diff options
Diffstat (limited to 'lib/Transforms/Utils/LoopSimplify.cpp')
| -rw-r--r-- | lib/Transforms/Utils/LoopSimplify.cpp | 600 | 
1 files changed, 600 insertions, 0 deletions
| diff --git a/lib/Transforms/Utils/LoopSimplify.cpp b/lib/Transforms/Utils/LoopSimplify.cpp new file mode 100644 index 0000000000000..03d273d25d791 --- /dev/null +++ b/lib/Transforms/Utils/LoopSimplify.cpp @@ -0,0 +1,600 @@ +//===- LoopSimplify.cpp - Loop Canonicalization Pass ----------------------===// +// +//                     The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This pass performs several transformations to transform natural loops into a +// simpler form, which makes subsequent analyses and transformations simpler and +// more effective. +// +// Loop pre-header insertion guarantees that there is a single, non-critical +// entry edge from outside of the loop to the loop header.  This simplifies a +// number of analyses and transformations, such as LICM. +// +// Loop exit-block insertion guarantees that all exit blocks from the loop +// (blocks which are outside of the loop that have predecessors inside of the +// loop) only have predecessors from inside of the loop (and are thus dominated +// by the loop header).  This simplifies transformations such as store-sinking +// that are built into LICM. +// +// This pass also guarantees that loops will have exactly one backedge. +// +// Note that the simplifycfg pass will clean up blocks which are split out but +// end up being unnecessary, so usage of this pass should not pessimize +// generated code. +// +// This pass obviously modifies the CFG, but updates loop information and +// dominator information. +// +//===----------------------------------------------------------------------===// + +#define DEBUG_TYPE "loopsimplify" +#include "llvm/Transforms/Scalar.h" +#include "llvm/Constants.h" +#include "llvm/Instructions.h" +#include "llvm/Function.h" +#include "llvm/Type.h" +#include "llvm/Analysis/AliasAnalysis.h" +#include "llvm/Analysis/Dominators.h" +#include "llvm/Analysis/LoopInfo.h" +#include "llvm/Transforms/Utils/BasicBlockUtils.h" +#include "llvm/Support/CFG.h" +#include "llvm/Support/Compiler.h" +#include "llvm/ADT/SetOperations.h" +#include "llvm/ADT/SetVector.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/ADT/DepthFirstIterator.h" +using namespace llvm; + +STATISTIC(NumInserted, "Number of pre-header or exit blocks inserted"); +STATISTIC(NumNested  , "Number of nested loops split out"); + +namespace { +  struct VISIBILITY_HIDDEN LoopSimplify : public FunctionPass { +    static char ID; // Pass identification, replacement for typeid +    LoopSimplify() : FunctionPass(&ID) {} + +    // AA - If we have an alias analysis object to update, this is it, otherwise +    // this is null. +    AliasAnalysis *AA; +    LoopInfo *LI; +    DominatorTree *DT; +    virtual bool runOnFunction(Function &F); + +    virtual void getAnalysisUsage(AnalysisUsage &AU) const { +      // We need loop information to identify the loops... +      AU.addRequired<LoopInfo>(); +      AU.addRequired<DominatorTree>(); + +      AU.addPreserved<LoopInfo>(); +      AU.addPreserved<DominatorTree>(); +      AU.addPreserved<DominanceFrontier>(); +      AU.addPreserved<AliasAnalysis>(); +      AU.addPreservedID(BreakCriticalEdgesID);  // No critical edges added. +    } + +    /// verifyAnalysis() - Verify loop nest. +    void verifyAnalysis() const { +#ifndef NDEBUG +      LoopInfo *NLI = &getAnalysis<LoopInfo>(); +      for (LoopInfo::iterator I = NLI->begin(), E = NLI->end(); I != E; ++I)  +        (*I)->verifyLoop(); +#endif   +    } + +  private: +    bool ProcessLoop(Loop *L); +    BasicBlock *RewriteLoopExitBlock(Loop *L, BasicBlock *Exit); +    void InsertPreheaderForLoop(Loop *L); +    Loop *SeparateNestedLoop(Loop *L); +    void InsertUniqueBackedgeBlock(Loop *L); +    void PlaceSplitBlockCarefully(BasicBlock *NewBB, +                                  SmallVectorImpl<BasicBlock*> &SplitPreds, +                                  Loop *L); +  }; +} + +char LoopSimplify::ID = 0; +static RegisterPass<LoopSimplify> +X("loopsimplify", "Canonicalize natural loops", true); + +// Publically exposed interface to pass... +const PassInfo *const llvm::LoopSimplifyID = &X; +FunctionPass *llvm::createLoopSimplifyPass() { return new LoopSimplify(); } + +/// runOnFunction - Run down all loops in the CFG (recursively, but we could do +/// it in any convenient order) inserting preheaders... +/// +bool LoopSimplify::runOnFunction(Function &F) { +  bool Changed = false; +  LI = &getAnalysis<LoopInfo>(); +  AA = getAnalysisIfAvailable<AliasAnalysis>(); +  DT = &getAnalysis<DominatorTree>(); + +  // Check to see that no blocks (other than the header) in loops have +  // predecessors that are not in loops.  This is not valid for natural loops, +  // but can occur if the blocks are unreachable.  Since they are unreachable we +  // can just shamelessly destroy their terminators to make them not branch into +  // the loop! +  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { +    // This case can only occur for unreachable blocks.  Blocks that are +    // unreachable can't be in loops, so filter those blocks out. +    if (LI->getLoopFor(BB)) continue; +     +    bool BlockUnreachable = false; +    TerminatorInst *TI = BB->getTerminator(); + +    // Check to see if any successors of this block are non-loop-header loops +    // that are not the header. +    for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) { +      // If this successor is not in a loop, BB is clearly ok. +      Loop *L = LI->getLoopFor(TI->getSuccessor(i)); +      if (!L) continue; +       +      // If the succ is the loop header, and if L is a top-level loop, then this +      // is an entrance into a loop through the header, which is also ok. +      if (L->getHeader() == TI->getSuccessor(i) && L->getParentLoop() == 0) +        continue; +       +      // Otherwise, this is an entrance into a loop from some place invalid. +      // Either the loop structure is invalid and this is not a natural loop (in +      // which case the compiler is buggy somewhere else) or BB is unreachable. +      BlockUnreachable = true; +      break; +    } +     +    // If this block is ok, check the next one. +    if (!BlockUnreachable) continue; +     +    // Otherwise, this block is dead.  To clean up the CFG and to allow later +    // loop transformations to ignore this case, we delete the edges into the +    // loop by replacing the terminator. +     +    // Remove PHI entries from the successors. +    for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) +      TI->getSuccessor(i)->removePredecessor(BB); +    +    // Add a new unreachable instruction before the old terminator. +    new UnreachableInst(TI); +     +    // Delete the dead terminator. +    if (AA) AA->deleteValue(TI); +    if (!TI->use_empty()) +      TI->replaceAllUsesWith(UndefValue::get(TI->getType())); +    TI->eraseFromParent(); +    Changed |= true; +  } +   +  for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) +    Changed |= ProcessLoop(*I); + +  return Changed; +} + +/// ProcessLoop - Walk the loop structure in depth first order, ensuring that +/// all loops have preheaders. +/// +bool LoopSimplify::ProcessLoop(Loop *L) { +  bool Changed = false; +ReprocessLoop: +   +  // Canonicalize inner loops before outer loops.  Inner loop canonicalization +  // can provide work for the outer loop to canonicalize. +  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) +    Changed |= ProcessLoop(*I); +   +  assert(L->getBlocks()[0] == L->getHeader() && +         "Header isn't first block in loop?"); + +  // Does the loop already have a preheader?  If so, don't insert one. +  if (L->getLoopPreheader() == 0) { +    InsertPreheaderForLoop(L); +    NumInserted++; +    Changed = true; +  } + +  // Next, check to make sure that all exit nodes of the loop only have +  // predecessors that are inside of the loop.  This check guarantees that the +  // loop preheader/header will dominate the exit blocks.  If the exit block has +  // predecessors from outside of the loop, split the edge now. +  SmallVector<BasicBlock*, 8> ExitBlocks; +  L->getExitBlocks(ExitBlocks); +     +  SetVector<BasicBlock*> ExitBlockSet(ExitBlocks.begin(), ExitBlocks.end()); +  for (SetVector<BasicBlock*>::iterator I = ExitBlockSet.begin(), +         E = ExitBlockSet.end(); I != E; ++I) { +    BasicBlock *ExitBlock = *I; +    for (pred_iterator PI = pred_begin(ExitBlock), PE = pred_end(ExitBlock); +         PI != PE; ++PI) +      // Must be exactly this loop: no subloops, parent loops, or non-loop preds +      // allowed. +      if (!L->contains(*PI)) { +        RewriteLoopExitBlock(L, ExitBlock); +        NumInserted++; +        Changed = true; +        break; +      } +  } + +  // If the header has more than two predecessors at this point (from the +  // preheader and from multiple backedges), we must adjust the loop. +  unsigned NumBackedges = L->getNumBackEdges(); +  if (NumBackedges != 1) { +    // If this is really a nested loop, rip it out into a child loop.  Don't do +    // this for loops with a giant number of backedges, just factor them into a +    // common backedge instead. +    if (NumBackedges < 8) { +      if (Loop *NL = SeparateNestedLoop(L)) { +        ++NumNested; +        // This is a big restructuring change, reprocess the whole loop. +        ProcessLoop(NL); +        Changed = true; +        // GCC doesn't tail recursion eliminate this. +        goto ReprocessLoop; +      } +    } + +    // If we either couldn't, or didn't want to, identify nesting of the loops, +    // insert a new block that all backedges target, then make it jump to the +    // loop header. +    InsertUniqueBackedgeBlock(L); +    NumInserted++; +    Changed = true; +  } + +  // Scan over the PHI nodes in the loop header.  Since they now have only two +  // incoming values (the loop is canonicalized), we may have simplified the PHI +  // down to 'X = phi [X, Y]', which should be replaced with 'Y'. +  PHINode *PN; +  for (BasicBlock::iterator I = L->getHeader()->begin(); +       (PN = dyn_cast<PHINode>(I++)); ) +    if (Value *V = PN->hasConstantValue()) { +      if (AA) AA->deleteValue(PN); +      PN->replaceAllUsesWith(V); +      PN->eraseFromParent(); +    } + +  return Changed; +} + +/// InsertPreheaderForLoop - Once we discover that a loop doesn't have a +/// preheader, this method is called to insert one.  This method has two phases: +/// preheader insertion and analysis updating. +/// +void LoopSimplify::InsertPreheaderForLoop(Loop *L) { +  BasicBlock *Header = L->getHeader(); + +  // Compute the set of predecessors of the loop that are not in the loop. +  SmallVector<BasicBlock*, 8> OutsideBlocks; +  for (pred_iterator PI = pred_begin(Header), PE = pred_end(Header); +       PI != PE; ++PI) +    if (!L->contains(*PI))           // Coming in from outside the loop? +      OutsideBlocks.push_back(*PI);  // Keep track of it... + +  // Split out the loop pre-header. +  BasicBlock *NewBB = +    SplitBlockPredecessors(Header, &OutsideBlocks[0], OutsideBlocks.size(), +                           ".preheader", this); +   + +  //===--------------------------------------------------------------------===// +  //  Update analysis results now that we have performed the transformation +  // + +  // We know that we have loop information to update... update it now. +  if (Loop *Parent = L->getParentLoop()) +    Parent->addBasicBlockToLoop(NewBB, LI->getBase()); + +  // Make sure that NewBB is put someplace intelligent, which doesn't mess up +  // code layout too horribly. +  PlaceSplitBlockCarefully(NewBB, OutsideBlocks, L); +} + +/// RewriteLoopExitBlock - Ensure that the loop preheader dominates all exit +/// blocks.  This method is used to split exit blocks that have predecessors +/// outside of the loop. +BasicBlock *LoopSimplify::RewriteLoopExitBlock(Loop *L, BasicBlock *Exit) { +  SmallVector<BasicBlock*, 8> LoopBlocks; +  for (pred_iterator I = pred_begin(Exit), E = pred_end(Exit); I != E; ++I) +    if (L->contains(*I)) +      LoopBlocks.push_back(*I); + +  assert(!LoopBlocks.empty() && "No edges coming in from outside the loop?"); +  BasicBlock *NewBB = SplitBlockPredecessors(Exit, &LoopBlocks[0],  +                                             LoopBlocks.size(), ".loopexit", +                                             this); + +  // Update Loop Information - we know that the new block will be in whichever +  // loop the Exit block is in.  Note that it may not be in that immediate loop, +  // if the successor is some other loop header.  In that case, we continue  +  // walking up the loop tree to find a loop that contains both the successor +  // block and the predecessor block. +  Loop *SuccLoop = LI->getLoopFor(Exit); +  while (SuccLoop && !SuccLoop->contains(L->getHeader())) +    SuccLoop = SuccLoop->getParentLoop(); +  if (SuccLoop) +    SuccLoop->addBasicBlockToLoop(NewBB, LI->getBase()); + +  return NewBB; +} + +/// AddBlockAndPredsToSet - Add the specified block, and all of its +/// predecessors, to the specified set, if it's not already in there.  Stop +/// predecessor traversal when we reach StopBlock. +static void AddBlockAndPredsToSet(BasicBlock *InputBB, BasicBlock *StopBlock, +                                  std::set<BasicBlock*> &Blocks) { +  std::vector<BasicBlock *> WorkList; +  WorkList.push_back(InputBB); +  do { +    BasicBlock *BB = WorkList.back(); WorkList.pop_back(); +    if (Blocks.insert(BB).second && BB != StopBlock) +      // If BB is not already processed and it is not a stop block then +      // insert its predecessor in the work list +      for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) { +        BasicBlock *WBB = *I; +        WorkList.push_back(WBB); +      } +  } while(!WorkList.empty()); +} + +/// FindPHIToPartitionLoops - The first part of loop-nestification is to find a +/// PHI node that tells us how to partition the loops. +static PHINode *FindPHIToPartitionLoops(Loop *L, DominatorTree *DT, +                                        AliasAnalysis *AA) { +  for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ) { +    PHINode *PN = cast<PHINode>(I); +    ++I; +    if (Value *V = PN->hasConstantValue()) +      if (!isa<Instruction>(V) || DT->dominates(cast<Instruction>(V), PN)) { +        // This is a degenerate PHI already, don't modify it! +        PN->replaceAllUsesWith(V); +        if (AA) AA->deleteValue(PN); +        PN->eraseFromParent(); +        continue; +      } + +    // Scan this PHI node looking for a use of the PHI node by itself. +    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) +      if (PN->getIncomingValue(i) == PN && +          L->contains(PN->getIncomingBlock(i))) +        // We found something tasty to remove. +        return PN; +  } +  return 0; +} + +// PlaceSplitBlockCarefully - If the block isn't already, move the new block to +// right after some 'outside block' block.  This prevents the preheader from +// being placed inside the loop body, e.g. when the loop hasn't been rotated. +void LoopSimplify::PlaceSplitBlockCarefully(BasicBlock *NewBB, +                                       SmallVectorImpl<BasicBlock*> &SplitPreds, +                                            Loop *L) { +  // Check to see if NewBB is already well placed. +  Function::iterator BBI = NewBB; --BBI; +  for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) { +    if (&*BBI == SplitPreds[i]) +      return; +  } +   +  // If it isn't already after an outside block, move it after one.  This is +  // always good as it makes the uncond branch from the outside block into a +  // fall-through. +   +  // Figure out *which* outside block to put this after.  Prefer an outside +  // block that neighbors a BB actually in the loop. +  BasicBlock *FoundBB = 0; +  for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) { +    Function::iterator BBI = SplitPreds[i]; +    if (++BBI != NewBB->getParent()->end() &&  +        L->contains(BBI)) { +      FoundBB = SplitPreds[i]; +      break; +    } +  } +   +  // If our heuristic for a *good* bb to place this after doesn't find +  // anything, just pick something.  It's likely better than leaving it within +  // the loop. +  if (!FoundBB) +    FoundBB = SplitPreds[0]; +  NewBB->moveAfter(FoundBB); +} + + +/// SeparateNestedLoop - If this loop has multiple backedges, try to pull one of +/// them out into a nested loop.  This is important for code that looks like +/// this: +/// +///  Loop: +///     ... +///     br cond, Loop, Next +///     ... +///     br cond2, Loop, Out +/// +/// To identify this common case, we look at the PHI nodes in the header of the +/// loop.  PHI nodes with unchanging values on one backedge correspond to values +/// that change in the "outer" loop, but not in the "inner" loop. +/// +/// If we are able to separate out a loop, return the new outer loop that was +/// created. +/// +Loop *LoopSimplify::SeparateNestedLoop(Loop *L) { +  PHINode *PN = FindPHIToPartitionLoops(L, DT, AA); +  if (PN == 0) return 0;  // No known way to partition. + +  // Pull out all predecessors that have varying values in the loop.  This +  // handles the case when a PHI node has multiple instances of itself as +  // arguments. +  SmallVector<BasicBlock*, 8> OuterLoopPreds; +  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) +    if (PN->getIncomingValue(i) != PN || +        !L->contains(PN->getIncomingBlock(i))) +      OuterLoopPreds.push_back(PN->getIncomingBlock(i)); + +  BasicBlock *Header = L->getHeader(); +  BasicBlock *NewBB = SplitBlockPredecessors(Header, &OuterLoopPreds[0], +                                             OuterLoopPreds.size(), +                                             ".outer", this); + +  // Make sure that NewBB is put someplace intelligent, which doesn't mess up +  // code layout too horribly. +  PlaceSplitBlockCarefully(NewBB, OuterLoopPreds, L); +   +  // Create the new outer loop. +  Loop *NewOuter = new Loop(); + +  // Change the parent loop to use the outer loop as its child now. +  if (Loop *Parent = L->getParentLoop()) +    Parent->replaceChildLoopWith(L, NewOuter); +  else +    LI->changeTopLevelLoop(L, NewOuter); + +  // This block is going to be our new header block: add it to this loop and all +  // parent loops. +  NewOuter->addBasicBlockToLoop(NewBB, LI->getBase()); + +  // L is now a subloop of our outer loop. +  NewOuter->addChildLoop(L); + +  for (Loop::block_iterator I = L->block_begin(), E = L->block_end(); +       I != E; ++I) +    NewOuter->addBlockEntry(*I); + +  // Determine which blocks should stay in L and which should be moved out to +  // the Outer loop now. +  std::set<BasicBlock*> BlocksInL; +  for (pred_iterator PI = pred_begin(Header), E = pred_end(Header); PI!=E; ++PI) +    if (DT->dominates(Header, *PI)) +      AddBlockAndPredsToSet(*PI, Header, BlocksInL); + + +  // Scan all of the loop children of L, moving them to OuterLoop if they are +  // not part of the inner loop. +  const std::vector<Loop*> &SubLoops = L->getSubLoops(); +  for (size_t I = 0; I != SubLoops.size(); ) +    if (BlocksInL.count(SubLoops[I]->getHeader())) +      ++I;   // Loop remains in L +    else +      NewOuter->addChildLoop(L->removeChildLoop(SubLoops.begin() + I)); + +  // Now that we know which blocks are in L and which need to be moved to +  // OuterLoop, move any blocks that need it. +  for (unsigned i = 0; i != L->getBlocks().size(); ++i) { +    BasicBlock *BB = L->getBlocks()[i]; +    if (!BlocksInL.count(BB)) { +      // Move this block to the parent, updating the exit blocks sets +      L->removeBlockFromLoop(BB); +      if ((*LI)[BB] == L) +        LI->changeLoopFor(BB, NewOuter); +      --i; +    } +  } + +  return NewOuter; +} + + + +/// InsertUniqueBackedgeBlock - This method is called when the specified loop +/// has more than one backedge in it.  If this occurs, revector all of these +/// backedges to target a new basic block and have that block branch to the loop +/// header.  This ensures that loops have exactly one backedge. +/// +void LoopSimplify::InsertUniqueBackedgeBlock(Loop *L) { +  assert(L->getNumBackEdges() > 1 && "Must have > 1 backedge!"); + +  // Get information about the loop +  BasicBlock *Preheader = L->getLoopPreheader(); +  BasicBlock *Header = L->getHeader(); +  Function *F = Header->getParent(); + +  // Figure out which basic blocks contain back-edges to the loop header. +  std::vector<BasicBlock*> BackedgeBlocks; +  for (pred_iterator I = pred_begin(Header), E = pred_end(Header); I != E; ++I) +    if (*I != Preheader) BackedgeBlocks.push_back(*I); + +  // Create and insert the new backedge block... +  BasicBlock *BEBlock = BasicBlock::Create(Header->getName()+".backedge", F); +  BranchInst *BETerminator = BranchInst::Create(Header, BEBlock); + +  // Move the new backedge block to right after the last backedge block. +  Function::iterator InsertPos = BackedgeBlocks.back(); ++InsertPos; +  F->getBasicBlockList().splice(InsertPos, F->getBasicBlockList(), BEBlock); + +  // Now that the block has been inserted into the function, create PHI nodes in +  // the backedge block which correspond to any PHI nodes in the header block. +  for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { +    PHINode *PN = cast<PHINode>(I); +    PHINode *NewPN = PHINode::Create(PN->getType(), PN->getName()+".be", +                                     BETerminator); +    NewPN->reserveOperandSpace(BackedgeBlocks.size()); +    if (AA) AA->copyValue(PN, NewPN); + +    // Loop over the PHI node, moving all entries except the one for the +    // preheader over to the new PHI node. +    unsigned PreheaderIdx = ~0U; +    bool HasUniqueIncomingValue = true; +    Value *UniqueValue = 0; +    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { +      BasicBlock *IBB = PN->getIncomingBlock(i); +      Value *IV = PN->getIncomingValue(i); +      if (IBB == Preheader) { +        PreheaderIdx = i; +      } else { +        NewPN->addIncoming(IV, IBB); +        if (HasUniqueIncomingValue) { +          if (UniqueValue == 0) +            UniqueValue = IV; +          else if (UniqueValue != IV) +            HasUniqueIncomingValue = false; +        } +      } +    } + +    // Delete all of the incoming values from the old PN except the preheader's +    assert(PreheaderIdx != ~0U && "PHI has no preheader entry??"); +    if (PreheaderIdx != 0) { +      PN->setIncomingValue(0, PN->getIncomingValue(PreheaderIdx)); +      PN->setIncomingBlock(0, PN->getIncomingBlock(PreheaderIdx)); +    } +    // Nuke all entries except the zero'th. +    for (unsigned i = 0, e = PN->getNumIncomingValues()-1; i != e; ++i) +      PN->removeIncomingValue(e-i, false); + +    // Finally, add the newly constructed PHI node as the entry for the BEBlock. +    PN->addIncoming(NewPN, BEBlock); + +    // As an optimization, if all incoming values in the new PhiNode (which is a +    // subset of the incoming values of the old PHI node) have the same value, +    // eliminate the PHI Node. +    if (HasUniqueIncomingValue) { +      NewPN->replaceAllUsesWith(UniqueValue); +      if (AA) AA->deleteValue(NewPN); +      BEBlock->getInstList().erase(NewPN); +    } +  } + +  // Now that all of the PHI nodes have been inserted and adjusted, modify the +  // backedge blocks to just to the BEBlock instead of the header. +  for (unsigned i = 0, e = BackedgeBlocks.size(); i != e; ++i) { +    TerminatorInst *TI = BackedgeBlocks[i]->getTerminator(); +    for (unsigned Op = 0, e = TI->getNumSuccessors(); Op != e; ++Op) +      if (TI->getSuccessor(Op) == Header) +        TI->setSuccessor(Op, BEBlock); +  } + +  //===--- Update all analyses which we must preserve now -----------------===// + +  // Update Loop Information - we know that this block is now in the current +  // loop and all parent loops. +  L->addBasicBlockToLoop(BEBlock, LI->getBase()); + +  // Update dominator information +  DT->splitBlock(BEBlock); +  if (DominanceFrontier *DF = getAnalysisIfAvailable<DominanceFrontier>()) +    DF->splitBlock(BEBlock); +} | 
