summaryrefslogtreecommitdiff
path: root/libntp/ntp_calendar.c
diff options
context:
space:
mode:
Diffstat (limited to 'libntp/ntp_calendar.c')
-rw-r--r--libntp/ntp_calendar.c910
1 files changed, 585 insertions, 325 deletions
diff --git a/libntp/ntp_calendar.c b/libntp/ntp_calendar.c
index 79742688a2bde..9fc0b48229f20 100644
--- a/libntp/ntp_calendar.c
+++ b/libntp/ntp_calendar.c
@@ -40,16 +40,10 @@
* complement can be easily created using XOR and a mask.
*
* Finally, check for overflow conditions is minimal. There are only two
- * calculation steps in the whole calendar that suffer from an internal
- * overflow, and these conditions are checked: errno is set to EDOM and
- * the results are clamped/saturated in this case. All other functions
- * do not suffer from internal overflow and simply return the result
- * truncated to 32 bits.
- *
- * This is a sacrifice made for execution speed. Since a 32-bit day
- * counter covers +/- 5,879,610 years and the clamp limits the effective
- * range to +/-2.9 million years, this should not pose a problem here.
- *
+ * calculation steps in the whole calendar that potentially suffer from
+ * an internal overflow, and these are coded in a way that avoids
+ * it. All other functions do not suffer from internal overflow and
+ * simply return the result truncated to 32 bits.
*/
#include <config.h>
@@ -61,6 +55,9 @@
#include "ntp_fp.h"
#include "ntp_unixtime.h"
+#include "ntpd.h"
+#include "lib_strbuf.h"
+
/* For now, let's take the conservative approach: if the target property
* macros are not defined, check a few well-known compiler/architecture
* settings. Default is to assume that the representation of signed
@@ -88,6 +85,10 @@
# define TARGET_HAS_SAR 0
#endif
+#if !defined(HAVE_64BITREGS) && defined(UINT64_MAX) && (SIZE_MAX >= UINT64_MAX)
+# define HAVE_64BITREGS
+#endif
+
/*
*---------------------------------------------------------------------
* replacing the 'time()' function
@@ -139,47 +140,15 @@ int32_sflag(
* we do this only if 'int' has at least 4 bytes.
*/
return (uint32_t)(v >> 31);
-
+
# else
/* This should be a rather generic approach for getting a sign
* extension mask...
*/
return UINT32_C(0) - (uint32_t)(v < 0);
-
-# endif
-}
-
-static inline uint32_t
-int32_to_uint32_2cpl(
- const int32_t v)
-{
- uint32_t vu;
-
-# if TARGET_HAS_2CPL
-
- /* Just copy through the 32 bits from the signed value if we're
- * on a two's complement target.
- */
- vu = (uint32_t)v;
-
-# else
- /* Convert from signed int to unsigned int two's complement. Do
- * not make any assumptions about the representation of signed
- * integers, but make sure signed integer overflow cannot happen
- * here. A compiler on a two's complement target *might* find
- * out that this is just a complicated cast (as above), but your
- * mileage might vary.
- */
- if (v < 0)
- vu = ~(uint32_t)(-(v + 1));
- else
- vu = (uint32_t)v;
-
# endif
-
- return vu;
}
static inline int32_t
@@ -187,7 +156,7 @@ uint32_2cpl_to_int32(
const uint32_t vu)
{
int32_t v;
-
+
# if TARGET_HAS_2CPL
/* Just copy through the 32 bits from the unsigned value if
@@ -206,29 +175,10 @@ uint32_2cpl_to_int32(
v = -(int32_t)(~vu) - 1;
else
v = (int32_t)vu;
-
+
# endif
-
- return v;
-}
-/* Some of the calculations need to multiply the input by 4 before doing
- * a division. This can cause overflow and strange results. Therefore we
- * clamp / saturate the input operand. And since we do the calculations
- * in unsigned int with an extra sign flag/mask, we only loose one bit
- * of the input value range.
- */
-static inline uint32_t
-uint32_saturate(
- uint32_t vu,
- uint32_t mu)
-{
- static const uint32_t limit = UINT32_MAX/4u;
- if ((mu ^ vu) > limit) {
- vu = mu ^ limit;
- errno = EDOM;
- }
- return vu;
+ return v;
}
/*
@@ -335,7 +285,7 @@ ntpcal_get_build_date(
* Note that MSVC declares DATE and TIME to be in the local time
* zone, while neither the C standard nor the GCC docs make any
* statement about this. As a result, we may be +/-12hrs off
- * UTC. But for practical purposes, this should not be a
+ * UTC. But for practical purposes, this should not be a
* problem.
*
*/
@@ -349,12 +299,12 @@ ntpcal_get_build_date(
char monstr[4];
const char * cp;
unsigned short hour, minute, second, day, year;
- /* Note: The above quantities are used for sscanf 'hu' format,
+ /* Note: The above quantities are used for sscanf 'hu' format,
* so using 'uint16_t' is contra-indicated!
*/
# ifdef DEBUG
- static int ignore = 0;
+ static int ignore = 0;
# endif
ZERO(*jd);
@@ -398,19 +348,6 @@ ntpcal_get_build_date(
*---------------------------------------------------------------------
*/
-/* month table for a year starting with March,1st */
-static const uint16_t shift_month_table[13] = {
- 0, 31, 61, 92, 122, 153, 184, 214, 245, 275, 306, 337, 366
-};
-
-/* month tables for years starting with January,1st; regular & leap */
-static const uint16_t real_month_table[2][13] = {
- /* -*- table for regular years -*- */
- { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334, 365 },
- /* -*- table for leap years -*- */
- { 0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335, 366 }
-};
-
/*
* Some notes on the terminology:
*
@@ -452,6 +389,60 @@ static const uint16_t real_month_table[2][13] = {
/*
*---------------------------------------------------------------------
+ * fast modulo 7 operations (floor/mathematical convention)
+ *---------------------------------------------------------------------
+ */
+int
+u32mod7(
+ uint32_t x
+ )
+{
+ /* This is a combination of tricks from "Hacker's Delight" with
+ * some modifications, like a multiplication that rounds up to
+ * drop the final adjustment stage.
+ *
+ * Do a partial reduction by digit sum to keep the value in the
+ * range permitted for the mul/shift stage. There are several
+ * possible and absolutely equivalent shift/mask combinations;
+ * this one is ARM-friendly because of a mask that fits into 16
+ * bit.
+ */
+ x = (x >> 15) + (x & UINT32_C(0x7FFF));
+ /* Take reminder as (mod 8) by mul/shift. Since the multiplier
+ * was calculated using ceil() instead of floor(), it skips the
+ * value '7' properly.
+ * M <- ceil(ldexp(8/7, 29))
+ */
+ return (int)((x * UINT32_C(0x24924925)) >> 29);
+}
+
+int
+i32mod7(
+ int32_t x
+ )
+{
+ /* We add (2**32 - 2**32 % 7), which is (2**32 - 4), to negative
+ * numbers to map them into the postive range. Only the term '-4'
+ * survives, obviously.
+ */
+ uint32_t ux = (uint32_t)x;
+ return u32mod7((x < 0) ? (ux - 4u) : ux);
+}
+
+uint32_t
+i32fmod(
+ int32_t x,
+ uint32_t d
+ )
+{
+ uint32_t ux = (uint32_t)x;
+ uint32_t sf = UINT32_C(0) - (x < 0);
+ ux = (sf ^ ux ) % d;
+ return (d & sf) + (sf ^ ux);
+}
+
+/*
+ *---------------------------------------------------------------------
* Do a periodic extension of 'value' around 'pivot' with a period of
* 'cycle'.
*
@@ -494,7 +485,7 @@ static const uint16_t real_month_table[2][13] = {
* division routine for 64bit ops on a platform that can only do
* 32/16bit divisions and is still performant is a bit more
* difficult. Since most usecases can be coded in a way that does only
- * require the 32-bit version a 64bit version is NOT provided here.
+ * require the 32bit version a 64bit version is NOT provided here.
*---------------------------------------------------------------------
*/
int32_t
@@ -504,40 +495,38 @@ ntpcal_periodic_extend(
int32_t cycle
)
{
- uint32_t diff;
- char cpl = 0; /* modulo complement flag */
- char neg = 0; /* sign change flag */
-
- /* make the cycle positive and adjust the flags */
- if (cycle < 0) {
- cycle = - cycle;
- neg ^= 1;
- cpl ^= 1;
+ /* Implement a 4-quadrant modulus calculation by 2 2-quadrant
+ * branches, one for positive and one for negative dividers.
+ * Everything else can be handled by bit level logic and
+ * conditional one's complement arithmetic. By convention, we
+ * assume
+ *
+ * x % b == 0 if |b| < 2
+ *
+ * that is, we don't actually divide for cycles of -1,0,1 and
+ * return the pivot value in that case.
+ */
+ uint32_t uv = (uint32_t)value;
+ uint32_t up = (uint32_t)pivot;
+ uint32_t uc, sf;
+
+ if (cycle > 1)
+ {
+ uc = (uint32_t)cycle;
+ sf = UINT32_C(0) - (value < pivot);
+
+ uv = sf ^ (uv - up);
+ uv %= uc;
+ pivot += (uc & sf) + (sf ^ uv);
}
- /* guard against div by zero or one */
- if (cycle > 1) {
- /*
- * Get absolute difference as unsigned quantity and
- * the complement flag. This is done by always
- * subtracting the smaller value from the bigger
- * one.
- */
- if (value >= pivot) {
- diff = int32_to_uint32_2cpl(value)
- - int32_to_uint32_2cpl(pivot);
- } else {
- diff = int32_to_uint32_2cpl(pivot)
- - int32_to_uint32_2cpl(value);
- cpl ^= 1;
- }
- diff %= (uint32_t)cycle;
- if (diff) {
- if (cpl)
- diff = (uint32_t)cycle - diff;
- if (neg)
- diff = ~diff + 1;
- pivot += uint32_2cpl_to_int32(diff);
- }
+ else if (cycle < -1)
+ {
+ uc = ~(uint32_t)cycle + 1;
+ sf = UINT32_C(0) - (value > pivot);
+
+ uv = sf ^ (up - uv);
+ uv %= uc;
+ pivot -= (uc & sf) + (sf ^ uv);
}
return pivot;
}
@@ -557,7 +546,7 @@ ntpcal_periodic_extend(
* standard. (Though this is admittedly not one of the most 'natural'
* aspects of the 'C' language and easily to get wrong.)
*
- * see
+ * see
* http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1570.pdf
* "ISO/IEC 9899:201x Committee Draft — April 12, 2011"
* 6.4.4.1 Integer constants, clause 5
@@ -565,7 +554,7 @@ ntpcal_periodic_extend(
* why there is no sign extension/overflow problem here.
*
* But to ease the minds of the doubtful, I added back the 'u' qualifiers
- * that somehow got lost over the last years.
+ * that somehow got lost over the last years.
*/
@@ -574,7 +563,7 @@ ntpcal_periodic_extend(
* Convert a timestamp in NTP scale to a 64bit seconds value in the UN*X
* scale with proper epoch unfolding around a given pivot or the current
* system time. This function happily accepts negative pivot values as
- * timestamps befor 1970-01-01, so be aware of possible trouble on
+ * timestamps before 1970-01-01, so be aware of possible trouble on
* platforms with 32bit 'time_t'!
*
* This is also a periodic extension, but since the cycle is 2^32 and
@@ -690,74 +679,146 @@ ntpcal_daysplit(
)
{
ntpcal_split res;
- uint32_t Q;
+ uint32_t Q, R;
-# if defined(HAVE_INT64)
-
- /* Manual floor division by SECSPERDAY. This uses the one's
- * complement trick, too, but without an extra flag value: The
- * flag would be 64bit, and that's a bit of overkill on a 32bit
- * target that has to use a register pair for a 64bit number.
+# if defined(HAVE_64BITREGS)
+
+ /* Assume we have 64bit registers an can do a divison by
+ * constant reasonably fast using the one's complement trick..
+ */
+ uint64_t sf64 = (uint64_t)-(ts->q_s < 0);
+ Q = (uint32_t)(sf64 ^ ((sf64 ^ ts->Q_s) / SECSPERDAY));
+ R = (uint32_t)(ts->Q_s - Q * SECSPERDAY);
+
+# elif defined(UINT64_MAX) && !defined(__arm__)
+
+ /* We rely on the compiler to do efficient 64bit divisions as
+ * good as possible. Which might or might not be true. At least
+ * for ARM CPUs, the sum-by-digit code in the next section is
+ * faster for many compilers. (This might change over time, but
+ * the 64bit-by-32bit division will never outperform the exact
+ * division by a substantial factor....)
*/
if (ts->q_s < 0)
Q = ~(uint32_t)(~ts->Q_s / SECSPERDAY);
else
- Q = (uint32_t)(ts->Q_s / SECSPERDAY);
+ Q = (uint32_t)( ts->Q_s / SECSPERDAY);
+ R = ts->D_s.lo - Q * SECSPERDAY;
# else
- uint32_t ah, al, sflag, A;
-
- /* get operand into ah/al (either ts or ts' one's complement,
- * for later floor division)
- */
- sflag = int32_sflag(ts->d_s.hi);
- ah = sflag ^ ts->D_s.hi;
- al = sflag ^ ts->D_s.lo;
-
- /* Since 86400 == 128*675 we can drop the least 7 bits and
- * divide by 675 instead of 86400. Then the maximum remainder
- * after each devision step is 674, and we need 10 bits for
- * that. So in the next step we can shift in 22 bits from the
- * numerator.
+ /* We don't have 64bit regs. That hurts a bit.
*
- * Therefore we load the accu with the top 13 bits (51..63) in
- * the first shot. We don't have to remember the quotient -- it
- * would be shifted out anyway.
- */
- A = ah >> 19;
- if (A >= 675)
- A = (A % 675u);
-
- /* Now assemble the remainder with bits 29..50 from the
- * numerator and divide. This creates the upper ten bits of the
- * quotient. (Well, the top 22 bits of a 44bit result. But that
- * will be truncated to 32 bits anyway.)
+ * Here we use a mean trick to get away with just one explicit
+ * modulo operation and pure 32bit ops.
+ *
+ * Remember: 86400 <--> 128 * 675
+ *
+ * So we discard the lowest 7 bit and do an exact division by
+ * 675, modulo 2**32.
+ *
+ * First we shift out the lower 7 bits.
+ *
+ * Then we use a digit-wise pseudo-reduction, where a 'digit' is
+ * actually a 16-bit group. This is followed by a full reduction
+ * with a 'true' division step. This yields the modulus of the
+ * full 64bit value. The sign bit gets some extra treatment.
+ *
+ * Then we decrement the lower limb by that modulus, so it is
+ * exactly divisible by 675. [*]
+ *
+ * Then we multiply with the modular inverse of 675 (mod 2**32)
+ * and voila, we have the result.
+ *
+ * Special Thanks to Henry S. Warren and his "Hacker's delight"
+ * for giving that idea.
+ *
+ * (Note[*]: that's not the full truth. We would have to
+ * subtract the modulus from the full 64 bit number to get a
+ * number that is divisible by 675. But since we use the
+ * multiplicative inverse (mod 2**32) there's no reason to carry
+ * the subtraction into the upper bits!)
*/
- A = (A << 19) | (ah & 0x0007FFFFu);
- A = (A << 3) | (al >> 29);
- Q = A / 675u;
- A = A % 675u;
+ uint32_t al = ts->D_s.lo;
+ uint32_t ah = ts->D_s.hi;
+
+ /* shift out the lower 7 bits, smash sign bit */
+ al = (al >> 7) | (ah << 25);
+ ah = (ah >> 7) & 0x00FFFFFFu;
+
+ R = (ts->d_s.hi < 0) ? 239 : 0;/* sign bit value */
+ R += (al & 0xFFFF);
+ R += (al >> 16 ) * 61u; /* 2**16 % 675 */
+ R += (ah & 0xFFFF) * 346u; /* 2**32 % 675 */
+ R += (ah >> 16 ) * 181u; /* 2**48 % 675 */
+ R %= 675u; /* final reduction */
+ Q = (al - R) * 0x2D21C10Bu; /* modinv(675, 2**32) */
+ R = (R << 7) | (ts->d_s.lo & 0x07F);
- /* Now assemble the remainder with bits 7..28 from the numerator
- * and do a final division step.
- */
- A = (A << 22) | ((al >> 7) & 0x003FFFFFu);
- Q = (Q << 22) | (A / 675u);
+# endif
- /* The last 7 bits get simply dropped, as they have no affect on
- * the quotient when dividing by 86400.
- */
+ res.hi = uint32_2cpl_to_int32(Q);
+ res.lo = R;
+
+ return res;
+}
- /* apply sign correction and calculate the true floor
- * remainder.
+/*
+ *---------------------------------------------------------------------
+ * Split a 64bit seconds value into elapsed weeks in 'res.hi' and
+ * elapsed seconds since week start in 'res.lo' using explicit floor
+ * division. This function happily accepts negative time values as
+ * timestamps before the respective epoch start.
+ *---------------------------------------------------------------------
+ */
+ntpcal_split
+ntpcal_weeksplit(
+ const vint64 *ts
+ )
+{
+ ntpcal_split res;
+ uint32_t Q, R;
+
+ /* This is a very close relative to the day split function; for
+ * details, see there!
*/
- Q ^= sflag;
-
+
+# if defined(HAVE_64BITREGS)
+
+ uint64_t sf64 = (uint64_t)-(ts->q_s < 0);
+ Q = (uint32_t)(sf64 ^ ((sf64 ^ ts->Q_s) / SECSPERWEEK));
+ R = (uint32_t)(ts->Q_s - Q * SECSPERWEEK);
+
+# elif defined(UINT64_MAX) && !defined(__arm__)
+
+ if (ts->q_s < 0)
+ Q = ~(uint32_t)(~ts->Q_s / SECSPERWEEK);
+ else
+ Q = (uint32_t)( ts->Q_s / SECSPERWEEK);
+ R = ts->D_s.lo - Q * SECSPERWEEK;
+
+# else
+
+ /* Remember: 7*86400 <--> 604800 <--> 128 * 4725 */
+ uint32_t al = ts->D_s.lo;
+ uint32_t ah = ts->D_s.hi;
+
+ al = (al >> 7) | (ah << 25);
+ ah = (ah >> 7) & 0x00FFFFFF;
+
+ R = (ts->d_s.hi < 0) ? 2264 : 0;/* sign bit value */
+ R += (al & 0xFFFF);
+ R += (al >> 16 ) * 4111u; /* 2**16 % 4725 */
+ R += (ah & 0xFFFF) * 3721u; /* 2**32 % 4725 */
+ R += (ah >> 16 ) * 2206u; /* 2**48 % 4725 */
+ R %= 4725u; /* final reduction */
+ Q = (al - R) * 0x98BBADDDu; /* modinv(4725, 2**32) */
+ R = (R << 7) | (ts->d_s.lo & 0x07F);
+
# endif
-
+
res.hi = uint32_2cpl_to_int32(Q);
- res.lo = ts->D_s.lo - Q * SECSPERDAY;
+ res.lo = R;
return res;
}
@@ -779,23 +840,23 @@ priv_timesplit(
* one's complement trick and factoring out the intermediate XOR
* ops to reduce the number of operations.
*/
- uint32_t us, um, uh, ud, sflag;
+ uint32_t us, um, uh, ud, sf32;
- sflag = int32_sflag(ts);
- us = int32_to_uint32_2cpl(ts);
+ sf32 = int32_sflag(ts);
- um = (sflag ^ us) / SECSPERMIN;
+ us = (uint32_t)ts;
+ um = (sf32 ^ us) / SECSPERMIN;
uh = um / MINSPERHR;
ud = uh / HRSPERDAY;
- um ^= sflag;
- uh ^= sflag;
- ud ^= sflag;
+ um ^= sf32;
+ uh ^= sf32;
+ ud ^= sf32;
split[0] = (int32_t)(uh - ud * HRSPERDAY );
split[1] = (int32_t)(um - uh * MINSPERHR );
split[2] = (int32_t)(us - um * SECSPERMIN);
-
+
return uint32_2cpl_to_int32(ud);
}
@@ -815,45 +876,77 @@ ntpcal_split_eradays(
int *isleapyear
)
{
- /* Use the fast cyclesplit algorithm here, to calculate the
+ /* Use the fast cycle split algorithm here, to calculate the
* centuries and years in a century with one division each. This
* reduces the number of division operations to two, but is
- * susceptible to internal range overflow. We make sure the
- * input operands are in the safe range; this still gives us
- * approx +/-2.9 million years.
+ * susceptible to internal range overflow. We take some extra
+ * steps to avoid the gap.
*/
ntpcal_split res;
int32_t n100, n001; /* calendar year cycles */
- uint32_t uday, Q, sflag;
-
- /* split off centuries first */
- sflag = int32_sflag(days);
- uday = uint32_saturate(int32_to_uint32_2cpl(days), sflag);
- uday = (4u * uday) | 3u;
- Q = sflag ^ ((sflag ^ uday) / GREGORIAN_CYCLE_DAYS);
- uday = uday - Q * GREGORIAN_CYCLE_DAYS;
+ uint32_t uday, Q;
+
+ /* split off centuries first
+ *
+ * We want to execute '(days * 4 + 3) /% 146097' under floor
+ * division rules in the first step. Well, actually we want to
+ * calculate 'floor((days + 0.75) / 36524.25)', but we want to
+ * do it in scaled integer calculation.
+ */
+# if defined(HAVE_64BITREGS)
+
+ /* not too complicated with an intermediate 64bit value */
+ uint64_t ud64, sf64;
+ ud64 = ((uint64_t)days << 2) | 3u;
+ sf64 = (uint64_t)-(days < 0);
+ Q = (uint32_t)(sf64 ^ ((sf64 ^ ud64) / GREGORIAN_CYCLE_DAYS));
+ uday = (uint32_t)(ud64 - Q * GREGORIAN_CYCLE_DAYS);
n100 = uint32_2cpl_to_int32(Q);
-
+
+# else
+
+ /* '4*days+3' suffers from range overflow when going to the
+ * limits. We solve this by doing an exact division (mod 2^32)
+ * after caclulating the remainder first.
+ *
+ * We start with a partial reduction by digit sums, extracting
+ * the upper bits from the original value before they get lost
+ * by scaling, and do one full division step to get the true
+ * remainder. Then a final multiplication with the
+ * multiplicative inverse of 146097 (mod 2^32) gives us the full
+ * quotient.
+ *
+ * (-2^33) % 146097 --> 130717 : the sign bit value
+ * ( 2^20) % 146097 --> 25897 : the upper digit value
+ * modinv(146097, 2^32) --> 660721233 : the inverse
+ */
+ uint32_t ux = ((uint32_t)days << 2) | 3;
+ uday = (days < 0) ? 130717u : 0u; /* sign dgt */
+ uday += ((days >> 18) & 0x01FFFu) * 25897u; /* hi dgt (src!) */
+ uday += (ux & 0xFFFFFu); /* lo dgt */
+ uday %= GREGORIAN_CYCLE_DAYS; /* full reduction */
+ Q = (ux - uday) * 660721233u; /* exact div */
+ n100 = uint32_2cpl_to_int32(Q);
+
+# endif
+
/* Split off years in century -- days >= 0 here, and we're far
* away from integer overflow trouble now. */
uday |= 3;
- n001 = uday / GREGORIAN_NORMAL_LEAP_CYCLE_DAYS;
- uday = uday % GREGORIAN_NORMAL_LEAP_CYCLE_DAYS;
+ n001 = uday / GREGORIAN_NORMAL_LEAP_CYCLE_DAYS;
+ uday -= n001 * GREGORIAN_NORMAL_LEAP_CYCLE_DAYS;
/* Assemble the year and day in year */
res.hi = n100 * 100 + n001;
res.lo = uday / 4u;
- /* Eventually set the leap year flag. Note: 0 <= n001 <= 99 and
- * Q is still the two's complement representation of the
- * centuries: The modulo 4 ops can be done with masking here.
- * We also shift the year and the century by one, so the tests
- * can be done against zero instead of 3.
- */
- if (isleapyear)
- *isleapyear = !((n001+1) & 3)
- && ((n001 != 99) || !((Q+1) & 3));
-
+ /* Possibly set the leap year flag */
+ if (isleapyear) {
+ uint32_t tc = (uint32_t)n100 + 1;
+ uint32_t ty = (uint32_t)n001 + 1;
+ *isleapyear = !(ty & 3)
+ && ((ty != 100) || !(tc & 3));
+ }
return res;
}
@@ -870,22 +963,24 @@ ntpcal_split_eradays(
ntpcal_split
ntpcal_split_yeardays(
int32_t eyd,
- int isleapyear
+ int isleap
)
{
- ntpcal_split res;
- const uint16_t *lt; /* month length table */
-
- /* check leap year flag and select proper table */
- lt = real_month_table[(isleapyear != 0)];
- if (0 <= eyd && eyd < lt[12]) {
- /* get zero-based month by approximation & correction step */
- res.hi = eyd >> 5; /* approx month; might be 1 too low */
- if (lt[res.hi + 1] <= eyd) /* fixup approximative month value */
- res.hi += 1;
- res.lo = eyd - lt[res.hi];
- } else {
- res.lo = res.hi = -1;
+ /* Use the unshifted-year, February-with-30-days approach here.
+ * Fractional interpolations are used in both directions, with
+ * the smallest power-of-two divider to avoid any true division.
+ */
+ ntpcal_split res = {-1, -1};
+
+ /* convert 'isleap' to number of defective days */
+ isleap = 1 + !isleap;
+ /* adjust for February of 30 nominal days */
+ if (eyd >= 61 - isleap)
+ eyd += isleap;
+ /* if in range, convert to months and days in month */
+ if (eyd >= 0 && eyd < 367) {
+ res.hi = (eyd * 67 + 32) >> 11;
+ res.lo = eyd - ((489 * res.hi + 8) >> 4);
}
return res;
@@ -906,16 +1001,8 @@ ntpcal_rd_to_date(
int leapy;
u_int ymask;
- /* Get day-of-week first. Since rd is signed, the remainder can
- * be in the range [-6..+6], but the assignment to an unsigned
- * variable maps the negative values to positive values >=7.
- * This makes the sign correction look strange, but adding 7
- * causes the needed wrap-around into the desired value range of
- * zero to six, both inclusive.
- */
- jd->weekday = rd % DAYSPERWEEK;
- if (jd->weekday >= DAYSPERWEEK) /* weekday is unsigned! */
- jd->weekday += DAYSPERWEEK;
+ /* Get day-of-week first. It's simply the RD (mod 7)... */
+ jd->weekday = i32mod7(rd);
split = ntpcal_split_eradays(rd - 1, &leapy);
/* Get year and day-of-year, with overflow check. If any of the
@@ -952,9 +1039,7 @@ ntpcal_rd_to_tm(
int leapy;
/* get day-of-week first */
- utm->tm_wday = rd % DAYSPERWEEK;
- if (utm->tm_wday < 0)
- utm->tm_wday += DAYSPERWEEK;
+ utm->tm_wday = i32mod7(rd);
/* get year and day-of-year */
split = ntpcal_split_eradays(rd - 1, &leapy);
@@ -1087,6 +1172,53 @@ ntpcal_time_to_date(
* ====================================================================
*/
+#if !defined(HAVE_INT64)
+/* multiplication helper. Seconds in days and weeks are multiples of 128,
+ * and without that factor fit well into 16 bit. So a multiplication
+ * of 32bit by 16bit and some shifting can be used on pure 32bit machines
+ * with compilers that do not support 64bit integers.
+ *
+ * Calculate ( hi * mul * 128 ) + lo
+ */
+static vint64
+_dwjoin(
+ uint16_t mul,
+ int32_t hi,
+ int32_t lo
+ )
+{
+ vint64 res;
+ uint32_t p1, p2, sf;
+
+ /* get sign flag and absolute value of 'hi' in p1 */
+ sf = (uint32_t)-(hi < 0);
+ p1 = ((uint32_t)hi + sf) ^ sf;
+
+ /* assemble major units: res <- |hi| * mul */
+ res.D_s.lo = (p1 & 0xFFFF) * mul;
+ res.D_s.hi = 0;
+ p1 = (p1 >> 16) * mul;
+ p2 = p1 >> 16;
+ p1 = p1 << 16;
+ M_ADD(res.D_s.hi, res.D_s.lo, p2, p1);
+
+ /* mul by 128, using shift: res <-- res << 7 */
+ res.D_s.hi = (res.D_s.hi << 7) | (res.D_s.lo >> 25);
+ res.D_s.lo = (res.D_s.lo << 7);
+
+ /* fix up sign: res <-- (res + [sf|sf]) ^ [sf|sf] */
+ M_ADD(res.D_s.hi, res.D_s.lo, sf, sf);
+ res.D_s.lo ^= sf;
+ res.D_s.hi ^= sf;
+
+ /* properly add seconds: res <-- res + [sx(lo)|lo] */
+ p2 = (uint32_t)-(lo < 0);
+ p1 = (uint32_t)lo;
+ M_ADD(res.D_s.hi, res.D_s.lo, p2, p1);
+ return res;
+}
+#endif
+
/*
*---------------------------------------------------------------------
* Merge a number of days and a number of seconds into seconds,
@@ -1109,42 +1241,36 @@ ntpcal_dayjoin(
# else
- uint32_t p1, p2;
- int isneg;
+ res = _dwjoin(675, days, secs);
- /*
- * res = days *86400 + secs, using manual 16/32 bit
- * multiplications and shifts.
- */
- isneg = (days < 0);
- if (isneg)
- days = -days;
+# endif
- /* assemble days * 675 */
- res.D_s.lo = (days & 0xFFFF) * 675u;
- res.D_s.hi = 0;
- p1 = (days >> 16) * 675u;
- p2 = p1 >> 16;
- p1 = p1 << 16;
- M_ADD(res.D_s.hi, res.D_s.lo, p2, p1);
+ return res;
+}
- /* mul by 128, using shift */
- res.D_s.hi = (res.D_s.hi << 7) | (res.D_s.lo >> 25);
- res.D_s.lo = (res.D_s.lo << 7);
+/*
+ *---------------------------------------------------------------------
+ * Merge a number of weeks and a number of seconds into seconds,
+ * expressed in 64 bits to avoid overflow.
+ *---------------------------------------------------------------------
+ */
+vint64
+ntpcal_weekjoin(
+ int32_t week,
+ int32_t secs
+ )
+{
+ vint64 res;
- /* fix sign */
- if (isneg)
- M_NEG(res.D_s.hi, res.D_s.lo);
+# if defined(HAVE_INT64)
- /* properly add seconds */
- p2 = 0;
- if (secs < 0) {
- p1 = (uint32_t)-secs;
- M_NEG(p2, p1);
- } else {
- p1 = (uint32_t)secs;
- }
- M_ADD(res.D_s.hi, res.D_s.lo, p2, p1);
+ res.q_s = week;
+ res.q_s *= SECSPERWEEK;
+ res.q_s += secs;
+
+# else
+
+ res = _dwjoin(4725, week, secs);
# endif
@@ -1167,11 +1293,11 @@ ntpcal_leapyears_in_years(
* get away with only one true division and doing shifts otherwise.
*/
- uint32_t sflag, sum, uyear;
+ uint32_t sf32, sum, uyear;
- sflag = int32_sflag(years);
- uyear = int32_to_uint32_2cpl(years);
- uyear ^= sflag;
+ sf32 = int32_sflag(years);
+ uyear = (uint32_t)years;
+ uyear ^= sf32;
sum = (uyear /= 4u); /* 4yr rule --> IN */
sum -= (uyear /= 25u); /* 100yr rule --> OUT */
@@ -1183,7 +1309,7 @@ ntpcal_leapyears_in_years(
* the one's complement would have to be done when
* adding/subtracting the terms.
*/
- return uint32_2cpl_to_int32(sflag ^ sum);
+ return uint32_2cpl_to_int32(sf32 ^ sum);
}
/*
@@ -1222,24 +1348,32 @@ ntpcal_days_in_months(
{
ntpcal_split res;
- /* Add ten months and correct if needed. (It likely is...) */
- res.lo = m + 10;
- res.hi = (res.lo >= 12);
- if (res.hi)
- res.lo -= 12;
+ /* Add ten months with proper year adjustment. */
+ if (m < 2) {
+ res.lo = m + 10;
+ res.hi = 0;
+ } else {
+ res.lo = m - 2;
+ res.hi = 1;
+ }
- /* if still out of range, normalise by floor division ... */
+ /* Possibly normalise by floor division. This does not hapen for
+ * input in normal range. */
if (res.lo < 0 || res.lo >= 12) {
- uint32_t mu, Q, sflag;
- sflag = int32_sflag(res.lo);
- mu = int32_to_uint32_2cpl(res.lo);
- Q = sflag ^ ((sflag ^ mu) / 12u);
+ uint32_t mu, Q, sf32;
+ sf32 = int32_sflag(res.lo);
+ mu = (uint32_t)res.lo;
+ Q = sf32 ^ ((sf32 ^ mu) / 12u);
+
res.hi += uint32_2cpl_to_int32(Q);
- res.lo = mu - Q * 12u;
+ res.lo = mu - Q * 12u;
}
-
- /* get cummulated days in year with unshift */
- res.lo = shift_month_table[res.lo] - 306;
+
+ /* Get cummulated days in year with unshift. Use the fractional
+ * interpolation with smallest possible power of two in the
+ * divider.
+ */
+ res.lo = ((res.lo * 979 + 16) >> 5) - 306;
return res;
}
@@ -1292,8 +1426,9 @@ ntpcal_edate_to_yeardays(
ntpcal_split tmp;
if (0 <= mons && mons < 12) {
- years += 1;
- mdays += real_month_table[is_leapyear(years)][mons];
+ if (mons >= 2)
+ mdays -= 2 - is_leapyear(years+1);
+ mdays += (489 * mons + 8) >> 4;
} else {
tmp = ntpcal_days_in_months(mons);
mdays += tmp.lo
@@ -1449,7 +1584,7 @@ ntpcal_date_to_time(
const struct calendar *jd
)
{
- vint64 join;
+ vint64 join;
int32_t days, secs;
days = ntpcal_date_to_rd(jd) - DAY_UNIX_STARTS;
@@ -1470,7 +1605,7 @@ ntpcal_date_to_time(
int
ntpcal_ntp64_to_date(
struct calendar *jd,
- const vint64 *ntp
+ const vint64 *ntp
)
{
ntpcal_split ds;
@@ -1519,7 +1654,7 @@ ntpcal_date_to_ntp(
)
{
/*
- * Get lower half of 64-bit NTP timestamp from date/time.
+ * Get lower half of 64bit NTP timestamp from date/time.
*/
return ntpcal_date_to_ntp64(jd).d_s.lo;
}
@@ -1624,7 +1759,7 @@ ntpcal_weekday_lt(
* w = (y * a + b ) / k
* y = (w * a' + b') / k'
*
- * In this implementation the values of k and k' are chosen to be
+ * In this implementation the values of k and k' are chosen to be the
* smallest possible powers of two, so the division can be implemented
* as shifts if the optimiser chooses to do so.
*
@@ -1640,20 +1775,20 @@ int32_t
isocal_weeks_in_years(
int32_t years
)
-{
+{
/*
* use: w = (y * 53431 + b[c]) / 1024 as interpolation
*/
static const uint16_t bctab[4] = { 157, 449, 597, 889 };
- int32_t cs, cw;
- uint32_t cc, ci, yu, sflag;
+ int32_t cs, cw;
+ uint32_t cc, ci, yu, sf32;
+
+ sf32 = int32_sflag(years);
+ yu = (uint32_t)years;
- sflag = int32_sflag(years);
- yu = int32_to_uint32_2cpl(years);
-
/* split off centuries, using floor division */
- cc = sflag ^ ((sflag ^ yu) / 100u);
+ cc = sf32 ^ ((sf32 ^ yu) / 100u);
yu -= cc * 100u;
/* calculate century cycles shift and cycle index:
@@ -1666,9 +1801,9 @@ isocal_weeks_in_years(
* shifting.
*/
ci = cc * 3u + 1;
- cs = uint32_2cpl_to_int32(sflag ^ ((sflag ^ ci) / 4u));
- ci = ci % 4u;
-
+ cs = uint32_2cpl_to_int32(sf32 ^ ((sf32 ^ ci) >> 2));
+ ci = ci & 3u;
+
/* Get weeks in century. Can use plain division here as all ops
* are >= 0, and let the compiler sort out the possible
* optimisations.
@@ -1696,31 +1831,54 @@ isocal_split_eraweeks(
static const uint16_t bctab[4] = { 85, 130, 17, 62 };
ntpcal_split res;
- int32_t cc, ci;
- uint32_t sw, cy, Q, sflag;
+ int32_t cc, ci;
+ uint32_t sw, cy, Q;
- /* Use two fast cycle-split divisions here. This is again
- * susceptible to internal overflow, so we check the range. This
- * still permits more than +/-20 million years, so this is
- * likely a pure academical problem.
+ /* Use two fast cycle-split divisions again. Herew e want to
+ * execute '(weeks * 4 + 2) /% 20871' under floor division rules
+ * in the first step.
*
- * We want to execute '(weeks * 4 + 2) /% 20871' under floor
- * division rules in the first step.
+ * This is of course (again) susceptible to internal overflow if
+ * coded directly in 32bit. And again we use 64bit division on
+ * a 64bit target and exact division after calculating the
+ * remainder first on a 32bit target. With the smaller divider,
+ * that's even a bit neater.
+ */
+# if defined(HAVE_64BITREGS)
+
+ /* Full floor division with 64bit values. */
+ uint64_t sf64, sw64;
+ sf64 = (uint64_t)-(weeks < 0);
+ sw64 = ((uint64_t)weeks << 2) | 2u;
+ Q = (uint32_t)(sf64 ^ ((sf64 ^ sw64) / GREGORIAN_CYCLE_WEEKS));
+ sw = (uint32_t)(sw64 - Q * GREGORIAN_CYCLE_WEEKS);
+
+# else
+
+ /* Exact division after calculating the remainder via partial
+ * reduction by digit sum.
+ * (-2^33) % 20871 --> 5491 : the sign bit value
+ * ( 2^20) % 20871 --> 5026 : the upper digit value
+ * modinv(20871, 2^32) --> 330081335 : the inverse
*/
- sflag = int32_sflag(weeks);
- sw = uint32_saturate(int32_to_uint32_2cpl(weeks), sflag);
- sw = 4u * sw + 2;
- Q = sflag ^ ((sflag ^ sw) / GREGORIAN_CYCLE_WEEKS);
- sw -= Q * GREGORIAN_CYCLE_WEEKS;
- ci = Q % 4u;
+ uint32_t ux = ((uint32_t)weeks << 2) | 2;
+ sw = (weeks < 0) ? 5491u : 0u; /* sign dgt */
+ sw += ((weeks >> 18) & 0x01FFFu) * 5026u; /* hi dgt (src!) */
+ sw += (ux & 0xFFFFFu); /* lo dgt */
+ sw %= GREGORIAN_CYCLE_WEEKS; /* full reduction */
+ Q = (ux - sw) * 330081335u; /* exact div */
+
+# endif
+
+ ci = Q & 3u;
cc = uint32_2cpl_to_int32(Q);
/* Split off years; sw >= 0 here! The scaled weeks in the years
* are scaled up by 157 afterwards.
- */
+ */
sw = (sw / 4u) * 157u + bctab[ci];
- cy = sw / 8192u; /* ws >> 13 , let the compiler sort it out */
- sw = sw % 8192u; /* ws & 8191, let the compiler sort it out */
+ cy = sw / 8192u; /* sw >> 13 , let the compiler sort it out */
+ sw = sw % 8192u; /* sw & 8191, let the compiler sort it out */
/* assemble elapsed years and downscale the elapsed weeks in
* the year.
@@ -1743,8 +1901,8 @@ isocal_ntp64_to_date(
)
{
ntpcal_split ds;
- int32_t ts[3];
- uint32_t uw, ud, sflag;
+ int32_t ts[3];
+ uint32_t uw, ud, sf32;
/*
* Split NTP time into days and seconds, shift days into CE
@@ -1760,10 +1918,11 @@ isocal_ntp64_to_date(
/* split days into days and weeks, using floor division in unsigned */
ds.hi += DAY_NTP_STARTS - 1; /* shift from NTP to RDN */
- sflag = int32_sflag(ds.hi);
- ud = int32_to_uint32_2cpl(ds.hi);
- uw = sflag ^ ((sflag ^ ud) / DAYSPERWEEK);
- ud -= uw * DAYSPERWEEK;
+ sf32 = int32_sflag(ds.hi);
+ ud = (uint32_t)ds.hi;
+ uw = sf32 ^ ((sf32 ^ ud) / DAYSPERWEEK);
+ ud -= uw * DAYSPERWEEK;
+
ds.hi = uint32_2cpl_to_int32(uw);
ds.lo = ud;
@@ -1820,7 +1979,7 @@ isocal_date_to_ntp(
)
{
/*
- * Get lower half of 64-bit NTP timestamp from date/time.
+ * Get lower half of 64bit NTP timestamp from date/time.
*/
return isocal_date_to_ntp64(id).d_s.lo;
}
@@ -1839,7 +1998,7 @@ basedate_eval_buildstamp(void)
{
struct calendar jd;
int32_t ed;
-
+
if (!ntpcal_get_build_date(&jd))
return NTP_TO_UNIX_DAYS;
@@ -1865,7 +2024,7 @@ basedate_eval_string(
int rc, nc;
size_t sl;
- sl = strlen(str);
+ sl = strlen(str);
rc = sscanf(str, "%4hu-%2hu-%2hu%n", &y, &m, &d, &nc);
if (rc == 3 && (size_t)nc == sl) {
if (m >= 1 && m <= 12 && d >= 1 && d <= 31)
@@ -1909,7 +2068,7 @@ basedate_set_day(
(unsigned long)day);
day = NTP_TO_UNIX_DAYS;
}
- retv = s_baseday;
+ retv = s_baseday;
s_baseday = day;
ntpcal_rd_to_date(&jd, day + DAY_NTP_STARTS);
msyslog(LOG_INFO, "basedate set to %04hu-%02hu-%02hu",
@@ -1924,7 +2083,7 @@ basedate_set_day(
ntpcal_rd_to_date(&jd, day + DAY_NTP_STARTS);
msyslog(LOG_INFO, "gps base set to %04hu-%02hu-%02hu (week %d)",
jd.year, (u_short)jd.month, (u_short)jd.monthday, s_gpsweek);
-
+
return retv;
}
@@ -1966,10 +2125,111 @@ basedate_expand_gpsweek(
#if GPSWEEKS != 1024
# error GPSWEEKS defined wrong -- should be 1024!
#endif
-
+
uint32_t diff;
diff = ((uint32_t)weekno - s_gpsweek) & (GPSWEEKS - 1);
return s_gpsweek + diff;
}
+/*
+ * ====================================================================
+ * misc. helpers
+ * ====================================================================
+ */
+
+/* --------------------------------------------------------------------
+ * reconstruct the centrury from a truncated date and a day-of-week
+ *
+ * Given a date with truncated year (2-digit, 0..99) and a day-of-week
+ * from 1(Mon) to 7(Sun), recover the full year between 1900AD and 2300AD.
+ */
+int32_t
+ntpcal_expand_century(
+ uint32_t y,
+ uint32_t m,
+ uint32_t d,
+ uint32_t wd)
+{
+ /* This algorithm is short but tricky... It's related to
+ * Zeller's congruence, partially done backwards.
+ *
+ * A few facts to remember:
+ * 1) The Gregorian calendar has a cycle of 400 years.
+ * 2) The weekday of the 1st day of a century shifts by 5 days
+ * during a great cycle.
+ * 3) For calendar math, a century starts with the 1st year,
+ * which is year 1, !not! zero.
+ *
+ * So we start with taking the weekday difference (mod 7)
+ * between the truncated date (which is taken as an absolute
+ * date in the 1st century in the proleptic calendar) and the
+ * weekday given.
+ *
+ * When dividing this residual by 5, we obtain the number of
+ * centuries to add to the base. But since the residual is (mod
+ * 7), we have to make this an exact division by multiplication
+ * with the modular inverse of 5 (mod 7), which is 3:
+ * 3*5 === 1 (mod 7).
+ *
+ * If this yields a result of 4/5/6, the given date/day-of-week
+ * combination is impossible, and we return zero as resulting
+ * year to indicate failure.
+ *
+ * Then we remap the century to the range starting with year
+ * 1900.
+ */
+
+ uint32_t c;
+
+ /* check basic constraints */
+ if ((y >= 100u) || (--m >= 12u) || (--d >= 31u))
+ return 0;
+
+ if ((m += 10u) >= 12u) /* shift base to prev. March,1st */
+ m -= 12u;
+ else if (--y >= 100u)
+ y += 100u;
+ d += y + (y >> 2) + 2u; /* year share */
+ d += (m * 83u + 16u) >> 5; /* month share */
+
+ /* get (wd - d), shifted to positive value, and multiply with
+ * 3(mod 7). (Exact division, see to comment)
+ * Note: 1) d <= 184 at this point.
+ * 2) 252 % 7 == 0, but 'wd' is off by one since we did
+ * '--d' above, so we add just 251 here!
+ */
+ c = u32mod7(3 * (251u + wd - d));
+ if (c > 3u)
+ return 0;
+
+ if ((m > 9u) && (++y >= 100u)) {/* undo base shift */
+ y -= 100u;
+ c = (c + 1) & 3u;
+ }
+ y += (c * 100u); /* combine into 1st cycle */
+ y += (y < 300u) ? 2000 : 1600; /* map to destination era */
+ return (int)y;
+}
+
+char *
+ntpcal_iso8601std(
+ char * buf,
+ size_t len,
+ TcCivilDate * cdp
+ )
+{
+ if (!buf) {
+ LIB_GETBUF(buf);
+ len = LIB_BUFLENGTH;
+ }
+ if (len) {
+ len = snprintf(buf, len, "%04u-%02u-%02uT%02u:%02u:%02u",
+ cdp->year, cdp->month, cdp->monthday,
+ cdp->hour, cdp->minute, cdp->second);
+ if (len < 0)
+ *buf = '\0';
+ }
+ return buf;
+}
+
/* -*-EOF-*- */