summaryrefslogtreecommitdiff
path: root/lib/tsan/rtl/tsan_interface_atomic.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/tsan/rtl/tsan_interface_atomic.cpp')
-rw-r--r--lib/tsan/rtl/tsan_interface_atomic.cpp955
1 files changed, 955 insertions, 0 deletions
diff --git a/lib/tsan/rtl/tsan_interface_atomic.cpp b/lib/tsan/rtl/tsan_interface_atomic.cpp
new file mode 100644
index 0000000000000..3f459aff532cb
--- /dev/null
+++ b/lib/tsan/rtl/tsan_interface_atomic.cpp
@@ -0,0 +1,955 @@
+//===-- tsan_interface_atomic.cpp -----------------------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file is a part of ThreadSanitizer (TSan), a race detector.
+//
+//===----------------------------------------------------------------------===//
+
+// ThreadSanitizer atomic operations are based on C++11/C1x standards.
+// For background see C++11 standard. A slightly older, publicly
+// available draft of the standard (not entirely up-to-date, but close enough
+// for casual browsing) is available here:
+// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3242.pdf
+// The following page contains more background information:
+// http://www.hpl.hp.com/personal/Hans_Boehm/c++mm/
+
+#include "sanitizer_common/sanitizer_placement_new.h"
+#include "sanitizer_common/sanitizer_stacktrace.h"
+#include "sanitizer_common/sanitizer_mutex.h"
+#include "tsan_flags.h"
+#include "tsan_interface.h"
+#include "tsan_rtl.h"
+
+using namespace __tsan;
+
+#if !SANITIZER_GO && __TSAN_HAS_INT128
+// Protects emulation of 128-bit atomic operations.
+static StaticSpinMutex mutex128;
+#endif
+
+static bool IsLoadOrder(morder mo) {
+ return mo == mo_relaxed || mo == mo_consume
+ || mo == mo_acquire || mo == mo_seq_cst;
+}
+
+static bool IsStoreOrder(morder mo) {
+ return mo == mo_relaxed || mo == mo_release || mo == mo_seq_cst;
+}
+
+static bool IsReleaseOrder(morder mo) {
+ return mo == mo_release || mo == mo_acq_rel || mo == mo_seq_cst;
+}
+
+static bool IsAcquireOrder(morder mo) {
+ return mo == mo_consume || mo == mo_acquire
+ || mo == mo_acq_rel || mo == mo_seq_cst;
+}
+
+static bool IsAcqRelOrder(morder mo) {
+ return mo == mo_acq_rel || mo == mo_seq_cst;
+}
+
+template<typename T> T func_xchg(volatile T *v, T op) {
+ T res = __sync_lock_test_and_set(v, op);
+ // __sync_lock_test_and_set does not contain full barrier.
+ __sync_synchronize();
+ return res;
+}
+
+template<typename T> T func_add(volatile T *v, T op) {
+ return __sync_fetch_and_add(v, op);
+}
+
+template<typename T> T func_sub(volatile T *v, T op) {
+ return __sync_fetch_and_sub(v, op);
+}
+
+template<typename T> T func_and(volatile T *v, T op) {
+ return __sync_fetch_and_and(v, op);
+}
+
+template<typename T> T func_or(volatile T *v, T op) {
+ return __sync_fetch_and_or(v, op);
+}
+
+template<typename T> T func_xor(volatile T *v, T op) {
+ return __sync_fetch_and_xor(v, op);
+}
+
+template<typename T> T func_nand(volatile T *v, T op) {
+ // clang does not support __sync_fetch_and_nand.
+ T cmp = *v;
+ for (;;) {
+ T newv = ~(cmp & op);
+ T cur = __sync_val_compare_and_swap(v, cmp, newv);
+ if (cmp == cur)
+ return cmp;
+ cmp = cur;
+ }
+}
+
+template<typename T> T func_cas(volatile T *v, T cmp, T xch) {
+ return __sync_val_compare_and_swap(v, cmp, xch);
+}
+
+// clang does not support 128-bit atomic ops.
+// Atomic ops are executed under tsan internal mutex,
+// here we assume that the atomic variables are not accessed
+// from non-instrumented code.
+#if !defined(__GCC_HAVE_SYNC_COMPARE_AND_SWAP_16) && !SANITIZER_GO \
+ && __TSAN_HAS_INT128
+a128 func_xchg(volatile a128 *v, a128 op) {
+ SpinMutexLock lock(&mutex128);
+ a128 cmp = *v;
+ *v = op;
+ return cmp;
+}
+
+a128 func_add(volatile a128 *v, a128 op) {
+ SpinMutexLock lock(&mutex128);
+ a128 cmp = *v;
+ *v = cmp + op;
+ return cmp;
+}
+
+a128 func_sub(volatile a128 *v, a128 op) {
+ SpinMutexLock lock(&mutex128);
+ a128 cmp = *v;
+ *v = cmp - op;
+ return cmp;
+}
+
+a128 func_and(volatile a128 *v, a128 op) {
+ SpinMutexLock lock(&mutex128);
+ a128 cmp = *v;
+ *v = cmp & op;
+ return cmp;
+}
+
+a128 func_or(volatile a128 *v, a128 op) {
+ SpinMutexLock lock(&mutex128);
+ a128 cmp = *v;
+ *v = cmp | op;
+ return cmp;
+}
+
+a128 func_xor(volatile a128 *v, a128 op) {
+ SpinMutexLock lock(&mutex128);
+ a128 cmp = *v;
+ *v = cmp ^ op;
+ return cmp;
+}
+
+a128 func_nand(volatile a128 *v, a128 op) {
+ SpinMutexLock lock(&mutex128);
+ a128 cmp = *v;
+ *v = ~(cmp & op);
+ return cmp;
+}
+
+a128 func_cas(volatile a128 *v, a128 cmp, a128 xch) {
+ SpinMutexLock lock(&mutex128);
+ a128 cur = *v;
+ if (cur == cmp)
+ *v = xch;
+ return cur;
+}
+#endif
+
+template<typename T>
+static int SizeLog() {
+ if (sizeof(T) <= 1)
+ return kSizeLog1;
+ else if (sizeof(T) <= 2)
+ return kSizeLog2;
+ else if (sizeof(T) <= 4)
+ return kSizeLog4;
+ else
+ return kSizeLog8;
+ // For 16-byte atomics we also use 8-byte memory access,
+ // this leads to false negatives only in very obscure cases.
+}
+
+#if !SANITIZER_GO
+static atomic_uint8_t *to_atomic(const volatile a8 *a) {
+ return reinterpret_cast<atomic_uint8_t *>(const_cast<a8 *>(a));
+}
+
+static atomic_uint16_t *to_atomic(const volatile a16 *a) {
+ return reinterpret_cast<atomic_uint16_t *>(const_cast<a16 *>(a));
+}
+#endif
+
+static atomic_uint32_t *to_atomic(const volatile a32 *a) {
+ return reinterpret_cast<atomic_uint32_t *>(const_cast<a32 *>(a));
+}
+
+static atomic_uint64_t *to_atomic(const volatile a64 *a) {
+ return reinterpret_cast<atomic_uint64_t *>(const_cast<a64 *>(a));
+}
+
+static memory_order to_mo(morder mo) {
+ switch (mo) {
+ case mo_relaxed: return memory_order_relaxed;
+ case mo_consume: return memory_order_consume;
+ case mo_acquire: return memory_order_acquire;
+ case mo_release: return memory_order_release;
+ case mo_acq_rel: return memory_order_acq_rel;
+ case mo_seq_cst: return memory_order_seq_cst;
+ }
+ CHECK(0);
+ return memory_order_seq_cst;
+}
+
+template<typename T>
+static T NoTsanAtomicLoad(const volatile T *a, morder mo) {
+ return atomic_load(to_atomic(a), to_mo(mo));
+}
+
+#if __TSAN_HAS_INT128 && !SANITIZER_GO
+static a128 NoTsanAtomicLoad(const volatile a128 *a, morder mo) {
+ SpinMutexLock lock(&mutex128);
+ return *a;
+}
+#endif
+
+template<typename T>
+static T AtomicLoad(ThreadState *thr, uptr pc, const volatile T *a, morder mo) {
+ CHECK(IsLoadOrder(mo));
+ // This fast-path is critical for performance.
+ // Assume the access is atomic.
+ if (!IsAcquireOrder(mo)) {
+ MemoryReadAtomic(thr, pc, (uptr)a, SizeLog<T>());
+ return NoTsanAtomicLoad(a, mo);
+ }
+ // Don't create sync object if it does not exist yet. For example, an atomic
+ // pointer is initialized to nullptr and then periodically acquire-loaded.
+ T v = NoTsanAtomicLoad(a, mo);
+ SyncVar *s = ctx->metamap.GetIfExistsAndLock((uptr)a, false);
+ if (s) {
+ AcquireImpl(thr, pc, &s->clock);
+ // Re-read under sync mutex because we need a consistent snapshot
+ // of the value and the clock we acquire.
+ v = NoTsanAtomicLoad(a, mo);
+ s->mtx.ReadUnlock();
+ }
+ MemoryReadAtomic(thr, pc, (uptr)a, SizeLog<T>());
+ return v;
+}
+
+template<typename T>
+static void NoTsanAtomicStore(volatile T *a, T v, morder mo) {
+ atomic_store(to_atomic(a), v, to_mo(mo));
+}
+
+#if __TSAN_HAS_INT128 && !SANITIZER_GO
+static void NoTsanAtomicStore(volatile a128 *a, a128 v, morder mo) {
+ SpinMutexLock lock(&mutex128);
+ *a = v;
+}
+#endif
+
+template<typename T>
+static void AtomicStore(ThreadState *thr, uptr pc, volatile T *a, T v,
+ morder mo) {
+ CHECK(IsStoreOrder(mo));
+ MemoryWriteAtomic(thr, pc, (uptr)a, SizeLog<T>());
+ // This fast-path is critical for performance.
+ // Assume the access is atomic.
+ // Strictly saying even relaxed store cuts off release sequence,
+ // so must reset the clock.
+ if (!IsReleaseOrder(mo)) {
+ NoTsanAtomicStore(a, v, mo);
+ return;
+ }
+ __sync_synchronize();
+ SyncVar *s = ctx->metamap.GetOrCreateAndLock(thr, pc, (uptr)a, true);
+ thr->fast_state.IncrementEpoch();
+ // Can't increment epoch w/o writing to the trace as well.
+ TraceAddEvent(thr, thr->fast_state, EventTypeMop, 0);
+ ReleaseStoreImpl(thr, pc, &s->clock);
+ NoTsanAtomicStore(a, v, mo);
+ s->mtx.Unlock();
+}
+
+template<typename T, T (*F)(volatile T *v, T op)>
+static T AtomicRMW(ThreadState *thr, uptr pc, volatile T *a, T v, morder mo) {
+ MemoryWriteAtomic(thr, pc, (uptr)a, SizeLog<T>());
+ SyncVar *s = 0;
+ if (mo != mo_relaxed) {
+ s = ctx->metamap.GetOrCreateAndLock(thr, pc, (uptr)a, true);
+ thr->fast_state.IncrementEpoch();
+ // Can't increment epoch w/o writing to the trace as well.
+ TraceAddEvent(thr, thr->fast_state, EventTypeMop, 0);
+ if (IsAcqRelOrder(mo))
+ AcquireReleaseImpl(thr, pc, &s->clock);
+ else if (IsReleaseOrder(mo))
+ ReleaseImpl(thr, pc, &s->clock);
+ else if (IsAcquireOrder(mo))
+ AcquireImpl(thr, pc, &s->clock);
+ }
+ v = F(a, v);
+ if (s)
+ s->mtx.Unlock();
+ return v;
+}
+
+template<typename T>
+static T NoTsanAtomicExchange(volatile T *a, T v, morder mo) {
+ return func_xchg(a, v);
+}
+
+template<typename T>
+static T NoTsanAtomicFetchAdd(volatile T *a, T v, morder mo) {
+ return func_add(a, v);
+}
+
+template<typename T>
+static T NoTsanAtomicFetchSub(volatile T *a, T v, morder mo) {
+ return func_sub(a, v);
+}
+
+template<typename T>
+static T NoTsanAtomicFetchAnd(volatile T *a, T v, morder mo) {
+ return func_and(a, v);
+}
+
+template<typename T>
+static T NoTsanAtomicFetchOr(volatile T *a, T v, morder mo) {
+ return func_or(a, v);
+}
+
+template<typename T>
+static T NoTsanAtomicFetchXor(volatile T *a, T v, morder mo) {
+ return func_xor(a, v);
+}
+
+template<typename T>
+static T NoTsanAtomicFetchNand(volatile T *a, T v, morder mo) {
+ return func_nand(a, v);
+}
+
+template<typename T>
+static T AtomicExchange(ThreadState *thr, uptr pc, volatile T *a, T v,
+ morder mo) {
+ return AtomicRMW<T, func_xchg>(thr, pc, a, v, mo);
+}
+
+template<typename T>
+static T AtomicFetchAdd(ThreadState *thr, uptr pc, volatile T *a, T v,
+ morder mo) {
+ return AtomicRMW<T, func_add>(thr, pc, a, v, mo);
+}
+
+template<typename T>
+static T AtomicFetchSub(ThreadState *thr, uptr pc, volatile T *a, T v,
+ morder mo) {
+ return AtomicRMW<T, func_sub>(thr, pc, a, v, mo);
+}
+
+template<typename T>
+static T AtomicFetchAnd(ThreadState *thr, uptr pc, volatile T *a, T v,
+ morder mo) {
+ return AtomicRMW<T, func_and>(thr, pc, a, v, mo);
+}
+
+template<typename T>
+static T AtomicFetchOr(ThreadState *thr, uptr pc, volatile T *a, T v,
+ morder mo) {
+ return AtomicRMW<T, func_or>(thr, pc, a, v, mo);
+}
+
+template<typename T>
+static T AtomicFetchXor(ThreadState *thr, uptr pc, volatile T *a, T v,
+ morder mo) {
+ return AtomicRMW<T, func_xor>(thr, pc, a, v, mo);
+}
+
+template<typename T>
+static T AtomicFetchNand(ThreadState *thr, uptr pc, volatile T *a, T v,
+ morder mo) {
+ return AtomicRMW<T, func_nand>(thr, pc, a, v, mo);
+}
+
+template<typename T>
+static bool NoTsanAtomicCAS(volatile T *a, T *c, T v, morder mo, morder fmo) {
+ return atomic_compare_exchange_strong(to_atomic(a), c, v, to_mo(mo));
+}
+
+#if __TSAN_HAS_INT128
+static bool NoTsanAtomicCAS(volatile a128 *a, a128 *c, a128 v,
+ morder mo, morder fmo) {
+ a128 old = *c;
+ a128 cur = func_cas(a, old, v);
+ if (cur == old)
+ return true;
+ *c = cur;
+ return false;
+}
+#endif
+
+template<typename T>
+static T NoTsanAtomicCAS(volatile T *a, T c, T v, morder mo, morder fmo) {
+ NoTsanAtomicCAS(a, &c, v, mo, fmo);
+ return c;
+}
+
+template<typename T>
+static bool AtomicCAS(ThreadState *thr, uptr pc,
+ volatile T *a, T *c, T v, morder mo, morder fmo) {
+ (void)fmo; // Unused because llvm does not pass it yet.
+ MemoryWriteAtomic(thr, pc, (uptr)a, SizeLog<T>());
+ SyncVar *s = 0;
+ bool write_lock = mo != mo_acquire && mo != mo_consume;
+ if (mo != mo_relaxed) {
+ s = ctx->metamap.GetOrCreateAndLock(thr, pc, (uptr)a, write_lock);
+ thr->fast_state.IncrementEpoch();
+ // Can't increment epoch w/o writing to the trace as well.
+ TraceAddEvent(thr, thr->fast_state, EventTypeMop, 0);
+ if (IsAcqRelOrder(mo))
+ AcquireReleaseImpl(thr, pc, &s->clock);
+ else if (IsReleaseOrder(mo))
+ ReleaseImpl(thr, pc, &s->clock);
+ else if (IsAcquireOrder(mo))
+ AcquireImpl(thr, pc, &s->clock);
+ }
+ T cc = *c;
+ T pr = func_cas(a, cc, v);
+ if (s) {
+ if (write_lock)
+ s->mtx.Unlock();
+ else
+ s->mtx.ReadUnlock();
+ }
+ if (pr == cc)
+ return true;
+ *c = pr;
+ return false;
+}
+
+template<typename T>
+static T AtomicCAS(ThreadState *thr, uptr pc,
+ volatile T *a, T c, T v, morder mo, morder fmo) {
+ AtomicCAS(thr, pc, a, &c, v, mo, fmo);
+ return c;
+}
+
+#if !SANITIZER_GO
+static void NoTsanAtomicFence(morder mo) {
+ __sync_synchronize();
+}
+
+static void AtomicFence(ThreadState *thr, uptr pc, morder mo) {
+ // FIXME(dvyukov): not implemented.
+ __sync_synchronize();
+}
+#endif
+
+// Interface functions follow.
+#if !SANITIZER_GO
+
+// C/C++
+
+static morder convert_morder(morder mo) {
+ if (flags()->force_seq_cst_atomics)
+ return (morder)mo_seq_cst;
+
+ // Filter out additional memory order flags:
+ // MEMMODEL_SYNC = 1 << 15
+ // __ATOMIC_HLE_ACQUIRE = 1 << 16
+ // __ATOMIC_HLE_RELEASE = 1 << 17
+ //
+ // HLE is an optimization, and we pretend that elision always fails.
+ // MEMMODEL_SYNC is used when lowering __sync_ atomics,
+ // since we use __sync_ atomics for actual atomic operations,
+ // we can safely ignore it as well. It also subtly affects semantics,
+ // but we don't model the difference.
+ return (morder)(mo & 0x7fff);
+}
+
+#define SCOPED_ATOMIC(func, ...) \
+ ThreadState *const thr = cur_thread(); \
+ if (UNLIKELY(thr->ignore_sync || thr->ignore_interceptors)) { \
+ ProcessPendingSignals(thr); \
+ return NoTsanAtomic##func(__VA_ARGS__); \
+ } \
+ const uptr callpc = (uptr)__builtin_return_address(0); \
+ uptr pc = StackTrace::GetCurrentPc(); \
+ mo = convert_morder(mo); \
+ AtomicStatInc(thr, sizeof(*a), mo, StatAtomic##func); \
+ ScopedAtomic sa(thr, callpc, a, mo, __func__); \
+ return Atomic##func(thr, pc, __VA_ARGS__); \
+/**/
+
+class ScopedAtomic {
+ public:
+ ScopedAtomic(ThreadState *thr, uptr pc, const volatile void *a,
+ morder mo, const char *func)
+ : thr_(thr) {
+ FuncEntry(thr_, pc);
+ DPrintf("#%d: %s(%p, %d)\n", thr_->tid, func, a, mo);
+ }
+ ~ScopedAtomic() {
+ ProcessPendingSignals(thr_);
+ FuncExit(thr_);
+ }
+ private:
+ ThreadState *thr_;
+};
+
+static void AtomicStatInc(ThreadState *thr, uptr size, morder mo, StatType t) {
+ StatInc(thr, StatAtomic);
+ StatInc(thr, t);
+ StatInc(thr, size == 1 ? StatAtomic1
+ : size == 2 ? StatAtomic2
+ : size == 4 ? StatAtomic4
+ : size == 8 ? StatAtomic8
+ : StatAtomic16);
+ StatInc(thr, mo == mo_relaxed ? StatAtomicRelaxed
+ : mo == mo_consume ? StatAtomicConsume
+ : mo == mo_acquire ? StatAtomicAcquire
+ : mo == mo_release ? StatAtomicRelease
+ : mo == mo_acq_rel ? StatAtomicAcq_Rel
+ : StatAtomicSeq_Cst);
+}
+
+extern "C" {
+SANITIZER_INTERFACE_ATTRIBUTE
+a8 __tsan_atomic8_load(const volatile a8 *a, morder mo) {
+ SCOPED_ATOMIC(Load, a, mo);
+}
+
+SANITIZER_INTERFACE_ATTRIBUTE
+a16 __tsan_atomic16_load(const volatile a16 *a, morder mo) {
+ SCOPED_ATOMIC(Load, a, mo);
+}
+
+SANITIZER_INTERFACE_ATTRIBUTE
+a32 __tsan_atomic32_load(const volatile a32 *a, morder mo) {
+ SCOPED_ATOMIC(Load, a, mo);
+}
+
+SANITIZER_INTERFACE_ATTRIBUTE
+a64 __tsan_atomic64_load(const volatile a64 *a, morder mo) {
+ SCOPED_ATOMIC(Load, a, mo);
+}
+
+#if __TSAN_HAS_INT128
+SANITIZER_INTERFACE_ATTRIBUTE
+a128 __tsan_atomic128_load(const volatile a128 *a, morder mo) {
+ SCOPED_ATOMIC(Load, a, mo);
+}
+#endif
+
+SANITIZER_INTERFACE_ATTRIBUTE
+void __tsan_atomic8_store(volatile a8 *a, a8 v, morder mo) {
+ SCOPED_ATOMIC(Store, a, v, mo);
+}
+
+SANITIZER_INTERFACE_ATTRIBUTE
+void __tsan_atomic16_store(volatile a16 *a, a16 v, morder mo) {
+ SCOPED_ATOMIC(Store, a, v, mo);
+}
+
+SANITIZER_INTERFACE_ATTRIBUTE
+void __tsan_atomic32_store(volatile a32 *a, a32 v, morder mo) {
+ SCOPED_ATOMIC(Store, a, v, mo);
+}
+
+SANITIZER_INTERFACE_ATTRIBUTE
+void __tsan_atomic64_store(volatile a64 *a, a64 v, morder mo) {
+ SCOPED_ATOMIC(Store, a, v, mo);
+}
+
+#if __TSAN_HAS_INT128
+SANITIZER_INTERFACE_ATTRIBUTE
+void __tsan_atomic128_store(volatile a128 *a, a128 v, morder mo) {
+ SCOPED_ATOMIC(Store, a, v, mo);
+}
+#endif
+
+SANITIZER_INTERFACE_ATTRIBUTE
+a8 __tsan_atomic8_exchange(volatile a8 *a, a8 v, morder mo) {
+ SCOPED_ATOMIC(Exchange, a, v, mo);
+}
+
+SANITIZER_INTERFACE_ATTRIBUTE
+a16 __tsan_atomic16_exchange(volatile a16 *a, a16 v, morder mo) {
+ SCOPED_ATOMIC(Exchange, a, v, mo);
+}
+
+SANITIZER_INTERFACE_ATTRIBUTE
+a32 __tsan_atomic32_exchange(volatile a32 *a, a32 v, morder mo) {
+ SCOPED_ATOMIC(Exchange, a, v, mo);
+}
+
+SANITIZER_INTERFACE_ATTRIBUTE
+a64 __tsan_atomic64_exchange(volatile a64 *a, a64 v, morder mo) {
+ SCOPED_ATOMIC(Exchange, a, v, mo);
+}
+
+#if __TSAN_HAS_INT128
+SANITIZER_INTERFACE_ATTRIBUTE
+a128 __tsan_atomic128_exchange(volatile a128 *a, a128 v, morder mo) {
+ SCOPED_ATOMIC(Exchange, a, v, mo);
+}
+#endif
+
+SANITIZER_INTERFACE_ATTRIBUTE
+a8 __tsan_atomic8_fetch_add(volatile a8 *a, a8 v, morder mo) {
+ SCOPED_ATOMIC(FetchAdd, a, v, mo);
+}
+
+SANITIZER_INTERFACE_ATTRIBUTE
+a16 __tsan_atomic16_fetch_add(volatile a16 *a, a16 v, morder mo) {
+ SCOPED_ATOMIC(FetchAdd, a, v, mo);
+}
+
+SANITIZER_INTERFACE_ATTRIBUTE
+a32 __tsan_atomic32_fetch_add(volatile a32 *a, a32 v, morder mo) {
+ SCOPED_ATOMIC(FetchAdd, a, v, mo);
+}
+
+SANITIZER_INTERFACE_ATTRIBUTE
+a64 __tsan_atomic64_fetch_add(volatile a64 *a, a64 v, morder mo) {
+ SCOPED_ATOMIC(FetchAdd, a, v, mo);
+}
+
+#if __TSAN_HAS_INT128
+SANITIZER_INTERFACE_ATTRIBUTE
+a128 __tsan_atomic128_fetch_add(volatile a128 *a, a128 v, morder mo) {
+ SCOPED_ATOMIC(FetchAdd, a, v, mo);
+}
+#endif
+
+SANITIZER_INTERFACE_ATTRIBUTE
+a8 __tsan_atomic8_fetch_sub(volatile a8 *a, a8 v, morder mo) {
+ SCOPED_ATOMIC(FetchSub, a, v, mo);
+}
+
+SANITIZER_INTERFACE_ATTRIBUTE
+a16 __tsan_atomic16_fetch_sub(volatile a16 *a, a16 v, morder mo) {
+ SCOPED_ATOMIC(FetchSub, a, v, mo);
+}
+
+SANITIZER_INTERFACE_ATTRIBUTE
+a32 __tsan_atomic32_fetch_sub(volatile a32 *a, a32 v, morder mo) {
+ SCOPED_ATOMIC(FetchSub, a, v, mo);
+}
+
+SANITIZER_INTERFACE_ATTRIBUTE
+a64 __tsan_atomic64_fetch_sub(volatile a64 *a, a64 v, morder mo) {
+ SCOPED_ATOMIC(FetchSub, a, v, mo);
+}
+
+#if __TSAN_HAS_INT128
+SANITIZER_INTERFACE_ATTRIBUTE
+a128 __tsan_atomic128_fetch_sub(volatile a128 *a, a128 v, morder mo) {
+ SCOPED_ATOMIC(FetchSub, a, v, mo);
+}
+#endif
+
+SANITIZER_INTERFACE_ATTRIBUTE
+a8 __tsan_atomic8_fetch_and(volatile a8 *a, a8 v, morder mo) {
+ SCOPED_ATOMIC(FetchAnd, a, v, mo);
+}
+
+SANITIZER_INTERFACE_ATTRIBUTE
+a16 __tsan_atomic16_fetch_and(volatile a16 *a, a16 v, morder mo) {
+ SCOPED_ATOMIC(FetchAnd, a, v, mo);
+}
+
+SANITIZER_INTERFACE_ATTRIBUTE
+a32 __tsan_atomic32_fetch_and(volatile a32 *a, a32 v, morder mo) {
+ SCOPED_ATOMIC(FetchAnd, a, v, mo);
+}
+
+SANITIZER_INTERFACE_ATTRIBUTE
+a64 __tsan_atomic64_fetch_and(volatile a64 *a, a64 v, morder mo) {
+ SCOPED_ATOMIC(FetchAnd, a, v, mo);
+}
+
+#if __TSAN_HAS_INT128
+SANITIZER_INTERFACE_ATTRIBUTE
+a128 __tsan_atomic128_fetch_and(volatile a128 *a, a128 v, morder mo) {
+ SCOPED_ATOMIC(FetchAnd, a, v, mo);
+}
+#endif
+
+SANITIZER_INTERFACE_ATTRIBUTE
+a8 __tsan_atomic8_fetch_or(volatile a8 *a, a8 v, morder mo) {
+ SCOPED_ATOMIC(FetchOr, a, v, mo);
+}
+
+SANITIZER_INTERFACE_ATTRIBUTE
+a16 __tsan_atomic16_fetch_or(volatile a16 *a, a16 v, morder mo) {
+ SCOPED_ATOMIC(FetchOr, a, v, mo);
+}
+
+SANITIZER_INTERFACE_ATTRIBUTE
+a32 __tsan_atomic32_fetch_or(volatile a32 *a, a32 v, morder mo) {
+ SCOPED_ATOMIC(FetchOr, a, v, mo);
+}
+
+SANITIZER_INTERFACE_ATTRIBUTE
+a64 __tsan_atomic64_fetch_or(volatile a64 *a, a64 v, morder mo) {
+ SCOPED_ATOMIC(FetchOr, a, v, mo);
+}
+
+#if __TSAN_HAS_INT128
+SANITIZER_INTERFACE_ATTRIBUTE
+a128 __tsan_atomic128_fetch_or(volatile a128 *a, a128 v, morder mo) {
+ SCOPED_ATOMIC(FetchOr, a, v, mo);
+}
+#endif
+
+SANITIZER_INTERFACE_ATTRIBUTE
+a8 __tsan_atomic8_fetch_xor(volatile a8 *a, a8 v, morder mo) {
+ SCOPED_ATOMIC(FetchXor, a, v, mo);
+}
+
+SANITIZER_INTERFACE_ATTRIBUTE
+a16 __tsan_atomic16_fetch_xor(volatile a16 *a, a16 v, morder mo) {
+ SCOPED_ATOMIC(FetchXor, a, v, mo);
+}
+
+SANITIZER_INTERFACE_ATTRIBUTE
+a32 __tsan_atomic32_fetch_xor(volatile a32 *a, a32 v, morder mo) {
+ SCOPED_ATOMIC(FetchXor, a, v, mo);
+}
+
+SANITIZER_INTERFACE_ATTRIBUTE
+a64 __tsan_atomic64_fetch_xor(volatile a64 *a, a64 v, morder mo) {
+ SCOPED_ATOMIC(FetchXor, a, v, mo);
+}
+
+#if __TSAN_HAS_INT128
+SANITIZER_INTERFACE_ATTRIBUTE
+a128 __tsan_atomic128_fetch_xor(volatile a128 *a, a128 v, morder mo) {
+ SCOPED_ATOMIC(FetchXor, a, v, mo);
+}
+#endif
+
+SANITIZER_INTERFACE_ATTRIBUTE
+a8 __tsan_atomic8_fetch_nand(volatile a8 *a, a8 v, morder mo) {
+ SCOPED_ATOMIC(FetchNand, a, v, mo);
+}
+
+SANITIZER_INTERFACE_ATTRIBUTE
+a16 __tsan_atomic16_fetch_nand(volatile a16 *a, a16 v, morder mo) {
+ SCOPED_ATOMIC(FetchNand, a, v, mo);
+}
+
+SANITIZER_INTERFACE_ATTRIBUTE
+a32 __tsan_atomic32_fetch_nand(volatile a32 *a, a32 v, morder mo) {
+ SCOPED_ATOMIC(FetchNand, a, v, mo);
+}
+
+SANITIZER_INTERFACE_ATTRIBUTE
+a64 __tsan_atomic64_fetch_nand(volatile a64 *a, a64 v, morder mo) {
+ SCOPED_ATOMIC(FetchNand, a, v, mo);
+}
+
+#if __TSAN_HAS_INT128
+SANITIZER_INTERFACE_ATTRIBUTE
+a128 __tsan_atomic128_fetch_nand(volatile a128 *a, a128 v, morder mo) {
+ SCOPED_ATOMIC(FetchNand, a, v, mo);
+}
+#endif
+
+SANITIZER_INTERFACE_ATTRIBUTE
+int __tsan_atomic8_compare_exchange_strong(volatile a8 *a, a8 *c, a8 v,
+ morder mo, morder fmo) {
+ SCOPED_ATOMIC(CAS, a, c, v, mo, fmo);
+}
+
+SANITIZER_INTERFACE_ATTRIBUTE
+int __tsan_atomic16_compare_exchange_strong(volatile a16 *a, a16 *c, a16 v,
+ morder mo, morder fmo) {
+ SCOPED_ATOMIC(CAS, a, c, v, mo, fmo);
+}
+
+SANITIZER_INTERFACE_ATTRIBUTE
+int __tsan_atomic32_compare_exchange_strong(volatile a32 *a, a32 *c, a32 v,
+ morder mo, morder fmo) {
+ SCOPED_ATOMIC(CAS, a, c, v, mo, fmo);
+}
+
+SANITIZER_INTERFACE_ATTRIBUTE
+int __tsan_atomic64_compare_exchange_strong(volatile a64 *a, a64 *c, a64 v,
+ morder mo, morder fmo) {
+ SCOPED_ATOMIC(CAS, a, c, v, mo, fmo);
+}
+
+#if __TSAN_HAS_INT128
+SANITIZER_INTERFACE_ATTRIBUTE
+int __tsan_atomic128_compare_exchange_strong(volatile a128 *a, a128 *c, a128 v,
+ morder mo, morder fmo) {
+ SCOPED_ATOMIC(CAS, a, c, v, mo, fmo);
+}
+#endif
+
+SANITIZER_INTERFACE_ATTRIBUTE
+int __tsan_atomic8_compare_exchange_weak(volatile a8 *a, a8 *c, a8 v,
+ morder mo, morder fmo) {
+ SCOPED_ATOMIC(CAS, a, c, v, mo, fmo);
+}
+
+SANITIZER_INTERFACE_ATTRIBUTE
+int __tsan_atomic16_compare_exchange_weak(volatile a16 *a, a16 *c, a16 v,
+ morder mo, morder fmo) {
+ SCOPED_ATOMIC(CAS, a, c, v, mo, fmo);
+}
+
+SANITIZER_INTERFACE_ATTRIBUTE
+int __tsan_atomic32_compare_exchange_weak(volatile a32 *a, a32 *c, a32 v,
+ morder mo, morder fmo) {
+ SCOPED_ATOMIC(CAS, a, c, v, mo, fmo);
+}
+
+SANITIZER_INTERFACE_ATTRIBUTE
+int __tsan_atomic64_compare_exchange_weak(volatile a64 *a, a64 *c, a64 v,
+ morder mo, morder fmo) {
+ SCOPED_ATOMIC(CAS, a, c, v, mo, fmo);
+}
+
+#if __TSAN_HAS_INT128
+SANITIZER_INTERFACE_ATTRIBUTE
+int __tsan_atomic128_compare_exchange_weak(volatile a128 *a, a128 *c, a128 v,
+ morder mo, morder fmo) {
+ SCOPED_ATOMIC(CAS, a, c, v, mo, fmo);
+}
+#endif
+
+SANITIZER_INTERFACE_ATTRIBUTE
+a8 __tsan_atomic8_compare_exchange_val(volatile a8 *a, a8 c, a8 v,
+ morder mo, morder fmo) {
+ SCOPED_ATOMIC(CAS, a, c, v, mo, fmo);
+}
+
+SANITIZER_INTERFACE_ATTRIBUTE
+a16 __tsan_atomic16_compare_exchange_val(volatile a16 *a, a16 c, a16 v,
+ morder mo, morder fmo) {
+ SCOPED_ATOMIC(CAS, a, c, v, mo, fmo);
+}
+
+SANITIZER_INTERFACE_ATTRIBUTE
+a32 __tsan_atomic32_compare_exchange_val(volatile a32 *a, a32 c, a32 v,
+ morder mo, morder fmo) {
+ SCOPED_ATOMIC(CAS, a, c, v, mo, fmo);
+}
+
+SANITIZER_INTERFACE_ATTRIBUTE
+a64 __tsan_atomic64_compare_exchange_val(volatile a64 *a, a64 c, a64 v,
+ morder mo, morder fmo) {
+ SCOPED_ATOMIC(CAS, a, c, v, mo, fmo);
+}
+
+#if __TSAN_HAS_INT128
+SANITIZER_INTERFACE_ATTRIBUTE
+a128 __tsan_atomic128_compare_exchange_val(volatile a128 *a, a128 c, a128 v,
+ morder mo, morder fmo) {
+ SCOPED_ATOMIC(CAS, a, c, v, mo, fmo);
+}
+#endif
+
+SANITIZER_INTERFACE_ATTRIBUTE
+void __tsan_atomic_thread_fence(morder mo) {
+ char* a = 0;
+ SCOPED_ATOMIC(Fence, mo);
+}
+
+SANITIZER_INTERFACE_ATTRIBUTE
+void __tsan_atomic_signal_fence(morder mo) {
+}
+} // extern "C"
+
+#else // #if !SANITIZER_GO
+
+// Go
+
+#define ATOMIC(func, ...) \
+ if (thr->ignore_sync) { \
+ NoTsanAtomic##func(__VA_ARGS__); \
+ } else { \
+ FuncEntry(thr, cpc); \
+ Atomic##func(thr, pc, __VA_ARGS__); \
+ FuncExit(thr); \
+ } \
+/**/
+
+#define ATOMIC_RET(func, ret, ...) \
+ if (thr->ignore_sync) { \
+ (ret) = NoTsanAtomic##func(__VA_ARGS__); \
+ } else { \
+ FuncEntry(thr, cpc); \
+ (ret) = Atomic##func(thr, pc, __VA_ARGS__); \
+ FuncExit(thr); \
+ } \
+/**/
+
+extern "C" {
+SANITIZER_INTERFACE_ATTRIBUTE
+void __tsan_go_atomic32_load(ThreadState *thr, uptr cpc, uptr pc, u8 *a) {
+ ATOMIC_RET(Load, *(a32*)(a+8), *(a32**)a, mo_acquire);
+}
+
+SANITIZER_INTERFACE_ATTRIBUTE
+void __tsan_go_atomic64_load(ThreadState *thr, uptr cpc, uptr pc, u8 *a) {
+ ATOMIC_RET(Load, *(a64*)(a+8), *(a64**)a, mo_acquire);
+}
+
+SANITIZER_INTERFACE_ATTRIBUTE
+void __tsan_go_atomic32_store(ThreadState *thr, uptr cpc, uptr pc, u8 *a) {
+ ATOMIC(Store, *(a32**)a, *(a32*)(a+8), mo_release);
+}
+
+SANITIZER_INTERFACE_ATTRIBUTE
+void __tsan_go_atomic64_store(ThreadState *thr, uptr cpc, uptr pc, u8 *a) {
+ ATOMIC(Store, *(a64**)a, *(a64*)(a+8), mo_release);
+}
+
+SANITIZER_INTERFACE_ATTRIBUTE
+void __tsan_go_atomic32_fetch_add(ThreadState *thr, uptr cpc, uptr pc, u8 *a) {
+ ATOMIC_RET(FetchAdd, *(a32*)(a+16), *(a32**)a, *(a32*)(a+8), mo_acq_rel);
+}
+
+SANITIZER_INTERFACE_ATTRIBUTE
+void __tsan_go_atomic64_fetch_add(ThreadState *thr, uptr cpc, uptr pc, u8 *a) {
+ ATOMIC_RET(FetchAdd, *(a64*)(a+16), *(a64**)a, *(a64*)(a+8), mo_acq_rel);
+}
+
+SANITIZER_INTERFACE_ATTRIBUTE
+void __tsan_go_atomic32_exchange(ThreadState *thr, uptr cpc, uptr pc, u8 *a) {
+ ATOMIC_RET(Exchange, *(a32*)(a+16), *(a32**)a, *(a32*)(a+8), mo_acq_rel);
+}
+
+SANITIZER_INTERFACE_ATTRIBUTE
+void __tsan_go_atomic64_exchange(ThreadState *thr, uptr cpc, uptr pc, u8 *a) {
+ ATOMIC_RET(Exchange, *(a64*)(a+16), *(a64**)a, *(a64*)(a+8), mo_acq_rel);
+}
+
+SANITIZER_INTERFACE_ATTRIBUTE
+void __tsan_go_atomic32_compare_exchange(
+ ThreadState *thr, uptr cpc, uptr pc, u8 *a) {
+ a32 cur = 0;
+ a32 cmp = *(a32*)(a+8);
+ ATOMIC_RET(CAS, cur, *(a32**)a, cmp, *(a32*)(a+12), mo_acq_rel, mo_acquire);
+ *(bool*)(a+16) = (cur == cmp);
+}
+
+SANITIZER_INTERFACE_ATTRIBUTE
+void __tsan_go_atomic64_compare_exchange(
+ ThreadState *thr, uptr cpc, uptr pc, u8 *a) {
+ a64 cur = 0;
+ a64 cmp = *(a64*)(a+8);
+ ATOMIC_RET(CAS, cur, *(a64**)a, cmp, *(a64*)(a+16), mo_acq_rel, mo_acquire);
+ *(bool*)(a+24) = (cur == cmp);
+}
+} // extern "C"
+#endif // #if !SANITIZER_GO