diff options
Diffstat (limited to 'llvm/lib/Analysis/InstructionSimplify.cpp')
| -rw-r--r-- | llvm/lib/Analysis/InstructionSimplify.cpp | 5518 | 
1 files changed, 5518 insertions, 0 deletions
diff --git a/llvm/lib/Analysis/InstructionSimplify.cpp b/llvm/lib/Analysis/InstructionSimplify.cpp new file mode 100644 index 0000000000000..cb8987721700b --- /dev/null +++ b/llvm/lib/Analysis/InstructionSimplify.cpp @@ -0,0 +1,5518 @@ +//===- InstructionSimplify.cpp - Fold instruction operands ----------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This file implements routines for folding instructions into simpler forms +// that do not require creating new instructions.  This does constant folding +// ("add i32 1, 1" -> "2") but can also handle non-constant operands, either +// returning a constant ("and i32 %x, 0" -> "0") or an already existing value +// ("and i32 %x, %x" -> "%x").  All operands are assumed to have already been +// simplified: This is usually true and assuming it simplifies the logic (if +// they have not been simplified then results are correct but maybe suboptimal). +// +//===----------------------------------------------------------------------===// + +#include "llvm/Analysis/InstructionSimplify.h" +#include "llvm/ADT/SetVector.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/Analysis/AliasAnalysis.h" +#include "llvm/Analysis/AssumptionCache.h" +#include "llvm/Analysis/CaptureTracking.h" +#include "llvm/Analysis/CmpInstAnalysis.h" +#include "llvm/Analysis/ConstantFolding.h" +#include "llvm/Analysis/LoopAnalysisManager.h" +#include "llvm/Analysis/MemoryBuiltins.h" +#include "llvm/Analysis/ValueTracking.h" +#include "llvm/Analysis/VectorUtils.h" +#include "llvm/IR/ConstantRange.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/Dominators.h" +#include "llvm/IR/GetElementPtrTypeIterator.h" +#include "llvm/IR/GlobalAlias.h" +#include "llvm/IR/InstrTypes.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/Operator.h" +#include "llvm/IR/PatternMatch.h" +#include "llvm/IR/ValueHandle.h" +#include "llvm/Support/KnownBits.h" +#include <algorithm> +using namespace llvm; +using namespace llvm::PatternMatch; + +#define DEBUG_TYPE "instsimplify" + +enum { RecursionLimit = 3 }; + +STATISTIC(NumExpand,  "Number of expansions"); +STATISTIC(NumReassoc, "Number of reassociations"); + +static Value *SimplifyAndInst(Value *, Value *, const SimplifyQuery &, unsigned); +static Value *simplifyUnOp(unsigned, Value *, const SimplifyQuery &, unsigned); +static Value *simplifyFPUnOp(unsigned, Value *, const FastMathFlags &, +                             const SimplifyQuery &, unsigned); +static Value *SimplifyBinOp(unsigned, Value *, Value *, const SimplifyQuery &, +                            unsigned); +static Value *SimplifyBinOp(unsigned, Value *, Value *, const FastMathFlags &, +                            const SimplifyQuery &, unsigned); +static Value *SimplifyCmpInst(unsigned, Value *, Value *, const SimplifyQuery &, +                              unsigned); +static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, +                               const SimplifyQuery &Q, unsigned MaxRecurse); +static Value *SimplifyOrInst(Value *, Value *, const SimplifyQuery &, unsigned); +static Value *SimplifyXorInst(Value *, Value *, const SimplifyQuery &, unsigned); +static Value *SimplifyCastInst(unsigned, Value *, Type *, +                               const SimplifyQuery &, unsigned); +static Value *SimplifyGEPInst(Type *, ArrayRef<Value *>, const SimplifyQuery &, +                              unsigned); + +static Value *foldSelectWithBinaryOp(Value *Cond, Value *TrueVal, +                                     Value *FalseVal) { +  BinaryOperator::BinaryOps BinOpCode; +  if (auto *BO = dyn_cast<BinaryOperator>(Cond)) +    BinOpCode = BO->getOpcode(); +  else +    return nullptr; + +  CmpInst::Predicate ExpectedPred, Pred1, Pred2; +  if (BinOpCode == BinaryOperator::Or) { +    ExpectedPred = ICmpInst::ICMP_NE; +  } else if (BinOpCode == BinaryOperator::And) { +    ExpectedPred = ICmpInst::ICMP_EQ; +  } else +    return nullptr; + +  // %A = icmp eq %TV, %FV +  // %B = icmp eq %X, %Y (and one of these is a select operand) +  // %C = and %A, %B +  // %D = select %C, %TV, %FV +  // --> +  // %FV + +  // %A = icmp ne %TV, %FV +  // %B = icmp ne %X, %Y (and one of these is a select operand) +  // %C = or %A, %B +  // %D = select %C, %TV, %FV +  // --> +  // %TV +  Value *X, *Y; +  if (!match(Cond, m_c_BinOp(m_c_ICmp(Pred1, m_Specific(TrueVal), +                                      m_Specific(FalseVal)), +                             m_ICmp(Pred2, m_Value(X), m_Value(Y)))) || +      Pred1 != Pred2 || Pred1 != ExpectedPred) +    return nullptr; + +  if (X == TrueVal || X == FalseVal || Y == TrueVal || Y == FalseVal) +    return BinOpCode == BinaryOperator::Or ? TrueVal : FalseVal; + +  return nullptr; +} + +/// For a boolean type or a vector of boolean type, return false or a vector +/// with every element false. +static Constant *getFalse(Type *Ty) { +  return ConstantInt::getFalse(Ty); +} + +/// For a boolean type or a vector of boolean type, return true or a vector +/// with every element true. +static Constant *getTrue(Type *Ty) { +  return ConstantInt::getTrue(Ty); +} + +/// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"? +static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS, +                          Value *RHS) { +  CmpInst *Cmp = dyn_cast<CmpInst>(V); +  if (!Cmp) +    return false; +  CmpInst::Predicate CPred = Cmp->getPredicate(); +  Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1); +  if (CPred == Pred && CLHS == LHS && CRHS == RHS) +    return true; +  return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS && +    CRHS == LHS; +} + +/// Does the given value dominate the specified phi node? +static bool valueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) { +  Instruction *I = dyn_cast<Instruction>(V); +  if (!I) +    // Arguments and constants dominate all instructions. +    return true; + +  // If we are processing instructions (and/or basic blocks) that have not been +  // fully added to a function, the parent nodes may still be null. Simply +  // return the conservative answer in these cases. +  if (!I->getParent() || !P->getParent() || !I->getFunction()) +    return false; + +  // If we have a DominatorTree then do a precise test. +  if (DT) +    return DT->dominates(I, P); + +  // Otherwise, if the instruction is in the entry block and is not an invoke, +  // then it obviously dominates all phi nodes. +  if (I->getParent() == &I->getFunction()->getEntryBlock() && +      !isa<InvokeInst>(I)) +    return true; + +  return false; +} + +/// Simplify "A op (B op' C)" by distributing op over op', turning it into +/// "(A op B) op' (A op C)".  Here "op" is given by Opcode and "op'" is +/// given by OpcodeToExpand, while "A" corresponds to LHS and "B op' C" to RHS. +/// Also performs the transform "(A op' B) op C" -> "(A op C) op' (B op C)". +/// Returns the simplified value, or null if no simplification was performed. +static Value *ExpandBinOp(Instruction::BinaryOps Opcode, Value *LHS, Value *RHS, +                          Instruction::BinaryOps OpcodeToExpand, +                          const SimplifyQuery &Q, unsigned MaxRecurse) { +  // Recursion is always used, so bail out at once if we already hit the limit. +  if (!MaxRecurse--) +    return nullptr; + +  // Check whether the expression has the form "(A op' B) op C". +  if (BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS)) +    if (Op0->getOpcode() == OpcodeToExpand) { +      // It does!  Try turning it into "(A op C) op' (B op C)". +      Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS; +      // Do "A op C" and "B op C" both simplify? +      if (Value *L = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse)) +        if (Value *R = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) { +          // They do! Return "L op' R" if it simplifies or is already available. +          // If "L op' R" equals "A op' B" then "L op' R" is just the LHS. +          if ((L == A && R == B) || (Instruction::isCommutative(OpcodeToExpand) +                                     && L == B && R == A)) { +            ++NumExpand; +            return LHS; +          } +          // Otherwise return "L op' R" if it simplifies. +          if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) { +            ++NumExpand; +            return V; +          } +        } +    } + +  // Check whether the expression has the form "A op (B op' C)". +  if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS)) +    if (Op1->getOpcode() == OpcodeToExpand) { +      // It does!  Try turning it into "(A op B) op' (A op C)". +      Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1); +      // Do "A op B" and "A op C" both simplify? +      if (Value *L = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) +        if (Value *R = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse)) { +          // They do! Return "L op' R" if it simplifies or is already available. +          // If "L op' R" equals "B op' C" then "L op' R" is just the RHS. +          if ((L == B && R == C) || (Instruction::isCommutative(OpcodeToExpand) +                                     && L == C && R == B)) { +            ++NumExpand; +            return RHS; +          } +          // Otherwise return "L op' R" if it simplifies. +          if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) { +            ++NumExpand; +            return V; +          } +        } +    } + +  return nullptr; +} + +/// Generic simplifications for associative binary operations. +/// Returns the simpler value, or null if none was found. +static Value *SimplifyAssociativeBinOp(Instruction::BinaryOps Opcode, +                                       Value *LHS, Value *RHS, +                                       const SimplifyQuery &Q, +                                       unsigned MaxRecurse) { +  assert(Instruction::isAssociative(Opcode) && "Not an associative operation!"); + +  // Recursion is always used, so bail out at once if we already hit the limit. +  if (!MaxRecurse--) +    return nullptr; + +  BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS); +  BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS); + +  // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely. +  if (Op0 && Op0->getOpcode() == Opcode) { +    Value *A = Op0->getOperand(0); +    Value *B = Op0->getOperand(1); +    Value *C = RHS; + +    // Does "B op C" simplify? +    if (Value *V = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) { +      // It does!  Return "A op V" if it simplifies or is already available. +      // If V equals B then "A op V" is just the LHS. +      if (V == B) return LHS; +      // Otherwise return "A op V" if it simplifies. +      if (Value *W = SimplifyBinOp(Opcode, A, V, Q, MaxRecurse)) { +        ++NumReassoc; +        return W; +      } +    } +  } + +  // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely. +  if (Op1 && Op1->getOpcode() == Opcode) { +    Value *A = LHS; +    Value *B = Op1->getOperand(0); +    Value *C = Op1->getOperand(1); + +    // Does "A op B" simplify? +    if (Value *V = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) { +      // It does!  Return "V op C" if it simplifies or is already available. +      // If V equals B then "V op C" is just the RHS. +      if (V == B) return RHS; +      // Otherwise return "V op C" if it simplifies. +      if (Value *W = SimplifyBinOp(Opcode, V, C, Q, MaxRecurse)) { +        ++NumReassoc; +        return W; +      } +    } +  } + +  // The remaining transforms require commutativity as well as associativity. +  if (!Instruction::isCommutative(Opcode)) +    return nullptr; + +  // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely. +  if (Op0 && Op0->getOpcode() == Opcode) { +    Value *A = Op0->getOperand(0); +    Value *B = Op0->getOperand(1); +    Value *C = RHS; + +    // Does "C op A" simplify? +    if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { +      // It does!  Return "V op B" if it simplifies or is already available. +      // If V equals A then "V op B" is just the LHS. +      if (V == A) return LHS; +      // Otherwise return "V op B" if it simplifies. +      if (Value *W = SimplifyBinOp(Opcode, V, B, Q, MaxRecurse)) { +        ++NumReassoc; +        return W; +      } +    } +  } + +  // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely. +  if (Op1 && Op1->getOpcode() == Opcode) { +    Value *A = LHS; +    Value *B = Op1->getOperand(0); +    Value *C = Op1->getOperand(1); + +    // Does "C op A" simplify? +    if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { +      // It does!  Return "B op V" if it simplifies or is already available. +      // If V equals C then "B op V" is just the RHS. +      if (V == C) return RHS; +      // Otherwise return "B op V" if it simplifies. +      if (Value *W = SimplifyBinOp(Opcode, B, V, Q, MaxRecurse)) { +        ++NumReassoc; +        return W; +      } +    } +  } + +  return nullptr; +} + +/// In the case of a binary operation with a select instruction as an operand, +/// try to simplify the binop by seeing whether evaluating it on both branches +/// of the select results in the same value. Returns the common value if so, +/// otherwise returns null. +static Value *ThreadBinOpOverSelect(Instruction::BinaryOps Opcode, Value *LHS, +                                    Value *RHS, const SimplifyQuery &Q, +                                    unsigned MaxRecurse) { +  // Recursion is always used, so bail out at once if we already hit the limit. +  if (!MaxRecurse--) +    return nullptr; + +  SelectInst *SI; +  if (isa<SelectInst>(LHS)) { +    SI = cast<SelectInst>(LHS); +  } else { +    assert(isa<SelectInst>(RHS) && "No select instruction operand!"); +    SI = cast<SelectInst>(RHS); +  } + +  // Evaluate the BinOp on the true and false branches of the select. +  Value *TV; +  Value *FV; +  if (SI == LHS) { +    TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse); +    FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse); +  } else { +    TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse); +    FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse); +  } + +  // If they simplified to the same value, then return the common value. +  // If they both failed to simplify then return null. +  if (TV == FV) +    return TV; + +  // If one branch simplified to undef, return the other one. +  if (TV && isa<UndefValue>(TV)) +    return FV; +  if (FV && isa<UndefValue>(FV)) +    return TV; + +  // If applying the operation did not change the true and false select values, +  // then the result of the binop is the select itself. +  if (TV == SI->getTrueValue() && FV == SI->getFalseValue()) +    return SI; + +  // If one branch simplified and the other did not, and the simplified +  // value is equal to the unsimplified one, return the simplified value. +  // For example, select (cond, X, X & Z) & Z -> X & Z. +  if ((FV && !TV) || (TV && !FV)) { +    // Check that the simplified value has the form "X op Y" where "op" is the +    // same as the original operation. +    Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV); +    if (Simplified && Simplified->getOpcode() == unsigned(Opcode)) { +      // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS". +      // We already know that "op" is the same as for the simplified value.  See +      // if the operands match too.  If so, return the simplified value. +      Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue(); +      Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS; +      Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch; +      if (Simplified->getOperand(0) == UnsimplifiedLHS && +          Simplified->getOperand(1) == UnsimplifiedRHS) +        return Simplified; +      if (Simplified->isCommutative() && +          Simplified->getOperand(1) == UnsimplifiedLHS && +          Simplified->getOperand(0) == UnsimplifiedRHS) +        return Simplified; +    } +  } + +  return nullptr; +} + +/// In the case of a comparison with a select instruction, try to simplify the +/// comparison by seeing whether both branches of the select result in the same +/// value. Returns the common value if so, otherwise returns null. +static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS, +                                  Value *RHS, const SimplifyQuery &Q, +                                  unsigned MaxRecurse) { +  // Recursion is always used, so bail out at once if we already hit the limit. +  if (!MaxRecurse--) +    return nullptr; + +  // Make sure the select is on the LHS. +  if (!isa<SelectInst>(LHS)) { +    std::swap(LHS, RHS); +    Pred = CmpInst::getSwappedPredicate(Pred); +  } +  assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!"); +  SelectInst *SI = cast<SelectInst>(LHS); +  Value *Cond = SI->getCondition(); +  Value *TV = SI->getTrueValue(); +  Value *FV = SI->getFalseValue(); + +  // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it. +  // Does "cmp TV, RHS" simplify? +  Value *TCmp = SimplifyCmpInst(Pred, TV, RHS, Q, MaxRecurse); +  if (TCmp == Cond) { +    // It not only simplified, it simplified to the select condition.  Replace +    // it with 'true'. +    TCmp = getTrue(Cond->getType()); +  } else if (!TCmp) { +    // It didn't simplify.  However if "cmp TV, RHS" is equal to the select +    // condition then we can replace it with 'true'.  Otherwise give up. +    if (!isSameCompare(Cond, Pred, TV, RHS)) +      return nullptr; +    TCmp = getTrue(Cond->getType()); +  } + +  // Does "cmp FV, RHS" simplify? +  Value *FCmp = SimplifyCmpInst(Pred, FV, RHS, Q, MaxRecurse); +  if (FCmp == Cond) { +    // It not only simplified, it simplified to the select condition.  Replace +    // it with 'false'. +    FCmp = getFalse(Cond->getType()); +  } else if (!FCmp) { +    // It didn't simplify.  However if "cmp FV, RHS" is equal to the select +    // condition then we can replace it with 'false'.  Otherwise give up. +    if (!isSameCompare(Cond, Pred, FV, RHS)) +      return nullptr; +    FCmp = getFalse(Cond->getType()); +  } + +  // If both sides simplified to the same value, then use it as the result of +  // the original comparison. +  if (TCmp == FCmp) +    return TCmp; + +  // The remaining cases only make sense if the select condition has the same +  // type as the result of the comparison, so bail out if this is not so. +  if (Cond->getType()->isVectorTy() != RHS->getType()->isVectorTy()) +    return nullptr; +  // If the false value simplified to false, then the result of the compare +  // is equal to "Cond && TCmp".  This also catches the case when the false +  // value simplified to false and the true value to true, returning "Cond". +  if (match(FCmp, m_Zero())) +    if (Value *V = SimplifyAndInst(Cond, TCmp, Q, MaxRecurse)) +      return V; +  // If the true value simplified to true, then the result of the compare +  // is equal to "Cond || FCmp". +  if (match(TCmp, m_One())) +    if (Value *V = SimplifyOrInst(Cond, FCmp, Q, MaxRecurse)) +      return V; +  // Finally, if the false value simplified to true and the true value to +  // false, then the result of the compare is equal to "!Cond". +  if (match(FCmp, m_One()) && match(TCmp, m_Zero())) +    if (Value *V = +        SimplifyXorInst(Cond, Constant::getAllOnesValue(Cond->getType()), +                        Q, MaxRecurse)) +      return V; + +  return nullptr; +} + +/// In the case of a binary operation with an operand that is a PHI instruction, +/// try to simplify the binop by seeing whether evaluating it on the incoming +/// phi values yields the same result for every value. If so returns the common +/// value, otherwise returns null. +static Value *ThreadBinOpOverPHI(Instruction::BinaryOps Opcode, Value *LHS, +                                 Value *RHS, const SimplifyQuery &Q, +                                 unsigned MaxRecurse) { +  // Recursion is always used, so bail out at once if we already hit the limit. +  if (!MaxRecurse--) +    return nullptr; + +  PHINode *PI; +  if (isa<PHINode>(LHS)) { +    PI = cast<PHINode>(LHS); +    // Bail out if RHS and the phi may be mutually interdependent due to a loop. +    if (!valueDominatesPHI(RHS, PI, Q.DT)) +      return nullptr; +  } else { +    assert(isa<PHINode>(RHS) && "No PHI instruction operand!"); +    PI = cast<PHINode>(RHS); +    // Bail out if LHS and the phi may be mutually interdependent due to a loop. +    if (!valueDominatesPHI(LHS, PI, Q.DT)) +      return nullptr; +  } + +  // Evaluate the BinOp on the incoming phi values. +  Value *CommonValue = nullptr; +  for (Value *Incoming : PI->incoming_values()) { +    // If the incoming value is the phi node itself, it can safely be skipped. +    if (Incoming == PI) continue; +    Value *V = PI == LHS ? +      SimplifyBinOp(Opcode, Incoming, RHS, Q, MaxRecurse) : +      SimplifyBinOp(Opcode, LHS, Incoming, Q, MaxRecurse); +    // If the operation failed to simplify, or simplified to a different value +    // to previously, then give up. +    if (!V || (CommonValue && V != CommonValue)) +      return nullptr; +    CommonValue = V; +  } + +  return CommonValue; +} + +/// In the case of a comparison with a PHI instruction, try to simplify the +/// comparison by seeing whether comparing with all of the incoming phi values +/// yields the same result every time. If so returns the common result, +/// otherwise returns null. +static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS, +                               const SimplifyQuery &Q, unsigned MaxRecurse) { +  // Recursion is always used, so bail out at once if we already hit the limit. +  if (!MaxRecurse--) +    return nullptr; + +  // Make sure the phi is on the LHS. +  if (!isa<PHINode>(LHS)) { +    std::swap(LHS, RHS); +    Pred = CmpInst::getSwappedPredicate(Pred); +  } +  assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!"); +  PHINode *PI = cast<PHINode>(LHS); + +  // Bail out if RHS and the phi may be mutually interdependent due to a loop. +  if (!valueDominatesPHI(RHS, PI, Q.DT)) +    return nullptr; + +  // Evaluate the BinOp on the incoming phi values. +  Value *CommonValue = nullptr; +  for (Value *Incoming : PI->incoming_values()) { +    // If the incoming value is the phi node itself, it can safely be skipped. +    if (Incoming == PI) continue; +    Value *V = SimplifyCmpInst(Pred, Incoming, RHS, Q, MaxRecurse); +    // If the operation failed to simplify, or simplified to a different value +    // to previously, then give up. +    if (!V || (CommonValue && V != CommonValue)) +      return nullptr; +    CommonValue = V; +  } + +  return CommonValue; +} + +static Constant *foldOrCommuteConstant(Instruction::BinaryOps Opcode, +                                       Value *&Op0, Value *&Op1, +                                       const SimplifyQuery &Q) { +  if (auto *CLHS = dyn_cast<Constant>(Op0)) { +    if (auto *CRHS = dyn_cast<Constant>(Op1)) +      return ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, Q.DL); + +    // Canonicalize the constant to the RHS if this is a commutative operation. +    if (Instruction::isCommutative(Opcode)) +      std::swap(Op0, Op1); +  } +  return nullptr; +} + +/// Given operands for an Add, see if we can fold the result. +/// If not, this returns null. +static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, +                              const SimplifyQuery &Q, unsigned MaxRecurse) { +  if (Constant *C = foldOrCommuteConstant(Instruction::Add, Op0, Op1, Q)) +    return C; + +  // X + undef -> undef +  if (match(Op1, m_Undef())) +    return Op1; + +  // X + 0 -> X +  if (match(Op1, m_Zero())) +    return Op0; + +  // If two operands are negative, return 0. +  if (isKnownNegation(Op0, Op1)) +    return Constant::getNullValue(Op0->getType()); + +  // X + (Y - X) -> Y +  // (Y - X) + X -> Y +  // Eg: X + -X -> 0 +  Value *Y = nullptr; +  if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) || +      match(Op0, m_Sub(m_Value(Y), m_Specific(Op1)))) +    return Y; + +  // X + ~X -> -1   since   ~X = -X-1 +  Type *Ty = Op0->getType(); +  if (match(Op0, m_Not(m_Specific(Op1))) || +      match(Op1, m_Not(m_Specific(Op0)))) +    return Constant::getAllOnesValue(Ty); + +  // add nsw/nuw (xor Y, signmask), signmask --> Y +  // The no-wrapping add guarantees that the top bit will be set by the add. +  // Therefore, the xor must be clearing the already set sign bit of Y. +  if ((IsNSW || IsNUW) && match(Op1, m_SignMask()) && +      match(Op0, m_Xor(m_Value(Y), m_SignMask()))) +    return Y; + +  // add nuw %x, -1  ->  -1, because %x can only be 0. +  if (IsNUW && match(Op1, m_AllOnes())) +    return Op1; // Which is -1. + +  /// i1 add -> xor. +  if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) +    if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1)) +      return V; + +  // Try some generic simplifications for associative operations. +  if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q, +                                          MaxRecurse)) +    return V; + +  // Threading Add over selects and phi nodes is pointless, so don't bother. +  // Threading over the select in "A + select(cond, B, C)" means evaluating +  // "A+B" and "A+C" and seeing if they are equal; but they are equal if and +  // only if B and C are equal.  If B and C are equal then (since we assume +  // that operands have already been simplified) "select(cond, B, C)" should +  // have been simplified to the common value of B and C already.  Analysing +  // "A+B" and "A+C" thus gains nothing, but costs compile time.  Similarly +  // for threading over phi nodes. + +  return nullptr; +} + +Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, +                             const SimplifyQuery &Query) { +  return ::SimplifyAddInst(Op0, Op1, IsNSW, IsNUW, Query, RecursionLimit); +} + +/// Compute the base pointer and cumulative constant offsets for V. +/// +/// This strips all constant offsets off of V, leaving it the base pointer, and +/// accumulates the total constant offset applied in the returned constant. It +/// returns 0 if V is not a pointer, and returns the constant '0' if there are +/// no constant offsets applied. +/// +/// This is very similar to GetPointerBaseWithConstantOffset except it doesn't +/// follow non-inbounds geps. This allows it to remain usable for icmp ult/etc. +/// folding. +static Constant *stripAndComputeConstantOffsets(const DataLayout &DL, Value *&V, +                                                bool AllowNonInbounds = false) { +  assert(V->getType()->isPtrOrPtrVectorTy()); + +  Type *IntPtrTy = DL.getIntPtrType(V->getType())->getScalarType(); +  APInt Offset = APInt::getNullValue(IntPtrTy->getIntegerBitWidth()); + +  V = V->stripAndAccumulateConstantOffsets(DL, Offset, AllowNonInbounds); +  // As that strip may trace through `addrspacecast`, need to sext or trunc +  // the offset calculated. +  IntPtrTy = DL.getIntPtrType(V->getType())->getScalarType(); +  Offset = Offset.sextOrTrunc(IntPtrTy->getIntegerBitWidth()); + +  Constant *OffsetIntPtr = ConstantInt::get(IntPtrTy, Offset); +  if (V->getType()->isVectorTy()) +    return ConstantVector::getSplat(V->getType()->getVectorNumElements(), +                                    OffsetIntPtr); +  return OffsetIntPtr; +} + +/// Compute the constant difference between two pointer values. +/// If the difference is not a constant, returns zero. +static Constant *computePointerDifference(const DataLayout &DL, Value *LHS, +                                          Value *RHS) { +  Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS); +  Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS); + +  // If LHS and RHS are not related via constant offsets to the same base +  // value, there is nothing we can do here. +  if (LHS != RHS) +    return nullptr; + +  // Otherwise, the difference of LHS - RHS can be computed as: +  //    LHS - RHS +  //  = (LHSOffset + Base) - (RHSOffset + Base) +  //  = LHSOffset - RHSOffset +  return ConstantExpr::getSub(LHSOffset, RHSOffset); +} + +/// Given operands for a Sub, see if we can fold the result. +/// If not, this returns null. +static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, +                              const SimplifyQuery &Q, unsigned MaxRecurse) { +  if (Constant *C = foldOrCommuteConstant(Instruction::Sub, Op0, Op1, Q)) +    return C; + +  // X - undef -> undef +  // undef - X -> undef +  if (match(Op0, m_Undef()) || match(Op1, m_Undef())) +    return UndefValue::get(Op0->getType()); + +  // X - 0 -> X +  if (match(Op1, m_Zero())) +    return Op0; + +  // X - X -> 0 +  if (Op0 == Op1) +    return Constant::getNullValue(Op0->getType()); + +  // Is this a negation? +  if (match(Op0, m_Zero())) { +    // 0 - X -> 0 if the sub is NUW. +    if (isNUW) +      return Constant::getNullValue(Op0->getType()); + +    KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); +    if (Known.Zero.isMaxSignedValue()) { +      // Op1 is either 0 or the minimum signed value. If the sub is NSW, then +      // Op1 must be 0 because negating the minimum signed value is undefined. +      if (isNSW) +        return Constant::getNullValue(Op0->getType()); + +      // 0 - X -> X if X is 0 or the minimum signed value. +      return Op1; +    } +  } + +  // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies. +  // For example, (X + Y) - Y -> X; (Y + X) - Y -> X +  Value *X = nullptr, *Y = nullptr, *Z = Op1; +  if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z +    // See if "V === Y - Z" simplifies. +    if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse-1)) +      // It does!  Now see if "X + V" simplifies. +      if (Value *W = SimplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse-1)) { +        // It does, we successfully reassociated! +        ++NumReassoc; +        return W; +      } +    // See if "V === X - Z" simplifies. +    if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1)) +      // It does!  Now see if "Y + V" simplifies. +      if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse-1)) { +        // It does, we successfully reassociated! +        ++NumReassoc; +        return W; +      } +  } + +  // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies. +  // For example, X - (X + 1) -> -1 +  X = Op0; +  if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z) +    // See if "V === X - Y" simplifies. +    if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1)) +      // It does!  Now see if "V - Z" simplifies. +      if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse-1)) { +        // It does, we successfully reassociated! +        ++NumReassoc; +        return W; +      } +    // See if "V === X - Z" simplifies. +    if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1)) +      // It does!  Now see if "V - Y" simplifies. +      if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse-1)) { +        // It does, we successfully reassociated! +        ++NumReassoc; +        return W; +      } +  } + +  // Z - (X - Y) -> (Z - X) + Y if everything simplifies. +  // For example, X - (X - Y) -> Y. +  Z = Op0; +  if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y) +    // See if "V === Z - X" simplifies. +    if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse-1)) +      // It does!  Now see if "V + Y" simplifies. +      if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse-1)) { +        // It does, we successfully reassociated! +        ++NumReassoc; +        return W; +      } + +  // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies. +  if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) && +      match(Op1, m_Trunc(m_Value(Y)))) +    if (X->getType() == Y->getType()) +      // See if "V === X - Y" simplifies. +      if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1)) +        // It does!  Now see if "trunc V" simplifies. +        if (Value *W = SimplifyCastInst(Instruction::Trunc, V, Op0->getType(), +                                        Q, MaxRecurse - 1)) +          // It does, return the simplified "trunc V". +          return W; + +  // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...). +  if (match(Op0, m_PtrToInt(m_Value(X))) && +      match(Op1, m_PtrToInt(m_Value(Y)))) +    if (Constant *Result = computePointerDifference(Q.DL, X, Y)) +      return ConstantExpr::getIntegerCast(Result, Op0->getType(), true); + +  // i1 sub -> xor. +  if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) +    if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1)) +      return V; + +  // Threading Sub over selects and phi nodes is pointless, so don't bother. +  // Threading over the select in "A - select(cond, B, C)" means evaluating +  // "A-B" and "A-C" and seeing if they are equal; but they are equal if and +  // only if B and C are equal.  If B and C are equal then (since we assume +  // that operands have already been simplified) "select(cond, B, C)" should +  // have been simplified to the common value of B and C already.  Analysing +  // "A-B" and "A-C" thus gains nothing, but costs compile time.  Similarly +  // for threading over phi nodes. + +  return nullptr; +} + +Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, +                             const SimplifyQuery &Q) { +  return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit); +} + +/// Given operands for a Mul, see if we can fold the result. +/// If not, this returns null. +static Value *SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, +                              unsigned MaxRecurse) { +  if (Constant *C = foldOrCommuteConstant(Instruction::Mul, Op0, Op1, Q)) +    return C; + +  // X * undef -> 0 +  // X * 0 -> 0 +  if (match(Op1, m_CombineOr(m_Undef(), m_Zero()))) +    return Constant::getNullValue(Op0->getType()); + +  // X * 1 -> X +  if (match(Op1, m_One())) +    return Op0; + +  // (X / Y) * Y -> X if the division is exact. +  Value *X = nullptr; +  if (Q.IIQ.UseInstrInfo && +      (match(Op0, +             m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) ||     // (X / Y) * Y +       match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0)))))) // Y * (X / Y) +    return X; + +  // i1 mul -> and. +  if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) +    if (Value *V = SimplifyAndInst(Op0, Op1, Q, MaxRecurse-1)) +      return V; + +  // Try some generic simplifications for associative operations. +  if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q, +                                          MaxRecurse)) +    return V; + +  // Mul distributes over Add. Try some generic simplifications based on this. +  if (Value *V = ExpandBinOp(Instruction::Mul, Op0, Op1, Instruction::Add, +                             Q, MaxRecurse)) +    return V; + +  // If the operation is with the result of a select instruction, check whether +  // operating on either branch of the select always yields the same value. +  if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) +    if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q, +                                         MaxRecurse)) +      return V; + +  // If the operation is with the result of a phi instruction, check whether +  // operating on all incoming values of the phi always yields the same value. +  if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) +    if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q, +                                      MaxRecurse)) +      return V; + +  return nullptr; +} + +Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { +  return ::SimplifyMulInst(Op0, Op1, Q, RecursionLimit); +} + +/// Check for common or similar folds of integer division or integer remainder. +/// This applies to all 4 opcodes (sdiv/udiv/srem/urem). +static Value *simplifyDivRem(Value *Op0, Value *Op1, bool IsDiv) { +  Type *Ty = Op0->getType(); + +  // X / undef -> undef +  // X % undef -> undef +  if (match(Op1, m_Undef())) +    return Op1; + +  // X / 0 -> undef +  // X % 0 -> undef +  // We don't need to preserve faults! +  if (match(Op1, m_Zero())) +    return UndefValue::get(Ty); + +  // If any element of a constant divisor vector is zero or undef, the whole op +  // is undef. +  auto *Op1C = dyn_cast<Constant>(Op1); +  if (Op1C && Ty->isVectorTy()) { +    unsigned NumElts = Ty->getVectorNumElements(); +    for (unsigned i = 0; i != NumElts; ++i) { +      Constant *Elt = Op1C->getAggregateElement(i); +      if (Elt && (Elt->isNullValue() || isa<UndefValue>(Elt))) +        return UndefValue::get(Ty); +    } +  } + +  // undef / X -> 0 +  // undef % X -> 0 +  if (match(Op0, m_Undef())) +    return Constant::getNullValue(Ty); + +  // 0 / X -> 0 +  // 0 % X -> 0 +  if (match(Op0, m_Zero())) +    return Constant::getNullValue(Op0->getType()); + +  // X / X -> 1 +  // X % X -> 0 +  if (Op0 == Op1) +    return IsDiv ? ConstantInt::get(Ty, 1) : Constant::getNullValue(Ty); + +  // X / 1 -> X +  // X % 1 -> 0 +  // If this is a boolean op (single-bit element type), we can't have +  // division-by-zero or remainder-by-zero, so assume the divisor is 1. +  // Similarly, if we're zero-extending a boolean divisor, then assume it's a 1. +  Value *X; +  if (match(Op1, m_One()) || Ty->isIntOrIntVectorTy(1) || +      (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))) +    return IsDiv ? Op0 : Constant::getNullValue(Ty); + +  return nullptr; +} + +/// Given a predicate and two operands, return true if the comparison is true. +/// This is a helper for div/rem simplification where we return some other value +/// when we can prove a relationship between the operands. +static bool isICmpTrue(ICmpInst::Predicate Pred, Value *LHS, Value *RHS, +                       const SimplifyQuery &Q, unsigned MaxRecurse) { +  Value *V = SimplifyICmpInst(Pred, LHS, RHS, Q, MaxRecurse); +  Constant *C = dyn_cast_or_null<Constant>(V); +  return (C && C->isAllOnesValue()); +} + +/// Return true if we can simplify X / Y to 0. Remainder can adapt that answer +/// to simplify X % Y to X. +static bool isDivZero(Value *X, Value *Y, const SimplifyQuery &Q, +                      unsigned MaxRecurse, bool IsSigned) { +  // Recursion is always used, so bail out at once if we already hit the limit. +  if (!MaxRecurse--) +    return false; + +  if (IsSigned) { +    // |X| / |Y| --> 0 +    // +    // We require that 1 operand is a simple constant. That could be extended to +    // 2 variables if we computed the sign bit for each. +    // +    // Make sure that a constant is not the minimum signed value because taking +    // the abs() of that is undefined. +    Type *Ty = X->getType(); +    const APInt *C; +    if (match(X, m_APInt(C)) && !C->isMinSignedValue()) { +      // Is the variable divisor magnitude always greater than the constant +      // dividend magnitude? +      // |Y| > |C| --> Y < -abs(C) or Y > abs(C) +      Constant *PosDividendC = ConstantInt::get(Ty, C->abs()); +      Constant *NegDividendC = ConstantInt::get(Ty, -C->abs()); +      if (isICmpTrue(CmpInst::ICMP_SLT, Y, NegDividendC, Q, MaxRecurse) || +          isICmpTrue(CmpInst::ICMP_SGT, Y, PosDividendC, Q, MaxRecurse)) +        return true; +    } +    if (match(Y, m_APInt(C))) { +      // Special-case: we can't take the abs() of a minimum signed value. If +      // that's the divisor, then all we have to do is prove that the dividend +      // is also not the minimum signed value. +      if (C->isMinSignedValue()) +        return isICmpTrue(CmpInst::ICMP_NE, X, Y, Q, MaxRecurse); + +      // Is the variable dividend magnitude always less than the constant +      // divisor magnitude? +      // |X| < |C| --> X > -abs(C) and X < abs(C) +      Constant *PosDivisorC = ConstantInt::get(Ty, C->abs()); +      Constant *NegDivisorC = ConstantInt::get(Ty, -C->abs()); +      if (isICmpTrue(CmpInst::ICMP_SGT, X, NegDivisorC, Q, MaxRecurse) && +          isICmpTrue(CmpInst::ICMP_SLT, X, PosDivisorC, Q, MaxRecurse)) +        return true; +    } +    return false; +  } + +  // IsSigned == false. +  // Is the dividend unsigned less than the divisor? +  return isICmpTrue(ICmpInst::ICMP_ULT, X, Y, Q, MaxRecurse); +} + +/// These are simplifications common to SDiv and UDiv. +static Value *simplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, +                          const SimplifyQuery &Q, unsigned MaxRecurse) { +  if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) +    return C; + +  if (Value *V = simplifyDivRem(Op0, Op1, true)) +    return V; + +  bool IsSigned = Opcode == Instruction::SDiv; + +  // (X * Y) / Y -> X if the multiplication does not overflow. +  Value *X; +  if (match(Op0, m_c_Mul(m_Value(X), m_Specific(Op1)))) { +    auto *Mul = cast<OverflowingBinaryOperator>(Op0); +    // If the Mul does not overflow, then we are good to go. +    if ((IsSigned && Q.IIQ.hasNoSignedWrap(Mul)) || +        (!IsSigned && Q.IIQ.hasNoUnsignedWrap(Mul))) +      return X; +    // If X has the form X = A / Y, then X * Y cannot overflow. +    if ((IsSigned && match(X, m_SDiv(m_Value(), m_Specific(Op1)))) || +        (!IsSigned && match(X, m_UDiv(m_Value(), m_Specific(Op1))))) +      return X; +  } + +  // (X rem Y) / Y -> 0 +  if ((IsSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) || +      (!IsSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1))))) +    return Constant::getNullValue(Op0->getType()); + +  // (X /u C1) /u C2 -> 0 if C1 * C2 overflow +  ConstantInt *C1, *C2; +  if (!IsSigned && match(Op0, m_UDiv(m_Value(X), m_ConstantInt(C1))) && +      match(Op1, m_ConstantInt(C2))) { +    bool Overflow; +    (void)C1->getValue().umul_ov(C2->getValue(), Overflow); +    if (Overflow) +      return Constant::getNullValue(Op0->getType()); +  } + +  // If the operation is with the result of a select instruction, check whether +  // operating on either branch of the select always yields the same value. +  if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) +    if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) +      return V; + +  // If the operation is with the result of a phi instruction, check whether +  // operating on all incoming values of the phi always yields the same value. +  if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) +    if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) +      return V; + +  if (isDivZero(Op0, Op1, Q, MaxRecurse, IsSigned)) +    return Constant::getNullValue(Op0->getType()); + +  return nullptr; +} + +/// These are simplifications common to SRem and URem. +static Value *simplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, +                          const SimplifyQuery &Q, unsigned MaxRecurse) { +  if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) +    return C; + +  if (Value *V = simplifyDivRem(Op0, Op1, false)) +    return V; + +  // (X % Y) % Y -> X % Y +  if ((Opcode == Instruction::SRem && +       match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) || +      (Opcode == Instruction::URem && +       match(Op0, m_URem(m_Value(), m_Specific(Op1))))) +    return Op0; + +  // (X << Y) % X -> 0 +  if (Q.IIQ.UseInstrInfo && +      ((Opcode == Instruction::SRem && +        match(Op0, m_NSWShl(m_Specific(Op1), m_Value()))) || +       (Opcode == Instruction::URem && +        match(Op0, m_NUWShl(m_Specific(Op1), m_Value()))))) +    return Constant::getNullValue(Op0->getType()); + +  // If the operation is with the result of a select instruction, check whether +  // operating on either branch of the select always yields the same value. +  if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) +    if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) +      return V; + +  // If the operation is with the result of a phi instruction, check whether +  // operating on all incoming values of the phi always yields the same value. +  if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) +    if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) +      return V; + +  // If X / Y == 0, then X % Y == X. +  if (isDivZero(Op0, Op1, Q, MaxRecurse, Opcode == Instruction::SRem)) +    return Op0; + +  return nullptr; +} + +/// Given operands for an SDiv, see if we can fold the result. +/// If not, this returns null. +static Value *SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, +                               unsigned MaxRecurse) { +  // If two operands are negated and no signed overflow, return -1. +  if (isKnownNegation(Op0, Op1, /*NeedNSW=*/true)) +    return Constant::getAllOnesValue(Op0->getType()); + +  return simplifyDiv(Instruction::SDiv, Op0, Op1, Q, MaxRecurse); +} + +Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { +  return ::SimplifySDivInst(Op0, Op1, Q, RecursionLimit); +} + +/// Given operands for a UDiv, see if we can fold the result. +/// If not, this returns null. +static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, +                               unsigned MaxRecurse) { +  return simplifyDiv(Instruction::UDiv, Op0, Op1, Q, MaxRecurse); +} + +Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { +  return ::SimplifyUDivInst(Op0, Op1, Q, RecursionLimit); +} + +/// Given operands for an SRem, see if we can fold the result. +/// If not, this returns null. +static Value *SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, +                               unsigned MaxRecurse) { +  // If the divisor is 0, the result is undefined, so assume the divisor is -1. +  // srem Op0, (sext i1 X) --> srem Op0, -1 --> 0 +  Value *X; +  if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) +    return ConstantInt::getNullValue(Op0->getType()); + +  // If the two operands are negated, return 0. +  if (isKnownNegation(Op0, Op1)) +    return ConstantInt::getNullValue(Op0->getType()); + +  return simplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse); +} + +Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { +  return ::SimplifySRemInst(Op0, Op1, Q, RecursionLimit); +} + +/// Given operands for a URem, see if we can fold the result. +/// If not, this returns null. +static Value *SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, +                               unsigned MaxRecurse) { +  return simplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse); +} + +Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { +  return ::SimplifyURemInst(Op0, Op1, Q, RecursionLimit); +} + +/// Returns true if a shift by \c Amount always yields undef. +static bool isUndefShift(Value *Amount) { +  Constant *C = dyn_cast<Constant>(Amount); +  if (!C) +    return false; + +  // X shift by undef -> undef because it may shift by the bitwidth. +  if (isa<UndefValue>(C)) +    return true; + +  // Shifting by the bitwidth or more is undefined. +  if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) +    if (CI->getValue().getLimitedValue() >= +        CI->getType()->getScalarSizeInBits()) +      return true; + +  // If all lanes of a vector shift are undefined the whole shift is. +  if (isa<ConstantVector>(C) || isa<ConstantDataVector>(C)) { +    for (unsigned I = 0, E = C->getType()->getVectorNumElements(); I != E; ++I) +      if (!isUndefShift(C->getAggregateElement(I))) +        return false; +    return true; +  } + +  return false; +} + +/// Given operands for an Shl, LShr or AShr, see if we can fold the result. +/// If not, this returns null. +static Value *SimplifyShift(Instruction::BinaryOps Opcode, Value *Op0, +                            Value *Op1, const SimplifyQuery &Q, unsigned MaxRecurse) { +  if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) +    return C; + +  // 0 shift by X -> 0 +  if (match(Op0, m_Zero())) +    return Constant::getNullValue(Op0->getType()); + +  // X shift by 0 -> X +  // Shift-by-sign-extended bool must be shift-by-0 because shift-by-all-ones +  // would be poison. +  Value *X; +  if (match(Op1, m_Zero()) || +      (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))) +    return Op0; + +  // Fold undefined shifts. +  if (isUndefShift(Op1)) +    return UndefValue::get(Op0->getType()); + +  // If the operation is with the result of a select instruction, check whether +  // operating on either branch of the select always yields the same value. +  if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) +    if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) +      return V; + +  // If the operation is with the result of a phi instruction, check whether +  // operating on all incoming values of the phi always yields the same value. +  if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) +    if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) +      return V; + +  // If any bits in the shift amount make that value greater than or equal to +  // the number of bits in the type, the shift is undefined. +  KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); +  if (Known.One.getLimitedValue() >= Known.getBitWidth()) +    return UndefValue::get(Op0->getType()); + +  // If all valid bits in the shift amount are known zero, the first operand is +  // unchanged. +  unsigned NumValidShiftBits = Log2_32_Ceil(Known.getBitWidth()); +  if (Known.countMinTrailingZeros() >= NumValidShiftBits) +    return Op0; + +  return nullptr; +} + +/// Given operands for an Shl, LShr or AShr, see if we can +/// fold the result.  If not, this returns null. +static Value *SimplifyRightShift(Instruction::BinaryOps Opcode, Value *Op0, +                                 Value *Op1, bool isExact, const SimplifyQuery &Q, +                                 unsigned MaxRecurse) { +  if (Value *V = SimplifyShift(Opcode, Op0, Op1, Q, MaxRecurse)) +    return V; + +  // X >> X -> 0 +  if (Op0 == Op1) +    return Constant::getNullValue(Op0->getType()); + +  // undef >> X -> 0 +  // undef >> X -> undef (if it's exact) +  if (match(Op0, m_Undef())) +    return isExact ? Op0 : Constant::getNullValue(Op0->getType()); + +  // The low bit cannot be shifted out of an exact shift if it is set. +  if (isExact) { +    KnownBits Op0Known = computeKnownBits(Op0, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT); +    if (Op0Known.One[0]) +      return Op0; +  } + +  return nullptr; +} + +/// Given operands for an Shl, see if we can fold the result. +/// If not, this returns null. +static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, +                              const SimplifyQuery &Q, unsigned MaxRecurse) { +  if (Value *V = SimplifyShift(Instruction::Shl, Op0, Op1, Q, MaxRecurse)) +    return V; + +  // undef << X -> 0 +  // undef << X -> undef if (if it's NSW/NUW) +  if (match(Op0, m_Undef())) +    return isNSW || isNUW ? Op0 : Constant::getNullValue(Op0->getType()); + +  // (X >> A) << A -> X +  Value *X; +  if (Q.IIQ.UseInstrInfo && +      match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1))))) +    return X; + +  // shl nuw i8 C, %x  ->  C  iff C has sign bit set. +  if (isNUW && match(Op0, m_Negative())) +    return Op0; +  // NOTE: could use computeKnownBits() / LazyValueInfo, +  // but the cost-benefit analysis suggests it isn't worth it. + +  return nullptr; +} + +Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, +                             const SimplifyQuery &Q) { +  return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit); +} + +/// Given operands for an LShr, see if we can fold the result. +/// If not, this returns null. +static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact, +                               const SimplifyQuery &Q, unsigned MaxRecurse) { +  if (Value *V = SimplifyRightShift(Instruction::LShr, Op0, Op1, isExact, Q, +                                    MaxRecurse)) +      return V; + +  // (X << A) >> A -> X +  Value *X; +  if (match(Op0, m_NUWShl(m_Value(X), m_Specific(Op1)))) +    return X; + +  // ((X << A) | Y) >> A -> X  if effective width of Y is not larger than A. +  // We can return X as we do in the above case since OR alters no bits in X. +  // SimplifyDemandedBits in InstCombine can do more general optimization for +  // bit manipulation. This pattern aims to provide opportunities for other +  // optimizers by supporting a simple but common case in InstSimplify. +  Value *Y; +  const APInt *ShRAmt, *ShLAmt; +  if (match(Op1, m_APInt(ShRAmt)) && +      match(Op0, m_c_Or(m_NUWShl(m_Value(X), m_APInt(ShLAmt)), m_Value(Y))) && +      *ShRAmt == *ShLAmt) { +    const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); +    const unsigned Width = Op0->getType()->getScalarSizeInBits(); +    const unsigned EffWidthY = Width - YKnown.countMinLeadingZeros(); +    if (ShRAmt->uge(EffWidthY)) +      return X; +  } + +  return nullptr; +} + +Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact, +                              const SimplifyQuery &Q) { +  return ::SimplifyLShrInst(Op0, Op1, isExact, Q, RecursionLimit); +} + +/// Given operands for an AShr, see if we can fold the result. +/// If not, this returns null. +static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact, +                               const SimplifyQuery &Q, unsigned MaxRecurse) { +  if (Value *V = SimplifyRightShift(Instruction::AShr, Op0, Op1, isExact, Q, +                                    MaxRecurse)) +    return V; + +  // all ones >>a X -> -1 +  // Do not return Op0 because it may contain undef elements if it's a vector. +  if (match(Op0, m_AllOnes())) +    return Constant::getAllOnesValue(Op0->getType()); + +  // (X << A) >> A -> X +  Value *X; +  if (Q.IIQ.UseInstrInfo && match(Op0, m_NSWShl(m_Value(X), m_Specific(Op1)))) +    return X; + +  // Arithmetic shifting an all-sign-bit value is a no-op. +  unsigned NumSignBits = ComputeNumSignBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); +  if (NumSignBits == Op0->getType()->getScalarSizeInBits()) +    return Op0; + +  return nullptr; +} + +Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact, +                              const SimplifyQuery &Q) { +  return ::SimplifyAShrInst(Op0, Op1, isExact, Q, RecursionLimit); +} + +/// Commuted variants are assumed to be handled by calling this function again +/// with the parameters swapped. +static Value *simplifyUnsignedRangeCheck(ICmpInst *ZeroICmp, +                                         ICmpInst *UnsignedICmp, bool IsAnd, +                                         const SimplifyQuery &Q) { +  Value *X, *Y; + +  ICmpInst::Predicate EqPred; +  if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(Y), m_Zero())) || +      !ICmpInst::isEquality(EqPred)) +    return nullptr; + +  ICmpInst::Predicate UnsignedPred; + +  Value *A, *B; +  // Y = (A - B); +  if (match(Y, m_Sub(m_Value(A), m_Value(B)))) { +    if (match(UnsignedICmp, +              m_c_ICmp(UnsignedPred, m_Specific(A), m_Specific(B))) && +        ICmpInst::isUnsigned(UnsignedPred)) { +      if (UnsignedICmp->getOperand(0) != A) +        UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred); + +      // A >=/<= B || (A - B) != 0  <-->  true +      if ((UnsignedPred == ICmpInst::ICMP_UGE || +           UnsignedPred == ICmpInst::ICMP_ULE) && +          EqPred == ICmpInst::ICMP_NE && !IsAnd) +        return ConstantInt::getTrue(UnsignedICmp->getType()); +      // A </> B && (A - B) == 0  <-->  false +      if ((UnsignedPred == ICmpInst::ICMP_ULT || +           UnsignedPred == ICmpInst::ICMP_UGT) && +          EqPred == ICmpInst::ICMP_EQ && IsAnd) +        return ConstantInt::getFalse(UnsignedICmp->getType()); + +      // A </> B && (A - B) != 0  <-->  A </> B +      // A </> B || (A - B) != 0  <-->  (A - B) != 0 +      if (EqPred == ICmpInst::ICMP_NE && (UnsignedPred == ICmpInst::ICMP_ULT || +                                          UnsignedPred == ICmpInst::ICMP_UGT)) +        return IsAnd ? UnsignedICmp : ZeroICmp; + +      // A <=/>= B && (A - B) == 0  <-->  (A - B) == 0 +      // A <=/>= B || (A - B) == 0  <-->  A <=/>= B +      if (EqPred == ICmpInst::ICMP_EQ && (UnsignedPred == ICmpInst::ICMP_ULE || +                                          UnsignedPred == ICmpInst::ICMP_UGE)) +        return IsAnd ? ZeroICmp : UnsignedICmp; +    } + +    // Given  Y = (A - B) +    //   Y >= A && Y != 0  --> Y >= A  iff B != 0 +    //   Y <  A || Y == 0  --> Y <  A  iff B != 0 +    if (match(UnsignedICmp, +              m_c_ICmp(UnsignedPred, m_Specific(Y), m_Specific(A)))) { +      if (UnsignedICmp->getOperand(0) != Y) +        UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred); + +      if (UnsignedPred == ICmpInst::ICMP_UGE && IsAnd && +          EqPred == ICmpInst::ICMP_NE && +          isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) +        return UnsignedICmp; +      if (UnsignedPred == ICmpInst::ICMP_ULT && !IsAnd && +          EqPred == ICmpInst::ICMP_EQ && +          isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) +        return UnsignedICmp; +    } +  } + +  if (match(UnsignedICmp, m_ICmp(UnsignedPred, m_Value(X), m_Specific(Y))) && +      ICmpInst::isUnsigned(UnsignedPred)) +    ; +  else if (match(UnsignedICmp, +                 m_ICmp(UnsignedPred, m_Specific(Y), m_Value(X))) && +           ICmpInst::isUnsigned(UnsignedPred)) +    UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred); +  else +    return nullptr; + +  // X < Y && Y != 0  -->  X < Y +  // X < Y || Y != 0  -->  Y != 0 +  if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE) +    return IsAnd ? UnsignedICmp : ZeroICmp; + +  // X <= Y && Y != 0  -->  X <= Y  iff X != 0 +  // X <= Y || Y != 0  -->  Y != 0  iff X != 0 +  if (UnsignedPred == ICmpInst::ICMP_ULE && EqPred == ICmpInst::ICMP_NE && +      isKnownNonZero(X, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) +    return IsAnd ? UnsignedICmp : ZeroICmp; + +  // X >= Y && Y == 0  -->  Y == 0 +  // X >= Y || Y == 0  -->  X >= Y +  if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_EQ) +    return IsAnd ? ZeroICmp : UnsignedICmp; + +  // X > Y && Y == 0  -->  Y == 0  iff X != 0 +  // X > Y || Y == 0  -->  X > Y   iff X != 0 +  if (UnsignedPred == ICmpInst::ICMP_UGT && EqPred == ICmpInst::ICMP_EQ && +      isKnownNonZero(X, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) +    return IsAnd ? ZeroICmp : UnsignedICmp; + +  // X < Y && Y == 0  -->  false +  if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_EQ && +      IsAnd) +    return getFalse(UnsignedICmp->getType()); + +  // X >= Y || Y != 0  -->  true +  if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_NE && +      !IsAnd) +    return getTrue(UnsignedICmp->getType()); + +  return nullptr; +} + +/// Commuted variants are assumed to be handled by calling this function again +/// with the parameters swapped. +static Value *simplifyAndOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) { +  ICmpInst::Predicate Pred0, Pred1; +  Value *A ,*B; +  if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) || +      !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B)))) +    return nullptr; + +  // We have (icmp Pred0, A, B) & (icmp Pred1, A, B). +  // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we +  // can eliminate Op1 from this 'and'. +  if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1)) +    return Op0; + +  // Check for any combination of predicates that are guaranteed to be disjoint. +  if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) || +      (Pred0 == ICmpInst::ICMP_EQ && ICmpInst::isFalseWhenEqual(Pred1)) || +      (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT) || +      (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT)) +    return getFalse(Op0->getType()); + +  return nullptr; +} + +/// Commuted variants are assumed to be handled by calling this function again +/// with the parameters swapped. +static Value *simplifyOrOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) { +  ICmpInst::Predicate Pred0, Pred1; +  Value *A ,*B; +  if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) || +      !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B)))) +    return nullptr; + +  // We have (icmp Pred0, A, B) | (icmp Pred1, A, B). +  // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we +  // can eliminate Op0 from this 'or'. +  if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1)) +    return Op1; + +  // Check for any combination of predicates that cover the entire range of +  // possibilities. +  if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) || +      (Pred0 == ICmpInst::ICMP_NE && ICmpInst::isTrueWhenEqual(Pred1)) || +      (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGE) || +      (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGE)) +    return getTrue(Op0->getType()); + +  return nullptr; +} + +/// Test if a pair of compares with a shared operand and 2 constants has an +/// empty set intersection, full set union, or if one compare is a superset of +/// the other. +static Value *simplifyAndOrOfICmpsWithConstants(ICmpInst *Cmp0, ICmpInst *Cmp1, +                                                bool IsAnd) { +  // Look for this pattern: {and/or} (icmp X, C0), (icmp X, C1)). +  if (Cmp0->getOperand(0) != Cmp1->getOperand(0)) +    return nullptr; + +  const APInt *C0, *C1; +  if (!match(Cmp0->getOperand(1), m_APInt(C0)) || +      !match(Cmp1->getOperand(1), m_APInt(C1))) +    return nullptr; + +  auto Range0 = ConstantRange::makeExactICmpRegion(Cmp0->getPredicate(), *C0); +  auto Range1 = ConstantRange::makeExactICmpRegion(Cmp1->getPredicate(), *C1); + +  // For and-of-compares, check if the intersection is empty: +  // (icmp X, C0) && (icmp X, C1) --> empty set --> false +  if (IsAnd && Range0.intersectWith(Range1).isEmptySet()) +    return getFalse(Cmp0->getType()); + +  // For or-of-compares, check if the union is full: +  // (icmp X, C0) || (icmp X, C1) --> full set --> true +  if (!IsAnd && Range0.unionWith(Range1).isFullSet()) +    return getTrue(Cmp0->getType()); + +  // Is one range a superset of the other? +  // If this is and-of-compares, take the smaller set: +  // (icmp sgt X, 4) && (icmp sgt X, 42) --> icmp sgt X, 42 +  // If this is or-of-compares, take the larger set: +  // (icmp sgt X, 4) || (icmp sgt X, 42) --> icmp sgt X, 4 +  if (Range0.contains(Range1)) +    return IsAnd ? Cmp1 : Cmp0; +  if (Range1.contains(Range0)) +    return IsAnd ? Cmp0 : Cmp1; + +  return nullptr; +} + +static Value *simplifyAndOrOfICmpsWithZero(ICmpInst *Cmp0, ICmpInst *Cmp1, +                                           bool IsAnd) { +  ICmpInst::Predicate P0 = Cmp0->getPredicate(), P1 = Cmp1->getPredicate(); +  if (!match(Cmp0->getOperand(1), m_Zero()) || +      !match(Cmp1->getOperand(1), m_Zero()) || P0 != P1) +    return nullptr; + +  if ((IsAnd && P0 != ICmpInst::ICMP_NE) || (!IsAnd && P1 != ICmpInst::ICMP_EQ)) +    return nullptr; + +  // We have either "(X == 0 || Y == 0)" or "(X != 0 && Y != 0)". +  Value *X = Cmp0->getOperand(0); +  Value *Y = Cmp1->getOperand(0); + +  // If one of the compares is a masked version of a (not) null check, then +  // that compare implies the other, so we eliminate the other. Optionally, look +  // through a pointer-to-int cast to match a null check of a pointer type. + +  // (X == 0) || (([ptrtoint] X & ?) == 0) --> ([ptrtoint] X & ?) == 0 +  // (X == 0) || ((? & [ptrtoint] X) == 0) --> (? & [ptrtoint] X) == 0 +  // (X != 0) && (([ptrtoint] X & ?) != 0) --> ([ptrtoint] X & ?) != 0 +  // (X != 0) && ((? & [ptrtoint] X) != 0) --> (? & [ptrtoint] X) != 0 +  if (match(Y, m_c_And(m_Specific(X), m_Value())) || +      match(Y, m_c_And(m_PtrToInt(m_Specific(X)), m_Value()))) +    return Cmp1; + +  // (([ptrtoint] Y & ?) == 0) || (Y == 0) --> ([ptrtoint] Y & ?) == 0 +  // ((? & [ptrtoint] Y) == 0) || (Y == 0) --> (? & [ptrtoint] Y) == 0 +  // (([ptrtoint] Y & ?) != 0) && (Y != 0) --> ([ptrtoint] Y & ?) != 0 +  // ((? & [ptrtoint] Y) != 0) && (Y != 0) --> (? & [ptrtoint] Y) != 0 +  if (match(X, m_c_And(m_Specific(Y), m_Value())) || +      match(X, m_c_And(m_PtrToInt(m_Specific(Y)), m_Value()))) +    return Cmp0; + +  return nullptr; +} + +static Value *simplifyAndOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1, +                                        const InstrInfoQuery &IIQ) { +  // (icmp (add V, C0), C1) & (icmp V, C0) +  ICmpInst::Predicate Pred0, Pred1; +  const APInt *C0, *C1; +  Value *V; +  if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1)))) +    return nullptr; + +  if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value()))) +    return nullptr; + +  auto *AddInst = cast<OverflowingBinaryOperator>(Op0->getOperand(0)); +  if (AddInst->getOperand(1) != Op1->getOperand(1)) +    return nullptr; + +  Type *ITy = Op0->getType(); +  bool isNSW = IIQ.hasNoSignedWrap(AddInst); +  bool isNUW = IIQ.hasNoUnsignedWrap(AddInst); + +  const APInt Delta = *C1 - *C0; +  if (C0->isStrictlyPositive()) { +    if (Delta == 2) { +      if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_SGT) +        return getFalse(ITy); +      if (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT && isNSW) +        return getFalse(ITy); +    } +    if (Delta == 1) { +      if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_SGT) +        return getFalse(ITy); +      if (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGT && isNSW) +        return getFalse(ITy); +    } +  } +  if (C0->getBoolValue() && isNUW) { +    if (Delta == 2) +      if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT) +        return getFalse(ITy); +    if (Delta == 1) +      if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGT) +        return getFalse(ITy); +  } + +  return nullptr; +} + +static Value *simplifyAndOfICmps(ICmpInst *Op0, ICmpInst *Op1, +                                 const SimplifyQuery &Q) { +  if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/true, Q)) +    return X; +  if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/true, Q)) +    return X; + +  if (Value *X = simplifyAndOfICmpsWithSameOperands(Op0, Op1)) +    return X; +  if (Value *X = simplifyAndOfICmpsWithSameOperands(Op1, Op0)) +    return X; + +  if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, true)) +    return X; + +  if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, true)) +    return X; + +  if (Value *X = simplifyAndOfICmpsWithAdd(Op0, Op1, Q.IIQ)) +    return X; +  if (Value *X = simplifyAndOfICmpsWithAdd(Op1, Op0, Q.IIQ)) +    return X; + +  return nullptr; +} + +static Value *simplifyOrOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1, +                                       const InstrInfoQuery &IIQ) { +  // (icmp (add V, C0), C1) | (icmp V, C0) +  ICmpInst::Predicate Pred0, Pred1; +  const APInt *C0, *C1; +  Value *V; +  if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1)))) +    return nullptr; + +  if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value()))) +    return nullptr; + +  auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0)); +  if (AddInst->getOperand(1) != Op1->getOperand(1)) +    return nullptr; + +  Type *ITy = Op0->getType(); +  bool isNSW = IIQ.hasNoSignedWrap(AddInst); +  bool isNUW = IIQ.hasNoUnsignedWrap(AddInst); + +  const APInt Delta = *C1 - *C0; +  if (C0->isStrictlyPositive()) { +    if (Delta == 2) { +      if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_SLE) +        return getTrue(ITy); +      if (Pred0 == ICmpInst::ICMP_SGE && Pred1 == ICmpInst::ICMP_SLE && isNSW) +        return getTrue(ITy); +    } +    if (Delta == 1) { +      if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_SLE) +        return getTrue(ITy); +      if (Pred0 == ICmpInst::ICMP_SGT && Pred1 == ICmpInst::ICMP_SLE && isNSW) +        return getTrue(ITy); +    } +  } +  if (C0->getBoolValue() && isNUW) { +    if (Delta == 2) +      if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_ULE) +        return getTrue(ITy); +    if (Delta == 1) +      if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_ULE) +        return getTrue(ITy); +  } + +  return nullptr; +} + +static Value *simplifyOrOfICmps(ICmpInst *Op0, ICmpInst *Op1, +                                const SimplifyQuery &Q) { +  if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/false, Q)) +    return X; +  if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/false, Q)) +    return X; + +  if (Value *X = simplifyOrOfICmpsWithSameOperands(Op0, Op1)) +    return X; +  if (Value *X = simplifyOrOfICmpsWithSameOperands(Op1, Op0)) +    return X; + +  if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, false)) +    return X; + +  if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, false)) +    return X; + +  if (Value *X = simplifyOrOfICmpsWithAdd(Op0, Op1, Q.IIQ)) +    return X; +  if (Value *X = simplifyOrOfICmpsWithAdd(Op1, Op0, Q.IIQ)) +    return X; + +  return nullptr; +} + +static Value *simplifyAndOrOfFCmps(const TargetLibraryInfo *TLI, +                                   FCmpInst *LHS, FCmpInst *RHS, bool IsAnd) { +  Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1); +  Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1); +  if (LHS0->getType() != RHS0->getType()) +    return nullptr; + +  FCmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate(); +  if ((PredL == FCmpInst::FCMP_ORD && PredR == FCmpInst::FCMP_ORD && IsAnd) || +      (PredL == FCmpInst::FCMP_UNO && PredR == FCmpInst::FCMP_UNO && !IsAnd)) { +    // (fcmp ord NNAN, X) & (fcmp ord X, Y) --> fcmp ord X, Y +    // (fcmp ord NNAN, X) & (fcmp ord Y, X) --> fcmp ord Y, X +    // (fcmp ord X, NNAN) & (fcmp ord X, Y) --> fcmp ord X, Y +    // (fcmp ord X, NNAN) & (fcmp ord Y, X) --> fcmp ord Y, X +    // (fcmp uno NNAN, X) | (fcmp uno X, Y) --> fcmp uno X, Y +    // (fcmp uno NNAN, X) | (fcmp uno Y, X) --> fcmp uno Y, X +    // (fcmp uno X, NNAN) | (fcmp uno X, Y) --> fcmp uno X, Y +    // (fcmp uno X, NNAN) | (fcmp uno Y, X) --> fcmp uno Y, X +    if ((isKnownNeverNaN(LHS0, TLI) && (LHS1 == RHS0 || LHS1 == RHS1)) || +        (isKnownNeverNaN(LHS1, TLI) && (LHS0 == RHS0 || LHS0 == RHS1))) +      return RHS; + +    // (fcmp ord X, Y) & (fcmp ord NNAN, X) --> fcmp ord X, Y +    // (fcmp ord Y, X) & (fcmp ord NNAN, X) --> fcmp ord Y, X +    // (fcmp ord X, Y) & (fcmp ord X, NNAN) --> fcmp ord X, Y +    // (fcmp ord Y, X) & (fcmp ord X, NNAN) --> fcmp ord Y, X +    // (fcmp uno X, Y) | (fcmp uno NNAN, X) --> fcmp uno X, Y +    // (fcmp uno Y, X) | (fcmp uno NNAN, X) --> fcmp uno Y, X +    // (fcmp uno X, Y) | (fcmp uno X, NNAN) --> fcmp uno X, Y +    // (fcmp uno Y, X) | (fcmp uno X, NNAN) --> fcmp uno Y, X +    if ((isKnownNeverNaN(RHS0, TLI) && (RHS1 == LHS0 || RHS1 == LHS1)) || +        (isKnownNeverNaN(RHS1, TLI) && (RHS0 == LHS0 || RHS0 == LHS1))) +      return LHS; +  } + +  return nullptr; +} + +static Value *simplifyAndOrOfCmps(const SimplifyQuery &Q, +                                  Value *Op0, Value *Op1, bool IsAnd) { +  // Look through casts of the 'and' operands to find compares. +  auto *Cast0 = dyn_cast<CastInst>(Op0); +  auto *Cast1 = dyn_cast<CastInst>(Op1); +  if (Cast0 && Cast1 && Cast0->getOpcode() == Cast1->getOpcode() && +      Cast0->getSrcTy() == Cast1->getSrcTy()) { +    Op0 = Cast0->getOperand(0); +    Op1 = Cast1->getOperand(0); +  } + +  Value *V = nullptr; +  auto *ICmp0 = dyn_cast<ICmpInst>(Op0); +  auto *ICmp1 = dyn_cast<ICmpInst>(Op1); +  if (ICmp0 && ICmp1) +    V = IsAnd ? simplifyAndOfICmps(ICmp0, ICmp1, Q) +              : simplifyOrOfICmps(ICmp0, ICmp1, Q); + +  auto *FCmp0 = dyn_cast<FCmpInst>(Op0); +  auto *FCmp1 = dyn_cast<FCmpInst>(Op1); +  if (FCmp0 && FCmp1) +    V = simplifyAndOrOfFCmps(Q.TLI, FCmp0, FCmp1, IsAnd); + +  if (!V) +    return nullptr; +  if (!Cast0) +    return V; + +  // If we looked through casts, we can only handle a constant simplification +  // because we are not allowed to create a cast instruction here. +  if (auto *C = dyn_cast<Constant>(V)) +    return ConstantExpr::getCast(Cast0->getOpcode(), C, Cast0->getType()); + +  return nullptr; +} + +/// Check that the Op1 is in expected form, i.e.: +///   %Agg = tail call { i4, i1 } @llvm.[us]mul.with.overflow.i4(i4 %X, i4 %???) +///   %Op1 = extractvalue { i4, i1 } %Agg, 1 +static bool omitCheckForZeroBeforeMulWithOverflowInternal(Value *Op1, +                                                          Value *X) { +  auto *Extract = dyn_cast<ExtractValueInst>(Op1); +  // We should only be extracting the overflow bit. +  if (!Extract || !Extract->getIndices().equals(1)) +    return false; +  Value *Agg = Extract->getAggregateOperand(); +  // This should be a multiplication-with-overflow intrinsic. +  if (!match(Agg, m_CombineOr(m_Intrinsic<Intrinsic::umul_with_overflow>(), +                              m_Intrinsic<Intrinsic::smul_with_overflow>()))) +    return false; +  // One of its multipliers should be the value we checked for zero before. +  if (!match(Agg, m_CombineOr(m_Argument<0>(m_Specific(X)), +                              m_Argument<1>(m_Specific(X))))) +    return false; +  return true; +} + +/// The @llvm.[us]mul.with.overflow intrinsic could have been folded from some +/// other form of check, e.g. one that was using division; it may have been +/// guarded against division-by-zero. We can drop that check now. +/// Look for: +///   %Op0 = icmp ne i4 %X, 0 +///   %Agg = tail call { i4, i1 } @llvm.[us]mul.with.overflow.i4(i4 %X, i4 %???) +///   %Op1 = extractvalue { i4, i1 } %Agg, 1 +///   %??? = and i1 %Op0, %Op1 +/// We can just return  %Op1 +static Value *omitCheckForZeroBeforeMulWithOverflow(Value *Op0, Value *Op1) { +  ICmpInst::Predicate Pred; +  Value *X; +  if (!match(Op0, m_ICmp(Pred, m_Value(X), m_Zero())) || +      Pred != ICmpInst::Predicate::ICMP_NE) +    return nullptr; +  // Is Op1 in expected form? +  if (!omitCheckForZeroBeforeMulWithOverflowInternal(Op1, X)) +    return nullptr; +  // Can omit 'and', and just return the overflow bit. +  return Op1; +} + +/// The @llvm.[us]mul.with.overflow intrinsic could have been folded from some +/// other form of check, e.g. one that was using division; it may have been +/// guarded against division-by-zero. We can drop that check now. +/// Look for: +///   %Op0 = icmp eq i4 %X, 0 +///   %Agg = tail call { i4, i1 } @llvm.[us]mul.with.overflow.i4(i4 %X, i4 %???) +///   %Op1 = extractvalue { i4, i1 } %Agg, 1 +///   %NotOp1 = xor i1 %Op1, true +///   %or = or i1 %Op0, %NotOp1 +/// We can just return  %NotOp1 +static Value *omitCheckForZeroBeforeInvertedMulWithOverflow(Value *Op0, +                                                            Value *NotOp1) { +  ICmpInst::Predicate Pred; +  Value *X; +  if (!match(Op0, m_ICmp(Pred, m_Value(X), m_Zero())) || +      Pred != ICmpInst::Predicate::ICMP_EQ) +    return nullptr; +  // We expect the other hand of an 'or' to be a 'not'. +  Value *Op1; +  if (!match(NotOp1, m_Not(m_Value(Op1)))) +    return nullptr; +  // Is Op1 in expected form? +  if (!omitCheckForZeroBeforeMulWithOverflowInternal(Op1, X)) +    return nullptr; +  // Can omit 'and', and just return the inverted overflow bit. +  return NotOp1; +} + +/// Given operands for an And, see if we can fold the result. +/// If not, this returns null. +static Value *SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, +                              unsigned MaxRecurse) { +  if (Constant *C = foldOrCommuteConstant(Instruction::And, Op0, Op1, Q)) +    return C; + +  // X & undef -> 0 +  if (match(Op1, m_Undef())) +    return Constant::getNullValue(Op0->getType()); + +  // X & X = X +  if (Op0 == Op1) +    return Op0; + +  // X & 0 = 0 +  if (match(Op1, m_Zero())) +    return Constant::getNullValue(Op0->getType()); + +  // X & -1 = X +  if (match(Op1, m_AllOnes())) +    return Op0; + +  // A & ~A  =  ~A & A  =  0 +  if (match(Op0, m_Not(m_Specific(Op1))) || +      match(Op1, m_Not(m_Specific(Op0)))) +    return Constant::getNullValue(Op0->getType()); + +  // (A | ?) & A = A +  if (match(Op0, m_c_Or(m_Specific(Op1), m_Value()))) +    return Op1; + +  // A & (A | ?) = A +  if (match(Op1, m_c_Or(m_Specific(Op0), m_Value()))) +    return Op0; + +  // A mask that only clears known zeros of a shifted value is a no-op. +  Value *X; +  const APInt *Mask; +  const APInt *ShAmt; +  if (match(Op1, m_APInt(Mask))) { +    // If all bits in the inverted and shifted mask are clear: +    // and (shl X, ShAmt), Mask --> shl X, ShAmt +    if (match(Op0, m_Shl(m_Value(X), m_APInt(ShAmt))) && +        (~(*Mask)).lshr(*ShAmt).isNullValue()) +      return Op0; + +    // If all bits in the inverted and shifted mask are clear: +    // and (lshr X, ShAmt), Mask --> lshr X, ShAmt +    if (match(Op0, m_LShr(m_Value(X), m_APInt(ShAmt))) && +        (~(*Mask)).shl(*ShAmt).isNullValue()) +      return Op0; +  } + +  // If we have a multiplication overflow check that is being 'and'ed with a +  // check that one of the multipliers is not zero, we can omit the 'and', and +  // only keep the overflow check. +  if (Value *V = omitCheckForZeroBeforeMulWithOverflow(Op0, Op1)) +    return V; +  if (Value *V = omitCheckForZeroBeforeMulWithOverflow(Op1, Op0)) +    return V; + +  // A & (-A) = A if A is a power of two or zero. +  if (match(Op0, m_Neg(m_Specific(Op1))) || +      match(Op1, m_Neg(m_Specific(Op0)))) { +    if (isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, +                               Q.DT)) +      return Op0; +    if (isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, +                               Q.DT)) +      return Op1; +  } + +  // This is a similar pattern used for checking if a value is a power-of-2: +  // (A - 1) & A --> 0 (if A is a power-of-2 or 0) +  // A & (A - 1) --> 0 (if A is a power-of-2 or 0) +  if (match(Op0, m_Add(m_Specific(Op1), m_AllOnes())) && +      isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, Q.DT)) +    return Constant::getNullValue(Op1->getType()); +  if (match(Op1, m_Add(m_Specific(Op0), m_AllOnes())) && +      isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, Q.DT)) +    return Constant::getNullValue(Op0->getType()); + +  if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, true)) +    return V; + +  // Try some generic simplifications for associative operations. +  if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q, +                                          MaxRecurse)) +    return V; + +  // And distributes over Or.  Try some generic simplifications based on this. +  if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Or, +                             Q, MaxRecurse)) +    return V; + +  // And distributes over Xor.  Try some generic simplifications based on this. +  if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Xor, +                             Q, MaxRecurse)) +    return V; + +  // If the operation is with the result of a select instruction, check whether +  // operating on either branch of the select always yields the same value. +  if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) +    if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, Q, +                                         MaxRecurse)) +      return V; + +  // If the operation is with the result of a phi instruction, check whether +  // operating on all incoming values of the phi always yields the same value. +  if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) +    if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, Q, +                                      MaxRecurse)) +      return V; + +  // Assuming the effective width of Y is not larger than A, i.e. all bits +  // from X and Y are disjoint in (X << A) | Y, +  // if the mask of this AND op covers all bits of X or Y, while it covers +  // no bits from the other, we can bypass this AND op. E.g., +  // ((X << A) | Y) & Mask -> Y, +  //     if Mask = ((1 << effective_width_of(Y)) - 1) +  // ((X << A) | Y) & Mask -> X << A, +  //     if Mask = ((1 << effective_width_of(X)) - 1) << A +  // SimplifyDemandedBits in InstCombine can optimize the general case. +  // This pattern aims to help other passes for a common case. +  Value *Y, *XShifted; +  if (match(Op1, m_APInt(Mask)) && +      match(Op0, m_c_Or(m_CombineAnd(m_NUWShl(m_Value(X), m_APInt(ShAmt)), +                                     m_Value(XShifted)), +                        m_Value(Y)))) { +    const unsigned Width = Op0->getType()->getScalarSizeInBits(); +    const unsigned ShftCnt = ShAmt->getLimitedValue(Width); +    const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); +    const unsigned EffWidthY = Width - YKnown.countMinLeadingZeros(); +    if (EffWidthY <= ShftCnt) { +      const KnownBits XKnown = computeKnownBits(X, Q.DL, 0, Q.AC, Q.CxtI, +                                                Q.DT); +      const unsigned EffWidthX = Width - XKnown.countMinLeadingZeros(); +      const APInt EffBitsY = APInt::getLowBitsSet(Width, EffWidthY); +      const APInt EffBitsX = APInt::getLowBitsSet(Width, EffWidthX) << ShftCnt; +      // If the mask is extracting all bits from X or Y as is, we can skip +      // this AND op. +      if (EffBitsY.isSubsetOf(*Mask) && !EffBitsX.intersects(*Mask)) +        return Y; +      if (EffBitsX.isSubsetOf(*Mask) && !EffBitsY.intersects(*Mask)) +        return XShifted; +    } +  } + +  return nullptr; +} + +Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { +  return ::SimplifyAndInst(Op0, Op1, Q, RecursionLimit); +} + +/// Given operands for an Or, see if we can fold the result. +/// If not, this returns null. +static Value *SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, +                             unsigned MaxRecurse) { +  if (Constant *C = foldOrCommuteConstant(Instruction::Or, Op0, Op1, Q)) +    return C; + +  // X | undef -> -1 +  // X | -1 = -1 +  // Do not return Op1 because it may contain undef elements if it's a vector. +  if (match(Op1, m_Undef()) || match(Op1, m_AllOnes())) +    return Constant::getAllOnesValue(Op0->getType()); + +  // X | X = X +  // X | 0 = X +  if (Op0 == Op1 || match(Op1, m_Zero())) +    return Op0; + +  // A | ~A  =  ~A | A  =  -1 +  if (match(Op0, m_Not(m_Specific(Op1))) || +      match(Op1, m_Not(m_Specific(Op0)))) +    return Constant::getAllOnesValue(Op0->getType()); + +  // (A & ?) | A = A +  if (match(Op0, m_c_And(m_Specific(Op1), m_Value()))) +    return Op1; + +  // A | (A & ?) = A +  if (match(Op1, m_c_And(m_Specific(Op0), m_Value()))) +    return Op0; + +  // ~(A & ?) | A = -1 +  if (match(Op0, m_Not(m_c_And(m_Specific(Op1), m_Value())))) +    return Constant::getAllOnesValue(Op1->getType()); + +  // A | ~(A & ?) = -1 +  if (match(Op1, m_Not(m_c_And(m_Specific(Op1), m_Value())))) +    return Constant::getAllOnesValue(Op0->getType()); + +  Value *A, *B; +  // (A & ~B) | (A ^ B) -> (A ^ B) +  // (~B & A) | (A ^ B) -> (A ^ B) +  // (A & ~B) | (B ^ A) -> (B ^ A) +  // (~B & A) | (B ^ A) -> (B ^ A) +  if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && +      (match(Op0, m_c_And(m_Specific(A), m_Not(m_Specific(B)))) || +       match(Op0, m_c_And(m_Not(m_Specific(A)), m_Specific(B))))) +    return Op1; + +  // Commute the 'or' operands. +  // (A ^ B) | (A & ~B) -> (A ^ B) +  // (A ^ B) | (~B & A) -> (A ^ B) +  // (B ^ A) | (A & ~B) -> (B ^ A) +  // (B ^ A) | (~B & A) -> (B ^ A) +  if (match(Op0, m_Xor(m_Value(A), m_Value(B))) && +      (match(Op1, m_c_And(m_Specific(A), m_Not(m_Specific(B)))) || +       match(Op1, m_c_And(m_Not(m_Specific(A)), m_Specific(B))))) +    return Op0; + +  // (A & B) | (~A ^ B) -> (~A ^ B) +  // (B & A) | (~A ^ B) -> (~A ^ B) +  // (A & B) | (B ^ ~A) -> (B ^ ~A) +  // (B & A) | (B ^ ~A) -> (B ^ ~A) +  if (match(Op0, m_And(m_Value(A), m_Value(B))) && +      (match(Op1, m_c_Xor(m_Specific(A), m_Not(m_Specific(B)))) || +       match(Op1, m_c_Xor(m_Not(m_Specific(A)), m_Specific(B))))) +    return Op1; + +  // (~A ^ B) | (A & B) -> (~A ^ B) +  // (~A ^ B) | (B & A) -> (~A ^ B) +  // (B ^ ~A) | (A & B) -> (B ^ ~A) +  // (B ^ ~A) | (B & A) -> (B ^ ~A) +  if (match(Op1, m_And(m_Value(A), m_Value(B))) && +      (match(Op0, m_c_Xor(m_Specific(A), m_Not(m_Specific(B)))) || +       match(Op0, m_c_Xor(m_Not(m_Specific(A)), m_Specific(B))))) +    return Op0; + +  if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, false)) +    return V; + +  // If we have a multiplication overflow check that is being 'and'ed with a +  // check that one of the multipliers is not zero, we can omit the 'and', and +  // only keep the overflow check. +  if (Value *V = omitCheckForZeroBeforeInvertedMulWithOverflow(Op0, Op1)) +    return V; +  if (Value *V = omitCheckForZeroBeforeInvertedMulWithOverflow(Op1, Op0)) +    return V; + +  // Try some generic simplifications for associative operations. +  if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q, +                                          MaxRecurse)) +    return V; + +  // Or distributes over And.  Try some generic simplifications based on this. +  if (Value *V = ExpandBinOp(Instruction::Or, Op0, Op1, Instruction::And, Q, +                             MaxRecurse)) +    return V; + +  // If the operation is with the result of a select instruction, check whether +  // operating on either branch of the select always yields the same value. +  if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) +    if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, Q, +                                         MaxRecurse)) +      return V; + +  // (A & C1)|(B & C2) +  const APInt *C1, *C2; +  if (match(Op0, m_And(m_Value(A), m_APInt(C1))) && +      match(Op1, m_And(m_Value(B), m_APInt(C2)))) { +    if (*C1 == ~*C2) { +      // (A & C1)|(B & C2) +      // If we have: ((V + N) & C1) | (V & C2) +      // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0 +      // replace with V+N. +      Value *N; +      if (C2->isMask() && // C2 == 0+1+ +          match(A, m_c_Add(m_Specific(B), m_Value(N)))) { +        // Add commutes, try both ways. +        if (MaskedValueIsZero(N, *C2, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) +          return A; +      } +      // Or commutes, try both ways. +      if (C1->isMask() && +          match(B, m_c_Add(m_Specific(A), m_Value(N)))) { +        // Add commutes, try both ways. +        if (MaskedValueIsZero(N, *C1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) +          return B; +      } +    } +  } + +  // If the operation is with the result of a phi instruction, check whether +  // operating on all incoming values of the phi always yields the same value. +  if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) +    if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse)) +      return V; + +  return nullptr; +} + +Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { +  return ::SimplifyOrInst(Op0, Op1, Q, RecursionLimit); +} + +/// Given operands for a Xor, see if we can fold the result. +/// If not, this returns null. +static Value *SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, +                              unsigned MaxRecurse) { +  if (Constant *C = foldOrCommuteConstant(Instruction::Xor, Op0, Op1, Q)) +    return C; + +  // A ^ undef -> undef +  if (match(Op1, m_Undef())) +    return Op1; + +  // A ^ 0 = A +  if (match(Op1, m_Zero())) +    return Op0; + +  // A ^ A = 0 +  if (Op0 == Op1) +    return Constant::getNullValue(Op0->getType()); + +  // A ^ ~A  =  ~A ^ A  =  -1 +  if (match(Op0, m_Not(m_Specific(Op1))) || +      match(Op1, m_Not(m_Specific(Op0)))) +    return Constant::getAllOnesValue(Op0->getType()); + +  // Try some generic simplifications for associative operations. +  if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q, +                                          MaxRecurse)) +    return V; + +  // Threading Xor over selects and phi nodes is pointless, so don't bother. +  // Threading over the select in "A ^ select(cond, B, C)" means evaluating +  // "A^B" and "A^C" and seeing if they are equal; but they are equal if and +  // only if B and C are equal.  If B and C are equal then (since we assume +  // that operands have already been simplified) "select(cond, B, C)" should +  // have been simplified to the common value of B and C already.  Analysing +  // "A^B" and "A^C" thus gains nothing, but costs compile time.  Similarly +  // for threading over phi nodes. + +  return nullptr; +} + +Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { +  return ::SimplifyXorInst(Op0, Op1, Q, RecursionLimit); +} + + +static Type *GetCompareTy(Value *Op) { +  return CmpInst::makeCmpResultType(Op->getType()); +} + +/// Rummage around inside V looking for something equivalent to the comparison +/// "LHS Pred RHS". Return such a value if found, otherwise return null. +/// Helper function for analyzing max/min idioms. +static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred, +                                         Value *LHS, Value *RHS) { +  SelectInst *SI = dyn_cast<SelectInst>(V); +  if (!SI) +    return nullptr; +  CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); +  if (!Cmp) +    return nullptr; +  Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1); +  if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS) +    return Cmp; +  if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) && +      LHS == CmpRHS && RHS == CmpLHS) +    return Cmp; +  return nullptr; +} + +// A significant optimization not implemented here is assuming that alloca +// addresses are not equal to incoming argument values. They don't *alias*, +// as we say, but that doesn't mean they aren't equal, so we take a +// conservative approach. +// +// This is inspired in part by C++11 5.10p1: +//   "Two pointers of the same type compare equal if and only if they are both +//    null, both point to the same function, or both represent the same +//    address." +// +// This is pretty permissive. +// +// It's also partly due to C11 6.5.9p6: +//   "Two pointers compare equal if and only if both are null pointers, both are +//    pointers to the same object (including a pointer to an object and a +//    subobject at its beginning) or function, both are pointers to one past the +//    last element of the same array object, or one is a pointer to one past the +//    end of one array object and the other is a pointer to the start of a +//    different array object that happens to immediately follow the first array +//    object in the address space.) +// +// C11's version is more restrictive, however there's no reason why an argument +// couldn't be a one-past-the-end value for a stack object in the caller and be +// equal to the beginning of a stack object in the callee. +// +// If the C and C++ standards are ever made sufficiently restrictive in this +// area, it may be possible to update LLVM's semantics accordingly and reinstate +// this optimization. +static Constant * +computePointerICmp(const DataLayout &DL, const TargetLibraryInfo *TLI, +                   const DominatorTree *DT, CmpInst::Predicate Pred, +                   AssumptionCache *AC, const Instruction *CxtI, +                   const InstrInfoQuery &IIQ, Value *LHS, Value *RHS) { +  // First, skip past any trivial no-ops. +  LHS = LHS->stripPointerCasts(); +  RHS = RHS->stripPointerCasts(); + +  // A non-null pointer is not equal to a null pointer. +  if (llvm::isKnownNonZero(LHS, DL, 0, nullptr, nullptr, nullptr, +                           IIQ.UseInstrInfo) && +      isa<ConstantPointerNull>(RHS) && +      (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE)) +    return ConstantInt::get(GetCompareTy(LHS), +                            !CmpInst::isTrueWhenEqual(Pred)); + +  // We can only fold certain predicates on pointer comparisons. +  switch (Pred) { +  default: +    return nullptr; + +    // Equality comaprisons are easy to fold. +  case CmpInst::ICMP_EQ: +  case CmpInst::ICMP_NE: +    break; + +    // We can only handle unsigned relational comparisons because 'inbounds' on +    // a GEP only protects against unsigned wrapping. +  case CmpInst::ICMP_UGT: +  case CmpInst::ICMP_UGE: +  case CmpInst::ICMP_ULT: +  case CmpInst::ICMP_ULE: +    // However, we have to switch them to their signed variants to handle +    // negative indices from the base pointer. +    Pred = ICmpInst::getSignedPredicate(Pred); +    break; +  } + +  // Strip off any constant offsets so that we can reason about them. +  // It's tempting to use getUnderlyingObject or even just stripInBoundsOffsets +  // here and compare base addresses like AliasAnalysis does, however there are +  // numerous hazards. AliasAnalysis and its utilities rely on special rules +  // governing loads and stores which don't apply to icmps. Also, AliasAnalysis +  // doesn't need to guarantee pointer inequality when it says NoAlias. +  Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS); +  Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS); + +  // If LHS and RHS are related via constant offsets to the same base +  // value, we can replace it with an icmp which just compares the offsets. +  if (LHS == RHS) +    return ConstantExpr::getICmp(Pred, LHSOffset, RHSOffset); + +  // Various optimizations for (in)equality comparisons. +  if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) { +    // Different non-empty allocations that exist at the same time have +    // different addresses (if the program can tell). Global variables always +    // exist, so they always exist during the lifetime of each other and all +    // allocas. Two different allocas usually have different addresses... +    // +    // However, if there's an @llvm.stackrestore dynamically in between two +    // allocas, they may have the same address. It's tempting to reduce the +    // scope of the problem by only looking at *static* allocas here. That would +    // cover the majority of allocas while significantly reducing the likelihood +    // of having an @llvm.stackrestore pop up in the middle. However, it's not +    // actually impossible for an @llvm.stackrestore to pop up in the middle of +    // an entry block. Also, if we have a block that's not attached to a +    // function, we can't tell if it's "static" under the current definition. +    // Theoretically, this problem could be fixed by creating a new kind of +    // instruction kind specifically for static allocas. Such a new instruction +    // could be required to be at the top of the entry block, thus preventing it +    // from being subject to a @llvm.stackrestore. Instcombine could even +    // convert regular allocas into these special allocas. It'd be nifty. +    // However, until then, this problem remains open. +    // +    // So, we'll assume that two non-empty allocas have different addresses +    // for now. +    // +    // With all that, if the offsets are within the bounds of their allocations +    // (and not one-past-the-end! so we can't use inbounds!), and their +    // allocations aren't the same, the pointers are not equal. +    // +    // Note that it's not necessary to check for LHS being a global variable +    // address, due to canonicalization and constant folding. +    if (isa<AllocaInst>(LHS) && +        (isa<AllocaInst>(RHS) || isa<GlobalVariable>(RHS))) { +      ConstantInt *LHSOffsetCI = dyn_cast<ConstantInt>(LHSOffset); +      ConstantInt *RHSOffsetCI = dyn_cast<ConstantInt>(RHSOffset); +      uint64_t LHSSize, RHSSize; +      ObjectSizeOpts Opts; +      Opts.NullIsUnknownSize = +          NullPointerIsDefined(cast<AllocaInst>(LHS)->getFunction()); +      if (LHSOffsetCI && RHSOffsetCI && +          getObjectSize(LHS, LHSSize, DL, TLI, Opts) && +          getObjectSize(RHS, RHSSize, DL, TLI, Opts)) { +        const APInt &LHSOffsetValue = LHSOffsetCI->getValue(); +        const APInt &RHSOffsetValue = RHSOffsetCI->getValue(); +        if (!LHSOffsetValue.isNegative() && +            !RHSOffsetValue.isNegative() && +            LHSOffsetValue.ult(LHSSize) && +            RHSOffsetValue.ult(RHSSize)) { +          return ConstantInt::get(GetCompareTy(LHS), +                                  !CmpInst::isTrueWhenEqual(Pred)); +        } +      } + +      // Repeat the above check but this time without depending on DataLayout +      // or being able to compute a precise size. +      if (!cast<PointerType>(LHS->getType())->isEmptyTy() && +          !cast<PointerType>(RHS->getType())->isEmptyTy() && +          LHSOffset->isNullValue() && +          RHSOffset->isNullValue()) +        return ConstantInt::get(GetCompareTy(LHS), +                                !CmpInst::isTrueWhenEqual(Pred)); +    } + +    // Even if an non-inbounds GEP occurs along the path we can still optimize +    // equality comparisons concerning the result. We avoid walking the whole +    // chain again by starting where the last calls to +    // stripAndComputeConstantOffsets left off and accumulate the offsets. +    Constant *LHSNoBound = stripAndComputeConstantOffsets(DL, LHS, true); +    Constant *RHSNoBound = stripAndComputeConstantOffsets(DL, RHS, true); +    if (LHS == RHS) +      return ConstantExpr::getICmp(Pred, +                                   ConstantExpr::getAdd(LHSOffset, LHSNoBound), +                                   ConstantExpr::getAdd(RHSOffset, RHSNoBound)); + +    // If one side of the equality comparison must come from a noalias call +    // (meaning a system memory allocation function), and the other side must +    // come from a pointer that cannot overlap with dynamically-allocated +    // memory within the lifetime of the current function (allocas, byval +    // arguments, globals), then determine the comparison result here. +    SmallVector<const Value *, 8> LHSUObjs, RHSUObjs; +    GetUnderlyingObjects(LHS, LHSUObjs, DL); +    GetUnderlyingObjects(RHS, RHSUObjs, DL); + +    // Is the set of underlying objects all noalias calls? +    auto IsNAC = [](ArrayRef<const Value *> Objects) { +      return all_of(Objects, isNoAliasCall); +    }; + +    // Is the set of underlying objects all things which must be disjoint from +    // noalias calls. For allocas, we consider only static ones (dynamic +    // allocas might be transformed into calls to malloc not simultaneously +    // live with the compared-to allocation). For globals, we exclude symbols +    // that might be resolve lazily to symbols in another dynamically-loaded +    // library (and, thus, could be malloc'ed by the implementation). +    auto IsAllocDisjoint = [](ArrayRef<const Value *> Objects) { +      return all_of(Objects, [](const Value *V) { +        if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) +          return AI->getParent() && AI->getFunction() && AI->isStaticAlloca(); +        if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) +          return (GV->hasLocalLinkage() || GV->hasHiddenVisibility() || +                  GV->hasProtectedVisibility() || GV->hasGlobalUnnamedAddr()) && +                 !GV->isThreadLocal(); +        if (const Argument *A = dyn_cast<Argument>(V)) +          return A->hasByValAttr(); +        return false; +      }); +    }; + +    if ((IsNAC(LHSUObjs) && IsAllocDisjoint(RHSUObjs)) || +        (IsNAC(RHSUObjs) && IsAllocDisjoint(LHSUObjs))) +        return ConstantInt::get(GetCompareTy(LHS), +                                !CmpInst::isTrueWhenEqual(Pred)); + +    // Fold comparisons for non-escaping pointer even if the allocation call +    // cannot be elided. We cannot fold malloc comparison to null. Also, the +    // dynamic allocation call could be either of the operands. +    Value *MI = nullptr; +    if (isAllocLikeFn(LHS, TLI) && +        llvm::isKnownNonZero(RHS, DL, 0, nullptr, CxtI, DT)) +      MI = LHS; +    else if (isAllocLikeFn(RHS, TLI) && +             llvm::isKnownNonZero(LHS, DL, 0, nullptr, CxtI, DT)) +      MI = RHS; +    // FIXME: We should also fold the compare when the pointer escapes, but the +    // compare dominates the pointer escape +    if (MI && !PointerMayBeCaptured(MI, true, true)) +      return ConstantInt::get(GetCompareTy(LHS), +                              CmpInst::isFalseWhenEqual(Pred)); +  } + +  // Otherwise, fail. +  return nullptr; +} + +/// Fold an icmp when its operands have i1 scalar type. +static Value *simplifyICmpOfBools(CmpInst::Predicate Pred, Value *LHS, +                                  Value *RHS, const SimplifyQuery &Q) { +  Type *ITy = GetCompareTy(LHS); // The return type. +  Type *OpTy = LHS->getType();   // The operand type. +  if (!OpTy->isIntOrIntVectorTy(1)) +    return nullptr; + +  // A boolean compared to true/false can be simplified in 14 out of the 20 +  // (10 predicates * 2 constants) possible combinations. Cases not handled here +  // require a 'not' of the LHS, so those must be transformed in InstCombine. +  if (match(RHS, m_Zero())) { +    switch (Pred) { +    case CmpInst::ICMP_NE:  // X !=  0 -> X +    case CmpInst::ICMP_UGT: // X >u  0 -> X +    case CmpInst::ICMP_SLT: // X <s  0 -> X +      return LHS; + +    case CmpInst::ICMP_ULT: // X <u  0 -> false +    case CmpInst::ICMP_SGT: // X >s  0 -> false +      return getFalse(ITy); + +    case CmpInst::ICMP_UGE: // X >=u 0 -> true +    case CmpInst::ICMP_SLE: // X <=s 0 -> true +      return getTrue(ITy); + +    default: break; +    } +  } else if (match(RHS, m_One())) { +    switch (Pred) { +    case CmpInst::ICMP_EQ:  // X ==   1 -> X +    case CmpInst::ICMP_UGE: // X >=u  1 -> X +    case CmpInst::ICMP_SLE: // X <=s -1 -> X +      return LHS; + +    case CmpInst::ICMP_UGT: // X >u   1 -> false +    case CmpInst::ICMP_SLT: // X <s  -1 -> false +      return getFalse(ITy); + +    case CmpInst::ICMP_ULE: // X <=u  1 -> true +    case CmpInst::ICMP_SGE: // X >=s -1 -> true +      return getTrue(ITy); + +    default: break; +    } +  } + +  switch (Pred) { +  default: +    break; +  case ICmpInst::ICMP_UGE: +    if (isImpliedCondition(RHS, LHS, Q.DL).getValueOr(false)) +      return getTrue(ITy); +    break; +  case ICmpInst::ICMP_SGE: +    /// For signed comparison, the values for an i1 are 0 and -1 +    /// respectively. This maps into a truth table of: +    /// LHS | RHS | LHS >=s RHS   | LHS implies RHS +    ///  0  |  0  |  1 (0 >= 0)   |  1 +    ///  0  |  1  |  1 (0 >= -1)  |  1 +    ///  1  |  0  |  0 (-1 >= 0)  |  0 +    ///  1  |  1  |  1 (-1 >= -1) |  1 +    if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false)) +      return getTrue(ITy); +    break; +  case ICmpInst::ICMP_ULE: +    if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false)) +      return getTrue(ITy); +    break; +  } + +  return nullptr; +} + +/// Try hard to fold icmp with zero RHS because this is a common case. +static Value *simplifyICmpWithZero(CmpInst::Predicate Pred, Value *LHS, +                                   Value *RHS, const SimplifyQuery &Q) { +  if (!match(RHS, m_Zero())) +    return nullptr; + +  Type *ITy = GetCompareTy(LHS); // The return type. +  switch (Pred) { +  default: +    llvm_unreachable("Unknown ICmp predicate!"); +  case ICmpInst::ICMP_ULT: +    return getFalse(ITy); +  case ICmpInst::ICMP_UGE: +    return getTrue(ITy); +  case ICmpInst::ICMP_EQ: +  case ICmpInst::ICMP_ULE: +    if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) +      return getFalse(ITy); +    break; +  case ICmpInst::ICMP_NE: +  case ICmpInst::ICMP_UGT: +    if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) +      return getTrue(ITy); +    break; +  case ICmpInst::ICMP_SLT: { +    KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); +    if (LHSKnown.isNegative()) +      return getTrue(ITy); +    if (LHSKnown.isNonNegative()) +      return getFalse(ITy); +    break; +  } +  case ICmpInst::ICMP_SLE: { +    KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); +    if (LHSKnown.isNegative()) +      return getTrue(ITy); +    if (LHSKnown.isNonNegative() && +        isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) +      return getFalse(ITy); +    break; +  } +  case ICmpInst::ICMP_SGE: { +    KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); +    if (LHSKnown.isNegative()) +      return getFalse(ITy); +    if (LHSKnown.isNonNegative()) +      return getTrue(ITy); +    break; +  } +  case ICmpInst::ICMP_SGT: { +    KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); +    if (LHSKnown.isNegative()) +      return getFalse(ITy); +    if (LHSKnown.isNonNegative() && +        isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) +      return getTrue(ITy); +    break; +  } +  } + +  return nullptr; +} + +static Value *simplifyICmpWithConstant(CmpInst::Predicate Pred, Value *LHS, +                                       Value *RHS, const InstrInfoQuery &IIQ) { +  Type *ITy = GetCompareTy(RHS); // The return type. + +  Value *X; +  // Sign-bit checks can be optimized to true/false after unsigned +  // floating-point casts: +  // icmp slt (bitcast (uitofp X)),  0 --> false +  // icmp sgt (bitcast (uitofp X)), -1 --> true +  if (match(LHS, m_BitCast(m_UIToFP(m_Value(X))))) { +    if (Pred == ICmpInst::ICMP_SLT && match(RHS, m_Zero())) +      return ConstantInt::getFalse(ITy); +    if (Pred == ICmpInst::ICMP_SGT && match(RHS, m_AllOnes())) +      return ConstantInt::getTrue(ITy); +  } + +  const APInt *C; +  if (!match(RHS, m_APInt(C))) +    return nullptr; + +  // Rule out tautological comparisons (eg., ult 0 or uge 0). +  ConstantRange RHS_CR = ConstantRange::makeExactICmpRegion(Pred, *C); +  if (RHS_CR.isEmptySet()) +    return ConstantInt::getFalse(ITy); +  if (RHS_CR.isFullSet()) +    return ConstantInt::getTrue(ITy); + +  ConstantRange LHS_CR = computeConstantRange(LHS, IIQ.UseInstrInfo); +  if (!LHS_CR.isFullSet()) { +    if (RHS_CR.contains(LHS_CR)) +      return ConstantInt::getTrue(ITy); +    if (RHS_CR.inverse().contains(LHS_CR)) +      return ConstantInt::getFalse(ITy); +  } + +  return nullptr; +} + +/// TODO: A large part of this logic is duplicated in InstCombine's +/// foldICmpBinOp(). We should be able to share that and avoid the code +/// duplication. +static Value *simplifyICmpWithBinOp(CmpInst::Predicate Pred, Value *LHS, +                                    Value *RHS, const SimplifyQuery &Q, +                                    unsigned MaxRecurse) { +  Type *ITy = GetCompareTy(LHS); // The return type. + +  BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS); +  BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS); +  if (MaxRecurse && (LBO || RBO)) { +    // Analyze the case when either LHS or RHS is an add instruction. +    Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr; +    // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null). +    bool NoLHSWrapProblem = false, NoRHSWrapProblem = false; +    if (LBO && LBO->getOpcode() == Instruction::Add) { +      A = LBO->getOperand(0); +      B = LBO->getOperand(1); +      NoLHSWrapProblem = +          ICmpInst::isEquality(Pred) || +          (CmpInst::isUnsigned(Pred) && +           Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO))) || +          (CmpInst::isSigned(Pred) && +           Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO))); +    } +    if (RBO && RBO->getOpcode() == Instruction::Add) { +      C = RBO->getOperand(0); +      D = RBO->getOperand(1); +      NoRHSWrapProblem = +          ICmpInst::isEquality(Pred) || +          (CmpInst::isUnsigned(Pred) && +           Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(RBO))) || +          (CmpInst::isSigned(Pred) && +           Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(RBO))); +    } + +    // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow. +    if ((A == RHS || B == RHS) && NoLHSWrapProblem) +      if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A, +                                      Constant::getNullValue(RHS->getType()), Q, +                                      MaxRecurse - 1)) +        return V; + +    // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow. +    if ((C == LHS || D == LHS) && NoRHSWrapProblem) +      if (Value *V = +              SimplifyICmpInst(Pred, Constant::getNullValue(LHS->getType()), +                               C == LHS ? D : C, Q, MaxRecurse - 1)) +        return V; + +    // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow. +    if (A && C && (A == C || A == D || B == C || B == D) && NoLHSWrapProblem && +        NoRHSWrapProblem) { +      // Determine Y and Z in the form icmp (X+Y), (X+Z). +      Value *Y, *Z; +      if (A == C) { +        // C + B == C + D  ->  B == D +        Y = B; +        Z = D; +      } else if (A == D) { +        // D + B == C + D  ->  B == C +        Y = B; +        Z = C; +      } else if (B == C) { +        // A + C == C + D  ->  A == D +        Y = A; +        Z = D; +      } else { +        assert(B == D); +        // A + D == C + D  ->  A == C +        Y = A; +        Z = C; +      } +      if (Value *V = SimplifyICmpInst(Pred, Y, Z, Q, MaxRecurse - 1)) +        return V; +    } +  } + +  { +    Value *Y = nullptr; +    // icmp pred (or X, Y), X +    if (LBO && match(LBO, m_c_Or(m_Value(Y), m_Specific(RHS)))) { +      if (Pred == ICmpInst::ICMP_ULT) +        return getFalse(ITy); +      if (Pred == ICmpInst::ICMP_UGE) +        return getTrue(ITy); + +      if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGE) { +        KnownBits RHSKnown = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); +        KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); +        if (RHSKnown.isNonNegative() && YKnown.isNegative()) +          return Pred == ICmpInst::ICMP_SLT ? getTrue(ITy) : getFalse(ITy); +        if (RHSKnown.isNegative() || YKnown.isNonNegative()) +          return Pred == ICmpInst::ICMP_SLT ? getFalse(ITy) : getTrue(ITy); +      } +    } +    // icmp pred X, (or X, Y) +    if (RBO && match(RBO, m_c_Or(m_Value(Y), m_Specific(LHS)))) { +      if (Pred == ICmpInst::ICMP_ULE) +        return getTrue(ITy); +      if (Pred == ICmpInst::ICMP_UGT) +        return getFalse(ITy); + +      if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLE) { +        KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); +        KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); +        if (LHSKnown.isNonNegative() && YKnown.isNegative()) +          return Pred == ICmpInst::ICMP_SGT ? getTrue(ITy) : getFalse(ITy); +        if (LHSKnown.isNegative() || YKnown.isNonNegative()) +          return Pred == ICmpInst::ICMP_SGT ? getFalse(ITy) : getTrue(ITy); +      } +    } +  } + +  // icmp pred (and X, Y), X +  if (LBO && match(LBO, m_c_And(m_Value(), m_Specific(RHS)))) { +    if (Pred == ICmpInst::ICMP_UGT) +      return getFalse(ITy); +    if (Pred == ICmpInst::ICMP_ULE) +      return getTrue(ITy); +  } +  // icmp pred X, (and X, Y) +  if (RBO && match(RBO, m_c_And(m_Value(), m_Specific(LHS)))) { +    if (Pred == ICmpInst::ICMP_UGE) +      return getTrue(ITy); +    if (Pred == ICmpInst::ICMP_ULT) +      return getFalse(ITy); +  } + +  // 0 - (zext X) pred C +  if (!CmpInst::isUnsigned(Pred) && match(LHS, m_Neg(m_ZExt(m_Value())))) { +    if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) { +      if (RHSC->getValue().isStrictlyPositive()) { +        if (Pred == ICmpInst::ICMP_SLT) +          return ConstantInt::getTrue(RHSC->getContext()); +        if (Pred == ICmpInst::ICMP_SGE) +          return ConstantInt::getFalse(RHSC->getContext()); +        if (Pred == ICmpInst::ICMP_EQ) +          return ConstantInt::getFalse(RHSC->getContext()); +        if (Pred == ICmpInst::ICMP_NE) +          return ConstantInt::getTrue(RHSC->getContext()); +      } +      if (RHSC->getValue().isNonNegative()) { +        if (Pred == ICmpInst::ICMP_SLE) +          return ConstantInt::getTrue(RHSC->getContext()); +        if (Pred == ICmpInst::ICMP_SGT) +          return ConstantInt::getFalse(RHSC->getContext()); +      } +    } +  } + +  // icmp pred (urem X, Y), Y +  if (LBO && match(LBO, m_URem(m_Value(), m_Specific(RHS)))) { +    switch (Pred) { +    default: +      break; +    case ICmpInst::ICMP_SGT: +    case ICmpInst::ICMP_SGE: { +      KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); +      if (!Known.isNonNegative()) +        break; +      LLVM_FALLTHROUGH; +    } +    case ICmpInst::ICMP_EQ: +    case ICmpInst::ICMP_UGT: +    case ICmpInst::ICMP_UGE: +      return getFalse(ITy); +    case ICmpInst::ICMP_SLT: +    case ICmpInst::ICMP_SLE: { +      KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); +      if (!Known.isNonNegative()) +        break; +      LLVM_FALLTHROUGH; +    } +    case ICmpInst::ICMP_NE: +    case ICmpInst::ICMP_ULT: +    case ICmpInst::ICMP_ULE: +      return getTrue(ITy); +    } +  } + +  // icmp pred X, (urem Y, X) +  if (RBO && match(RBO, m_URem(m_Value(), m_Specific(LHS)))) { +    switch (Pred) { +    default: +      break; +    case ICmpInst::ICMP_SGT: +    case ICmpInst::ICMP_SGE: { +      KnownBits Known = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); +      if (!Known.isNonNegative()) +        break; +      LLVM_FALLTHROUGH; +    } +    case ICmpInst::ICMP_NE: +    case ICmpInst::ICMP_UGT: +    case ICmpInst::ICMP_UGE: +      return getTrue(ITy); +    case ICmpInst::ICMP_SLT: +    case ICmpInst::ICMP_SLE: { +      KnownBits Known = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); +      if (!Known.isNonNegative()) +        break; +      LLVM_FALLTHROUGH; +    } +    case ICmpInst::ICMP_EQ: +    case ICmpInst::ICMP_ULT: +    case ICmpInst::ICMP_ULE: +      return getFalse(ITy); +    } +  } + +  // x >> y <=u x +  // x udiv y <=u x. +  if (LBO && (match(LBO, m_LShr(m_Specific(RHS), m_Value())) || +              match(LBO, m_UDiv(m_Specific(RHS), m_Value())))) { +    // icmp pred (X op Y), X +    if (Pred == ICmpInst::ICMP_UGT) +      return getFalse(ITy); +    if (Pred == ICmpInst::ICMP_ULE) +      return getTrue(ITy); +  } + +  // x >=u x >> y +  // x >=u x udiv y. +  if (RBO && (match(RBO, m_LShr(m_Specific(LHS), m_Value())) || +              match(RBO, m_UDiv(m_Specific(LHS), m_Value())))) { +    // icmp pred X, (X op Y) +    if (Pred == ICmpInst::ICMP_ULT) +      return getFalse(ITy); +    if (Pred == ICmpInst::ICMP_UGE) +      return getTrue(ITy); +  } + +  // handle: +  //   CI2 << X == CI +  //   CI2 << X != CI +  // +  //   where CI2 is a power of 2 and CI isn't +  if (auto *CI = dyn_cast<ConstantInt>(RHS)) { +    const APInt *CI2Val, *CIVal = &CI->getValue(); +    if (LBO && match(LBO, m_Shl(m_APInt(CI2Val), m_Value())) && +        CI2Val->isPowerOf2()) { +      if (!CIVal->isPowerOf2()) { +        // CI2 << X can equal zero in some circumstances, +        // this simplification is unsafe if CI is zero. +        // +        // We know it is safe if: +        // - The shift is nsw, we can't shift out the one bit. +        // - The shift is nuw, we can't shift out the one bit. +        // - CI2 is one +        // - CI isn't zero +        if (Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO)) || +            Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO)) || +            CI2Val->isOneValue() || !CI->isZero()) { +          if (Pred == ICmpInst::ICMP_EQ) +            return ConstantInt::getFalse(RHS->getContext()); +          if (Pred == ICmpInst::ICMP_NE) +            return ConstantInt::getTrue(RHS->getContext()); +        } +      } +      if (CIVal->isSignMask() && CI2Val->isOneValue()) { +        if (Pred == ICmpInst::ICMP_UGT) +          return ConstantInt::getFalse(RHS->getContext()); +        if (Pred == ICmpInst::ICMP_ULE) +          return ConstantInt::getTrue(RHS->getContext()); +      } +    } +  } + +  if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() && +      LBO->getOperand(1) == RBO->getOperand(1)) { +    switch (LBO->getOpcode()) { +    default: +      break; +    case Instruction::UDiv: +    case Instruction::LShr: +      if (ICmpInst::isSigned(Pred) || !Q.IIQ.isExact(LBO) || +          !Q.IIQ.isExact(RBO)) +        break; +      if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), +                                      RBO->getOperand(0), Q, MaxRecurse - 1)) +          return V; +      break; +    case Instruction::SDiv: +      if (!ICmpInst::isEquality(Pred) || !Q.IIQ.isExact(LBO) || +          !Q.IIQ.isExact(RBO)) +        break; +      if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), +                                      RBO->getOperand(0), Q, MaxRecurse - 1)) +        return V; +      break; +    case Instruction::AShr: +      if (!Q.IIQ.isExact(LBO) || !Q.IIQ.isExact(RBO)) +        break; +      if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), +                                      RBO->getOperand(0), Q, MaxRecurse - 1)) +        return V; +      break; +    case Instruction::Shl: { +      bool NUW = Q.IIQ.hasNoUnsignedWrap(LBO) && Q.IIQ.hasNoUnsignedWrap(RBO); +      bool NSW = Q.IIQ.hasNoSignedWrap(LBO) && Q.IIQ.hasNoSignedWrap(RBO); +      if (!NUW && !NSW) +        break; +      if (!NSW && ICmpInst::isSigned(Pred)) +        break; +      if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), +                                      RBO->getOperand(0), Q, MaxRecurse - 1)) +        return V; +      break; +    } +    } +  } +  return nullptr; +} + +/// Simplify integer comparisons where at least one operand of the compare +/// matches an integer min/max idiom. +static Value *simplifyICmpWithMinMax(CmpInst::Predicate Pred, Value *LHS, +                                     Value *RHS, const SimplifyQuery &Q, +                                     unsigned MaxRecurse) { +  Type *ITy = GetCompareTy(LHS); // The return type. +  Value *A, *B; +  CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE; +  CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B". + +  // Signed variants on "max(a,b)>=a -> true". +  if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { +    if (A != RHS) +      std::swap(A, B);       // smax(A, B) pred A. +    EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". +    // We analyze this as smax(A, B) pred A. +    P = Pred; +  } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) && +             (A == LHS || B == LHS)) { +    if (A != LHS) +      std::swap(A, B);       // A pred smax(A, B). +    EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". +    // We analyze this as smax(A, B) swapped-pred A. +    P = CmpInst::getSwappedPredicate(Pred); +  } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) && +             (A == RHS || B == RHS)) { +    if (A != RHS) +      std::swap(A, B);       // smin(A, B) pred A. +    EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". +    // We analyze this as smax(-A, -B) swapped-pred -A. +    // Note that we do not need to actually form -A or -B thanks to EqP. +    P = CmpInst::getSwappedPredicate(Pred); +  } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) && +             (A == LHS || B == LHS)) { +    if (A != LHS) +      std::swap(A, B);       // A pred smin(A, B). +    EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". +    // We analyze this as smax(-A, -B) pred -A. +    // Note that we do not need to actually form -A or -B thanks to EqP. +    P = Pred; +  } +  if (P != CmpInst::BAD_ICMP_PREDICATE) { +    // Cases correspond to "max(A, B) p A". +    switch (P) { +    default: +      break; +    case CmpInst::ICMP_EQ: +    case CmpInst::ICMP_SLE: +      // Equivalent to "A EqP B".  This may be the same as the condition tested +      // in the max/min; if so, we can just return that. +      if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B)) +        return V; +      if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B)) +        return V; +      // Otherwise, see if "A EqP B" simplifies. +      if (MaxRecurse) +        if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1)) +          return V; +      break; +    case CmpInst::ICMP_NE: +    case CmpInst::ICMP_SGT: { +      CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); +      // Equivalent to "A InvEqP B".  This may be the same as the condition +      // tested in the max/min; if so, we can just return that. +      if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B)) +        return V; +      if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B)) +        return V; +      // Otherwise, see if "A InvEqP B" simplifies. +      if (MaxRecurse) +        if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1)) +          return V; +      break; +    } +    case CmpInst::ICMP_SGE: +      // Always true. +      return getTrue(ITy); +    case CmpInst::ICMP_SLT: +      // Always false. +      return getFalse(ITy); +    } +  } + +  // Unsigned variants on "max(a,b)>=a -> true". +  P = CmpInst::BAD_ICMP_PREDICATE; +  if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { +    if (A != RHS) +      std::swap(A, B);       // umax(A, B) pred A. +    EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". +    // We analyze this as umax(A, B) pred A. +    P = Pred; +  } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) && +             (A == LHS || B == LHS)) { +    if (A != LHS) +      std::swap(A, B);       // A pred umax(A, B). +    EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". +    // We analyze this as umax(A, B) swapped-pred A. +    P = CmpInst::getSwappedPredicate(Pred); +  } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) && +             (A == RHS || B == RHS)) { +    if (A != RHS) +      std::swap(A, B);       // umin(A, B) pred A. +    EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". +    // We analyze this as umax(-A, -B) swapped-pred -A. +    // Note that we do not need to actually form -A or -B thanks to EqP. +    P = CmpInst::getSwappedPredicate(Pred); +  } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) && +             (A == LHS || B == LHS)) { +    if (A != LHS) +      std::swap(A, B);       // A pred umin(A, B). +    EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". +    // We analyze this as umax(-A, -B) pred -A. +    // Note that we do not need to actually form -A or -B thanks to EqP. +    P = Pred; +  } +  if (P != CmpInst::BAD_ICMP_PREDICATE) { +    // Cases correspond to "max(A, B) p A". +    switch (P) { +    default: +      break; +    case CmpInst::ICMP_EQ: +    case CmpInst::ICMP_ULE: +      // Equivalent to "A EqP B".  This may be the same as the condition tested +      // in the max/min; if so, we can just return that. +      if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B)) +        return V; +      if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B)) +        return V; +      // Otherwise, see if "A EqP B" simplifies. +      if (MaxRecurse) +        if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1)) +          return V; +      break; +    case CmpInst::ICMP_NE: +    case CmpInst::ICMP_UGT: { +      CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); +      // Equivalent to "A InvEqP B".  This may be the same as the condition +      // tested in the max/min; if so, we can just return that. +      if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B)) +        return V; +      if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B)) +        return V; +      // Otherwise, see if "A InvEqP B" simplifies. +      if (MaxRecurse) +        if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1)) +          return V; +      break; +    } +    case CmpInst::ICMP_UGE: +      // Always true. +      return getTrue(ITy); +    case CmpInst::ICMP_ULT: +      // Always false. +      return getFalse(ITy); +    } +  } + +  // Variants on "max(x,y) >= min(x,z)". +  Value *C, *D; +  if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && +      match(RHS, m_SMin(m_Value(C), m_Value(D))) && +      (A == C || A == D || B == C || B == D)) { +    // max(x, ?) pred min(x, ?). +    if (Pred == CmpInst::ICMP_SGE) +      // Always true. +      return getTrue(ITy); +    if (Pred == CmpInst::ICMP_SLT) +      // Always false. +      return getFalse(ITy); +  } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) && +             match(RHS, m_SMax(m_Value(C), m_Value(D))) && +             (A == C || A == D || B == C || B == D)) { +    // min(x, ?) pred max(x, ?). +    if (Pred == CmpInst::ICMP_SLE) +      // Always true. +      return getTrue(ITy); +    if (Pred == CmpInst::ICMP_SGT) +      // Always false. +      return getFalse(ITy); +  } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && +             match(RHS, m_UMin(m_Value(C), m_Value(D))) && +             (A == C || A == D || B == C || B == D)) { +    // max(x, ?) pred min(x, ?). +    if (Pred == CmpInst::ICMP_UGE) +      // Always true. +      return getTrue(ITy); +    if (Pred == CmpInst::ICMP_ULT) +      // Always false. +      return getFalse(ITy); +  } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) && +             match(RHS, m_UMax(m_Value(C), m_Value(D))) && +             (A == C || A == D || B == C || B == D)) { +    // min(x, ?) pred max(x, ?). +    if (Pred == CmpInst::ICMP_ULE) +      // Always true. +      return getTrue(ITy); +    if (Pred == CmpInst::ICMP_UGT) +      // Always false. +      return getFalse(ITy); +  } + +  return nullptr; +} + +/// Given operands for an ICmpInst, see if we can fold the result. +/// If not, this returns null. +static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, +                               const SimplifyQuery &Q, unsigned MaxRecurse) { +  CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; +  assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!"); + +  if (Constant *CLHS = dyn_cast<Constant>(LHS)) { +    if (Constant *CRHS = dyn_cast<Constant>(RHS)) +      return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI); + +    // If we have a constant, make sure it is on the RHS. +    std::swap(LHS, RHS); +    Pred = CmpInst::getSwappedPredicate(Pred); +  } +  assert(!isa<UndefValue>(LHS) && "Unexpected icmp undef,%X"); + +  Type *ITy = GetCompareTy(LHS); // The return type. + +  // For EQ and NE, we can always pick a value for the undef to make the +  // predicate pass or fail, so we can return undef. +  // Matches behavior in llvm::ConstantFoldCompareInstruction. +  if (isa<UndefValue>(RHS) && ICmpInst::isEquality(Pred)) +    return UndefValue::get(ITy); + +  // icmp X, X -> true/false +  // icmp X, undef -> true/false because undef could be X. +  if (LHS == RHS || isa<UndefValue>(RHS)) +    return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred)); + +  if (Value *V = simplifyICmpOfBools(Pred, LHS, RHS, Q)) +    return V; + +  if (Value *V = simplifyICmpWithZero(Pred, LHS, RHS, Q)) +    return V; + +  if (Value *V = simplifyICmpWithConstant(Pred, LHS, RHS, Q.IIQ)) +    return V; + +  // If both operands have range metadata, use the metadata +  // to simplify the comparison. +  if (isa<Instruction>(RHS) && isa<Instruction>(LHS)) { +    auto RHS_Instr = cast<Instruction>(RHS); +    auto LHS_Instr = cast<Instruction>(LHS); + +    if (Q.IIQ.getMetadata(RHS_Instr, LLVMContext::MD_range) && +        Q.IIQ.getMetadata(LHS_Instr, LLVMContext::MD_range)) { +      auto RHS_CR = getConstantRangeFromMetadata( +          *RHS_Instr->getMetadata(LLVMContext::MD_range)); +      auto LHS_CR = getConstantRangeFromMetadata( +          *LHS_Instr->getMetadata(LLVMContext::MD_range)); + +      auto Satisfied_CR = ConstantRange::makeSatisfyingICmpRegion(Pred, RHS_CR); +      if (Satisfied_CR.contains(LHS_CR)) +        return ConstantInt::getTrue(RHS->getContext()); + +      auto InversedSatisfied_CR = ConstantRange::makeSatisfyingICmpRegion( +                CmpInst::getInversePredicate(Pred), RHS_CR); +      if (InversedSatisfied_CR.contains(LHS_CR)) +        return ConstantInt::getFalse(RHS->getContext()); +    } +  } + +  // Compare of cast, for example (zext X) != 0 -> X != 0 +  if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) { +    Instruction *LI = cast<CastInst>(LHS); +    Value *SrcOp = LI->getOperand(0); +    Type *SrcTy = SrcOp->getType(); +    Type *DstTy = LI->getType(); + +    // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input +    // if the integer type is the same size as the pointer type. +    if (MaxRecurse && isa<PtrToIntInst>(LI) && +        Q.DL.getTypeSizeInBits(SrcTy) == DstTy->getPrimitiveSizeInBits()) { +      if (Constant *RHSC = dyn_cast<Constant>(RHS)) { +        // Transfer the cast to the constant. +        if (Value *V = SimplifyICmpInst(Pred, SrcOp, +                                        ConstantExpr::getIntToPtr(RHSC, SrcTy), +                                        Q, MaxRecurse-1)) +          return V; +      } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) { +        if (RI->getOperand(0)->getType() == SrcTy) +          // Compare without the cast. +          if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0), +                                          Q, MaxRecurse-1)) +            return V; +      } +    } + +    if (isa<ZExtInst>(LHS)) { +      // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the +      // same type. +      if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) { +        if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) +          // Compare X and Y.  Note that signed predicates become unsigned. +          if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), +                                          SrcOp, RI->getOperand(0), Q, +                                          MaxRecurse-1)) +            return V; +      } +      // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended +      // too.  If not, then try to deduce the result of the comparison. +      else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { +        // Compute the constant that would happen if we truncated to SrcTy then +        // reextended to DstTy. +        Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy); +        Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy); + +        // If the re-extended constant didn't change then this is effectively +        // also a case of comparing two zero-extended values. +        if (RExt == CI && MaxRecurse) +          if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), +                                        SrcOp, Trunc, Q, MaxRecurse-1)) +            return V; + +        // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit +        // there.  Use this to work out the result of the comparison. +        if (RExt != CI) { +          switch (Pred) { +          default: llvm_unreachable("Unknown ICmp predicate!"); +          // LHS <u RHS. +          case ICmpInst::ICMP_EQ: +          case ICmpInst::ICMP_UGT: +          case ICmpInst::ICMP_UGE: +            return ConstantInt::getFalse(CI->getContext()); + +          case ICmpInst::ICMP_NE: +          case ICmpInst::ICMP_ULT: +          case ICmpInst::ICMP_ULE: +            return ConstantInt::getTrue(CI->getContext()); + +          // LHS is non-negative.  If RHS is negative then LHS >s LHS.  If RHS +          // is non-negative then LHS <s RHS. +          case ICmpInst::ICMP_SGT: +          case ICmpInst::ICMP_SGE: +            return CI->getValue().isNegative() ? +              ConstantInt::getTrue(CI->getContext()) : +              ConstantInt::getFalse(CI->getContext()); + +          case ICmpInst::ICMP_SLT: +          case ICmpInst::ICMP_SLE: +            return CI->getValue().isNegative() ? +              ConstantInt::getFalse(CI->getContext()) : +              ConstantInt::getTrue(CI->getContext()); +          } +        } +      } +    } + +    if (isa<SExtInst>(LHS)) { +      // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the +      // same type. +      if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) { +        if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) +          // Compare X and Y.  Note that the predicate does not change. +          if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0), +                                          Q, MaxRecurse-1)) +            return V; +      } +      // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended +      // too.  If not, then try to deduce the result of the comparison. +      else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { +        // Compute the constant that would happen if we truncated to SrcTy then +        // reextended to DstTy. +        Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy); +        Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy); + +        // If the re-extended constant didn't change then this is effectively +        // also a case of comparing two sign-extended values. +        if (RExt == CI && MaxRecurse) +          if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse-1)) +            return V; + +        // Otherwise the upper bits of LHS are all equal, while RHS has varying +        // bits there.  Use this to work out the result of the comparison. +        if (RExt != CI) { +          switch (Pred) { +          default: llvm_unreachable("Unknown ICmp predicate!"); +          case ICmpInst::ICMP_EQ: +            return ConstantInt::getFalse(CI->getContext()); +          case ICmpInst::ICMP_NE: +            return ConstantInt::getTrue(CI->getContext()); + +          // If RHS is non-negative then LHS <s RHS.  If RHS is negative then +          // LHS >s RHS. +          case ICmpInst::ICMP_SGT: +          case ICmpInst::ICMP_SGE: +            return CI->getValue().isNegative() ? +              ConstantInt::getTrue(CI->getContext()) : +              ConstantInt::getFalse(CI->getContext()); +          case ICmpInst::ICMP_SLT: +          case ICmpInst::ICMP_SLE: +            return CI->getValue().isNegative() ? +              ConstantInt::getFalse(CI->getContext()) : +              ConstantInt::getTrue(CI->getContext()); + +          // If LHS is non-negative then LHS <u RHS.  If LHS is negative then +          // LHS >u RHS. +          case ICmpInst::ICMP_UGT: +          case ICmpInst::ICMP_UGE: +            // Comparison is true iff the LHS <s 0. +            if (MaxRecurse) +              if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp, +                                              Constant::getNullValue(SrcTy), +                                              Q, MaxRecurse-1)) +                return V; +            break; +          case ICmpInst::ICMP_ULT: +          case ICmpInst::ICMP_ULE: +            // Comparison is true iff the LHS >=s 0. +            if (MaxRecurse) +              if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp, +                                              Constant::getNullValue(SrcTy), +                                              Q, MaxRecurse-1)) +                return V; +            break; +          } +        } +      } +    } +  } + +  // icmp eq|ne X, Y -> false|true if X != Y +  if (ICmpInst::isEquality(Pred) && +      isKnownNonEqual(LHS, RHS, Q.DL, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) { +    return Pred == ICmpInst::ICMP_NE ? getTrue(ITy) : getFalse(ITy); +  } + +  if (Value *V = simplifyICmpWithBinOp(Pred, LHS, RHS, Q, MaxRecurse)) +    return V; + +  if (Value *V = simplifyICmpWithMinMax(Pred, LHS, RHS, Q, MaxRecurse)) +    return V; + +  // Simplify comparisons of related pointers using a powerful, recursive +  // GEP-walk when we have target data available.. +  if (LHS->getType()->isPointerTy()) +    if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.AC, Q.CxtI, +                                     Q.IIQ, LHS, RHS)) +      return C; +  if (auto *CLHS = dyn_cast<PtrToIntOperator>(LHS)) +    if (auto *CRHS = dyn_cast<PtrToIntOperator>(RHS)) +      if (Q.DL.getTypeSizeInBits(CLHS->getPointerOperandType()) == +              Q.DL.getTypeSizeInBits(CLHS->getType()) && +          Q.DL.getTypeSizeInBits(CRHS->getPointerOperandType()) == +              Q.DL.getTypeSizeInBits(CRHS->getType())) +        if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.AC, Q.CxtI, +                                         Q.IIQ, CLHS->getPointerOperand(), +                                         CRHS->getPointerOperand())) +          return C; + +  if (GetElementPtrInst *GLHS = dyn_cast<GetElementPtrInst>(LHS)) { +    if (GEPOperator *GRHS = dyn_cast<GEPOperator>(RHS)) { +      if (GLHS->getPointerOperand() == GRHS->getPointerOperand() && +          GLHS->hasAllConstantIndices() && GRHS->hasAllConstantIndices() && +          (ICmpInst::isEquality(Pred) || +           (GLHS->isInBounds() && GRHS->isInBounds() && +            Pred == ICmpInst::getSignedPredicate(Pred)))) { +        // The bases are equal and the indices are constant.  Build a constant +        // expression GEP with the same indices and a null base pointer to see +        // what constant folding can make out of it. +        Constant *Null = Constant::getNullValue(GLHS->getPointerOperandType()); +        SmallVector<Value *, 4> IndicesLHS(GLHS->idx_begin(), GLHS->idx_end()); +        Constant *NewLHS = ConstantExpr::getGetElementPtr( +            GLHS->getSourceElementType(), Null, IndicesLHS); + +        SmallVector<Value *, 4> IndicesRHS(GRHS->idx_begin(), GRHS->idx_end()); +        Constant *NewRHS = ConstantExpr::getGetElementPtr( +            GLHS->getSourceElementType(), Null, IndicesRHS); +        return ConstantExpr::getICmp(Pred, NewLHS, NewRHS); +      } +    } +  } + +  // If the comparison is with the result of a select instruction, check whether +  // comparing with either branch of the select always yields the same value. +  if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) +    if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) +      return V; + +  // If the comparison is with the result of a phi instruction, check whether +  // doing the compare with each incoming phi value yields a common result. +  if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) +    if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) +      return V; + +  return nullptr; +} + +Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, +                              const SimplifyQuery &Q) { +  return ::SimplifyICmpInst(Predicate, LHS, RHS, Q, RecursionLimit); +} + +/// Given operands for an FCmpInst, see if we can fold the result. +/// If not, this returns null. +static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, +                               FastMathFlags FMF, const SimplifyQuery &Q, +                               unsigned MaxRecurse) { +  CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; +  assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!"); + +  if (Constant *CLHS = dyn_cast<Constant>(LHS)) { +    if (Constant *CRHS = dyn_cast<Constant>(RHS)) +      return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI); + +    // If we have a constant, make sure it is on the RHS. +    std::swap(LHS, RHS); +    Pred = CmpInst::getSwappedPredicate(Pred); +  } + +  // Fold trivial predicates. +  Type *RetTy = GetCompareTy(LHS); +  if (Pred == FCmpInst::FCMP_FALSE) +    return getFalse(RetTy); +  if (Pred == FCmpInst::FCMP_TRUE) +    return getTrue(RetTy); + +  // Fold (un)ordered comparison if we can determine there are no NaNs. +  if (Pred == FCmpInst::FCMP_UNO || Pred == FCmpInst::FCMP_ORD) +    if (FMF.noNaNs() || +        (isKnownNeverNaN(LHS, Q.TLI) && isKnownNeverNaN(RHS, Q.TLI))) +      return ConstantInt::get(RetTy, Pred == FCmpInst::FCMP_ORD); + +  // NaN is unordered; NaN is not ordered. +  assert((FCmpInst::isOrdered(Pred) || FCmpInst::isUnordered(Pred)) && +         "Comparison must be either ordered or unordered"); +  if (match(RHS, m_NaN())) +    return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred)); + +  // fcmp pred x, undef  and  fcmp pred undef, x +  // fold to true if unordered, false if ordered +  if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS)) { +    // Choosing NaN for the undef will always make unordered comparison succeed +    // and ordered comparison fail. +    return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred)); +  } + +  // fcmp x,x -> true/false.  Not all compares are foldable. +  if (LHS == RHS) { +    if (CmpInst::isTrueWhenEqual(Pred)) +      return getTrue(RetTy); +    if (CmpInst::isFalseWhenEqual(Pred)) +      return getFalse(RetTy); +  } + +  // Handle fcmp with constant RHS. +  // TODO: Use match with a specific FP value, so these work with vectors with +  // undef lanes. +  const APFloat *C; +  if (match(RHS, m_APFloat(C))) { +    // Check whether the constant is an infinity. +    if (C->isInfinity()) { +      if (C->isNegative()) { +        switch (Pred) { +        case FCmpInst::FCMP_OLT: +          // No value is ordered and less than negative infinity. +          return getFalse(RetTy); +        case FCmpInst::FCMP_UGE: +          // All values are unordered with or at least negative infinity. +          return getTrue(RetTy); +        default: +          break; +        } +      } else { +        switch (Pred) { +        case FCmpInst::FCMP_OGT: +          // No value is ordered and greater than infinity. +          return getFalse(RetTy); +        case FCmpInst::FCMP_ULE: +          // All values are unordered with and at most infinity. +          return getTrue(RetTy); +        default: +          break; +        } +      } +    } +    if (C->isNegative() && !C->isNegZero()) { +      assert(!C->isNaN() && "Unexpected NaN constant!"); +      // TODO: We can catch more cases by using a range check rather than +      //       relying on CannotBeOrderedLessThanZero. +      switch (Pred) { +      case FCmpInst::FCMP_UGE: +      case FCmpInst::FCMP_UGT: +      case FCmpInst::FCMP_UNE: +        // (X >= 0) implies (X > C) when (C < 0) +        if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) +          return getTrue(RetTy); +        break; +      case FCmpInst::FCMP_OEQ: +      case FCmpInst::FCMP_OLE: +      case FCmpInst::FCMP_OLT: +        // (X >= 0) implies !(X < C) when (C < 0) +        if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) +          return getFalse(RetTy); +        break; +      default: +        break; +      } +    } + +    // Check comparison of [minnum/maxnum with constant] with other constant. +    const APFloat *C2; +    if ((match(LHS, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_APFloat(C2))) && +         C2->compare(*C) == APFloat::cmpLessThan) || +        (match(LHS, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_APFloat(C2))) && +         C2->compare(*C) == APFloat::cmpGreaterThan)) { +      bool IsMaxNum = +          cast<IntrinsicInst>(LHS)->getIntrinsicID() == Intrinsic::maxnum; +      // The ordered relationship and minnum/maxnum guarantee that we do not +      // have NaN constants, so ordered/unordered preds are handled the same. +      switch (Pred) { +      case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_UEQ: +        // minnum(X, LesserC)  == C --> false +        // maxnum(X, GreaterC) == C --> false +        return getFalse(RetTy); +      case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_UNE: +        // minnum(X, LesserC)  != C --> true +        // maxnum(X, GreaterC) != C --> true +        return getTrue(RetTy); +      case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_UGE: +      case FCmpInst::FCMP_OGT: case FCmpInst::FCMP_UGT: +        // minnum(X, LesserC)  >= C --> false +        // minnum(X, LesserC)  >  C --> false +        // maxnum(X, GreaterC) >= C --> true +        // maxnum(X, GreaterC) >  C --> true +        return ConstantInt::get(RetTy, IsMaxNum); +      case FCmpInst::FCMP_OLE: case FCmpInst::FCMP_ULE: +      case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_ULT: +        // minnum(X, LesserC)  <= C --> true +        // minnum(X, LesserC)  <  C --> true +        // maxnum(X, GreaterC) <= C --> false +        // maxnum(X, GreaterC) <  C --> false +        return ConstantInt::get(RetTy, !IsMaxNum); +      default: +        // TRUE/FALSE/ORD/UNO should be handled before this. +        llvm_unreachable("Unexpected fcmp predicate"); +      } +    } +  } + +  if (match(RHS, m_AnyZeroFP())) { +    switch (Pred) { +    case FCmpInst::FCMP_OGE: +    case FCmpInst::FCMP_ULT: +      // Positive or zero X >= 0.0 --> true +      // Positive or zero X <  0.0 --> false +      if ((FMF.noNaNs() || isKnownNeverNaN(LHS, Q.TLI)) && +          CannotBeOrderedLessThanZero(LHS, Q.TLI)) +        return Pred == FCmpInst::FCMP_OGE ? getTrue(RetTy) : getFalse(RetTy); +      break; +    case FCmpInst::FCMP_UGE: +    case FCmpInst::FCMP_OLT: +      // Positive or zero or nan X >= 0.0 --> true +      // Positive or zero or nan X <  0.0 --> false +      if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) +        return Pred == FCmpInst::FCMP_UGE ? getTrue(RetTy) : getFalse(RetTy); +      break; +    default: +      break; +    } +  } + +  // If the comparison is with the result of a select instruction, check whether +  // comparing with either branch of the select always yields the same value. +  if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) +    if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) +      return V; + +  // If the comparison is with the result of a phi instruction, check whether +  // doing the compare with each incoming phi value yields a common result. +  if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) +    if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) +      return V; + +  return nullptr; +} + +Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, +                              FastMathFlags FMF, const SimplifyQuery &Q) { +  return ::SimplifyFCmpInst(Predicate, LHS, RHS, FMF, Q, RecursionLimit); +} + +/// See if V simplifies when its operand Op is replaced with RepOp. +static const Value *SimplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp, +                                           const SimplifyQuery &Q, +                                           unsigned MaxRecurse) { +  // Trivial replacement. +  if (V == Op) +    return RepOp; + +  // We cannot replace a constant, and shouldn't even try. +  if (isa<Constant>(Op)) +    return nullptr; + +  auto *I = dyn_cast<Instruction>(V); +  if (!I) +    return nullptr; + +  // If this is a binary operator, try to simplify it with the replaced op. +  if (auto *B = dyn_cast<BinaryOperator>(I)) { +    // Consider: +    //   %cmp = icmp eq i32 %x, 2147483647 +    //   %add = add nsw i32 %x, 1 +    //   %sel = select i1 %cmp, i32 -2147483648, i32 %add +    // +    // We can't replace %sel with %add unless we strip away the flags. +    // TODO: This is an unusual limitation because better analysis results in +    //       worse simplification. InstCombine can do this fold more generally +    //       by dropping the flags. Remove this fold to save compile-time? +    if (isa<OverflowingBinaryOperator>(B)) +      if (Q.IIQ.hasNoSignedWrap(B) || Q.IIQ.hasNoUnsignedWrap(B)) +        return nullptr; +    if (isa<PossiblyExactOperator>(B) && Q.IIQ.isExact(B)) +      return nullptr; + +    if (MaxRecurse) { +      if (B->getOperand(0) == Op) +        return SimplifyBinOp(B->getOpcode(), RepOp, B->getOperand(1), Q, +                             MaxRecurse - 1); +      if (B->getOperand(1) == Op) +        return SimplifyBinOp(B->getOpcode(), B->getOperand(0), RepOp, Q, +                             MaxRecurse - 1); +    } +  } + +  // Same for CmpInsts. +  if (CmpInst *C = dyn_cast<CmpInst>(I)) { +    if (MaxRecurse) { +      if (C->getOperand(0) == Op) +        return SimplifyCmpInst(C->getPredicate(), RepOp, C->getOperand(1), Q, +                               MaxRecurse - 1); +      if (C->getOperand(1) == Op) +        return SimplifyCmpInst(C->getPredicate(), C->getOperand(0), RepOp, Q, +                               MaxRecurse - 1); +    } +  } + +  // Same for GEPs. +  if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { +    if (MaxRecurse) { +      SmallVector<Value *, 8> NewOps(GEP->getNumOperands()); +      transform(GEP->operands(), NewOps.begin(), +                [&](Value *V) { return V == Op ? RepOp : V; }); +      return SimplifyGEPInst(GEP->getSourceElementType(), NewOps, Q, +                             MaxRecurse - 1); +    } +  } + +  // TODO: We could hand off more cases to instsimplify here. + +  // If all operands are constant after substituting Op for RepOp then we can +  // constant fold the instruction. +  if (Constant *CRepOp = dyn_cast<Constant>(RepOp)) { +    // Build a list of all constant operands. +    SmallVector<Constant *, 8> ConstOps; +    for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { +      if (I->getOperand(i) == Op) +        ConstOps.push_back(CRepOp); +      else if (Constant *COp = dyn_cast<Constant>(I->getOperand(i))) +        ConstOps.push_back(COp); +      else +        break; +    } + +    // All operands were constants, fold it. +    if (ConstOps.size() == I->getNumOperands()) { +      if (CmpInst *C = dyn_cast<CmpInst>(I)) +        return ConstantFoldCompareInstOperands(C->getPredicate(), ConstOps[0], +                                               ConstOps[1], Q.DL, Q.TLI); + +      if (LoadInst *LI = dyn_cast<LoadInst>(I)) +        if (!LI->isVolatile()) +          return ConstantFoldLoadFromConstPtr(ConstOps[0], LI->getType(), Q.DL); + +      return ConstantFoldInstOperands(I, ConstOps, Q.DL, Q.TLI); +    } +  } + +  return nullptr; +} + +/// Try to simplify a select instruction when its condition operand is an +/// integer comparison where one operand of the compare is a constant. +static Value *simplifySelectBitTest(Value *TrueVal, Value *FalseVal, Value *X, +                                    const APInt *Y, bool TrueWhenUnset) { +  const APInt *C; + +  // (X & Y) == 0 ? X & ~Y : X  --> X +  // (X & Y) != 0 ? X & ~Y : X  --> X & ~Y +  if (FalseVal == X && match(TrueVal, m_And(m_Specific(X), m_APInt(C))) && +      *Y == ~*C) +    return TrueWhenUnset ? FalseVal : TrueVal; + +  // (X & Y) == 0 ? X : X & ~Y  --> X & ~Y +  // (X & Y) != 0 ? X : X & ~Y  --> X +  if (TrueVal == X && match(FalseVal, m_And(m_Specific(X), m_APInt(C))) && +      *Y == ~*C) +    return TrueWhenUnset ? FalseVal : TrueVal; + +  if (Y->isPowerOf2()) { +    // (X & Y) == 0 ? X | Y : X  --> X | Y +    // (X & Y) != 0 ? X | Y : X  --> X +    if (FalseVal == X && match(TrueVal, m_Or(m_Specific(X), m_APInt(C))) && +        *Y == *C) +      return TrueWhenUnset ? TrueVal : FalseVal; + +    // (X & Y) == 0 ? X : X | Y  --> X +    // (X & Y) != 0 ? X : X | Y  --> X | Y +    if (TrueVal == X && match(FalseVal, m_Or(m_Specific(X), m_APInt(C))) && +        *Y == *C) +      return TrueWhenUnset ? TrueVal : FalseVal; +  } + +  return nullptr; +} + +/// An alternative way to test if a bit is set or not uses sgt/slt instead of +/// eq/ne. +static Value *simplifySelectWithFakeICmpEq(Value *CmpLHS, Value *CmpRHS, +                                           ICmpInst::Predicate Pred, +                                           Value *TrueVal, Value *FalseVal) { +  Value *X; +  APInt Mask; +  if (!decomposeBitTestICmp(CmpLHS, CmpRHS, Pred, X, Mask)) +    return nullptr; + +  return simplifySelectBitTest(TrueVal, FalseVal, X, &Mask, +                               Pred == ICmpInst::ICMP_EQ); +} + +/// Try to simplify a select instruction when its condition operand is an +/// integer comparison. +static Value *simplifySelectWithICmpCond(Value *CondVal, Value *TrueVal, +                                         Value *FalseVal, const SimplifyQuery &Q, +                                         unsigned MaxRecurse) { +  ICmpInst::Predicate Pred; +  Value *CmpLHS, *CmpRHS; +  if (!match(CondVal, m_ICmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS)))) +    return nullptr; + +  if (ICmpInst::isEquality(Pred) && match(CmpRHS, m_Zero())) { +    Value *X; +    const APInt *Y; +    if (match(CmpLHS, m_And(m_Value(X), m_APInt(Y)))) +      if (Value *V = simplifySelectBitTest(TrueVal, FalseVal, X, Y, +                                           Pred == ICmpInst::ICMP_EQ)) +        return V; + +    // Test for a bogus zero-shift-guard-op around funnel-shift or rotate. +    Value *ShAmt; +    auto isFsh = m_CombineOr(m_Intrinsic<Intrinsic::fshl>(m_Value(X), m_Value(), +                                                          m_Value(ShAmt)), +                             m_Intrinsic<Intrinsic::fshr>(m_Value(), m_Value(X), +                                                          m_Value(ShAmt))); +    // (ShAmt == 0) ? fshl(X, *, ShAmt) : X --> X +    // (ShAmt == 0) ? fshr(*, X, ShAmt) : X --> X +    if (match(TrueVal, isFsh) && FalseVal == X && CmpLHS == ShAmt && +        Pred == ICmpInst::ICMP_EQ) +      return X; +    // (ShAmt != 0) ? X : fshl(X, *, ShAmt) --> X +    // (ShAmt != 0) ? X : fshr(*, X, ShAmt) --> X +    if (match(FalseVal, isFsh) && TrueVal == X && CmpLHS == ShAmt && +        Pred == ICmpInst::ICMP_NE) +      return X; + +    // Test for a zero-shift-guard-op around rotates. These are used to +    // avoid UB from oversized shifts in raw IR rotate patterns, but the +    // intrinsics do not have that problem. +    // We do not allow this transform for the general funnel shift case because +    // that would not preserve the poison safety of the original code. +    auto isRotate = m_CombineOr(m_Intrinsic<Intrinsic::fshl>(m_Value(X), +                                                             m_Deferred(X), +                                                             m_Value(ShAmt)), +                                m_Intrinsic<Intrinsic::fshr>(m_Value(X), +                                                             m_Deferred(X), +                                                             m_Value(ShAmt))); +    // (ShAmt != 0) ? fshl(X, X, ShAmt) : X --> fshl(X, X, ShAmt) +    // (ShAmt != 0) ? fshr(X, X, ShAmt) : X --> fshr(X, X, ShAmt) +    if (match(TrueVal, isRotate) && FalseVal == X && CmpLHS == ShAmt && +        Pred == ICmpInst::ICMP_NE) +      return TrueVal; +    // (ShAmt == 0) ? X : fshl(X, X, ShAmt) --> fshl(X, X, ShAmt) +    // (ShAmt == 0) ? X : fshr(X, X, ShAmt) --> fshr(X, X, ShAmt) +    if (match(FalseVal, isRotate) && TrueVal == X && CmpLHS == ShAmt && +        Pred == ICmpInst::ICMP_EQ) +      return FalseVal; +  } + +  // Check for other compares that behave like bit test. +  if (Value *V = simplifySelectWithFakeICmpEq(CmpLHS, CmpRHS, Pred, +                                              TrueVal, FalseVal)) +    return V; + +  // If we have an equality comparison, then we know the value in one of the +  // arms of the select. See if substituting this value into the arm and +  // simplifying the result yields the same value as the other arm. +  if (Pred == ICmpInst::ICMP_EQ) { +    if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) == +            TrueVal || +        SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) == +            TrueVal) +      return FalseVal; +    if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) == +            FalseVal || +        SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) == +            FalseVal) +      return FalseVal; +  } else if (Pred == ICmpInst::ICMP_NE) { +    if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) == +            FalseVal || +        SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) == +            FalseVal) +      return TrueVal; +    if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) == +            TrueVal || +        SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) == +            TrueVal) +      return TrueVal; +  } + +  return nullptr; +} + +/// Try to simplify a select instruction when its condition operand is a +/// floating-point comparison. +static Value *simplifySelectWithFCmp(Value *Cond, Value *T, Value *F) { +  FCmpInst::Predicate Pred; +  if (!match(Cond, m_FCmp(Pred, m_Specific(T), m_Specific(F))) && +      !match(Cond, m_FCmp(Pred, m_Specific(F), m_Specific(T)))) +    return nullptr; + +  // TODO: The transform may not be valid with -0.0. An incomplete way of +  // testing for that possibility is to check if at least one operand is a +  // non-zero constant. +  const APFloat *C; +  if ((match(T, m_APFloat(C)) && C->isNonZero()) || +      (match(F, m_APFloat(C)) && C->isNonZero())) { +    // (T == F) ? T : F --> F +    // (F == T) ? T : F --> F +    if (Pred == FCmpInst::FCMP_OEQ) +      return F; + +    // (T != F) ? T : F --> T +    // (F != T) ? T : F --> T +    if (Pred == FCmpInst::FCMP_UNE) +      return T; +  } + +  return nullptr; +} + +/// Given operands for a SelectInst, see if we can fold the result. +/// If not, this returns null. +static Value *SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal, +                                 const SimplifyQuery &Q, unsigned MaxRecurse) { +  if (auto *CondC = dyn_cast<Constant>(Cond)) { +    if (auto *TrueC = dyn_cast<Constant>(TrueVal)) +      if (auto *FalseC = dyn_cast<Constant>(FalseVal)) +        return ConstantFoldSelectInstruction(CondC, TrueC, FalseC); + +    // select undef, X, Y -> X or Y +    if (isa<UndefValue>(CondC)) +      return isa<Constant>(FalseVal) ? FalseVal : TrueVal; + +    // TODO: Vector constants with undef elements don't simplify. + +    // select true, X, Y  -> X +    if (CondC->isAllOnesValue()) +      return TrueVal; +    // select false, X, Y -> Y +    if (CondC->isNullValue()) +      return FalseVal; +  } + +  // select ?, X, X -> X +  if (TrueVal == FalseVal) +    return TrueVal; + +  if (isa<UndefValue>(TrueVal))   // select ?, undef, X -> X +    return FalseVal; +  if (isa<UndefValue>(FalseVal))   // select ?, X, undef -> X +    return TrueVal; + +  if (Value *V = +          simplifySelectWithICmpCond(Cond, TrueVal, FalseVal, Q, MaxRecurse)) +    return V; + +  if (Value *V = simplifySelectWithFCmp(Cond, TrueVal, FalseVal)) +    return V; + +  if (Value *V = foldSelectWithBinaryOp(Cond, TrueVal, FalseVal)) +    return V; + +  Optional<bool> Imp = isImpliedByDomCondition(Cond, Q.CxtI, Q.DL); +  if (Imp) +    return *Imp ? TrueVal : FalseVal; + +  return nullptr; +} + +Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal, +                                const SimplifyQuery &Q) { +  return ::SimplifySelectInst(Cond, TrueVal, FalseVal, Q, RecursionLimit); +} + +/// Given operands for an GetElementPtrInst, see if we can fold the result. +/// If not, this returns null. +static Value *SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops, +                              const SimplifyQuery &Q, unsigned) { +  // The type of the GEP pointer operand. +  unsigned AS = +      cast<PointerType>(Ops[0]->getType()->getScalarType())->getAddressSpace(); + +  // getelementptr P -> P. +  if (Ops.size() == 1) +    return Ops[0]; + +  // Compute the (pointer) type returned by the GEP instruction. +  Type *LastType = GetElementPtrInst::getIndexedType(SrcTy, Ops.slice(1)); +  Type *GEPTy = PointerType::get(LastType, AS); +  if (VectorType *VT = dyn_cast<VectorType>(Ops[0]->getType())) +    GEPTy = VectorType::get(GEPTy, VT->getNumElements()); +  else if (VectorType *VT = dyn_cast<VectorType>(Ops[1]->getType())) +    GEPTy = VectorType::get(GEPTy, VT->getNumElements()); + +  if (isa<UndefValue>(Ops[0])) +    return UndefValue::get(GEPTy); + +  if (Ops.size() == 2) { +    // getelementptr P, 0 -> P. +    if (match(Ops[1], m_Zero()) && Ops[0]->getType() == GEPTy) +      return Ops[0]; + +    Type *Ty = SrcTy; +    if (Ty->isSized()) { +      Value *P; +      uint64_t C; +      uint64_t TyAllocSize = Q.DL.getTypeAllocSize(Ty); +      // getelementptr P, N -> P if P points to a type of zero size. +      if (TyAllocSize == 0 && Ops[0]->getType() == GEPTy) +        return Ops[0]; + +      // The following transforms are only safe if the ptrtoint cast +      // doesn't truncate the pointers. +      if (Ops[1]->getType()->getScalarSizeInBits() == +          Q.DL.getIndexSizeInBits(AS)) { +        auto PtrToIntOrZero = [GEPTy](Value *P) -> Value * { +          if (match(P, m_Zero())) +            return Constant::getNullValue(GEPTy); +          Value *Temp; +          if (match(P, m_PtrToInt(m_Value(Temp)))) +            if (Temp->getType() == GEPTy) +              return Temp; +          return nullptr; +        }; + +        // getelementptr V, (sub P, V) -> P if P points to a type of size 1. +        if (TyAllocSize == 1 && +            match(Ops[1], m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))))) +          if (Value *R = PtrToIntOrZero(P)) +            return R; + +        // getelementptr V, (ashr (sub P, V), C) -> Q +        // if P points to a type of size 1 << C. +        if (match(Ops[1], +                  m_AShr(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))), +                         m_ConstantInt(C))) && +            TyAllocSize == 1ULL << C) +          if (Value *R = PtrToIntOrZero(P)) +            return R; + +        // getelementptr V, (sdiv (sub P, V), C) -> Q +        // if P points to a type of size C. +        if (match(Ops[1], +                  m_SDiv(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))), +                         m_SpecificInt(TyAllocSize)))) +          if (Value *R = PtrToIntOrZero(P)) +            return R; +      } +    } +  } + +  if (Q.DL.getTypeAllocSize(LastType) == 1 && +      all_of(Ops.slice(1).drop_back(1), +             [](Value *Idx) { return match(Idx, m_Zero()); })) { +    unsigned IdxWidth = +        Q.DL.getIndexSizeInBits(Ops[0]->getType()->getPointerAddressSpace()); +    if (Q.DL.getTypeSizeInBits(Ops.back()->getType()) == IdxWidth) { +      APInt BasePtrOffset(IdxWidth, 0); +      Value *StrippedBasePtr = +          Ops[0]->stripAndAccumulateInBoundsConstantOffsets(Q.DL, +                                                            BasePtrOffset); + +      // gep (gep V, C), (sub 0, V) -> C +      if (match(Ops.back(), +                m_Sub(m_Zero(), m_PtrToInt(m_Specific(StrippedBasePtr))))) { +        auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset); +        return ConstantExpr::getIntToPtr(CI, GEPTy); +      } +      // gep (gep V, C), (xor V, -1) -> C-1 +      if (match(Ops.back(), +                m_Xor(m_PtrToInt(m_Specific(StrippedBasePtr)), m_AllOnes()))) { +        auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset - 1); +        return ConstantExpr::getIntToPtr(CI, GEPTy); +      } +    } +  } + +  // Check to see if this is constant foldable. +  if (!all_of(Ops, [](Value *V) { return isa<Constant>(V); })) +    return nullptr; + +  auto *CE = ConstantExpr::getGetElementPtr(SrcTy, cast<Constant>(Ops[0]), +                                            Ops.slice(1)); +  if (auto *CEFolded = ConstantFoldConstant(CE, Q.DL)) +    return CEFolded; +  return CE; +} + +Value *llvm::SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops, +                             const SimplifyQuery &Q) { +  return ::SimplifyGEPInst(SrcTy, Ops, Q, RecursionLimit); +} + +/// Given operands for an InsertValueInst, see if we can fold the result. +/// If not, this returns null. +static Value *SimplifyInsertValueInst(Value *Agg, Value *Val, +                                      ArrayRef<unsigned> Idxs, const SimplifyQuery &Q, +                                      unsigned) { +  if (Constant *CAgg = dyn_cast<Constant>(Agg)) +    if (Constant *CVal = dyn_cast<Constant>(Val)) +      return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs); + +  // insertvalue x, undef, n -> x +  if (match(Val, m_Undef())) +    return Agg; + +  // insertvalue x, (extractvalue y, n), n +  if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val)) +    if (EV->getAggregateOperand()->getType() == Agg->getType() && +        EV->getIndices() == Idxs) { +      // insertvalue undef, (extractvalue y, n), n -> y +      if (match(Agg, m_Undef())) +        return EV->getAggregateOperand(); + +      // insertvalue y, (extractvalue y, n), n -> y +      if (Agg == EV->getAggregateOperand()) +        return Agg; +    } + +  return nullptr; +} + +Value *llvm::SimplifyInsertValueInst(Value *Agg, Value *Val, +                                     ArrayRef<unsigned> Idxs, +                                     const SimplifyQuery &Q) { +  return ::SimplifyInsertValueInst(Agg, Val, Idxs, Q, RecursionLimit); +} + +Value *llvm::SimplifyInsertElementInst(Value *Vec, Value *Val, Value *Idx, +                                       const SimplifyQuery &Q) { +  // Try to constant fold. +  auto *VecC = dyn_cast<Constant>(Vec); +  auto *ValC = dyn_cast<Constant>(Val); +  auto *IdxC = dyn_cast<Constant>(Idx); +  if (VecC && ValC && IdxC) +    return ConstantFoldInsertElementInstruction(VecC, ValC, IdxC); + +  // Fold into undef if index is out of bounds. +  if (auto *CI = dyn_cast<ConstantInt>(Idx)) { +    uint64_t NumElements = cast<VectorType>(Vec->getType())->getNumElements(); +    if (CI->uge(NumElements)) +      return UndefValue::get(Vec->getType()); +  } + +  // If index is undef, it might be out of bounds (see above case) +  if (isa<UndefValue>(Idx)) +    return UndefValue::get(Vec->getType()); + +  // Inserting an undef scalar? Assume it is the same value as the existing +  // vector element. +  if (isa<UndefValue>(Val)) +    return Vec; + +  // If we are extracting a value from a vector, then inserting it into the same +  // place, that's the input vector: +  // insertelt Vec, (extractelt Vec, Idx), Idx --> Vec +  if (match(Val, m_ExtractElement(m_Specific(Vec), m_Specific(Idx)))) +    return Vec; + +  return nullptr; +} + +/// Given operands for an ExtractValueInst, see if we can fold the result. +/// If not, this returns null. +static Value *SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs, +                                       const SimplifyQuery &, unsigned) { +  if (auto *CAgg = dyn_cast<Constant>(Agg)) +    return ConstantFoldExtractValueInstruction(CAgg, Idxs); + +  // extractvalue x, (insertvalue y, elt, n), n -> elt +  unsigned NumIdxs = Idxs.size(); +  for (auto *IVI = dyn_cast<InsertValueInst>(Agg); IVI != nullptr; +       IVI = dyn_cast<InsertValueInst>(IVI->getAggregateOperand())) { +    ArrayRef<unsigned> InsertValueIdxs = IVI->getIndices(); +    unsigned NumInsertValueIdxs = InsertValueIdxs.size(); +    unsigned NumCommonIdxs = std::min(NumInsertValueIdxs, NumIdxs); +    if (InsertValueIdxs.slice(0, NumCommonIdxs) == +        Idxs.slice(0, NumCommonIdxs)) { +      if (NumIdxs == NumInsertValueIdxs) +        return IVI->getInsertedValueOperand(); +      break; +    } +  } + +  return nullptr; +} + +Value *llvm::SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs, +                                      const SimplifyQuery &Q) { +  return ::SimplifyExtractValueInst(Agg, Idxs, Q, RecursionLimit); +} + +/// Given operands for an ExtractElementInst, see if we can fold the result. +/// If not, this returns null. +static Value *SimplifyExtractElementInst(Value *Vec, Value *Idx, const SimplifyQuery &, +                                         unsigned) { +  if (auto *CVec = dyn_cast<Constant>(Vec)) { +    if (auto *CIdx = dyn_cast<Constant>(Idx)) +      return ConstantFoldExtractElementInstruction(CVec, CIdx); + +    // The index is not relevant if our vector is a splat. +    if (auto *Splat = CVec->getSplatValue()) +      return Splat; + +    if (isa<UndefValue>(Vec)) +      return UndefValue::get(Vec->getType()->getVectorElementType()); +  } + +  // If extracting a specified index from the vector, see if we can recursively +  // find a previously computed scalar that was inserted into the vector. +  if (auto *IdxC = dyn_cast<ConstantInt>(Idx)) { +    if (IdxC->getValue().uge(Vec->getType()->getVectorNumElements())) +      // definitely out of bounds, thus undefined result +      return UndefValue::get(Vec->getType()->getVectorElementType()); +    if (Value *Elt = findScalarElement(Vec, IdxC->getZExtValue())) +      return Elt; +  } + +  // An undef extract index can be arbitrarily chosen to be an out-of-range +  // index value, which would result in the instruction being undef. +  if (isa<UndefValue>(Idx)) +    return UndefValue::get(Vec->getType()->getVectorElementType()); + +  return nullptr; +} + +Value *llvm::SimplifyExtractElementInst(Value *Vec, Value *Idx, +                                        const SimplifyQuery &Q) { +  return ::SimplifyExtractElementInst(Vec, Idx, Q, RecursionLimit); +} + +/// See if we can fold the given phi. If not, returns null. +static Value *SimplifyPHINode(PHINode *PN, const SimplifyQuery &Q) { +  // If all of the PHI's incoming values are the same then replace the PHI node +  // with the common value. +  Value *CommonValue = nullptr; +  bool HasUndefInput = false; +  for (Value *Incoming : PN->incoming_values()) { +    // If the incoming value is the phi node itself, it can safely be skipped. +    if (Incoming == PN) continue; +    if (isa<UndefValue>(Incoming)) { +      // Remember that we saw an undef value, but otherwise ignore them. +      HasUndefInput = true; +      continue; +    } +    if (CommonValue && Incoming != CommonValue) +      return nullptr;  // Not the same, bail out. +    CommonValue = Incoming; +  } + +  // If CommonValue is null then all of the incoming values were either undef or +  // equal to the phi node itself. +  if (!CommonValue) +    return UndefValue::get(PN->getType()); + +  // If we have a PHI node like phi(X, undef, X), where X is defined by some +  // instruction, we cannot return X as the result of the PHI node unless it +  // dominates the PHI block. +  if (HasUndefInput) +    return valueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : nullptr; + +  return CommonValue; +} + +static Value *SimplifyCastInst(unsigned CastOpc, Value *Op, +                               Type *Ty, const SimplifyQuery &Q, unsigned MaxRecurse) { +  if (auto *C = dyn_cast<Constant>(Op)) +    return ConstantFoldCastOperand(CastOpc, C, Ty, Q.DL); + +  if (auto *CI = dyn_cast<CastInst>(Op)) { +    auto *Src = CI->getOperand(0); +    Type *SrcTy = Src->getType(); +    Type *MidTy = CI->getType(); +    Type *DstTy = Ty; +    if (Src->getType() == Ty) { +      auto FirstOp = static_cast<Instruction::CastOps>(CI->getOpcode()); +      auto SecondOp = static_cast<Instruction::CastOps>(CastOpc); +      Type *SrcIntPtrTy = +          SrcTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(SrcTy) : nullptr; +      Type *MidIntPtrTy = +          MidTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(MidTy) : nullptr; +      Type *DstIntPtrTy = +          DstTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(DstTy) : nullptr; +      if (CastInst::isEliminableCastPair(FirstOp, SecondOp, SrcTy, MidTy, DstTy, +                                         SrcIntPtrTy, MidIntPtrTy, +                                         DstIntPtrTy) == Instruction::BitCast) +        return Src; +    } +  } + +  // bitcast x -> x +  if (CastOpc == Instruction::BitCast) +    if (Op->getType() == Ty) +      return Op; + +  return nullptr; +} + +Value *llvm::SimplifyCastInst(unsigned CastOpc, Value *Op, Type *Ty, +                              const SimplifyQuery &Q) { +  return ::SimplifyCastInst(CastOpc, Op, Ty, Q, RecursionLimit); +} + +/// For the given destination element of a shuffle, peek through shuffles to +/// match a root vector source operand that contains that element in the same +/// vector lane (ie, the same mask index), so we can eliminate the shuffle(s). +static Value *foldIdentityShuffles(int DestElt, Value *Op0, Value *Op1, +                                   int MaskVal, Value *RootVec, +                                   unsigned MaxRecurse) { +  if (!MaxRecurse--) +    return nullptr; + +  // Bail out if any mask value is undefined. That kind of shuffle may be +  // simplified further based on demanded bits or other folds. +  if (MaskVal == -1) +    return nullptr; + +  // The mask value chooses which source operand we need to look at next. +  int InVecNumElts = Op0->getType()->getVectorNumElements(); +  int RootElt = MaskVal; +  Value *SourceOp = Op0; +  if (MaskVal >= InVecNumElts) { +    RootElt = MaskVal - InVecNumElts; +    SourceOp = Op1; +  } + +  // If the source operand is a shuffle itself, look through it to find the +  // matching root vector. +  if (auto *SourceShuf = dyn_cast<ShuffleVectorInst>(SourceOp)) { +    return foldIdentityShuffles( +        DestElt, SourceShuf->getOperand(0), SourceShuf->getOperand(1), +        SourceShuf->getMaskValue(RootElt), RootVec, MaxRecurse); +  } + +  // TODO: Look through bitcasts? What if the bitcast changes the vector element +  // size? + +  // The source operand is not a shuffle. Initialize the root vector value for +  // this shuffle if that has not been done yet. +  if (!RootVec) +    RootVec = SourceOp; + +  // Give up as soon as a source operand does not match the existing root value. +  if (RootVec != SourceOp) +    return nullptr; + +  // The element must be coming from the same lane in the source vector +  // (although it may have crossed lanes in intermediate shuffles). +  if (RootElt != DestElt) +    return nullptr; + +  return RootVec; +} + +static Value *SimplifyShuffleVectorInst(Value *Op0, Value *Op1, Constant *Mask, +                                        Type *RetTy, const SimplifyQuery &Q, +                                        unsigned MaxRecurse) { +  if (isa<UndefValue>(Mask)) +    return UndefValue::get(RetTy); + +  Type *InVecTy = Op0->getType(); +  unsigned MaskNumElts = Mask->getType()->getVectorNumElements(); +  unsigned InVecNumElts = InVecTy->getVectorNumElements(); + +  SmallVector<int, 32> Indices; +  ShuffleVectorInst::getShuffleMask(Mask, Indices); +  assert(MaskNumElts == Indices.size() && +         "Size of Indices not same as number of mask elements?"); + +  // Canonicalization: If mask does not select elements from an input vector, +  // replace that input vector with undef. +  bool MaskSelects0 = false, MaskSelects1 = false; +  for (unsigned i = 0; i != MaskNumElts; ++i) { +    if (Indices[i] == -1) +      continue; +    if ((unsigned)Indices[i] < InVecNumElts) +      MaskSelects0 = true; +    else +      MaskSelects1 = true; +  } +  if (!MaskSelects0) +    Op0 = UndefValue::get(InVecTy); +  if (!MaskSelects1) +    Op1 = UndefValue::get(InVecTy); + +  auto *Op0Const = dyn_cast<Constant>(Op0); +  auto *Op1Const = dyn_cast<Constant>(Op1); + +  // If all operands are constant, constant fold the shuffle. +  if (Op0Const && Op1Const) +    return ConstantFoldShuffleVectorInstruction(Op0Const, Op1Const, Mask); + +  // Canonicalization: if only one input vector is constant, it shall be the +  // second one. +  if (Op0Const && !Op1Const) { +    std::swap(Op0, Op1); +    ShuffleVectorInst::commuteShuffleMask(Indices, InVecNumElts); +  } + +  // A shuffle of a splat is always the splat itself. Legal if the shuffle's +  // value type is same as the input vectors' type. +  if (auto *OpShuf = dyn_cast<ShuffleVectorInst>(Op0)) +    if (isa<UndefValue>(Op1) && RetTy == InVecTy && +        OpShuf->getMask()->getSplatValue()) +      return Op0; + +  // Don't fold a shuffle with undef mask elements. This may get folded in a +  // better way using demanded bits or other analysis. +  // TODO: Should we allow this? +  if (find(Indices, -1) != Indices.end()) +    return nullptr; + +  // Check if every element of this shuffle can be mapped back to the +  // corresponding element of a single root vector. If so, we don't need this +  // shuffle. This handles simple identity shuffles as well as chains of +  // shuffles that may widen/narrow and/or move elements across lanes and back. +  Value *RootVec = nullptr; +  for (unsigned i = 0; i != MaskNumElts; ++i) { +    // Note that recursion is limited for each vector element, so if any element +    // exceeds the limit, this will fail to simplify. +    RootVec = +        foldIdentityShuffles(i, Op0, Op1, Indices[i], RootVec, MaxRecurse); + +    // We can't replace a widening/narrowing shuffle with one of its operands. +    if (!RootVec || RootVec->getType() != RetTy) +      return nullptr; +  } +  return RootVec; +} + +/// Given operands for a ShuffleVectorInst, fold the result or return null. +Value *llvm::SimplifyShuffleVectorInst(Value *Op0, Value *Op1, Constant *Mask, +                                       Type *RetTy, const SimplifyQuery &Q) { +  return ::SimplifyShuffleVectorInst(Op0, Op1, Mask, RetTy, Q, RecursionLimit); +} + +static Constant *foldConstant(Instruction::UnaryOps Opcode, +                              Value *&Op, const SimplifyQuery &Q) { +  if (auto *C = dyn_cast<Constant>(Op)) +    return ConstantFoldUnaryOpOperand(Opcode, C, Q.DL); +  return nullptr; +} + +/// Given the operand for an FNeg, see if we can fold the result.  If not, this +/// returns null. +static Value *simplifyFNegInst(Value *Op, FastMathFlags FMF, +                               const SimplifyQuery &Q, unsigned MaxRecurse) { +  if (Constant *C = foldConstant(Instruction::FNeg, Op, Q)) +    return C; + +  Value *X; +  // fneg (fneg X) ==> X +  if (match(Op, m_FNeg(m_Value(X)))) +    return X; + +  return nullptr; +} + +Value *llvm::SimplifyFNegInst(Value *Op, FastMathFlags FMF, +                              const SimplifyQuery &Q) { +  return ::simplifyFNegInst(Op, FMF, Q, RecursionLimit); +} + +static Constant *propagateNaN(Constant *In) { +  // If the input is a vector with undef elements, just return a default NaN. +  if (!In->isNaN()) +    return ConstantFP::getNaN(In->getType()); + +  // Propagate the existing NaN constant when possible. +  // TODO: Should we quiet a signaling NaN? +  return In; +} + +/// Perform folds that are common to any floating-point operation. This implies +/// transforms based on undef/NaN because the operation itself makes no +/// difference to the result. +static Constant *simplifyFPOp(ArrayRef<Value *> Ops) { +  if (any_of(Ops, [](Value *V) { return isa<UndefValue>(V); })) +    return ConstantFP::getNaN(Ops[0]->getType()); + +  for (Value *V : Ops) +    if (match(V, m_NaN())) +      return propagateNaN(cast<Constant>(V)); + +  return nullptr; +} + +/// Given operands for an FAdd, see if we can fold the result.  If not, this +/// returns null. +static Value *SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, +                               const SimplifyQuery &Q, unsigned MaxRecurse) { +  if (Constant *C = foldOrCommuteConstant(Instruction::FAdd, Op0, Op1, Q)) +    return C; + +  if (Constant *C = simplifyFPOp({Op0, Op1})) +    return C; + +  // fadd X, -0 ==> X +  if (match(Op1, m_NegZeroFP())) +    return Op0; + +  // fadd X, 0 ==> X, when we know X is not -0 +  if (match(Op1, m_PosZeroFP()) && +      (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI))) +    return Op0; + +  // With nnan: -X + X --> 0.0 (and commuted variant) +  // We don't have to explicitly exclude infinities (ninf): INF + -INF == NaN. +  // Negative zeros are allowed because we always end up with positive zero: +  // X = -0.0: (-0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0 +  // X = -0.0: ( 0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0 +  // X =  0.0: (-0.0 - ( 0.0)) + ( 0.0) == (-0.0) + ( 0.0) == 0.0 +  // X =  0.0: ( 0.0 - ( 0.0)) + ( 0.0) == ( 0.0) + ( 0.0) == 0.0 +  if (FMF.noNaNs()) { +    if (match(Op0, m_FSub(m_AnyZeroFP(), m_Specific(Op1))) || +        match(Op1, m_FSub(m_AnyZeroFP(), m_Specific(Op0)))) +      return ConstantFP::getNullValue(Op0->getType()); + +    if (match(Op0, m_FNeg(m_Specific(Op1))) || +        match(Op1, m_FNeg(m_Specific(Op0)))) +      return ConstantFP::getNullValue(Op0->getType()); +  } + +  // (X - Y) + Y --> X +  // Y + (X - Y) --> X +  Value *X; +  if (FMF.noSignedZeros() && FMF.allowReassoc() && +      (match(Op0, m_FSub(m_Value(X), m_Specific(Op1))) || +       match(Op1, m_FSub(m_Value(X), m_Specific(Op0))))) +    return X; + +  return nullptr; +} + +/// Given operands for an FSub, see if we can fold the result.  If not, this +/// returns null. +static Value *SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, +                               const SimplifyQuery &Q, unsigned MaxRecurse) { +  if (Constant *C = foldOrCommuteConstant(Instruction::FSub, Op0, Op1, Q)) +    return C; + +  if (Constant *C = simplifyFPOp({Op0, Op1})) +    return C; + +  // fsub X, +0 ==> X +  if (match(Op1, m_PosZeroFP())) +    return Op0; + +  // fsub X, -0 ==> X, when we know X is not -0 +  if (match(Op1, m_NegZeroFP()) && +      (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI))) +    return Op0; + +  // fsub -0.0, (fsub -0.0, X) ==> X +  // fsub -0.0, (fneg X) ==> X +  Value *X; +  if (match(Op0, m_NegZeroFP()) && +      match(Op1, m_FNeg(m_Value(X)))) +    return X; + +  // fsub 0.0, (fsub 0.0, X) ==> X if signed zeros are ignored. +  // fsub 0.0, (fneg X) ==> X if signed zeros are ignored. +  if (FMF.noSignedZeros() && match(Op0, m_AnyZeroFP()) && +      (match(Op1, m_FSub(m_AnyZeroFP(), m_Value(X))) || +       match(Op1, m_FNeg(m_Value(X))))) +    return X; + +  // fsub nnan x, x ==> 0.0 +  if (FMF.noNaNs() && Op0 == Op1) +    return Constant::getNullValue(Op0->getType()); + +  // Y - (Y - X) --> X +  // (X + Y) - Y --> X +  if (FMF.noSignedZeros() && FMF.allowReassoc() && +      (match(Op1, m_FSub(m_Specific(Op0), m_Value(X))) || +       match(Op0, m_c_FAdd(m_Specific(Op1), m_Value(X))))) +    return X; + +  return nullptr; +} + +static Value *SimplifyFMAFMul(Value *Op0, Value *Op1, FastMathFlags FMF, +                              const SimplifyQuery &Q, unsigned MaxRecurse) { +  if (Constant *C = simplifyFPOp({Op0, Op1})) +    return C; + +  // fmul X, 1.0 ==> X +  if (match(Op1, m_FPOne())) +    return Op0; + +  // fmul 1.0, X ==> X +  if (match(Op0, m_FPOne())) +    return Op1; + +  // fmul nnan nsz X, 0 ==> 0 +  if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op1, m_AnyZeroFP())) +    return ConstantFP::getNullValue(Op0->getType()); + +  // fmul nnan nsz 0, X ==> 0 +  if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZeroFP())) +    return ConstantFP::getNullValue(Op1->getType()); + +  // sqrt(X) * sqrt(X) --> X, if we can: +  // 1. Remove the intermediate rounding (reassociate). +  // 2. Ignore non-zero negative numbers because sqrt would produce NAN. +  // 3. Ignore -0.0 because sqrt(-0.0) == -0.0, but -0.0 * -0.0 == 0.0. +  Value *X; +  if (Op0 == Op1 && match(Op0, m_Intrinsic<Intrinsic::sqrt>(m_Value(X))) && +      FMF.allowReassoc() && FMF.noNaNs() && FMF.noSignedZeros()) +    return X; + +  return nullptr; +} + +/// Given the operands for an FMul, see if we can fold the result +static Value *SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF, +                               const SimplifyQuery &Q, unsigned MaxRecurse) { +  if (Constant *C = foldOrCommuteConstant(Instruction::FMul, Op0, Op1, Q)) +    return C; + +  // Now apply simplifications that do not require rounding. +  return SimplifyFMAFMul(Op0, Op1, FMF, Q, MaxRecurse); +} + +Value *llvm::SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, +                              const SimplifyQuery &Q) { +  return ::SimplifyFAddInst(Op0, Op1, FMF, Q, RecursionLimit); +} + + +Value *llvm::SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, +                              const SimplifyQuery &Q) { +  return ::SimplifyFSubInst(Op0, Op1, FMF, Q, RecursionLimit); +} + +Value *llvm::SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF, +                              const SimplifyQuery &Q) { +  return ::SimplifyFMulInst(Op0, Op1, FMF, Q, RecursionLimit); +} + +Value *llvm::SimplifyFMAFMul(Value *Op0, Value *Op1, FastMathFlags FMF, +                             const SimplifyQuery &Q) { +  return ::SimplifyFMAFMul(Op0, Op1, FMF, Q, RecursionLimit); +} + +static Value *SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF, +                               const SimplifyQuery &Q, unsigned) { +  if (Constant *C = foldOrCommuteConstant(Instruction::FDiv, Op0, Op1, Q)) +    return C; + +  if (Constant *C = simplifyFPOp({Op0, Op1})) +    return C; + +  // X / 1.0 -> X +  if (match(Op1, m_FPOne())) +    return Op0; + +  // 0 / X -> 0 +  // Requires that NaNs are off (X could be zero) and signed zeroes are +  // ignored (X could be positive or negative, so the output sign is unknown). +  if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZeroFP())) +    return ConstantFP::getNullValue(Op0->getType()); + +  if (FMF.noNaNs()) { +    // X / X -> 1.0 is legal when NaNs are ignored. +    // We can ignore infinities because INF/INF is NaN. +    if (Op0 == Op1) +      return ConstantFP::get(Op0->getType(), 1.0); + +    // (X * Y) / Y --> X if we can reassociate to the above form. +    Value *X; +    if (FMF.allowReassoc() && match(Op0, m_c_FMul(m_Value(X), m_Specific(Op1)))) +      return X; + +    // -X /  X -> -1.0 and +    //  X / -X -> -1.0 are legal when NaNs are ignored. +    // We can ignore signed zeros because +-0.0/+-0.0 is NaN and ignored. +    if (match(Op0, m_FNegNSZ(m_Specific(Op1))) || +        match(Op1, m_FNegNSZ(m_Specific(Op0)))) +      return ConstantFP::get(Op0->getType(), -1.0); +  } + +  return nullptr; +} + +Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF, +                              const SimplifyQuery &Q) { +  return ::SimplifyFDivInst(Op0, Op1, FMF, Q, RecursionLimit); +} + +static Value *SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF, +                               const SimplifyQuery &Q, unsigned) { +  if (Constant *C = foldOrCommuteConstant(Instruction::FRem, Op0, Op1, Q)) +    return C; + +  if (Constant *C = simplifyFPOp({Op0, Op1})) +    return C; + +  // Unlike fdiv, the result of frem always matches the sign of the dividend. +  // The constant match may include undef elements in a vector, so return a full +  // zero constant as the result. +  if (FMF.noNaNs()) { +    // +0 % X -> 0 +    if (match(Op0, m_PosZeroFP())) +      return ConstantFP::getNullValue(Op0->getType()); +    // -0 % X -> -0 +    if (match(Op0, m_NegZeroFP())) +      return ConstantFP::getNegativeZero(Op0->getType()); +  } + +  return nullptr; +} + +Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF, +                              const SimplifyQuery &Q) { +  return ::SimplifyFRemInst(Op0, Op1, FMF, Q, RecursionLimit); +} + +//=== Helper functions for higher up the class hierarchy. + +/// Given the operand for a UnaryOperator, see if we can fold the result. +/// If not, this returns null. +static Value *simplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q, +                           unsigned MaxRecurse) { +  switch (Opcode) { +  case Instruction::FNeg: +    return simplifyFNegInst(Op, FastMathFlags(), Q, MaxRecurse); +  default: +    llvm_unreachable("Unexpected opcode"); +  } +} + +/// Given the operand for a UnaryOperator, see if we can fold the result. +/// If not, this returns null. +/// Try to use FastMathFlags when folding the result. +static Value *simplifyFPUnOp(unsigned Opcode, Value *Op, +                             const FastMathFlags &FMF, +                             const SimplifyQuery &Q, unsigned MaxRecurse) { +  switch (Opcode) { +  case Instruction::FNeg: +    return simplifyFNegInst(Op, FMF, Q, MaxRecurse); +  default: +    return simplifyUnOp(Opcode, Op, Q, MaxRecurse); +  } +} + +Value *llvm::SimplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q) { +  return ::simplifyUnOp(Opcode, Op, Q, RecursionLimit); +} + +Value *llvm::SimplifyUnOp(unsigned Opcode, Value *Op, FastMathFlags FMF, +                          const SimplifyQuery &Q) { +  return ::simplifyFPUnOp(Opcode, Op, FMF, Q, RecursionLimit); +} + +/// Given operands for a BinaryOperator, see if we can fold the result. +/// If not, this returns null. +static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, +                            const SimplifyQuery &Q, unsigned MaxRecurse) { +  switch (Opcode) { +  case Instruction::Add: +    return SimplifyAddInst(LHS, RHS, false, false, Q, MaxRecurse); +  case Instruction::Sub: +    return SimplifySubInst(LHS, RHS, false, false, Q, MaxRecurse); +  case Instruction::Mul: +    return SimplifyMulInst(LHS, RHS, Q, MaxRecurse); +  case Instruction::SDiv: +    return SimplifySDivInst(LHS, RHS, Q, MaxRecurse); +  case Instruction::UDiv: +    return SimplifyUDivInst(LHS, RHS, Q, MaxRecurse); +  case Instruction::SRem: +    return SimplifySRemInst(LHS, RHS, Q, MaxRecurse); +  case Instruction::URem: +    return SimplifyURemInst(LHS, RHS, Q, MaxRecurse); +  case Instruction::Shl: +    return SimplifyShlInst(LHS, RHS, false, false, Q, MaxRecurse); +  case Instruction::LShr: +    return SimplifyLShrInst(LHS, RHS, false, Q, MaxRecurse); +  case Instruction::AShr: +    return SimplifyAShrInst(LHS, RHS, false, Q, MaxRecurse); +  case Instruction::And: +    return SimplifyAndInst(LHS, RHS, Q, MaxRecurse); +  case Instruction::Or: +    return SimplifyOrInst(LHS, RHS, Q, MaxRecurse); +  case Instruction::Xor: +    return SimplifyXorInst(LHS, RHS, Q, MaxRecurse); +  case Instruction::FAdd: +    return SimplifyFAddInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); +  case Instruction::FSub: +    return SimplifyFSubInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); +  case Instruction::FMul: +    return SimplifyFMulInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); +  case Instruction::FDiv: +    return SimplifyFDivInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); +  case Instruction::FRem: +    return SimplifyFRemInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); +  default: +    llvm_unreachable("Unexpected opcode"); +  } +} + +/// Given operands for a BinaryOperator, see if we can fold the result. +/// If not, this returns null. +/// Try to use FastMathFlags when folding the result. +static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, +                            const FastMathFlags &FMF, const SimplifyQuery &Q, +                            unsigned MaxRecurse) { +  switch (Opcode) { +  case Instruction::FAdd: +    return SimplifyFAddInst(LHS, RHS, FMF, Q, MaxRecurse); +  case Instruction::FSub: +    return SimplifyFSubInst(LHS, RHS, FMF, Q, MaxRecurse); +  case Instruction::FMul: +    return SimplifyFMulInst(LHS, RHS, FMF, Q, MaxRecurse); +  case Instruction::FDiv: +    return SimplifyFDivInst(LHS, RHS, FMF, Q, MaxRecurse); +  default: +    return SimplifyBinOp(Opcode, LHS, RHS, Q, MaxRecurse); +  } +} + +Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, +                           const SimplifyQuery &Q) { +  return ::SimplifyBinOp(Opcode, LHS, RHS, Q, RecursionLimit); +} + +Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, +                           FastMathFlags FMF, const SimplifyQuery &Q) { +  return ::SimplifyBinOp(Opcode, LHS, RHS, FMF, Q, RecursionLimit); +} + +/// Given operands for a CmpInst, see if we can fold the result. +static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, +                              const SimplifyQuery &Q, unsigned MaxRecurse) { +  if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate)) +    return SimplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse); +  return SimplifyFCmpInst(Predicate, LHS, RHS, FastMathFlags(), Q, MaxRecurse); +} + +Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, +                             const SimplifyQuery &Q) { +  return ::SimplifyCmpInst(Predicate, LHS, RHS, Q, RecursionLimit); +} + +static bool IsIdempotent(Intrinsic::ID ID) { +  switch (ID) { +  default: return false; + +  // Unary idempotent: f(f(x)) = f(x) +  case Intrinsic::fabs: +  case Intrinsic::floor: +  case Intrinsic::ceil: +  case Intrinsic::trunc: +  case Intrinsic::rint: +  case Intrinsic::nearbyint: +  case Intrinsic::round: +  case Intrinsic::canonicalize: +    return true; +  } +} + +static Value *SimplifyRelativeLoad(Constant *Ptr, Constant *Offset, +                                   const DataLayout &DL) { +  GlobalValue *PtrSym; +  APInt PtrOffset; +  if (!IsConstantOffsetFromGlobal(Ptr, PtrSym, PtrOffset, DL)) +    return nullptr; + +  Type *Int8PtrTy = Type::getInt8PtrTy(Ptr->getContext()); +  Type *Int32Ty = Type::getInt32Ty(Ptr->getContext()); +  Type *Int32PtrTy = Int32Ty->getPointerTo(); +  Type *Int64Ty = Type::getInt64Ty(Ptr->getContext()); + +  auto *OffsetConstInt = dyn_cast<ConstantInt>(Offset); +  if (!OffsetConstInt || OffsetConstInt->getType()->getBitWidth() > 64) +    return nullptr; + +  uint64_t OffsetInt = OffsetConstInt->getSExtValue(); +  if (OffsetInt % 4 != 0) +    return nullptr; + +  Constant *C = ConstantExpr::getGetElementPtr( +      Int32Ty, ConstantExpr::getBitCast(Ptr, Int32PtrTy), +      ConstantInt::get(Int64Ty, OffsetInt / 4)); +  Constant *Loaded = ConstantFoldLoadFromConstPtr(C, Int32Ty, DL); +  if (!Loaded) +    return nullptr; + +  auto *LoadedCE = dyn_cast<ConstantExpr>(Loaded); +  if (!LoadedCE) +    return nullptr; + +  if (LoadedCE->getOpcode() == Instruction::Trunc) { +    LoadedCE = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0)); +    if (!LoadedCE) +      return nullptr; +  } + +  if (LoadedCE->getOpcode() != Instruction::Sub) +    return nullptr; + +  auto *LoadedLHS = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0)); +  if (!LoadedLHS || LoadedLHS->getOpcode() != Instruction::PtrToInt) +    return nullptr; +  auto *LoadedLHSPtr = LoadedLHS->getOperand(0); + +  Constant *LoadedRHS = LoadedCE->getOperand(1); +  GlobalValue *LoadedRHSSym; +  APInt LoadedRHSOffset; +  if (!IsConstantOffsetFromGlobal(LoadedRHS, LoadedRHSSym, LoadedRHSOffset, +                                  DL) || +      PtrSym != LoadedRHSSym || PtrOffset != LoadedRHSOffset) +    return nullptr; + +  return ConstantExpr::getBitCast(LoadedLHSPtr, Int8PtrTy); +} + +static Value *simplifyUnaryIntrinsic(Function *F, Value *Op0, +                                     const SimplifyQuery &Q) { +  // Idempotent functions return the same result when called repeatedly. +  Intrinsic::ID IID = F->getIntrinsicID(); +  if (IsIdempotent(IID)) +    if (auto *II = dyn_cast<IntrinsicInst>(Op0)) +      if (II->getIntrinsicID() == IID) +        return II; + +  Value *X; +  switch (IID) { +  case Intrinsic::fabs: +    if (SignBitMustBeZero(Op0, Q.TLI)) return Op0; +    break; +  case Intrinsic::bswap: +    // bswap(bswap(x)) -> x +    if (match(Op0, m_BSwap(m_Value(X)))) return X; +    break; +  case Intrinsic::bitreverse: +    // bitreverse(bitreverse(x)) -> x +    if (match(Op0, m_BitReverse(m_Value(X)))) return X; +    break; +  case Intrinsic::exp: +    // exp(log(x)) -> x +    if (Q.CxtI->hasAllowReassoc() && +        match(Op0, m_Intrinsic<Intrinsic::log>(m_Value(X)))) return X; +    break; +  case Intrinsic::exp2: +    // exp2(log2(x)) -> x +    if (Q.CxtI->hasAllowReassoc() && +        match(Op0, m_Intrinsic<Intrinsic::log2>(m_Value(X)))) return X; +    break; +  case Intrinsic::log: +    // log(exp(x)) -> x +    if (Q.CxtI->hasAllowReassoc() && +        match(Op0, m_Intrinsic<Intrinsic::exp>(m_Value(X)))) return X; +    break; +  case Intrinsic::log2: +    // log2(exp2(x)) -> x +    if (Q.CxtI->hasAllowReassoc() && +        (match(Op0, m_Intrinsic<Intrinsic::exp2>(m_Value(X))) || +         match(Op0, m_Intrinsic<Intrinsic::pow>(m_SpecificFP(2.0), +                                                m_Value(X))))) return X; +    break; +  case Intrinsic::log10: +    // log10(pow(10.0, x)) -> x +    if (Q.CxtI->hasAllowReassoc() && +        match(Op0, m_Intrinsic<Intrinsic::pow>(m_SpecificFP(10.0), +                                               m_Value(X)))) return X; +    break; +  case Intrinsic::floor: +  case Intrinsic::trunc: +  case Intrinsic::ceil: +  case Intrinsic::round: +  case Intrinsic::nearbyint: +  case Intrinsic::rint: { +    // floor (sitofp x) -> sitofp x +    // floor (uitofp x) -> uitofp x +    // +    // Converting from int always results in a finite integral number or +    // infinity. For either of those inputs, these rounding functions always +    // return the same value, so the rounding can be eliminated. +    if (match(Op0, m_SIToFP(m_Value())) || match(Op0, m_UIToFP(m_Value()))) +      return Op0; +    break; +  } +  default: +    break; +  } + +  return nullptr; +} + +static Value *simplifyBinaryIntrinsic(Function *F, Value *Op0, Value *Op1, +                                      const SimplifyQuery &Q) { +  Intrinsic::ID IID = F->getIntrinsicID(); +  Type *ReturnType = F->getReturnType(); +  switch (IID) { +  case Intrinsic::usub_with_overflow: +  case Intrinsic::ssub_with_overflow: +    // X - X -> { 0, false } +    if (Op0 == Op1) +      return Constant::getNullValue(ReturnType); +    LLVM_FALLTHROUGH; +  case Intrinsic::uadd_with_overflow: +  case Intrinsic::sadd_with_overflow: +    // X - undef -> { undef, false } +    // undef - X -> { undef, false } +    // X + undef -> { undef, false } +    // undef + x -> { undef, false } +    if (isa<UndefValue>(Op0) || isa<UndefValue>(Op1)) { +      return ConstantStruct::get( +          cast<StructType>(ReturnType), +          {UndefValue::get(ReturnType->getStructElementType(0)), +           Constant::getNullValue(ReturnType->getStructElementType(1))}); +    } +    break; +  case Intrinsic::umul_with_overflow: +  case Intrinsic::smul_with_overflow: +    // 0 * X -> { 0, false } +    // X * 0 -> { 0, false } +    if (match(Op0, m_Zero()) || match(Op1, m_Zero())) +      return Constant::getNullValue(ReturnType); +    // undef * X -> { 0, false } +    // X * undef -> { 0, false } +    if (match(Op0, m_Undef()) || match(Op1, m_Undef())) +      return Constant::getNullValue(ReturnType); +    break; +  case Intrinsic::uadd_sat: +    // sat(MAX + X) -> MAX +    // sat(X + MAX) -> MAX +    if (match(Op0, m_AllOnes()) || match(Op1, m_AllOnes())) +      return Constant::getAllOnesValue(ReturnType); +    LLVM_FALLTHROUGH; +  case Intrinsic::sadd_sat: +    // sat(X + undef) -> -1 +    // sat(undef + X) -> -1 +    // For unsigned: Assume undef is MAX, thus we saturate to MAX (-1). +    // For signed: Assume undef is ~X, in which case X + ~X = -1. +    if (match(Op0, m_Undef()) || match(Op1, m_Undef())) +      return Constant::getAllOnesValue(ReturnType); + +    // X + 0 -> X +    if (match(Op1, m_Zero())) +      return Op0; +    // 0 + X -> X +    if (match(Op0, m_Zero())) +      return Op1; +    break; +  case Intrinsic::usub_sat: +    // sat(0 - X) -> 0, sat(X - MAX) -> 0 +    if (match(Op0, m_Zero()) || match(Op1, m_AllOnes())) +      return Constant::getNullValue(ReturnType); +    LLVM_FALLTHROUGH; +  case Intrinsic::ssub_sat: +    // X - X -> 0, X - undef -> 0, undef - X -> 0 +    if (Op0 == Op1 || match(Op0, m_Undef()) || match(Op1, m_Undef())) +      return Constant::getNullValue(ReturnType); +    // X - 0 -> X +    if (match(Op1, m_Zero())) +      return Op0; +    break; +  case Intrinsic::load_relative: +    if (auto *C0 = dyn_cast<Constant>(Op0)) +      if (auto *C1 = dyn_cast<Constant>(Op1)) +        return SimplifyRelativeLoad(C0, C1, Q.DL); +    break; +  case Intrinsic::powi: +    if (auto *Power = dyn_cast<ConstantInt>(Op1)) { +      // powi(x, 0) -> 1.0 +      if (Power->isZero()) +        return ConstantFP::get(Op0->getType(), 1.0); +      // powi(x, 1) -> x +      if (Power->isOne()) +        return Op0; +    } +    break; +  case Intrinsic::maxnum: +  case Intrinsic::minnum: +  case Intrinsic::maximum: +  case Intrinsic::minimum: { +    // If the arguments are the same, this is a no-op. +    if (Op0 == Op1) return Op0; + +    // If one argument is undef, return the other argument. +    if (match(Op0, m_Undef())) +      return Op1; +    if (match(Op1, m_Undef())) +      return Op0; + +    // If one argument is NaN, return other or NaN appropriately. +    bool PropagateNaN = IID == Intrinsic::minimum || IID == Intrinsic::maximum; +    if (match(Op0, m_NaN())) +      return PropagateNaN ? Op0 : Op1; +    if (match(Op1, m_NaN())) +      return PropagateNaN ? Op1 : Op0; + +    // Min/max of the same operation with common operand: +    // m(m(X, Y)), X --> m(X, Y) (4 commuted variants) +    if (auto *M0 = dyn_cast<IntrinsicInst>(Op0)) +      if (M0->getIntrinsicID() == IID && +          (M0->getOperand(0) == Op1 || M0->getOperand(1) == Op1)) +        return Op0; +    if (auto *M1 = dyn_cast<IntrinsicInst>(Op1)) +      if (M1->getIntrinsicID() == IID && +          (M1->getOperand(0) == Op0 || M1->getOperand(1) == Op0)) +        return Op1; + +    // min(X, -Inf) --> -Inf (and commuted variant) +    // max(X, +Inf) --> +Inf (and commuted variant) +    bool UseNegInf = IID == Intrinsic::minnum || IID == Intrinsic::minimum; +    const APFloat *C; +    if ((match(Op0, m_APFloat(C)) && C->isInfinity() && +         C->isNegative() == UseNegInf) || +        (match(Op1, m_APFloat(C)) && C->isInfinity() && +         C->isNegative() == UseNegInf)) +      return ConstantFP::getInfinity(ReturnType, UseNegInf); + +    // TODO: minnum(nnan x, inf) -> x +    // TODO: minnum(nnan ninf x, flt_max) -> x +    // TODO: maxnum(nnan x, -inf) -> x +    // TODO: maxnum(nnan ninf x, -flt_max) -> x +    break; +  } +  default: +    break; +  } + +  return nullptr; +} + +static Value *simplifyIntrinsic(CallBase *Call, const SimplifyQuery &Q) { + +  // Intrinsics with no operands have some kind of side effect. Don't simplify. +  unsigned NumOperands = Call->getNumArgOperands(); +  if (!NumOperands) +    return nullptr; + +  Function *F = cast<Function>(Call->getCalledFunction()); +  Intrinsic::ID IID = F->getIntrinsicID(); +  if (NumOperands == 1) +    return simplifyUnaryIntrinsic(F, Call->getArgOperand(0), Q); + +  if (NumOperands == 2) +    return simplifyBinaryIntrinsic(F, Call->getArgOperand(0), +                                   Call->getArgOperand(1), Q); + +  // Handle intrinsics with 3 or more arguments. +  switch (IID) { +  case Intrinsic::masked_load: +  case Intrinsic::masked_gather: { +    Value *MaskArg = Call->getArgOperand(2); +    Value *PassthruArg = Call->getArgOperand(3); +    // If the mask is all zeros or undef, the "passthru" argument is the result. +    if (maskIsAllZeroOrUndef(MaskArg)) +      return PassthruArg; +    return nullptr; +  } +  case Intrinsic::fshl: +  case Intrinsic::fshr: { +    Value *Op0 = Call->getArgOperand(0), *Op1 = Call->getArgOperand(1), +          *ShAmtArg = Call->getArgOperand(2); + +    // If both operands are undef, the result is undef. +    if (match(Op0, m_Undef()) && match(Op1, m_Undef())) +      return UndefValue::get(F->getReturnType()); + +    // If shift amount is undef, assume it is zero. +    if (match(ShAmtArg, m_Undef())) +      return Call->getArgOperand(IID == Intrinsic::fshl ? 0 : 1); + +    const APInt *ShAmtC; +    if (match(ShAmtArg, m_APInt(ShAmtC))) { +      // If there's effectively no shift, return the 1st arg or 2nd arg. +      APInt BitWidth = APInt(ShAmtC->getBitWidth(), ShAmtC->getBitWidth()); +      if (ShAmtC->urem(BitWidth).isNullValue()) +        return Call->getArgOperand(IID == Intrinsic::fshl ? 0 : 1); +    } +    return nullptr; +  } +  case Intrinsic::fma: +  case Intrinsic::fmuladd: { +    Value *Op0 = Call->getArgOperand(0); +    Value *Op1 = Call->getArgOperand(1); +    Value *Op2 = Call->getArgOperand(2); +    if (Value *V = simplifyFPOp({ Op0, Op1, Op2 })) +      return V; +    return nullptr; +  } +  default: +    return nullptr; +  } +} + +Value *llvm::SimplifyCall(CallBase *Call, const SimplifyQuery &Q) { +  Value *Callee = Call->getCalledValue(); + +  // call undef -> undef +  // call null -> undef +  if (isa<UndefValue>(Callee) || isa<ConstantPointerNull>(Callee)) +    return UndefValue::get(Call->getType()); + +  Function *F = dyn_cast<Function>(Callee); +  if (!F) +    return nullptr; + +  if (F->isIntrinsic()) +    if (Value *Ret = simplifyIntrinsic(Call, Q)) +      return Ret; + +  if (!canConstantFoldCallTo(Call, F)) +    return nullptr; + +  SmallVector<Constant *, 4> ConstantArgs; +  unsigned NumArgs = Call->getNumArgOperands(); +  ConstantArgs.reserve(NumArgs); +  for (auto &Arg : Call->args()) { +    Constant *C = dyn_cast<Constant>(&Arg); +    if (!C) +      return nullptr; +    ConstantArgs.push_back(C); +  } + +  return ConstantFoldCall(Call, F, ConstantArgs, Q.TLI); +} + +/// See if we can compute a simplified version of this instruction. +/// If not, this returns null. + +Value *llvm::SimplifyInstruction(Instruction *I, const SimplifyQuery &SQ, +                                 OptimizationRemarkEmitter *ORE) { +  const SimplifyQuery Q = SQ.CxtI ? SQ : SQ.getWithInstruction(I); +  Value *Result; + +  switch (I->getOpcode()) { +  default: +    Result = ConstantFoldInstruction(I, Q.DL, Q.TLI); +    break; +  case Instruction::FNeg: +    Result = SimplifyFNegInst(I->getOperand(0), I->getFastMathFlags(), Q); +    break; +  case Instruction::FAdd: +    Result = SimplifyFAddInst(I->getOperand(0), I->getOperand(1), +                              I->getFastMathFlags(), Q); +    break; +  case Instruction::Add: +    Result = +        SimplifyAddInst(I->getOperand(0), I->getOperand(1), +                        Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)), +                        Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q); +    break; +  case Instruction::FSub: +    Result = SimplifyFSubInst(I->getOperand(0), I->getOperand(1), +                              I->getFastMathFlags(), Q); +    break; +  case Instruction::Sub: +    Result = +        SimplifySubInst(I->getOperand(0), I->getOperand(1), +                        Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)), +                        Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q); +    break; +  case Instruction::FMul: +    Result = SimplifyFMulInst(I->getOperand(0), I->getOperand(1), +                              I->getFastMathFlags(), Q); +    break; +  case Instruction::Mul: +    Result = SimplifyMulInst(I->getOperand(0), I->getOperand(1), Q); +    break; +  case Instruction::SDiv: +    Result = SimplifySDivInst(I->getOperand(0), I->getOperand(1), Q); +    break; +  case Instruction::UDiv: +    Result = SimplifyUDivInst(I->getOperand(0), I->getOperand(1), Q); +    break; +  case Instruction::FDiv: +    Result = SimplifyFDivInst(I->getOperand(0), I->getOperand(1), +                              I->getFastMathFlags(), Q); +    break; +  case Instruction::SRem: +    Result = SimplifySRemInst(I->getOperand(0), I->getOperand(1), Q); +    break; +  case Instruction::URem: +    Result = SimplifyURemInst(I->getOperand(0), I->getOperand(1), Q); +    break; +  case Instruction::FRem: +    Result = SimplifyFRemInst(I->getOperand(0), I->getOperand(1), +                              I->getFastMathFlags(), Q); +    break; +  case Instruction::Shl: +    Result = +        SimplifyShlInst(I->getOperand(0), I->getOperand(1), +                        Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)), +                        Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q); +    break; +  case Instruction::LShr: +    Result = SimplifyLShrInst(I->getOperand(0), I->getOperand(1), +                              Q.IIQ.isExact(cast<BinaryOperator>(I)), Q); +    break; +  case Instruction::AShr: +    Result = SimplifyAShrInst(I->getOperand(0), I->getOperand(1), +                              Q.IIQ.isExact(cast<BinaryOperator>(I)), Q); +    break; +  case Instruction::And: +    Result = SimplifyAndInst(I->getOperand(0), I->getOperand(1), Q); +    break; +  case Instruction::Or: +    Result = SimplifyOrInst(I->getOperand(0), I->getOperand(1), Q); +    break; +  case Instruction::Xor: +    Result = SimplifyXorInst(I->getOperand(0), I->getOperand(1), Q); +    break; +  case Instruction::ICmp: +    Result = SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(), +                              I->getOperand(0), I->getOperand(1), Q); +    break; +  case Instruction::FCmp: +    Result = +        SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(), I->getOperand(0), +                         I->getOperand(1), I->getFastMathFlags(), Q); +    break; +  case Instruction::Select: +    Result = SimplifySelectInst(I->getOperand(0), I->getOperand(1), +                                I->getOperand(2), Q); +    break; +  case Instruction::GetElementPtr: { +    SmallVector<Value *, 8> Ops(I->op_begin(), I->op_end()); +    Result = SimplifyGEPInst(cast<GetElementPtrInst>(I)->getSourceElementType(), +                             Ops, Q); +    break; +  } +  case Instruction::InsertValue: { +    InsertValueInst *IV = cast<InsertValueInst>(I); +    Result = SimplifyInsertValueInst(IV->getAggregateOperand(), +                                     IV->getInsertedValueOperand(), +                                     IV->getIndices(), Q); +    break; +  } +  case Instruction::InsertElement: { +    auto *IE = cast<InsertElementInst>(I); +    Result = SimplifyInsertElementInst(IE->getOperand(0), IE->getOperand(1), +                                       IE->getOperand(2), Q); +    break; +  } +  case Instruction::ExtractValue: { +    auto *EVI = cast<ExtractValueInst>(I); +    Result = SimplifyExtractValueInst(EVI->getAggregateOperand(), +                                      EVI->getIndices(), Q); +    break; +  } +  case Instruction::ExtractElement: { +    auto *EEI = cast<ExtractElementInst>(I); +    Result = SimplifyExtractElementInst(EEI->getVectorOperand(), +                                        EEI->getIndexOperand(), Q); +    break; +  } +  case Instruction::ShuffleVector: { +    auto *SVI = cast<ShuffleVectorInst>(I); +    Result = SimplifyShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1), +                                       SVI->getMask(), SVI->getType(), Q); +    break; +  } +  case Instruction::PHI: +    Result = SimplifyPHINode(cast<PHINode>(I), Q); +    break; +  case Instruction::Call: { +    Result = SimplifyCall(cast<CallInst>(I), Q); +    break; +  } +#define HANDLE_CAST_INST(num, opc, clas) case Instruction::opc: +#include "llvm/IR/Instruction.def" +#undef HANDLE_CAST_INST +    Result = +        SimplifyCastInst(I->getOpcode(), I->getOperand(0), I->getType(), Q); +    break; +  case Instruction::Alloca: +    // No simplifications for Alloca and it can't be constant folded. +    Result = nullptr; +    break; +  } + +  // In general, it is possible for computeKnownBits to determine all bits in a +  // value even when the operands are not all constants. +  if (!Result && I->getType()->isIntOrIntVectorTy()) { +    KnownBits Known = computeKnownBits(I, Q.DL, /*Depth*/ 0, Q.AC, I, Q.DT, ORE); +    if (Known.isConstant()) +      Result = ConstantInt::get(I->getType(), Known.getConstant()); +  } + +  /// If called on unreachable code, the above logic may report that the +  /// instruction simplified to itself.  Make life easier for users by +  /// detecting that case here, returning a safe value instead. +  return Result == I ? UndefValue::get(I->getType()) : Result; +} + +/// Implementation of recursive simplification through an instruction's +/// uses. +/// +/// This is the common implementation of the recursive simplification routines. +/// If we have a pre-simplified value in 'SimpleV', that is forcibly used to +/// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of +/// instructions to process and attempt to simplify it using +/// InstructionSimplify. Recursively visited users which could not be +/// simplified themselves are to the optional UnsimplifiedUsers set for +/// further processing by the caller. +/// +/// This routine returns 'true' only when *it* simplifies something. The passed +/// in simplified value does not count toward this. +static bool replaceAndRecursivelySimplifyImpl( +    Instruction *I, Value *SimpleV, const TargetLibraryInfo *TLI, +    const DominatorTree *DT, AssumptionCache *AC, +    SmallSetVector<Instruction *, 8> *UnsimplifiedUsers = nullptr) { +  bool Simplified = false; +  SmallSetVector<Instruction *, 8> Worklist; +  const DataLayout &DL = I->getModule()->getDataLayout(); + +  // If we have an explicit value to collapse to, do that round of the +  // simplification loop by hand initially. +  if (SimpleV) { +    for (User *U : I->users()) +      if (U != I) +        Worklist.insert(cast<Instruction>(U)); + +    // Replace the instruction with its simplified value. +    I->replaceAllUsesWith(SimpleV); + +    // Gracefully handle edge cases where the instruction is not wired into any +    // parent block. +    if (I->getParent() && !I->isEHPad() && !I->isTerminator() && +        !I->mayHaveSideEffects()) +      I->eraseFromParent(); +  } else { +    Worklist.insert(I); +  } + +  // Note that we must test the size on each iteration, the worklist can grow. +  for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) { +    I = Worklist[Idx]; + +    // See if this instruction simplifies. +    SimpleV = SimplifyInstruction(I, {DL, TLI, DT, AC}); +    if (!SimpleV) { +      if (UnsimplifiedUsers) +        UnsimplifiedUsers->insert(I); +      continue; +    } + +    Simplified = true; + +    // Stash away all the uses of the old instruction so we can check them for +    // recursive simplifications after a RAUW. This is cheaper than checking all +    // uses of To on the recursive step in most cases. +    for (User *U : I->users()) +      Worklist.insert(cast<Instruction>(U)); + +    // Replace the instruction with its simplified value. +    I->replaceAllUsesWith(SimpleV); + +    // Gracefully handle edge cases where the instruction is not wired into any +    // parent block. +    if (I->getParent() && !I->isEHPad() && !I->isTerminator() && +        !I->mayHaveSideEffects()) +      I->eraseFromParent(); +  } +  return Simplified; +} + +bool llvm::recursivelySimplifyInstruction(Instruction *I, +                                          const TargetLibraryInfo *TLI, +                                          const DominatorTree *DT, +                                          AssumptionCache *AC) { +  return replaceAndRecursivelySimplifyImpl(I, nullptr, TLI, DT, AC, nullptr); +} + +bool llvm::replaceAndRecursivelySimplify( +    Instruction *I, Value *SimpleV, const TargetLibraryInfo *TLI, +    const DominatorTree *DT, AssumptionCache *AC, +    SmallSetVector<Instruction *, 8> *UnsimplifiedUsers) { +  assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!"); +  assert(SimpleV && "Must provide a simplified value."); +  return replaceAndRecursivelySimplifyImpl(I, SimpleV, TLI, DT, AC, +                                           UnsimplifiedUsers); +} + +namespace llvm { +const SimplifyQuery getBestSimplifyQuery(Pass &P, Function &F) { +  auto *DTWP = P.getAnalysisIfAvailable<DominatorTreeWrapperPass>(); +  auto *DT = DTWP ? &DTWP->getDomTree() : nullptr; +  auto *TLIWP = P.getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); +  auto *TLI = TLIWP ? &TLIWP->getTLI(F) : nullptr; +  auto *ACWP = P.getAnalysisIfAvailable<AssumptionCacheTracker>(); +  auto *AC = ACWP ? &ACWP->getAssumptionCache(F) : nullptr; +  return {F.getParent()->getDataLayout(), TLI, DT, AC}; +} + +const SimplifyQuery getBestSimplifyQuery(LoopStandardAnalysisResults &AR, +                                         const DataLayout &DL) { +  return {DL, &AR.TLI, &AR.DT, &AR.AC}; +} + +template <class T, class... TArgs> +const SimplifyQuery getBestSimplifyQuery(AnalysisManager<T, TArgs...> &AM, +                                         Function &F) { +  auto *DT = AM.template getCachedResult<DominatorTreeAnalysis>(F); +  auto *TLI = AM.template getCachedResult<TargetLibraryAnalysis>(F); +  auto *AC = AM.template getCachedResult<AssumptionAnalysis>(F); +  return {F.getParent()->getDataLayout(), TLI, DT, AC}; +} +template const SimplifyQuery getBestSimplifyQuery(AnalysisManager<Function> &, +                                                  Function &); +}  | 
