0;
+ for (unsigned i = 0, e = PREPred->getTerminator()->getNumSuccessors();
+ i != e; ++i)
+ if (PREPred->getTerminator()->getSuccessor(i) == CurrentBlock) {
+ succNum = i;
+ break;
+ }
+
+ if (isCriticalEdge(PREPred->getTerminator(), succNum)) {
+ toSplit.push_back(std::make_pair(PREPred->getTerminator(), succNum));
+ continue;
+ }
+
+ // Instantiate the expression the in predecessor that lacked it.
+ // Because we are going top-down through the block, all value numbers
+ // will be available in the predecessor by the time we need them. Any
+ // that weren't original present will have been instantiated earlier
+ // in this loop.
+ Instruction* PREInstr = CurInst->clone();
+ bool success = true;
+ for (unsigned i = 0, e = CurInst->getNumOperands(); i != e; ++i) {
+ Value *Op = PREInstr->getOperand(i);
+ if (isa<Argument>(Op) || isa<Constant>(Op) || isa<GlobalValue>(Op))
+ continue;
+
+ if (Value *V = lookupNumber(PREPred, VN.lookup(Op))) {
+ PREInstr->setOperand(i, V);
+ } else {
+ success = false;
+ break;
+ }
+ }
+
+ // Fail out if we encounter an operand that is not available in
+ // the PRE predecessor. This is typically because of loads which
+ // are not value numbered precisely.
+ if (!success) {
+ delete PREInstr;
+ DEBUG(verifyRemoved(PREInstr));
+ continue;
+ }
+
+ PREInstr->insertBefore(PREPred->getTerminator());
+ PREInstr->setName(CurInst->getName() + ".pre");
+ predMap[PREPred] = PREInstr;
+ VN.add(PREInstr, valno);
+ NumGVNPRE++;
+
+ // Update the availability map to include the new instruction.
+ localAvail[PREPred]->table.insert(std::make_pair(valno, PREInstr));
+
+ // Create a PHI to make the value available in this block.
+ PHINode* Phi = PHINode::Create(CurInst->getType(),
+ CurInst->getName() + ".pre-phi",
+ CurrentBlock->begin());
+ for (pred_iterator PI = pred_begin(CurrentBlock),
+ PE = pred_end(CurrentBlock); PI != PE; ++PI)
+ Phi->addIncoming(predMap[*PI], *PI);
+
+ VN.add(Phi, valno);
+ localAvail[CurrentBlock]->table[valno] = Phi;
+
+ CurInst->replaceAllUsesWith(Phi);
+ if (isa<PointerType>(Phi->getType()))
+ MD->invalidateCachedPointerInfo(Phi);
+ VN.erase(CurInst);
+
+ DEBUG(cerr << "GVN PRE removed: " << *CurInst);
+ MD->removeInstruction(CurInst);
+ CurInst->eraseFromParent();
+ DEBUG(verifyRemoved(CurInst));
+ Changed = true;
+ }
+ }
+
+ for (SmallVector<std::pair<TerminatorInst*, unsigned>, 4>::iterator
+ I = toSplit.begin(), E = toSplit.end(); I != E; ++I)
+ SplitCriticalEdge(I->first, I->second, this);
+
+ return Changed || toSplit.size();
+}
+
+/// iterateOnFunction - Executes one iteration of GVN
+bool GVN::iterateOnFunction(Function &F) {
+ cleanupGlobalSets();
+
+ for (df_iterator<DomTreeNode*> DI = df_begin(DT->getRootNode()),
+ DE = df_end(DT->getRootNode()); DI != DE; ++DI) {
+ if (DI->getIDom())
+ localAvail[DI->getBlock()] =
+ new ValueNumberScope(localAvail[DI->getIDom()->getBlock()]);
+ else
+ localAvail[DI->getBlock()] = new ValueNumberScope(0);
+ }
+
+ // Top-down walk of the dominator tree
+ bool changed = false;
+#if 0
+ // Needed for value numbering with phi construction to work.
+ ReversePostOrderTraversal<Function*> RPOT(&F);
+ for (ReversePostOrderTraversal<Function*>::rpo_iterator RI = RPOT.begin(),
+ RE = RPOT.end(); RI != RE; ++RI)
+ changed |= processBlock(*RI);
+#else
+ for (df_iterator<DomTreeNode*> DI = df_begin(DT->getRootNode()),
+ DE = df_end(DT->getRootNode()); DI != DE; ++DI)
+ changed |= processBlock(DI->getBlock());
+#endif
+
+ return changed;
+}
+
+void GVN::cleanupGlobalSets() {
+ VN.clear();
+ phiMap.clear();
+
+ for (DenseMap<BasicBlock*, ValueNumberScope*>::iterator
+ I = localAvail.begin(), E = localAvail.end(); I != E; ++I)
+ delete I->second;
+ localAvail.clear();
+}
+
+/// verifyRemoved - Verify that the specified instruction does not occur in our
+/// internal data structures.
+void GVN::verifyRemoved(const Instruction *Inst) const {
+ VN.verifyRemoved(Inst);
+
+ // Walk through the PHI map to make sure the instruction isn't hiding in there
+ // somewhere.
+ for (PhiMapType::iterator
+ I = phiMap.begin(), E = phiMap.end(); I != E; ++I) {
+ assert(I->first != Inst && "Inst is still a key in PHI map!");
+
+ for (SmallPtrSet<Instruction*, 4>::iterator
+ II = I->second.begin(), IE = I->second.end(); II != IE; ++II) {
+ assert(*II != Inst && "Inst is still a value in PHI map!");
+ }
+ }
+
+ // Walk through the value number scope to make sure the instruction isn't
+ // ferreted away in it.
+ for (DenseMap<BasicBlock*, ValueNumberScope*>::iterator
+ I = localAvail.begin(), E = localAvail.end(); I != E; ++I) {
+ const ValueNumberScope *VNS = I->second;
+
+ while (VNS) {
+ for (DenseMap<uint32_t, Value*>::iterator
+ II = VNS->table.begin(), IE = VNS->table.end(); II != IE; ++II) {
+ assert(II->second != Inst && "Inst still in value numbering scope!");
+ }
+
+ VNS = VNS->parent;
+ }
+ }
+}