summaryrefslogtreecommitdiff
path: root/llvm/lib/Analysis/IVDescriptors.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'llvm/lib/Analysis/IVDescriptors.cpp')
-rw-r--r--llvm/lib/Analysis/IVDescriptors.cpp1101
1 files changed, 1101 insertions, 0 deletions
diff --git a/llvm/lib/Analysis/IVDescriptors.cpp b/llvm/lib/Analysis/IVDescriptors.cpp
new file mode 100644
index 0000000000000..6fb600114bc61
--- /dev/null
+++ b/llvm/lib/Analysis/IVDescriptors.cpp
@@ -0,0 +1,1101 @@
+//===- llvm/Analysis/IVDescriptors.cpp - IndVar Descriptors -----*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file "describes" induction and recurrence variables.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Analysis/IVDescriptors.h"
+#include "llvm/ADT/ScopeExit.h"
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/Analysis/BasicAliasAnalysis.h"
+#include "llvm/Analysis/DomTreeUpdater.h"
+#include "llvm/Analysis/GlobalsModRef.h"
+#include "llvm/Analysis/InstructionSimplify.h"
+#include "llvm/Analysis/LoopInfo.h"
+#include "llvm/Analysis/LoopPass.h"
+#include "llvm/Analysis/MustExecute.h"
+#include "llvm/Analysis/ScalarEvolution.h"
+#include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
+#include "llvm/Analysis/ScalarEvolutionExpander.h"
+#include "llvm/Analysis/ScalarEvolutionExpressions.h"
+#include "llvm/Analysis/TargetTransformInfo.h"
+#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/IR/Dominators.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/PatternMatch.h"
+#include "llvm/IR/ValueHandle.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/KnownBits.h"
+
+using namespace llvm;
+using namespace llvm::PatternMatch;
+
+#define DEBUG_TYPE "iv-descriptors"
+
+bool RecurrenceDescriptor::areAllUsesIn(Instruction *I,
+ SmallPtrSetImpl<Instruction *> &Set) {
+ for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use)
+ if (!Set.count(dyn_cast<Instruction>(*Use)))
+ return false;
+ return true;
+}
+
+bool RecurrenceDescriptor::isIntegerRecurrenceKind(RecurrenceKind Kind) {
+ switch (Kind) {
+ default:
+ break;
+ case RK_IntegerAdd:
+ case RK_IntegerMult:
+ case RK_IntegerOr:
+ case RK_IntegerAnd:
+ case RK_IntegerXor:
+ case RK_IntegerMinMax:
+ return true;
+ }
+ return false;
+}
+
+bool RecurrenceDescriptor::isFloatingPointRecurrenceKind(RecurrenceKind Kind) {
+ return (Kind != RK_NoRecurrence) && !isIntegerRecurrenceKind(Kind);
+}
+
+bool RecurrenceDescriptor::isArithmeticRecurrenceKind(RecurrenceKind Kind) {
+ switch (Kind) {
+ default:
+ break;
+ case RK_IntegerAdd:
+ case RK_IntegerMult:
+ case RK_FloatAdd:
+ case RK_FloatMult:
+ return true;
+ }
+ return false;
+}
+
+/// Determines if Phi may have been type-promoted. If Phi has a single user
+/// that ANDs the Phi with a type mask, return the user. RT is updated to
+/// account for the narrower bit width represented by the mask, and the AND
+/// instruction is added to CI.
+static Instruction *lookThroughAnd(PHINode *Phi, Type *&RT,
+ SmallPtrSetImpl<Instruction *> &Visited,
+ SmallPtrSetImpl<Instruction *> &CI) {
+ if (!Phi->hasOneUse())
+ return Phi;
+
+ const APInt *M = nullptr;
+ Instruction *I, *J = cast<Instruction>(Phi->use_begin()->getUser());
+
+ // Matches either I & 2^x-1 or 2^x-1 & I. If we find a match, we update RT
+ // with a new integer type of the corresponding bit width.
+ if (match(J, m_c_And(m_Instruction(I), m_APInt(M)))) {
+ int32_t Bits = (*M + 1).exactLogBase2();
+ if (Bits > 0) {
+ RT = IntegerType::get(Phi->getContext(), Bits);
+ Visited.insert(Phi);
+ CI.insert(J);
+ return J;
+ }
+ }
+ return Phi;
+}
+
+/// Compute the minimal bit width needed to represent a reduction whose exit
+/// instruction is given by Exit.
+static std::pair<Type *, bool> computeRecurrenceType(Instruction *Exit,
+ DemandedBits *DB,
+ AssumptionCache *AC,
+ DominatorTree *DT) {
+ bool IsSigned = false;
+ const DataLayout &DL = Exit->getModule()->getDataLayout();
+ uint64_t MaxBitWidth = DL.getTypeSizeInBits(Exit->getType());
+
+ if (DB) {
+ // Use the demanded bits analysis to determine the bits that are live out
+ // of the exit instruction, rounding up to the nearest power of two. If the
+ // use of demanded bits results in a smaller bit width, we know the value
+ // must be positive (i.e., IsSigned = false), because if this were not the
+ // case, the sign bit would have been demanded.
+ auto Mask = DB->getDemandedBits(Exit);
+ MaxBitWidth = Mask.getBitWidth() - Mask.countLeadingZeros();
+ }
+
+ if (MaxBitWidth == DL.getTypeSizeInBits(Exit->getType()) && AC && DT) {
+ // If demanded bits wasn't able to limit the bit width, we can try to use
+ // value tracking instead. This can be the case, for example, if the value
+ // may be negative.
+ auto NumSignBits = ComputeNumSignBits(Exit, DL, 0, AC, nullptr, DT);
+ auto NumTypeBits = DL.getTypeSizeInBits(Exit->getType());
+ MaxBitWidth = NumTypeBits - NumSignBits;
+ KnownBits Bits = computeKnownBits(Exit, DL);
+ if (!Bits.isNonNegative()) {
+ // If the value is not known to be non-negative, we set IsSigned to true,
+ // meaning that we will use sext instructions instead of zext
+ // instructions to restore the original type.
+ IsSigned = true;
+ if (!Bits.isNegative())
+ // If the value is not known to be negative, we don't known what the
+ // upper bit is, and therefore, we don't know what kind of extend we
+ // will need. In this case, just increase the bit width by one bit and
+ // use sext.
+ ++MaxBitWidth;
+ }
+ }
+ if (!isPowerOf2_64(MaxBitWidth))
+ MaxBitWidth = NextPowerOf2(MaxBitWidth);
+
+ return std::make_pair(Type::getIntNTy(Exit->getContext(), MaxBitWidth),
+ IsSigned);
+}
+
+/// Collect cast instructions that can be ignored in the vectorizer's cost
+/// model, given a reduction exit value and the minimal type in which the
+/// reduction can be represented.
+static void collectCastsToIgnore(Loop *TheLoop, Instruction *Exit,
+ Type *RecurrenceType,
+ SmallPtrSetImpl<Instruction *> &Casts) {
+
+ SmallVector<Instruction *, 8> Worklist;
+ SmallPtrSet<Instruction *, 8> Visited;
+ Worklist.push_back(Exit);
+
+ while (!Worklist.empty()) {
+ Instruction *Val = Worklist.pop_back_val();
+ Visited.insert(Val);
+ if (auto *Cast = dyn_cast<CastInst>(Val))
+ if (Cast->getSrcTy() == RecurrenceType) {
+ // If the source type of a cast instruction is equal to the recurrence
+ // type, it will be eliminated, and should be ignored in the vectorizer
+ // cost model.
+ Casts.insert(Cast);
+ continue;
+ }
+
+ // Add all operands to the work list if they are loop-varying values that
+ // we haven't yet visited.
+ for (Value *O : cast<User>(Val)->operands())
+ if (auto *I = dyn_cast<Instruction>(O))
+ if (TheLoop->contains(I) && !Visited.count(I))
+ Worklist.push_back(I);
+ }
+}
+
+bool RecurrenceDescriptor::AddReductionVar(PHINode *Phi, RecurrenceKind Kind,
+ Loop *TheLoop, bool HasFunNoNaNAttr,
+ RecurrenceDescriptor &RedDes,
+ DemandedBits *DB,
+ AssumptionCache *AC,
+ DominatorTree *DT) {
+ if (Phi->getNumIncomingValues() != 2)
+ return false;
+
+ // Reduction variables are only found in the loop header block.
+ if (Phi->getParent() != TheLoop->getHeader())
+ return false;
+
+ // Obtain the reduction start value from the value that comes from the loop
+ // preheader.
+ Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader());
+
+ // ExitInstruction is the single value which is used outside the loop.
+ // We only allow for a single reduction value to be used outside the loop.
+ // This includes users of the reduction, variables (which form a cycle
+ // which ends in the phi node).
+ Instruction *ExitInstruction = nullptr;
+ // Indicates that we found a reduction operation in our scan.
+ bool FoundReduxOp = false;
+
+ // We start with the PHI node and scan for all of the users of this
+ // instruction. All users must be instructions that can be used as reduction
+ // variables (such as ADD). We must have a single out-of-block user. The cycle
+ // must include the original PHI.
+ bool FoundStartPHI = false;
+
+ // To recognize min/max patterns formed by a icmp select sequence, we store
+ // the number of instruction we saw from the recognized min/max pattern,
+ // to make sure we only see exactly the two instructions.
+ unsigned NumCmpSelectPatternInst = 0;
+ InstDesc ReduxDesc(false, nullptr);
+
+ // Data used for determining if the recurrence has been type-promoted.
+ Type *RecurrenceType = Phi->getType();
+ SmallPtrSet<Instruction *, 4> CastInsts;
+ Instruction *Start = Phi;
+ bool IsSigned = false;
+
+ SmallPtrSet<Instruction *, 8> VisitedInsts;
+ SmallVector<Instruction *, 8> Worklist;
+
+ // Return early if the recurrence kind does not match the type of Phi. If the
+ // recurrence kind is arithmetic, we attempt to look through AND operations
+ // resulting from the type promotion performed by InstCombine. Vector
+ // operations are not limited to the legal integer widths, so we may be able
+ // to evaluate the reduction in the narrower width.
+ if (RecurrenceType->isFloatingPointTy()) {
+ if (!isFloatingPointRecurrenceKind(Kind))
+ return false;
+ } else {
+ if (!isIntegerRecurrenceKind(Kind))
+ return false;
+ if (isArithmeticRecurrenceKind(Kind))
+ Start = lookThroughAnd(Phi, RecurrenceType, VisitedInsts, CastInsts);
+ }
+
+ Worklist.push_back(Start);
+ VisitedInsts.insert(Start);
+
+ // Start with all flags set because we will intersect this with the reduction
+ // flags from all the reduction operations.
+ FastMathFlags FMF = FastMathFlags::getFast();
+
+ // A value in the reduction can be used:
+ // - By the reduction:
+ // - Reduction operation:
+ // - One use of reduction value (safe).
+ // - Multiple use of reduction value (not safe).
+ // - PHI:
+ // - All uses of the PHI must be the reduction (safe).
+ // - Otherwise, not safe.
+ // - By instructions outside of the loop (safe).
+ // * One value may have several outside users, but all outside
+ // uses must be of the same value.
+ // - By an instruction that is not part of the reduction (not safe).
+ // This is either:
+ // * An instruction type other than PHI or the reduction operation.
+ // * A PHI in the header other than the initial PHI.
+ while (!Worklist.empty()) {
+ Instruction *Cur = Worklist.back();
+ Worklist.pop_back();
+
+ // No Users.
+ // If the instruction has no users then this is a broken chain and can't be
+ // a reduction variable.
+ if (Cur->use_empty())
+ return false;
+
+ bool IsAPhi = isa<PHINode>(Cur);
+
+ // A header PHI use other than the original PHI.
+ if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent())
+ return false;
+
+ // Reductions of instructions such as Div, and Sub is only possible if the
+ // LHS is the reduction variable.
+ if (!Cur->isCommutative() && !IsAPhi && !isa<SelectInst>(Cur) &&
+ !isa<ICmpInst>(Cur) && !isa<FCmpInst>(Cur) &&
+ !VisitedInsts.count(dyn_cast<Instruction>(Cur->getOperand(0))))
+ return false;
+
+ // Any reduction instruction must be of one of the allowed kinds. We ignore
+ // the starting value (the Phi or an AND instruction if the Phi has been
+ // type-promoted).
+ if (Cur != Start) {
+ ReduxDesc = isRecurrenceInstr(Cur, Kind, ReduxDesc, HasFunNoNaNAttr);
+ if (!ReduxDesc.isRecurrence())
+ return false;
+ // FIXME: FMF is allowed on phi, but propagation is not handled correctly.
+ if (isa<FPMathOperator>(ReduxDesc.getPatternInst()) && !IsAPhi)
+ FMF &= ReduxDesc.getPatternInst()->getFastMathFlags();
+ }
+
+ bool IsASelect = isa<SelectInst>(Cur);
+
+ // A conditional reduction operation must only have 2 or less uses in
+ // VisitedInsts.
+ if (IsASelect && (Kind == RK_FloatAdd || Kind == RK_FloatMult) &&
+ hasMultipleUsesOf(Cur, VisitedInsts, 2))
+ return false;
+
+ // A reduction operation must only have one use of the reduction value.
+ if (!IsAPhi && !IsASelect && Kind != RK_IntegerMinMax &&
+ Kind != RK_FloatMinMax && hasMultipleUsesOf(Cur, VisitedInsts, 1))
+ return false;
+
+ // All inputs to a PHI node must be a reduction value.
+ if (IsAPhi && Cur != Phi && !areAllUsesIn(Cur, VisitedInsts))
+ return false;
+
+ if (Kind == RK_IntegerMinMax &&
+ (isa<ICmpInst>(Cur) || isa<SelectInst>(Cur)))
+ ++NumCmpSelectPatternInst;
+ if (Kind == RK_FloatMinMax && (isa<FCmpInst>(Cur) || isa<SelectInst>(Cur)))
+ ++NumCmpSelectPatternInst;
+
+ // Check whether we found a reduction operator.
+ FoundReduxOp |= !IsAPhi && Cur != Start;
+
+ // Process users of current instruction. Push non-PHI nodes after PHI nodes
+ // onto the stack. This way we are going to have seen all inputs to PHI
+ // nodes once we get to them.
+ SmallVector<Instruction *, 8> NonPHIs;
+ SmallVector<Instruction *, 8> PHIs;
+ for (User *U : Cur->users()) {
+ Instruction *UI = cast<Instruction>(U);
+
+ // Check if we found the exit user.
+ BasicBlock *Parent = UI->getParent();
+ if (!TheLoop->contains(Parent)) {
+ // If we already know this instruction is used externally, move on to
+ // the next user.
+ if (ExitInstruction == Cur)
+ continue;
+
+ // Exit if you find multiple values used outside or if the header phi
+ // node is being used. In this case the user uses the value of the
+ // previous iteration, in which case we would loose "VF-1" iterations of
+ // the reduction operation if we vectorize.
+ if (ExitInstruction != nullptr || Cur == Phi)
+ return false;
+
+ // The instruction used by an outside user must be the last instruction
+ // before we feed back to the reduction phi. Otherwise, we loose VF-1
+ // operations on the value.
+ if (!is_contained(Phi->operands(), Cur))
+ return false;
+
+ ExitInstruction = Cur;
+ continue;
+ }
+
+ // Process instructions only once (termination). Each reduction cycle
+ // value must only be used once, except by phi nodes and min/max
+ // reductions which are represented as a cmp followed by a select.
+ InstDesc IgnoredVal(false, nullptr);
+ if (VisitedInsts.insert(UI).second) {
+ if (isa<PHINode>(UI))
+ PHIs.push_back(UI);
+ else
+ NonPHIs.push_back(UI);
+ } else if (!isa<PHINode>(UI) &&
+ ((!isa<FCmpInst>(UI) && !isa<ICmpInst>(UI) &&
+ !isa<SelectInst>(UI)) ||
+ (!isConditionalRdxPattern(Kind, UI).isRecurrence() &&
+ !isMinMaxSelectCmpPattern(UI, IgnoredVal).isRecurrence())))
+ return false;
+
+ // Remember that we completed the cycle.
+ if (UI == Phi)
+ FoundStartPHI = true;
+ }
+ Worklist.append(PHIs.begin(), PHIs.end());
+ Worklist.append(NonPHIs.begin(), NonPHIs.end());
+ }
+
+ // This means we have seen one but not the other instruction of the
+ // pattern or more than just a select and cmp.
+ if ((Kind == RK_IntegerMinMax || Kind == RK_FloatMinMax) &&
+ NumCmpSelectPatternInst != 2)
+ return false;
+
+ if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction)
+ return false;
+
+ if (Start != Phi) {
+ // If the starting value is not the same as the phi node, we speculatively
+ // looked through an 'and' instruction when evaluating a potential
+ // arithmetic reduction to determine if it may have been type-promoted.
+ //
+ // We now compute the minimal bit width that is required to represent the
+ // reduction. If this is the same width that was indicated by the 'and', we
+ // can represent the reduction in the smaller type. The 'and' instruction
+ // will be eliminated since it will essentially be a cast instruction that
+ // can be ignore in the cost model. If we compute a different type than we
+ // did when evaluating the 'and', the 'and' will not be eliminated, and we
+ // will end up with different kinds of operations in the recurrence
+ // expression (e.g., RK_IntegerAND, RK_IntegerADD). We give up if this is
+ // the case.
+ //
+ // The vectorizer relies on InstCombine to perform the actual
+ // type-shrinking. It does this by inserting instructions to truncate the
+ // exit value of the reduction to the width indicated by RecurrenceType and
+ // then extend this value back to the original width. If IsSigned is false,
+ // a 'zext' instruction will be generated; otherwise, a 'sext' will be
+ // used.
+ //
+ // TODO: We should not rely on InstCombine to rewrite the reduction in the
+ // smaller type. We should just generate a correctly typed expression
+ // to begin with.
+ Type *ComputedType;
+ std::tie(ComputedType, IsSigned) =
+ computeRecurrenceType(ExitInstruction, DB, AC, DT);
+ if (ComputedType != RecurrenceType)
+ return false;
+
+ // The recurrence expression will be represented in a narrower type. If
+ // there are any cast instructions that will be unnecessary, collect them
+ // in CastInsts. Note that the 'and' instruction was already included in
+ // this list.
+ //
+ // TODO: A better way to represent this may be to tag in some way all the
+ // instructions that are a part of the reduction. The vectorizer cost
+ // model could then apply the recurrence type to these instructions,
+ // without needing a white list of instructions to ignore.
+ collectCastsToIgnore(TheLoop, ExitInstruction, RecurrenceType, CastInsts);
+ }
+
+ // We found a reduction var if we have reached the original phi node and we
+ // only have a single instruction with out-of-loop users.
+
+ // The ExitInstruction(Instruction which is allowed to have out-of-loop users)
+ // is saved as part of the RecurrenceDescriptor.
+
+ // Save the description of this reduction variable.
+ RecurrenceDescriptor RD(
+ RdxStart, ExitInstruction, Kind, FMF, ReduxDesc.getMinMaxKind(),
+ ReduxDesc.getUnsafeAlgebraInst(), RecurrenceType, IsSigned, CastInsts);
+ RedDes = RD;
+
+ return true;
+}
+
+/// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction
+/// pattern corresponding to a min(X, Y) or max(X, Y).
+RecurrenceDescriptor::InstDesc
+RecurrenceDescriptor::isMinMaxSelectCmpPattern(Instruction *I, InstDesc &Prev) {
+
+ assert((isa<ICmpInst>(I) || isa<FCmpInst>(I) || isa<SelectInst>(I)) &&
+ "Expect a select instruction");
+ Instruction *Cmp = nullptr;
+ SelectInst *Select = nullptr;
+
+ // We must handle the select(cmp()) as a single instruction. Advance to the
+ // select.
+ if ((Cmp = dyn_cast<ICmpInst>(I)) || (Cmp = dyn_cast<FCmpInst>(I))) {
+ if (!Cmp->hasOneUse() || !(Select = dyn_cast<SelectInst>(*I->user_begin())))
+ return InstDesc(false, I);
+ return InstDesc(Select, Prev.getMinMaxKind());
+ }
+
+ // Only handle single use cases for now.
+ if (!(Select = dyn_cast<SelectInst>(I)))
+ return InstDesc(false, I);
+ if (!(Cmp = dyn_cast<ICmpInst>(I->getOperand(0))) &&
+ !(Cmp = dyn_cast<FCmpInst>(I->getOperand(0))))
+ return InstDesc(false, I);
+ if (!Cmp->hasOneUse())
+ return InstDesc(false, I);
+
+ Value *CmpLeft;
+ Value *CmpRight;
+
+ // Look for a min/max pattern.
+ if (m_UMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
+ return InstDesc(Select, MRK_UIntMin);
+ else if (m_UMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
+ return InstDesc(Select, MRK_UIntMax);
+ else if (m_SMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
+ return InstDesc(Select, MRK_SIntMax);
+ else if (m_SMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
+ return InstDesc(Select, MRK_SIntMin);
+ else if (m_OrdFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
+ return InstDesc(Select, MRK_FloatMin);
+ else if (m_OrdFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
+ return InstDesc(Select, MRK_FloatMax);
+ else if (m_UnordFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
+ return InstDesc(Select, MRK_FloatMin);
+ else if (m_UnordFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
+ return InstDesc(Select, MRK_FloatMax);
+
+ return InstDesc(false, I);
+}
+
+/// Returns true if the select instruction has users in the compare-and-add
+/// reduction pattern below. The select instruction argument is the last one
+/// in the sequence.
+///
+/// %sum.1 = phi ...
+/// ...
+/// %cmp = fcmp pred %0, %CFP
+/// %add = fadd %0, %sum.1
+/// %sum.2 = select %cmp, %add, %sum.1
+RecurrenceDescriptor::InstDesc
+RecurrenceDescriptor::isConditionalRdxPattern(
+ RecurrenceKind Kind, Instruction *I) {
+ SelectInst *SI = dyn_cast<SelectInst>(I);
+ if (!SI)
+ return InstDesc(false, I);
+
+ CmpInst *CI = dyn_cast<CmpInst>(SI->getCondition());
+ // Only handle single use cases for now.
+ if (!CI || !CI->hasOneUse())
+ return InstDesc(false, I);
+
+ Value *TrueVal = SI->getTrueValue();
+ Value *FalseVal = SI->getFalseValue();
+ // Handle only when either of operands of select instruction is a PHI
+ // node for now.
+ if ((isa<PHINode>(*TrueVal) && isa<PHINode>(*FalseVal)) ||
+ (!isa<PHINode>(*TrueVal) && !isa<PHINode>(*FalseVal)))
+ return InstDesc(false, I);
+
+ Instruction *I1 =
+ isa<PHINode>(*TrueVal) ? dyn_cast<Instruction>(FalseVal)
+ : dyn_cast<Instruction>(TrueVal);
+ if (!I1 || !I1->isBinaryOp())
+ return InstDesc(false, I);
+
+ Value *Op1, *Op2;
+ if ((m_FAdd(m_Value(Op1), m_Value(Op2)).match(I1) ||
+ m_FSub(m_Value(Op1), m_Value(Op2)).match(I1)) &&
+ I1->isFast())
+ return InstDesc(Kind == RK_FloatAdd, SI);
+
+ if (m_FMul(m_Value(Op1), m_Value(Op2)).match(I1) && (I1->isFast()))
+ return InstDesc(Kind == RK_FloatMult, SI);
+
+ return InstDesc(false, I);
+}
+
+RecurrenceDescriptor::InstDesc
+RecurrenceDescriptor::isRecurrenceInstr(Instruction *I, RecurrenceKind Kind,
+ InstDesc &Prev, bool HasFunNoNaNAttr) {
+ Instruction *UAI = Prev.getUnsafeAlgebraInst();
+ if (!UAI && isa<FPMathOperator>(I) && !I->hasAllowReassoc())
+ UAI = I; // Found an unsafe (unvectorizable) algebra instruction.
+
+ switch (I->getOpcode()) {
+ default:
+ return InstDesc(false, I);
+ case Instruction::PHI:
+ return InstDesc(I, Prev.getMinMaxKind(), Prev.getUnsafeAlgebraInst());
+ case Instruction::Sub:
+ case Instruction::Add:
+ return InstDesc(Kind == RK_IntegerAdd, I);
+ case Instruction::Mul:
+ return InstDesc(Kind == RK_IntegerMult, I);
+ case Instruction::And:
+ return InstDesc(Kind == RK_IntegerAnd, I);
+ case Instruction::Or:
+ return InstDesc(Kind == RK_IntegerOr, I);
+ case Instruction::Xor:
+ return InstDesc(Kind == RK_IntegerXor, I);
+ case Instruction::FMul:
+ return InstDesc(Kind == RK_FloatMult, I, UAI);
+ case Instruction::FSub:
+ case Instruction::FAdd:
+ return InstDesc(Kind == RK_FloatAdd, I, UAI);
+ case Instruction::Select:
+ if (Kind == RK_FloatAdd || Kind == RK_FloatMult)
+ return isConditionalRdxPattern(Kind, I);
+ LLVM_FALLTHROUGH;
+ case Instruction::FCmp:
+ case Instruction::ICmp:
+ if (Kind != RK_IntegerMinMax &&
+ (!HasFunNoNaNAttr || Kind != RK_FloatMinMax))
+ return InstDesc(false, I);
+ return isMinMaxSelectCmpPattern(I, Prev);
+ }
+}
+
+bool RecurrenceDescriptor::hasMultipleUsesOf(
+ Instruction *I, SmallPtrSetImpl<Instruction *> &Insts,
+ unsigned MaxNumUses) {
+ unsigned NumUses = 0;
+ for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E;
+ ++Use) {
+ if (Insts.count(dyn_cast<Instruction>(*Use)))
+ ++NumUses;
+ if (NumUses > MaxNumUses)
+ return true;
+ }
+
+ return false;
+}
+bool RecurrenceDescriptor::isReductionPHI(PHINode *Phi, Loop *TheLoop,
+ RecurrenceDescriptor &RedDes,
+ DemandedBits *DB, AssumptionCache *AC,
+ DominatorTree *DT) {
+
+ BasicBlock *Header = TheLoop->getHeader();
+ Function &F = *Header->getParent();
+ bool HasFunNoNaNAttr =
+ F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true";
+
+ if (AddReductionVar(Phi, RK_IntegerAdd, TheLoop, HasFunNoNaNAttr, RedDes, DB,
+ AC, DT)) {
+ LLVM_DEBUG(dbgs() << "Found an ADD reduction PHI." << *Phi << "\n");
+ return true;
+ }
+ if (AddReductionVar(Phi, RK_IntegerMult, TheLoop, HasFunNoNaNAttr, RedDes, DB,
+ AC, DT)) {
+ LLVM_DEBUG(dbgs() << "Found a MUL reduction PHI." << *Phi << "\n");
+ return true;
+ }
+ if (AddReductionVar(Phi, RK_IntegerOr, TheLoop, HasFunNoNaNAttr, RedDes, DB,
+ AC, DT)) {
+ LLVM_DEBUG(dbgs() << "Found an OR reduction PHI." << *Phi << "\n");
+ return true;
+ }
+ if (AddReductionVar(Phi, RK_IntegerAnd, TheLoop, HasFunNoNaNAttr, RedDes, DB,
+ AC, DT)) {
+ LLVM_DEBUG(dbgs() << "Found an AND reduction PHI." << *Phi << "\n");
+ return true;
+ }
+ if (AddReductionVar(Phi, RK_IntegerXor, TheLoop, HasFunNoNaNAttr, RedDes, DB,
+ AC, DT)) {
+ LLVM_DEBUG(dbgs() << "Found a XOR reduction PHI." << *Phi << "\n");
+ return true;
+ }
+ if (AddReductionVar(Phi, RK_IntegerMinMax, TheLoop, HasFunNoNaNAttr, RedDes,
+ DB, AC, DT)) {
+ LLVM_DEBUG(dbgs() << "Found a MINMAX reduction PHI." << *Phi << "\n");
+ return true;
+ }
+ if (AddReductionVar(Phi, RK_FloatMult, TheLoop, HasFunNoNaNAttr, RedDes, DB,
+ AC, DT)) {
+ LLVM_DEBUG(dbgs() << "Found an FMult reduction PHI." << *Phi << "\n");
+ return true;
+ }
+ if (AddReductionVar(Phi, RK_FloatAdd, TheLoop, HasFunNoNaNAttr, RedDes, DB,
+ AC, DT)) {
+ LLVM_DEBUG(dbgs() << "Found an FAdd reduction PHI." << *Phi << "\n");
+ return true;
+ }
+ if (AddReductionVar(Phi, RK_FloatMinMax, TheLoop, HasFunNoNaNAttr, RedDes, DB,
+ AC, DT)) {
+ LLVM_DEBUG(dbgs() << "Found an float MINMAX reduction PHI." << *Phi
+ << "\n");
+ return true;
+ }
+ // Not a reduction of known type.
+ return false;
+}
+
+bool RecurrenceDescriptor::isFirstOrderRecurrence(
+ PHINode *Phi, Loop *TheLoop,
+ DenseMap<Instruction *, Instruction *> &SinkAfter, DominatorTree *DT) {
+
+ // Ensure the phi node is in the loop header and has two incoming values.
+ if (Phi->getParent() != TheLoop->getHeader() ||
+ Phi->getNumIncomingValues() != 2)
+ return false;
+
+ // Ensure the loop has a preheader and a single latch block. The loop
+ // vectorizer will need the latch to set up the next iteration of the loop.
+ auto *Preheader = TheLoop->getLoopPreheader();
+ auto *Latch = TheLoop->getLoopLatch();
+ if (!Preheader || !Latch)
+ return false;
+
+ // Ensure the phi node's incoming blocks are the loop preheader and latch.
+ if (Phi->getBasicBlockIndex(Preheader) < 0 ||
+ Phi->getBasicBlockIndex(Latch) < 0)
+ return false;
+
+ // Get the previous value. The previous value comes from the latch edge while
+ // the initial value comes form the preheader edge.
+ auto *Previous = dyn_cast<Instruction>(Phi->getIncomingValueForBlock(Latch));
+ if (!Previous || !TheLoop->contains(Previous) || isa<PHINode>(Previous) ||
+ SinkAfter.count(Previous)) // Cannot rely on dominance due to motion.
+ return false;
+
+ // Ensure every user of the phi node is dominated by the previous value.
+ // The dominance requirement ensures the loop vectorizer will not need to
+ // vectorize the initial value prior to the first iteration of the loop.
+ // TODO: Consider extending this sinking to handle other kinds of instructions
+ // and expressions, beyond sinking a single cast past Previous.
+ if (Phi->hasOneUse()) {
+ auto *I = Phi->user_back();
+ if (I->isCast() && (I->getParent() == Phi->getParent()) && I->hasOneUse() &&
+ DT->dominates(Previous, I->user_back())) {
+ if (!DT->dominates(Previous, I)) // Otherwise we're good w/o sinking.
+ SinkAfter[I] = Previous;
+ return true;
+ }
+ }
+
+ for (User *U : Phi->users())
+ if (auto *I = dyn_cast<Instruction>(U)) {
+ if (!DT->dominates(Previous, I))
+ return false;
+ }
+
+ return true;
+}
+
+/// This function returns the identity element (or neutral element) for
+/// the operation K.
+Constant *RecurrenceDescriptor::getRecurrenceIdentity(RecurrenceKind K,
+ Type *Tp) {
+ switch (K) {
+ case RK_IntegerXor:
+ case RK_IntegerAdd:
+ case RK_IntegerOr:
+ // Adding, Xoring, Oring zero to a number does not change it.
+ return ConstantInt::get(Tp, 0);
+ case RK_IntegerMult:
+ // Multiplying a number by 1 does not change it.
+ return ConstantInt::get(Tp, 1);
+ case RK_IntegerAnd:
+ // AND-ing a number with an all-1 value does not change it.
+ return ConstantInt::get(Tp, -1, true);
+ case RK_FloatMult:
+ // Multiplying a number by 1 does not change it.
+ return ConstantFP::get(Tp, 1.0L);
+ case RK_FloatAdd:
+ // Adding zero to a number does not change it.
+ return ConstantFP::get(Tp, 0.0L);
+ default:
+ llvm_unreachable("Unknown recurrence kind");
+ }
+}
+
+/// This function translates the recurrence kind to an LLVM binary operator.
+unsigned RecurrenceDescriptor::getRecurrenceBinOp(RecurrenceKind Kind) {
+ switch (Kind) {
+ case RK_IntegerAdd:
+ return Instruction::Add;
+ case RK_IntegerMult:
+ return Instruction::Mul;
+ case RK_IntegerOr:
+ return Instruction::Or;
+ case RK_IntegerAnd:
+ return Instruction::And;
+ case RK_IntegerXor:
+ return Instruction::Xor;
+ case RK_FloatMult:
+ return Instruction::FMul;
+ case RK_FloatAdd:
+ return Instruction::FAdd;
+ case RK_IntegerMinMax:
+ return Instruction::ICmp;
+ case RK_FloatMinMax:
+ return Instruction::FCmp;
+ default:
+ llvm_unreachable("Unknown recurrence operation");
+ }
+}
+
+InductionDescriptor::InductionDescriptor(Value *Start, InductionKind K,
+ const SCEV *Step, BinaryOperator *BOp,
+ SmallVectorImpl<Instruction *> *Casts)
+ : StartValue(Start), IK(K), Step(Step), InductionBinOp(BOp) {
+ assert(IK != IK_NoInduction && "Not an induction");
+
+ // Start value type should match the induction kind and the value
+ // itself should not be null.
+ assert(StartValue && "StartValue is null");
+ assert((IK != IK_PtrInduction || StartValue->getType()->isPointerTy()) &&
+ "StartValue is not a pointer for pointer induction");
+ assert((IK != IK_IntInduction || StartValue->getType()->isIntegerTy()) &&
+ "StartValue is not an integer for integer induction");
+
+ // Check the Step Value. It should be non-zero integer value.
+ assert((!getConstIntStepValue() || !getConstIntStepValue()->isZero()) &&
+ "Step value is zero");
+
+ assert((IK != IK_PtrInduction || getConstIntStepValue()) &&
+ "Step value should be constant for pointer induction");
+ assert((IK == IK_FpInduction || Step->getType()->isIntegerTy()) &&
+ "StepValue is not an integer");
+
+ assert((IK != IK_FpInduction || Step->getType()->isFloatingPointTy()) &&
+ "StepValue is not FP for FpInduction");
+ assert((IK != IK_FpInduction ||
+ (InductionBinOp &&
+ (InductionBinOp->getOpcode() == Instruction::FAdd ||
+ InductionBinOp->getOpcode() == Instruction::FSub))) &&
+ "Binary opcode should be specified for FP induction");
+
+ if (Casts) {
+ for (auto &Inst : *Casts) {
+ RedundantCasts.push_back(Inst);
+ }
+ }
+}
+
+int InductionDescriptor::getConsecutiveDirection() const {
+ ConstantInt *ConstStep = getConstIntStepValue();
+ if (ConstStep && (ConstStep->isOne() || ConstStep->isMinusOne()))
+ return ConstStep->getSExtValue();
+ return 0;
+}
+
+ConstantInt *InductionDescriptor::getConstIntStepValue() const {
+ if (isa<SCEVConstant>(Step))
+ return dyn_cast<ConstantInt>(cast<SCEVConstant>(Step)->getValue());
+ return nullptr;
+}
+
+bool InductionDescriptor::isFPInductionPHI(PHINode *Phi, const Loop *TheLoop,
+ ScalarEvolution *SE,
+ InductionDescriptor &D) {
+
+ // Here we only handle FP induction variables.
+ assert(Phi->getType()->isFloatingPointTy() && "Unexpected Phi type");
+
+ if (TheLoop->getHeader() != Phi->getParent())
+ return false;
+
+ // The loop may have multiple entrances or multiple exits; we can analyze
+ // this phi if it has a unique entry value and a unique backedge value.
+ if (Phi->getNumIncomingValues() != 2)
+ return false;
+ Value *BEValue = nullptr, *StartValue = nullptr;
+ if (TheLoop->contains(Phi->getIncomingBlock(0))) {
+ BEValue = Phi->getIncomingValue(0);
+ StartValue = Phi->getIncomingValue(1);
+ } else {
+ assert(TheLoop->contains(Phi->getIncomingBlock(1)) &&
+ "Unexpected Phi node in the loop");
+ BEValue = Phi->getIncomingValue(1);
+ StartValue = Phi->getIncomingValue(0);
+ }
+
+ BinaryOperator *BOp = dyn_cast<BinaryOperator>(BEValue);
+ if (!BOp)
+ return false;
+
+ Value *Addend = nullptr;
+ if (BOp->getOpcode() == Instruction::FAdd) {
+ if (BOp->getOperand(0) == Phi)
+ Addend = BOp->getOperand(1);
+ else if (BOp->getOperand(1) == Phi)
+ Addend = BOp->getOperand(0);
+ } else if (BOp->getOpcode() == Instruction::FSub)
+ if (BOp->getOperand(0) == Phi)
+ Addend = BOp->getOperand(1);
+
+ if (!Addend)
+ return false;
+
+ // The addend should be loop invariant
+ if (auto *I = dyn_cast<Instruction>(Addend))
+ if (TheLoop->contains(I))
+ return false;
+
+ // FP Step has unknown SCEV
+ const SCEV *Step = SE->getUnknown(Addend);
+ D = InductionDescriptor(StartValue, IK_FpInduction, Step, BOp);
+ return true;
+}
+
+/// This function is called when we suspect that the update-chain of a phi node
+/// (whose symbolic SCEV expression sin \p PhiScev) contains redundant casts,
+/// that can be ignored. (This can happen when the PSCEV rewriter adds a runtime
+/// predicate P under which the SCEV expression for the phi can be the
+/// AddRecurrence \p AR; See createAddRecFromPHIWithCast). We want to find the
+/// cast instructions that are involved in the update-chain of this induction.
+/// A caller that adds the required runtime predicate can be free to drop these
+/// cast instructions, and compute the phi using \p AR (instead of some scev
+/// expression with casts).
+///
+/// For example, without a predicate the scev expression can take the following
+/// form:
+/// (Ext ix (Trunc iy ( Start + i*Step ) to ix) to iy)
+///
+/// It corresponds to the following IR sequence:
+/// %for.body:
+/// %x = phi i64 [ 0, %ph ], [ %add, %for.body ]
+/// %casted_phi = "ExtTrunc i64 %x"
+/// %add = add i64 %casted_phi, %step
+///
+/// where %x is given in \p PN,
+/// PSE.getSCEV(%x) is equal to PSE.getSCEV(%casted_phi) under a predicate,
+/// and the IR sequence that "ExtTrunc i64 %x" represents can take one of
+/// several forms, for example, such as:
+/// ExtTrunc1: %casted_phi = and %x, 2^n-1
+/// or:
+/// ExtTrunc2: %t = shl %x, m
+/// %casted_phi = ashr %t, m
+///
+/// If we are able to find such sequence, we return the instructions
+/// we found, namely %casted_phi and the instructions on its use-def chain up
+/// to the phi (not including the phi).
+static bool getCastsForInductionPHI(PredicatedScalarEvolution &PSE,
+ const SCEVUnknown *PhiScev,
+ const SCEVAddRecExpr *AR,
+ SmallVectorImpl<Instruction *> &CastInsts) {
+
+ assert(CastInsts.empty() && "CastInsts is expected to be empty.");
+ auto *PN = cast<PHINode>(PhiScev->getValue());
+ assert(PSE.getSCEV(PN) == AR && "Unexpected phi node SCEV expression");
+ const Loop *L = AR->getLoop();
+
+ // Find any cast instructions that participate in the def-use chain of
+ // PhiScev in the loop.
+ // FORNOW/TODO: We currently expect the def-use chain to include only
+ // two-operand instructions, where one of the operands is an invariant.
+ // createAddRecFromPHIWithCasts() currently does not support anything more
+ // involved than that, so we keep the search simple. This can be
+ // extended/generalized as needed.
+
+ auto getDef = [&](const Value *Val) -> Value * {
+ const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Val);
+ if (!BinOp)
+ return nullptr;
+ Value *Op0 = BinOp->getOperand(0);
+ Value *Op1 = BinOp->getOperand(1);
+ Value *Def = nullptr;
+ if (L->isLoopInvariant(Op0))
+ Def = Op1;
+ else if (L->isLoopInvariant(Op1))
+ Def = Op0;
+ return Def;
+ };
+
+ // Look for the instruction that defines the induction via the
+ // loop backedge.
+ BasicBlock *Latch = L->getLoopLatch();
+ if (!Latch)
+ return false;
+ Value *Val = PN->getIncomingValueForBlock(Latch);
+ if (!Val)
+ return false;
+
+ // Follow the def-use chain until the induction phi is reached.
+ // If on the way we encounter a Value that has the same SCEV Expr as the
+ // phi node, we can consider the instructions we visit from that point
+ // as part of the cast-sequence that can be ignored.
+ bool InCastSequence = false;
+ auto *Inst = dyn_cast<Instruction>(Val);
+ while (Val != PN) {
+ // If we encountered a phi node other than PN, or if we left the loop,
+ // we bail out.
+ if (!Inst || !L->contains(Inst)) {
+ return false;
+ }
+ auto *AddRec = dyn_cast<SCEVAddRecExpr>(PSE.getSCEV(Val));
+ if (AddRec && PSE.areAddRecsEqualWithPreds(AddRec, AR))
+ InCastSequence = true;
+ if (InCastSequence) {
+ // Only the last instruction in the cast sequence is expected to have
+ // uses outside the induction def-use chain.
+ if (!CastInsts.empty())
+ if (!Inst->hasOneUse())
+ return false;
+ CastInsts.push_back(Inst);
+ }
+ Val = getDef(Val);
+ if (!Val)
+ return false;
+ Inst = dyn_cast<Instruction>(Val);
+ }
+
+ return InCastSequence;
+}
+
+bool InductionDescriptor::isInductionPHI(PHINode *Phi, const Loop *TheLoop,
+ PredicatedScalarEvolution &PSE,
+ InductionDescriptor &D, bool Assume) {
+ Type *PhiTy = Phi->getType();
+
+ // Handle integer and pointer inductions variables.
+ // Now we handle also FP induction but not trying to make a
+ // recurrent expression from the PHI node in-place.
+
+ if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy() && !PhiTy->isFloatTy() &&
+ !PhiTy->isDoubleTy() && !PhiTy->isHalfTy())
+ return false;
+
+ if (PhiTy->isFloatingPointTy())
+ return isFPInductionPHI(Phi, TheLoop, PSE.getSE(), D);
+
+ const SCEV *PhiScev = PSE.getSCEV(Phi);
+ const auto *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
+
+ // We need this expression to be an AddRecExpr.
+ if (Assume && !AR)
+ AR = PSE.getAsAddRec(Phi);
+
+ if (!AR) {
+ LLVM_DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
+ return false;
+ }
+
+ // Record any Cast instructions that participate in the induction update
+ const auto *SymbolicPhi = dyn_cast<SCEVUnknown>(PhiScev);
+ // If we started from an UnknownSCEV, and managed to build an addRecurrence
+ // only after enabling Assume with PSCEV, this means we may have encountered
+ // cast instructions that required adding a runtime check in order to
+ // guarantee the correctness of the AddRecurrence respresentation of the
+ // induction.
+ if (PhiScev != AR && SymbolicPhi) {
+ SmallVector<Instruction *, 2> Casts;
+ if (getCastsForInductionPHI(PSE, SymbolicPhi, AR, Casts))
+ return isInductionPHI(Phi, TheLoop, PSE.getSE(), D, AR, &Casts);
+ }
+
+ return isInductionPHI(Phi, TheLoop, PSE.getSE(), D, AR);
+}
+
+bool InductionDescriptor::isInductionPHI(
+ PHINode *Phi, const Loop *TheLoop, ScalarEvolution *SE,
+ InductionDescriptor &D, const SCEV *Expr,
+ SmallVectorImpl<Instruction *> *CastsToIgnore) {
+ Type *PhiTy = Phi->getType();
+ // We only handle integer and pointer inductions variables.
+ if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy())
+ return false;
+
+ // Check that the PHI is consecutive.
+ const SCEV *PhiScev = Expr ? Expr : SE->getSCEV(Phi);
+ const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
+
+ if (!AR) {
+ LLVM_DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
+ return false;
+ }
+
+ if (AR->getLoop() != TheLoop) {
+ // FIXME: We should treat this as a uniform. Unfortunately, we
+ // don't currently know how to handled uniform PHIs.
+ LLVM_DEBUG(
+ dbgs() << "LV: PHI is a recurrence with respect to an outer loop.\n");
+ return false;
+ }
+
+ Value *StartValue =
+ Phi->getIncomingValueForBlock(AR->getLoop()->getLoopPreheader());
+
+ BasicBlock *Latch = AR->getLoop()->getLoopLatch();
+ if (!Latch)
+ return false;
+ BinaryOperator *BOp =
+ dyn_cast<BinaryOperator>(Phi->getIncomingValueForBlock(Latch));
+
+ const SCEV *Step = AR->getStepRecurrence(*SE);
+ // Calculate the pointer stride and check if it is consecutive.
+ // The stride may be a constant or a loop invariant integer value.
+ const SCEVConstant *ConstStep = dyn_cast<SCEVConstant>(Step);
+ if (!ConstStep && !SE->isLoopInvariant(Step, TheLoop))
+ return false;
+
+ if (PhiTy->isIntegerTy()) {
+ D = InductionDescriptor(StartValue, IK_IntInduction, Step, BOp,
+ CastsToIgnore);
+ return true;
+ }
+
+ assert(PhiTy->isPointerTy() && "The PHI must be a pointer");
+ // Pointer induction should be a constant.
+ if (!ConstStep)
+ return false;
+
+ ConstantInt *CV = ConstStep->getValue();
+ Type *PointerElementType = PhiTy->getPointerElementType();
+ // The pointer stride cannot be determined if the pointer element type is not
+ // sized.
+ if (!PointerElementType->isSized())
+ return false;
+
+ const DataLayout &DL = Phi->getModule()->getDataLayout();
+ int64_t Size = static_cast<int64_t>(DL.getTypeAllocSize(PointerElementType));
+ if (!Size)
+ return false;
+
+ int64_t CVSize = CV->getSExtValue();
+ if (CVSize % Size)
+ return false;
+ auto *StepValue =
+ SE->getConstant(CV->getType(), CVSize / Size, true /* signed */);
+ D = InductionDescriptor(StartValue, IK_PtrInduction, StepValue, BOp);
+ return true;
+}