summaryrefslogtreecommitdiff
path: root/llvm/lib/Analysis/LazyCallGraph.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'llvm/lib/Analysis/LazyCallGraph.cpp')
-rw-r--r--llvm/lib/Analysis/LazyCallGraph.cpp1816
1 files changed, 1816 insertions, 0 deletions
diff --git a/llvm/lib/Analysis/LazyCallGraph.cpp b/llvm/lib/Analysis/LazyCallGraph.cpp
new file mode 100644
index 0000000000000..ef31c1e0ba8ce
--- /dev/null
+++ b/llvm/lib/Analysis/LazyCallGraph.cpp
@@ -0,0 +1,1816 @@
+//===- LazyCallGraph.cpp - Analysis of a Module's call graph --------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Analysis/LazyCallGraph.h"
+#include "llvm/ADT/ArrayRef.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/ScopeExit.h"
+#include "llvm/ADT/Sequence.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/iterator_range.h"
+#include "llvm/Analysis/TargetLibraryInfo.h"
+#include "llvm/Config/llvm-config.h"
+#include "llvm/IR/CallSite.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/GlobalVariable.h"
+#include "llvm/IR/Instruction.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/PassManager.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/GraphWriter.h"
+#include "llvm/Support/raw_ostream.h"
+#include <algorithm>
+#include <cassert>
+#include <cstddef>
+#include <iterator>
+#include <string>
+#include <tuple>
+#include <utility>
+
+using namespace llvm;
+
+#define DEBUG_TYPE "lcg"
+
+void LazyCallGraph::EdgeSequence::insertEdgeInternal(Node &TargetN,
+ Edge::Kind EK) {
+ EdgeIndexMap.insert({&TargetN, Edges.size()});
+ Edges.emplace_back(TargetN, EK);
+}
+
+void LazyCallGraph::EdgeSequence::setEdgeKind(Node &TargetN, Edge::Kind EK) {
+ Edges[EdgeIndexMap.find(&TargetN)->second].setKind(EK);
+}
+
+bool LazyCallGraph::EdgeSequence::removeEdgeInternal(Node &TargetN) {
+ auto IndexMapI = EdgeIndexMap.find(&TargetN);
+ if (IndexMapI == EdgeIndexMap.end())
+ return false;
+
+ Edges[IndexMapI->second] = Edge();
+ EdgeIndexMap.erase(IndexMapI);
+ return true;
+}
+
+static void addEdge(SmallVectorImpl<LazyCallGraph::Edge> &Edges,
+ DenseMap<LazyCallGraph::Node *, int> &EdgeIndexMap,
+ LazyCallGraph::Node &N, LazyCallGraph::Edge::Kind EK) {
+ if (!EdgeIndexMap.insert({&N, Edges.size()}).second)
+ return;
+
+ LLVM_DEBUG(dbgs() << " Added callable function: " << N.getName() << "\n");
+ Edges.emplace_back(LazyCallGraph::Edge(N, EK));
+}
+
+LazyCallGraph::EdgeSequence &LazyCallGraph::Node::populateSlow() {
+ assert(!Edges && "Must not have already populated the edges for this node!");
+
+ LLVM_DEBUG(dbgs() << " Adding functions called by '" << getName()
+ << "' to the graph.\n");
+
+ Edges = EdgeSequence();
+
+ SmallVector<Constant *, 16> Worklist;
+ SmallPtrSet<Function *, 4> Callees;
+ SmallPtrSet<Constant *, 16> Visited;
+
+ // Find all the potential call graph edges in this function. We track both
+ // actual call edges and indirect references to functions. The direct calls
+ // are trivially added, but to accumulate the latter we walk the instructions
+ // and add every operand which is a constant to the worklist to process
+ // afterward.
+ //
+ // Note that we consider *any* function with a definition to be a viable
+ // edge. Even if the function's definition is subject to replacement by
+ // some other module (say, a weak definition) there may still be
+ // optimizations which essentially speculate based on the definition and
+ // a way to check that the specific definition is in fact the one being
+ // used. For example, this could be done by moving the weak definition to
+ // a strong (internal) definition and making the weak definition be an
+ // alias. Then a test of the address of the weak function against the new
+ // strong definition's address would be an effective way to determine the
+ // safety of optimizing a direct call edge.
+ for (BasicBlock &BB : *F)
+ for (Instruction &I : BB) {
+ if (auto CS = CallSite(&I))
+ if (Function *Callee = CS.getCalledFunction())
+ if (!Callee->isDeclaration())
+ if (Callees.insert(Callee).second) {
+ Visited.insert(Callee);
+ addEdge(Edges->Edges, Edges->EdgeIndexMap, G->get(*Callee),
+ LazyCallGraph::Edge::Call);
+ }
+
+ for (Value *Op : I.operand_values())
+ if (Constant *C = dyn_cast<Constant>(Op))
+ if (Visited.insert(C).second)
+ Worklist.push_back(C);
+ }
+
+ // We've collected all the constant (and thus potentially function or
+ // function containing) operands to all of the instructions in the function.
+ // Process them (recursively) collecting every function found.
+ visitReferences(Worklist, Visited, [&](Function &F) {
+ addEdge(Edges->Edges, Edges->EdgeIndexMap, G->get(F),
+ LazyCallGraph::Edge::Ref);
+ });
+
+ // Add implicit reference edges to any defined libcall functions (if we
+ // haven't found an explicit edge).
+ for (auto *F : G->LibFunctions)
+ if (!Visited.count(F))
+ addEdge(Edges->Edges, Edges->EdgeIndexMap, G->get(*F),
+ LazyCallGraph::Edge::Ref);
+
+ return *Edges;
+}
+
+void LazyCallGraph::Node::replaceFunction(Function &NewF) {
+ assert(F != &NewF && "Must not replace a function with itself!");
+ F = &NewF;
+}
+
+#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
+LLVM_DUMP_METHOD void LazyCallGraph::Node::dump() const {
+ dbgs() << *this << '\n';
+}
+#endif
+
+static bool isKnownLibFunction(Function &F, TargetLibraryInfo &TLI) {
+ LibFunc LF;
+
+ // Either this is a normal library function or a "vectorizable" function.
+ return TLI.getLibFunc(F, LF) || TLI.isFunctionVectorizable(F.getName());
+}
+
+LazyCallGraph::LazyCallGraph(
+ Module &M, function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
+ LLVM_DEBUG(dbgs() << "Building CG for module: " << M.getModuleIdentifier()
+ << "\n");
+ for (Function &F : M) {
+ if (F.isDeclaration())
+ continue;
+ // If this function is a known lib function to LLVM then we want to
+ // synthesize reference edges to it to model the fact that LLVM can turn
+ // arbitrary code into a library function call.
+ if (isKnownLibFunction(F, GetTLI(F)))
+ LibFunctions.insert(&F);
+
+ if (F.hasLocalLinkage())
+ continue;
+
+ // External linkage defined functions have edges to them from other
+ // modules.
+ LLVM_DEBUG(dbgs() << " Adding '" << F.getName()
+ << "' to entry set of the graph.\n");
+ addEdge(EntryEdges.Edges, EntryEdges.EdgeIndexMap, get(F), Edge::Ref);
+ }
+
+ // Externally visible aliases of internal functions are also viable entry
+ // edges to the module.
+ for (auto &A : M.aliases()) {
+ if (A.hasLocalLinkage())
+ continue;
+ if (Function* F = dyn_cast<Function>(A.getAliasee())) {
+ LLVM_DEBUG(dbgs() << " Adding '" << F->getName()
+ << "' with alias '" << A.getName()
+ << "' to entry set of the graph.\n");
+ addEdge(EntryEdges.Edges, EntryEdges.EdgeIndexMap, get(*F), Edge::Ref);
+ }
+ }
+
+ // Now add entry nodes for functions reachable via initializers to globals.
+ SmallVector<Constant *, 16> Worklist;
+ SmallPtrSet<Constant *, 16> Visited;
+ for (GlobalVariable &GV : M.globals())
+ if (GV.hasInitializer())
+ if (Visited.insert(GV.getInitializer()).second)
+ Worklist.push_back(GV.getInitializer());
+
+ LLVM_DEBUG(
+ dbgs() << " Adding functions referenced by global initializers to the "
+ "entry set.\n");
+ visitReferences(Worklist, Visited, [&](Function &F) {
+ addEdge(EntryEdges.Edges, EntryEdges.EdgeIndexMap, get(F),
+ LazyCallGraph::Edge::Ref);
+ });
+}
+
+LazyCallGraph::LazyCallGraph(LazyCallGraph &&G)
+ : BPA(std::move(G.BPA)), NodeMap(std::move(G.NodeMap)),
+ EntryEdges(std::move(G.EntryEdges)), SCCBPA(std::move(G.SCCBPA)),
+ SCCMap(std::move(G.SCCMap)),
+ LibFunctions(std::move(G.LibFunctions)) {
+ updateGraphPtrs();
+}
+
+LazyCallGraph &LazyCallGraph::operator=(LazyCallGraph &&G) {
+ BPA = std::move(G.BPA);
+ NodeMap = std::move(G.NodeMap);
+ EntryEdges = std::move(G.EntryEdges);
+ SCCBPA = std::move(G.SCCBPA);
+ SCCMap = std::move(G.SCCMap);
+ LibFunctions = std::move(G.LibFunctions);
+ updateGraphPtrs();
+ return *this;
+}
+
+#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
+LLVM_DUMP_METHOD void LazyCallGraph::SCC::dump() const {
+ dbgs() << *this << '\n';
+}
+#endif
+
+#ifndef NDEBUG
+void LazyCallGraph::SCC::verify() {
+ assert(OuterRefSCC && "Can't have a null RefSCC!");
+ assert(!Nodes.empty() && "Can't have an empty SCC!");
+
+ for (Node *N : Nodes) {
+ assert(N && "Can't have a null node!");
+ assert(OuterRefSCC->G->lookupSCC(*N) == this &&
+ "Node does not map to this SCC!");
+ assert(N->DFSNumber == -1 &&
+ "Must set DFS numbers to -1 when adding a node to an SCC!");
+ assert(N->LowLink == -1 &&
+ "Must set low link to -1 when adding a node to an SCC!");
+ for (Edge &E : **N)
+ assert(E.getNode().isPopulated() && "Can't have an unpopulated node!");
+ }
+}
+#endif
+
+bool LazyCallGraph::SCC::isParentOf(const SCC &C) const {
+ if (this == &C)
+ return false;
+
+ for (Node &N : *this)
+ for (Edge &E : N->calls())
+ if (OuterRefSCC->G->lookupSCC(E.getNode()) == &C)
+ return true;
+
+ // No edges found.
+ return false;
+}
+
+bool LazyCallGraph::SCC::isAncestorOf(const SCC &TargetC) const {
+ if (this == &TargetC)
+ return false;
+
+ LazyCallGraph &G = *OuterRefSCC->G;
+
+ // Start with this SCC.
+ SmallPtrSet<const SCC *, 16> Visited = {this};
+ SmallVector<const SCC *, 16> Worklist = {this};
+
+ // Walk down the graph until we run out of edges or find a path to TargetC.
+ do {
+ const SCC &C = *Worklist.pop_back_val();
+ for (Node &N : C)
+ for (Edge &E : N->calls()) {
+ SCC *CalleeC = G.lookupSCC(E.getNode());
+ if (!CalleeC)
+ continue;
+
+ // If the callee's SCC is the TargetC, we're done.
+ if (CalleeC == &TargetC)
+ return true;
+
+ // If this is the first time we've reached this SCC, put it on the
+ // worklist to recurse through.
+ if (Visited.insert(CalleeC).second)
+ Worklist.push_back(CalleeC);
+ }
+ } while (!Worklist.empty());
+
+ // No paths found.
+ return false;
+}
+
+LazyCallGraph::RefSCC::RefSCC(LazyCallGraph &G) : G(&G) {}
+
+#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
+LLVM_DUMP_METHOD void LazyCallGraph::RefSCC::dump() const {
+ dbgs() << *this << '\n';
+}
+#endif
+
+#ifndef NDEBUG
+void LazyCallGraph::RefSCC::verify() {
+ assert(G && "Can't have a null graph!");
+ assert(!SCCs.empty() && "Can't have an empty SCC!");
+
+ // Verify basic properties of the SCCs.
+ SmallPtrSet<SCC *, 4> SCCSet;
+ for (SCC *C : SCCs) {
+ assert(C && "Can't have a null SCC!");
+ C->verify();
+ assert(&C->getOuterRefSCC() == this &&
+ "SCC doesn't think it is inside this RefSCC!");
+ bool Inserted = SCCSet.insert(C).second;
+ assert(Inserted && "Found a duplicate SCC!");
+ auto IndexIt = SCCIndices.find(C);
+ assert(IndexIt != SCCIndices.end() &&
+ "Found an SCC that doesn't have an index!");
+ }
+
+ // Check that our indices map correctly.
+ for (auto &SCCIndexPair : SCCIndices) {
+ SCC *C = SCCIndexPair.first;
+ int i = SCCIndexPair.second;
+ assert(C && "Can't have a null SCC in the indices!");
+ assert(SCCSet.count(C) && "Found an index for an SCC not in the RefSCC!");
+ assert(SCCs[i] == C && "Index doesn't point to SCC!");
+ }
+
+ // Check that the SCCs are in fact in post-order.
+ for (int i = 0, Size = SCCs.size(); i < Size; ++i) {
+ SCC &SourceSCC = *SCCs[i];
+ for (Node &N : SourceSCC)
+ for (Edge &E : *N) {
+ if (!E.isCall())
+ continue;
+ SCC &TargetSCC = *G->lookupSCC(E.getNode());
+ if (&TargetSCC.getOuterRefSCC() == this) {
+ assert(SCCIndices.find(&TargetSCC)->second <= i &&
+ "Edge between SCCs violates post-order relationship.");
+ continue;
+ }
+ }
+ }
+}
+#endif
+
+bool LazyCallGraph::RefSCC::isParentOf(const RefSCC &RC) const {
+ if (&RC == this)
+ return false;
+
+ // Search all edges to see if this is a parent.
+ for (SCC &C : *this)
+ for (Node &N : C)
+ for (Edge &E : *N)
+ if (G->lookupRefSCC(E.getNode()) == &RC)
+ return true;
+
+ return false;
+}
+
+bool LazyCallGraph::RefSCC::isAncestorOf(const RefSCC &RC) const {
+ if (&RC == this)
+ return false;
+
+ // For each descendant of this RefSCC, see if one of its children is the
+ // argument. If not, add that descendant to the worklist and continue
+ // searching.
+ SmallVector<const RefSCC *, 4> Worklist;
+ SmallPtrSet<const RefSCC *, 4> Visited;
+ Worklist.push_back(this);
+ Visited.insert(this);
+ do {
+ const RefSCC &DescendantRC = *Worklist.pop_back_val();
+ for (SCC &C : DescendantRC)
+ for (Node &N : C)
+ for (Edge &E : *N) {
+ auto *ChildRC = G->lookupRefSCC(E.getNode());
+ if (ChildRC == &RC)
+ return true;
+ if (!ChildRC || !Visited.insert(ChildRC).second)
+ continue;
+ Worklist.push_back(ChildRC);
+ }
+ } while (!Worklist.empty());
+
+ return false;
+}
+
+/// Generic helper that updates a postorder sequence of SCCs for a potentially
+/// cycle-introducing edge insertion.
+///
+/// A postorder sequence of SCCs of a directed graph has one fundamental
+/// property: all deges in the DAG of SCCs point "up" the sequence. That is,
+/// all edges in the SCC DAG point to prior SCCs in the sequence.
+///
+/// This routine both updates a postorder sequence and uses that sequence to
+/// compute the set of SCCs connected into a cycle. It should only be called to
+/// insert a "downward" edge which will require changing the sequence to
+/// restore it to a postorder.
+///
+/// When inserting an edge from an earlier SCC to a later SCC in some postorder
+/// sequence, all of the SCCs which may be impacted are in the closed range of
+/// those two within the postorder sequence. The algorithm used here to restore
+/// the state is as follows:
+///
+/// 1) Starting from the source SCC, construct a set of SCCs which reach the
+/// source SCC consisting of just the source SCC. Then scan toward the
+/// target SCC in postorder and for each SCC, if it has an edge to an SCC
+/// in the set, add it to the set. Otherwise, the source SCC is not
+/// a successor, move it in the postorder sequence to immediately before
+/// the source SCC, shifting the source SCC and all SCCs in the set one
+/// position toward the target SCC. Stop scanning after processing the
+/// target SCC.
+/// 2) If the source SCC is now past the target SCC in the postorder sequence,
+/// and thus the new edge will flow toward the start, we are done.
+/// 3) Otherwise, starting from the target SCC, walk all edges which reach an
+/// SCC between the source and the target, and add them to the set of
+/// connected SCCs, then recurse through them. Once a complete set of the
+/// SCCs the target connects to is known, hoist the remaining SCCs between
+/// the source and the target to be above the target. Note that there is no
+/// need to process the source SCC, it is already known to connect.
+/// 4) At this point, all of the SCCs in the closed range between the source
+/// SCC and the target SCC in the postorder sequence are connected,
+/// including the target SCC and the source SCC. Inserting the edge from
+/// the source SCC to the target SCC will form a cycle out of precisely
+/// these SCCs. Thus we can merge all of the SCCs in this closed range into
+/// a single SCC.
+///
+/// This process has various important properties:
+/// - Only mutates the SCCs when adding the edge actually changes the SCC
+/// structure.
+/// - Never mutates SCCs which are unaffected by the change.
+/// - Updates the postorder sequence to correctly satisfy the postorder
+/// constraint after the edge is inserted.
+/// - Only reorders SCCs in the closed postorder sequence from the source to
+/// the target, so easy to bound how much has changed even in the ordering.
+/// - Big-O is the number of edges in the closed postorder range of SCCs from
+/// source to target.
+///
+/// This helper routine, in addition to updating the postorder sequence itself
+/// will also update a map from SCCs to indices within that sequence.
+///
+/// The sequence and the map must operate on pointers to the SCC type.
+///
+/// Two callbacks must be provided. The first computes the subset of SCCs in
+/// the postorder closed range from the source to the target which connect to
+/// the source SCC via some (transitive) set of edges. The second computes the
+/// subset of the same range which the target SCC connects to via some
+/// (transitive) set of edges. Both callbacks should populate the set argument
+/// provided.
+template <typename SCCT, typename PostorderSequenceT, typename SCCIndexMapT,
+ typename ComputeSourceConnectedSetCallableT,
+ typename ComputeTargetConnectedSetCallableT>
+static iterator_range<typename PostorderSequenceT::iterator>
+updatePostorderSequenceForEdgeInsertion(
+ SCCT &SourceSCC, SCCT &TargetSCC, PostorderSequenceT &SCCs,
+ SCCIndexMapT &SCCIndices,
+ ComputeSourceConnectedSetCallableT ComputeSourceConnectedSet,
+ ComputeTargetConnectedSetCallableT ComputeTargetConnectedSet) {
+ int SourceIdx = SCCIndices[&SourceSCC];
+ int TargetIdx = SCCIndices[&TargetSCC];
+ assert(SourceIdx < TargetIdx && "Cannot have equal indices here!");
+
+ SmallPtrSet<SCCT *, 4> ConnectedSet;
+
+ // Compute the SCCs which (transitively) reach the source.
+ ComputeSourceConnectedSet(ConnectedSet);
+
+ // Partition the SCCs in this part of the port-order sequence so only SCCs
+ // connecting to the source remain between it and the target. This is
+ // a benign partition as it preserves postorder.
+ auto SourceI = std::stable_partition(
+ SCCs.begin() + SourceIdx, SCCs.begin() + TargetIdx + 1,
+ [&ConnectedSet](SCCT *C) { return !ConnectedSet.count(C); });
+ for (int i = SourceIdx, e = TargetIdx + 1; i < e; ++i)
+ SCCIndices.find(SCCs[i])->second = i;
+
+ // If the target doesn't connect to the source, then we've corrected the
+ // post-order and there are no cycles formed.
+ if (!ConnectedSet.count(&TargetSCC)) {
+ assert(SourceI > (SCCs.begin() + SourceIdx) &&
+ "Must have moved the source to fix the post-order.");
+ assert(*std::prev(SourceI) == &TargetSCC &&
+ "Last SCC to move should have bene the target.");
+
+ // Return an empty range at the target SCC indicating there is nothing to
+ // merge.
+ return make_range(std::prev(SourceI), std::prev(SourceI));
+ }
+
+ assert(SCCs[TargetIdx] == &TargetSCC &&
+ "Should not have moved target if connected!");
+ SourceIdx = SourceI - SCCs.begin();
+ assert(SCCs[SourceIdx] == &SourceSCC &&
+ "Bad updated index computation for the source SCC!");
+
+
+ // See whether there are any remaining intervening SCCs between the source
+ // and target. If so we need to make sure they all are reachable form the
+ // target.
+ if (SourceIdx + 1 < TargetIdx) {
+ ConnectedSet.clear();
+ ComputeTargetConnectedSet(ConnectedSet);
+
+ // Partition SCCs so that only SCCs reached from the target remain between
+ // the source and the target. This preserves postorder.
+ auto TargetI = std::stable_partition(
+ SCCs.begin() + SourceIdx + 1, SCCs.begin() + TargetIdx + 1,
+ [&ConnectedSet](SCCT *C) { return ConnectedSet.count(C); });
+ for (int i = SourceIdx + 1, e = TargetIdx + 1; i < e; ++i)
+ SCCIndices.find(SCCs[i])->second = i;
+ TargetIdx = std::prev(TargetI) - SCCs.begin();
+ assert(SCCs[TargetIdx] == &TargetSCC &&
+ "Should always end with the target!");
+ }
+
+ // At this point, we know that connecting source to target forms a cycle
+ // because target connects back to source, and we know that all of the SCCs
+ // between the source and target in the postorder sequence participate in that
+ // cycle.
+ return make_range(SCCs.begin() + SourceIdx, SCCs.begin() + TargetIdx);
+}
+
+bool
+LazyCallGraph::RefSCC::switchInternalEdgeToCall(
+ Node &SourceN, Node &TargetN,
+ function_ref<void(ArrayRef<SCC *> MergeSCCs)> MergeCB) {
+ assert(!(*SourceN)[TargetN].isCall() && "Must start with a ref edge!");
+ SmallVector<SCC *, 1> DeletedSCCs;
+
+#ifndef NDEBUG
+ // In a debug build, verify the RefSCC is valid to start with and when this
+ // routine finishes.
+ verify();
+ auto VerifyOnExit = make_scope_exit([&]() { verify(); });
+#endif
+
+ SCC &SourceSCC = *G->lookupSCC(SourceN);
+ SCC &TargetSCC = *G->lookupSCC(TargetN);
+
+ // If the two nodes are already part of the same SCC, we're also done as
+ // we've just added more connectivity.
+ if (&SourceSCC == &TargetSCC) {
+ SourceN->setEdgeKind(TargetN, Edge::Call);
+ return false; // No new cycle.
+ }
+
+ // At this point we leverage the postorder list of SCCs to detect when the
+ // insertion of an edge changes the SCC structure in any way.
+ //
+ // First and foremost, we can eliminate the need for any changes when the
+ // edge is toward the beginning of the postorder sequence because all edges
+ // flow in that direction already. Thus adding a new one cannot form a cycle.
+ int SourceIdx = SCCIndices[&SourceSCC];
+ int TargetIdx = SCCIndices[&TargetSCC];
+ if (TargetIdx < SourceIdx) {
+ SourceN->setEdgeKind(TargetN, Edge::Call);
+ return false; // No new cycle.
+ }
+
+ // Compute the SCCs which (transitively) reach the source.
+ auto ComputeSourceConnectedSet = [&](SmallPtrSetImpl<SCC *> &ConnectedSet) {
+#ifndef NDEBUG
+ // Check that the RefSCC is still valid before computing this as the
+ // results will be nonsensical of we've broken its invariants.
+ verify();
+#endif
+ ConnectedSet.insert(&SourceSCC);
+ auto IsConnected = [&](SCC &C) {
+ for (Node &N : C)
+ for (Edge &E : N->calls())
+ if (ConnectedSet.count(G->lookupSCC(E.getNode())))
+ return true;
+
+ return false;
+ };
+
+ for (SCC *C :
+ make_range(SCCs.begin() + SourceIdx + 1, SCCs.begin() + TargetIdx + 1))
+ if (IsConnected(*C))
+ ConnectedSet.insert(C);
+ };
+
+ // Use a normal worklist to find which SCCs the target connects to. We still
+ // bound the search based on the range in the postorder list we care about,
+ // but because this is forward connectivity we just "recurse" through the
+ // edges.
+ auto ComputeTargetConnectedSet = [&](SmallPtrSetImpl<SCC *> &ConnectedSet) {
+#ifndef NDEBUG
+ // Check that the RefSCC is still valid before computing this as the
+ // results will be nonsensical of we've broken its invariants.
+ verify();
+#endif
+ ConnectedSet.insert(&TargetSCC);
+ SmallVector<SCC *, 4> Worklist;
+ Worklist.push_back(&TargetSCC);
+ do {
+ SCC &C = *Worklist.pop_back_val();
+ for (Node &N : C)
+ for (Edge &E : *N) {
+ if (!E.isCall())
+ continue;
+ SCC &EdgeC = *G->lookupSCC(E.getNode());
+ if (&EdgeC.getOuterRefSCC() != this)
+ // Not in this RefSCC...
+ continue;
+ if (SCCIndices.find(&EdgeC)->second <= SourceIdx)
+ // Not in the postorder sequence between source and target.
+ continue;
+
+ if (ConnectedSet.insert(&EdgeC).second)
+ Worklist.push_back(&EdgeC);
+ }
+ } while (!Worklist.empty());
+ };
+
+ // Use a generic helper to update the postorder sequence of SCCs and return
+ // a range of any SCCs connected into a cycle by inserting this edge. This
+ // routine will also take care of updating the indices into the postorder
+ // sequence.
+ auto MergeRange = updatePostorderSequenceForEdgeInsertion(
+ SourceSCC, TargetSCC, SCCs, SCCIndices, ComputeSourceConnectedSet,
+ ComputeTargetConnectedSet);
+
+ // Run the user's callback on the merged SCCs before we actually merge them.
+ if (MergeCB)
+ MergeCB(makeArrayRef(MergeRange.begin(), MergeRange.end()));
+
+ // If the merge range is empty, then adding the edge didn't actually form any
+ // new cycles. We're done.
+ if (MergeRange.empty()) {
+ // Now that the SCC structure is finalized, flip the kind to call.
+ SourceN->setEdgeKind(TargetN, Edge::Call);
+ return false; // No new cycle.
+ }
+
+#ifndef NDEBUG
+ // Before merging, check that the RefSCC remains valid after all the
+ // postorder updates.
+ verify();
+#endif
+
+ // Otherwise we need to merge all of the SCCs in the cycle into a single
+ // result SCC.
+ //
+ // NB: We merge into the target because all of these functions were already
+ // reachable from the target, meaning any SCC-wide properties deduced about it
+ // other than the set of functions within it will not have changed.
+ for (SCC *C : MergeRange) {
+ assert(C != &TargetSCC &&
+ "We merge *into* the target and shouldn't process it here!");
+ SCCIndices.erase(C);
+ TargetSCC.Nodes.append(C->Nodes.begin(), C->Nodes.end());
+ for (Node *N : C->Nodes)
+ G->SCCMap[N] = &TargetSCC;
+ C->clear();
+ DeletedSCCs.push_back(C);
+ }
+
+ // Erase the merged SCCs from the list and update the indices of the
+ // remaining SCCs.
+ int IndexOffset = MergeRange.end() - MergeRange.begin();
+ auto EraseEnd = SCCs.erase(MergeRange.begin(), MergeRange.end());
+ for (SCC *C : make_range(EraseEnd, SCCs.end()))
+ SCCIndices[C] -= IndexOffset;
+
+ // Now that the SCC structure is finalized, flip the kind to call.
+ SourceN->setEdgeKind(TargetN, Edge::Call);
+
+ // And we're done, but we did form a new cycle.
+ return true;
+}
+
+void LazyCallGraph::RefSCC::switchTrivialInternalEdgeToRef(Node &SourceN,
+ Node &TargetN) {
+ assert((*SourceN)[TargetN].isCall() && "Must start with a call edge!");
+
+#ifndef NDEBUG
+ // In a debug build, verify the RefSCC is valid to start with and when this
+ // routine finishes.
+ verify();
+ auto VerifyOnExit = make_scope_exit([&]() { verify(); });
+#endif
+
+ assert(G->lookupRefSCC(SourceN) == this &&
+ "Source must be in this RefSCC.");
+ assert(G->lookupRefSCC(TargetN) == this &&
+ "Target must be in this RefSCC.");
+ assert(G->lookupSCC(SourceN) != G->lookupSCC(TargetN) &&
+ "Source and Target must be in separate SCCs for this to be trivial!");
+
+ // Set the edge kind.
+ SourceN->setEdgeKind(TargetN, Edge::Ref);
+}
+
+iterator_range<LazyCallGraph::RefSCC::iterator>
+LazyCallGraph::RefSCC::switchInternalEdgeToRef(Node &SourceN, Node &TargetN) {
+ assert((*SourceN)[TargetN].isCall() && "Must start with a call edge!");
+
+#ifndef NDEBUG
+ // In a debug build, verify the RefSCC is valid to start with and when this
+ // routine finishes.
+ verify();
+ auto VerifyOnExit = make_scope_exit([&]() { verify(); });
+#endif
+
+ assert(G->lookupRefSCC(SourceN) == this &&
+ "Source must be in this RefSCC.");
+ assert(G->lookupRefSCC(TargetN) == this &&
+ "Target must be in this RefSCC.");
+
+ SCC &TargetSCC = *G->lookupSCC(TargetN);
+ assert(G->lookupSCC(SourceN) == &TargetSCC && "Source and Target must be in "
+ "the same SCC to require the "
+ "full CG update.");
+
+ // Set the edge kind.
+ SourceN->setEdgeKind(TargetN, Edge::Ref);
+
+ // Otherwise we are removing a call edge from a single SCC. This may break
+ // the cycle. In order to compute the new set of SCCs, we need to do a small
+ // DFS over the nodes within the SCC to form any sub-cycles that remain as
+ // distinct SCCs and compute a postorder over the resulting SCCs.
+ //
+ // However, we specially handle the target node. The target node is known to
+ // reach all other nodes in the original SCC by definition. This means that
+ // we want the old SCC to be replaced with an SCC containing that node as it
+ // will be the root of whatever SCC DAG results from the DFS. Assumptions
+ // about an SCC such as the set of functions called will continue to hold,
+ // etc.
+
+ SCC &OldSCC = TargetSCC;
+ SmallVector<std::pair<Node *, EdgeSequence::call_iterator>, 16> DFSStack;
+ SmallVector<Node *, 16> PendingSCCStack;
+ SmallVector<SCC *, 4> NewSCCs;
+
+ // Prepare the nodes for a fresh DFS.
+ SmallVector<Node *, 16> Worklist;
+ Worklist.swap(OldSCC.Nodes);
+ for (Node *N : Worklist) {
+ N->DFSNumber = N->LowLink = 0;
+ G->SCCMap.erase(N);
+ }
+
+ // Force the target node to be in the old SCC. This also enables us to take
+ // a very significant short-cut in the standard Tarjan walk to re-form SCCs
+ // below: whenever we build an edge that reaches the target node, we know
+ // that the target node eventually connects back to all other nodes in our
+ // walk. As a consequence, we can detect and handle participants in that
+ // cycle without walking all the edges that form this connection, and instead
+ // by relying on the fundamental guarantee coming into this operation (all
+ // nodes are reachable from the target due to previously forming an SCC).
+ TargetN.DFSNumber = TargetN.LowLink = -1;
+ OldSCC.Nodes.push_back(&TargetN);
+ G->SCCMap[&TargetN] = &OldSCC;
+
+ // Scan down the stack and DFS across the call edges.
+ for (Node *RootN : Worklist) {
+ assert(DFSStack.empty() &&
+ "Cannot begin a new root with a non-empty DFS stack!");
+ assert(PendingSCCStack.empty() &&
+ "Cannot begin a new root with pending nodes for an SCC!");
+
+ // Skip any nodes we've already reached in the DFS.
+ if (RootN->DFSNumber != 0) {
+ assert(RootN->DFSNumber == -1 &&
+ "Shouldn't have any mid-DFS root nodes!");
+ continue;
+ }
+
+ RootN->DFSNumber = RootN->LowLink = 1;
+ int NextDFSNumber = 2;
+
+ DFSStack.push_back({RootN, (*RootN)->call_begin()});
+ do {
+ Node *N;
+ EdgeSequence::call_iterator I;
+ std::tie(N, I) = DFSStack.pop_back_val();
+ auto E = (*N)->call_end();
+ while (I != E) {
+ Node &ChildN = I->getNode();
+ if (ChildN.DFSNumber == 0) {
+ // We haven't yet visited this child, so descend, pushing the current
+ // node onto the stack.
+ DFSStack.push_back({N, I});
+
+ assert(!G->SCCMap.count(&ChildN) &&
+ "Found a node with 0 DFS number but already in an SCC!");
+ ChildN.DFSNumber = ChildN.LowLink = NextDFSNumber++;
+ N = &ChildN;
+ I = (*N)->call_begin();
+ E = (*N)->call_end();
+ continue;
+ }
+
+ // Check for the child already being part of some component.
+ if (ChildN.DFSNumber == -1) {
+ if (G->lookupSCC(ChildN) == &OldSCC) {
+ // If the child is part of the old SCC, we know that it can reach
+ // every other node, so we have formed a cycle. Pull the entire DFS
+ // and pending stacks into it. See the comment above about setting
+ // up the old SCC for why we do this.
+ int OldSize = OldSCC.size();
+ OldSCC.Nodes.push_back(N);
+ OldSCC.Nodes.append(PendingSCCStack.begin(), PendingSCCStack.end());
+ PendingSCCStack.clear();
+ while (!DFSStack.empty())
+ OldSCC.Nodes.push_back(DFSStack.pop_back_val().first);
+ for (Node &N : make_range(OldSCC.begin() + OldSize, OldSCC.end())) {
+ N.DFSNumber = N.LowLink = -1;
+ G->SCCMap[&N] = &OldSCC;
+ }
+ N = nullptr;
+ break;
+ }
+
+ // If the child has already been added to some child component, it
+ // couldn't impact the low-link of this parent because it isn't
+ // connected, and thus its low-link isn't relevant so skip it.
+ ++I;
+ continue;
+ }
+
+ // Track the lowest linked child as the lowest link for this node.
+ assert(ChildN.LowLink > 0 && "Must have a positive low-link number!");
+ if (ChildN.LowLink < N->LowLink)
+ N->LowLink = ChildN.LowLink;
+
+ // Move to the next edge.
+ ++I;
+ }
+ if (!N)
+ // Cleared the DFS early, start another round.
+ break;
+
+ // We've finished processing N and its descendants, put it on our pending
+ // SCC stack to eventually get merged into an SCC of nodes.
+ PendingSCCStack.push_back(N);
+
+ // If this node is linked to some lower entry, continue walking up the
+ // stack.
+ if (N->LowLink != N->DFSNumber)
+ continue;
+
+ // Otherwise, we've completed an SCC. Append it to our post order list of
+ // SCCs.
+ int RootDFSNumber = N->DFSNumber;
+ // Find the range of the node stack by walking down until we pass the
+ // root DFS number.
+ auto SCCNodes = make_range(
+ PendingSCCStack.rbegin(),
+ find_if(reverse(PendingSCCStack), [RootDFSNumber](const Node *N) {
+ return N->DFSNumber < RootDFSNumber;
+ }));
+
+ // Form a new SCC out of these nodes and then clear them off our pending
+ // stack.
+ NewSCCs.push_back(G->createSCC(*this, SCCNodes));
+ for (Node &N : *NewSCCs.back()) {
+ N.DFSNumber = N.LowLink = -1;
+ G->SCCMap[&N] = NewSCCs.back();
+ }
+ PendingSCCStack.erase(SCCNodes.end().base(), PendingSCCStack.end());
+ } while (!DFSStack.empty());
+ }
+
+ // Insert the remaining SCCs before the old one. The old SCC can reach all
+ // other SCCs we form because it contains the target node of the removed edge
+ // of the old SCC. This means that we will have edges into all of the new
+ // SCCs, which means the old one must come last for postorder.
+ int OldIdx = SCCIndices[&OldSCC];
+ SCCs.insert(SCCs.begin() + OldIdx, NewSCCs.begin(), NewSCCs.end());
+
+ // Update the mapping from SCC* to index to use the new SCC*s, and remove the
+ // old SCC from the mapping.
+ for (int Idx = OldIdx, Size = SCCs.size(); Idx < Size; ++Idx)
+ SCCIndices[SCCs[Idx]] = Idx;
+
+ return make_range(SCCs.begin() + OldIdx,
+ SCCs.begin() + OldIdx + NewSCCs.size());
+}
+
+void LazyCallGraph::RefSCC::switchOutgoingEdgeToCall(Node &SourceN,
+ Node &TargetN) {
+ assert(!(*SourceN)[TargetN].isCall() && "Must start with a ref edge!");
+
+ assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
+ assert(G->lookupRefSCC(TargetN) != this &&
+ "Target must not be in this RefSCC.");
+#ifdef EXPENSIVE_CHECKS
+ assert(G->lookupRefSCC(TargetN)->isDescendantOf(*this) &&
+ "Target must be a descendant of the Source.");
+#endif
+
+ // Edges between RefSCCs are the same regardless of call or ref, so we can
+ // just flip the edge here.
+ SourceN->setEdgeKind(TargetN, Edge::Call);
+
+#ifndef NDEBUG
+ // Check that the RefSCC is still valid.
+ verify();
+#endif
+}
+
+void LazyCallGraph::RefSCC::switchOutgoingEdgeToRef(Node &SourceN,
+ Node &TargetN) {
+ assert((*SourceN)[TargetN].isCall() && "Must start with a call edge!");
+
+ assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
+ assert(G->lookupRefSCC(TargetN) != this &&
+ "Target must not be in this RefSCC.");
+#ifdef EXPENSIVE_CHECKS
+ assert(G->lookupRefSCC(TargetN)->isDescendantOf(*this) &&
+ "Target must be a descendant of the Source.");
+#endif
+
+ // Edges between RefSCCs are the same regardless of call or ref, so we can
+ // just flip the edge here.
+ SourceN->setEdgeKind(TargetN, Edge::Ref);
+
+#ifndef NDEBUG
+ // Check that the RefSCC is still valid.
+ verify();
+#endif
+}
+
+void LazyCallGraph::RefSCC::insertInternalRefEdge(Node &SourceN,
+ Node &TargetN) {
+ assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
+ assert(G->lookupRefSCC(TargetN) == this && "Target must be in this RefSCC.");
+
+ SourceN->insertEdgeInternal(TargetN, Edge::Ref);
+
+#ifndef NDEBUG
+ // Check that the RefSCC is still valid.
+ verify();
+#endif
+}
+
+void LazyCallGraph::RefSCC::insertOutgoingEdge(Node &SourceN, Node &TargetN,
+ Edge::Kind EK) {
+ // First insert it into the caller.
+ SourceN->insertEdgeInternal(TargetN, EK);
+
+ assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
+
+ assert(G->lookupRefSCC(TargetN) != this &&
+ "Target must not be in this RefSCC.");
+#ifdef EXPENSIVE_CHECKS
+ assert(G->lookupRefSCC(TargetN)->isDescendantOf(*this) &&
+ "Target must be a descendant of the Source.");
+#endif
+
+#ifndef NDEBUG
+ // Check that the RefSCC is still valid.
+ verify();
+#endif
+}
+
+SmallVector<LazyCallGraph::RefSCC *, 1>
+LazyCallGraph::RefSCC::insertIncomingRefEdge(Node &SourceN, Node &TargetN) {
+ assert(G->lookupRefSCC(TargetN) == this && "Target must be in this RefSCC.");
+ RefSCC &SourceC = *G->lookupRefSCC(SourceN);
+ assert(&SourceC != this && "Source must not be in this RefSCC.");
+#ifdef EXPENSIVE_CHECKS
+ assert(SourceC.isDescendantOf(*this) &&
+ "Source must be a descendant of the Target.");
+#endif
+
+ SmallVector<RefSCC *, 1> DeletedRefSCCs;
+
+#ifndef NDEBUG
+ // In a debug build, verify the RefSCC is valid to start with and when this
+ // routine finishes.
+ verify();
+ auto VerifyOnExit = make_scope_exit([&]() { verify(); });
+#endif
+
+ int SourceIdx = G->RefSCCIndices[&SourceC];
+ int TargetIdx = G->RefSCCIndices[this];
+ assert(SourceIdx < TargetIdx &&
+ "Postorder list doesn't see edge as incoming!");
+
+ // Compute the RefSCCs which (transitively) reach the source. We do this by
+ // working backwards from the source using the parent set in each RefSCC,
+ // skipping any RefSCCs that don't fall in the postorder range. This has the
+ // advantage of walking the sparser parent edge (in high fan-out graphs) but
+ // more importantly this removes examining all forward edges in all RefSCCs
+ // within the postorder range which aren't in fact connected. Only connected
+ // RefSCCs (and their edges) are visited here.
+ auto ComputeSourceConnectedSet = [&](SmallPtrSetImpl<RefSCC *> &Set) {
+ Set.insert(&SourceC);
+ auto IsConnected = [&](RefSCC &RC) {
+ for (SCC &C : RC)
+ for (Node &N : C)
+ for (Edge &E : *N)
+ if (Set.count(G->lookupRefSCC(E.getNode())))
+ return true;
+
+ return false;
+ };
+
+ for (RefSCC *C : make_range(G->PostOrderRefSCCs.begin() + SourceIdx + 1,
+ G->PostOrderRefSCCs.begin() + TargetIdx + 1))
+ if (IsConnected(*C))
+ Set.insert(C);
+ };
+
+ // Use a normal worklist to find which SCCs the target connects to. We still
+ // bound the search based on the range in the postorder list we care about,
+ // but because this is forward connectivity we just "recurse" through the
+ // edges.
+ auto ComputeTargetConnectedSet = [&](SmallPtrSetImpl<RefSCC *> &Set) {
+ Set.insert(this);
+ SmallVector<RefSCC *, 4> Worklist;
+ Worklist.push_back(this);
+ do {
+ RefSCC &RC = *Worklist.pop_back_val();
+ for (SCC &C : RC)
+ for (Node &N : C)
+ for (Edge &E : *N) {
+ RefSCC &EdgeRC = *G->lookupRefSCC(E.getNode());
+ if (G->getRefSCCIndex(EdgeRC) <= SourceIdx)
+ // Not in the postorder sequence between source and target.
+ continue;
+
+ if (Set.insert(&EdgeRC).second)
+ Worklist.push_back(&EdgeRC);
+ }
+ } while (!Worklist.empty());
+ };
+
+ // Use a generic helper to update the postorder sequence of RefSCCs and return
+ // a range of any RefSCCs connected into a cycle by inserting this edge. This
+ // routine will also take care of updating the indices into the postorder
+ // sequence.
+ iterator_range<SmallVectorImpl<RefSCC *>::iterator> MergeRange =
+ updatePostorderSequenceForEdgeInsertion(
+ SourceC, *this, G->PostOrderRefSCCs, G->RefSCCIndices,
+ ComputeSourceConnectedSet, ComputeTargetConnectedSet);
+
+ // Build a set so we can do fast tests for whether a RefSCC will end up as
+ // part of the merged RefSCC.
+ SmallPtrSet<RefSCC *, 16> MergeSet(MergeRange.begin(), MergeRange.end());
+
+ // This RefSCC will always be part of that set, so just insert it here.
+ MergeSet.insert(this);
+
+ // Now that we have identified all of the SCCs which need to be merged into
+ // a connected set with the inserted edge, merge all of them into this SCC.
+ SmallVector<SCC *, 16> MergedSCCs;
+ int SCCIndex = 0;
+ for (RefSCC *RC : MergeRange) {
+ assert(RC != this && "We're merging into the target RefSCC, so it "
+ "shouldn't be in the range.");
+
+ // Walk the inner SCCs to update their up-pointer and walk all the edges to
+ // update any parent sets.
+ // FIXME: We should try to find a way to avoid this (rather expensive) edge
+ // walk by updating the parent sets in some other manner.
+ for (SCC &InnerC : *RC) {
+ InnerC.OuterRefSCC = this;
+ SCCIndices[&InnerC] = SCCIndex++;
+ for (Node &N : InnerC)
+ G->SCCMap[&N] = &InnerC;
+ }
+
+ // Now merge in the SCCs. We can actually move here so try to reuse storage
+ // the first time through.
+ if (MergedSCCs.empty())
+ MergedSCCs = std::move(RC->SCCs);
+ else
+ MergedSCCs.append(RC->SCCs.begin(), RC->SCCs.end());
+ RC->SCCs.clear();
+ DeletedRefSCCs.push_back(RC);
+ }
+
+ // Append our original SCCs to the merged list and move it into place.
+ for (SCC &InnerC : *this)
+ SCCIndices[&InnerC] = SCCIndex++;
+ MergedSCCs.append(SCCs.begin(), SCCs.end());
+ SCCs = std::move(MergedSCCs);
+
+ // Remove the merged away RefSCCs from the post order sequence.
+ for (RefSCC *RC : MergeRange)
+ G->RefSCCIndices.erase(RC);
+ int IndexOffset = MergeRange.end() - MergeRange.begin();
+ auto EraseEnd =
+ G->PostOrderRefSCCs.erase(MergeRange.begin(), MergeRange.end());
+ for (RefSCC *RC : make_range(EraseEnd, G->PostOrderRefSCCs.end()))
+ G->RefSCCIndices[RC] -= IndexOffset;
+
+ // At this point we have a merged RefSCC with a post-order SCCs list, just
+ // connect the nodes to form the new edge.
+ SourceN->insertEdgeInternal(TargetN, Edge::Ref);
+
+ // We return the list of SCCs which were merged so that callers can
+ // invalidate any data they have associated with those SCCs. Note that these
+ // SCCs are no longer in an interesting state (they are totally empty) but
+ // the pointers will remain stable for the life of the graph itself.
+ return DeletedRefSCCs;
+}
+
+void LazyCallGraph::RefSCC::removeOutgoingEdge(Node &SourceN, Node &TargetN) {
+ assert(G->lookupRefSCC(SourceN) == this &&
+ "The source must be a member of this RefSCC.");
+ assert(G->lookupRefSCC(TargetN) != this &&
+ "The target must not be a member of this RefSCC");
+
+#ifndef NDEBUG
+ // In a debug build, verify the RefSCC is valid to start with and when this
+ // routine finishes.
+ verify();
+ auto VerifyOnExit = make_scope_exit([&]() { verify(); });
+#endif
+
+ // First remove it from the node.
+ bool Removed = SourceN->removeEdgeInternal(TargetN);
+ (void)Removed;
+ assert(Removed && "Target not in the edge set for this caller?");
+}
+
+SmallVector<LazyCallGraph::RefSCC *, 1>
+LazyCallGraph::RefSCC::removeInternalRefEdge(Node &SourceN,
+ ArrayRef<Node *> TargetNs) {
+ // We return a list of the resulting *new* RefSCCs in post-order.
+ SmallVector<RefSCC *, 1> Result;
+
+#ifndef NDEBUG
+ // In a debug build, verify the RefSCC is valid to start with and that either
+ // we return an empty list of result RefSCCs and this RefSCC remains valid,
+ // or we return new RefSCCs and this RefSCC is dead.
+ verify();
+ auto VerifyOnExit = make_scope_exit([&]() {
+ // If we didn't replace our RefSCC with new ones, check that this one
+ // remains valid.
+ if (G)
+ verify();
+ });
+#endif
+
+ // First remove the actual edges.
+ for (Node *TargetN : TargetNs) {
+ assert(!(*SourceN)[*TargetN].isCall() &&
+ "Cannot remove a call edge, it must first be made a ref edge");
+
+ bool Removed = SourceN->removeEdgeInternal(*TargetN);
+ (void)Removed;
+ assert(Removed && "Target not in the edge set for this caller?");
+ }
+
+ // Direct self references don't impact the ref graph at all.
+ if (llvm::all_of(TargetNs,
+ [&](Node *TargetN) { return &SourceN == TargetN; }))
+ return Result;
+
+ // If all targets are in the same SCC as the source, because no call edges
+ // were removed there is no RefSCC structure change.
+ SCC &SourceC = *G->lookupSCC(SourceN);
+ if (llvm::all_of(TargetNs, [&](Node *TargetN) {
+ return G->lookupSCC(*TargetN) == &SourceC;
+ }))
+ return Result;
+
+ // We build somewhat synthetic new RefSCCs by providing a postorder mapping
+ // for each inner SCC. We store these inside the low-link field of the nodes
+ // rather than associated with SCCs because this saves a round-trip through
+ // the node->SCC map and in the common case, SCCs are small. We will verify
+ // that we always give the same number to every node in the SCC such that
+ // these are equivalent.
+ int PostOrderNumber = 0;
+
+ // Reset all the other nodes to prepare for a DFS over them, and add them to
+ // our worklist.
+ SmallVector<Node *, 8> Worklist;
+ for (SCC *C : SCCs) {
+ for (Node &N : *C)
+ N.DFSNumber = N.LowLink = 0;
+
+ Worklist.append(C->Nodes.begin(), C->Nodes.end());
+ }
+
+ // Track the number of nodes in this RefSCC so that we can quickly recognize
+ // an important special case of the edge removal not breaking the cycle of
+ // this RefSCC.
+ const int NumRefSCCNodes = Worklist.size();
+
+ SmallVector<std::pair<Node *, EdgeSequence::iterator>, 4> DFSStack;
+ SmallVector<Node *, 4> PendingRefSCCStack;
+ do {
+ assert(DFSStack.empty() &&
+ "Cannot begin a new root with a non-empty DFS stack!");
+ assert(PendingRefSCCStack.empty() &&
+ "Cannot begin a new root with pending nodes for an SCC!");
+
+ Node *RootN = Worklist.pop_back_val();
+ // Skip any nodes we've already reached in the DFS.
+ if (RootN->DFSNumber != 0) {
+ assert(RootN->DFSNumber == -1 &&
+ "Shouldn't have any mid-DFS root nodes!");
+ continue;
+ }
+
+ RootN->DFSNumber = RootN->LowLink = 1;
+ int NextDFSNumber = 2;
+
+ DFSStack.push_back({RootN, (*RootN)->begin()});
+ do {
+ Node *N;
+ EdgeSequence::iterator I;
+ std::tie(N, I) = DFSStack.pop_back_val();
+ auto E = (*N)->end();
+
+ assert(N->DFSNumber != 0 && "We should always assign a DFS number "
+ "before processing a node.");
+
+ while (I != E) {
+ Node &ChildN = I->getNode();
+ if (ChildN.DFSNumber == 0) {
+ // Mark that we should start at this child when next this node is the
+ // top of the stack. We don't start at the next child to ensure this
+ // child's lowlink is reflected.
+ DFSStack.push_back({N, I});
+
+ // Continue, resetting to the child node.
+ ChildN.LowLink = ChildN.DFSNumber = NextDFSNumber++;
+ N = &ChildN;
+ I = ChildN->begin();
+ E = ChildN->end();
+ continue;
+ }
+ if (ChildN.DFSNumber == -1) {
+ // If this child isn't currently in this RefSCC, no need to process
+ // it.
+ ++I;
+ continue;
+ }
+
+ // Track the lowest link of the children, if any are still in the stack.
+ // Any child not on the stack will have a LowLink of -1.
+ assert(ChildN.LowLink != 0 &&
+ "Low-link must not be zero with a non-zero DFS number.");
+ if (ChildN.LowLink >= 0 && ChildN.LowLink < N->LowLink)
+ N->LowLink = ChildN.LowLink;
+ ++I;
+ }
+
+ // We've finished processing N and its descendants, put it on our pending
+ // stack to eventually get merged into a RefSCC.
+ PendingRefSCCStack.push_back(N);
+
+ // If this node is linked to some lower entry, continue walking up the
+ // stack.
+ if (N->LowLink != N->DFSNumber) {
+ assert(!DFSStack.empty() &&
+ "We never found a viable root for a RefSCC to pop off!");
+ continue;
+ }
+
+ // Otherwise, form a new RefSCC from the top of the pending node stack.
+ int RefSCCNumber = PostOrderNumber++;
+ int RootDFSNumber = N->DFSNumber;
+
+ // Find the range of the node stack by walking down until we pass the
+ // root DFS number. Update the DFS numbers and low link numbers in the
+ // process to avoid re-walking this list where possible.
+ auto StackRI = find_if(reverse(PendingRefSCCStack), [&](Node *N) {
+ if (N->DFSNumber < RootDFSNumber)
+ // We've found the bottom.
+ return true;
+
+ // Update this node and keep scanning.
+ N->DFSNumber = -1;
+ // Save the post-order number in the lowlink field so that we can use
+ // it to map SCCs into new RefSCCs after we finish the DFS.
+ N->LowLink = RefSCCNumber;
+ return false;
+ });
+ auto RefSCCNodes = make_range(StackRI.base(), PendingRefSCCStack.end());
+
+ // If we find a cycle containing all nodes originally in this RefSCC then
+ // the removal hasn't changed the structure at all. This is an important
+ // special case and we can directly exit the entire routine more
+ // efficiently as soon as we discover it.
+ if (llvm::size(RefSCCNodes) == NumRefSCCNodes) {
+ // Clear out the low link field as we won't need it.
+ for (Node *N : RefSCCNodes)
+ N->LowLink = -1;
+ // Return the empty result immediately.
+ return Result;
+ }
+
+ // We've already marked the nodes internally with the RefSCC number so
+ // just clear them off the stack and continue.
+ PendingRefSCCStack.erase(RefSCCNodes.begin(), PendingRefSCCStack.end());
+ } while (!DFSStack.empty());
+
+ assert(DFSStack.empty() && "Didn't flush the entire DFS stack!");
+ assert(PendingRefSCCStack.empty() && "Didn't flush all pending nodes!");
+ } while (!Worklist.empty());
+
+ assert(PostOrderNumber > 1 &&
+ "Should never finish the DFS when the existing RefSCC remains valid!");
+
+ // Otherwise we create a collection of new RefSCC nodes and build
+ // a radix-sort style map from postorder number to these new RefSCCs. We then
+ // append SCCs to each of these RefSCCs in the order they occurred in the
+ // original SCCs container.
+ for (int i = 0; i < PostOrderNumber; ++i)
+ Result.push_back(G->createRefSCC(*G));
+
+ // Insert the resulting postorder sequence into the global graph postorder
+ // sequence before the current RefSCC in that sequence, and then remove the
+ // current one.
+ //
+ // FIXME: It'd be nice to change the APIs so that we returned an iterator
+ // range over the global postorder sequence and generally use that sequence
+ // rather than building a separate result vector here.
+ int Idx = G->getRefSCCIndex(*this);
+ G->PostOrderRefSCCs.erase(G->PostOrderRefSCCs.begin() + Idx);
+ G->PostOrderRefSCCs.insert(G->PostOrderRefSCCs.begin() + Idx, Result.begin(),
+ Result.end());
+ for (int i : seq<int>(Idx, G->PostOrderRefSCCs.size()))
+ G->RefSCCIndices[G->PostOrderRefSCCs[i]] = i;
+
+ for (SCC *C : SCCs) {
+ // We store the SCC number in the node's low-link field above.
+ int SCCNumber = C->begin()->LowLink;
+ // Clear out all of the SCC's node's low-link fields now that we're done
+ // using them as side-storage.
+ for (Node &N : *C) {
+ assert(N.LowLink == SCCNumber &&
+ "Cannot have different numbers for nodes in the same SCC!");
+ N.LowLink = -1;
+ }
+
+ RefSCC &RC = *Result[SCCNumber];
+ int SCCIndex = RC.SCCs.size();
+ RC.SCCs.push_back(C);
+ RC.SCCIndices[C] = SCCIndex;
+ C->OuterRefSCC = &RC;
+ }
+
+ // Now that we've moved things into the new RefSCCs, clear out our current
+ // one.
+ G = nullptr;
+ SCCs.clear();
+ SCCIndices.clear();
+
+#ifndef NDEBUG
+ // Verify the new RefSCCs we've built.
+ for (RefSCC *RC : Result)
+ RC->verify();
+#endif
+
+ // Return the new list of SCCs.
+ return Result;
+}
+
+void LazyCallGraph::RefSCC::handleTrivialEdgeInsertion(Node &SourceN,
+ Node &TargetN) {
+ // The only trivial case that requires any graph updates is when we add new
+ // ref edge and may connect different RefSCCs along that path. This is only
+ // because of the parents set. Every other part of the graph remains constant
+ // after this edge insertion.
+ assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
+ RefSCC &TargetRC = *G->lookupRefSCC(TargetN);
+ if (&TargetRC == this)
+ return;
+
+#ifdef EXPENSIVE_CHECKS
+ assert(TargetRC.isDescendantOf(*this) &&
+ "Target must be a descendant of the Source.");
+#endif
+}
+
+void LazyCallGraph::RefSCC::insertTrivialCallEdge(Node &SourceN,
+ Node &TargetN) {
+#ifndef NDEBUG
+ // Check that the RefSCC is still valid when we finish.
+ auto ExitVerifier = make_scope_exit([this] { verify(); });
+
+#ifdef EXPENSIVE_CHECKS
+ // Check that we aren't breaking some invariants of the SCC graph. Note that
+ // this is quadratic in the number of edges in the call graph!
+ SCC &SourceC = *G->lookupSCC(SourceN);
+ SCC &TargetC = *G->lookupSCC(TargetN);
+ if (&SourceC != &TargetC)
+ assert(SourceC.isAncestorOf(TargetC) &&
+ "Call edge is not trivial in the SCC graph!");
+#endif // EXPENSIVE_CHECKS
+#endif // NDEBUG
+
+ // First insert it into the source or find the existing edge.
+ auto InsertResult =
+ SourceN->EdgeIndexMap.insert({&TargetN, SourceN->Edges.size()});
+ if (!InsertResult.second) {
+ // Already an edge, just update it.
+ Edge &E = SourceN->Edges[InsertResult.first->second];
+ if (E.isCall())
+ return; // Nothing to do!
+ E.setKind(Edge::Call);
+ } else {
+ // Create the new edge.
+ SourceN->Edges.emplace_back(TargetN, Edge::Call);
+ }
+
+ // Now that we have the edge, handle the graph fallout.
+ handleTrivialEdgeInsertion(SourceN, TargetN);
+}
+
+void LazyCallGraph::RefSCC::insertTrivialRefEdge(Node &SourceN, Node &TargetN) {
+#ifndef NDEBUG
+ // Check that the RefSCC is still valid when we finish.
+ auto ExitVerifier = make_scope_exit([this] { verify(); });
+
+#ifdef EXPENSIVE_CHECKS
+ // Check that we aren't breaking some invariants of the RefSCC graph.
+ RefSCC &SourceRC = *G->lookupRefSCC(SourceN);
+ RefSCC &TargetRC = *G->lookupRefSCC(TargetN);
+ if (&SourceRC != &TargetRC)
+ assert(SourceRC.isAncestorOf(TargetRC) &&
+ "Ref edge is not trivial in the RefSCC graph!");
+#endif // EXPENSIVE_CHECKS
+#endif // NDEBUG
+
+ // First insert it into the source or find the existing edge.
+ auto InsertResult =
+ SourceN->EdgeIndexMap.insert({&TargetN, SourceN->Edges.size()});
+ if (!InsertResult.second)
+ // Already an edge, we're done.
+ return;
+
+ // Create the new edge.
+ SourceN->Edges.emplace_back(TargetN, Edge::Ref);
+
+ // Now that we have the edge, handle the graph fallout.
+ handleTrivialEdgeInsertion(SourceN, TargetN);
+}
+
+void LazyCallGraph::RefSCC::replaceNodeFunction(Node &N, Function &NewF) {
+ Function &OldF = N.getFunction();
+
+#ifndef NDEBUG
+ // Check that the RefSCC is still valid when we finish.
+ auto ExitVerifier = make_scope_exit([this] { verify(); });
+
+ assert(G->lookupRefSCC(N) == this &&
+ "Cannot replace the function of a node outside this RefSCC.");
+
+ assert(G->NodeMap.find(&NewF) == G->NodeMap.end() &&
+ "Must not have already walked the new function!'");
+
+ // It is important that this replacement not introduce graph changes so we
+ // insist that the caller has already removed every use of the original
+ // function and that all uses of the new function correspond to existing
+ // edges in the graph. The common and expected way to use this is when
+ // replacing the function itself in the IR without changing the call graph
+ // shape and just updating the analysis based on that.
+ assert(&OldF != &NewF && "Cannot replace a function with itself!");
+ assert(OldF.use_empty() &&
+ "Must have moved all uses from the old function to the new!");
+#endif
+
+ N.replaceFunction(NewF);
+
+ // Update various call graph maps.
+ G->NodeMap.erase(&OldF);
+ G->NodeMap[&NewF] = &N;
+}
+
+void LazyCallGraph::insertEdge(Node &SourceN, Node &TargetN, Edge::Kind EK) {
+ assert(SCCMap.empty() &&
+ "This method cannot be called after SCCs have been formed!");
+
+ return SourceN->insertEdgeInternal(TargetN, EK);
+}
+
+void LazyCallGraph::removeEdge(Node &SourceN, Node &TargetN) {
+ assert(SCCMap.empty() &&
+ "This method cannot be called after SCCs have been formed!");
+
+ bool Removed = SourceN->removeEdgeInternal(TargetN);
+ (void)Removed;
+ assert(Removed && "Target not in the edge set for this caller?");
+}
+
+void LazyCallGraph::removeDeadFunction(Function &F) {
+ // FIXME: This is unnecessarily restrictive. We should be able to remove
+ // functions which recursively call themselves.
+ assert(F.use_empty() &&
+ "This routine should only be called on trivially dead functions!");
+
+ // We shouldn't remove library functions as they are never really dead while
+ // the call graph is in use -- every function definition refers to them.
+ assert(!isLibFunction(F) &&
+ "Must not remove lib functions from the call graph!");
+
+ auto NI = NodeMap.find(&F);
+ if (NI == NodeMap.end())
+ // Not in the graph at all!
+ return;
+
+ Node &N = *NI->second;
+ NodeMap.erase(NI);
+
+ // Remove this from the entry edges if present.
+ EntryEdges.removeEdgeInternal(N);
+
+ if (SCCMap.empty()) {
+ // No SCCs have been formed, so removing this is fine and there is nothing
+ // else necessary at this point but clearing out the node.
+ N.clear();
+ return;
+ }
+
+ // Cannot remove a function which has yet to be visited in the DFS walk, so
+ // if we have a node at all then we must have an SCC and RefSCC.
+ auto CI = SCCMap.find(&N);
+ assert(CI != SCCMap.end() &&
+ "Tried to remove a node without an SCC after DFS walk started!");
+ SCC &C = *CI->second;
+ SCCMap.erase(CI);
+ RefSCC &RC = C.getOuterRefSCC();
+
+ // This node must be the only member of its SCC as it has no callers, and
+ // that SCC must be the only member of a RefSCC as it has no references.
+ // Validate these properties first.
+ assert(C.size() == 1 && "Dead functions must be in a singular SCC");
+ assert(RC.size() == 1 && "Dead functions must be in a singular RefSCC");
+
+ auto RCIndexI = RefSCCIndices.find(&RC);
+ int RCIndex = RCIndexI->second;
+ PostOrderRefSCCs.erase(PostOrderRefSCCs.begin() + RCIndex);
+ RefSCCIndices.erase(RCIndexI);
+ for (int i = RCIndex, Size = PostOrderRefSCCs.size(); i < Size; ++i)
+ RefSCCIndices[PostOrderRefSCCs[i]] = i;
+
+ // Finally clear out all the data structures from the node down through the
+ // components.
+ N.clear();
+ N.G = nullptr;
+ N.F = nullptr;
+ C.clear();
+ RC.clear();
+ RC.G = nullptr;
+
+ // Nothing to delete as all the objects are allocated in stable bump pointer
+ // allocators.
+}
+
+LazyCallGraph::Node &LazyCallGraph::insertInto(Function &F, Node *&MappedN) {
+ return *new (MappedN = BPA.Allocate()) Node(*this, F);
+}
+
+void LazyCallGraph::updateGraphPtrs() {
+ // Walk the node map to update their graph pointers. While this iterates in
+ // an unstable order, the order has no effect so it remains correct.
+ for (auto &FunctionNodePair : NodeMap)
+ FunctionNodePair.second->G = this;
+
+ for (auto *RC : PostOrderRefSCCs)
+ RC->G = this;
+}
+
+template <typename RootsT, typename GetBeginT, typename GetEndT,
+ typename GetNodeT, typename FormSCCCallbackT>
+void LazyCallGraph::buildGenericSCCs(RootsT &&Roots, GetBeginT &&GetBegin,
+ GetEndT &&GetEnd, GetNodeT &&GetNode,
+ FormSCCCallbackT &&FormSCC) {
+ using EdgeItT = decltype(GetBegin(std::declval<Node &>()));
+
+ SmallVector<std::pair<Node *, EdgeItT>, 16> DFSStack;
+ SmallVector<Node *, 16> PendingSCCStack;
+
+ // Scan down the stack and DFS across the call edges.
+ for (Node *RootN : Roots) {
+ assert(DFSStack.empty() &&
+ "Cannot begin a new root with a non-empty DFS stack!");
+ assert(PendingSCCStack.empty() &&
+ "Cannot begin a new root with pending nodes for an SCC!");
+
+ // Skip any nodes we've already reached in the DFS.
+ if (RootN->DFSNumber != 0) {
+ assert(RootN->DFSNumber == -1 &&
+ "Shouldn't have any mid-DFS root nodes!");
+ continue;
+ }
+
+ RootN->DFSNumber = RootN->LowLink = 1;
+ int NextDFSNumber = 2;
+
+ DFSStack.push_back({RootN, GetBegin(*RootN)});
+ do {
+ Node *N;
+ EdgeItT I;
+ std::tie(N, I) = DFSStack.pop_back_val();
+ auto E = GetEnd(*N);
+ while (I != E) {
+ Node &ChildN = GetNode(I);
+ if (ChildN.DFSNumber == 0) {
+ // We haven't yet visited this child, so descend, pushing the current
+ // node onto the stack.
+ DFSStack.push_back({N, I});
+
+ ChildN.DFSNumber = ChildN.LowLink = NextDFSNumber++;
+ N = &ChildN;
+ I = GetBegin(*N);
+ E = GetEnd(*N);
+ continue;
+ }
+
+ // If the child has already been added to some child component, it
+ // couldn't impact the low-link of this parent because it isn't
+ // connected, and thus its low-link isn't relevant so skip it.
+ if (ChildN.DFSNumber == -1) {
+ ++I;
+ continue;
+ }
+
+ // Track the lowest linked child as the lowest link for this node.
+ assert(ChildN.LowLink > 0 && "Must have a positive low-link number!");
+ if (ChildN.LowLink < N->LowLink)
+ N->LowLink = ChildN.LowLink;
+
+ // Move to the next edge.
+ ++I;
+ }
+
+ // We've finished processing N and its descendants, put it on our pending
+ // SCC stack to eventually get merged into an SCC of nodes.
+ PendingSCCStack.push_back(N);
+
+ // If this node is linked to some lower entry, continue walking up the
+ // stack.
+ if (N->LowLink != N->DFSNumber)
+ continue;
+
+ // Otherwise, we've completed an SCC. Append it to our post order list of
+ // SCCs.
+ int RootDFSNumber = N->DFSNumber;
+ // Find the range of the node stack by walking down until we pass the
+ // root DFS number.
+ auto SCCNodes = make_range(
+ PendingSCCStack.rbegin(),
+ find_if(reverse(PendingSCCStack), [RootDFSNumber](const Node *N) {
+ return N->DFSNumber < RootDFSNumber;
+ }));
+ // Form a new SCC out of these nodes and then clear them off our pending
+ // stack.
+ FormSCC(SCCNodes);
+ PendingSCCStack.erase(SCCNodes.end().base(), PendingSCCStack.end());
+ } while (!DFSStack.empty());
+ }
+}
+
+/// Build the internal SCCs for a RefSCC from a sequence of nodes.
+///
+/// Appends the SCCs to the provided vector and updates the map with their
+/// indices. Both the vector and map must be empty when passed into this
+/// routine.
+void LazyCallGraph::buildSCCs(RefSCC &RC, node_stack_range Nodes) {
+ assert(RC.SCCs.empty() && "Already built SCCs!");
+ assert(RC.SCCIndices.empty() && "Already mapped SCC indices!");
+
+ for (Node *N : Nodes) {
+ assert(N->LowLink >= (*Nodes.begin())->LowLink &&
+ "We cannot have a low link in an SCC lower than its root on the "
+ "stack!");
+
+ // This node will go into the next RefSCC, clear out its DFS and low link
+ // as we scan.
+ N->DFSNumber = N->LowLink = 0;
+ }
+
+ // Each RefSCC contains a DAG of the call SCCs. To build these, we do
+ // a direct walk of the call edges using Tarjan's algorithm. We reuse the
+ // internal storage as we won't need it for the outer graph's DFS any longer.
+ buildGenericSCCs(
+ Nodes, [](Node &N) { return N->call_begin(); },
+ [](Node &N) { return N->call_end(); },
+ [](EdgeSequence::call_iterator I) -> Node & { return I->getNode(); },
+ [this, &RC](node_stack_range Nodes) {
+ RC.SCCs.push_back(createSCC(RC, Nodes));
+ for (Node &N : *RC.SCCs.back()) {
+ N.DFSNumber = N.LowLink = -1;
+ SCCMap[&N] = RC.SCCs.back();
+ }
+ });
+
+ // Wire up the SCC indices.
+ for (int i = 0, Size = RC.SCCs.size(); i < Size; ++i)
+ RC.SCCIndices[RC.SCCs[i]] = i;
+}
+
+void LazyCallGraph::buildRefSCCs() {
+ if (EntryEdges.empty() || !PostOrderRefSCCs.empty())
+ // RefSCCs are either non-existent or already built!
+ return;
+
+ assert(RefSCCIndices.empty() && "Already mapped RefSCC indices!");
+
+ SmallVector<Node *, 16> Roots;
+ for (Edge &E : *this)
+ Roots.push_back(&E.getNode());
+
+ // The roots will be popped of a stack, so use reverse to get a less
+ // surprising order. This doesn't change any of the semantics anywhere.
+ std::reverse(Roots.begin(), Roots.end());
+
+ buildGenericSCCs(
+ Roots,
+ [](Node &N) {
+ // We need to populate each node as we begin to walk its edges.
+ N.populate();
+ return N->begin();
+ },
+ [](Node &N) { return N->end(); },
+ [](EdgeSequence::iterator I) -> Node & { return I->getNode(); },
+ [this](node_stack_range Nodes) {
+ RefSCC *NewRC = createRefSCC(*this);
+ buildSCCs(*NewRC, Nodes);
+
+ // Push the new node into the postorder list and remember its position
+ // in the index map.
+ bool Inserted =
+ RefSCCIndices.insert({NewRC, PostOrderRefSCCs.size()}).second;
+ (void)Inserted;
+ assert(Inserted && "Cannot already have this RefSCC in the index map!");
+ PostOrderRefSCCs.push_back(NewRC);
+#ifndef NDEBUG
+ NewRC->verify();
+#endif
+ });
+}
+
+AnalysisKey LazyCallGraphAnalysis::Key;
+
+LazyCallGraphPrinterPass::LazyCallGraphPrinterPass(raw_ostream &OS) : OS(OS) {}
+
+static void printNode(raw_ostream &OS, LazyCallGraph::Node &N) {
+ OS << " Edges in function: " << N.getFunction().getName() << "\n";
+ for (LazyCallGraph::Edge &E : N.populate())
+ OS << " " << (E.isCall() ? "call" : "ref ") << " -> "
+ << E.getFunction().getName() << "\n";
+
+ OS << "\n";
+}
+
+static void printSCC(raw_ostream &OS, LazyCallGraph::SCC &C) {
+ OS << " SCC with " << C.size() << " functions:\n";
+
+ for (LazyCallGraph::Node &N : C)
+ OS << " " << N.getFunction().getName() << "\n";
+}
+
+static void printRefSCC(raw_ostream &OS, LazyCallGraph::RefSCC &C) {
+ OS << " RefSCC with " << C.size() << " call SCCs:\n";
+
+ for (LazyCallGraph::SCC &InnerC : C)
+ printSCC(OS, InnerC);
+
+ OS << "\n";
+}
+
+PreservedAnalyses LazyCallGraphPrinterPass::run(Module &M,
+ ModuleAnalysisManager &AM) {
+ LazyCallGraph &G = AM.getResult<LazyCallGraphAnalysis>(M);
+
+ OS << "Printing the call graph for module: " << M.getModuleIdentifier()
+ << "\n\n";
+
+ for (Function &F : M)
+ printNode(OS, G.get(F));
+
+ G.buildRefSCCs();
+ for (LazyCallGraph::RefSCC &C : G.postorder_ref_sccs())
+ printRefSCC(OS, C);
+
+ return PreservedAnalyses::all();
+}
+
+LazyCallGraphDOTPrinterPass::LazyCallGraphDOTPrinterPass(raw_ostream &OS)
+ : OS(OS) {}
+
+static void printNodeDOT(raw_ostream &OS, LazyCallGraph::Node &N) {
+ std::string Name = "\"" + DOT::EscapeString(N.getFunction().getName()) + "\"";
+
+ for (LazyCallGraph::Edge &E : N.populate()) {
+ OS << " " << Name << " -> \""
+ << DOT::EscapeString(E.getFunction().getName()) << "\"";
+ if (!E.isCall()) // It is a ref edge.
+ OS << " [style=dashed,label=\"ref\"]";
+ OS << ";\n";
+ }
+
+ OS << "\n";
+}
+
+PreservedAnalyses LazyCallGraphDOTPrinterPass::run(Module &M,
+ ModuleAnalysisManager &AM) {
+ LazyCallGraph &G = AM.getResult<LazyCallGraphAnalysis>(M);
+
+ OS << "digraph \"" << DOT::EscapeString(M.getModuleIdentifier()) << "\" {\n";
+
+ for (Function &F : M)
+ printNodeDOT(OS, G.get(F));
+
+ OS << "}\n";
+
+ return PreservedAnalyses::all();
+}