summaryrefslogtreecommitdiff
path: root/llvm/lib/Analysis/InstructionSimplify.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'llvm/lib/Analysis/InstructionSimplify.cpp')
-rw-r--r--llvm/lib/Analysis/InstructionSimplify.cpp5518
1 files changed, 5518 insertions, 0 deletions
diff --git a/llvm/lib/Analysis/InstructionSimplify.cpp b/llvm/lib/Analysis/InstructionSimplify.cpp
new file mode 100644
index 0000000000000..cb8987721700b
--- /dev/null
+++ b/llvm/lib/Analysis/InstructionSimplify.cpp
@@ -0,0 +1,5518 @@
+//===- InstructionSimplify.cpp - Fold instruction operands ----------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements routines for folding instructions into simpler forms
+// that do not require creating new instructions. This does constant folding
+// ("add i32 1, 1" -> "2") but can also handle non-constant operands, either
+// returning a constant ("and i32 %x, 0" -> "0") or an already existing value
+// ("and i32 %x, %x" -> "%x"). All operands are assumed to have already been
+// simplified: This is usually true and assuming it simplifies the logic (if
+// they have not been simplified then results are correct but maybe suboptimal).
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Analysis/InstructionSimplify.h"
+#include "llvm/ADT/SetVector.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/Analysis/AssumptionCache.h"
+#include "llvm/Analysis/CaptureTracking.h"
+#include "llvm/Analysis/CmpInstAnalysis.h"
+#include "llvm/Analysis/ConstantFolding.h"
+#include "llvm/Analysis/LoopAnalysisManager.h"
+#include "llvm/Analysis/MemoryBuiltins.h"
+#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/Analysis/VectorUtils.h"
+#include "llvm/IR/ConstantRange.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Dominators.h"
+#include "llvm/IR/GetElementPtrTypeIterator.h"
+#include "llvm/IR/GlobalAlias.h"
+#include "llvm/IR/InstrTypes.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/Operator.h"
+#include "llvm/IR/PatternMatch.h"
+#include "llvm/IR/ValueHandle.h"
+#include "llvm/Support/KnownBits.h"
+#include <algorithm>
+using namespace llvm;
+using namespace llvm::PatternMatch;
+
+#define DEBUG_TYPE "instsimplify"
+
+enum { RecursionLimit = 3 };
+
+STATISTIC(NumExpand, "Number of expansions");
+STATISTIC(NumReassoc, "Number of reassociations");
+
+static Value *SimplifyAndInst(Value *, Value *, const SimplifyQuery &, unsigned);
+static Value *simplifyUnOp(unsigned, Value *, const SimplifyQuery &, unsigned);
+static Value *simplifyFPUnOp(unsigned, Value *, const FastMathFlags &,
+ const SimplifyQuery &, unsigned);
+static Value *SimplifyBinOp(unsigned, Value *, Value *, const SimplifyQuery &,
+ unsigned);
+static Value *SimplifyBinOp(unsigned, Value *, Value *, const FastMathFlags &,
+ const SimplifyQuery &, unsigned);
+static Value *SimplifyCmpInst(unsigned, Value *, Value *, const SimplifyQuery &,
+ unsigned);
+static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
+ const SimplifyQuery &Q, unsigned MaxRecurse);
+static Value *SimplifyOrInst(Value *, Value *, const SimplifyQuery &, unsigned);
+static Value *SimplifyXorInst(Value *, Value *, const SimplifyQuery &, unsigned);
+static Value *SimplifyCastInst(unsigned, Value *, Type *,
+ const SimplifyQuery &, unsigned);
+static Value *SimplifyGEPInst(Type *, ArrayRef<Value *>, const SimplifyQuery &,
+ unsigned);
+
+static Value *foldSelectWithBinaryOp(Value *Cond, Value *TrueVal,
+ Value *FalseVal) {
+ BinaryOperator::BinaryOps BinOpCode;
+ if (auto *BO = dyn_cast<BinaryOperator>(Cond))
+ BinOpCode = BO->getOpcode();
+ else
+ return nullptr;
+
+ CmpInst::Predicate ExpectedPred, Pred1, Pred2;
+ if (BinOpCode == BinaryOperator::Or) {
+ ExpectedPred = ICmpInst::ICMP_NE;
+ } else if (BinOpCode == BinaryOperator::And) {
+ ExpectedPred = ICmpInst::ICMP_EQ;
+ } else
+ return nullptr;
+
+ // %A = icmp eq %TV, %FV
+ // %B = icmp eq %X, %Y (and one of these is a select operand)
+ // %C = and %A, %B
+ // %D = select %C, %TV, %FV
+ // -->
+ // %FV
+
+ // %A = icmp ne %TV, %FV
+ // %B = icmp ne %X, %Y (and one of these is a select operand)
+ // %C = or %A, %B
+ // %D = select %C, %TV, %FV
+ // -->
+ // %TV
+ Value *X, *Y;
+ if (!match(Cond, m_c_BinOp(m_c_ICmp(Pred1, m_Specific(TrueVal),
+ m_Specific(FalseVal)),
+ m_ICmp(Pred2, m_Value(X), m_Value(Y)))) ||
+ Pred1 != Pred2 || Pred1 != ExpectedPred)
+ return nullptr;
+
+ if (X == TrueVal || X == FalseVal || Y == TrueVal || Y == FalseVal)
+ return BinOpCode == BinaryOperator::Or ? TrueVal : FalseVal;
+
+ return nullptr;
+}
+
+/// For a boolean type or a vector of boolean type, return false or a vector
+/// with every element false.
+static Constant *getFalse(Type *Ty) {
+ return ConstantInt::getFalse(Ty);
+}
+
+/// For a boolean type or a vector of boolean type, return true or a vector
+/// with every element true.
+static Constant *getTrue(Type *Ty) {
+ return ConstantInt::getTrue(Ty);
+}
+
+/// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"?
+static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS,
+ Value *RHS) {
+ CmpInst *Cmp = dyn_cast<CmpInst>(V);
+ if (!Cmp)
+ return false;
+ CmpInst::Predicate CPred = Cmp->getPredicate();
+ Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1);
+ if (CPred == Pred && CLHS == LHS && CRHS == RHS)
+ return true;
+ return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS &&
+ CRHS == LHS;
+}
+
+/// Does the given value dominate the specified phi node?
+static bool valueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) {
+ Instruction *I = dyn_cast<Instruction>(V);
+ if (!I)
+ // Arguments and constants dominate all instructions.
+ return true;
+
+ // If we are processing instructions (and/or basic blocks) that have not been
+ // fully added to a function, the parent nodes may still be null. Simply
+ // return the conservative answer in these cases.
+ if (!I->getParent() || !P->getParent() || !I->getFunction())
+ return false;
+
+ // If we have a DominatorTree then do a precise test.
+ if (DT)
+ return DT->dominates(I, P);
+
+ // Otherwise, if the instruction is in the entry block and is not an invoke,
+ // then it obviously dominates all phi nodes.
+ if (I->getParent() == &I->getFunction()->getEntryBlock() &&
+ !isa<InvokeInst>(I))
+ return true;
+
+ return false;
+}
+
+/// Simplify "A op (B op' C)" by distributing op over op', turning it into
+/// "(A op B) op' (A op C)". Here "op" is given by Opcode and "op'" is
+/// given by OpcodeToExpand, while "A" corresponds to LHS and "B op' C" to RHS.
+/// Also performs the transform "(A op' B) op C" -> "(A op C) op' (B op C)".
+/// Returns the simplified value, or null if no simplification was performed.
+static Value *ExpandBinOp(Instruction::BinaryOps Opcode, Value *LHS, Value *RHS,
+ Instruction::BinaryOps OpcodeToExpand,
+ const SimplifyQuery &Q, unsigned MaxRecurse) {
+ // Recursion is always used, so bail out at once if we already hit the limit.
+ if (!MaxRecurse--)
+ return nullptr;
+
+ // Check whether the expression has the form "(A op' B) op C".
+ if (BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS))
+ if (Op0->getOpcode() == OpcodeToExpand) {
+ // It does! Try turning it into "(A op C) op' (B op C)".
+ Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
+ // Do "A op C" and "B op C" both simplify?
+ if (Value *L = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse))
+ if (Value *R = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) {
+ // They do! Return "L op' R" if it simplifies or is already available.
+ // If "L op' R" equals "A op' B" then "L op' R" is just the LHS.
+ if ((L == A && R == B) || (Instruction::isCommutative(OpcodeToExpand)
+ && L == B && R == A)) {
+ ++NumExpand;
+ return LHS;
+ }
+ // Otherwise return "L op' R" if it simplifies.
+ if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) {
+ ++NumExpand;
+ return V;
+ }
+ }
+ }
+
+ // Check whether the expression has the form "A op (B op' C)".
+ if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS))
+ if (Op1->getOpcode() == OpcodeToExpand) {
+ // It does! Try turning it into "(A op B) op' (A op C)".
+ Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
+ // Do "A op B" and "A op C" both simplify?
+ if (Value *L = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse))
+ if (Value *R = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse)) {
+ // They do! Return "L op' R" if it simplifies or is already available.
+ // If "L op' R" equals "B op' C" then "L op' R" is just the RHS.
+ if ((L == B && R == C) || (Instruction::isCommutative(OpcodeToExpand)
+ && L == C && R == B)) {
+ ++NumExpand;
+ return RHS;
+ }
+ // Otherwise return "L op' R" if it simplifies.
+ if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) {
+ ++NumExpand;
+ return V;
+ }
+ }
+ }
+
+ return nullptr;
+}
+
+/// Generic simplifications for associative binary operations.
+/// Returns the simpler value, or null if none was found.
+static Value *SimplifyAssociativeBinOp(Instruction::BinaryOps Opcode,
+ Value *LHS, Value *RHS,
+ const SimplifyQuery &Q,
+ unsigned MaxRecurse) {
+ assert(Instruction::isAssociative(Opcode) && "Not an associative operation!");
+
+ // Recursion is always used, so bail out at once if we already hit the limit.
+ if (!MaxRecurse--)
+ return nullptr;
+
+ BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
+ BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
+
+ // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely.
+ if (Op0 && Op0->getOpcode() == Opcode) {
+ Value *A = Op0->getOperand(0);
+ Value *B = Op0->getOperand(1);
+ Value *C = RHS;
+
+ // Does "B op C" simplify?
+ if (Value *V = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) {
+ // It does! Return "A op V" if it simplifies or is already available.
+ // If V equals B then "A op V" is just the LHS.
+ if (V == B) return LHS;
+ // Otherwise return "A op V" if it simplifies.
+ if (Value *W = SimplifyBinOp(Opcode, A, V, Q, MaxRecurse)) {
+ ++NumReassoc;
+ return W;
+ }
+ }
+ }
+
+ // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely.
+ if (Op1 && Op1->getOpcode() == Opcode) {
+ Value *A = LHS;
+ Value *B = Op1->getOperand(0);
+ Value *C = Op1->getOperand(1);
+
+ // Does "A op B" simplify?
+ if (Value *V = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) {
+ // It does! Return "V op C" if it simplifies or is already available.
+ // If V equals B then "V op C" is just the RHS.
+ if (V == B) return RHS;
+ // Otherwise return "V op C" if it simplifies.
+ if (Value *W = SimplifyBinOp(Opcode, V, C, Q, MaxRecurse)) {
+ ++NumReassoc;
+ return W;
+ }
+ }
+ }
+
+ // The remaining transforms require commutativity as well as associativity.
+ if (!Instruction::isCommutative(Opcode))
+ return nullptr;
+
+ // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely.
+ if (Op0 && Op0->getOpcode() == Opcode) {
+ Value *A = Op0->getOperand(0);
+ Value *B = Op0->getOperand(1);
+ Value *C = RHS;
+
+ // Does "C op A" simplify?
+ if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
+ // It does! Return "V op B" if it simplifies or is already available.
+ // If V equals A then "V op B" is just the LHS.
+ if (V == A) return LHS;
+ // Otherwise return "V op B" if it simplifies.
+ if (Value *W = SimplifyBinOp(Opcode, V, B, Q, MaxRecurse)) {
+ ++NumReassoc;
+ return W;
+ }
+ }
+ }
+
+ // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely.
+ if (Op1 && Op1->getOpcode() == Opcode) {
+ Value *A = LHS;
+ Value *B = Op1->getOperand(0);
+ Value *C = Op1->getOperand(1);
+
+ // Does "C op A" simplify?
+ if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
+ // It does! Return "B op V" if it simplifies or is already available.
+ // If V equals C then "B op V" is just the RHS.
+ if (V == C) return RHS;
+ // Otherwise return "B op V" if it simplifies.
+ if (Value *W = SimplifyBinOp(Opcode, B, V, Q, MaxRecurse)) {
+ ++NumReassoc;
+ return W;
+ }
+ }
+ }
+
+ return nullptr;
+}
+
+/// In the case of a binary operation with a select instruction as an operand,
+/// try to simplify the binop by seeing whether evaluating it on both branches
+/// of the select results in the same value. Returns the common value if so,
+/// otherwise returns null.
+static Value *ThreadBinOpOverSelect(Instruction::BinaryOps Opcode, Value *LHS,
+ Value *RHS, const SimplifyQuery &Q,
+ unsigned MaxRecurse) {
+ // Recursion is always used, so bail out at once if we already hit the limit.
+ if (!MaxRecurse--)
+ return nullptr;
+
+ SelectInst *SI;
+ if (isa<SelectInst>(LHS)) {
+ SI = cast<SelectInst>(LHS);
+ } else {
+ assert(isa<SelectInst>(RHS) && "No select instruction operand!");
+ SI = cast<SelectInst>(RHS);
+ }
+
+ // Evaluate the BinOp on the true and false branches of the select.
+ Value *TV;
+ Value *FV;
+ if (SI == LHS) {
+ TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse);
+ FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse);
+ } else {
+ TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse);
+ FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse);
+ }
+
+ // If they simplified to the same value, then return the common value.
+ // If they both failed to simplify then return null.
+ if (TV == FV)
+ return TV;
+
+ // If one branch simplified to undef, return the other one.
+ if (TV && isa<UndefValue>(TV))
+ return FV;
+ if (FV && isa<UndefValue>(FV))
+ return TV;
+
+ // If applying the operation did not change the true and false select values,
+ // then the result of the binop is the select itself.
+ if (TV == SI->getTrueValue() && FV == SI->getFalseValue())
+ return SI;
+
+ // If one branch simplified and the other did not, and the simplified
+ // value is equal to the unsimplified one, return the simplified value.
+ // For example, select (cond, X, X & Z) & Z -> X & Z.
+ if ((FV && !TV) || (TV && !FV)) {
+ // Check that the simplified value has the form "X op Y" where "op" is the
+ // same as the original operation.
+ Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV);
+ if (Simplified && Simplified->getOpcode() == unsigned(Opcode)) {
+ // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS".
+ // We already know that "op" is the same as for the simplified value. See
+ // if the operands match too. If so, return the simplified value.
+ Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue();
+ Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS;
+ Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch;
+ if (Simplified->getOperand(0) == UnsimplifiedLHS &&
+ Simplified->getOperand(1) == UnsimplifiedRHS)
+ return Simplified;
+ if (Simplified->isCommutative() &&
+ Simplified->getOperand(1) == UnsimplifiedLHS &&
+ Simplified->getOperand(0) == UnsimplifiedRHS)
+ return Simplified;
+ }
+ }
+
+ return nullptr;
+}
+
+/// In the case of a comparison with a select instruction, try to simplify the
+/// comparison by seeing whether both branches of the select result in the same
+/// value. Returns the common value if so, otherwise returns null.
+static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS,
+ Value *RHS, const SimplifyQuery &Q,
+ unsigned MaxRecurse) {
+ // Recursion is always used, so bail out at once if we already hit the limit.
+ if (!MaxRecurse--)
+ return nullptr;
+
+ // Make sure the select is on the LHS.
+ if (!isa<SelectInst>(LHS)) {
+ std::swap(LHS, RHS);
+ Pred = CmpInst::getSwappedPredicate(Pred);
+ }
+ assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!");
+ SelectInst *SI = cast<SelectInst>(LHS);
+ Value *Cond = SI->getCondition();
+ Value *TV = SI->getTrueValue();
+ Value *FV = SI->getFalseValue();
+
+ // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it.
+ // Does "cmp TV, RHS" simplify?
+ Value *TCmp = SimplifyCmpInst(Pred, TV, RHS, Q, MaxRecurse);
+ if (TCmp == Cond) {
+ // It not only simplified, it simplified to the select condition. Replace
+ // it with 'true'.
+ TCmp = getTrue(Cond->getType());
+ } else if (!TCmp) {
+ // It didn't simplify. However if "cmp TV, RHS" is equal to the select
+ // condition then we can replace it with 'true'. Otherwise give up.
+ if (!isSameCompare(Cond, Pred, TV, RHS))
+ return nullptr;
+ TCmp = getTrue(Cond->getType());
+ }
+
+ // Does "cmp FV, RHS" simplify?
+ Value *FCmp = SimplifyCmpInst(Pred, FV, RHS, Q, MaxRecurse);
+ if (FCmp == Cond) {
+ // It not only simplified, it simplified to the select condition. Replace
+ // it with 'false'.
+ FCmp = getFalse(Cond->getType());
+ } else if (!FCmp) {
+ // It didn't simplify. However if "cmp FV, RHS" is equal to the select
+ // condition then we can replace it with 'false'. Otherwise give up.
+ if (!isSameCompare(Cond, Pred, FV, RHS))
+ return nullptr;
+ FCmp = getFalse(Cond->getType());
+ }
+
+ // If both sides simplified to the same value, then use it as the result of
+ // the original comparison.
+ if (TCmp == FCmp)
+ return TCmp;
+
+ // The remaining cases only make sense if the select condition has the same
+ // type as the result of the comparison, so bail out if this is not so.
+ if (Cond->getType()->isVectorTy() != RHS->getType()->isVectorTy())
+ return nullptr;
+ // If the false value simplified to false, then the result of the compare
+ // is equal to "Cond && TCmp". This also catches the case when the false
+ // value simplified to false and the true value to true, returning "Cond".
+ if (match(FCmp, m_Zero()))
+ if (Value *V = SimplifyAndInst(Cond, TCmp, Q, MaxRecurse))
+ return V;
+ // If the true value simplified to true, then the result of the compare
+ // is equal to "Cond || FCmp".
+ if (match(TCmp, m_One()))
+ if (Value *V = SimplifyOrInst(Cond, FCmp, Q, MaxRecurse))
+ return V;
+ // Finally, if the false value simplified to true and the true value to
+ // false, then the result of the compare is equal to "!Cond".
+ if (match(FCmp, m_One()) && match(TCmp, m_Zero()))
+ if (Value *V =
+ SimplifyXorInst(Cond, Constant::getAllOnesValue(Cond->getType()),
+ Q, MaxRecurse))
+ return V;
+
+ return nullptr;
+}
+
+/// In the case of a binary operation with an operand that is a PHI instruction,
+/// try to simplify the binop by seeing whether evaluating it on the incoming
+/// phi values yields the same result for every value. If so returns the common
+/// value, otherwise returns null.
+static Value *ThreadBinOpOverPHI(Instruction::BinaryOps Opcode, Value *LHS,
+ Value *RHS, const SimplifyQuery &Q,
+ unsigned MaxRecurse) {
+ // Recursion is always used, so bail out at once if we already hit the limit.
+ if (!MaxRecurse--)
+ return nullptr;
+
+ PHINode *PI;
+ if (isa<PHINode>(LHS)) {
+ PI = cast<PHINode>(LHS);
+ // Bail out if RHS and the phi may be mutually interdependent due to a loop.
+ if (!valueDominatesPHI(RHS, PI, Q.DT))
+ return nullptr;
+ } else {
+ assert(isa<PHINode>(RHS) && "No PHI instruction operand!");
+ PI = cast<PHINode>(RHS);
+ // Bail out if LHS and the phi may be mutually interdependent due to a loop.
+ if (!valueDominatesPHI(LHS, PI, Q.DT))
+ return nullptr;
+ }
+
+ // Evaluate the BinOp on the incoming phi values.
+ Value *CommonValue = nullptr;
+ for (Value *Incoming : PI->incoming_values()) {
+ // If the incoming value is the phi node itself, it can safely be skipped.
+ if (Incoming == PI) continue;
+ Value *V = PI == LHS ?
+ SimplifyBinOp(Opcode, Incoming, RHS, Q, MaxRecurse) :
+ SimplifyBinOp(Opcode, LHS, Incoming, Q, MaxRecurse);
+ // If the operation failed to simplify, or simplified to a different value
+ // to previously, then give up.
+ if (!V || (CommonValue && V != CommonValue))
+ return nullptr;
+ CommonValue = V;
+ }
+
+ return CommonValue;
+}
+
+/// In the case of a comparison with a PHI instruction, try to simplify the
+/// comparison by seeing whether comparing with all of the incoming phi values
+/// yields the same result every time. If so returns the common result,
+/// otherwise returns null.
+static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
+ const SimplifyQuery &Q, unsigned MaxRecurse) {
+ // Recursion is always used, so bail out at once if we already hit the limit.
+ if (!MaxRecurse--)
+ return nullptr;
+
+ // Make sure the phi is on the LHS.
+ if (!isa<PHINode>(LHS)) {
+ std::swap(LHS, RHS);
+ Pred = CmpInst::getSwappedPredicate(Pred);
+ }
+ assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!");
+ PHINode *PI = cast<PHINode>(LHS);
+
+ // Bail out if RHS and the phi may be mutually interdependent due to a loop.
+ if (!valueDominatesPHI(RHS, PI, Q.DT))
+ return nullptr;
+
+ // Evaluate the BinOp on the incoming phi values.
+ Value *CommonValue = nullptr;
+ for (Value *Incoming : PI->incoming_values()) {
+ // If the incoming value is the phi node itself, it can safely be skipped.
+ if (Incoming == PI) continue;
+ Value *V = SimplifyCmpInst(Pred, Incoming, RHS, Q, MaxRecurse);
+ // If the operation failed to simplify, or simplified to a different value
+ // to previously, then give up.
+ if (!V || (CommonValue && V != CommonValue))
+ return nullptr;
+ CommonValue = V;
+ }
+
+ return CommonValue;
+}
+
+static Constant *foldOrCommuteConstant(Instruction::BinaryOps Opcode,
+ Value *&Op0, Value *&Op1,
+ const SimplifyQuery &Q) {
+ if (auto *CLHS = dyn_cast<Constant>(Op0)) {
+ if (auto *CRHS = dyn_cast<Constant>(Op1))
+ return ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, Q.DL);
+
+ // Canonicalize the constant to the RHS if this is a commutative operation.
+ if (Instruction::isCommutative(Opcode))
+ std::swap(Op0, Op1);
+ }
+ return nullptr;
+}
+
+/// Given operands for an Add, see if we can fold the result.
+/// If not, this returns null.
+static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW,
+ const SimplifyQuery &Q, unsigned MaxRecurse) {
+ if (Constant *C = foldOrCommuteConstant(Instruction::Add, Op0, Op1, Q))
+ return C;
+
+ // X + undef -> undef
+ if (match(Op1, m_Undef()))
+ return Op1;
+
+ // X + 0 -> X
+ if (match(Op1, m_Zero()))
+ return Op0;
+
+ // If two operands are negative, return 0.
+ if (isKnownNegation(Op0, Op1))
+ return Constant::getNullValue(Op0->getType());
+
+ // X + (Y - X) -> Y
+ // (Y - X) + X -> Y
+ // Eg: X + -X -> 0
+ Value *Y = nullptr;
+ if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) ||
+ match(Op0, m_Sub(m_Value(Y), m_Specific(Op1))))
+ return Y;
+
+ // X + ~X -> -1 since ~X = -X-1
+ Type *Ty = Op0->getType();
+ if (match(Op0, m_Not(m_Specific(Op1))) ||
+ match(Op1, m_Not(m_Specific(Op0))))
+ return Constant::getAllOnesValue(Ty);
+
+ // add nsw/nuw (xor Y, signmask), signmask --> Y
+ // The no-wrapping add guarantees that the top bit will be set by the add.
+ // Therefore, the xor must be clearing the already set sign bit of Y.
+ if ((IsNSW || IsNUW) && match(Op1, m_SignMask()) &&
+ match(Op0, m_Xor(m_Value(Y), m_SignMask())))
+ return Y;
+
+ // add nuw %x, -1 -> -1, because %x can only be 0.
+ if (IsNUW && match(Op1, m_AllOnes()))
+ return Op1; // Which is -1.
+
+ /// i1 add -> xor.
+ if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1))
+ if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1))
+ return V;
+
+ // Try some generic simplifications for associative operations.
+ if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q,
+ MaxRecurse))
+ return V;
+
+ // Threading Add over selects and phi nodes is pointless, so don't bother.
+ // Threading over the select in "A + select(cond, B, C)" means evaluating
+ // "A+B" and "A+C" and seeing if they are equal; but they are equal if and
+ // only if B and C are equal. If B and C are equal then (since we assume
+ // that operands have already been simplified) "select(cond, B, C)" should
+ // have been simplified to the common value of B and C already. Analysing
+ // "A+B" and "A+C" thus gains nothing, but costs compile time. Similarly
+ // for threading over phi nodes.
+
+ return nullptr;
+}
+
+Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW,
+ const SimplifyQuery &Query) {
+ return ::SimplifyAddInst(Op0, Op1, IsNSW, IsNUW, Query, RecursionLimit);
+}
+
+/// Compute the base pointer and cumulative constant offsets for V.
+///
+/// This strips all constant offsets off of V, leaving it the base pointer, and
+/// accumulates the total constant offset applied in the returned constant. It
+/// returns 0 if V is not a pointer, and returns the constant '0' if there are
+/// no constant offsets applied.
+///
+/// This is very similar to GetPointerBaseWithConstantOffset except it doesn't
+/// follow non-inbounds geps. This allows it to remain usable for icmp ult/etc.
+/// folding.
+static Constant *stripAndComputeConstantOffsets(const DataLayout &DL, Value *&V,
+ bool AllowNonInbounds = false) {
+ assert(V->getType()->isPtrOrPtrVectorTy());
+
+ Type *IntPtrTy = DL.getIntPtrType(V->getType())->getScalarType();
+ APInt Offset = APInt::getNullValue(IntPtrTy->getIntegerBitWidth());
+
+ V = V->stripAndAccumulateConstantOffsets(DL, Offset, AllowNonInbounds);
+ // As that strip may trace through `addrspacecast`, need to sext or trunc
+ // the offset calculated.
+ IntPtrTy = DL.getIntPtrType(V->getType())->getScalarType();
+ Offset = Offset.sextOrTrunc(IntPtrTy->getIntegerBitWidth());
+
+ Constant *OffsetIntPtr = ConstantInt::get(IntPtrTy, Offset);
+ if (V->getType()->isVectorTy())
+ return ConstantVector::getSplat(V->getType()->getVectorNumElements(),
+ OffsetIntPtr);
+ return OffsetIntPtr;
+}
+
+/// Compute the constant difference between two pointer values.
+/// If the difference is not a constant, returns zero.
+static Constant *computePointerDifference(const DataLayout &DL, Value *LHS,
+ Value *RHS) {
+ Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS);
+ Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS);
+
+ // If LHS and RHS are not related via constant offsets to the same base
+ // value, there is nothing we can do here.
+ if (LHS != RHS)
+ return nullptr;
+
+ // Otherwise, the difference of LHS - RHS can be computed as:
+ // LHS - RHS
+ // = (LHSOffset + Base) - (RHSOffset + Base)
+ // = LHSOffset - RHSOffset
+ return ConstantExpr::getSub(LHSOffset, RHSOffset);
+}
+
+/// Given operands for a Sub, see if we can fold the result.
+/// If not, this returns null.
+static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
+ const SimplifyQuery &Q, unsigned MaxRecurse) {
+ if (Constant *C = foldOrCommuteConstant(Instruction::Sub, Op0, Op1, Q))
+ return C;
+
+ // X - undef -> undef
+ // undef - X -> undef
+ if (match(Op0, m_Undef()) || match(Op1, m_Undef()))
+ return UndefValue::get(Op0->getType());
+
+ // X - 0 -> X
+ if (match(Op1, m_Zero()))
+ return Op0;
+
+ // X - X -> 0
+ if (Op0 == Op1)
+ return Constant::getNullValue(Op0->getType());
+
+ // Is this a negation?
+ if (match(Op0, m_Zero())) {
+ // 0 - X -> 0 if the sub is NUW.
+ if (isNUW)
+ return Constant::getNullValue(Op0->getType());
+
+ KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
+ if (Known.Zero.isMaxSignedValue()) {
+ // Op1 is either 0 or the minimum signed value. If the sub is NSW, then
+ // Op1 must be 0 because negating the minimum signed value is undefined.
+ if (isNSW)
+ return Constant::getNullValue(Op0->getType());
+
+ // 0 - X -> X if X is 0 or the minimum signed value.
+ return Op1;
+ }
+ }
+
+ // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies.
+ // For example, (X + Y) - Y -> X; (Y + X) - Y -> X
+ Value *X = nullptr, *Y = nullptr, *Z = Op1;
+ if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z
+ // See if "V === Y - Z" simplifies.
+ if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse-1))
+ // It does! Now see if "X + V" simplifies.
+ if (Value *W = SimplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse-1)) {
+ // It does, we successfully reassociated!
+ ++NumReassoc;
+ return W;
+ }
+ // See if "V === X - Z" simplifies.
+ if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1))
+ // It does! Now see if "Y + V" simplifies.
+ if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse-1)) {
+ // It does, we successfully reassociated!
+ ++NumReassoc;
+ return W;
+ }
+ }
+
+ // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies.
+ // For example, X - (X + 1) -> -1
+ X = Op0;
+ if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z)
+ // See if "V === X - Y" simplifies.
+ if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1))
+ // It does! Now see if "V - Z" simplifies.
+ if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse-1)) {
+ // It does, we successfully reassociated!
+ ++NumReassoc;
+ return W;
+ }
+ // See if "V === X - Z" simplifies.
+ if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1))
+ // It does! Now see if "V - Y" simplifies.
+ if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse-1)) {
+ // It does, we successfully reassociated!
+ ++NumReassoc;
+ return W;
+ }
+ }
+
+ // Z - (X - Y) -> (Z - X) + Y if everything simplifies.
+ // For example, X - (X - Y) -> Y.
+ Z = Op0;
+ if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y)
+ // See if "V === Z - X" simplifies.
+ if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse-1))
+ // It does! Now see if "V + Y" simplifies.
+ if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse-1)) {
+ // It does, we successfully reassociated!
+ ++NumReassoc;
+ return W;
+ }
+
+ // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies.
+ if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) &&
+ match(Op1, m_Trunc(m_Value(Y))))
+ if (X->getType() == Y->getType())
+ // See if "V === X - Y" simplifies.
+ if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1))
+ // It does! Now see if "trunc V" simplifies.
+ if (Value *W = SimplifyCastInst(Instruction::Trunc, V, Op0->getType(),
+ Q, MaxRecurse - 1))
+ // It does, return the simplified "trunc V".
+ return W;
+
+ // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...).
+ if (match(Op0, m_PtrToInt(m_Value(X))) &&
+ match(Op1, m_PtrToInt(m_Value(Y))))
+ if (Constant *Result = computePointerDifference(Q.DL, X, Y))
+ return ConstantExpr::getIntegerCast(Result, Op0->getType(), true);
+
+ // i1 sub -> xor.
+ if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1))
+ if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1))
+ return V;
+
+ // Threading Sub over selects and phi nodes is pointless, so don't bother.
+ // Threading over the select in "A - select(cond, B, C)" means evaluating
+ // "A-B" and "A-C" and seeing if they are equal; but they are equal if and
+ // only if B and C are equal. If B and C are equal then (since we assume
+ // that operands have already been simplified) "select(cond, B, C)" should
+ // have been simplified to the common value of B and C already. Analysing
+ // "A-B" and "A-C" thus gains nothing, but costs compile time. Similarly
+ // for threading over phi nodes.
+
+ return nullptr;
+}
+
+Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
+ const SimplifyQuery &Q) {
+ return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit);
+}
+
+/// Given operands for a Mul, see if we can fold the result.
+/// If not, this returns null.
+static Value *SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
+ unsigned MaxRecurse) {
+ if (Constant *C = foldOrCommuteConstant(Instruction::Mul, Op0, Op1, Q))
+ return C;
+
+ // X * undef -> 0
+ // X * 0 -> 0
+ if (match(Op1, m_CombineOr(m_Undef(), m_Zero())))
+ return Constant::getNullValue(Op0->getType());
+
+ // X * 1 -> X
+ if (match(Op1, m_One()))
+ return Op0;
+
+ // (X / Y) * Y -> X if the division is exact.
+ Value *X = nullptr;
+ if (Q.IIQ.UseInstrInfo &&
+ (match(Op0,
+ m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) || // (X / Y) * Y
+ match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0)))))) // Y * (X / Y)
+ return X;
+
+ // i1 mul -> and.
+ if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1))
+ if (Value *V = SimplifyAndInst(Op0, Op1, Q, MaxRecurse-1))
+ return V;
+
+ // Try some generic simplifications for associative operations.
+ if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q,
+ MaxRecurse))
+ return V;
+
+ // Mul distributes over Add. Try some generic simplifications based on this.
+ if (Value *V = ExpandBinOp(Instruction::Mul, Op0, Op1, Instruction::Add,
+ Q, MaxRecurse))
+ return V;
+
+ // If the operation is with the result of a select instruction, check whether
+ // operating on either branch of the select always yields the same value.
+ if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
+ if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q,
+ MaxRecurse))
+ return V;
+
+ // If the operation is with the result of a phi instruction, check whether
+ // operating on all incoming values of the phi always yields the same value.
+ if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
+ if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q,
+ MaxRecurse))
+ return V;
+
+ return nullptr;
+}
+
+Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
+ return ::SimplifyMulInst(Op0, Op1, Q, RecursionLimit);
+}
+
+/// Check for common or similar folds of integer division or integer remainder.
+/// This applies to all 4 opcodes (sdiv/udiv/srem/urem).
+static Value *simplifyDivRem(Value *Op0, Value *Op1, bool IsDiv) {
+ Type *Ty = Op0->getType();
+
+ // X / undef -> undef
+ // X % undef -> undef
+ if (match(Op1, m_Undef()))
+ return Op1;
+
+ // X / 0 -> undef
+ // X % 0 -> undef
+ // We don't need to preserve faults!
+ if (match(Op1, m_Zero()))
+ return UndefValue::get(Ty);
+
+ // If any element of a constant divisor vector is zero or undef, the whole op
+ // is undef.
+ auto *Op1C = dyn_cast<Constant>(Op1);
+ if (Op1C && Ty->isVectorTy()) {
+ unsigned NumElts = Ty->getVectorNumElements();
+ for (unsigned i = 0; i != NumElts; ++i) {
+ Constant *Elt = Op1C->getAggregateElement(i);
+ if (Elt && (Elt->isNullValue() || isa<UndefValue>(Elt)))
+ return UndefValue::get(Ty);
+ }
+ }
+
+ // undef / X -> 0
+ // undef % X -> 0
+ if (match(Op0, m_Undef()))
+ return Constant::getNullValue(Ty);
+
+ // 0 / X -> 0
+ // 0 % X -> 0
+ if (match(Op0, m_Zero()))
+ return Constant::getNullValue(Op0->getType());
+
+ // X / X -> 1
+ // X % X -> 0
+ if (Op0 == Op1)
+ return IsDiv ? ConstantInt::get(Ty, 1) : Constant::getNullValue(Ty);
+
+ // X / 1 -> X
+ // X % 1 -> 0
+ // If this is a boolean op (single-bit element type), we can't have
+ // division-by-zero or remainder-by-zero, so assume the divisor is 1.
+ // Similarly, if we're zero-extending a boolean divisor, then assume it's a 1.
+ Value *X;
+ if (match(Op1, m_One()) || Ty->isIntOrIntVectorTy(1) ||
+ (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)))
+ return IsDiv ? Op0 : Constant::getNullValue(Ty);
+
+ return nullptr;
+}
+
+/// Given a predicate and two operands, return true if the comparison is true.
+/// This is a helper for div/rem simplification where we return some other value
+/// when we can prove a relationship between the operands.
+static bool isICmpTrue(ICmpInst::Predicate Pred, Value *LHS, Value *RHS,
+ const SimplifyQuery &Q, unsigned MaxRecurse) {
+ Value *V = SimplifyICmpInst(Pred, LHS, RHS, Q, MaxRecurse);
+ Constant *C = dyn_cast_or_null<Constant>(V);
+ return (C && C->isAllOnesValue());
+}
+
+/// Return true if we can simplify X / Y to 0. Remainder can adapt that answer
+/// to simplify X % Y to X.
+static bool isDivZero(Value *X, Value *Y, const SimplifyQuery &Q,
+ unsigned MaxRecurse, bool IsSigned) {
+ // Recursion is always used, so bail out at once if we already hit the limit.
+ if (!MaxRecurse--)
+ return false;
+
+ if (IsSigned) {
+ // |X| / |Y| --> 0
+ //
+ // We require that 1 operand is a simple constant. That could be extended to
+ // 2 variables if we computed the sign bit for each.
+ //
+ // Make sure that a constant is not the minimum signed value because taking
+ // the abs() of that is undefined.
+ Type *Ty = X->getType();
+ const APInt *C;
+ if (match(X, m_APInt(C)) && !C->isMinSignedValue()) {
+ // Is the variable divisor magnitude always greater than the constant
+ // dividend magnitude?
+ // |Y| > |C| --> Y < -abs(C) or Y > abs(C)
+ Constant *PosDividendC = ConstantInt::get(Ty, C->abs());
+ Constant *NegDividendC = ConstantInt::get(Ty, -C->abs());
+ if (isICmpTrue(CmpInst::ICMP_SLT, Y, NegDividendC, Q, MaxRecurse) ||
+ isICmpTrue(CmpInst::ICMP_SGT, Y, PosDividendC, Q, MaxRecurse))
+ return true;
+ }
+ if (match(Y, m_APInt(C))) {
+ // Special-case: we can't take the abs() of a minimum signed value. If
+ // that's the divisor, then all we have to do is prove that the dividend
+ // is also not the minimum signed value.
+ if (C->isMinSignedValue())
+ return isICmpTrue(CmpInst::ICMP_NE, X, Y, Q, MaxRecurse);
+
+ // Is the variable dividend magnitude always less than the constant
+ // divisor magnitude?
+ // |X| < |C| --> X > -abs(C) and X < abs(C)
+ Constant *PosDivisorC = ConstantInt::get(Ty, C->abs());
+ Constant *NegDivisorC = ConstantInt::get(Ty, -C->abs());
+ if (isICmpTrue(CmpInst::ICMP_SGT, X, NegDivisorC, Q, MaxRecurse) &&
+ isICmpTrue(CmpInst::ICMP_SLT, X, PosDivisorC, Q, MaxRecurse))
+ return true;
+ }
+ return false;
+ }
+
+ // IsSigned == false.
+ // Is the dividend unsigned less than the divisor?
+ return isICmpTrue(ICmpInst::ICMP_ULT, X, Y, Q, MaxRecurse);
+}
+
+/// These are simplifications common to SDiv and UDiv.
+static Value *simplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
+ const SimplifyQuery &Q, unsigned MaxRecurse) {
+ if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q))
+ return C;
+
+ if (Value *V = simplifyDivRem(Op0, Op1, true))
+ return V;
+
+ bool IsSigned = Opcode == Instruction::SDiv;
+
+ // (X * Y) / Y -> X if the multiplication does not overflow.
+ Value *X;
+ if (match(Op0, m_c_Mul(m_Value(X), m_Specific(Op1)))) {
+ auto *Mul = cast<OverflowingBinaryOperator>(Op0);
+ // If the Mul does not overflow, then we are good to go.
+ if ((IsSigned && Q.IIQ.hasNoSignedWrap(Mul)) ||
+ (!IsSigned && Q.IIQ.hasNoUnsignedWrap(Mul)))
+ return X;
+ // If X has the form X = A / Y, then X * Y cannot overflow.
+ if ((IsSigned && match(X, m_SDiv(m_Value(), m_Specific(Op1)))) ||
+ (!IsSigned && match(X, m_UDiv(m_Value(), m_Specific(Op1)))))
+ return X;
+ }
+
+ // (X rem Y) / Y -> 0
+ if ((IsSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) ||
+ (!IsSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
+ return Constant::getNullValue(Op0->getType());
+
+ // (X /u C1) /u C2 -> 0 if C1 * C2 overflow
+ ConstantInt *C1, *C2;
+ if (!IsSigned && match(Op0, m_UDiv(m_Value(X), m_ConstantInt(C1))) &&
+ match(Op1, m_ConstantInt(C2))) {
+ bool Overflow;
+ (void)C1->getValue().umul_ov(C2->getValue(), Overflow);
+ if (Overflow)
+ return Constant::getNullValue(Op0->getType());
+ }
+
+ // If the operation is with the result of a select instruction, check whether
+ // operating on either branch of the select always yields the same value.
+ if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
+ if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
+ return V;
+
+ // If the operation is with the result of a phi instruction, check whether
+ // operating on all incoming values of the phi always yields the same value.
+ if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
+ if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
+ return V;
+
+ if (isDivZero(Op0, Op1, Q, MaxRecurse, IsSigned))
+ return Constant::getNullValue(Op0->getType());
+
+ return nullptr;
+}
+
+/// These are simplifications common to SRem and URem.
+static Value *simplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
+ const SimplifyQuery &Q, unsigned MaxRecurse) {
+ if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q))
+ return C;
+
+ if (Value *V = simplifyDivRem(Op0, Op1, false))
+ return V;
+
+ // (X % Y) % Y -> X % Y
+ if ((Opcode == Instruction::SRem &&
+ match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) ||
+ (Opcode == Instruction::URem &&
+ match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
+ return Op0;
+
+ // (X << Y) % X -> 0
+ if (Q.IIQ.UseInstrInfo &&
+ ((Opcode == Instruction::SRem &&
+ match(Op0, m_NSWShl(m_Specific(Op1), m_Value()))) ||
+ (Opcode == Instruction::URem &&
+ match(Op0, m_NUWShl(m_Specific(Op1), m_Value())))))
+ return Constant::getNullValue(Op0->getType());
+
+ // If the operation is with the result of a select instruction, check whether
+ // operating on either branch of the select always yields the same value.
+ if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
+ if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
+ return V;
+
+ // If the operation is with the result of a phi instruction, check whether
+ // operating on all incoming values of the phi always yields the same value.
+ if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
+ if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
+ return V;
+
+ // If X / Y == 0, then X % Y == X.
+ if (isDivZero(Op0, Op1, Q, MaxRecurse, Opcode == Instruction::SRem))
+ return Op0;
+
+ return nullptr;
+}
+
+/// Given operands for an SDiv, see if we can fold the result.
+/// If not, this returns null.
+static Value *SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
+ unsigned MaxRecurse) {
+ // If two operands are negated and no signed overflow, return -1.
+ if (isKnownNegation(Op0, Op1, /*NeedNSW=*/true))
+ return Constant::getAllOnesValue(Op0->getType());
+
+ return simplifyDiv(Instruction::SDiv, Op0, Op1, Q, MaxRecurse);
+}
+
+Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
+ return ::SimplifySDivInst(Op0, Op1, Q, RecursionLimit);
+}
+
+/// Given operands for a UDiv, see if we can fold the result.
+/// If not, this returns null.
+static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
+ unsigned MaxRecurse) {
+ return simplifyDiv(Instruction::UDiv, Op0, Op1, Q, MaxRecurse);
+}
+
+Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
+ return ::SimplifyUDivInst(Op0, Op1, Q, RecursionLimit);
+}
+
+/// Given operands for an SRem, see if we can fold the result.
+/// If not, this returns null.
+static Value *SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
+ unsigned MaxRecurse) {
+ // If the divisor is 0, the result is undefined, so assume the divisor is -1.
+ // srem Op0, (sext i1 X) --> srem Op0, -1 --> 0
+ Value *X;
+ if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))
+ return ConstantInt::getNullValue(Op0->getType());
+
+ // If the two operands are negated, return 0.
+ if (isKnownNegation(Op0, Op1))
+ return ConstantInt::getNullValue(Op0->getType());
+
+ return simplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse);
+}
+
+Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
+ return ::SimplifySRemInst(Op0, Op1, Q, RecursionLimit);
+}
+
+/// Given operands for a URem, see if we can fold the result.
+/// If not, this returns null.
+static Value *SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
+ unsigned MaxRecurse) {
+ return simplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse);
+}
+
+Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
+ return ::SimplifyURemInst(Op0, Op1, Q, RecursionLimit);
+}
+
+/// Returns true if a shift by \c Amount always yields undef.
+static bool isUndefShift(Value *Amount) {
+ Constant *C = dyn_cast<Constant>(Amount);
+ if (!C)
+ return false;
+
+ // X shift by undef -> undef because it may shift by the bitwidth.
+ if (isa<UndefValue>(C))
+ return true;
+
+ // Shifting by the bitwidth or more is undefined.
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
+ if (CI->getValue().getLimitedValue() >=
+ CI->getType()->getScalarSizeInBits())
+ return true;
+
+ // If all lanes of a vector shift are undefined the whole shift is.
+ if (isa<ConstantVector>(C) || isa<ConstantDataVector>(C)) {
+ for (unsigned I = 0, E = C->getType()->getVectorNumElements(); I != E; ++I)
+ if (!isUndefShift(C->getAggregateElement(I)))
+ return false;
+ return true;
+ }
+
+ return false;
+}
+
+/// Given operands for an Shl, LShr or AShr, see if we can fold the result.
+/// If not, this returns null.
+static Value *SimplifyShift(Instruction::BinaryOps Opcode, Value *Op0,
+ Value *Op1, const SimplifyQuery &Q, unsigned MaxRecurse) {
+ if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q))
+ return C;
+
+ // 0 shift by X -> 0
+ if (match(Op0, m_Zero()))
+ return Constant::getNullValue(Op0->getType());
+
+ // X shift by 0 -> X
+ // Shift-by-sign-extended bool must be shift-by-0 because shift-by-all-ones
+ // would be poison.
+ Value *X;
+ if (match(Op1, m_Zero()) ||
+ (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)))
+ return Op0;
+
+ // Fold undefined shifts.
+ if (isUndefShift(Op1))
+ return UndefValue::get(Op0->getType());
+
+ // If the operation is with the result of a select instruction, check whether
+ // operating on either branch of the select always yields the same value.
+ if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
+ if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
+ return V;
+
+ // If the operation is with the result of a phi instruction, check whether
+ // operating on all incoming values of the phi always yields the same value.
+ if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
+ if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
+ return V;
+
+ // If any bits in the shift amount make that value greater than or equal to
+ // the number of bits in the type, the shift is undefined.
+ KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
+ if (Known.One.getLimitedValue() >= Known.getBitWidth())
+ return UndefValue::get(Op0->getType());
+
+ // If all valid bits in the shift amount are known zero, the first operand is
+ // unchanged.
+ unsigned NumValidShiftBits = Log2_32_Ceil(Known.getBitWidth());
+ if (Known.countMinTrailingZeros() >= NumValidShiftBits)
+ return Op0;
+
+ return nullptr;
+}
+
+/// Given operands for an Shl, LShr or AShr, see if we can
+/// fold the result. If not, this returns null.
+static Value *SimplifyRightShift(Instruction::BinaryOps Opcode, Value *Op0,
+ Value *Op1, bool isExact, const SimplifyQuery &Q,
+ unsigned MaxRecurse) {
+ if (Value *V = SimplifyShift(Opcode, Op0, Op1, Q, MaxRecurse))
+ return V;
+
+ // X >> X -> 0
+ if (Op0 == Op1)
+ return Constant::getNullValue(Op0->getType());
+
+ // undef >> X -> 0
+ // undef >> X -> undef (if it's exact)
+ if (match(Op0, m_Undef()))
+ return isExact ? Op0 : Constant::getNullValue(Op0->getType());
+
+ // The low bit cannot be shifted out of an exact shift if it is set.
+ if (isExact) {
+ KnownBits Op0Known = computeKnownBits(Op0, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT);
+ if (Op0Known.One[0])
+ return Op0;
+ }
+
+ return nullptr;
+}
+
+/// Given operands for an Shl, see if we can fold the result.
+/// If not, this returns null.
+static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
+ const SimplifyQuery &Q, unsigned MaxRecurse) {
+ if (Value *V = SimplifyShift(Instruction::Shl, Op0, Op1, Q, MaxRecurse))
+ return V;
+
+ // undef << X -> 0
+ // undef << X -> undef if (if it's NSW/NUW)
+ if (match(Op0, m_Undef()))
+ return isNSW || isNUW ? Op0 : Constant::getNullValue(Op0->getType());
+
+ // (X >> A) << A -> X
+ Value *X;
+ if (Q.IIQ.UseInstrInfo &&
+ match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1)))))
+ return X;
+
+ // shl nuw i8 C, %x -> C iff C has sign bit set.
+ if (isNUW && match(Op0, m_Negative()))
+ return Op0;
+ // NOTE: could use computeKnownBits() / LazyValueInfo,
+ // but the cost-benefit analysis suggests it isn't worth it.
+
+ return nullptr;
+}
+
+Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
+ const SimplifyQuery &Q) {
+ return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit);
+}
+
+/// Given operands for an LShr, see if we can fold the result.
+/// If not, this returns null.
+static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
+ const SimplifyQuery &Q, unsigned MaxRecurse) {
+ if (Value *V = SimplifyRightShift(Instruction::LShr, Op0, Op1, isExact, Q,
+ MaxRecurse))
+ return V;
+
+ // (X << A) >> A -> X
+ Value *X;
+ if (match(Op0, m_NUWShl(m_Value(X), m_Specific(Op1))))
+ return X;
+
+ // ((X << A) | Y) >> A -> X if effective width of Y is not larger than A.
+ // We can return X as we do in the above case since OR alters no bits in X.
+ // SimplifyDemandedBits in InstCombine can do more general optimization for
+ // bit manipulation. This pattern aims to provide opportunities for other
+ // optimizers by supporting a simple but common case in InstSimplify.
+ Value *Y;
+ const APInt *ShRAmt, *ShLAmt;
+ if (match(Op1, m_APInt(ShRAmt)) &&
+ match(Op0, m_c_Or(m_NUWShl(m_Value(X), m_APInt(ShLAmt)), m_Value(Y))) &&
+ *ShRAmt == *ShLAmt) {
+ const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
+ const unsigned Width = Op0->getType()->getScalarSizeInBits();
+ const unsigned EffWidthY = Width - YKnown.countMinLeadingZeros();
+ if (ShRAmt->uge(EffWidthY))
+ return X;
+ }
+
+ return nullptr;
+}
+
+Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
+ const SimplifyQuery &Q) {
+ return ::SimplifyLShrInst(Op0, Op1, isExact, Q, RecursionLimit);
+}
+
+/// Given operands for an AShr, see if we can fold the result.
+/// If not, this returns null.
+static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
+ const SimplifyQuery &Q, unsigned MaxRecurse) {
+ if (Value *V = SimplifyRightShift(Instruction::AShr, Op0, Op1, isExact, Q,
+ MaxRecurse))
+ return V;
+
+ // all ones >>a X -> -1
+ // Do not return Op0 because it may contain undef elements if it's a vector.
+ if (match(Op0, m_AllOnes()))
+ return Constant::getAllOnesValue(Op0->getType());
+
+ // (X << A) >> A -> X
+ Value *X;
+ if (Q.IIQ.UseInstrInfo && match(Op0, m_NSWShl(m_Value(X), m_Specific(Op1))))
+ return X;
+
+ // Arithmetic shifting an all-sign-bit value is a no-op.
+ unsigned NumSignBits = ComputeNumSignBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
+ if (NumSignBits == Op0->getType()->getScalarSizeInBits())
+ return Op0;
+
+ return nullptr;
+}
+
+Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
+ const SimplifyQuery &Q) {
+ return ::SimplifyAShrInst(Op0, Op1, isExact, Q, RecursionLimit);
+}
+
+/// Commuted variants are assumed to be handled by calling this function again
+/// with the parameters swapped.
+static Value *simplifyUnsignedRangeCheck(ICmpInst *ZeroICmp,
+ ICmpInst *UnsignedICmp, bool IsAnd,
+ const SimplifyQuery &Q) {
+ Value *X, *Y;
+
+ ICmpInst::Predicate EqPred;
+ if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(Y), m_Zero())) ||
+ !ICmpInst::isEquality(EqPred))
+ return nullptr;
+
+ ICmpInst::Predicate UnsignedPred;
+
+ Value *A, *B;
+ // Y = (A - B);
+ if (match(Y, m_Sub(m_Value(A), m_Value(B)))) {
+ if (match(UnsignedICmp,
+ m_c_ICmp(UnsignedPred, m_Specific(A), m_Specific(B))) &&
+ ICmpInst::isUnsigned(UnsignedPred)) {
+ if (UnsignedICmp->getOperand(0) != A)
+ UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred);
+
+ // A >=/<= B || (A - B) != 0 <--> true
+ if ((UnsignedPred == ICmpInst::ICMP_UGE ||
+ UnsignedPred == ICmpInst::ICMP_ULE) &&
+ EqPred == ICmpInst::ICMP_NE && !IsAnd)
+ return ConstantInt::getTrue(UnsignedICmp->getType());
+ // A </> B && (A - B) == 0 <--> false
+ if ((UnsignedPred == ICmpInst::ICMP_ULT ||
+ UnsignedPred == ICmpInst::ICMP_UGT) &&
+ EqPred == ICmpInst::ICMP_EQ && IsAnd)
+ return ConstantInt::getFalse(UnsignedICmp->getType());
+
+ // A </> B && (A - B) != 0 <--> A </> B
+ // A </> B || (A - B) != 0 <--> (A - B) != 0
+ if (EqPred == ICmpInst::ICMP_NE && (UnsignedPred == ICmpInst::ICMP_ULT ||
+ UnsignedPred == ICmpInst::ICMP_UGT))
+ return IsAnd ? UnsignedICmp : ZeroICmp;
+
+ // A <=/>= B && (A - B) == 0 <--> (A - B) == 0
+ // A <=/>= B || (A - B) == 0 <--> A <=/>= B
+ if (EqPred == ICmpInst::ICMP_EQ && (UnsignedPred == ICmpInst::ICMP_ULE ||
+ UnsignedPred == ICmpInst::ICMP_UGE))
+ return IsAnd ? ZeroICmp : UnsignedICmp;
+ }
+
+ // Given Y = (A - B)
+ // Y >= A && Y != 0 --> Y >= A iff B != 0
+ // Y < A || Y == 0 --> Y < A iff B != 0
+ if (match(UnsignedICmp,
+ m_c_ICmp(UnsignedPred, m_Specific(Y), m_Specific(A)))) {
+ if (UnsignedICmp->getOperand(0) != Y)
+ UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred);
+
+ if (UnsignedPred == ICmpInst::ICMP_UGE && IsAnd &&
+ EqPred == ICmpInst::ICMP_NE &&
+ isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
+ return UnsignedICmp;
+ if (UnsignedPred == ICmpInst::ICMP_ULT && !IsAnd &&
+ EqPred == ICmpInst::ICMP_EQ &&
+ isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
+ return UnsignedICmp;
+ }
+ }
+
+ if (match(UnsignedICmp, m_ICmp(UnsignedPred, m_Value(X), m_Specific(Y))) &&
+ ICmpInst::isUnsigned(UnsignedPred))
+ ;
+ else if (match(UnsignedICmp,
+ m_ICmp(UnsignedPred, m_Specific(Y), m_Value(X))) &&
+ ICmpInst::isUnsigned(UnsignedPred))
+ UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred);
+ else
+ return nullptr;
+
+ // X < Y && Y != 0 --> X < Y
+ // X < Y || Y != 0 --> Y != 0
+ if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE)
+ return IsAnd ? UnsignedICmp : ZeroICmp;
+
+ // X <= Y && Y != 0 --> X <= Y iff X != 0
+ // X <= Y || Y != 0 --> Y != 0 iff X != 0
+ if (UnsignedPred == ICmpInst::ICMP_ULE && EqPred == ICmpInst::ICMP_NE &&
+ isKnownNonZero(X, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
+ return IsAnd ? UnsignedICmp : ZeroICmp;
+
+ // X >= Y && Y == 0 --> Y == 0
+ // X >= Y || Y == 0 --> X >= Y
+ if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_EQ)
+ return IsAnd ? ZeroICmp : UnsignedICmp;
+
+ // X > Y && Y == 0 --> Y == 0 iff X != 0
+ // X > Y || Y == 0 --> X > Y iff X != 0
+ if (UnsignedPred == ICmpInst::ICMP_UGT && EqPred == ICmpInst::ICMP_EQ &&
+ isKnownNonZero(X, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
+ return IsAnd ? ZeroICmp : UnsignedICmp;
+
+ // X < Y && Y == 0 --> false
+ if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_EQ &&
+ IsAnd)
+ return getFalse(UnsignedICmp->getType());
+
+ // X >= Y || Y != 0 --> true
+ if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_NE &&
+ !IsAnd)
+ return getTrue(UnsignedICmp->getType());
+
+ return nullptr;
+}
+
+/// Commuted variants are assumed to be handled by calling this function again
+/// with the parameters swapped.
+static Value *simplifyAndOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) {
+ ICmpInst::Predicate Pred0, Pred1;
+ Value *A ,*B;
+ if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) ||
+ !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B))))
+ return nullptr;
+
+ // We have (icmp Pred0, A, B) & (icmp Pred1, A, B).
+ // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we
+ // can eliminate Op1 from this 'and'.
+ if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1))
+ return Op0;
+
+ // Check for any combination of predicates that are guaranteed to be disjoint.
+ if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) ||
+ (Pred0 == ICmpInst::ICMP_EQ && ICmpInst::isFalseWhenEqual(Pred1)) ||
+ (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT) ||
+ (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT))
+ return getFalse(Op0->getType());
+
+ return nullptr;
+}
+
+/// Commuted variants are assumed to be handled by calling this function again
+/// with the parameters swapped.
+static Value *simplifyOrOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) {
+ ICmpInst::Predicate Pred0, Pred1;
+ Value *A ,*B;
+ if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) ||
+ !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B))))
+ return nullptr;
+
+ // We have (icmp Pred0, A, B) | (icmp Pred1, A, B).
+ // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we
+ // can eliminate Op0 from this 'or'.
+ if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1))
+ return Op1;
+
+ // Check for any combination of predicates that cover the entire range of
+ // possibilities.
+ if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) ||
+ (Pred0 == ICmpInst::ICMP_NE && ICmpInst::isTrueWhenEqual(Pred1)) ||
+ (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGE) ||
+ (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGE))
+ return getTrue(Op0->getType());
+
+ return nullptr;
+}
+
+/// Test if a pair of compares with a shared operand and 2 constants has an
+/// empty set intersection, full set union, or if one compare is a superset of
+/// the other.
+static Value *simplifyAndOrOfICmpsWithConstants(ICmpInst *Cmp0, ICmpInst *Cmp1,
+ bool IsAnd) {
+ // Look for this pattern: {and/or} (icmp X, C0), (icmp X, C1)).
+ if (Cmp0->getOperand(0) != Cmp1->getOperand(0))
+ return nullptr;
+
+ const APInt *C0, *C1;
+ if (!match(Cmp0->getOperand(1), m_APInt(C0)) ||
+ !match(Cmp1->getOperand(1), m_APInt(C1)))
+ return nullptr;
+
+ auto Range0 = ConstantRange::makeExactICmpRegion(Cmp0->getPredicate(), *C0);
+ auto Range1 = ConstantRange::makeExactICmpRegion(Cmp1->getPredicate(), *C1);
+
+ // For and-of-compares, check if the intersection is empty:
+ // (icmp X, C0) && (icmp X, C1) --> empty set --> false
+ if (IsAnd && Range0.intersectWith(Range1).isEmptySet())
+ return getFalse(Cmp0->getType());
+
+ // For or-of-compares, check if the union is full:
+ // (icmp X, C0) || (icmp X, C1) --> full set --> true
+ if (!IsAnd && Range0.unionWith(Range1).isFullSet())
+ return getTrue(Cmp0->getType());
+
+ // Is one range a superset of the other?
+ // If this is and-of-compares, take the smaller set:
+ // (icmp sgt X, 4) && (icmp sgt X, 42) --> icmp sgt X, 42
+ // If this is or-of-compares, take the larger set:
+ // (icmp sgt X, 4) || (icmp sgt X, 42) --> icmp sgt X, 4
+ if (Range0.contains(Range1))
+ return IsAnd ? Cmp1 : Cmp0;
+ if (Range1.contains(Range0))
+ return IsAnd ? Cmp0 : Cmp1;
+
+ return nullptr;
+}
+
+static Value *simplifyAndOrOfICmpsWithZero(ICmpInst *Cmp0, ICmpInst *Cmp1,
+ bool IsAnd) {
+ ICmpInst::Predicate P0 = Cmp0->getPredicate(), P1 = Cmp1->getPredicate();
+ if (!match(Cmp0->getOperand(1), m_Zero()) ||
+ !match(Cmp1->getOperand(1), m_Zero()) || P0 != P1)
+ return nullptr;
+
+ if ((IsAnd && P0 != ICmpInst::ICMP_NE) || (!IsAnd && P1 != ICmpInst::ICMP_EQ))
+ return nullptr;
+
+ // We have either "(X == 0 || Y == 0)" or "(X != 0 && Y != 0)".
+ Value *X = Cmp0->getOperand(0);
+ Value *Y = Cmp1->getOperand(0);
+
+ // If one of the compares is a masked version of a (not) null check, then
+ // that compare implies the other, so we eliminate the other. Optionally, look
+ // through a pointer-to-int cast to match a null check of a pointer type.
+
+ // (X == 0) || (([ptrtoint] X & ?) == 0) --> ([ptrtoint] X & ?) == 0
+ // (X == 0) || ((? & [ptrtoint] X) == 0) --> (? & [ptrtoint] X) == 0
+ // (X != 0) && (([ptrtoint] X & ?) != 0) --> ([ptrtoint] X & ?) != 0
+ // (X != 0) && ((? & [ptrtoint] X) != 0) --> (? & [ptrtoint] X) != 0
+ if (match(Y, m_c_And(m_Specific(X), m_Value())) ||
+ match(Y, m_c_And(m_PtrToInt(m_Specific(X)), m_Value())))
+ return Cmp1;
+
+ // (([ptrtoint] Y & ?) == 0) || (Y == 0) --> ([ptrtoint] Y & ?) == 0
+ // ((? & [ptrtoint] Y) == 0) || (Y == 0) --> (? & [ptrtoint] Y) == 0
+ // (([ptrtoint] Y & ?) != 0) && (Y != 0) --> ([ptrtoint] Y & ?) != 0
+ // ((? & [ptrtoint] Y) != 0) && (Y != 0) --> (? & [ptrtoint] Y) != 0
+ if (match(X, m_c_And(m_Specific(Y), m_Value())) ||
+ match(X, m_c_And(m_PtrToInt(m_Specific(Y)), m_Value())))
+ return Cmp0;
+
+ return nullptr;
+}
+
+static Value *simplifyAndOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1,
+ const InstrInfoQuery &IIQ) {
+ // (icmp (add V, C0), C1) & (icmp V, C0)
+ ICmpInst::Predicate Pred0, Pred1;
+ const APInt *C0, *C1;
+ Value *V;
+ if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1))))
+ return nullptr;
+
+ if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value())))
+ return nullptr;
+
+ auto *AddInst = cast<OverflowingBinaryOperator>(Op0->getOperand(0));
+ if (AddInst->getOperand(1) != Op1->getOperand(1))
+ return nullptr;
+
+ Type *ITy = Op0->getType();
+ bool isNSW = IIQ.hasNoSignedWrap(AddInst);
+ bool isNUW = IIQ.hasNoUnsignedWrap(AddInst);
+
+ const APInt Delta = *C1 - *C0;
+ if (C0->isStrictlyPositive()) {
+ if (Delta == 2) {
+ if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_SGT)
+ return getFalse(ITy);
+ if (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT && isNSW)
+ return getFalse(ITy);
+ }
+ if (Delta == 1) {
+ if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_SGT)
+ return getFalse(ITy);
+ if (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGT && isNSW)
+ return getFalse(ITy);
+ }
+ }
+ if (C0->getBoolValue() && isNUW) {
+ if (Delta == 2)
+ if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT)
+ return getFalse(ITy);
+ if (Delta == 1)
+ if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGT)
+ return getFalse(ITy);
+ }
+
+ return nullptr;
+}
+
+static Value *simplifyAndOfICmps(ICmpInst *Op0, ICmpInst *Op1,
+ const SimplifyQuery &Q) {
+ if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/true, Q))
+ return X;
+ if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/true, Q))
+ return X;
+
+ if (Value *X = simplifyAndOfICmpsWithSameOperands(Op0, Op1))
+ return X;
+ if (Value *X = simplifyAndOfICmpsWithSameOperands(Op1, Op0))
+ return X;
+
+ if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, true))
+ return X;
+
+ if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, true))
+ return X;
+
+ if (Value *X = simplifyAndOfICmpsWithAdd(Op0, Op1, Q.IIQ))
+ return X;
+ if (Value *X = simplifyAndOfICmpsWithAdd(Op1, Op0, Q.IIQ))
+ return X;
+
+ return nullptr;
+}
+
+static Value *simplifyOrOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1,
+ const InstrInfoQuery &IIQ) {
+ // (icmp (add V, C0), C1) | (icmp V, C0)
+ ICmpInst::Predicate Pred0, Pred1;
+ const APInt *C0, *C1;
+ Value *V;
+ if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1))))
+ return nullptr;
+
+ if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value())))
+ return nullptr;
+
+ auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0));
+ if (AddInst->getOperand(1) != Op1->getOperand(1))
+ return nullptr;
+
+ Type *ITy = Op0->getType();
+ bool isNSW = IIQ.hasNoSignedWrap(AddInst);
+ bool isNUW = IIQ.hasNoUnsignedWrap(AddInst);
+
+ const APInt Delta = *C1 - *C0;
+ if (C0->isStrictlyPositive()) {
+ if (Delta == 2) {
+ if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_SLE)
+ return getTrue(ITy);
+ if (Pred0 == ICmpInst::ICMP_SGE && Pred1 == ICmpInst::ICMP_SLE && isNSW)
+ return getTrue(ITy);
+ }
+ if (Delta == 1) {
+ if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_SLE)
+ return getTrue(ITy);
+ if (Pred0 == ICmpInst::ICMP_SGT && Pred1 == ICmpInst::ICMP_SLE && isNSW)
+ return getTrue(ITy);
+ }
+ }
+ if (C0->getBoolValue() && isNUW) {
+ if (Delta == 2)
+ if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_ULE)
+ return getTrue(ITy);
+ if (Delta == 1)
+ if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_ULE)
+ return getTrue(ITy);
+ }
+
+ return nullptr;
+}
+
+static Value *simplifyOrOfICmps(ICmpInst *Op0, ICmpInst *Op1,
+ const SimplifyQuery &Q) {
+ if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/false, Q))
+ return X;
+ if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/false, Q))
+ return X;
+
+ if (Value *X = simplifyOrOfICmpsWithSameOperands(Op0, Op1))
+ return X;
+ if (Value *X = simplifyOrOfICmpsWithSameOperands(Op1, Op0))
+ return X;
+
+ if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, false))
+ return X;
+
+ if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, false))
+ return X;
+
+ if (Value *X = simplifyOrOfICmpsWithAdd(Op0, Op1, Q.IIQ))
+ return X;
+ if (Value *X = simplifyOrOfICmpsWithAdd(Op1, Op0, Q.IIQ))
+ return X;
+
+ return nullptr;
+}
+
+static Value *simplifyAndOrOfFCmps(const TargetLibraryInfo *TLI,
+ FCmpInst *LHS, FCmpInst *RHS, bool IsAnd) {
+ Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1);
+ Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1);
+ if (LHS0->getType() != RHS0->getType())
+ return nullptr;
+
+ FCmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate();
+ if ((PredL == FCmpInst::FCMP_ORD && PredR == FCmpInst::FCMP_ORD && IsAnd) ||
+ (PredL == FCmpInst::FCMP_UNO && PredR == FCmpInst::FCMP_UNO && !IsAnd)) {
+ // (fcmp ord NNAN, X) & (fcmp ord X, Y) --> fcmp ord X, Y
+ // (fcmp ord NNAN, X) & (fcmp ord Y, X) --> fcmp ord Y, X
+ // (fcmp ord X, NNAN) & (fcmp ord X, Y) --> fcmp ord X, Y
+ // (fcmp ord X, NNAN) & (fcmp ord Y, X) --> fcmp ord Y, X
+ // (fcmp uno NNAN, X) | (fcmp uno X, Y) --> fcmp uno X, Y
+ // (fcmp uno NNAN, X) | (fcmp uno Y, X) --> fcmp uno Y, X
+ // (fcmp uno X, NNAN) | (fcmp uno X, Y) --> fcmp uno X, Y
+ // (fcmp uno X, NNAN) | (fcmp uno Y, X) --> fcmp uno Y, X
+ if ((isKnownNeverNaN(LHS0, TLI) && (LHS1 == RHS0 || LHS1 == RHS1)) ||
+ (isKnownNeverNaN(LHS1, TLI) && (LHS0 == RHS0 || LHS0 == RHS1)))
+ return RHS;
+
+ // (fcmp ord X, Y) & (fcmp ord NNAN, X) --> fcmp ord X, Y
+ // (fcmp ord Y, X) & (fcmp ord NNAN, X) --> fcmp ord Y, X
+ // (fcmp ord X, Y) & (fcmp ord X, NNAN) --> fcmp ord X, Y
+ // (fcmp ord Y, X) & (fcmp ord X, NNAN) --> fcmp ord Y, X
+ // (fcmp uno X, Y) | (fcmp uno NNAN, X) --> fcmp uno X, Y
+ // (fcmp uno Y, X) | (fcmp uno NNAN, X) --> fcmp uno Y, X
+ // (fcmp uno X, Y) | (fcmp uno X, NNAN) --> fcmp uno X, Y
+ // (fcmp uno Y, X) | (fcmp uno X, NNAN) --> fcmp uno Y, X
+ if ((isKnownNeverNaN(RHS0, TLI) && (RHS1 == LHS0 || RHS1 == LHS1)) ||
+ (isKnownNeverNaN(RHS1, TLI) && (RHS0 == LHS0 || RHS0 == LHS1)))
+ return LHS;
+ }
+
+ return nullptr;
+}
+
+static Value *simplifyAndOrOfCmps(const SimplifyQuery &Q,
+ Value *Op0, Value *Op1, bool IsAnd) {
+ // Look through casts of the 'and' operands to find compares.
+ auto *Cast0 = dyn_cast<CastInst>(Op0);
+ auto *Cast1 = dyn_cast<CastInst>(Op1);
+ if (Cast0 && Cast1 && Cast0->getOpcode() == Cast1->getOpcode() &&
+ Cast0->getSrcTy() == Cast1->getSrcTy()) {
+ Op0 = Cast0->getOperand(0);
+ Op1 = Cast1->getOperand(0);
+ }
+
+ Value *V = nullptr;
+ auto *ICmp0 = dyn_cast<ICmpInst>(Op0);
+ auto *ICmp1 = dyn_cast<ICmpInst>(Op1);
+ if (ICmp0 && ICmp1)
+ V = IsAnd ? simplifyAndOfICmps(ICmp0, ICmp1, Q)
+ : simplifyOrOfICmps(ICmp0, ICmp1, Q);
+
+ auto *FCmp0 = dyn_cast<FCmpInst>(Op0);
+ auto *FCmp1 = dyn_cast<FCmpInst>(Op1);
+ if (FCmp0 && FCmp1)
+ V = simplifyAndOrOfFCmps(Q.TLI, FCmp0, FCmp1, IsAnd);
+
+ if (!V)
+ return nullptr;
+ if (!Cast0)
+ return V;
+
+ // If we looked through casts, we can only handle a constant simplification
+ // because we are not allowed to create a cast instruction here.
+ if (auto *C = dyn_cast<Constant>(V))
+ return ConstantExpr::getCast(Cast0->getOpcode(), C, Cast0->getType());
+
+ return nullptr;
+}
+
+/// Check that the Op1 is in expected form, i.e.:
+/// %Agg = tail call { i4, i1 } @llvm.[us]mul.with.overflow.i4(i4 %X, i4 %???)
+/// %Op1 = extractvalue { i4, i1 } %Agg, 1
+static bool omitCheckForZeroBeforeMulWithOverflowInternal(Value *Op1,
+ Value *X) {
+ auto *Extract = dyn_cast<ExtractValueInst>(Op1);
+ // We should only be extracting the overflow bit.
+ if (!Extract || !Extract->getIndices().equals(1))
+ return false;
+ Value *Agg = Extract->getAggregateOperand();
+ // This should be a multiplication-with-overflow intrinsic.
+ if (!match(Agg, m_CombineOr(m_Intrinsic<Intrinsic::umul_with_overflow>(),
+ m_Intrinsic<Intrinsic::smul_with_overflow>())))
+ return false;
+ // One of its multipliers should be the value we checked for zero before.
+ if (!match(Agg, m_CombineOr(m_Argument<0>(m_Specific(X)),
+ m_Argument<1>(m_Specific(X)))))
+ return false;
+ return true;
+}
+
+/// The @llvm.[us]mul.with.overflow intrinsic could have been folded from some
+/// other form of check, e.g. one that was using division; it may have been
+/// guarded against division-by-zero. We can drop that check now.
+/// Look for:
+/// %Op0 = icmp ne i4 %X, 0
+/// %Agg = tail call { i4, i1 } @llvm.[us]mul.with.overflow.i4(i4 %X, i4 %???)
+/// %Op1 = extractvalue { i4, i1 } %Agg, 1
+/// %??? = and i1 %Op0, %Op1
+/// We can just return %Op1
+static Value *omitCheckForZeroBeforeMulWithOverflow(Value *Op0, Value *Op1) {
+ ICmpInst::Predicate Pred;
+ Value *X;
+ if (!match(Op0, m_ICmp(Pred, m_Value(X), m_Zero())) ||
+ Pred != ICmpInst::Predicate::ICMP_NE)
+ return nullptr;
+ // Is Op1 in expected form?
+ if (!omitCheckForZeroBeforeMulWithOverflowInternal(Op1, X))
+ return nullptr;
+ // Can omit 'and', and just return the overflow bit.
+ return Op1;
+}
+
+/// The @llvm.[us]mul.with.overflow intrinsic could have been folded from some
+/// other form of check, e.g. one that was using division; it may have been
+/// guarded against division-by-zero. We can drop that check now.
+/// Look for:
+/// %Op0 = icmp eq i4 %X, 0
+/// %Agg = tail call { i4, i1 } @llvm.[us]mul.with.overflow.i4(i4 %X, i4 %???)
+/// %Op1 = extractvalue { i4, i1 } %Agg, 1
+/// %NotOp1 = xor i1 %Op1, true
+/// %or = or i1 %Op0, %NotOp1
+/// We can just return %NotOp1
+static Value *omitCheckForZeroBeforeInvertedMulWithOverflow(Value *Op0,
+ Value *NotOp1) {
+ ICmpInst::Predicate Pred;
+ Value *X;
+ if (!match(Op0, m_ICmp(Pred, m_Value(X), m_Zero())) ||
+ Pred != ICmpInst::Predicate::ICMP_EQ)
+ return nullptr;
+ // We expect the other hand of an 'or' to be a 'not'.
+ Value *Op1;
+ if (!match(NotOp1, m_Not(m_Value(Op1))))
+ return nullptr;
+ // Is Op1 in expected form?
+ if (!omitCheckForZeroBeforeMulWithOverflowInternal(Op1, X))
+ return nullptr;
+ // Can omit 'and', and just return the inverted overflow bit.
+ return NotOp1;
+}
+
+/// Given operands for an And, see if we can fold the result.
+/// If not, this returns null.
+static Value *SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
+ unsigned MaxRecurse) {
+ if (Constant *C = foldOrCommuteConstant(Instruction::And, Op0, Op1, Q))
+ return C;
+
+ // X & undef -> 0
+ if (match(Op1, m_Undef()))
+ return Constant::getNullValue(Op0->getType());
+
+ // X & X = X
+ if (Op0 == Op1)
+ return Op0;
+
+ // X & 0 = 0
+ if (match(Op1, m_Zero()))
+ return Constant::getNullValue(Op0->getType());
+
+ // X & -1 = X
+ if (match(Op1, m_AllOnes()))
+ return Op0;
+
+ // A & ~A = ~A & A = 0
+ if (match(Op0, m_Not(m_Specific(Op1))) ||
+ match(Op1, m_Not(m_Specific(Op0))))
+ return Constant::getNullValue(Op0->getType());
+
+ // (A | ?) & A = A
+ if (match(Op0, m_c_Or(m_Specific(Op1), m_Value())))
+ return Op1;
+
+ // A & (A | ?) = A
+ if (match(Op1, m_c_Or(m_Specific(Op0), m_Value())))
+ return Op0;
+
+ // A mask that only clears known zeros of a shifted value is a no-op.
+ Value *X;
+ const APInt *Mask;
+ const APInt *ShAmt;
+ if (match(Op1, m_APInt(Mask))) {
+ // If all bits in the inverted and shifted mask are clear:
+ // and (shl X, ShAmt), Mask --> shl X, ShAmt
+ if (match(Op0, m_Shl(m_Value(X), m_APInt(ShAmt))) &&
+ (~(*Mask)).lshr(*ShAmt).isNullValue())
+ return Op0;
+
+ // If all bits in the inverted and shifted mask are clear:
+ // and (lshr X, ShAmt), Mask --> lshr X, ShAmt
+ if (match(Op0, m_LShr(m_Value(X), m_APInt(ShAmt))) &&
+ (~(*Mask)).shl(*ShAmt).isNullValue())
+ return Op0;
+ }
+
+ // If we have a multiplication overflow check that is being 'and'ed with a
+ // check that one of the multipliers is not zero, we can omit the 'and', and
+ // only keep the overflow check.
+ if (Value *V = omitCheckForZeroBeforeMulWithOverflow(Op0, Op1))
+ return V;
+ if (Value *V = omitCheckForZeroBeforeMulWithOverflow(Op1, Op0))
+ return V;
+
+ // A & (-A) = A if A is a power of two or zero.
+ if (match(Op0, m_Neg(m_Specific(Op1))) ||
+ match(Op1, m_Neg(m_Specific(Op0)))) {
+ if (isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI,
+ Q.DT))
+ return Op0;
+ if (isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI,
+ Q.DT))
+ return Op1;
+ }
+
+ // This is a similar pattern used for checking if a value is a power-of-2:
+ // (A - 1) & A --> 0 (if A is a power-of-2 or 0)
+ // A & (A - 1) --> 0 (if A is a power-of-2 or 0)
+ if (match(Op0, m_Add(m_Specific(Op1), m_AllOnes())) &&
+ isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, Q.DT))
+ return Constant::getNullValue(Op1->getType());
+ if (match(Op1, m_Add(m_Specific(Op0), m_AllOnes())) &&
+ isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, Q.DT))
+ return Constant::getNullValue(Op0->getType());
+
+ if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, true))
+ return V;
+
+ // Try some generic simplifications for associative operations.
+ if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q,
+ MaxRecurse))
+ return V;
+
+ // And distributes over Or. Try some generic simplifications based on this.
+ if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Or,
+ Q, MaxRecurse))
+ return V;
+
+ // And distributes over Xor. Try some generic simplifications based on this.
+ if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Xor,
+ Q, MaxRecurse))
+ return V;
+
+ // If the operation is with the result of a select instruction, check whether
+ // operating on either branch of the select always yields the same value.
+ if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
+ if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, Q,
+ MaxRecurse))
+ return V;
+
+ // If the operation is with the result of a phi instruction, check whether
+ // operating on all incoming values of the phi always yields the same value.
+ if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
+ if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, Q,
+ MaxRecurse))
+ return V;
+
+ // Assuming the effective width of Y is not larger than A, i.e. all bits
+ // from X and Y are disjoint in (X << A) | Y,
+ // if the mask of this AND op covers all bits of X or Y, while it covers
+ // no bits from the other, we can bypass this AND op. E.g.,
+ // ((X << A) | Y) & Mask -> Y,
+ // if Mask = ((1 << effective_width_of(Y)) - 1)
+ // ((X << A) | Y) & Mask -> X << A,
+ // if Mask = ((1 << effective_width_of(X)) - 1) << A
+ // SimplifyDemandedBits in InstCombine can optimize the general case.
+ // This pattern aims to help other passes for a common case.
+ Value *Y, *XShifted;
+ if (match(Op1, m_APInt(Mask)) &&
+ match(Op0, m_c_Or(m_CombineAnd(m_NUWShl(m_Value(X), m_APInt(ShAmt)),
+ m_Value(XShifted)),
+ m_Value(Y)))) {
+ const unsigned Width = Op0->getType()->getScalarSizeInBits();
+ const unsigned ShftCnt = ShAmt->getLimitedValue(Width);
+ const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
+ const unsigned EffWidthY = Width - YKnown.countMinLeadingZeros();
+ if (EffWidthY <= ShftCnt) {
+ const KnownBits XKnown = computeKnownBits(X, Q.DL, 0, Q.AC, Q.CxtI,
+ Q.DT);
+ const unsigned EffWidthX = Width - XKnown.countMinLeadingZeros();
+ const APInt EffBitsY = APInt::getLowBitsSet(Width, EffWidthY);
+ const APInt EffBitsX = APInt::getLowBitsSet(Width, EffWidthX) << ShftCnt;
+ // If the mask is extracting all bits from X or Y as is, we can skip
+ // this AND op.
+ if (EffBitsY.isSubsetOf(*Mask) && !EffBitsX.intersects(*Mask))
+ return Y;
+ if (EffBitsX.isSubsetOf(*Mask) && !EffBitsY.intersects(*Mask))
+ return XShifted;
+ }
+ }
+
+ return nullptr;
+}
+
+Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
+ return ::SimplifyAndInst(Op0, Op1, Q, RecursionLimit);
+}
+
+/// Given operands for an Or, see if we can fold the result.
+/// If not, this returns null.
+static Value *SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
+ unsigned MaxRecurse) {
+ if (Constant *C = foldOrCommuteConstant(Instruction::Or, Op0, Op1, Q))
+ return C;
+
+ // X | undef -> -1
+ // X | -1 = -1
+ // Do not return Op1 because it may contain undef elements if it's a vector.
+ if (match(Op1, m_Undef()) || match(Op1, m_AllOnes()))
+ return Constant::getAllOnesValue(Op0->getType());
+
+ // X | X = X
+ // X | 0 = X
+ if (Op0 == Op1 || match(Op1, m_Zero()))
+ return Op0;
+
+ // A | ~A = ~A | A = -1
+ if (match(Op0, m_Not(m_Specific(Op1))) ||
+ match(Op1, m_Not(m_Specific(Op0))))
+ return Constant::getAllOnesValue(Op0->getType());
+
+ // (A & ?) | A = A
+ if (match(Op0, m_c_And(m_Specific(Op1), m_Value())))
+ return Op1;
+
+ // A | (A & ?) = A
+ if (match(Op1, m_c_And(m_Specific(Op0), m_Value())))
+ return Op0;
+
+ // ~(A & ?) | A = -1
+ if (match(Op0, m_Not(m_c_And(m_Specific(Op1), m_Value()))))
+ return Constant::getAllOnesValue(Op1->getType());
+
+ // A | ~(A & ?) = -1
+ if (match(Op1, m_Not(m_c_And(m_Specific(Op1), m_Value()))))
+ return Constant::getAllOnesValue(Op0->getType());
+
+ Value *A, *B;
+ // (A & ~B) | (A ^ B) -> (A ^ B)
+ // (~B & A) | (A ^ B) -> (A ^ B)
+ // (A & ~B) | (B ^ A) -> (B ^ A)
+ // (~B & A) | (B ^ A) -> (B ^ A)
+ if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
+ (match(Op0, m_c_And(m_Specific(A), m_Not(m_Specific(B)))) ||
+ match(Op0, m_c_And(m_Not(m_Specific(A)), m_Specific(B)))))
+ return Op1;
+
+ // Commute the 'or' operands.
+ // (A ^ B) | (A & ~B) -> (A ^ B)
+ // (A ^ B) | (~B & A) -> (A ^ B)
+ // (B ^ A) | (A & ~B) -> (B ^ A)
+ // (B ^ A) | (~B & A) -> (B ^ A)
+ if (match(Op0, m_Xor(m_Value(A), m_Value(B))) &&
+ (match(Op1, m_c_And(m_Specific(A), m_Not(m_Specific(B)))) ||
+ match(Op1, m_c_And(m_Not(m_Specific(A)), m_Specific(B)))))
+ return Op0;
+
+ // (A & B) | (~A ^ B) -> (~A ^ B)
+ // (B & A) | (~A ^ B) -> (~A ^ B)
+ // (A & B) | (B ^ ~A) -> (B ^ ~A)
+ // (B & A) | (B ^ ~A) -> (B ^ ~A)
+ if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
+ (match(Op1, m_c_Xor(m_Specific(A), m_Not(m_Specific(B)))) ||
+ match(Op1, m_c_Xor(m_Not(m_Specific(A)), m_Specific(B)))))
+ return Op1;
+
+ // (~A ^ B) | (A & B) -> (~A ^ B)
+ // (~A ^ B) | (B & A) -> (~A ^ B)
+ // (B ^ ~A) | (A & B) -> (B ^ ~A)
+ // (B ^ ~A) | (B & A) -> (B ^ ~A)
+ if (match(Op1, m_And(m_Value(A), m_Value(B))) &&
+ (match(Op0, m_c_Xor(m_Specific(A), m_Not(m_Specific(B)))) ||
+ match(Op0, m_c_Xor(m_Not(m_Specific(A)), m_Specific(B)))))
+ return Op0;
+
+ if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, false))
+ return V;
+
+ // If we have a multiplication overflow check that is being 'and'ed with a
+ // check that one of the multipliers is not zero, we can omit the 'and', and
+ // only keep the overflow check.
+ if (Value *V = omitCheckForZeroBeforeInvertedMulWithOverflow(Op0, Op1))
+ return V;
+ if (Value *V = omitCheckForZeroBeforeInvertedMulWithOverflow(Op1, Op0))
+ return V;
+
+ // Try some generic simplifications for associative operations.
+ if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q,
+ MaxRecurse))
+ return V;
+
+ // Or distributes over And. Try some generic simplifications based on this.
+ if (Value *V = ExpandBinOp(Instruction::Or, Op0, Op1, Instruction::And, Q,
+ MaxRecurse))
+ return V;
+
+ // If the operation is with the result of a select instruction, check whether
+ // operating on either branch of the select always yields the same value.
+ if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
+ if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, Q,
+ MaxRecurse))
+ return V;
+
+ // (A & C1)|(B & C2)
+ const APInt *C1, *C2;
+ if (match(Op0, m_And(m_Value(A), m_APInt(C1))) &&
+ match(Op1, m_And(m_Value(B), m_APInt(C2)))) {
+ if (*C1 == ~*C2) {
+ // (A & C1)|(B & C2)
+ // If we have: ((V + N) & C1) | (V & C2)
+ // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0
+ // replace with V+N.
+ Value *N;
+ if (C2->isMask() && // C2 == 0+1+
+ match(A, m_c_Add(m_Specific(B), m_Value(N)))) {
+ // Add commutes, try both ways.
+ if (MaskedValueIsZero(N, *C2, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
+ return A;
+ }
+ // Or commutes, try both ways.
+ if (C1->isMask() &&
+ match(B, m_c_Add(m_Specific(A), m_Value(N)))) {
+ // Add commutes, try both ways.
+ if (MaskedValueIsZero(N, *C1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
+ return B;
+ }
+ }
+ }
+
+ // If the operation is with the result of a phi instruction, check whether
+ // operating on all incoming values of the phi always yields the same value.
+ if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
+ if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse))
+ return V;
+
+ return nullptr;
+}
+
+Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
+ return ::SimplifyOrInst(Op0, Op1, Q, RecursionLimit);
+}
+
+/// Given operands for a Xor, see if we can fold the result.
+/// If not, this returns null.
+static Value *SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
+ unsigned MaxRecurse) {
+ if (Constant *C = foldOrCommuteConstant(Instruction::Xor, Op0, Op1, Q))
+ return C;
+
+ // A ^ undef -> undef
+ if (match(Op1, m_Undef()))
+ return Op1;
+
+ // A ^ 0 = A
+ if (match(Op1, m_Zero()))
+ return Op0;
+
+ // A ^ A = 0
+ if (Op0 == Op1)
+ return Constant::getNullValue(Op0->getType());
+
+ // A ^ ~A = ~A ^ A = -1
+ if (match(Op0, m_Not(m_Specific(Op1))) ||
+ match(Op1, m_Not(m_Specific(Op0))))
+ return Constant::getAllOnesValue(Op0->getType());
+
+ // Try some generic simplifications for associative operations.
+ if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q,
+ MaxRecurse))
+ return V;
+
+ // Threading Xor over selects and phi nodes is pointless, so don't bother.
+ // Threading over the select in "A ^ select(cond, B, C)" means evaluating
+ // "A^B" and "A^C" and seeing if they are equal; but they are equal if and
+ // only if B and C are equal. If B and C are equal then (since we assume
+ // that operands have already been simplified) "select(cond, B, C)" should
+ // have been simplified to the common value of B and C already. Analysing
+ // "A^B" and "A^C" thus gains nothing, but costs compile time. Similarly
+ // for threading over phi nodes.
+
+ return nullptr;
+}
+
+Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
+ return ::SimplifyXorInst(Op0, Op1, Q, RecursionLimit);
+}
+
+
+static Type *GetCompareTy(Value *Op) {
+ return CmpInst::makeCmpResultType(Op->getType());
+}
+
+/// Rummage around inside V looking for something equivalent to the comparison
+/// "LHS Pred RHS". Return such a value if found, otherwise return null.
+/// Helper function for analyzing max/min idioms.
+static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred,
+ Value *LHS, Value *RHS) {
+ SelectInst *SI = dyn_cast<SelectInst>(V);
+ if (!SI)
+ return nullptr;
+ CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
+ if (!Cmp)
+ return nullptr;
+ Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1);
+ if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS)
+ return Cmp;
+ if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) &&
+ LHS == CmpRHS && RHS == CmpLHS)
+ return Cmp;
+ return nullptr;
+}
+
+// A significant optimization not implemented here is assuming that alloca
+// addresses are not equal to incoming argument values. They don't *alias*,
+// as we say, but that doesn't mean they aren't equal, so we take a
+// conservative approach.
+//
+// This is inspired in part by C++11 5.10p1:
+// "Two pointers of the same type compare equal if and only if they are both
+// null, both point to the same function, or both represent the same
+// address."
+//
+// This is pretty permissive.
+//
+// It's also partly due to C11 6.5.9p6:
+// "Two pointers compare equal if and only if both are null pointers, both are
+// pointers to the same object (including a pointer to an object and a
+// subobject at its beginning) or function, both are pointers to one past the
+// last element of the same array object, or one is a pointer to one past the
+// end of one array object and the other is a pointer to the start of a
+// different array object that happens to immediately follow the first array
+// object in the address space.)
+//
+// C11's version is more restrictive, however there's no reason why an argument
+// couldn't be a one-past-the-end value for a stack object in the caller and be
+// equal to the beginning of a stack object in the callee.
+//
+// If the C and C++ standards are ever made sufficiently restrictive in this
+// area, it may be possible to update LLVM's semantics accordingly and reinstate
+// this optimization.
+static Constant *
+computePointerICmp(const DataLayout &DL, const TargetLibraryInfo *TLI,
+ const DominatorTree *DT, CmpInst::Predicate Pred,
+ AssumptionCache *AC, const Instruction *CxtI,
+ const InstrInfoQuery &IIQ, Value *LHS, Value *RHS) {
+ // First, skip past any trivial no-ops.
+ LHS = LHS->stripPointerCasts();
+ RHS = RHS->stripPointerCasts();
+
+ // A non-null pointer is not equal to a null pointer.
+ if (llvm::isKnownNonZero(LHS, DL, 0, nullptr, nullptr, nullptr,
+ IIQ.UseInstrInfo) &&
+ isa<ConstantPointerNull>(RHS) &&
+ (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE))
+ return ConstantInt::get(GetCompareTy(LHS),
+ !CmpInst::isTrueWhenEqual(Pred));
+
+ // We can only fold certain predicates on pointer comparisons.
+ switch (Pred) {
+ default:
+ return nullptr;
+
+ // Equality comaprisons are easy to fold.
+ case CmpInst::ICMP_EQ:
+ case CmpInst::ICMP_NE:
+ break;
+
+ // We can only handle unsigned relational comparisons because 'inbounds' on
+ // a GEP only protects against unsigned wrapping.
+ case CmpInst::ICMP_UGT:
+ case CmpInst::ICMP_UGE:
+ case CmpInst::ICMP_ULT:
+ case CmpInst::ICMP_ULE:
+ // However, we have to switch them to their signed variants to handle
+ // negative indices from the base pointer.
+ Pred = ICmpInst::getSignedPredicate(Pred);
+ break;
+ }
+
+ // Strip off any constant offsets so that we can reason about them.
+ // It's tempting to use getUnderlyingObject or even just stripInBoundsOffsets
+ // here and compare base addresses like AliasAnalysis does, however there are
+ // numerous hazards. AliasAnalysis and its utilities rely on special rules
+ // governing loads and stores which don't apply to icmps. Also, AliasAnalysis
+ // doesn't need to guarantee pointer inequality when it says NoAlias.
+ Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS);
+ Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS);
+
+ // If LHS and RHS are related via constant offsets to the same base
+ // value, we can replace it with an icmp which just compares the offsets.
+ if (LHS == RHS)
+ return ConstantExpr::getICmp(Pred, LHSOffset, RHSOffset);
+
+ // Various optimizations for (in)equality comparisons.
+ if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) {
+ // Different non-empty allocations that exist at the same time have
+ // different addresses (if the program can tell). Global variables always
+ // exist, so they always exist during the lifetime of each other and all
+ // allocas. Two different allocas usually have different addresses...
+ //
+ // However, if there's an @llvm.stackrestore dynamically in between two
+ // allocas, they may have the same address. It's tempting to reduce the
+ // scope of the problem by only looking at *static* allocas here. That would
+ // cover the majority of allocas while significantly reducing the likelihood
+ // of having an @llvm.stackrestore pop up in the middle. However, it's not
+ // actually impossible for an @llvm.stackrestore to pop up in the middle of
+ // an entry block. Also, if we have a block that's not attached to a
+ // function, we can't tell if it's "static" under the current definition.
+ // Theoretically, this problem could be fixed by creating a new kind of
+ // instruction kind specifically for static allocas. Such a new instruction
+ // could be required to be at the top of the entry block, thus preventing it
+ // from being subject to a @llvm.stackrestore. Instcombine could even
+ // convert regular allocas into these special allocas. It'd be nifty.
+ // However, until then, this problem remains open.
+ //
+ // So, we'll assume that two non-empty allocas have different addresses
+ // for now.
+ //
+ // With all that, if the offsets are within the bounds of their allocations
+ // (and not one-past-the-end! so we can't use inbounds!), and their
+ // allocations aren't the same, the pointers are not equal.
+ //
+ // Note that it's not necessary to check for LHS being a global variable
+ // address, due to canonicalization and constant folding.
+ if (isa<AllocaInst>(LHS) &&
+ (isa<AllocaInst>(RHS) || isa<GlobalVariable>(RHS))) {
+ ConstantInt *LHSOffsetCI = dyn_cast<ConstantInt>(LHSOffset);
+ ConstantInt *RHSOffsetCI = dyn_cast<ConstantInt>(RHSOffset);
+ uint64_t LHSSize, RHSSize;
+ ObjectSizeOpts Opts;
+ Opts.NullIsUnknownSize =
+ NullPointerIsDefined(cast<AllocaInst>(LHS)->getFunction());
+ if (LHSOffsetCI && RHSOffsetCI &&
+ getObjectSize(LHS, LHSSize, DL, TLI, Opts) &&
+ getObjectSize(RHS, RHSSize, DL, TLI, Opts)) {
+ const APInt &LHSOffsetValue = LHSOffsetCI->getValue();
+ const APInt &RHSOffsetValue = RHSOffsetCI->getValue();
+ if (!LHSOffsetValue.isNegative() &&
+ !RHSOffsetValue.isNegative() &&
+ LHSOffsetValue.ult(LHSSize) &&
+ RHSOffsetValue.ult(RHSSize)) {
+ return ConstantInt::get(GetCompareTy(LHS),
+ !CmpInst::isTrueWhenEqual(Pred));
+ }
+ }
+
+ // Repeat the above check but this time without depending on DataLayout
+ // or being able to compute a precise size.
+ if (!cast<PointerType>(LHS->getType())->isEmptyTy() &&
+ !cast<PointerType>(RHS->getType())->isEmptyTy() &&
+ LHSOffset->isNullValue() &&
+ RHSOffset->isNullValue())
+ return ConstantInt::get(GetCompareTy(LHS),
+ !CmpInst::isTrueWhenEqual(Pred));
+ }
+
+ // Even if an non-inbounds GEP occurs along the path we can still optimize
+ // equality comparisons concerning the result. We avoid walking the whole
+ // chain again by starting where the last calls to
+ // stripAndComputeConstantOffsets left off and accumulate the offsets.
+ Constant *LHSNoBound = stripAndComputeConstantOffsets(DL, LHS, true);
+ Constant *RHSNoBound = stripAndComputeConstantOffsets(DL, RHS, true);
+ if (LHS == RHS)
+ return ConstantExpr::getICmp(Pred,
+ ConstantExpr::getAdd(LHSOffset, LHSNoBound),
+ ConstantExpr::getAdd(RHSOffset, RHSNoBound));
+
+ // If one side of the equality comparison must come from a noalias call
+ // (meaning a system memory allocation function), and the other side must
+ // come from a pointer that cannot overlap with dynamically-allocated
+ // memory within the lifetime of the current function (allocas, byval
+ // arguments, globals), then determine the comparison result here.
+ SmallVector<const Value *, 8> LHSUObjs, RHSUObjs;
+ GetUnderlyingObjects(LHS, LHSUObjs, DL);
+ GetUnderlyingObjects(RHS, RHSUObjs, DL);
+
+ // Is the set of underlying objects all noalias calls?
+ auto IsNAC = [](ArrayRef<const Value *> Objects) {
+ return all_of(Objects, isNoAliasCall);
+ };
+
+ // Is the set of underlying objects all things which must be disjoint from
+ // noalias calls. For allocas, we consider only static ones (dynamic
+ // allocas might be transformed into calls to malloc not simultaneously
+ // live with the compared-to allocation). For globals, we exclude symbols
+ // that might be resolve lazily to symbols in another dynamically-loaded
+ // library (and, thus, could be malloc'ed by the implementation).
+ auto IsAllocDisjoint = [](ArrayRef<const Value *> Objects) {
+ return all_of(Objects, [](const Value *V) {
+ if (const AllocaInst *AI = dyn_cast<AllocaInst>(V))
+ return AI->getParent() && AI->getFunction() && AI->isStaticAlloca();
+ if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
+ return (GV->hasLocalLinkage() || GV->hasHiddenVisibility() ||
+ GV->hasProtectedVisibility() || GV->hasGlobalUnnamedAddr()) &&
+ !GV->isThreadLocal();
+ if (const Argument *A = dyn_cast<Argument>(V))
+ return A->hasByValAttr();
+ return false;
+ });
+ };
+
+ if ((IsNAC(LHSUObjs) && IsAllocDisjoint(RHSUObjs)) ||
+ (IsNAC(RHSUObjs) && IsAllocDisjoint(LHSUObjs)))
+ return ConstantInt::get(GetCompareTy(LHS),
+ !CmpInst::isTrueWhenEqual(Pred));
+
+ // Fold comparisons for non-escaping pointer even if the allocation call
+ // cannot be elided. We cannot fold malloc comparison to null. Also, the
+ // dynamic allocation call could be either of the operands.
+ Value *MI = nullptr;
+ if (isAllocLikeFn(LHS, TLI) &&
+ llvm::isKnownNonZero(RHS, DL, 0, nullptr, CxtI, DT))
+ MI = LHS;
+ else if (isAllocLikeFn(RHS, TLI) &&
+ llvm::isKnownNonZero(LHS, DL, 0, nullptr, CxtI, DT))
+ MI = RHS;
+ // FIXME: We should also fold the compare when the pointer escapes, but the
+ // compare dominates the pointer escape
+ if (MI && !PointerMayBeCaptured(MI, true, true))
+ return ConstantInt::get(GetCompareTy(LHS),
+ CmpInst::isFalseWhenEqual(Pred));
+ }
+
+ // Otherwise, fail.
+ return nullptr;
+}
+
+/// Fold an icmp when its operands have i1 scalar type.
+static Value *simplifyICmpOfBools(CmpInst::Predicate Pred, Value *LHS,
+ Value *RHS, const SimplifyQuery &Q) {
+ Type *ITy = GetCompareTy(LHS); // The return type.
+ Type *OpTy = LHS->getType(); // The operand type.
+ if (!OpTy->isIntOrIntVectorTy(1))
+ return nullptr;
+
+ // A boolean compared to true/false can be simplified in 14 out of the 20
+ // (10 predicates * 2 constants) possible combinations. Cases not handled here
+ // require a 'not' of the LHS, so those must be transformed in InstCombine.
+ if (match(RHS, m_Zero())) {
+ switch (Pred) {
+ case CmpInst::ICMP_NE: // X != 0 -> X
+ case CmpInst::ICMP_UGT: // X >u 0 -> X
+ case CmpInst::ICMP_SLT: // X <s 0 -> X
+ return LHS;
+
+ case CmpInst::ICMP_ULT: // X <u 0 -> false
+ case CmpInst::ICMP_SGT: // X >s 0 -> false
+ return getFalse(ITy);
+
+ case CmpInst::ICMP_UGE: // X >=u 0 -> true
+ case CmpInst::ICMP_SLE: // X <=s 0 -> true
+ return getTrue(ITy);
+
+ default: break;
+ }
+ } else if (match(RHS, m_One())) {
+ switch (Pred) {
+ case CmpInst::ICMP_EQ: // X == 1 -> X
+ case CmpInst::ICMP_UGE: // X >=u 1 -> X
+ case CmpInst::ICMP_SLE: // X <=s -1 -> X
+ return LHS;
+
+ case CmpInst::ICMP_UGT: // X >u 1 -> false
+ case CmpInst::ICMP_SLT: // X <s -1 -> false
+ return getFalse(ITy);
+
+ case CmpInst::ICMP_ULE: // X <=u 1 -> true
+ case CmpInst::ICMP_SGE: // X >=s -1 -> true
+ return getTrue(ITy);
+
+ default: break;
+ }
+ }
+
+ switch (Pred) {
+ default:
+ break;
+ case ICmpInst::ICMP_UGE:
+ if (isImpliedCondition(RHS, LHS, Q.DL).getValueOr(false))
+ return getTrue(ITy);
+ break;
+ case ICmpInst::ICMP_SGE:
+ /// For signed comparison, the values for an i1 are 0 and -1
+ /// respectively. This maps into a truth table of:
+ /// LHS | RHS | LHS >=s RHS | LHS implies RHS
+ /// 0 | 0 | 1 (0 >= 0) | 1
+ /// 0 | 1 | 1 (0 >= -1) | 1
+ /// 1 | 0 | 0 (-1 >= 0) | 0
+ /// 1 | 1 | 1 (-1 >= -1) | 1
+ if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false))
+ return getTrue(ITy);
+ break;
+ case ICmpInst::ICMP_ULE:
+ if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false))
+ return getTrue(ITy);
+ break;
+ }
+
+ return nullptr;
+}
+
+/// Try hard to fold icmp with zero RHS because this is a common case.
+static Value *simplifyICmpWithZero(CmpInst::Predicate Pred, Value *LHS,
+ Value *RHS, const SimplifyQuery &Q) {
+ if (!match(RHS, m_Zero()))
+ return nullptr;
+
+ Type *ITy = GetCompareTy(LHS); // The return type.
+ switch (Pred) {
+ default:
+ llvm_unreachable("Unknown ICmp predicate!");
+ case ICmpInst::ICMP_ULT:
+ return getFalse(ITy);
+ case ICmpInst::ICMP_UGE:
+ return getTrue(ITy);
+ case ICmpInst::ICMP_EQ:
+ case ICmpInst::ICMP_ULE:
+ if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo))
+ return getFalse(ITy);
+ break;
+ case ICmpInst::ICMP_NE:
+ case ICmpInst::ICMP_UGT:
+ if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo))
+ return getTrue(ITy);
+ break;
+ case ICmpInst::ICMP_SLT: {
+ KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
+ if (LHSKnown.isNegative())
+ return getTrue(ITy);
+ if (LHSKnown.isNonNegative())
+ return getFalse(ITy);
+ break;
+ }
+ case ICmpInst::ICMP_SLE: {
+ KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
+ if (LHSKnown.isNegative())
+ return getTrue(ITy);
+ if (LHSKnown.isNonNegative() &&
+ isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
+ return getFalse(ITy);
+ break;
+ }
+ case ICmpInst::ICMP_SGE: {
+ KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
+ if (LHSKnown.isNegative())
+ return getFalse(ITy);
+ if (LHSKnown.isNonNegative())
+ return getTrue(ITy);
+ break;
+ }
+ case ICmpInst::ICMP_SGT: {
+ KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
+ if (LHSKnown.isNegative())
+ return getFalse(ITy);
+ if (LHSKnown.isNonNegative() &&
+ isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
+ return getTrue(ITy);
+ break;
+ }
+ }
+
+ return nullptr;
+}
+
+static Value *simplifyICmpWithConstant(CmpInst::Predicate Pred, Value *LHS,
+ Value *RHS, const InstrInfoQuery &IIQ) {
+ Type *ITy = GetCompareTy(RHS); // The return type.
+
+ Value *X;
+ // Sign-bit checks can be optimized to true/false after unsigned
+ // floating-point casts:
+ // icmp slt (bitcast (uitofp X)), 0 --> false
+ // icmp sgt (bitcast (uitofp X)), -1 --> true
+ if (match(LHS, m_BitCast(m_UIToFP(m_Value(X))))) {
+ if (Pred == ICmpInst::ICMP_SLT && match(RHS, m_Zero()))
+ return ConstantInt::getFalse(ITy);
+ if (Pred == ICmpInst::ICMP_SGT && match(RHS, m_AllOnes()))
+ return ConstantInt::getTrue(ITy);
+ }
+
+ const APInt *C;
+ if (!match(RHS, m_APInt(C)))
+ return nullptr;
+
+ // Rule out tautological comparisons (eg., ult 0 or uge 0).
+ ConstantRange RHS_CR = ConstantRange::makeExactICmpRegion(Pred, *C);
+ if (RHS_CR.isEmptySet())
+ return ConstantInt::getFalse(ITy);
+ if (RHS_CR.isFullSet())
+ return ConstantInt::getTrue(ITy);
+
+ ConstantRange LHS_CR = computeConstantRange(LHS, IIQ.UseInstrInfo);
+ if (!LHS_CR.isFullSet()) {
+ if (RHS_CR.contains(LHS_CR))
+ return ConstantInt::getTrue(ITy);
+ if (RHS_CR.inverse().contains(LHS_CR))
+ return ConstantInt::getFalse(ITy);
+ }
+
+ return nullptr;
+}
+
+/// TODO: A large part of this logic is duplicated in InstCombine's
+/// foldICmpBinOp(). We should be able to share that and avoid the code
+/// duplication.
+static Value *simplifyICmpWithBinOp(CmpInst::Predicate Pred, Value *LHS,
+ Value *RHS, const SimplifyQuery &Q,
+ unsigned MaxRecurse) {
+ Type *ITy = GetCompareTy(LHS); // The return type.
+
+ BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS);
+ BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS);
+ if (MaxRecurse && (LBO || RBO)) {
+ // Analyze the case when either LHS or RHS is an add instruction.
+ Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
+ // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null).
+ bool NoLHSWrapProblem = false, NoRHSWrapProblem = false;
+ if (LBO && LBO->getOpcode() == Instruction::Add) {
+ A = LBO->getOperand(0);
+ B = LBO->getOperand(1);
+ NoLHSWrapProblem =
+ ICmpInst::isEquality(Pred) ||
+ (CmpInst::isUnsigned(Pred) &&
+ Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO))) ||
+ (CmpInst::isSigned(Pred) &&
+ Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO)));
+ }
+ if (RBO && RBO->getOpcode() == Instruction::Add) {
+ C = RBO->getOperand(0);
+ D = RBO->getOperand(1);
+ NoRHSWrapProblem =
+ ICmpInst::isEquality(Pred) ||
+ (CmpInst::isUnsigned(Pred) &&
+ Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(RBO))) ||
+ (CmpInst::isSigned(Pred) &&
+ Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(RBO)));
+ }
+
+ // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow.
+ if ((A == RHS || B == RHS) && NoLHSWrapProblem)
+ if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A,
+ Constant::getNullValue(RHS->getType()), Q,
+ MaxRecurse - 1))
+ return V;
+
+ // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow.
+ if ((C == LHS || D == LHS) && NoRHSWrapProblem)
+ if (Value *V =
+ SimplifyICmpInst(Pred, Constant::getNullValue(LHS->getType()),
+ C == LHS ? D : C, Q, MaxRecurse - 1))
+ return V;
+
+ // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow.
+ if (A && C && (A == C || A == D || B == C || B == D) && NoLHSWrapProblem &&
+ NoRHSWrapProblem) {
+ // Determine Y and Z in the form icmp (X+Y), (X+Z).
+ Value *Y, *Z;
+ if (A == C) {
+ // C + B == C + D -> B == D
+ Y = B;
+ Z = D;
+ } else if (A == D) {
+ // D + B == C + D -> B == C
+ Y = B;
+ Z = C;
+ } else if (B == C) {
+ // A + C == C + D -> A == D
+ Y = A;
+ Z = D;
+ } else {
+ assert(B == D);
+ // A + D == C + D -> A == C
+ Y = A;
+ Z = C;
+ }
+ if (Value *V = SimplifyICmpInst(Pred, Y, Z, Q, MaxRecurse - 1))
+ return V;
+ }
+ }
+
+ {
+ Value *Y = nullptr;
+ // icmp pred (or X, Y), X
+ if (LBO && match(LBO, m_c_Or(m_Value(Y), m_Specific(RHS)))) {
+ if (Pred == ICmpInst::ICMP_ULT)
+ return getFalse(ITy);
+ if (Pred == ICmpInst::ICMP_UGE)
+ return getTrue(ITy);
+
+ if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGE) {
+ KnownBits RHSKnown = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
+ KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
+ if (RHSKnown.isNonNegative() && YKnown.isNegative())
+ return Pred == ICmpInst::ICMP_SLT ? getTrue(ITy) : getFalse(ITy);
+ if (RHSKnown.isNegative() || YKnown.isNonNegative())
+ return Pred == ICmpInst::ICMP_SLT ? getFalse(ITy) : getTrue(ITy);
+ }
+ }
+ // icmp pred X, (or X, Y)
+ if (RBO && match(RBO, m_c_Or(m_Value(Y), m_Specific(LHS)))) {
+ if (Pred == ICmpInst::ICMP_ULE)
+ return getTrue(ITy);
+ if (Pred == ICmpInst::ICMP_UGT)
+ return getFalse(ITy);
+
+ if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLE) {
+ KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
+ KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
+ if (LHSKnown.isNonNegative() && YKnown.isNegative())
+ return Pred == ICmpInst::ICMP_SGT ? getTrue(ITy) : getFalse(ITy);
+ if (LHSKnown.isNegative() || YKnown.isNonNegative())
+ return Pred == ICmpInst::ICMP_SGT ? getFalse(ITy) : getTrue(ITy);
+ }
+ }
+ }
+
+ // icmp pred (and X, Y), X
+ if (LBO && match(LBO, m_c_And(m_Value(), m_Specific(RHS)))) {
+ if (Pred == ICmpInst::ICMP_UGT)
+ return getFalse(ITy);
+ if (Pred == ICmpInst::ICMP_ULE)
+ return getTrue(ITy);
+ }
+ // icmp pred X, (and X, Y)
+ if (RBO && match(RBO, m_c_And(m_Value(), m_Specific(LHS)))) {
+ if (Pred == ICmpInst::ICMP_UGE)
+ return getTrue(ITy);
+ if (Pred == ICmpInst::ICMP_ULT)
+ return getFalse(ITy);
+ }
+
+ // 0 - (zext X) pred C
+ if (!CmpInst::isUnsigned(Pred) && match(LHS, m_Neg(m_ZExt(m_Value())))) {
+ if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) {
+ if (RHSC->getValue().isStrictlyPositive()) {
+ if (Pred == ICmpInst::ICMP_SLT)
+ return ConstantInt::getTrue(RHSC->getContext());
+ if (Pred == ICmpInst::ICMP_SGE)
+ return ConstantInt::getFalse(RHSC->getContext());
+ if (Pred == ICmpInst::ICMP_EQ)
+ return ConstantInt::getFalse(RHSC->getContext());
+ if (Pred == ICmpInst::ICMP_NE)
+ return ConstantInt::getTrue(RHSC->getContext());
+ }
+ if (RHSC->getValue().isNonNegative()) {
+ if (Pred == ICmpInst::ICMP_SLE)
+ return ConstantInt::getTrue(RHSC->getContext());
+ if (Pred == ICmpInst::ICMP_SGT)
+ return ConstantInt::getFalse(RHSC->getContext());
+ }
+ }
+ }
+
+ // icmp pred (urem X, Y), Y
+ if (LBO && match(LBO, m_URem(m_Value(), m_Specific(RHS)))) {
+ switch (Pred) {
+ default:
+ break;
+ case ICmpInst::ICMP_SGT:
+ case ICmpInst::ICMP_SGE: {
+ KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
+ if (!Known.isNonNegative())
+ break;
+ LLVM_FALLTHROUGH;
+ }
+ case ICmpInst::ICMP_EQ:
+ case ICmpInst::ICMP_UGT:
+ case ICmpInst::ICMP_UGE:
+ return getFalse(ITy);
+ case ICmpInst::ICMP_SLT:
+ case ICmpInst::ICMP_SLE: {
+ KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
+ if (!Known.isNonNegative())
+ break;
+ LLVM_FALLTHROUGH;
+ }
+ case ICmpInst::ICMP_NE:
+ case ICmpInst::ICMP_ULT:
+ case ICmpInst::ICMP_ULE:
+ return getTrue(ITy);
+ }
+ }
+
+ // icmp pred X, (urem Y, X)
+ if (RBO && match(RBO, m_URem(m_Value(), m_Specific(LHS)))) {
+ switch (Pred) {
+ default:
+ break;
+ case ICmpInst::ICMP_SGT:
+ case ICmpInst::ICMP_SGE: {
+ KnownBits Known = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
+ if (!Known.isNonNegative())
+ break;
+ LLVM_FALLTHROUGH;
+ }
+ case ICmpInst::ICMP_NE:
+ case ICmpInst::ICMP_UGT:
+ case ICmpInst::ICMP_UGE:
+ return getTrue(ITy);
+ case ICmpInst::ICMP_SLT:
+ case ICmpInst::ICMP_SLE: {
+ KnownBits Known = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
+ if (!Known.isNonNegative())
+ break;
+ LLVM_FALLTHROUGH;
+ }
+ case ICmpInst::ICMP_EQ:
+ case ICmpInst::ICMP_ULT:
+ case ICmpInst::ICMP_ULE:
+ return getFalse(ITy);
+ }
+ }
+
+ // x >> y <=u x
+ // x udiv y <=u x.
+ if (LBO && (match(LBO, m_LShr(m_Specific(RHS), m_Value())) ||
+ match(LBO, m_UDiv(m_Specific(RHS), m_Value())))) {
+ // icmp pred (X op Y), X
+ if (Pred == ICmpInst::ICMP_UGT)
+ return getFalse(ITy);
+ if (Pred == ICmpInst::ICMP_ULE)
+ return getTrue(ITy);
+ }
+
+ // x >=u x >> y
+ // x >=u x udiv y.
+ if (RBO && (match(RBO, m_LShr(m_Specific(LHS), m_Value())) ||
+ match(RBO, m_UDiv(m_Specific(LHS), m_Value())))) {
+ // icmp pred X, (X op Y)
+ if (Pred == ICmpInst::ICMP_ULT)
+ return getFalse(ITy);
+ if (Pred == ICmpInst::ICMP_UGE)
+ return getTrue(ITy);
+ }
+
+ // handle:
+ // CI2 << X == CI
+ // CI2 << X != CI
+ //
+ // where CI2 is a power of 2 and CI isn't
+ if (auto *CI = dyn_cast<ConstantInt>(RHS)) {
+ const APInt *CI2Val, *CIVal = &CI->getValue();
+ if (LBO && match(LBO, m_Shl(m_APInt(CI2Val), m_Value())) &&
+ CI2Val->isPowerOf2()) {
+ if (!CIVal->isPowerOf2()) {
+ // CI2 << X can equal zero in some circumstances,
+ // this simplification is unsafe if CI is zero.
+ //
+ // We know it is safe if:
+ // - The shift is nsw, we can't shift out the one bit.
+ // - The shift is nuw, we can't shift out the one bit.
+ // - CI2 is one
+ // - CI isn't zero
+ if (Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO)) ||
+ Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO)) ||
+ CI2Val->isOneValue() || !CI->isZero()) {
+ if (Pred == ICmpInst::ICMP_EQ)
+ return ConstantInt::getFalse(RHS->getContext());
+ if (Pred == ICmpInst::ICMP_NE)
+ return ConstantInt::getTrue(RHS->getContext());
+ }
+ }
+ if (CIVal->isSignMask() && CI2Val->isOneValue()) {
+ if (Pred == ICmpInst::ICMP_UGT)
+ return ConstantInt::getFalse(RHS->getContext());
+ if (Pred == ICmpInst::ICMP_ULE)
+ return ConstantInt::getTrue(RHS->getContext());
+ }
+ }
+ }
+
+ if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() &&
+ LBO->getOperand(1) == RBO->getOperand(1)) {
+ switch (LBO->getOpcode()) {
+ default:
+ break;
+ case Instruction::UDiv:
+ case Instruction::LShr:
+ if (ICmpInst::isSigned(Pred) || !Q.IIQ.isExact(LBO) ||
+ !Q.IIQ.isExact(RBO))
+ break;
+ if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
+ RBO->getOperand(0), Q, MaxRecurse - 1))
+ return V;
+ break;
+ case Instruction::SDiv:
+ if (!ICmpInst::isEquality(Pred) || !Q.IIQ.isExact(LBO) ||
+ !Q.IIQ.isExact(RBO))
+ break;
+ if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
+ RBO->getOperand(0), Q, MaxRecurse - 1))
+ return V;
+ break;
+ case Instruction::AShr:
+ if (!Q.IIQ.isExact(LBO) || !Q.IIQ.isExact(RBO))
+ break;
+ if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
+ RBO->getOperand(0), Q, MaxRecurse - 1))
+ return V;
+ break;
+ case Instruction::Shl: {
+ bool NUW = Q.IIQ.hasNoUnsignedWrap(LBO) && Q.IIQ.hasNoUnsignedWrap(RBO);
+ bool NSW = Q.IIQ.hasNoSignedWrap(LBO) && Q.IIQ.hasNoSignedWrap(RBO);
+ if (!NUW && !NSW)
+ break;
+ if (!NSW && ICmpInst::isSigned(Pred))
+ break;
+ if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
+ RBO->getOperand(0), Q, MaxRecurse - 1))
+ return V;
+ break;
+ }
+ }
+ }
+ return nullptr;
+}
+
+/// Simplify integer comparisons where at least one operand of the compare
+/// matches an integer min/max idiom.
+static Value *simplifyICmpWithMinMax(CmpInst::Predicate Pred, Value *LHS,
+ Value *RHS, const SimplifyQuery &Q,
+ unsigned MaxRecurse) {
+ Type *ITy = GetCompareTy(LHS); // The return type.
+ Value *A, *B;
+ CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE;
+ CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B".
+
+ // Signed variants on "max(a,b)>=a -> true".
+ if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
+ if (A != RHS)
+ std::swap(A, B); // smax(A, B) pred A.
+ EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
+ // We analyze this as smax(A, B) pred A.
+ P = Pred;
+ } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) &&
+ (A == LHS || B == LHS)) {
+ if (A != LHS)
+ std::swap(A, B); // A pred smax(A, B).
+ EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
+ // We analyze this as smax(A, B) swapped-pred A.
+ P = CmpInst::getSwappedPredicate(Pred);
+ } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) &&
+ (A == RHS || B == RHS)) {
+ if (A != RHS)
+ std::swap(A, B); // smin(A, B) pred A.
+ EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
+ // We analyze this as smax(-A, -B) swapped-pred -A.
+ // Note that we do not need to actually form -A or -B thanks to EqP.
+ P = CmpInst::getSwappedPredicate(Pred);
+ } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) &&
+ (A == LHS || B == LHS)) {
+ if (A != LHS)
+ std::swap(A, B); // A pred smin(A, B).
+ EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
+ // We analyze this as smax(-A, -B) pred -A.
+ // Note that we do not need to actually form -A or -B thanks to EqP.
+ P = Pred;
+ }
+ if (P != CmpInst::BAD_ICMP_PREDICATE) {
+ // Cases correspond to "max(A, B) p A".
+ switch (P) {
+ default:
+ break;
+ case CmpInst::ICMP_EQ:
+ case CmpInst::ICMP_SLE:
+ // Equivalent to "A EqP B". This may be the same as the condition tested
+ // in the max/min; if so, we can just return that.
+ if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
+ return V;
+ if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
+ return V;
+ // Otherwise, see if "A EqP B" simplifies.
+ if (MaxRecurse)
+ if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1))
+ return V;
+ break;
+ case CmpInst::ICMP_NE:
+ case CmpInst::ICMP_SGT: {
+ CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
+ // Equivalent to "A InvEqP B". This may be the same as the condition
+ // tested in the max/min; if so, we can just return that.
+ if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
+ return V;
+ if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
+ return V;
+ // Otherwise, see if "A InvEqP B" simplifies.
+ if (MaxRecurse)
+ if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1))
+ return V;
+ break;
+ }
+ case CmpInst::ICMP_SGE:
+ // Always true.
+ return getTrue(ITy);
+ case CmpInst::ICMP_SLT:
+ // Always false.
+ return getFalse(ITy);
+ }
+ }
+
+ // Unsigned variants on "max(a,b)>=a -> true".
+ P = CmpInst::BAD_ICMP_PREDICATE;
+ if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
+ if (A != RHS)
+ std::swap(A, B); // umax(A, B) pred A.
+ EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
+ // We analyze this as umax(A, B) pred A.
+ P = Pred;
+ } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) &&
+ (A == LHS || B == LHS)) {
+ if (A != LHS)
+ std::swap(A, B); // A pred umax(A, B).
+ EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
+ // We analyze this as umax(A, B) swapped-pred A.
+ P = CmpInst::getSwappedPredicate(Pred);
+ } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) &&
+ (A == RHS || B == RHS)) {
+ if (A != RHS)
+ std::swap(A, B); // umin(A, B) pred A.
+ EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
+ // We analyze this as umax(-A, -B) swapped-pred -A.
+ // Note that we do not need to actually form -A or -B thanks to EqP.
+ P = CmpInst::getSwappedPredicate(Pred);
+ } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) &&
+ (A == LHS || B == LHS)) {
+ if (A != LHS)
+ std::swap(A, B); // A pred umin(A, B).
+ EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
+ // We analyze this as umax(-A, -B) pred -A.
+ // Note that we do not need to actually form -A or -B thanks to EqP.
+ P = Pred;
+ }
+ if (P != CmpInst::BAD_ICMP_PREDICATE) {
+ // Cases correspond to "max(A, B) p A".
+ switch (P) {
+ default:
+ break;
+ case CmpInst::ICMP_EQ:
+ case CmpInst::ICMP_ULE:
+ // Equivalent to "A EqP B". This may be the same as the condition tested
+ // in the max/min; if so, we can just return that.
+ if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
+ return V;
+ if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
+ return V;
+ // Otherwise, see if "A EqP B" simplifies.
+ if (MaxRecurse)
+ if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1))
+ return V;
+ break;
+ case CmpInst::ICMP_NE:
+ case CmpInst::ICMP_UGT: {
+ CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
+ // Equivalent to "A InvEqP B". This may be the same as the condition
+ // tested in the max/min; if so, we can just return that.
+ if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
+ return V;
+ if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
+ return V;
+ // Otherwise, see if "A InvEqP B" simplifies.
+ if (MaxRecurse)
+ if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1))
+ return V;
+ break;
+ }
+ case CmpInst::ICMP_UGE:
+ // Always true.
+ return getTrue(ITy);
+ case CmpInst::ICMP_ULT:
+ // Always false.
+ return getFalse(ITy);
+ }
+ }
+
+ // Variants on "max(x,y) >= min(x,z)".
+ Value *C, *D;
+ if (match(LHS, m_SMax(m_Value(A), m_Value(B))) &&
+ match(RHS, m_SMin(m_Value(C), m_Value(D))) &&
+ (A == C || A == D || B == C || B == D)) {
+ // max(x, ?) pred min(x, ?).
+ if (Pred == CmpInst::ICMP_SGE)
+ // Always true.
+ return getTrue(ITy);
+ if (Pred == CmpInst::ICMP_SLT)
+ // Always false.
+ return getFalse(ITy);
+ } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) &&
+ match(RHS, m_SMax(m_Value(C), m_Value(D))) &&
+ (A == C || A == D || B == C || B == D)) {
+ // min(x, ?) pred max(x, ?).
+ if (Pred == CmpInst::ICMP_SLE)
+ // Always true.
+ return getTrue(ITy);
+ if (Pred == CmpInst::ICMP_SGT)
+ // Always false.
+ return getFalse(ITy);
+ } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) &&
+ match(RHS, m_UMin(m_Value(C), m_Value(D))) &&
+ (A == C || A == D || B == C || B == D)) {
+ // max(x, ?) pred min(x, ?).
+ if (Pred == CmpInst::ICMP_UGE)
+ // Always true.
+ return getTrue(ITy);
+ if (Pred == CmpInst::ICMP_ULT)
+ // Always false.
+ return getFalse(ITy);
+ } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) &&
+ match(RHS, m_UMax(m_Value(C), m_Value(D))) &&
+ (A == C || A == D || B == C || B == D)) {
+ // min(x, ?) pred max(x, ?).
+ if (Pred == CmpInst::ICMP_ULE)
+ // Always true.
+ return getTrue(ITy);
+ if (Pred == CmpInst::ICMP_UGT)
+ // Always false.
+ return getFalse(ITy);
+ }
+
+ return nullptr;
+}
+
+/// Given operands for an ICmpInst, see if we can fold the result.
+/// If not, this returns null.
+static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
+ const SimplifyQuery &Q, unsigned MaxRecurse) {
+ CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
+ assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!");
+
+ if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
+ if (Constant *CRHS = dyn_cast<Constant>(RHS))
+ return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI);
+
+ // If we have a constant, make sure it is on the RHS.
+ std::swap(LHS, RHS);
+ Pred = CmpInst::getSwappedPredicate(Pred);
+ }
+ assert(!isa<UndefValue>(LHS) && "Unexpected icmp undef,%X");
+
+ Type *ITy = GetCompareTy(LHS); // The return type.
+
+ // For EQ and NE, we can always pick a value for the undef to make the
+ // predicate pass or fail, so we can return undef.
+ // Matches behavior in llvm::ConstantFoldCompareInstruction.
+ if (isa<UndefValue>(RHS) && ICmpInst::isEquality(Pred))
+ return UndefValue::get(ITy);
+
+ // icmp X, X -> true/false
+ // icmp X, undef -> true/false because undef could be X.
+ if (LHS == RHS || isa<UndefValue>(RHS))
+ return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred));
+
+ if (Value *V = simplifyICmpOfBools(Pred, LHS, RHS, Q))
+ return V;
+
+ if (Value *V = simplifyICmpWithZero(Pred, LHS, RHS, Q))
+ return V;
+
+ if (Value *V = simplifyICmpWithConstant(Pred, LHS, RHS, Q.IIQ))
+ return V;
+
+ // If both operands have range metadata, use the metadata
+ // to simplify the comparison.
+ if (isa<Instruction>(RHS) && isa<Instruction>(LHS)) {
+ auto RHS_Instr = cast<Instruction>(RHS);
+ auto LHS_Instr = cast<Instruction>(LHS);
+
+ if (Q.IIQ.getMetadata(RHS_Instr, LLVMContext::MD_range) &&
+ Q.IIQ.getMetadata(LHS_Instr, LLVMContext::MD_range)) {
+ auto RHS_CR = getConstantRangeFromMetadata(
+ *RHS_Instr->getMetadata(LLVMContext::MD_range));
+ auto LHS_CR = getConstantRangeFromMetadata(
+ *LHS_Instr->getMetadata(LLVMContext::MD_range));
+
+ auto Satisfied_CR = ConstantRange::makeSatisfyingICmpRegion(Pred, RHS_CR);
+ if (Satisfied_CR.contains(LHS_CR))
+ return ConstantInt::getTrue(RHS->getContext());
+
+ auto InversedSatisfied_CR = ConstantRange::makeSatisfyingICmpRegion(
+ CmpInst::getInversePredicate(Pred), RHS_CR);
+ if (InversedSatisfied_CR.contains(LHS_CR))
+ return ConstantInt::getFalse(RHS->getContext());
+ }
+ }
+
+ // Compare of cast, for example (zext X) != 0 -> X != 0
+ if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) {
+ Instruction *LI = cast<CastInst>(LHS);
+ Value *SrcOp = LI->getOperand(0);
+ Type *SrcTy = SrcOp->getType();
+ Type *DstTy = LI->getType();
+
+ // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input
+ // if the integer type is the same size as the pointer type.
+ if (MaxRecurse && isa<PtrToIntInst>(LI) &&
+ Q.DL.getTypeSizeInBits(SrcTy) == DstTy->getPrimitiveSizeInBits()) {
+ if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
+ // Transfer the cast to the constant.
+ if (Value *V = SimplifyICmpInst(Pred, SrcOp,
+ ConstantExpr::getIntToPtr(RHSC, SrcTy),
+ Q, MaxRecurse-1))
+ return V;
+ } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) {
+ if (RI->getOperand(0)->getType() == SrcTy)
+ // Compare without the cast.
+ if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
+ Q, MaxRecurse-1))
+ return V;
+ }
+ }
+
+ if (isa<ZExtInst>(LHS)) {
+ // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the
+ // same type.
+ if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) {
+ if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
+ // Compare X and Y. Note that signed predicates become unsigned.
+ if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
+ SrcOp, RI->getOperand(0), Q,
+ MaxRecurse-1))
+ return V;
+ }
+ // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended
+ // too. If not, then try to deduce the result of the comparison.
+ else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
+ // Compute the constant that would happen if we truncated to SrcTy then
+ // reextended to DstTy.
+ Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
+ Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy);
+
+ // If the re-extended constant didn't change then this is effectively
+ // also a case of comparing two zero-extended values.
+ if (RExt == CI && MaxRecurse)
+ if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
+ SrcOp, Trunc, Q, MaxRecurse-1))
+ return V;
+
+ // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit
+ // there. Use this to work out the result of the comparison.
+ if (RExt != CI) {
+ switch (Pred) {
+ default: llvm_unreachable("Unknown ICmp predicate!");
+ // LHS <u RHS.
+ case ICmpInst::ICMP_EQ:
+ case ICmpInst::ICMP_UGT:
+ case ICmpInst::ICMP_UGE:
+ return ConstantInt::getFalse(CI->getContext());
+
+ case ICmpInst::ICMP_NE:
+ case ICmpInst::ICMP_ULT:
+ case ICmpInst::ICMP_ULE:
+ return ConstantInt::getTrue(CI->getContext());
+
+ // LHS is non-negative. If RHS is negative then LHS >s LHS. If RHS
+ // is non-negative then LHS <s RHS.
+ case ICmpInst::ICMP_SGT:
+ case ICmpInst::ICMP_SGE:
+ return CI->getValue().isNegative() ?
+ ConstantInt::getTrue(CI->getContext()) :
+ ConstantInt::getFalse(CI->getContext());
+
+ case ICmpInst::ICMP_SLT:
+ case ICmpInst::ICMP_SLE:
+ return CI->getValue().isNegative() ?
+ ConstantInt::getFalse(CI->getContext()) :
+ ConstantInt::getTrue(CI->getContext());
+ }
+ }
+ }
+ }
+
+ if (isa<SExtInst>(LHS)) {
+ // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the
+ // same type.
+ if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) {
+ if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
+ // Compare X and Y. Note that the predicate does not change.
+ if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
+ Q, MaxRecurse-1))
+ return V;
+ }
+ // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended
+ // too. If not, then try to deduce the result of the comparison.
+ else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
+ // Compute the constant that would happen if we truncated to SrcTy then
+ // reextended to DstTy.
+ Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
+ Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy);
+
+ // If the re-extended constant didn't change then this is effectively
+ // also a case of comparing two sign-extended values.
+ if (RExt == CI && MaxRecurse)
+ if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse-1))
+ return V;
+
+ // Otherwise the upper bits of LHS are all equal, while RHS has varying
+ // bits there. Use this to work out the result of the comparison.
+ if (RExt != CI) {
+ switch (Pred) {
+ default: llvm_unreachable("Unknown ICmp predicate!");
+ case ICmpInst::ICMP_EQ:
+ return ConstantInt::getFalse(CI->getContext());
+ case ICmpInst::ICMP_NE:
+ return ConstantInt::getTrue(CI->getContext());
+
+ // If RHS is non-negative then LHS <s RHS. If RHS is negative then
+ // LHS >s RHS.
+ case ICmpInst::ICMP_SGT:
+ case ICmpInst::ICMP_SGE:
+ return CI->getValue().isNegative() ?
+ ConstantInt::getTrue(CI->getContext()) :
+ ConstantInt::getFalse(CI->getContext());
+ case ICmpInst::ICMP_SLT:
+ case ICmpInst::ICMP_SLE:
+ return CI->getValue().isNegative() ?
+ ConstantInt::getFalse(CI->getContext()) :
+ ConstantInt::getTrue(CI->getContext());
+
+ // If LHS is non-negative then LHS <u RHS. If LHS is negative then
+ // LHS >u RHS.
+ case ICmpInst::ICMP_UGT:
+ case ICmpInst::ICMP_UGE:
+ // Comparison is true iff the LHS <s 0.
+ if (MaxRecurse)
+ if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp,
+ Constant::getNullValue(SrcTy),
+ Q, MaxRecurse-1))
+ return V;
+ break;
+ case ICmpInst::ICMP_ULT:
+ case ICmpInst::ICMP_ULE:
+ // Comparison is true iff the LHS >=s 0.
+ if (MaxRecurse)
+ if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp,
+ Constant::getNullValue(SrcTy),
+ Q, MaxRecurse-1))
+ return V;
+ break;
+ }
+ }
+ }
+ }
+ }
+
+ // icmp eq|ne X, Y -> false|true if X != Y
+ if (ICmpInst::isEquality(Pred) &&
+ isKnownNonEqual(LHS, RHS, Q.DL, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) {
+ return Pred == ICmpInst::ICMP_NE ? getTrue(ITy) : getFalse(ITy);
+ }
+
+ if (Value *V = simplifyICmpWithBinOp(Pred, LHS, RHS, Q, MaxRecurse))
+ return V;
+
+ if (Value *V = simplifyICmpWithMinMax(Pred, LHS, RHS, Q, MaxRecurse))
+ return V;
+
+ // Simplify comparisons of related pointers using a powerful, recursive
+ // GEP-walk when we have target data available..
+ if (LHS->getType()->isPointerTy())
+ if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.AC, Q.CxtI,
+ Q.IIQ, LHS, RHS))
+ return C;
+ if (auto *CLHS = dyn_cast<PtrToIntOperator>(LHS))
+ if (auto *CRHS = dyn_cast<PtrToIntOperator>(RHS))
+ if (Q.DL.getTypeSizeInBits(CLHS->getPointerOperandType()) ==
+ Q.DL.getTypeSizeInBits(CLHS->getType()) &&
+ Q.DL.getTypeSizeInBits(CRHS->getPointerOperandType()) ==
+ Q.DL.getTypeSizeInBits(CRHS->getType()))
+ if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.AC, Q.CxtI,
+ Q.IIQ, CLHS->getPointerOperand(),
+ CRHS->getPointerOperand()))
+ return C;
+
+ if (GetElementPtrInst *GLHS = dyn_cast<GetElementPtrInst>(LHS)) {
+ if (GEPOperator *GRHS = dyn_cast<GEPOperator>(RHS)) {
+ if (GLHS->getPointerOperand() == GRHS->getPointerOperand() &&
+ GLHS->hasAllConstantIndices() && GRHS->hasAllConstantIndices() &&
+ (ICmpInst::isEquality(Pred) ||
+ (GLHS->isInBounds() && GRHS->isInBounds() &&
+ Pred == ICmpInst::getSignedPredicate(Pred)))) {
+ // The bases are equal and the indices are constant. Build a constant
+ // expression GEP with the same indices and a null base pointer to see
+ // what constant folding can make out of it.
+ Constant *Null = Constant::getNullValue(GLHS->getPointerOperandType());
+ SmallVector<Value *, 4> IndicesLHS(GLHS->idx_begin(), GLHS->idx_end());
+ Constant *NewLHS = ConstantExpr::getGetElementPtr(
+ GLHS->getSourceElementType(), Null, IndicesLHS);
+
+ SmallVector<Value *, 4> IndicesRHS(GRHS->idx_begin(), GRHS->idx_end());
+ Constant *NewRHS = ConstantExpr::getGetElementPtr(
+ GLHS->getSourceElementType(), Null, IndicesRHS);
+ return ConstantExpr::getICmp(Pred, NewLHS, NewRHS);
+ }
+ }
+ }
+
+ // If the comparison is with the result of a select instruction, check whether
+ // comparing with either branch of the select always yields the same value.
+ if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
+ if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
+ return V;
+
+ // If the comparison is with the result of a phi instruction, check whether
+ // doing the compare with each incoming phi value yields a common result.
+ if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
+ if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
+ return V;
+
+ return nullptr;
+}
+
+Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
+ const SimplifyQuery &Q) {
+ return ::SimplifyICmpInst(Predicate, LHS, RHS, Q, RecursionLimit);
+}
+
+/// Given operands for an FCmpInst, see if we can fold the result.
+/// If not, this returns null.
+static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
+ FastMathFlags FMF, const SimplifyQuery &Q,
+ unsigned MaxRecurse) {
+ CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
+ assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!");
+
+ if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
+ if (Constant *CRHS = dyn_cast<Constant>(RHS))
+ return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI);
+
+ // If we have a constant, make sure it is on the RHS.
+ std::swap(LHS, RHS);
+ Pred = CmpInst::getSwappedPredicate(Pred);
+ }
+
+ // Fold trivial predicates.
+ Type *RetTy = GetCompareTy(LHS);
+ if (Pred == FCmpInst::FCMP_FALSE)
+ return getFalse(RetTy);
+ if (Pred == FCmpInst::FCMP_TRUE)
+ return getTrue(RetTy);
+
+ // Fold (un)ordered comparison if we can determine there are no NaNs.
+ if (Pred == FCmpInst::FCMP_UNO || Pred == FCmpInst::FCMP_ORD)
+ if (FMF.noNaNs() ||
+ (isKnownNeverNaN(LHS, Q.TLI) && isKnownNeverNaN(RHS, Q.TLI)))
+ return ConstantInt::get(RetTy, Pred == FCmpInst::FCMP_ORD);
+
+ // NaN is unordered; NaN is not ordered.
+ assert((FCmpInst::isOrdered(Pred) || FCmpInst::isUnordered(Pred)) &&
+ "Comparison must be either ordered or unordered");
+ if (match(RHS, m_NaN()))
+ return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred));
+
+ // fcmp pred x, undef and fcmp pred undef, x
+ // fold to true if unordered, false if ordered
+ if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS)) {
+ // Choosing NaN for the undef will always make unordered comparison succeed
+ // and ordered comparison fail.
+ return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred));
+ }
+
+ // fcmp x,x -> true/false. Not all compares are foldable.
+ if (LHS == RHS) {
+ if (CmpInst::isTrueWhenEqual(Pred))
+ return getTrue(RetTy);
+ if (CmpInst::isFalseWhenEqual(Pred))
+ return getFalse(RetTy);
+ }
+
+ // Handle fcmp with constant RHS.
+ // TODO: Use match with a specific FP value, so these work with vectors with
+ // undef lanes.
+ const APFloat *C;
+ if (match(RHS, m_APFloat(C))) {
+ // Check whether the constant is an infinity.
+ if (C->isInfinity()) {
+ if (C->isNegative()) {
+ switch (Pred) {
+ case FCmpInst::FCMP_OLT:
+ // No value is ordered and less than negative infinity.
+ return getFalse(RetTy);
+ case FCmpInst::FCMP_UGE:
+ // All values are unordered with or at least negative infinity.
+ return getTrue(RetTy);
+ default:
+ break;
+ }
+ } else {
+ switch (Pred) {
+ case FCmpInst::FCMP_OGT:
+ // No value is ordered and greater than infinity.
+ return getFalse(RetTy);
+ case FCmpInst::FCMP_ULE:
+ // All values are unordered with and at most infinity.
+ return getTrue(RetTy);
+ default:
+ break;
+ }
+ }
+ }
+ if (C->isNegative() && !C->isNegZero()) {
+ assert(!C->isNaN() && "Unexpected NaN constant!");
+ // TODO: We can catch more cases by using a range check rather than
+ // relying on CannotBeOrderedLessThanZero.
+ switch (Pred) {
+ case FCmpInst::FCMP_UGE:
+ case FCmpInst::FCMP_UGT:
+ case FCmpInst::FCMP_UNE:
+ // (X >= 0) implies (X > C) when (C < 0)
+ if (CannotBeOrderedLessThanZero(LHS, Q.TLI))
+ return getTrue(RetTy);
+ break;
+ case FCmpInst::FCMP_OEQ:
+ case FCmpInst::FCMP_OLE:
+ case FCmpInst::FCMP_OLT:
+ // (X >= 0) implies !(X < C) when (C < 0)
+ if (CannotBeOrderedLessThanZero(LHS, Q.TLI))
+ return getFalse(RetTy);
+ break;
+ default:
+ break;
+ }
+ }
+
+ // Check comparison of [minnum/maxnum with constant] with other constant.
+ const APFloat *C2;
+ if ((match(LHS, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_APFloat(C2))) &&
+ C2->compare(*C) == APFloat::cmpLessThan) ||
+ (match(LHS, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_APFloat(C2))) &&
+ C2->compare(*C) == APFloat::cmpGreaterThan)) {
+ bool IsMaxNum =
+ cast<IntrinsicInst>(LHS)->getIntrinsicID() == Intrinsic::maxnum;
+ // The ordered relationship and minnum/maxnum guarantee that we do not
+ // have NaN constants, so ordered/unordered preds are handled the same.
+ switch (Pred) {
+ case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_UEQ:
+ // minnum(X, LesserC) == C --> false
+ // maxnum(X, GreaterC) == C --> false
+ return getFalse(RetTy);
+ case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_UNE:
+ // minnum(X, LesserC) != C --> true
+ // maxnum(X, GreaterC) != C --> true
+ return getTrue(RetTy);
+ case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_UGE:
+ case FCmpInst::FCMP_OGT: case FCmpInst::FCMP_UGT:
+ // minnum(X, LesserC) >= C --> false
+ // minnum(X, LesserC) > C --> false
+ // maxnum(X, GreaterC) >= C --> true
+ // maxnum(X, GreaterC) > C --> true
+ return ConstantInt::get(RetTy, IsMaxNum);
+ case FCmpInst::FCMP_OLE: case FCmpInst::FCMP_ULE:
+ case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_ULT:
+ // minnum(X, LesserC) <= C --> true
+ // minnum(X, LesserC) < C --> true
+ // maxnum(X, GreaterC) <= C --> false
+ // maxnum(X, GreaterC) < C --> false
+ return ConstantInt::get(RetTy, !IsMaxNum);
+ default:
+ // TRUE/FALSE/ORD/UNO should be handled before this.
+ llvm_unreachable("Unexpected fcmp predicate");
+ }
+ }
+ }
+
+ if (match(RHS, m_AnyZeroFP())) {
+ switch (Pred) {
+ case FCmpInst::FCMP_OGE:
+ case FCmpInst::FCMP_ULT:
+ // Positive or zero X >= 0.0 --> true
+ // Positive or zero X < 0.0 --> false
+ if ((FMF.noNaNs() || isKnownNeverNaN(LHS, Q.TLI)) &&
+ CannotBeOrderedLessThanZero(LHS, Q.TLI))
+ return Pred == FCmpInst::FCMP_OGE ? getTrue(RetTy) : getFalse(RetTy);
+ break;
+ case FCmpInst::FCMP_UGE:
+ case FCmpInst::FCMP_OLT:
+ // Positive or zero or nan X >= 0.0 --> true
+ // Positive or zero or nan X < 0.0 --> false
+ if (CannotBeOrderedLessThanZero(LHS, Q.TLI))
+ return Pred == FCmpInst::FCMP_UGE ? getTrue(RetTy) : getFalse(RetTy);
+ break;
+ default:
+ break;
+ }
+ }
+
+ // If the comparison is with the result of a select instruction, check whether
+ // comparing with either branch of the select always yields the same value.
+ if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
+ if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
+ return V;
+
+ // If the comparison is with the result of a phi instruction, check whether
+ // doing the compare with each incoming phi value yields a common result.
+ if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
+ if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
+ return V;
+
+ return nullptr;
+}
+
+Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
+ FastMathFlags FMF, const SimplifyQuery &Q) {
+ return ::SimplifyFCmpInst(Predicate, LHS, RHS, FMF, Q, RecursionLimit);
+}
+
+/// See if V simplifies when its operand Op is replaced with RepOp.
+static const Value *SimplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp,
+ const SimplifyQuery &Q,
+ unsigned MaxRecurse) {
+ // Trivial replacement.
+ if (V == Op)
+ return RepOp;
+
+ // We cannot replace a constant, and shouldn't even try.
+ if (isa<Constant>(Op))
+ return nullptr;
+
+ auto *I = dyn_cast<Instruction>(V);
+ if (!I)
+ return nullptr;
+
+ // If this is a binary operator, try to simplify it with the replaced op.
+ if (auto *B = dyn_cast<BinaryOperator>(I)) {
+ // Consider:
+ // %cmp = icmp eq i32 %x, 2147483647
+ // %add = add nsw i32 %x, 1
+ // %sel = select i1 %cmp, i32 -2147483648, i32 %add
+ //
+ // We can't replace %sel with %add unless we strip away the flags.
+ // TODO: This is an unusual limitation because better analysis results in
+ // worse simplification. InstCombine can do this fold more generally
+ // by dropping the flags. Remove this fold to save compile-time?
+ if (isa<OverflowingBinaryOperator>(B))
+ if (Q.IIQ.hasNoSignedWrap(B) || Q.IIQ.hasNoUnsignedWrap(B))
+ return nullptr;
+ if (isa<PossiblyExactOperator>(B) && Q.IIQ.isExact(B))
+ return nullptr;
+
+ if (MaxRecurse) {
+ if (B->getOperand(0) == Op)
+ return SimplifyBinOp(B->getOpcode(), RepOp, B->getOperand(1), Q,
+ MaxRecurse - 1);
+ if (B->getOperand(1) == Op)
+ return SimplifyBinOp(B->getOpcode(), B->getOperand(0), RepOp, Q,
+ MaxRecurse - 1);
+ }
+ }
+
+ // Same for CmpInsts.
+ if (CmpInst *C = dyn_cast<CmpInst>(I)) {
+ if (MaxRecurse) {
+ if (C->getOperand(0) == Op)
+ return SimplifyCmpInst(C->getPredicate(), RepOp, C->getOperand(1), Q,
+ MaxRecurse - 1);
+ if (C->getOperand(1) == Op)
+ return SimplifyCmpInst(C->getPredicate(), C->getOperand(0), RepOp, Q,
+ MaxRecurse - 1);
+ }
+ }
+
+ // Same for GEPs.
+ if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
+ if (MaxRecurse) {
+ SmallVector<Value *, 8> NewOps(GEP->getNumOperands());
+ transform(GEP->operands(), NewOps.begin(),
+ [&](Value *V) { return V == Op ? RepOp : V; });
+ return SimplifyGEPInst(GEP->getSourceElementType(), NewOps, Q,
+ MaxRecurse - 1);
+ }
+ }
+
+ // TODO: We could hand off more cases to instsimplify here.
+
+ // If all operands are constant after substituting Op for RepOp then we can
+ // constant fold the instruction.
+ if (Constant *CRepOp = dyn_cast<Constant>(RepOp)) {
+ // Build a list of all constant operands.
+ SmallVector<Constant *, 8> ConstOps;
+ for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
+ if (I->getOperand(i) == Op)
+ ConstOps.push_back(CRepOp);
+ else if (Constant *COp = dyn_cast<Constant>(I->getOperand(i)))
+ ConstOps.push_back(COp);
+ else
+ break;
+ }
+
+ // All operands were constants, fold it.
+ if (ConstOps.size() == I->getNumOperands()) {
+ if (CmpInst *C = dyn_cast<CmpInst>(I))
+ return ConstantFoldCompareInstOperands(C->getPredicate(), ConstOps[0],
+ ConstOps[1], Q.DL, Q.TLI);
+
+ if (LoadInst *LI = dyn_cast<LoadInst>(I))
+ if (!LI->isVolatile())
+ return ConstantFoldLoadFromConstPtr(ConstOps[0], LI->getType(), Q.DL);
+
+ return ConstantFoldInstOperands(I, ConstOps, Q.DL, Q.TLI);
+ }
+ }
+
+ return nullptr;
+}
+
+/// Try to simplify a select instruction when its condition operand is an
+/// integer comparison where one operand of the compare is a constant.
+static Value *simplifySelectBitTest(Value *TrueVal, Value *FalseVal, Value *X,
+ const APInt *Y, bool TrueWhenUnset) {
+ const APInt *C;
+
+ // (X & Y) == 0 ? X & ~Y : X --> X
+ // (X & Y) != 0 ? X & ~Y : X --> X & ~Y
+ if (FalseVal == X && match(TrueVal, m_And(m_Specific(X), m_APInt(C))) &&
+ *Y == ~*C)
+ return TrueWhenUnset ? FalseVal : TrueVal;
+
+ // (X & Y) == 0 ? X : X & ~Y --> X & ~Y
+ // (X & Y) != 0 ? X : X & ~Y --> X
+ if (TrueVal == X && match(FalseVal, m_And(m_Specific(X), m_APInt(C))) &&
+ *Y == ~*C)
+ return TrueWhenUnset ? FalseVal : TrueVal;
+
+ if (Y->isPowerOf2()) {
+ // (X & Y) == 0 ? X | Y : X --> X | Y
+ // (X & Y) != 0 ? X | Y : X --> X
+ if (FalseVal == X && match(TrueVal, m_Or(m_Specific(X), m_APInt(C))) &&
+ *Y == *C)
+ return TrueWhenUnset ? TrueVal : FalseVal;
+
+ // (X & Y) == 0 ? X : X | Y --> X
+ // (X & Y) != 0 ? X : X | Y --> X | Y
+ if (TrueVal == X && match(FalseVal, m_Or(m_Specific(X), m_APInt(C))) &&
+ *Y == *C)
+ return TrueWhenUnset ? TrueVal : FalseVal;
+ }
+
+ return nullptr;
+}
+
+/// An alternative way to test if a bit is set or not uses sgt/slt instead of
+/// eq/ne.
+static Value *simplifySelectWithFakeICmpEq(Value *CmpLHS, Value *CmpRHS,
+ ICmpInst::Predicate Pred,
+ Value *TrueVal, Value *FalseVal) {
+ Value *X;
+ APInt Mask;
+ if (!decomposeBitTestICmp(CmpLHS, CmpRHS, Pred, X, Mask))
+ return nullptr;
+
+ return simplifySelectBitTest(TrueVal, FalseVal, X, &Mask,
+ Pred == ICmpInst::ICMP_EQ);
+}
+
+/// Try to simplify a select instruction when its condition operand is an
+/// integer comparison.
+static Value *simplifySelectWithICmpCond(Value *CondVal, Value *TrueVal,
+ Value *FalseVal, const SimplifyQuery &Q,
+ unsigned MaxRecurse) {
+ ICmpInst::Predicate Pred;
+ Value *CmpLHS, *CmpRHS;
+ if (!match(CondVal, m_ICmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS))))
+ return nullptr;
+
+ if (ICmpInst::isEquality(Pred) && match(CmpRHS, m_Zero())) {
+ Value *X;
+ const APInt *Y;
+ if (match(CmpLHS, m_And(m_Value(X), m_APInt(Y))))
+ if (Value *V = simplifySelectBitTest(TrueVal, FalseVal, X, Y,
+ Pred == ICmpInst::ICMP_EQ))
+ return V;
+
+ // Test for a bogus zero-shift-guard-op around funnel-shift or rotate.
+ Value *ShAmt;
+ auto isFsh = m_CombineOr(m_Intrinsic<Intrinsic::fshl>(m_Value(X), m_Value(),
+ m_Value(ShAmt)),
+ m_Intrinsic<Intrinsic::fshr>(m_Value(), m_Value(X),
+ m_Value(ShAmt)));
+ // (ShAmt == 0) ? fshl(X, *, ShAmt) : X --> X
+ // (ShAmt == 0) ? fshr(*, X, ShAmt) : X --> X
+ if (match(TrueVal, isFsh) && FalseVal == X && CmpLHS == ShAmt &&
+ Pred == ICmpInst::ICMP_EQ)
+ return X;
+ // (ShAmt != 0) ? X : fshl(X, *, ShAmt) --> X
+ // (ShAmt != 0) ? X : fshr(*, X, ShAmt) --> X
+ if (match(FalseVal, isFsh) && TrueVal == X && CmpLHS == ShAmt &&
+ Pred == ICmpInst::ICMP_NE)
+ return X;
+
+ // Test for a zero-shift-guard-op around rotates. These are used to
+ // avoid UB from oversized shifts in raw IR rotate patterns, but the
+ // intrinsics do not have that problem.
+ // We do not allow this transform for the general funnel shift case because
+ // that would not preserve the poison safety of the original code.
+ auto isRotate = m_CombineOr(m_Intrinsic<Intrinsic::fshl>(m_Value(X),
+ m_Deferred(X),
+ m_Value(ShAmt)),
+ m_Intrinsic<Intrinsic::fshr>(m_Value(X),
+ m_Deferred(X),
+ m_Value(ShAmt)));
+ // (ShAmt != 0) ? fshl(X, X, ShAmt) : X --> fshl(X, X, ShAmt)
+ // (ShAmt != 0) ? fshr(X, X, ShAmt) : X --> fshr(X, X, ShAmt)
+ if (match(TrueVal, isRotate) && FalseVal == X && CmpLHS == ShAmt &&
+ Pred == ICmpInst::ICMP_NE)
+ return TrueVal;
+ // (ShAmt == 0) ? X : fshl(X, X, ShAmt) --> fshl(X, X, ShAmt)
+ // (ShAmt == 0) ? X : fshr(X, X, ShAmt) --> fshr(X, X, ShAmt)
+ if (match(FalseVal, isRotate) && TrueVal == X && CmpLHS == ShAmt &&
+ Pred == ICmpInst::ICMP_EQ)
+ return FalseVal;
+ }
+
+ // Check for other compares that behave like bit test.
+ if (Value *V = simplifySelectWithFakeICmpEq(CmpLHS, CmpRHS, Pred,
+ TrueVal, FalseVal))
+ return V;
+
+ // If we have an equality comparison, then we know the value in one of the
+ // arms of the select. See if substituting this value into the arm and
+ // simplifying the result yields the same value as the other arm.
+ if (Pred == ICmpInst::ICMP_EQ) {
+ if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) ==
+ TrueVal ||
+ SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) ==
+ TrueVal)
+ return FalseVal;
+ if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) ==
+ FalseVal ||
+ SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) ==
+ FalseVal)
+ return FalseVal;
+ } else if (Pred == ICmpInst::ICMP_NE) {
+ if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) ==
+ FalseVal ||
+ SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) ==
+ FalseVal)
+ return TrueVal;
+ if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) ==
+ TrueVal ||
+ SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) ==
+ TrueVal)
+ return TrueVal;
+ }
+
+ return nullptr;
+}
+
+/// Try to simplify a select instruction when its condition operand is a
+/// floating-point comparison.
+static Value *simplifySelectWithFCmp(Value *Cond, Value *T, Value *F) {
+ FCmpInst::Predicate Pred;
+ if (!match(Cond, m_FCmp(Pred, m_Specific(T), m_Specific(F))) &&
+ !match(Cond, m_FCmp(Pred, m_Specific(F), m_Specific(T))))
+ return nullptr;
+
+ // TODO: The transform may not be valid with -0.0. An incomplete way of
+ // testing for that possibility is to check if at least one operand is a
+ // non-zero constant.
+ const APFloat *C;
+ if ((match(T, m_APFloat(C)) && C->isNonZero()) ||
+ (match(F, m_APFloat(C)) && C->isNonZero())) {
+ // (T == F) ? T : F --> F
+ // (F == T) ? T : F --> F
+ if (Pred == FCmpInst::FCMP_OEQ)
+ return F;
+
+ // (T != F) ? T : F --> T
+ // (F != T) ? T : F --> T
+ if (Pred == FCmpInst::FCMP_UNE)
+ return T;
+ }
+
+ return nullptr;
+}
+
+/// Given operands for a SelectInst, see if we can fold the result.
+/// If not, this returns null.
+static Value *SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal,
+ const SimplifyQuery &Q, unsigned MaxRecurse) {
+ if (auto *CondC = dyn_cast<Constant>(Cond)) {
+ if (auto *TrueC = dyn_cast<Constant>(TrueVal))
+ if (auto *FalseC = dyn_cast<Constant>(FalseVal))
+ return ConstantFoldSelectInstruction(CondC, TrueC, FalseC);
+
+ // select undef, X, Y -> X or Y
+ if (isa<UndefValue>(CondC))
+ return isa<Constant>(FalseVal) ? FalseVal : TrueVal;
+
+ // TODO: Vector constants with undef elements don't simplify.
+
+ // select true, X, Y -> X
+ if (CondC->isAllOnesValue())
+ return TrueVal;
+ // select false, X, Y -> Y
+ if (CondC->isNullValue())
+ return FalseVal;
+ }
+
+ // select ?, X, X -> X
+ if (TrueVal == FalseVal)
+ return TrueVal;
+
+ if (isa<UndefValue>(TrueVal)) // select ?, undef, X -> X
+ return FalseVal;
+ if (isa<UndefValue>(FalseVal)) // select ?, X, undef -> X
+ return TrueVal;
+
+ if (Value *V =
+ simplifySelectWithICmpCond(Cond, TrueVal, FalseVal, Q, MaxRecurse))
+ return V;
+
+ if (Value *V = simplifySelectWithFCmp(Cond, TrueVal, FalseVal))
+ return V;
+
+ if (Value *V = foldSelectWithBinaryOp(Cond, TrueVal, FalseVal))
+ return V;
+
+ Optional<bool> Imp = isImpliedByDomCondition(Cond, Q.CxtI, Q.DL);
+ if (Imp)
+ return *Imp ? TrueVal : FalseVal;
+
+ return nullptr;
+}
+
+Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal,
+ const SimplifyQuery &Q) {
+ return ::SimplifySelectInst(Cond, TrueVal, FalseVal, Q, RecursionLimit);
+}
+
+/// Given operands for an GetElementPtrInst, see if we can fold the result.
+/// If not, this returns null.
+static Value *SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops,
+ const SimplifyQuery &Q, unsigned) {
+ // The type of the GEP pointer operand.
+ unsigned AS =
+ cast<PointerType>(Ops[0]->getType()->getScalarType())->getAddressSpace();
+
+ // getelementptr P -> P.
+ if (Ops.size() == 1)
+ return Ops[0];
+
+ // Compute the (pointer) type returned by the GEP instruction.
+ Type *LastType = GetElementPtrInst::getIndexedType(SrcTy, Ops.slice(1));
+ Type *GEPTy = PointerType::get(LastType, AS);
+ if (VectorType *VT = dyn_cast<VectorType>(Ops[0]->getType()))
+ GEPTy = VectorType::get(GEPTy, VT->getNumElements());
+ else if (VectorType *VT = dyn_cast<VectorType>(Ops[1]->getType()))
+ GEPTy = VectorType::get(GEPTy, VT->getNumElements());
+
+ if (isa<UndefValue>(Ops[0]))
+ return UndefValue::get(GEPTy);
+
+ if (Ops.size() == 2) {
+ // getelementptr P, 0 -> P.
+ if (match(Ops[1], m_Zero()) && Ops[0]->getType() == GEPTy)
+ return Ops[0];
+
+ Type *Ty = SrcTy;
+ if (Ty->isSized()) {
+ Value *P;
+ uint64_t C;
+ uint64_t TyAllocSize = Q.DL.getTypeAllocSize(Ty);
+ // getelementptr P, N -> P if P points to a type of zero size.
+ if (TyAllocSize == 0 && Ops[0]->getType() == GEPTy)
+ return Ops[0];
+
+ // The following transforms are only safe if the ptrtoint cast
+ // doesn't truncate the pointers.
+ if (Ops[1]->getType()->getScalarSizeInBits() ==
+ Q.DL.getIndexSizeInBits(AS)) {
+ auto PtrToIntOrZero = [GEPTy](Value *P) -> Value * {
+ if (match(P, m_Zero()))
+ return Constant::getNullValue(GEPTy);
+ Value *Temp;
+ if (match(P, m_PtrToInt(m_Value(Temp))))
+ if (Temp->getType() == GEPTy)
+ return Temp;
+ return nullptr;
+ };
+
+ // getelementptr V, (sub P, V) -> P if P points to a type of size 1.
+ if (TyAllocSize == 1 &&
+ match(Ops[1], m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0])))))
+ if (Value *R = PtrToIntOrZero(P))
+ return R;
+
+ // getelementptr V, (ashr (sub P, V), C) -> Q
+ // if P points to a type of size 1 << C.
+ if (match(Ops[1],
+ m_AShr(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))),
+ m_ConstantInt(C))) &&
+ TyAllocSize == 1ULL << C)
+ if (Value *R = PtrToIntOrZero(P))
+ return R;
+
+ // getelementptr V, (sdiv (sub P, V), C) -> Q
+ // if P points to a type of size C.
+ if (match(Ops[1],
+ m_SDiv(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))),
+ m_SpecificInt(TyAllocSize))))
+ if (Value *R = PtrToIntOrZero(P))
+ return R;
+ }
+ }
+ }
+
+ if (Q.DL.getTypeAllocSize(LastType) == 1 &&
+ all_of(Ops.slice(1).drop_back(1),
+ [](Value *Idx) { return match(Idx, m_Zero()); })) {
+ unsigned IdxWidth =
+ Q.DL.getIndexSizeInBits(Ops[0]->getType()->getPointerAddressSpace());
+ if (Q.DL.getTypeSizeInBits(Ops.back()->getType()) == IdxWidth) {
+ APInt BasePtrOffset(IdxWidth, 0);
+ Value *StrippedBasePtr =
+ Ops[0]->stripAndAccumulateInBoundsConstantOffsets(Q.DL,
+ BasePtrOffset);
+
+ // gep (gep V, C), (sub 0, V) -> C
+ if (match(Ops.back(),
+ m_Sub(m_Zero(), m_PtrToInt(m_Specific(StrippedBasePtr))))) {
+ auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset);
+ return ConstantExpr::getIntToPtr(CI, GEPTy);
+ }
+ // gep (gep V, C), (xor V, -1) -> C-1
+ if (match(Ops.back(),
+ m_Xor(m_PtrToInt(m_Specific(StrippedBasePtr)), m_AllOnes()))) {
+ auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset - 1);
+ return ConstantExpr::getIntToPtr(CI, GEPTy);
+ }
+ }
+ }
+
+ // Check to see if this is constant foldable.
+ if (!all_of(Ops, [](Value *V) { return isa<Constant>(V); }))
+ return nullptr;
+
+ auto *CE = ConstantExpr::getGetElementPtr(SrcTy, cast<Constant>(Ops[0]),
+ Ops.slice(1));
+ if (auto *CEFolded = ConstantFoldConstant(CE, Q.DL))
+ return CEFolded;
+ return CE;
+}
+
+Value *llvm::SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops,
+ const SimplifyQuery &Q) {
+ return ::SimplifyGEPInst(SrcTy, Ops, Q, RecursionLimit);
+}
+
+/// Given operands for an InsertValueInst, see if we can fold the result.
+/// If not, this returns null.
+static Value *SimplifyInsertValueInst(Value *Agg, Value *Val,
+ ArrayRef<unsigned> Idxs, const SimplifyQuery &Q,
+ unsigned) {
+ if (Constant *CAgg = dyn_cast<Constant>(Agg))
+ if (Constant *CVal = dyn_cast<Constant>(Val))
+ return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs);
+
+ // insertvalue x, undef, n -> x
+ if (match(Val, m_Undef()))
+ return Agg;
+
+ // insertvalue x, (extractvalue y, n), n
+ if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val))
+ if (EV->getAggregateOperand()->getType() == Agg->getType() &&
+ EV->getIndices() == Idxs) {
+ // insertvalue undef, (extractvalue y, n), n -> y
+ if (match(Agg, m_Undef()))
+ return EV->getAggregateOperand();
+
+ // insertvalue y, (extractvalue y, n), n -> y
+ if (Agg == EV->getAggregateOperand())
+ return Agg;
+ }
+
+ return nullptr;
+}
+
+Value *llvm::SimplifyInsertValueInst(Value *Agg, Value *Val,
+ ArrayRef<unsigned> Idxs,
+ const SimplifyQuery &Q) {
+ return ::SimplifyInsertValueInst(Agg, Val, Idxs, Q, RecursionLimit);
+}
+
+Value *llvm::SimplifyInsertElementInst(Value *Vec, Value *Val, Value *Idx,
+ const SimplifyQuery &Q) {
+ // Try to constant fold.
+ auto *VecC = dyn_cast<Constant>(Vec);
+ auto *ValC = dyn_cast<Constant>(Val);
+ auto *IdxC = dyn_cast<Constant>(Idx);
+ if (VecC && ValC && IdxC)
+ return ConstantFoldInsertElementInstruction(VecC, ValC, IdxC);
+
+ // Fold into undef if index is out of bounds.
+ if (auto *CI = dyn_cast<ConstantInt>(Idx)) {
+ uint64_t NumElements = cast<VectorType>(Vec->getType())->getNumElements();
+ if (CI->uge(NumElements))
+ return UndefValue::get(Vec->getType());
+ }
+
+ // If index is undef, it might be out of bounds (see above case)
+ if (isa<UndefValue>(Idx))
+ return UndefValue::get(Vec->getType());
+
+ // Inserting an undef scalar? Assume it is the same value as the existing
+ // vector element.
+ if (isa<UndefValue>(Val))
+ return Vec;
+
+ // If we are extracting a value from a vector, then inserting it into the same
+ // place, that's the input vector:
+ // insertelt Vec, (extractelt Vec, Idx), Idx --> Vec
+ if (match(Val, m_ExtractElement(m_Specific(Vec), m_Specific(Idx))))
+ return Vec;
+
+ return nullptr;
+}
+
+/// Given operands for an ExtractValueInst, see if we can fold the result.
+/// If not, this returns null.
+static Value *SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs,
+ const SimplifyQuery &, unsigned) {
+ if (auto *CAgg = dyn_cast<Constant>(Agg))
+ return ConstantFoldExtractValueInstruction(CAgg, Idxs);
+
+ // extractvalue x, (insertvalue y, elt, n), n -> elt
+ unsigned NumIdxs = Idxs.size();
+ for (auto *IVI = dyn_cast<InsertValueInst>(Agg); IVI != nullptr;
+ IVI = dyn_cast<InsertValueInst>(IVI->getAggregateOperand())) {
+ ArrayRef<unsigned> InsertValueIdxs = IVI->getIndices();
+ unsigned NumInsertValueIdxs = InsertValueIdxs.size();
+ unsigned NumCommonIdxs = std::min(NumInsertValueIdxs, NumIdxs);
+ if (InsertValueIdxs.slice(0, NumCommonIdxs) ==
+ Idxs.slice(0, NumCommonIdxs)) {
+ if (NumIdxs == NumInsertValueIdxs)
+ return IVI->getInsertedValueOperand();
+ break;
+ }
+ }
+
+ return nullptr;
+}
+
+Value *llvm::SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs,
+ const SimplifyQuery &Q) {
+ return ::SimplifyExtractValueInst(Agg, Idxs, Q, RecursionLimit);
+}
+
+/// Given operands for an ExtractElementInst, see if we can fold the result.
+/// If not, this returns null.
+static Value *SimplifyExtractElementInst(Value *Vec, Value *Idx, const SimplifyQuery &,
+ unsigned) {
+ if (auto *CVec = dyn_cast<Constant>(Vec)) {
+ if (auto *CIdx = dyn_cast<Constant>(Idx))
+ return ConstantFoldExtractElementInstruction(CVec, CIdx);
+
+ // The index is not relevant if our vector is a splat.
+ if (auto *Splat = CVec->getSplatValue())
+ return Splat;
+
+ if (isa<UndefValue>(Vec))
+ return UndefValue::get(Vec->getType()->getVectorElementType());
+ }
+
+ // If extracting a specified index from the vector, see if we can recursively
+ // find a previously computed scalar that was inserted into the vector.
+ if (auto *IdxC = dyn_cast<ConstantInt>(Idx)) {
+ if (IdxC->getValue().uge(Vec->getType()->getVectorNumElements()))
+ // definitely out of bounds, thus undefined result
+ return UndefValue::get(Vec->getType()->getVectorElementType());
+ if (Value *Elt = findScalarElement(Vec, IdxC->getZExtValue()))
+ return Elt;
+ }
+
+ // An undef extract index can be arbitrarily chosen to be an out-of-range
+ // index value, which would result in the instruction being undef.
+ if (isa<UndefValue>(Idx))
+ return UndefValue::get(Vec->getType()->getVectorElementType());
+
+ return nullptr;
+}
+
+Value *llvm::SimplifyExtractElementInst(Value *Vec, Value *Idx,
+ const SimplifyQuery &Q) {
+ return ::SimplifyExtractElementInst(Vec, Idx, Q, RecursionLimit);
+}
+
+/// See if we can fold the given phi. If not, returns null.
+static Value *SimplifyPHINode(PHINode *PN, const SimplifyQuery &Q) {
+ // If all of the PHI's incoming values are the same then replace the PHI node
+ // with the common value.
+ Value *CommonValue = nullptr;
+ bool HasUndefInput = false;
+ for (Value *Incoming : PN->incoming_values()) {
+ // If the incoming value is the phi node itself, it can safely be skipped.
+ if (Incoming == PN) continue;
+ if (isa<UndefValue>(Incoming)) {
+ // Remember that we saw an undef value, but otherwise ignore them.
+ HasUndefInput = true;
+ continue;
+ }
+ if (CommonValue && Incoming != CommonValue)
+ return nullptr; // Not the same, bail out.
+ CommonValue = Incoming;
+ }
+
+ // If CommonValue is null then all of the incoming values were either undef or
+ // equal to the phi node itself.
+ if (!CommonValue)
+ return UndefValue::get(PN->getType());
+
+ // If we have a PHI node like phi(X, undef, X), where X is defined by some
+ // instruction, we cannot return X as the result of the PHI node unless it
+ // dominates the PHI block.
+ if (HasUndefInput)
+ return valueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : nullptr;
+
+ return CommonValue;
+}
+
+static Value *SimplifyCastInst(unsigned CastOpc, Value *Op,
+ Type *Ty, const SimplifyQuery &Q, unsigned MaxRecurse) {
+ if (auto *C = dyn_cast<Constant>(Op))
+ return ConstantFoldCastOperand(CastOpc, C, Ty, Q.DL);
+
+ if (auto *CI = dyn_cast<CastInst>(Op)) {
+ auto *Src = CI->getOperand(0);
+ Type *SrcTy = Src->getType();
+ Type *MidTy = CI->getType();
+ Type *DstTy = Ty;
+ if (Src->getType() == Ty) {
+ auto FirstOp = static_cast<Instruction::CastOps>(CI->getOpcode());
+ auto SecondOp = static_cast<Instruction::CastOps>(CastOpc);
+ Type *SrcIntPtrTy =
+ SrcTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(SrcTy) : nullptr;
+ Type *MidIntPtrTy =
+ MidTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(MidTy) : nullptr;
+ Type *DstIntPtrTy =
+ DstTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(DstTy) : nullptr;
+ if (CastInst::isEliminableCastPair(FirstOp, SecondOp, SrcTy, MidTy, DstTy,
+ SrcIntPtrTy, MidIntPtrTy,
+ DstIntPtrTy) == Instruction::BitCast)
+ return Src;
+ }
+ }
+
+ // bitcast x -> x
+ if (CastOpc == Instruction::BitCast)
+ if (Op->getType() == Ty)
+ return Op;
+
+ return nullptr;
+}
+
+Value *llvm::SimplifyCastInst(unsigned CastOpc, Value *Op, Type *Ty,
+ const SimplifyQuery &Q) {
+ return ::SimplifyCastInst(CastOpc, Op, Ty, Q, RecursionLimit);
+}
+
+/// For the given destination element of a shuffle, peek through shuffles to
+/// match a root vector source operand that contains that element in the same
+/// vector lane (ie, the same mask index), so we can eliminate the shuffle(s).
+static Value *foldIdentityShuffles(int DestElt, Value *Op0, Value *Op1,
+ int MaskVal, Value *RootVec,
+ unsigned MaxRecurse) {
+ if (!MaxRecurse--)
+ return nullptr;
+
+ // Bail out if any mask value is undefined. That kind of shuffle may be
+ // simplified further based on demanded bits or other folds.
+ if (MaskVal == -1)
+ return nullptr;
+
+ // The mask value chooses which source operand we need to look at next.
+ int InVecNumElts = Op0->getType()->getVectorNumElements();
+ int RootElt = MaskVal;
+ Value *SourceOp = Op0;
+ if (MaskVal >= InVecNumElts) {
+ RootElt = MaskVal - InVecNumElts;
+ SourceOp = Op1;
+ }
+
+ // If the source operand is a shuffle itself, look through it to find the
+ // matching root vector.
+ if (auto *SourceShuf = dyn_cast<ShuffleVectorInst>(SourceOp)) {
+ return foldIdentityShuffles(
+ DestElt, SourceShuf->getOperand(0), SourceShuf->getOperand(1),
+ SourceShuf->getMaskValue(RootElt), RootVec, MaxRecurse);
+ }
+
+ // TODO: Look through bitcasts? What if the bitcast changes the vector element
+ // size?
+
+ // The source operand is not a shuffle. Initialize the root vector value for
+ // this shuffle if that has not been done yet.
+ if (!RootVec)
+ RootVec = SourceOp;
+
+ // Give up as soon as a source operand does not match the existing root value.
+ if (RootVec != SourceOp)
+ return nullptr;
+
+ // The element must be coming from the same lane in the source vector
+ // (although it may have crossed lanes in intermediate shuffles).
+ if (RootElt != DestElt)
+ return nullptr;
+
+ return RootVec;
+}
+
+static Value *SimplifyShuffleVectorInst(Value *Op0, Value *Op1, Constant *Mask,
+ Type *RetTy, const SimplifyQuery &Q,
+ unsigned MaxRecurse) {
+ if (isa<UndefValue>(Mask))
+ return UndefValue::get(RetTy);
+
+ Type *InVecTy = Op0->getType();
+ unsigned MaskNumElts = Mask->getType()->getVectorNumElements();
+ unsigned InVecNumElts = InVecTy->getVectorNumElements();
+
+ SmallVector<int, 32> Indices;
+ ShuffleVectorInst::getShuffleMask(Mask, Indices);
+ assert(MaskNumElts == Indices.size() &&
+ "Size of Indices not same as number of mask elements?");
+
+ // Canonicalization: If mask does not select elements from an input vector,
+ // replace that input vector with undef.
+ bool MaskSelects0 = false, MaskSelects1 = false;
+ for (unsigned i = 0; i != MaskNumElts; ++i) {
+ if (Indices[i] == -1)
+ continue;
+ if ((unsigned)Indices[i] < InVecNumElts)
+ MaskSelects0 = true;
+ else
+ MaskSelects1 = true;
+ }
+ if (!MaskSelects0)
+ Op0 = UndefValue::get(InVecTy);
+ if (!MaskSelects1)
+ Op1 = UndefValue::get(InVecTy);
+
+ auto *Op0Const = dyn_cast<Constant>(Op0);
+ auto *Op1Const = dyn_cast<Constant>(Op1);
+
+ // If all operands are constant, constant fold the shuffle.
+ if (Op0Const && Op1Const)
+ return ConstantFoldShuffleVectorInstruction(Op0Const, Op1Const, Mask);
+
+ // Canonicalization: if only one input vector is constant, it shall be the
+ // second one.
+ if (Op0Const && !Op1Const) {
+ std::swap(Op0, Op1);
+ ShuffleVectorInst::commuteShuffleMask(Indices, InVecNumElts);
+ }
+
+ // A shuffle of a splat is always the splat itself. Legal if the shuffle's
+ // value type is same as the input vectors' type.
+ if (auto *OpShuf = dyn_cast<ShuffleVectorInst>(Op0))
+ if (isa<UndefValue>(Op1) && RetTy == InVecTy &&
+ OpShuf->getMask()->getSplatValue())
+ return Op0;
+
+ // Don't fold a shuffle with undef mask elements. This may get folded in a
+ // better way using demanded bits or other analysis.
+ // TODO: Should we allow this?
+ if (find(Indices, -1) != Indices.end())
+ return nullptr;
+
+ // Check if every element of this shuffle can be mapped back to the
+ // corresponding element of a single root vector. If so, we don't need this
+ // shuffle. This handles simple identity shuffles as well as chains of
+ // shuffles that may widen/narrow and/or move elements across lanes and back.
+ Value *RootVec = nullptr;
+ for (unsigned i = 0; i != MaskNumElts; ++i) {
+ // Note that recursion is limited for each vector element, so if any element
+ // exceeds the limit, this will fail to simplify.
+ RootVec =
+ foldIdentityShuffles(i, Op0, Op1, Indices[i], RootVec, MaxRecurse);
+
+ // We can't replace a widening/narrowing shuffle with one of its operands.
+ if (!RootVec || RootVec->getType() != RetTy)
+ return nullptr;
+ }
+ return RootVec;
+}
+
+/// Given operands for a ShuffleVectorInst, fold the result or return null.
+Value *llvm::SimplifyShuffleVectorInst(Value *Op0, Value *Op1, Constant *Mask,
+ Type *RetTy, const SimplifyQuery &Q) {
+ return ::SimplifyShuffleVectorInst(Op0, Op1, Mask, RetTy, Q, RecursionLimit);
+}
+
+static Constant *foldConstant(Instruction::UnaryOps Opcode,
+ Value *&Op, const SimplifyQuery &Q) {
+ if (auto *C = dyn_cast<Constant>(Op))
+ return ConstantFoldUnaryOpOperand(Opcode, C, Q.DL);
+ return nullptr;
+}
+
+/// Given the operand for an FNeg, see if we can fold the result. If not, this
+/// returns null.
+static Value *simplifyFNegInst(Value *Op, FastMathFlags FMF,
+ const SimplifyQuery &Q, unsigned MaxRecurse) {
+ if (Constant *C = foldConstant(Instruction::FNeg, Op, Q))
+ return C;
+
+ Value *X;
+ // fneg (fneg X) ==> X
+ if (match(Op, m_FNeg(m_Value(X))))
+ return X;
+
+ return nullptr;
+}
+
+Value *llvm::SimplifyFNegInst(Value *Op, FastMathFlags FMF,
+ const SimplifyQuery &Q) {
+ return ::simplifyFNegInst(Op, FMF, Q, RecursionLimit);
+}
+
+static Constant *propagateNaN(Constant *In) {
+ // If the input is a vector with undef elements, just return a default NaN.
+ if (!In->isNaN())
+ return ConstantFP::getNaN(In->getType());
+
+ // Propagate the existing NaN constant when possible.
+ // TODO: Should we quiet a signaling NaN?
+ return In;
+}
+
+/// Perform folds that are common to any floating-point operation. This implies
+/// transforms based on undef/NaN because the operation itself makes no
+/// difference to the result.
+static Constant *simplifyFPOp(ArrayRef<Value *> Ops) {
+ if (any_of(Ops, [](Value *V) { return isa<UndefValue>(V); }))
+ return ConstantFP::getNaN(Ops[0]->getType());
+
+ for (Value *V : Ops)
+ if (match(V, m_NaN()))
+ return propagateNaN(cast<Constant>(V));
+
+ return nullptr;
+}
+
+/// Given operands for an FAdd, see if we can fold the result. If not, this
+/// returns null.
+static Value *SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
+ const SimplifyQuery &Q, unsigned MaxRecurse) {
+ if (Constant *C = foldOrCommuteConstant(Instruction::FAdd, Op0, Op1, Q))
+ return C;
+
+ if (Constant *C = simplifyFPOp({Op0, Op1}))
+ return C;
+
+ // fadd X, -0 ==> X
+ if (match(Op1, m_NegZeroFP()))
+ return Op0;
+
+ // fadd X, 0 ==> X, when we know X is not -0
+ if (match(Op1, m_PosZeroFP()) &&
+ (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI)))
+ return Op0;
+
+ // With nnan: -X + X --> 0.0 (and commuted variant)
+ // We don't have to explicitly exclude infinities (ninf): INF + -INF == NaN.
+ // Negative zeros are allowed because we always end up with positive zero:
+ // X = -0.0: (-0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0
+ // X = -0.0: ( 0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0
+ // X = 0.0: (-0.0 - ( 0.0)) + ( 0.0) == (-0.0) + ( 0.0) == 0.0
+ // X = 0.0: ( 0.0 - ( 0.0)) + ( 0.0) == ( 0.0) + ( 0.0) == 0.0
+ if (FMF.noNaNs()) {
+ if (match(Op0, m_FSub(m_AnyZeroFP(), m_Specific(Op1))) ||
+ match(Op1, m_FSub(m_AnyZeroFP(), m_Specific(Op0))))
+ return ConstantFP::getNullValue(Op0->getType());
+
+ if (match(Op0, m_FNeg(m_Specific(Op1))) ||
+ match(Op1, m_FNeg(m_Specific(Op0))))
+ return ConstantFP::getNullValue(Op0->getType());
+ }
+
+ // (X - Y) + Y --> X
+ // Y + (X - Y) --> X
+ Value *X;
+ if (FMF.noSignedZeros() && FMF.allowReassoc() &&
+ (match(Op0, m_FSub(m_Value(X), m_Specific(Op1))) ||
+ match(Op1, m_FSub(m_Value(X), m_Specific(Op0)))))
+ return X;
+
+ return nullptr;
+}
+
+/// Given operands for an FSub, see if we can fold the result. If not, this
+/// returns null.
+static Value *SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
+ const SimplifyQuery &Q, unsigned MaxRecurse) {
+ if (Constant *C = foldOrCommuteConstant(Instruction::FSub, Op0, Op1, Q))
+ return C;
+
+ if (Constant *C = simplifyFPOp({Op0, Op1}))
+ return C;
+
+ // fsub X, +0 ==> X
+ if (match(Op1, m_PosZeroFP()))
+ return Op0;
+
+ // fsub X, -0 ==> X, when we know X is not -0
+ if (match(Op1, m_NegZeroFP()) &&
+ (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI)))
+ return Op0;
+
+ // fsub -0.0, (fsub -0.0, X) ==> X
+ // fsub -0.0, (fneg X) ==> X
+ Value *X;
+ if (match(Op0, m_NegZeroFP()) &&
+ match(Op1, m_FNeg(m_Value(X))))
+ return X;
+
+ // fsub 0.0, (fsub 0.0, X) ==> X if signed zeros are ignored.
+ // fsub 0.0, (fneg X) ==> X if signed zeros are ignored.
+ if (FMF.noSignedZeros() && match(Op0, m_AnyZeroFP()) &&
+ (match(Op1, m_FSub(m_AnyZeroFP(), m_Value(X))) ||
+ match(Op1, m_FNeg(m_Value(X)))))
+ return X;
+
+ // fsub nnan x, x ==> 0.0
+ if (FMF.noNaNs() && Op0 == Op1)
+ return Constant::getNullValue(Op0->getType());
+
+ // Y - (Y - X) --> X
+ // (X + Y) - Y --> X
+ if (FMF.noSignedZeros() && FMF.allowReassoc() &&
+ (match(Op1, m_FSub(m_Specific(Op0), m_Value(X))) ||
+ match(Op0, m_c_FAdd(m_Specific(Op1), m_Value(X)))))
+ return X;
+
+ return nullptr;
+}
+
+static Value *SimplifyFMAFMul(Value *Op0, Value *Op1, FastMathFlags FMF,
+ const SimplifyQuery &Q, unsigned MaxRecurse) {
+ if (Constant *C = simplifyFPOp({Op0, Op1}))
+ return C;
+
+ // fmul X, 1.0 ==> X
+ if (match(Op1, m_FPOne()))
+ return Op0;
+
+ // fmul 1.0, X ==> X
+ if (match(Op0, m_FPOne()))
+ return Op1;
+
+ // fmul nnan nsz X, 0 ==> 0
+ if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op1, m_AnyZeroFP()))
+ return ConstantFP::getNullValue(Op0->getType());
+
+ // fmul nnan nsz 0, X ==> 0
+ if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZeroFP()))
+ return ConstantFP::getNullValue(Op1->getType());
+
+ // sqrt(X) * sqrt(X) --> X, if we can:
+ // 1. Remove the intermediate rounding (reassociate).
+ // 2. Ignore non-zero negative numbers because sqrt would produce NAN.
+ // 3. Ignore -0.0 because sqrt(-0.0) == -0.0, but -0.0 * -0.0 == 0.0.
+ Value *X;
+ if (Op0 == Op1 && match(Op0, m_Intrinsic<Intrinsic::sqrt>(m_Value(X))) &&
+ FMF.allowReassoc() && FMF.noNaNs() && FMF.noSignedZeros())
+ return X;
+
+ return nullptr;
+}
+
+/// Given the operands for an FMul, see if we can fold the result
+static Value *SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF,
+ const SimplifyQuery &Q, unsigned MaxRecurse) {
+ if (Constant *C = foldOrCommuteConstant(Instruction::FMul, Op0, Op1, Q))
+ return C;
+
+ // Now apply simplifications that do not require rounding.
+ return SimplifyFMAFMul(Op0, Op1, FMF, Q, MaxRecurse);
+}
+
+Value *llvm::SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
+ const SimplifyQuery &Q) {
+ return ::SimplifyFAddInst(Op0, Op1, FMF, Q, RecursionLimit);
+}
+
+
+Value *llvm::SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
+ const SimplifyQuery &Q) {
+ return ::SimplifyFSubInst(Op0, Op1, FMF, Q, RecursionLimit);
+}
+
+Value *llvm::SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF,
+ const SimplifyQuery &Q) {
+ return ::SimplifyFMulInst(Op0, Op1, FMF, Q, RecursionLimit);
+}
+
+Value *llvm::SimplifyFMAFMul(Value *Op0, Value *Op1, FastMathFlags FMF,
+ const SimplifyQuery &Q) {
+ return ::SimplifyFMAFMul(Op0, Op1, FMF, Q, RecursionLimit);
+}
+
+static Value *SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF,
+ const SimplifyQuery &Q, unsigned) {
+ if (Constant *C = foldOrCommuteConstant(Instruction::FDiv, Op0, Op1, Q))
+ return C;
+
+ if (Constant *C = simplifyFPOp({Op0, Op1}))
+ return C;
+
+ // X / 1.0 -> X
+ if (match(Op1, m_FPOne()))
+ return Op0;
+
+ // 0 / X -> 0
+ // Requires that NaNs are off (X could be zero) and signed zeroes are
+ // ignored (X could be positive or negative, so the output sign is unknown).
+ if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZeroFP()))
+ return ConstantFP::getNullValue(Op0->getType());
+
+ if (FMF.noNaNs()) {
+ // X / X -> 1.0 is legal when NaNs are ignored.
+ // We can ignore infinities because INF/INF is NaN.
+ if (Op0 == Op1)
+ return ConstantFP::get(Op0->getType(), 1.0);
+
+ // (X * Y) / Y --> X if we can reassociate to the above form.
+ Value *X;
+ if (FMF.allowReassoc() && match(Op0, m_c_FMul(m_Value(X), m_Specific(Op1))))
+ return X;
+
+ // -X / X -> -1.0 and
+ // X / -X -> -1.0 are legal when NaNs are ignored.
+ // We can ignore signed zeros because +-0.0/+-0.0 is NaN and ignored.
+ if (match(Op0, m_FNegNSZ(m_Specific(Op1))) ||
+ match(Op1, m_FNegNSZ(m_Specific(Op0))))
+ return ConstantFP::get(Op0->getType(), -1.0);
+ }
+
+ return nullptr;
+}
+
+Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF,
+ const SimplifyQuery &Q) {
+ return ::SimplifyFDivInst(Op0, Op1, FMF, Q, RecursionLimit);
+}
+
+static Value *SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF,
+ const SimplifyQuery &Q, unsigned) {
+ if (Constant *C = foldOrCommuteConstant(Instruction::FRem, Op0, Op1, Q))
+ return C;
+
+ if (Constant *C = simplifyFPOp({Op0, Op1}))
+ return C;
+
+ // Unlike fdiv, the result of frem always matches the sign of the dividend.
+ // The constant match may include undef elements in a vector, so return a full
+ // zero constant as the result.
+ if (FMF.noNaNs()) {
+ // +0 % X -> 0
+ if (match(Op0, m_PosZeroFP()))
+ return ConstantFP::getNullValue(Op0->getType());
+ // -0 % X -> -0
+ if (match(Op0, m_NegZeroFP()))
+ return ConstantFP::getNegativeZero(Op0->getType());
+ }
+
+ return nullptr;
+}
+
+Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF,
+ const SimplifyQuery &Q) {
+ return ::SimplifyFRemInst(Op0, Op1, FMF, Q, RecursionLimit);
+}
+
+//=== Helper functions for higher up the class hierarchy.
+
+/// Given the operand for a UnaryOperator, see if we can fold the result.
+/// If not, this returns null.
+static Value *simplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q,
+ unsigned MaxRecurse) {
+ switch (Opcode) {
+ case Instruction::FNeg:
+ return simplifyFNegInst(Op, FastMathFlags(), Q, MaxRecurse);
+ default:
+ llvm_unreachable("Unexpected opcode");
+ }
+}
+
+/// Given the operand for a UnaryOperator, see if we can fold the result.
+/// If not, this returns null.
+/// Try to use FastMathFlags when folding the result.
+static Value *simplifyFPUnOp(unsigned Opcode, Value *Op,
+ const FastMathFlags &FMF,
+ const SimplifyQuery &Q, unsigned MaxRecurse) {
+ switch (Opcode) {
+ case Instruction::FNeg:
+ return simplifyFNegInst(Op, FMF, Q, MaxRecurse);
+ default:
+ return simplifyUnOp(Opcode, Op, Q, MaxRecurse);
+ }
+}
+
+Value *llvm::SimplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q) {
+ return ::simplifyUnOp(Opcode, Op, Q, RecursionLimit);
+}
+
+Value *llvm::SimplifyUnOp(unsigned Opcode, Value *Op, FastMathFlags FMF,
+ const SimplifyQuery &Q) {
+ return ::simplifyFPUnOp(Opcode, Op, FMF, Q, RecursionLimit);
+}
+
+/// Given operands for a BinaryOperator, see if we can fold the result.
+/// If not, this returns null.
+static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
+ const SimplifyQuery &Q, unsigned MaxRecurse) {
+ switch (Opcode) {
+ case Instruction::Add:
+ return SimplifyAddInst(LHS, RHS, false, false, Q, MaxRecurse);
+ case Instruction::Sub:
+ return SimplifySubInst(LHS, RHS, false, false, Q, MaxRecurse);
+ case Instruction::Mul:
+ return SimplifyMulInst(LHS, RHS, Q, MaxRecurse);
+ case Instruction::SDiv:
+ return SimplifySDivInst(LHS, RHS, Q, MaxRecurse);
+ case Instruction::UDiv:
+ return SimplifyUDivInst(LHS, RHS, Q, MaxRecurse);
+ case Instruction::SRem:
+ return SimplifySRemInst(LHS, RHS, Q, MaxRecurse);
+ case Instruction::URem:
+ return SimplifyURemInst(LHS, RHS, Q, MaxRecurse);
+ case Instruction::Shl:
+ return SimplifyShlInst(LHS, RHS, false, false, Q, MaxRecurse);
+ case Instruction::LShr:
+ return SimplifyLShrInst(LHS, RHS, false, Q, MaxRecurse);
+ case Instruction::AShr:
+ return SimplifyAShrInst(LHS, RHS, false, Q, MaxRecurse);
+ case Instruction::And:
+ return SimplifyAndInst(LHS, RHS, Q, MaxRecurse);
+ case Instruction::Or:
+ return SimplifyOrInst(LHS, RHS, Q, MaxRecurse);
+ case Instruction::Xor:
+ return SimplifyXorInst(LHS, RHS, Q, MaxRecurse);
+ case Instruction::FAdd:
+ return SimplifyFAddInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
+ case Instruction::FSub:
+ return SimplifyFSubInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
+ case Instruction::FMul:
+ return SimplifyFMulInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
+ case Instruction::FDiv:
+ return SimplifyFDivInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
+ case Instruction::FRem:
+ return SimplifyFRemInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
+ default:
+ llvm_unreachable("Unexpected opcode");
+ }
+}
+
+/// Given operands for a BinaryOperator, see if we can fold the result.
+/// If not, this returns null.
+/// Try to use FastMathFlags when folding the result.
+static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
+ const FastMathFlags &FMF, const SimplifyQuery &Q,
+ unsigned MaxRecurse) {
+ switch (Opcode) {
+ case Instruction::FAdd:
+ return SimplifyFAddInst(LHS, RHS, FMF, Q, MaxRecurse);
+ case Instruction::FSub:
+ return SimplifyFSubInst(LHS, RHS, FMF, Q, MaxRecurse);
+ case Instruction::FMul:
+ return SimplifyFMulInst(LHS, RHS, FMF, Q, MaxRecurse);
+ case Instruction::FDiv:
+ return SimplifyFDivInst(LHS, RHS, FMF, Q, MaxRecurse);
+ default:
+ return SimplifyBinOp(Opcode, LHS, RHS, Q, MaxRecurse);
+ }
+}
+
+Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
+ const SimplifyQuery &Q) {
+ return ::SimplifyBinOp(Opcode, LHS, RHS, Q, RecursionLimit);
+}
+
+Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
+ FastMathFlags FMF, const SimplifyQuery &Q) {
+ return ::SimplifyBinOp(Opcode, LHS, RHS, FMF, Q, RecursionLimit);
+}
+
+/// Given operands for a CmpInst, see if we can fold the result.
+static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
+ const SimplifyQuery &Q, unsigned MaxRecurse) {
+ if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate))
+ return SimplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse);
+ return SimplifyFCmpInst(Predicate, LHS, RHS, FastMathFlags(), Q, MaxRecurse);
+}
+
+Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
+ const SimplifyQuery &Q) {
+ return ::SimplifyCmpInst(Predicate, LHS, RHS, Q, RecursionLimit);
+}
+
+static bool IsIdempotent(Intrinsic::ID ID) {
+ switch (ID) {
+ default: return false;
+
+ // Unary idempotent: f(f(x)) = f(x)
+ case Intrinsic::fabs:
+ case Intrinsic::floor:
+ case Intrinsic::ceil:
+ case Intrinsic::trunc:
+ case Intrinsic::rint:
+ case Intrinsic::nearbyint:
+ case Intrinsic::round:
+ case Intrinsic::canonicalize:
+ return true;
+ }
+}
+
+static Value *SimplifyRelativeLoad(Constant *Ptr, Constant *Offset,
+ const DataLayout &DL) {
+ GlobalValue *PtrSym;
+ APInt PtrOffset;
+ if (!IsConstantOffsetFromGlobal(Ptr, PtrSym, PtrOffset, DL))
+ return nullptr;
+
+ Type *Int8PtrTy = Type::getInt8PtrTy(Ptr->getContext());
+ Type *Int32Ty = Type::getInt32Ty(Ptr->getContext());
+ Type *Int32PtrTy = Int32Ty->getPointerTo();
+ Type *Int64Ty = Type::getInt64Ty(Ptr->getContext());
+
+ auto *OffsetConstInt = dyn_cast<ConstantInt>(Offset);
+ if (!OffsetConstInt || OffsetConstInt->getType()->getBitWidth() > 64)
+ return nullptr;
+
+ uint64_t OffsetInt = OffsetConstInt->getSExtValue();
+ if (OffsetInt % 4 != 0)
+ return nullptr;
+
+ Constant *C = ConstantExpr::getGetElementPtr(
+ Int32Ty, ConstantExpr::getBitCast(Ptr, Int32PtrTy),
+ ConstantInt::get(Int64Ty, OffsetInt / 4));
+ Constant *Loaded = ConstantFoldLoadFromConstPtr(C, Int32Ty, DL);
+ if (!Loaded)
+ return nullptr;
+
+ auto *LoadedCE = dyn_cast<ConstantExpr>(Loaded);
+ if (!LoadedCE)
+ return nullptr;
+
+ if (LoadedCE->getOpcode() == Instruction::Trunc) {
+ LoadedCE = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0));
+ if (!LoadedCE)
+ return nullptr;
+ }
+
+ if (LoadedCE->getOpcode() != Instruction::Sub)
+ return nullptr;
+
+ auto *LoadedLHS = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0));
+ if (!LoadedLHS || LoadedLHS->getOpcode() != Instruction::PtrToInt)
+ return nullptr;
+ auto *LoadedLHSPtr = LoadedLHS->getOperand(0);
+
+ Constant *LoadedRHS = LoadedCE->getOperand(1);
+ GlobalValue *LoadedRHSSym;
+ APInt LoadedRHSOffset;
+ if (!IsConstantOffsetFromGlobal(LoadedRHS, LoadedRHSSym, LoadedRHSOffset,
+ DL) ||
+ PtrSym != LoadedRHSSym || PtrOffset != LoadedRHSOffset)
+ return nullptr;
+
+ return ConstantExpr::getBitCast(LoadedLHSPtr, Int8PtrTy);
+}
+
+static Value *simplifyUnaryIntrinsic(Function *F, Value *Op0,
+ const SimplifyQuery &Q) {
+ // Idempotent functions return the same result when called repeatedly.
+ Intrinsic::ID IID = F->getIntrinsicID();
+ if (IsIdempotent(IID))
+ if (auto *II = dyn_cast<IntrinsicInst>(Op0))
+ if (II->getIntrinsicID() == IID)
+ return II;
+
+ Value *X;
+ switch (IID) {
+ case Intrinsic::fabs:
+ if (SignBitMustBeZero(Op0, Q.TLI)) return Op0;
+ break;
+ case Intrinsic::bswap:
+ // bswap(bswap(x)) -> x
+ if (match(Op0, m_BSwap(m_Value(X)))) return X;
+ break;
+ case Intrinsic::bitreverse:
+ // bitreverse(bitreverse(x)) -> x
+ if (match(Op0, m_BitReverse(m_Value(X)))) return X;
+ break;
+ case Intrinsic::exp:
+ // exp(log(x)) -> x
+ if (Q.CxtI->hasAllowReassoc() &&
+ match(Op0, m_Intrinsic<Intrinsic::log>(m_Value(X)))) return X;
+ break;
+ case Intrinsic::exp2:
+ // exp2(log2(x)) -> x
+ if (Q.CxtI->hasAllowReassoc() &&
+ match(Op0, m_Intrinsic<Intrinsic::log2>(m_Value(X)))) return X;
+ break;
+ case Intrinsic::log:
+ // log(exp(x)) -> x
+ if (Q.CxtI->hasAllowReassoc() &&
+ match(Op0, m_Intrinsic<Intrinsic::exp>(m_Value(X)))) return X;
+ break;
+ case Intrinsic::log2:
+ // log2(exp2(x)) -> x
+ if (Q.CxtI->hasAllowReassoc() &&
+ (match(Op0, m_Intrinsic<Intrinsic::exp2>(m_Value(X))) ||
+ match(Op0, m_Intrinsic<Intrinsic::pow>(m_SpecificFP(2.0),
+ m_Value(X))))) return X;
+ break;
+ case Intrinsic::log10:
+ // log10(pow(10.0, x)) -> x
+ if (Q.CxtI->hasAllowReassoc() &&
+ match(Op0, m_Intrinsic<Intrinsic::pow>(m_SpecificFP(10.0),
+ m_Value(X)))) return X;
+ break;
+ case Intrinsic::floor:
+ case Intrinsic::trunc:
+ case Intrinsic::ceil:
+ case Intrinsic::round:
+ case Intrinsic::nearbyint:
+ case Intrinsic::rint: {
+ // floor (sitofp x) -> sitofp x
+ // floor (uitofp x) -> uitofp x
+ //
+ // Converting from int always results in a finite integral number or
+ // infinity. For either of those inputs, these rounding functions always
+ // return the same value, so the rounding can be eliminated.
+ if (match(Op0, m_SIToFP(m_Value())) || match(Op0, m_UIToFP(m_Value())))
+ return Op0;
+ break;
+ }
+ default:
+ break;
+ }
+
+ return nullptr;
+}
+
+static Value *simplifyBinaryIntrinsic(Function *F, Value *Op0, Value *Op1,
+ const SimplifyQuery &Q) {
+ Intrinsic::ID IID = F->getIntrinsicID();
+ Type *ReturnType = F->getReturnType();
+ switch (IID) {
+ case Intrinsic::usub_with_overflow:
+ case Intrinsic::ssub_with_overflow:
+ // X - X -> { 0, false }
+ if (Op0 == Op1)
+ return Constant::getNullValue(ReturnType);
+ LLVM_FALLTHROUGH;
+ case Intrinsic::uadd_with_overflow:
+ case Intrinsic::sadd_with_overflow:
+ // X - undef -> { undef, false }
+ // undef - X -> { undef, false }
+ // X + undef -> { undef, false }
+ // undef + x -> { undef, false }
+ if (isa<UndefValue>(Op0) || isa<UndefValue>(Op1)) {
+ return ConstantStruct::get(
+ cast<StructType>(ReturnType),
+ {UndefValue::get(ReturnType->getStructElementType(0)),
+ Constant::getNullValue(ReturnType->getStructElementType(1))});
+ }
+ break;
+ case Intrinsic::umul_with_overflow:
+ case Intrinsic::smul_with_overflow:
+ // 0 * X -> { 0, false }
+ // X * 0 -> { 0, false }
+ if (match(Op0, m_Zero()) || match(Op1, m_Zero()))
+ return Constant::getNullValue(ReturnType);
+ // undef * X -> { 0, false }
+ // X * undef -> { 0, false }
+ if (match(Op0, m_Undef()) || match(Op1, m_Undef()))
+ return Constant::getNullValue(ReturnType);
+ break;
+ case Intrinsic::uadd_sat:
+ // sat(MAX + X) -> MAX
+ // sat(X + MAX) -> MAX
+ if (match(Op0, m_AllOnes()) || match(Op1, m_AllOnes()))
+ return Constant::getAllOnesValue(ReturnType);
+ LLVM_FALLTHROUGH;
+ case Intrinsic::sadd_sat:
+ // sat(X + undef) -> -1
+ // sat(undef + X) -> -1
+ // For unsigned: Assume undef is MAX, thus we saturate to MAX (-1).
+ // For signed: Assume undef is ~X, in which case X + ~X = -1.
+ if (match(Op0, m_Undef()) || match(Op1, m_Undef()))
+ return Constant::getAllOnesValue(ReturnType);
+
+ // X + 0 -> X
+ if (match(Op1, m_Zero()))
+ return Op0;
+ // 0 + X -> X
+ if (match(Op0, m_Zero()))
+ return Op1;
+ break;
+ case Intrinsic::usub_sat:
+ // sat(0 - X) -> 0, sat(X - MAX) -> 0
+ if (match(Op0, m_Zero()) || match(Op1, m_AllOnes()))
+ return Constant::getNullValue(ReturnType);
+ LLVM_FALLTHROUGH;
+ case Intrinsic::ssub_sat:
+ // X - X -> 0, X - undef -> 0, undef - X -> 0
+ if (Op0 == Op1 || match(Op0, m_Undef()) || match(Op1, m_Undef()))
+ return Constant::getNullValue(ReturnType);
+ // X - 0 -> X
+ if (match(Op1, m_Zero()))
+ return Op0;
+ break;
+ case Intrinsic::load_relative:
+ if (auto *C0 = dyn_cast<Constant>(Op0))
+ if (auto *C1 = dyn_cast<Constant>(Op1))
+ return SimplifyRelativeLoad(C0, C1, Q.DL);
+ break;
+ case Intrinsic::powi:
+ if (auto *Power = dyn_cast<ConstantInt>(Op1)) {
+ // powi(x, 0) -> 1.0
+ if (Power->isZero())
+ return ConstantFP::get(Op0->getType(), 1.0);
+ // powi(x, 1) -> x
+ if (Power->isOne())
+ return Op0;
+ }
+ break;
+ case Intrinsic::maxnum:
+ case Intrinsic::minnum:
+ case Intrinsic::maximum:
+ case Intrinsic::minimum: {
+ // If the arguments are the same, this is a no-op.
+ if (Op0 == Op1) return Op0;
+
+ // If one argument is undef, return the other argument.
+ if (match(Op0, m_Undef()))
+ return Op1;
+ if (match(Op1, m_Undef()))
+ return Op0;
+
+ // If one argument is NaN, return other or NaN appropriately.
+ bool PropagateNaN = IID == Intrinsic::minimum || IID == Intrinsic::maximum;
+ if (match(Op0, m_NaN()))
+ return PropagateNaN ? Op0 : Op1;
+ if (match(Op1, m_NaN()))
+ return PropagateNaN ? Op1 : Op0;
+
+ // Min/max of the same operation with common operand:
+ // m(m(X, Y)), X --> m(X, Y) (4 commuted variants)
+ if (auto *M0 = dyn_cast<IntrinsicInst>(Op0))
+ if (M0->getIntrinsicID() == IID &&
+ (M0->getOperand(0) == Op1 || M0->getOperand(1) == Op1))
+ return Op0;
+ if (auto *M1 = dyn_cast<IntrinsicInst>(Op1))
+ if (M1->getIntrinsicID() == IID &&
+ (M1->getOperand(0) == Op0 || M1->getOperand(1) == Op0))
+ return Op1;
+
+ // min(X, -Inf) --> -Inf (and commuted variant)
+ // max(X, +Inf) --> +Inf (and commuted variant)
+ bool UseNegInf = IID == Intrinsic::minnum || IID == Intrinsic::minimum;
+ const APFloat *C;
+ if ((match(Op0, m_APFloat(C)) && C->isInfinity() &&
+ C->isNegative() == UseNegInf) ||
+ (match(Op1, m_APFloat(C)) && C->isInfinity() &&
+ C->isNegative() == UseNegInf))
+ return ConstantFP::getInfinity(ReturnType, UseNegInf);
+
+ // TODO: minnum(nnan x, inf) -> x
+ // TODO: minnum(nnan ninf x, flt_max) -> x
+ // TODO: maxnum(nnan x, -inf) -> x
+ // TODO: maxnum(nnan ninf x, -flt_max) -> x
+ break;
+ }
+ default:
+ break;
+ }
+
+ return nullptr;
+}
+
+static Value *simplifyIntrinsic(CallBase *Call, const SimplifyQuery &Q) {
+
+ // Intrinsics with no operands have some kind of side effect. Don't simplify.
+ unsigned NumOperands = Call->getNumArgOperands();
+ if (!NumOperands)
+ return nullptr;
+
+ Function *F = cast<Function>(Call->getCalledFunction());
+ Intrinsic::ID IID = F->getIntrinsicID();
+ if (NumOperands == 1)
+ return simplifyUnaryIntrinsic(F, Call->getArgOperand(0), Q);
+
+ if (NumOperands == 2)
+ return simplifyBinaryIntrinsic(F, Call->getArgOperand(0),
+ Call->getArgOperand(1), Q);
+
+ // Handle intrinsics with 3 or more arguments.
+ switch (IID) {
+ case Intrinsic::masked_load:
+ case Intrinsic::masked_gather: {
+ Value *MaskArg = Call->getArgOperand(2);
+ Value *PassthruArg = Call->getArgOperand(3);
+ // If the mask is all zeros or undef, the "passthru" argument is the result.
+ if (maskIsAllZeroOrUndef(MaskArg))
+ return PassthruArg;
+ return nullptr;
+ }
+ case Intrinsic::fshl:
+ case Intrinsic::fshr: {
+ Value *Op0 = Call->getArgOperand(0), *Op1 = Call->getArgOperand(1),
+ *ShAmtArg = Call->getArgOperand(2);
+
+ // If both operands are undef, the result is undef.
+ if (match(Op0, m_Undef()) && match(Op1, m_Undef()))
+ return UndefValue::get(F->getReturnType());
+
+ // If shift amount is undef, assume it is zero.
+ if (match(ShAmtArg, m_Undef()))
+ return Call->getArgOperand(IID == Intrinsic::fshl ? 0 : 1);
+
+ const APInt *ShAmtC;
+ if (match(ShAmtArg, m_APInt(ShAmtC))) {
+ // If there's effectively no shift, return the 1st arg or 2nd arg.
+ APInt BitWidth = APInt(ShAmtC->getBitWidth(), ShAmtC->getBitWidth());
+ if (ShAmtC->urem(BitWidth).isNullValue())
+ return Call->getArgOperand(IID == Intrinsic::fshl ? 0 : 1);
+ }
+ return nullptr;
+ }
+ case Intrinsic::fma:
+ case Intrinsic::fmuladd: {
+ Value *Op0 = Call->getArgOperand(0);
+ Value *Op1 = Call->getArgOperand(1);
+ Value *Op2 = Call->getArgOperand(2);
+ if (Value *V = simplifyFPOp({ Op0, Op1, Op2 }))
+ return V;
+ return nullptr;
+ }
+ default:
+ return nullptr;
+ }
+}
+
+Value *llvm::SimplifyCall(CallBase *Call, const SimplifyQuery &Q) {
+ Value *Callee = Call->getCalledValue();
+
+ // call undef -> undef
+ // call null -> undef
+ if (isa<UndefValue>(Callee) || isa<ConstantPointerNull>(Callee))
+ return UndefValue::get(Call->getType());
+
+ Function *F = dyn_cast<Function>(Callee);
+ if (!F)
+ return nullptr;
+
+ if (F->isIntrinsic())
+ if (Value *Ret = simplifyIntrinsic(Call, Q))
+ return Ret;
+
+ if (!canConstantFoldCallTo(Call, F))
+ return nullptr;
+
+ SmallVector<Constant *, 4> ConstantArgs;
+ unsigned NumArgs = Call->getNumArgOperands();
+ ConstantArgs.reserve(NumArgs);
+ for (auto &Arg : Call->args()) {
+ Constant *C = dyn_cast<Constant>(&Arg);
+ if (!C)
+ return nullptr;
+ ConstantArgs.push_back(C);
+ }
+
+ return ConstantFoldCall(Call, F, ConstantArgs, Q.TLI);
+}
+
+/// See if we can compute a simplified version of this instruction.
+/// If not, this returns null.
+
+Value *llvm::SimplifyInstruction(Instruction *I, const SimplifyQuery &SQ,
+ OptimizationRemarkEmitter *ORE) {
+ const SimplifyQuery Q = SQ.CxtI ? SQ : SQ.getWithInstruction(I);
+ Value *Result;
+
+ switch (I->getOpcode()) {
+ default:
+ Result = ConstantFoldInstruction(I, Q.DL, Q.TLI);
+ break;
+ case Instruction::FNeg:
+ Result = SimplifyFNegInst(I->getOperand(0), I->getFastMathFlags(), Q);
+ break;
+ case Instruction::FAdd:
+ Result = SimplifyFAddInst(I->getOperand(0), I->getOperand(1),
+ I->getFastMathFlags(), Q);
+ break;
+ case Instruction::Add:
+ Result =
+ SimplifyAddInst(I->getOperand(0), I->getOperand(1),
+ Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)),
+ Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q);
+ break;
+ case Instruction::FSub:
+ Result = SimplifyFSubInst(I->getOperand(0), I->getOperand(1),
+ I->getFastMathFlags(), Q);
+ break;
+ case Instruction::Sub:
+ Result =
+ SimplifySubInst(I->getOperand(0), I->getOperand(1),
+ Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)),
+ Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q);
+ break;
+ case Instruction::FMul:
+ Result = SimplifyFMulInst(I->getOperand(0), I->getOperand(1),
+ I->getFastMathFlags(), Q);
+ break;
+ case Instruction::Mul:
+ Result = SimplifyMulInst(I->getOperand(0), I->getOperand(1), Q);
+ break;
+ case Instruction::SDiv:
+ Result = SimplifySDivInst(I->getOperand(0), I->getOperand(1), Q);
+ break;
+ case Instruction::UDiv:
+ Result = SimplifyUDivInst(I->getOperand(0), I->getOperand(1), Q);
+ break;
+ case Instruction::FDiv:
+ Result = SimplifyFDivInst(I->getOperand(0), I->getOperand(1),
+ I->getFastMathFlags(), Q);
+ break;
+ case Instruction::SRem:
+ Result = SimplifySRemInst(I->getOperand(0), I->getOperand(1), Q);
+ break;
+ case Instruction::URem:
+ Result = SimplifyURemInst(I->getOperand(0), I->getOperand(1), Q);
+ break;
+ case Instruction::FRem:
+ Result = SimplifyFRemInst(I->getOperand(0), I->getOperand(1),
+ I->getFastMathFlags(), Q);
+ break;
+ case Instruction::Shl:
+ Result =
+ SimplifyShlInst(I->getOperand(0), I->getOperand(1),
+ Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)),
+ Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q);
+ break;
+ case Instruction::LShr:
+ Result = SimplifyLShrInst(I->getOperand(0), I->getOperand(1),
+ Q.IIQ.isExact(cast<BinaryOperator>(I)), Q);
+ break;
+ case Instruction::AShr:
+ Result = SimplifyAShrInst(I->getOperand(0), I->getOperand(1),
+ Q.IIQ.isExact(cast<BinaryOperator>(I)), Q);
+ break;
+ case Instruction::And:
+ Result = SimplifyAndInst(I->getOperand(0), I->getOperand(1), Q);
+ break;
+ case Instruction::Or:
+ Result = SimplifyOrInst(I->getOperand(0), I->getOperand(1), Q);
+ break;
+ case Instruction::Xor:
+ Result = SimplifyXorInst(I->getOperand(0), I->getOperand(1), Q);
+ break;
+ case Instruction::ICmp:
+ Result = SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(),
+ I->getOperand(0), I->getOperand(1), Q);
+ break;
+ case Instruction::FCmp:
+ Result =
+ SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(), I->getOperand(0),
+ I->getOperand(1), I->getFastMathFlags(), Q);
+ break;
+ case Instruction::Select:
+ Result = SimplifySelectInst(I->getOperand(0), I->getOperand(1),
+ I->getOperand(2), Q);
+ break;
+ case Instruction::GetElementPtr: {
+ SmallVector<Value *, 8> Ops(I->op_begin(), I->op_end());
+ Result = SimplifyGEPInst(cast<GetElementPtrInst>(I)->getSourceElementType(),
+ Ops, Q);
+ break;
+ }
+ case Instruction::InsertValue: {
+ InsertValueInst *IV = cast<InsertValueInst>(I);
+ Result = SimplifyInsertValueInst(IV->getAggregateOperand(),
+ IV->getInsertedValueOperand(),
+ IV->getIndices(), Q);
+ break;
+ }
+ case Instruction::InsertElement: {
+ auto *IE = cast<InsertElementInst>(I);
+ Result = SimplifyInsertElementInst(IE->getOperand(0), IE->getOperand(1),
+ IE->getOperand(2), Q);
+ break;
+ }
+ case Instruction::ExtractValue: {
+ auto *EVI = cast<ExtractValueInst>(I);
+ Result = SimplifyExtractValueInst(EVI->getAggregateOperand(),
+ EVI->getIndices(), Q);
+ break;
+ }
+ case Instruction::ExtractElement: {
+ auto *EEI = cast<ExtractElementInst>(I);
+ Result = SimplifyExtractElementInst(EEI->getVectorOperand(),
+ EEI->getIndexOperand(), Q);
+ break;
+ }
+ case Instruction::ShuffleVector: {
+ auto *SVI = cast<ShuffleVectorInst>(I);
+ Result = SimplifyShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1),
+ SVI->getMask(), SVI->getType(), Q);
+ break;
+ }
+ case Instruction::PHI:
+ Result = SimplifyPHINode(cast<PHINode>(I), Q);
+ break;
+ case Instruction::Call: {
+ Result = SimplifyCall(cast<CallInst>(I), Q);
+ break;
+ }
+#define HANDLE_CAST_INST(num, opc, clas) case Instruction::opc:
+#include "llvm/IR/Instruction.def"
+#undef HANDLE_CAST_INST
+ Result =
+ SimplifyCastInst(I->getOpcode(), I->getOperand(0), I->getType(), Q);
+ break;
+ case Instruction::Alloca:
+ // No simplifications for Alloca and it can't be constant folded.
+ Result = nullptr;
+ break;
+ }
+
+ // In general, it is possible for computeKnownBits to determine all bits in a
+ // value even when the operands are not all constants.
+ if (!Result && I->getType()->isIntOrIntVectorTy()) {
+ KnownBits Known = computeKnownBits(I, Q.DL, /*Depth*/ 0, Q.AC, I, Q.DT, ORE);
+ if (Known.isConstant())
+ Result = ConstantInt::get(I->getType(), Known.getConstant());
+ }
+
+ /// If called on unreachable code, the above logic may report that the
+ /// instruction simplified to itself. Make life easier for users by
+ /// detecting that case here, returning a safe value instead.
+ return Result == I ? UndefValue::get(I->getType()) : Result;
+}
+
+/// Implementation of recursive simplification through an instruction's
+/// uses.
+///
+/// This is the common implementation of the recursive simplification routines.
+/// If we have a pre-simplified value in 'SimpleV', that is forcibly used to
+/// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of
+/// instructions to process and attempt to simplify it using
+/// InstructionSimplify. Recursively visited users which could not be
+/// simplified themselves are to the optional UnsimplifiedUsers set for
+/// further processing by the caller.
+///
+/// This routine returns 'true' only when *it* simplifies something. The passed
+/// in simplified value does not count toward this.
+static bool replaceAndRecursivelySimplifyImpl(
+ Instruction *I, Value *SimpleV, const TargetLibraryInfo *TLI,
+ const DominatorTree *DT, AssumptionCache *AC,
+ SmallSetVector<Instruction *, 8> *UnsimplifiedUsers = nullptr) {
+ bool Simplified = false;
+ SmallSetVector<Instruction *, 8> Worklist;
+ const DataLayout &DL = I->getModule()->getDataLayout();
+
+ // If we have an explicit value to collapse to, do that round of the
+ // simplification loop by hand initially.
+ if (SimpleV) {
+ for (User *U : I->users())
+ if (U != I)
+ Worklist.insert(cast<Instruction>(U));
+
+ // Replace the instruction with its simplified value.
+ I->replaceAllUsesWith(SimpleV);
+
+ // Gracefully handle edge cases where the instruction is not wired into any
+ // parent block.
+ if (I->getParent() && !I->isEHPad() && !I->isTerminator() &&
+ !I->mayHaveSideEffects())
+ I->eraseFromParent();
+ } else {
+ Worklist.insert(I);
+ }
+
+ // Note that we must test the size on each iteration, the worklist can grow.
+ for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
+ I = Worklist[Idx];
+
+ // See if this instruction simplifies.
+ SimpleV = SimplifyInstruction(I, {DL, TLI, DT, AC});
+ if (!SimpleV) {
+ if (UnsimplifiedUsers)
+ UnsimplifiedUsers->insert(I);
+ continue;
+ }
+
+ Simplified = true;
+
+ // Stash away all the uses of the old instruction so we can check them for
+ // recursive simplifications after a RAUW. This is cheaper than checking all
+ // uses of To on the recursive step in most cases.
+ for (User *U : I->users())
+ Worklist.insert(cast<Instruction>(U));
+
+ // Replace the instruction with its simplified value.
+ I->replaceAllUsesWith(SimpleV);
+
+ // Gracefully handle edge cases where the instruction is not wired into any
+ // parent block.
+ if (I->getParent() && !I->isEHPad() && !I->isTerminator() &&
+ !I->mayHaveSideEffects())
+ I->eraseFromParent();
+ }
+ return Simplified;
+}
+
+bool llvm::recursivelySimplifyInstruction(Instruction *I,
+ const TargetLibraryInfo *TLI,
+ const DominatorTree *DT,
+ AssumptionCache *AC) {
+ return replaceAndRecursivelySimplifyImpl(I, nullptr, TLI, DT, AC, nullptr);
+}
+
+bool llvm::replaceAndRecursivelySimplify(
+ Instruction *I, Value *SimpleV, const TargetLibraryInfo *TLI,
+ const DominatorTree *DT, AssumptionCache *AC,
+ SmallSetVector<Instruction *, 8> *UnsimplifiedUsers) {
+ assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!");
+ assert(SimpleV && "Must provide a simplified value.");
+ return replaceAndRecursivelySimplifyImpl(I, SimpleV, TLI, DT, AC,
+ UnsimplifiedUsers);
+}
+
+namespace llvm {
+const SimplifyQuery getBestSimplifyQuery(Pass &P, Function &F) {
+ auto *DTWP = P.getAnalysisIfAvailable<DominatorTreeWrapperPass>();
+ auto *DT = DTWP ? &DTWP->getDomTree() : nullptr;
+ auto *TLIWP = P.getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
+ auto *TLI = TLIWP ? &TLIWP->getTLI(F) : nullptr;
+ auto *ACWP = P.getAnalysisIfAvailable<AssumptionCacheTracker>();
+ auto *AC = ACWP ? &ACWP->getAssumptionCache(F) : nullptr;
+ return {F.getParent()->getDataLayout(), TLI, DT, AC};
+}
+
+const SimplifyQuery getBestSimplifyQuery(LoopStandardAnalysisResults &AR,
+ const DataLayout &DL) {
+ return {DL, &AR.TLI, &AR.DT, &AR.AC};
+}
+
+template <class T, class... TArgs>
+const SimplifyQuery getBestSimplifyQuery(AnalysisManager<T, TArgs...> &AM,
+ Function &F) {
+ auto *DT = AM.template getCachedResult<DominatorTreeAnalysis>(F);
+ auto *TLI = AM.template getCachedResult<TargetLibraryAnalysis>(F);
+ auto *AC = AM.template getCachedResult<AssumptionAnalysis>(F);
+ return {F.getParent()->getDataLayout(), TLI, DT, AC};
+}
+template const SimplifyQuery getBestSimplifyQuery(AnalysisManager<Function> &,
+ Function &);
+}