summaryrefslogtreecommitdiff
path: root/lib/Transforms/Scalar/InferAddressSpaces.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/Transforms/Scalar/InferAddressSpaces.cpp')
-rw-r--r--lib/Transforms/Scalar/InferAddressSpaces.cpp903
1 files changed, 903 insertions, 0 deletions
diff --git a/lib/Transforms/Scalar/InferAddressSpaces.cpp b/lib/Transforms/Scalar/InferAddressSpaces.cpp
new file mode 100644
index 0000000000000..5d8701431a2ce
--- /dev/null
+++ b/lib/Transforms/Scalar/InferAddressSpaces.cpp
@@ -0,0 +1,903 @@
+//===-- NVPTXInferAddressSpace.cpp - ---------------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// CUDA C/C++ includes memory space designation as variable type qualifers (such
+// as __global__ and __shared__). Knowing the space of a memory access allows
+// CUDA compilers to emit faster PTX loads and stores. For example, a load from
+// shared memory can be translated to `ld.shared` which is roughly 10% faster
+// than a generic `ld` on an NVIDIA Tesla K40c.
+//
+// Unfortunately, type qualifiers only apply to variable declarations, so CUDA
+// compilers must infer the memory space of an address expression from
+// type-qualified variables.
+//
+// LLVM IR uses non-zero (so-called) specific address spaces to represent memory
+// spaces (e.g. addrspace(3) means shared memory). The Clang frontend
+// places only type-qualified variables in specific address spaces, and then
+// conservatively `addrspacecast`s each type-qualified variable to addrspace(0)
+// (so-called the generic address space) for other instructions to use.
+//
+// For example, the Clang translates the following CUDA code
+// __shared__ float a[10];
+// float v = a[i];
+// to
+// %0 = addrspacecast [10 x float] addrspace(3)* @a to [10 x float]*
+// %1 = gep [10 x float], [10 x float]* %0, i64 0, i64 %i
+// %v = load float, float* %1 ; emits ld.f32
+// @a is in addrspace(3) since it's type-qualified, but its use from %1 is
+// redirected to %0 (the generic version of @a).
+//
+// The optimization implemented in this file propagates specific address spaces
+// from type-qualified variable declarations to its users. For example, it
+// optimizes the above IR to
+// %1 = gep [10 x float] addrspace(3)* @a, i64 0, i64 %i
+// %v = load float addrspace(3)* %1 ; emits ld.shared.f32
+// propagating the addrspace(3) from @a to %1. As the result, the NVPTX
+// codegen is able to emit ld.shared.f32 for %v.
+//
+// Address space inference works in two steps. First, it uses a data-flow
+// analysis to infer as many generic pointers as possible to point to only one
+// specific address space. In the above example, it can prove that %1 only
+// points to addrspace(3). This algorithm was published in
+// CUDA: Compiling and optimizing for a GPU platform
+// Chakrabarti, Grover, Aarts, Kong, Kudlur, Lin, Marathe, Murphy, Wang
+// ICCS 2012
+//
+// Then, address space inference replaces all refinable generic pointers with
+// equivalent specific pointers.
+//
+// The major challenge of implementing this optimization is handling PHINodes,
+// which may create loops in the data flow graph. This brings two complications.
+//
+// First, the data flow analysis in Step 1 needs to be circular. For example,
+// %generic.input = addrspacecast float addrspace(3)* %input to float*
+// loop:
+// %y = phi [ %generic.input, %y2 ]
+// %y2 = getelementptr %y, 1
+// %v = load %y2
+// br ..., label %loop, ...
+// proving %y specific requires proving both %generic.input and %y2 specific,
+// but proving %y2 specific circles back to %y. To address this complication,
+// the data flow analysis operates on a lattice:
+// uninitialized > specific address spaces > generic.
+// All address expressions (our implementation only considers phi, bitcast,
+// addrspacecast, and getelementptr) start with the uninitialized address space.
+// The monotone transfer function moves the address space of a pointer down a
+// lattice path from uninitialized to specific and then to generic. A join
+// operation of two different specific address spaces pushes the expression down
+// to the generic address space. The analysis completes once it reaches a fixed
+// point.
+//
+// Second, IR rewriting in Step 2 also needs to be circular. For example,
+// converting %y to addrspace(3) requires the compiler to know the converted
+// %y2, but converting %y2 needs the converted %y. To address this complication,
+// we break these cycles using "undef" placeholders. When converting an
+// instruction `I` to a new address space, if its operand `Op` is not converted
+// yet, we let `I` temporarily use `undef` and fix all the uses of undef later.
+// For instance, our algorithm first converts %y to
+// %y' = phi float addrspace(3)* [ %input, undef ]
+// Then, it converts %y2 to
+// %y2' = getelementptr %y', 1
+// Finally, it fixes the undef in %y' so that
+// %y' = phi float addrspace(3)* [ %input, %y2' ]
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Transforms/Scalar.h"
+#include "llvm/ADT/DenseSet.h"
+#include "llvm/ADT/Optional.h"
+#include "llvm/ADT/SetVector.h"
+#include "llvm/Analysis/TargetTransformInfo.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/InstIterator.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/Operator.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Transforms/Utils/Local.h"
+#include "llvm/Transforms/Utils/ValueMapper.h"
+
+#define DEBUG_TYPE "infer-address-spaces"
+
+using namespace llvm;
+
+namespace {
+static const unsigned UninitializedAddressSpace = ~0u;
+
+using ValueToAddrSpaceMapTy = DenseMap<const Value *, unsigned>;
+
+/// \brief InferAddressSpaces
+class InferAddressSpaces : public FunctionPass {
+ /// Target specific address space which uses of should be replaced if
+ /// possible.
+ unsigned FlatAddrSpace;
+
+public:
+ static char ID;
+
+ InferAddressSpaces() : FunctionPass(ID) {}
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.setPreservesCFG();
+ AU.addRequired<TargetTransformInfoWrapperPass>();
+ }
+
+ bool runOnFunction(Function &F) override;
+
+private:
+ // Returns the new address space of V if updated; otherwise, returns None.
+ Optional<unsigned>
+ updateAddressSpace(const Value &V,
+ const ValueToAddrSpaceMapTy &InferredAddrSpace) const;
+
+ // Tries to infer the specific address space of each address expression in
+ // Postorder.
+ void inferAddressSpaces(const std::vector<Value *> &Postorder,
+ ValueToAddrSpaceMapTy *InferredAddrSpace) const;
+
+ bool isSafeToCastConstAddrSpace(Constant *C, unsigned NewAS) const;
+
+ // Changes the flat address expressions in function F to point to specific
+ // address spaces if InferredAddrSpace says so. Postorder is the postorder of
+ // all flat expressions in the use-def graph of function F.
+ bool
+ rewriteWithNewAddressSpaces(const std::vector<Value *> &Postorder,
+ const ValueToAddrSpaceMapTy &InferredAddrSpace,
+ Function *F) const;
+
+ void appendsFlatAddressExpressionToPostorderStack(
+ Value *V, std::vector<std::pair<Value *, bool>> *PostorderStack,
+ DenseSet<Value *> *Visited) const;
+
+ bool rewriteIntrinsicOperands(IntrinsicInst *II,
+ Value *OldV, Value *NewV) const;
+ void collectRewritableIntrinsicOperands(
+ IntrinsicInst *II,
+ std::vector<std::pair<Value *, bool>> *PostorderStack,
+ DenseSet<Value *> *Visited) const;
+
+ std::vector<Value *> collectFlatAddressExpressions(Function &F) const;
+
+ Value *cloneValueWithNewAddressSpace(
+ Value *V, unsigned NewAddrSpace,
+ const ValueToValueMapTy &ValueWithNewAddrSpace,
+ SmallVectorImpl<const Use *> *UndefUsesToFix) const;
+ unsigned joinAddressSpaces(unsigned AS1, unsigned AS2) const;
+};
+} // end anonymous namespace
+
+char InferAddressSpaces::ID = 0;
+
+namespace llvm {
+void initializeInferAddressSpacesPass(PassRegistry &);
+}
+
+INITIALIZE_PASS(InferAddressSpaces, DEBUG_TYPE, "Infer address spaces",
+ false, false)
+
+// Returns true if V is an address expression.
+// TODO: Currently, we consider only phi, bitcast, addrspacecast, and
+// getelementptr operators.
+static bool isAddressExpression(const Value &V) {
+ if (!isa<Operator>(V))
+ return false;
+
+ switch (cast<Operator>(V).getOpcode()) {
+ case Instruction::PHI:
+ case Instruction::BitCast:
+ case Instruction::AddrSpaceCast:
+ case Instruction::GetElementPtr:
+ case Instruction::Select:
+ return true;
+ default:
+ return false;
+ }
+}
+
+// Returns the pointer operands of V.
+//
+// Precondition: V is an address expression.
+static SmallVector<Value *, 2> getPointerOperands(const Value &V) {
+ assert(isAddressExpression(V));
+ const Operator &Op = cast<Operator>(V);
+ switch (Op.getOpcode()) {
+ case Instruction::PHI: {
+ auto IncomingValues = cast<PHINode>(Op).incoming_values();
+ return SmallVector<Value *, 2>(IncomingValues.begin(),
+ IncomingValues.end());
+ }
+ case Instruction::BitCast:
+ case Instruction::AddrSpaceCast:
+ case Instruction::GetElementPtr:
+ return {Op.getOperand(0)};
+ case Instruction::Select:
+ return {Op.getOperand(1), Op.getOperand(2)};
+ default:
+ llvm_unreachable("Unexpected instruction type.");
+ }
+}
+
+// TODO: Move logic to TTI?
+bool InferAddressSpaces::rewriteIntrinsicOperands(IntrinsicInst *II,
+ Value *OldV,
+ Value *NewV) const {
+ Module *M = II->getParent()->getParent()->getParent();
+
+ switch (II->getIntrinsicID()) {
+ case Intrinsic::amdgcn_atomic_inc:
+ case Intrinsic::amdgcn_atomic_dec:{
+ const ConstantInt *IsVolatile = dyn_cast<ConstantInt>(II->getArgOperand(4));
+ if (!IsVolatile || !IsVolatile->isNullValue())
+ return false;
+
+ LLVM_FALLTHROUGH;
+ }
+ case Intrinsic::objectsize: {
+ Type *DestTy = II->getType();
+ Type *SrcTy = NewV->getType();
+ Function *NewDecl =
+ Intrinsic::getDeclaration(M, II->getIntrinsicID(), {DestTy, SrcTy});
+ II->setArgOperand(0, NewV);
+ II->setCalledFunction(NewDecl);
+ return true;
+ }
+ default:
+ return false;
+ }
+}
+
+// TODO: Move logic to TTI?
+void InferAddressSpaces::collectRewritableIntrinsicOperands(
+ IntrinsicInst *II, std::vector<std::pair<Value *, bool>> *PostorderStack,
+ DenseSet<Value *> *Visited) const {
+ switch (II->getIntrinsicID()) {
+ case Intrinsic::objectsize:
+ case Intrinsic::amdgcn_atomic_inc:
+ case Intrinsic::amdgcn_atomic_dec:
+ appendsFlatAddressExpressionToPostorderStack(II->getArgOperand(0),
+ PostorderStack, Visited);
+ break;
+ default:
+ break;
+ }
+}
+
+// Returns all flat address expressions in function F. The elements are
+// If V is an unvisited flat address expression, appends V to PostorderStack
+// and marks it as visited.
+void InferAddressSpaces::appendsFlatAddressExpressionToPostorderStack(
+ Value *V, std::vector<std::pair<Value *, bool>> *PostorderStack,
+ DenseSet<Value *> *Visited) const {
+ assert(V->getType()->isPointerTy());
+ if (isAddressExpression(*V) &&
+ V->getType()->getPointerAddressSpace() == FlatAddrSpace) {
+ if (Visited->insert(V).second)
+ PostorderStack->push_back(std::make_pair(V, false));
+ }
+}
+
+// Returns all flat address expressions in function F. The elements are ordered
+// ordered in postorder.
+std::vector<Value *>
+InferAddressSpaces::collectFlatAddressExpressions(Function &F) const {
+ // This function implements a non-recursive postorder traversal of a partial
+ // use-def graph of function F.
+ std::vector<std::pair<Value *, bool>> PostorderStack;
+ // The set of visited expressions.
+ DenseSet<Value *> Visited;
+
+ auto PushPtrOperand = [&](Value *Ptr) {
+ appendsFlatAddressExpressionToPostorderStack(Ptr, &PostorderStack,
+ &Visited);
+ };
+
+ // We only explore address expressions that are reachable from loads and
+ // stores for now because we aim at generating faster loads and stores.
+ for (Instruction &I : instructions(F)) {
+ if (auto *LI = dyn_cast<LoadInst>(&I))
+ PushPtrOperand(LI->getPointerOperand());
+ else if (auto *SI = dyn_cast<StoreInst>(&I))
+ PushPtrOperand(SI->getPointerOperand());
+ else if (auto *RMW = dyn_cast<AtomicRMWInst>(&I))
+ PushPtrOperand(RMW->getPointerOperand());
+ else if (auto *CmpX = dyn_cast<AtomicCmpXchgInst>(&I))
+ PushPtrOperand(CmpX->getPointerOperand());
+ else if (auto *MI = dyn_cast<MemIntrinsic>(&I)) {
+ // For memset/memcpy/memmove, any pointer operand can be replaced.
+ PushPtrOperand(MI->getRawDest());
+
+ // Handle 2nd operand for memcpy/memmove.
+ if (auto *MTI = dyn_cast<MemTransferInst>(MI))
+ PushPtrOperand(MTI->getRawSource());
+ } else if (auto *II = dyn_cast<IntrinsicInst>(&I))
+ collectRewritableIntrinsicOperands(II, &PostorderStack, &Visited);
+ else if (ICmpInst *Cmp = dyn_cast<ICmpInst>(&I)) {
+ // FIXME: Handle vectors of pointers
+ if (Cmp->getOperand(0)->getType()->isPointerTy()) {
+ PushPtrOperand(Cmp->getOperand(0));
+ PushPtrOperand(Cmp->getOperand(1));
+ }
+ }
+ }
+
+ std::vector<Value *> Postorder; // The resultant postorder.
+ while (!PostorderStack.empty()) {
+ // If the operands of the expression on the top are already explored,
+ // adds that expression to the resultant postorder.
+ if (PostorderStack.back().second) {
+ Postorder.push_back(PostorderStack.back().first);
+ PostorderStack.pop_back();
+ continue;
+ }
+ // Otherwise, adds its operands to the stack and explores them.
+ PostorderStack.back().second = true;
+ for (Value *PtrOperand : getPointerOperands(*PostorderStack.back().first)) {
+ appendsFlatAddressExpressionToPostorderStack(PtrOperand, &PostorderStack,
+ &Visited);
+ }
+ }
+ return Postorder;
+}
+
+// A helper function for cloneInstructionWithNewAddressSpace. Returns the clone
+// of OperandUse.get() in the new address space. If the clone is not ready yet,
+// returns an undef in the new address space as a placeholder.
+static Value *operandWithNewAddressSpaceOrCreateUndef(
+ const Use &OperandUse, unsigned NewAddrSpace,
+ const ValueToValueMapTy &ValueWithNewAddrSpace,
+ SmallVectorImpl<const Use *> *UndefUsesToFix) {
+ Value *Operand = OperandUse.get();
+
+ Type *NewPtrTy =
+ Operand->getType()->getPointerElementType()->getPointerTo(NewAddrSpace);
+
+ if (Constant *C = dyn_cast<Constant>(Operand))
+ return ConstantExpr::getAddrSpaceCast(C, NewPtrTy);
+
+ if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand))
+ return NewOperand;
+
+ UndefUsesToFix->push_back(&OperandUse);
+ return UndefValue::get(NewPtrTy);
+}
+
+// Returns a clone of `I` with its operands converted to those specified in
+// ValueWithNewAddrSpace. Due to potential cycles in the data flow graph, an
+// operand whose address space needs to be modified might not exist in
+// ValueWithNewAddrSpace. In that case, uses undef as a placeholder operand and
+// adds that operand use to UndefUsesToFix so that caller can fix them later.
+//
+// Note that we do not necessarily clone `I`, e.g., if it is an addrspacecast
+// from a pointer whose type already matches. Therefore, this function returns a
+// Value* instead of an Instruction*.
+static Value *cloneInstructionWithNewAddressSpace(
+ Instruction *I, unsigned NewAddrSpace,
+ const ValueToValueMapTy &ValueWithNewAddrSpace,
+ SmallVectorImpl<const Use *> *UndefUsesToFix) {
+ Type *NewPtrType =
+ I->getType()->getPointerElementType()->getPointerTo(NewAddrSpace);
+
+ if (I->getOpcode() == Instruction::AddrSpaceCast) {
+ Value *Src = I->getOperand(0);
+ // Because `I` is flat, the source address space must be specific.
+ // Therefore, the inferred address space must be the source space, according
+ // to our algorithm.
+ assert(Src->getType()->getPointerAddressSpace() == NewAddrSpace);
+ if (Src->getType() != NewPtrType)
+ return new BitCastInst(Src, NewPtrType);
+ return Src;
+ }
+
+ // Computes the converted pointer operands.
+ SmallVector<Value *, 4> NewPointerOperands;
+ for (const Use &OperandUse : I->operands()) {
+ if (!OperandUse.get()->getType()->isPointerTy())
+ NewPointerOperands.push_back(nullptr);
+ else
+ NewPointerOperands.push_back(operandWithNewAddressSpaceOrCreateUndef(
+ OperandUse, NewAddrSpace, ValueWithNewAddrSpace, UndefUsesToFix));
+ }
+
+ switch (I->getOpcode()) {
+ case Instruction::BitCast:
+ return new BitCastInst(NewPointerOperands[0], NewPtrType);
+ case Instruction::PHI: {
+ assert(I->getType()->isPointerTy());
+ PHINode *PHI = cast<PHINode>(I);
+ PHINode *NewPHI = PHINode::Create(NewPtrType, PHI->getNumIncomingValues());
+ for (unsigned Index = 0; Index < PHI->getNumIncomingValues(); ++Index) {
+ unsigned OperandNo = PHINode::getOperandNumForIncomingValue(Index);
+ NewPHI->addIncoming(NewPointerOperands[OperandNo],
+ PHI->getIncomingBlock(Index));
+ }
+ return NewPHI;
+ }
+ case Instruction::GetElementPtr: {
+ GetElementPtrInst *GEP = cast<GetElementPtrInst>(I);
+ GetElementPtrInst *NewGEP = GetElementPtrInst::Create(
+ GEP->getSourceElementType(), NewPointerOperands[0],
+ SmallVector<Value *, 4>(GEP->idx_begin(), GEP->idx_end()));
+ NewGEP->setIsInBounds(GEP->isInBounds());
+ return NewGEP;
+ }
+ case Instruction::Select: {
+ assert(I->getType()->isPointerTy());
+ return SelectInst::Create(I->getOperand(0), NewPointerOperands[1],
+ NewPointerOperands[2], "", nullptr, I);
+ }
+ default:
+ llvm_unreachable("Unexpected opcode");
+ }
+}
+
+// Similar to cloneInstructionWithNewAddressSpace, returns a clone of the
+// constant expression `CE` with its operands replaced as specified in
+// ValueWithNewAddrSpace.
+static Value *cloneConstantExprWithNewAddressSpace(
+ ConstantExpr *CE, unsigned NewAddrSpace,
+ const ValueToValueMapTy &ValueWithNewAddrSpace) {
+ Type *TargetType =
+ CE->getType()->getPointerElementType()->getPointerTo(NewAddrSpace);
+
+ if (CE->getOpcode() == Instruction::AddrSpaceCast) {
+ // Because CE is flat, the source address space must be specific.
+ // Therefore, the inferred address space must be the source space according
+ // to our algorithm.
+ assert(CE->getOperand(0)->getType()->getPointerAddressSpace() ==
+ NewAddrSpace);
+ return ConstantExpr::getBitCast(CE->getOperand(0), TargetType);
+ }
+
+ if (CE->getOpcode() == Instruction::BitCast) {
+ if (Value *NewOperand = ValueWithNewAddrSpace.lookup(CE->getOperand(0)))
+ return ConstantExpr::getBitCast(cast<Constant>(NewOperand), TargetType);
+ return ConstantExpr::getAddrSpaceCast(CE, TargetType);
+ }
+
+ if (CE->getOpcode() == Instruction::Select) {
+ Constant *Src0 = CE->getOperand(1);
+ Constant *Src1 = CE->getOperand(2);
+ if (Src0->getType()->getPointerAddressSpace() ==
+ Src1->getType()->getPointerAddressSpace()) {
+
+ return ConstantExpr::getSelect(
+ CE->getOperand(0), ConstantExpr::getAddrSpaceCast(Src0, TargetType),
+ ConstantExpr::getAddrSpaceCast(Src1, TargetType));
+ }
+ }
+
+ // Computes the operands of the new constant expression.
+ SmallVector<Constant *, 4> NewOperands;
+ for (unsigned Index = 0; Index < CE->getNumOperands(); ++Index) {
+ Constant *Operand = CE->getOperand(Index);
+ // If the address space of `Operand` needs to be modified, the new operand
+ // with the new address space should already be in ValueWithNewAddrSpace
+ // because (1) the constant expressions we consider (i.e. addrspacecast,
+ // bitcast, and getelementptr) do not incur cycles in the data flow graph
+ // and (2) this function is called on constant expressions in postorder.
+ if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand)) {
+ NewOperands.push_back(cast<Constant>(NewOperand));
+ } else {
+ // Otherwise, reuses the old operand.
+ NewOperands.push_back(Operand);
+ }
+ }
+
+ if (CE->getOpcode() == Instruction::GetElementPtr) {
+ // Needs to specify the source type while constructing a getelementptr
+ // constant expression.
+ return CE->getWithOperands(
+ NewOperands, TargetType, /*OnlyIfReduced=*/false,
+ NewOperands[0]->getType()->getPointerElementType());
+ }
+
+ return CE->getWithOperands(NewOperands, TargetType);
+}
+
+// Returns a clone of the value `V`, with its operands replaced as specified in
+// ValueWithNewAddrSpace. This function is called on every flat address
+// expression whose address space needs to be modified, in postorder.
+//
+// See cloneInstructionWithNewAddressSpace for the meaning of UndefUsesToFix.
+Value *InferAddressSpaces::cloneValueWithNewAddressSpace(
+ Value *V, unsigned NewAddrSpace,
+ const ValueToValueMapTy &ValueWithNewAddrSpace,
+ SmallVectorImpl<const Use *> *UndefUsesToFix) const {
+ // All values in Postorder are flat address expressions.
+ assert(isAddressExpression(*V) &&
+ V->getType()->getPointerAddressSpace() == FlatAddrSpace);
+
+ if (Instruction *I = dyn_cast<Instruction>(V)) {
+ Value *NewV = cloneInstructionWithNewAddressSpace(
+ I, NewAddrSpace, ValueWithNewAddrSpace, UndefUsesToFix);
+ if (Instruction *NewI = dyn_cast<Instruction>(NewV)) {
+ if (NewI->getParent() == nullptr) {
+ NewI->insertBefore(I);
+ NewI->takeName(I);
+ }
+ }
+ return NewV;
+ }
+
+ return cloneConstantExprWithNewAddressSpace(
+ cast<ConstantExpr>(V), NewAddrSpace, ValueWithNewAddrSpace);
+}
+
+// Defines the join operation on the address space lattice (see the file header
+// comments).
+unsigned InferAddressSpaces::joinAddressSpaces(unsigned AS1,
+ unsigned AS2) const {
+ if (AS1 == FlatAddrSpace || AS2 == FlatAddrSpace)
+ return FlatAddrSpace;
+
+ if (AS1 == UninitializedAddressSpace)
+ return AS2;
+ if (AS2 == UninitializedAddressSpace)
+ return AS1;
+
+ // The join of two different specific address spaces is flat.
+ return (AS1 == AS2) ? AS1 : FlatAddrSpace;
+}
+
+bool InferAddressSpaces::runOnFunction(Function &F) {
+ if (skipFunction(F))
+ return false;
+
+ const TargetTransformInfo &TTI =
+ getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
+ FlatAddrSpace = TTI.getFlatAddressSpace();
+ if (FlatAddrSpace == UninitializedAddressSpace)
+ return false;
+
+ // Collects all flat address expressions in postorder.
+ std::vector<Value *> Postorder = collectFlatAddressExpressions(F);
+
+ // Runs a data-flow analysis to refine the address spaces of every expression
+ // in Postorder.
+ ValueToAddrSpaceMapTy InferredAddrSpace;
+ inferAddressSpaces(Postorder, &InferredAddrSpace);
+
+ // Changes the address spaces of the flat address expressions who are inferred
+ // to point to a specific address space.
+ return rewriteWithNewAddressSpaces(Postorder, InferredAddrSpace, &F);
+}
+
+void InferAddressSpaces::inferAddressSpaces(
+ const std::vector<Value *> &Postorder,
+ ValueToAddrSpaceMapTy *InferredAddrSpace) const {
+ SetVector<Value *> Worklist(Postorder.begin(), Postorder.end());
+ // Initially, all expressions are in the uninitialized address space.
+ for (Value *V : Postorder)
+ (*InferredAddrSpace)[V] = UninitializedAddressSpace;
+
+ while (!Worklist.empty()) {
+ Value *V = Worklist.pop_back_val();
+
+ // Tries to update the address space of the stack top according to the
+ // address spaces of its operands.
+ DEBUG(dbgs() << "Updating the address space of\n " << *V << '\n');
+ Optional<unsigned> NewAS = updateAddressSpace(*V, *InferredAddrSpace);
+ if (!NewAS.hasValue())
+ continue;
+ // If any updates are made, grabs its users to the worklist because
+ // their address spaces can also be possibly updated.
+ DEBUG(dbgs() << " to " << NewAS.getValue() << '\n');
+ (*InferredAddrSpace)[V] = NewAS.getValue();
+
+ for (Value *User : V->users()) {
+ // Skip if User is already in the worklist.
+ if (Worklist.count(User))
+ continue;
+
+ auto Pos = InferredAddrSpace->find(User);
+ // Our algorithm only updates the address spaces of flat address
+ // expressions, which are those in InferredAddrSpace.
+ if (Pos == InferredAddrSpace->end())
+ continue;
+
+ // Function updateAddressSpace moves the address space down a lattice
+ // path. Therefore, nothing to do if User is already inferred as flat (the
+ // bottom element in the lattice).
+ if (Pos->second == FlatAddrSpace)
+ continue;
+
+ Worklist.insert(User);
+ }
+ }
+}
+
+Optional<unsigned> InferAddressSpaces::updateAddressSpace(
+ const Value &V, const ValueToAddrSpaceMapTy &InferredAddrSpace) const {
+ assert(InferredAddrSpace.count(&V));
+
+ // The new inferred address space equals the join of the address spaces
+ // of all its pointer operands.
+ unsigned NewAS = UninitializedAddressSpace;
+
+ const Operator &Op = cast<Operator>(V);
+ if (Op.getOpcode() == Instruction::Select) {
+ Value *Src0 = Op.getOperand(1);
+ Value *Src1 = Op.getOperand(2);
+
+ auto I = InferredAddrSpace.find(Src0);
+ unsigned Src0AS = (I != InferredAddrSpace.end()) ?
+ I->second : Src0->getType()->getPointerAddressSpace();
+
+ auto J = InferredAddrSpace.find(Src1);
+ unsigned Src1AS = (J != InferredAddrSpace.end()) ?
+ J->second : Src1->getType()->getPointerAddressSpace();
+
+ auto *C0 = dyn_cast<Constant>(Src0);
+ auto *C1 = dyn_cast<Constant>(Src1);
+
+ // If one of the inputs is a constant, we may be able to do a constant
+ // addrspacecast of it. Defer inferring the address space until the input
+ // address space is known.
+ if ((C1 && Src0AS == UninitializedAddressSpace) ||
+ (C0 && Src1AS == UninitializedAddressSpace))
+ return None;
+
+ if (C0 && isSafeToCastConstAddrSpace(C0, Src1AS))
+ NewAS = Src1AS;
+ else if (C1 && isSafeToCastConstAddrSpace(C1, Src0AS))
+ NewAS = Src0AS;
+ else
+ NewAS = joinAddressSpaces(Src0AS, Src1AS);
+ } else {
+ for (Value *PtrOperand : getPointerOperands(V)) {
+ auto I = InferredAddrSpace.find(PtrOperand);
+ unsigned OperandAS = I != InferredAddrSpace.end() ?
+ I->second : PtrOperand->getType()->getPointerAddressSpace();
+
+ // join(flat, *) = flat. So we can break if NewAS is already flat.
+ NewAS = joinAddressSpaces(NewAS, OperandAS);
+ if (NewAS == FlatAddrSpace)
+ break;
+ }
+ }
+
+ unsigned OldAS = InferredAddrSpace.lookup(&V);
+ assert(OldAS != FlatAddrSpace);
+ if (OldAS == NewAS)
+ return None;
+ return NewAS;
+}
+
+/// \p returns true if \p U is the pointer operand of a memory instruction with
+/// a single pointer operand that can have its address space changed by simply
+/// mutating the use to a new value.
+static bool isSimplePointerUseValidToReplace(Use &U) {
+ User *Inst = U.getUser();
+ unsigned OpNo = U.getOperandNo();
+
+ if (auto *LI = dyn_cast<LoadInst>(Inst))
+ return OpNo == LoadInst::getPointerOperandIndex() && !LI->isVolatile();
+
+ if (auto *SI = dyn_cast<StoreInst>(Inst))
+ return OpNo == StoreInst::getPointerOperandIndex() && !SI->isVolatile();
+
+ if (auto *RMW = dyn_cast<AtomicRMWInst>(Inst))
+ return OpNo == AtomicRMWInst::getPointerOperandIndex() && !RMW->isVolatile();
+
+ if (auto *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) {
+ return OpNo == AtomicCmpXchgInst::getPointerOperandIndex() &&
+ !CmpX->isVolatile();
+ }
+
+ return false;
+}
+
+/// Update memory intrinsic uses that require more complex processing than
+/// simple memory instructions. Thse require re-mangling and may have multiple
+/// pointer operands.
+static bool handleMemIntrinsicPtrUse(MemIntrinsic *MI, Value *OldV,
+ Value *NewV) {
+ IRBuilder<> B(MI);
+ MDNode *TBAA = MI->getMetadata(LLVMContext::MD_tbaa);
+ MDNode *ScopeMD = MI->getMetadata(LLVMContext::MD_alias_scope);
+ MDNode *NoAliasMD = MI->getMetadata(LLVMContext::MD_noalias);
+
+ if (auto *MSI = dyn_cast<MemSetInst>(MI)) {
+ B.CreateMemSet(NewV, MSI->getValue(),
+ MSI->getLength(), MSI->getAlignment(),
+ false, // isVolatile
+ TBAA, ScopeMD, NoAliasMD);
+ } else if (auto *MTI = dyn_cast<MemTransferInst>(MI)) {
+ Value *Src = MTI->getRawSource();
+ Value *Dest = MTI->getRawDest();
+
+ // Be careful in case this is a self-to-self copy.
+ if (Src == OldV)
+ Src = NewV;
+
+ if (Dest == OldV)
+ Dest = NewV;
+
+ if (isa<MemCpyInst>(MTI)) {
+ MDNode *TBAAStruct = MTI->getMetadata(LLVMContext::MD_tbaa_struct);
+ B.CreateMemCpy(Dest, Src, MTI->getLength(),
+ MTI->getAlignment(),
+ false, // isVolatile
+ TBAA, TBAAStruct, ScopeMD, NoAliasMD);
+ } else {
+ assert(isa<MemMoveInst>(MTI));
+ B.CreateMemMove(Dest, Src, MTI->getLength(),
+ MTI->getAlignment(),
+ false, // isVolatile
+ TBAA, ScopeMD, NoAliasMD);
+ }
+ } else
+ llvm_unreachable("unhandled MemIntrinsic");
+
+ MI->eraseFromParent();
+ return true;
+}
+
+// \p returns true if it is OK to change the address space of constant \p C with
+// a ConstantExpr addrspacecast.
+bool InferAddressSpaces::isSafeToCastConstAddrSpace(Constant *C, unsigned NewAS) const {
+ assert(NewAS != UninitializedAddressSpace);
+
+ unsigned SrcAS = C->getType()->getPointerAddressSpace();
+ if (SrcAS == NewAS || isa<UndefValue>(C))
+ return true;
+
+ // Prevent illegal casts between different non-flat address spaces.
+ if (SrcAS != FlatAddrSpace && NewAS != FlatAddrSpace)
+ return false;
+
+ if (isa<ConstantPointerNull>(C))
+ return true;
+
+ if (auto *Op = dyn_cast<Operator>(C)) {
+ // If we already have a constant addrspacecast, it should be safe to cast it
+ // off.
+ if (Op->getOpcode() == Instruction::AddrSpaceCast)
+ return isSafeToCastConstAddrSpace(cast<Constant>(Op->getOperand(0)), NewAS);
+
+ if (Op->getOpcode() == Instruction::IntToPtr &&
+ Op->getType()->getPointerAddressSpace() == FlatAddrSpace)
+ return true;
+ }
+
+ return false;
+}
+
+static Value::use_iterator skipToNextUser(Value::use_iterator I,
+ Value::use_iterator End) {
+ User *CurUser = I->getUser();
+ ++I;
+
+ while (I != End && I->getUser() == CurUser)
+ ++I;
+
+ return I;
+}
+
+bool InferAddressSpaces::rewriteWithNewAddressSpaces(
+ const std::vector<Value *> &Postorder,
+ const ValueToAddrSpaceMapTy &InferredAddrSpace, Function *F) const {
+ // For each address expression to be modified, creates a clone of it with its
+ // pointer operands converted to the new address space. Since the pointer
+ // operands are converted, the clone is naturally in the new address space by
+ // construction.
+ ValueToValueMapTy ValueWithNewAddrSpace;
+ SmallVector<const Use *, 32> UndefUsesToFix;
+ for (Value* V : Postorder) {
+ unsigned NewAddrSpace = InferredAddrSpace.lookup(V);
+ if (V->getType()->getPointerAddressSpace() != NewAddrSpace) {
+ ValueWithNewAddrSpace[V] = cloneValueWithNewAddressSpace(
+ V, NewAddrSpace, ValueWithNewAddrSpace, &UndefUsesToFix);
+ }
+ }
+
+ if (ValueWithNewAddrSpace.empty())
+ return false;
+
+ // Fixes all the undef uses generated by cloneInstructionWithNewAddressSpace.
+ for (const Use *UndefUse : UndefUsesToFix) {
+ User *V = UndefUse->getUser();
+ User *NewV = cast<User>(ValueWithNewAddrSpace.lookup(V));
+ unsigned OperandNo = UndefUse->getOperandNo();
+ assert(isa<UndefValue>(NewV->getOperand(OperandNo)));
+ NewV->setOperand(OperandNo, ValueWithNewAddrSpace.lookup(UndefUse->get()));
+ }
+
+ // Replaces the uses of the old address expressions with the new ones.
+ for (Value *V : Postorder) {
+ Value *NewV = ValueWithNewAddrSpace.lookup(V);
+ if (NewV == nullptr)
+ continue;
+
+ DEBUG(dbgs() << "Replacing the uses of " << *V
+ << "\n with\n " << *NewV << '\n');
+
+ Value::use_iterator I, E, Next;
+ for (I = V->use_begin(), E = V->use_end(); I != E; ) {
+ Use &U = *I;
+
+ // Some users may see the same pointer operand in multiple operands. Skip
+ // to the next instruction.
+ I = skipToNextUser(I, E);
+
+ if (isSimplePointerUseValidToReplace(U)) {
+ // If V is used as the pointer operand of a compatible memory operation,
+ // sets the pointer operand to NewV. This replacement does not change
+ // the element type, so the resultant load/store is still valid.
+ U.set(NewV);
+ continue;
+ }
+
+ User *CurUser = U.getUser();
+ // Handle more complex cases like intrinsic that need to be remangled.
+ if (auto *MI = dyn_cast<MemIntrinsic>(CurUser)) {
+ if (!MI->isVolatile() && handleMemIntrinsicPtrUse(MI, V, NewV))
+ continue;
+ }
+
+ if (auto *II = dyn_cast<IntrinsicInst>(CurUser)) {
+ if (rewriteIntrinsicOperands(II, V, NewV))
+ continue;
+ }
+
+ if (isa<Instruction>(CurUser)) {
+ if (ICmpInst *Cmp = dyn_cast<ICmpInst>(CurUser)) {
+ // If we can infer that both pointers are in the same addrspace,
+ // transform e.g.
+ // %cmp = icmp eq float* %p, %q
+ // into
+ // %cmp = icmp eq float addrspace(3)* %new_p, %new_q
+
+ unsigned NewAS = NewV->getType()->getPointerAddressSpace();
+ int SrcIdx = U.getOperandNo();
+ int OtherIdx = (SrcIdx == 0) ? 1 : 0;
+ Value *OtherSrc = Cmp->getOperand(OtherIdx);
+
+ if (Value *OtherNewV = ValueWithNewAddrSpace.lookup(OtherSrc)) {
+ if (OtherNewV->getType()->getPointerAddressSpace() == NewAS) {
+ Cmp->setOperand(OtherIdx, OtherNewV);
+ Cmp->setOperand(SrcIdx, NewV);
+ continue;
+ }
+ }
+
+ // Even if the type mismatches, we can cast the constant.
+ if (auto *KOtherSrc = dyn_cast<Constant>(OtherSrc)) {
+ if (isSafeToCastConstAddrSpace(KOtherSrc, NewAS)) {
+ Cmp->setOperand(SrcIdx, NewV);
+ Cmp->setOperand(OtherIdx,
+ ConstantExpr::getAddrSpaceCast(KOtherSrc, NewV->getType()));
+ continue;
+ }
+ }
+ }
+
+ // Otherwise, replaces the use with flat(NewV).
+ if (Instruction *I = dyn_cast<Instruction>(V)) {
+ BasicBlock::iterator InsertPos = std::next(I->getIterator());
+ while (isa<PHINode>(InsertPos))
+ ++InsertPos;
+ U.set(new AddrSpaceCastInst(NewV, V->getType(), "", &*InsertPos));
+ } else {
+ U.set(ConstantExpr::getAddrSpaceCast(cast<Constant>(NewV),
+ V->getType()));
+ }
+ }
+ }
+
+ if (V->use_empty())
+ RecursivelyDeleteTriviallyDeadInstructions(V);
+ }
+
+ return true;
+}
+
+FunctionPass *llvm::createInferAddressSpacesPass() {
+ return new InferAddressSpaces();
+}