diff options
Diffstat (limited to 'llvm/lib/Analysis/LazyCallGraph.cpp')
-rw-r--r-- | llvm/lib/Analysis/LazyCallGraph.cpp | 1816 |
1 files changed, 1816 insertions, 0 deletions
diff --git a/llvm/lib/Analysis/LazyCallGraph.cpp b/llvm/lib/Analysis/LazyCallGraph.cpp new file mode 100644 index 0000000000000..ef31c1e0ba8ce --- /dev/null +++ b/llvm/lib/Analysis/LazyCallGraph.cpp @@ -0,0 +1,1816 @@ +//===- LazyCallGraph.cpp - Analysis of a Module's call graph --------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// + +#include "llvm/Analysis/LazyCallGraph.h" +#include "llvm/ADT/ArrayRef.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/ScopeExit.h" +#include "llvm/ADT/Sequence.h" +#include "llvm/ADT/SmallPtrSet.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/iterator_range.h" +#include "llvm/Analysis/TargetLibraryInfo.h" +#include "llvm/Config/llvm-config.h" +#include "llvm/IR/CallSite.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/GlobalVariable.h" +#include "llvm/IR/Instruction.h" +#include "llvm/IR/Module.h" +#include "llvm/IR/PassManager.h" +#include "llvm/Support/Casting.h" +#include "llvm/Support/Compiler.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/GraphWriter.h" +#include "llvm/Support/raw_ostream.h" +#include <algorithm> +#include <cassert> +#include <cstddef> +#include <iterator> +#include <string> +#include <tuple> +#include <utility> + +using namespace llvm; + +#define DEBUG_TYPE "lcg" + +void LazyCallGraph::EdgeSequence::insertEdgeInternal(Node &TargetN, + Edge::Kind EK) { + EdgeIndexMap.insert({&TargetN, Edges.size()}); + Edges.emplace_back(TargetN, EK); +} + +void LazyCallGraph::EdgeSequence::setEdgeKind(Node &TargetN, Edge::Kind EK) { + Edges[EdgeIndexMap.find(&TargetN)->second].setKind(EK); +} + +bool LazyCallGraph::EdgeSequence::removeEdgeInternal(Node &TargetN) { + auto IndexMapI = EdgeIndexMap.find(&TargetN); + if (IndexMapI == EdgeIndexMap.end()) + return false; + + Edges[IndexMapI->second] = Edge(); + EdgeIndexMap.erase(IndexMapI); + return true; +} + +static void addEdge(SmallVectorImpl<LazyCallGraph::Edge> &Edges, + DenseMap<LazyCallGraph::Node *, int> &EdgeIndexMap, + LazyCallGraph::Node &N, LazyCallGraph::Edge::Kind EK) { + if (!EdgeIndexMap.insert({&N, Edges.size()}).second) + return; + + LLVM_DEBUG(dbgs() << " Added callable function: " << N.getName() << "\n"); + Edges.emplace_back(LazyCallGraph::Edge(N, EK)); +} + +LazyCallGraph::EdgeSequence &LazyCallGraph::Node::populateSlow() { + assert(!Edges && "Must not have already populated the edges for this node!"); + + LLVM_DEBUG(dbgs() << " Adding functions called by '" << getName() + << "' to the graph.\n"); + + Edges = EdgeSequence(); + + SmallVector<Constant *, 16> Worklist; + SmallPtrSet<Function *, 4> Callees; + SmallPtrSet<Constant *, 16> Visited; + + // Find all the potential call graph edges in this function. We track both + // actual call edges and indirect references to functions. The direct calls + // are trivially added, but to accumulate the latter we walk the instructions + // and add every operand which is a constant to the worklist to process + // afterward. + // + // Note that we consider *any* function with a definition to be a viable + // edge. Even if the function's definition is subject to replacement by + // some other module (say, a weak definition) there may still be + // optimizations which essentially speculate based on the definition and + // a way to check that the specific definition is in fact the one being + // used. For example, this could be done by moving the weak definition to + // a strong (internal) definition and making the weak definition be an + // alias. Then a test of the address of the weak function against the new + // strong definition's address would be an effective way to determine the + // safety of optimizing a direct call edge. + for (BasicBlock &BB : *F) + for (Instruction &I : BB) { + if (auto CS = CallSite(&I)) + if (Function *Callee = CS.getCalledFunction()) + if (!Callee->isDeclaration()) + if (Callees.insert(Callee).second) { + Visited.insert(Callee); + addEdge(Edges->Edges, Edges->EdgeIndexMap, G->get(*Callee), + LazyCallGraph::Edge::Call); + } + + for (Value *Op : I.operand_values()) + if (Constant *C = dyn_cast<Constant>(Op)) + if (Visited.insert(C).second) + Worklist.push_back(C); + } + + // We've collected all the constant (and thus potentially function or + // function containing) operands to all of the instructions in the function. + // Process them (recursively) collecting every function found. + visitReferences(Worklist, Visited, [&](Function &F) { + addEdge(Edges->Edges, Edges->EdgeIndexMap, G->get(F), + LazyCallGraph::Edge::Ref); + }); + + // Add implicit reference edges to any defined libcall functions (if we + // haven't found an explicit edge). + for (auto *F : G->LibFunctions) + if (!Visited.count(F)) + addEdge(Edges->Edges, Edges->EdgeIndexMap, G->get(*F), + LazyCallGraph::Edge::Ref); + + return *Edges; +} + +void LazyCallGraph::Node::replaceFunction(Function &NewF) { + assert(F != &NewF && "Must not replace a function with itself!"); + F = &NewF; +} + +#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) +LLVM_DUMP_METHOD void LazyCallGraph::Node::dump() const { + dbgs() << *this << '\n'; +} +#endif + +static bool isKnownLibFunction(Function &F, TargetLibraryInfo &TLI) { + LibFunc LF; + + // Either this is a normal library function or a "vectorizable" function. + return TLI.getLibFunc(F, LF) || TLI.isFunctionVectorizable(F.getName()); +} + +LazyCallGraph::LazyCallGraph( + Module &M, function_ref<TargetLibraryInfo &(Function &)> GetTLI) { + LLVM_DEBUG(dbgs() << "Building CG for module: " << M.getModuleIdentifier() + << "\n"); + for (Function &F : M) { + if (F.isDeclaration()) + continue; + // If this function is a known lib function to LLVM then we want to + // synthesize reference edges to it to model the fact that LLVM can turn + // arbitrary code into a library function call. + if (isKnownLibFunction(F, GetTLI(F))) + LibFunctions.insert(&F); + + if (F.hasLocalLinkage()) + continue; + + // External linkage defined functions have edges to them from other + // modules. + LLVM_DEBUG(dbgs() << " Adding '" << F.getName() + << "' to entry set of the graph.\n"); + addEdge(EntryEdges.Edges, EntryEdges.EdgeIndexMap, get(F), Edge::Ref); + } + + // Externally visible aliases of internal functions are also viable entry + // edges to the module. + for (auto &A : M.aliases()) { + if (A.hasLocalLinkage()) + continue; + if (Function* F = dyn_cast<Function>(A.getAliasee())) { + LLVM_DEBUG(dbgs() << " Adding '" << F->getName() + << "' with alias '" << A.getName() + << "' to entry set of the graph.\n"); + addEdge(EntryEdges.Edges, EntryEdges.EdgeIndexMap, get(*F), Edge::Ref); + } + } + + // Now add entry nodes for functions reachable via initializers to globals. + SmallVector<Constant *, 16> Worklist; + SmallPtrSet<Constant *, 16> Visited; + for (GlobalVariable &GV : M.globals()) + if (GV.hasInitializer()) + if (Visited.insert(GV.getInitializer()).second) + Worklist.push_back(GV.getInitializer()); + + LLVM_DEBUG( + dbgs() << " Adding functions referenced by global initializers to the " + "entry set.\n"); + visitReferences(Worklist, Visited, [&](Function &F) { + addEdge(EntryEdges.Edges, EntryEdges.EdgeIndexMap, get(F), + LazyCallGraph::Edge::Ref); + }); +} + +LazyCallGraph::LazyCallGraph(LazyCallGraph &&G) + : BPA(std::move(G.BPA)), NodeMap(std::move(G.NodeMap)), + EntryEdges(std::move(G.EntryEdges)), SCCBPA(std::move(G.SCCBPA)), + SCCMap(std::move(G.SCCMap)), + LibFunctions(std::move(G.LibFunctions)) { + updateGraphPtrs(); +} + +LazyCallGraph &LazyCallGraph::operator=(LazyCallGraph &&G) { + BPA = std::move(G.BPA); + NodeMap = std::move(G.NodeMap); + EntryEdges = std::move(G.EntryEdges); + SCCBPA = std::move(G.SCCBPA); + SCCMap = std::move(G.SCCMap); + LibFunctions = std::move(G.LibFunctions); + updateGraphPtrs(); + return *this; +} + +#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) +LLVM_DUMP_METHOD void LazyCallGraph::SCC::dump() const { + dbgs() << *this << '\n'; +} +#endif + +#ifndef NDEBUG +void LazyCallGraph::SCC::verify() { + assert(OuterRefSCC && "Can't have a null RefSCC!"); + assert(!Nodes.empty() && "Can't have an empty SCC!"); + + for (Node *N : Nodes) { + assert(N && "Can't have a null node!"); + assert(OuterRefSCC->G->lookupSCC(*N) == this && + "Node does not map to this SCC!"); + assert(N->DFSNumber == -1 && + "Must set DFS numbers to -1 when adding a node to an SCC!"); + assert(N->LowLink == -1 && + "Must set low link to -1 when adding a node to an SCC!"); + for (Edge &E : **N) + assert(E.getNode().isPopulated() && "Can't have an unpopulated node!"); + } +} +#endif + +bool LazyCallGraph::SCC::isParentOf(const SCC &C) const { + if (this == &C) + return false; + + for (Node &N : *this) + for (Edge &E : N->calls()) + if (OuterRefSCC->G->lookupSCC(E.getNode()) == &C) + return true; + + // No edges found. + return false; +} + +bool LazyCallGraph::SCC::isAncestorOf(const SCC &TargetC) const { + if (this == &TargetC) + return false; + + LazyCallGraph &G = *OuterRefSCC->G; + + // Start with this SCC. + SmallPtrSet<const SCC *, 16> Visited = {this}; + SmallVector<const SCC *, 16> Worklist = {this}; + + // Walk down the graph until we run out of edges or find a path to TargetC. + do { + const SCC &C = *Worklist.pop_back_val(); + for (Node &N : C) + for (Edge &E : N->calls()) { + SCC *CalleeC = G.lookupSCC(E.getNode()); + if (!CalleeC) + continue; + + // If the callee's SCC is the TargetC, we're done. + if (CalleeC == &TargetC) + return true; + + // If this is the first time we've reached this SCC, put it on the + // worklist to recurse through. + if (Visited.insert(CalleeC).second) + Worklist.push_back(CalleeC); + } + } while (!Worklist.empty()); + + // No paths found. + return false; +} + +LazyCallGraph::RefSCC::RefSCC(LazyCallGraph &G) : G(&G) {} + +#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) +LLVM_DUMP_METHOD void LazyCallGraph::RefSCC::dump() const { + dbgs() << *this << '\n'; +} +#endif + +#ifndef NDEBUG +void LazyCallGraph::RefSCC::verify() { + assert(G && "Can't have a null graph!"); + assert(!SCCs.empty() && "Can't have an empty SCC!"); + + // Verify basic properties of the SCCs. + SmallPtrSet<SCC *, 4> SCCSet; + for (SCC *C : SCCs) { + assert(C && "Can't have a null SCC!"); + C->verify(); + assert(&C->getOuterRefSCC() == this && + "SCC doesn't think it is inside this RefSCC!"); + bool Inserted = SCCSet.insert(C).second; + assert(Inserted && "Found a duplicate SCC!"); + auto IndexIt = SCCIndices.find(C); + assert(IndexIt != SCCIndices.end() && + "Found an SCC that doesn't have an index!"); + } + + // Check that our indices map correctly. + for (auto &SCCIndexPair : SCCIndices) { + SCC *C = SCCIndexPair.first; + int i = SCCIndexPair.second; + assert(C && "Can't have a null SCC in the indices!"); + assert(SCCSet.count(C) && "Found an index for an SCC not in the RefSCC!"); + assert(SCCs[i] == C && "Index doesn't point to SCC!"); + } + + // Check that the SCCs are in fact in post-order. + for (int i = 0, Size = SCCs.size(); i < Size; ++i) { + SCC &SourceSCC = *SCCs[i]; + for (Node &N : SourceSCC) + for (Edge &E : *N) { + if (!E.isCall()) + continue; + SCC &TargetSCC = *G->lookupSCC(E.getNode()); + if (&TargetSCC.getOuterRefSCC() == this) { + assert(SCCIndices.find(&TargetSCC)->second <= i && + "Edge between SCCs violates post-order relationship."); + continue; + } + } + } +} +#endif + +bool LazyCallGraph::RefSCC::isParentOf(const RefSCC &RC) const { + if (&RC == this) + return false; + + // Search all edges to see if this is a parent. + for (SCC &C : *this) + for (Node &N : C) + for (Edge &E : *N) + if (G->lookupRefSCC(E.getNode()) == &RC) + return true; + + return false; +} + +bool LazyCallGraph::RefSCC::isAncestorOf(const RefSCC &RC) const { + if (&RC == this) + return false; + + // For each descendant of this RefSCC, see if one of its children is the + // argument. If not, add that descendant to the worklist and continue + // searching. + SmallVector<const RefSCC *, 4> Worklist; + SmallPtrSet<const RefSCC *, 4> Visited; + Worklist.push_back(this); + Visited.insert(this); + do { + const RefSCC &DescendantRC = *Worklist.pop_back_val(); + for (SCC &C : DescendantRC) + for (Node &N : C) + for (Edge &E : *N) { + auto *ChildRC = G->lookupRefSCC(E.getNode()); + if (ChildRC == &RC) + return true; + if (!ChildRC || !Visited.insert(ChildRC).second) + continue; + Worklist.push_back(ChildRC); + } + } while (!Worklist.empty()); + + return false; +} + +/// Generic helper that updates a postorder sequence of SCCs for a potentially +/// cycle-introducing edge insertion. +/// +/// A postorder sequence of SCCs of a directed graph has one fundamental +/// property: all deges in the DAG of SCCs point "up" the sequence. That is, +/// all edges in the SCC DAG point to prior SCCs in the sequence. +/// +/// This routine both updates a postorder sequence and uses that sequence to +/// compute the set of SCCs connected into a cycle. It should only be called to +/// insert a "downward" edge which will require changing the sequence to +/// restore it to a postorder. +/// +/// When inserting an edge from an earlier SCC to a later SCC in some postorder +/// sequence, all of the SCCs which may be impacted are in the closed range of +/// those two within the postorder sequence. The algorithm used here to restore +/// the state is as follows: +/// +/// 1) Starting from the source SCC, construct a set of SCCs which reach the +/// source SCC consisting of just the source SCC. Then scan toward the +/// target SCC in postorder and for each SCC, if it has an edge to an SCC +/// in the set, add it to the set. Otherwise, the source SCC is not +/// a successor, move it in the postorder sequence to immediately before +/// the source SCC, shifting the source SCC and all SCCs in the set one +/// position toward the target SCC. Stop scanning after processing the +/// target SCC. +/// 2) If the source SCC is now past the target SCC in the postorder sequence, +/// and thus the new edge will flow toward the start, we are done. +/// 3) Otherwise, starting from the target SCC, walk all edges which reach an +/// SCC between the source and the target, and add them to the set of +/// connected SCCs, then recurse through them. Once a complete set of the +/// SCCs the target connects to is known, hoist the remaining SCCs between +/// the source and the target to be above the target. Note that there is no +/// need to process the source SCC, it is already known to connect. +/// 4) At this point, all of the SCCs in the closed range between the source +/// SCC and the target SCC in the postorder sequence are connected, +/// including the target SCC and the source SCC. Inserting the edge from +/// the source SCC to the target SCC will form a cycle out of precisely +/// these SCCs. Thus we can merge all of the SCCs in this closed range into +/// a single SCC. +/// +/// This process has various important properties: +/// - Only mutates the SCCs when adding the edge actually changes the SCC +/// structure. +/// - Never mutates SCCs which are unaffected by the change. +/// - Updates the postorder sequence to correctly satisfy the postorder +/// constraint after the edge is inserted. +/// - Only reorders SCCs in the closed postorder sequence from the source to +/// the target, so easy to bound how much has changed even in the ordering. +/// - Big-O is the number of edges in the closed postorder range of SCCs from +/// source to target. +/// +/// This helper routine, in addition to updating the postorder sequence itself +/// will also update a map from SCCs to indices within that sequence. +/// +/// The sequence and the map must operate on pointers to the SCC type. +/// +/// Two callbacks must be provided. The first computes the subset of SCCs in +/// the postorder closed range from the source to the target which connect to +/// the source SCC via some (transitive) set of edges. The second computes the +/// subset of the same range which the target SCC connects to via some +/// (transitive) set of edges. Both callbacks should populate the set argument +/// provided. +template <typename SCCT, typename PostorderSequenceT, typename SCCIndexMapT, + typename ComputeSourceConnectedSetCallableT, + typename ComputeTargetConnectedSetCallableT> +static iterator_range<typename PostorderSequenceT::iterator> +updatePostorderSequenceForEdgeInsertion( + SCCT &SourceSCC, SCCT &TargetSCC, PostorderSequenceT &SCCs, + SCCIndexMapT &SCCIndices, + ComputeSourceConnectedSetCallableT ComputeSourceConnectedSet, + ComputeTargetConnectedSetCallableT ComputeTargetConnectedSet) { + int SourceIdx = SCCIndices[&SourceSCC]; + int TargetIdx = SCCIndices[&TargetSCC]; + assert(SourceIdx < TargetIdx && "Cannot have equal indices here!"); + + SmallPtrSet<SCCT *, 4> ConnectedSet; + + // Compute the SCCs which (transitively) reach the source. + ComputeSourceConnectedSet(ConnectedSet); + + // Partition the SCCs in this part of the port-order sequence so only SCCs + // connecting to the source remain between it and the target. This is + // a benign partition as it preserves postorder. + auto SourceI = std::stable_partition( + SCCs.begin() + SourceIdx, SCCs.begin() + TargetIdx + 1, + [&ConnectedSet](SCCT *C) { return !ConnectedSet.count(C); }); + for (int i = SourceIdx, e = TargetIdx + 1; i < e; ++i) + SCCIndices.find(SCCs[i])->second = i; + + // If the target doesn't connect to the source, then we've corrected the + // post-order and there are no cycles formed. + if (!ConnectedSet.count(&TargetSCC)) { + assert(SourceI > (SCCs.begin() + SourceIdx) && + "Must have moved the source to fix the post-order."); + assert(*std::prev(SourceI) == &TargetSCC && + "Last SCC to move should have bene the target."); + + // Return an empty range at the target SCC indicating there is nothing to + // merge. + return make_range(std::prev(SourceI), std::prev(SourceI)); + } + + assert(SCCs[TargetIdx] == &TargetSCC && + "Should not have moved target if connected!"); + SourceIdx = SourceI - SCCs.begin(); + assert(SCCs[SourceIdx] == &SourceSCC && + "Bad updated index computation for the source SCC!"); + + + // See whether there are any remaining intervening SCCs between the source + // and target. If so we need to make sure they all are reachable form the + // target. + if (SourceIdx + 1 < TargetIdx) { + ConnectedSet.clear(); + ComputeTargetConnectedSet(ConnectedSet); + + // Partition SCCs so that only SCCs reached from the target remain between + // the source and the target. This preserves postorder. + auto TargetI = std::stable_partition( + SCCs.begin() + SourceIdx + 1, SCCs.begin() + TargetIdx + 1, + [&ConnectedSet](SCCT *C) { return ConnectedSet.count(C); }); + for (int i = SourceIdx + 1, e = TargetIdx + 1; i < e; ++i) + SCCIndices.find(SCCs[i])->second = i; + TargetIdx = std::prev(TargetI) - SCCs.begin(); + assert(SCCs[TargetIdx] == &TargetSCC && + "Should always end with the target!"); + } + + // At this point, we know that connecting source to target forms a cycle + // because target connects back to source, and we know that all of the SCCs + // between the source and target in the postorder sequence participate in that + // cycle. + return make_range(SCCs.begin() + SourceIdx, SCCs.begin() + TargetIdx); +} + +bool +LazyCallGraph::RefSCC::switchInternalEdgeToCall( + Node &SourceN, Node &TargetN, + function_ref<void(ArrayRef<SCC *> MergeSCCs)> MergeCB) { + assert(!(*SourceN)[TargetN].isCall() && "Must start with a ref edge!"); + SmallVector<SCC *, 1> DeletedSCCs; + +#ifndef NDEBUG + // In a debug build, verify the RefSCC is valid to start with and when this + // routine finishes. + verify(); + auto VerifyOnExit = make_scope_exit([&]() { verify(); }); +#endif + + SCC &SourceSCC = *G->lookupSCC(SourceN); + SCC &TargetSCC = *G->lookupSCC(TargetN); + + // If the two nodes are already part of the same SCC, we're also done as + // we've just added more connectivity. + if (&SourceSCC == &TargetSCC) { + SourceN->setEdgeKind(TargetN, Edge::Call); + return false; // No new cycle. + } + + // At this point we leverage the postorder list of SCCs to detect when the + // insertion of an edge changes the SCC structure in any way. + // + // First and foremost, we can eliminate the need for any changes when the + // edge is toward the beginning of the postorder sequence because all edges + // flow in that direction already. Thus adding a new one cannot form a cycle. + int SourceIdx = SCCIndices[&SourceSCC]; + int TargetIdx = SCCIndices[&TargetSCC]; + if (TargetIdx < SourceIdx) { + SourceN->setEdgeKind(TargetN, Edge::Call); + return false; // No new cycle. + } + + // Compute the SCCs which (transitively) reach the source. + auto ComputeSourceConnectedSet = [&](SmallPtrSetImpl<SCC *> &ConnectedSet) { +#ifndef NDEBUG + // Check that the RefSCC is still valid before computing this as the + // results will be nonsensical of we've broken its invariants. + verify(); +#endif + ConnectedSet.insert(&SourceSCC); + auto IsConnected = [&](SCC &C) { + for (Node &N : C) + for (Edge &E : N->calls()) + if (ConnectedSet.count(G->lookupSCC(E.getNode()))) + return true; + + return false; + }; + + for (SCC *C : + make_range(SCCs.begin() + SourceIdx + 1, SCCs.begin() + TargetIdx + 1)) + if (IsConnected(*C)) + ConnectedSet.insert(C); + }; + + // Use a normal worklist to find which SCCs the target connects to. We still + // bound the search based on the range in the postorder list we care about, + // but because this is forward connectivity we just "recurse" through the + // edges. + auto ComputeTargetConnectedSet = [&](SmallPtrSetImpl<SCC *> &ConnectedSet) { +#ifndef NDEBUG + // Check that the RefSCC is still valid before computing this as the + // results will be nonsensical of we've broken its invariants. + verify(); +#endif + ConnectedSet.insert(&TargetSCC); + SmallVector<SCC *, 4> Worklist; + Worklist.push_back(&TargetSCC); + do { + SCC &C = *Worklist.pop_back_val(); + for (Node &N : C) + for (Edge &E : *N) { + if (!E.isCall()) + continue; + SCC &EdgeC = *G->lookupSCC(E.getNode()); + if (&EdgeC.getOuterRefSCC() != this) + // Not in this RefSCC... + continue; + if (SCCIndices.find(&EdgeC)->second <= SourceIdx) + // Not in the postorder sequence between source and target. + continue; + + if (ConnectedSet.insert(&EdgeC).second) + Worklist.push_back(&EdgeC); + } + } while (!Worklist.empty()); + }; + + // Use a generic helper to update the postorder sequence of SCCs and return + // a range of any SCCs connected into a cycle by inserting this edge. This + // routine will also take care of updating the indices into the postorder + // sequence. + auto MergeRange = updatePostorderSequenceForEdgeInsertion( + SourceSCC, TargetSCC, SCCs, SCCIndices, ComputeSourceConnectedSet, + ComputeTargetConnectedSet); + + // Run the user's callback on the merged SCCs before we actually merge them. + if (MergeCB) + MergeCB(makeArrayRef(MergeRange.begin(), MergeRange.end())); + + // If the merge range is empty, then adding the edge didn't actually form any + // new cycles. We're done. + if (MergeRange.empty()) { + // Now that the SCC structure is finalized, flip the kind to call. + SourceN->setEdgeKind(TargetN, Edge::Call); + return false; // No new cycle. + } + +#ifndef NDEBUG + // Before merging, check that the RefSCC remains valid after all the + // postorder updates. + verify(); +#endif + + // Otherwise we need to merge all of the SCCs in the cycle into a single + // result SCC. + // + // NB: We merge into the target because all of these functions were already + // reachable from the target, meaning any SCC-wide properties deduced about it + // other than the set of functions within it will not have changed. + for (SCC *C : MergeRange) { + assert(C != &TargetSCC && + "We merge *into* the target and shouldn't process it here!"); + SCCIndices.erase(C); + TargetSCC.Nodes.append(C->Nodes.begin(), C->Nodes.end()); + for (Node *N : C->Nodes) + G->SCCMap[N] = &TargetSCC; + C->clear(); + DeletedSCCs.push_back(C); + } + + // Erase the merged SCCs from the list and update the indices of the + // remaining SCCs. + int IndexOffset = MergeRange.end() - MergeRange.begin(); + auto EraseEnd = SCCs.erase(MergeRange.begin(), MergeRange.end()); + for (SCC *C : make_range(EraseEnd, SCCs.end())) + SCCIndices[C] -= IndexOffset; + + // Now that the SCC structure is finalized, flip the kind to call. + SourceN->setEdgeKind(TargetN, Edge::Call); + + // And we're done, but we did form a new cycle. + return true; +} + +void LazyCallGraph::RefSCC::switchTrivialInternalEdgeToRef(Node &SourceN, + Node &TargetN) { + assert((*SourceN)[TargetN].isCall() && "Must start with a call edge!"); + +#ifndef NDEBUG + // In a debug build, verify the RefSCC is valid to start with and when this + // routine finishes. + verify(); + auto VerifyOnExit = make_scope_exit([&]() { verify(); }); +#endif + + assert(G->lookupRefSCC(SourceN) == this && + "Source must be in this RefSCC."); + assert(G->lookupRefSCC(TargetN) == this && + "Target must be in this RefSCC."); + assert(G->lookupSCC(SourceN) != G->lookupSCC(TargetN) && + "Source and Target must be in separate SCCs for this to be trivial!"); + + // Set the edge kind. + SourceN->setEdgeKind(TargetN, Edge::Ref); +} + +iterator_range<LazyCallGraph::RefSCC::iterator> +LazyCallGraph::RefSCC::switchInternalEdgeToRef(Node &SourceN, Node &TargetN) { + assert((*SourceN)[TargetN].isCall() && "Must start with a call edge!"); + +#ifndef NDEBUG + // In a debug build, verify the RefSCC is valid to start with and when this + // routine finishes. + verify(); + auto VerifyOnExit = make_scope_exit([&]() { verify(); }); +#endif + + assert(G->lookupRefSCC(SourceN) == this && + "Source must be in this RefSCC."); + assert(G->lookupRefSCC(TargetN) == this && + "Target must be in this RefSCC."); + + SCC &TargetSCC = *G->lookupSCC(TargetN); + assert(G->lookupSCC(SourceN) == &TargetSCC && "Source and Target must be in " + "the same SCC to require the " + "full CG update."); + + // Set the edge kind. + SourceN->setEdgeKind(TargetN, Edge::Ref); + + // Otherwise we are removing a call edge from a single SCC. This may break + // the cycle. In order to compute the new set of SCCs, we need to do a small + // DFS over the nodes within the SCC to form any sub-cycles that remain as + // distinct SCCs and compute a postorder over the resulting SCCs. + // + // However, we specially handle the target node. The target node is known to + // reach all other nodes in the original SCC by definition. This means that + // we want the old SCC to be replaced with an SCC containing that node as it + // will be the root of whatever SCC DAG results from the DFS. Assumptions + // about an SCC such as the set of functions called will continue to hold, + // etc. + + SCC &OldSCC = TargetSCC; + SmallVector<std::pair<Node *, EdgeSequence::call_iterator>, 16> DFSStack; + SmallVector<Node *, 16> PendingSCCStack; + SmallVector<SCC *, 4> NewSCCs; + + // Prepare the nodes for a fresh DFS. + SmallVector<Node *, 16> Worklist; + Worklist.swap(OldSCC.Nodes); + for (Node *N : Worklist) { + N->DFSNumber = N->LowLink = 0; + G->SCCMap.erase(N); + } + + // Force the target node to be in the old SCC. This also enables us to take + // a very significant short-cut in the standard Tarjan walk to re-form SCCs + // below: whenever we build an edge that reaches the target node, we know + // that the target node eventually connects back to all other nodes in our + // walk. As a consequence, we can detect and handle participants in that + // cycle without walking all the edges that form this connection, and instead + // by relying on the fundamental guarantee coming into this operation (all + // nodes are reachable from the target due to previously forming an SCC). + TargetN.DFSNumber = TargetN.LowLink = -1; + OldSCC.Nodes.push_back(&TargetN); + G->SCCMap[&TargetN] = &OldSCC; + + // Scan down the stack and DFS across the call edges. + for (Node *RootN : Worklist) { + assert(DFSStack.empty() && + "Cannot begin a new root with a non-empty DFS stack!"); + assert(PendingSCCStack.empty() && + "Cannot begin a new root with pending nodes for an SCC!"); + + // Skip any nodes we've already reached in the DFS. + if (RootN->DFSNumber != 0) { + assert(RootN->DFSNumber == -1 && + "Shouldn't have any mid-DFS root nodes!"); + continue; + } + + RootN->DFSNumber = RootN->LowLink = 1; + int NextDFSNumber = 2; + + DFSStack.push_back({RootN, (*RootN)->call_begin()}); + do { + Node *N; + EdgeSequence::call_iterator I; + std::tie(N, I) = DFSStack.pop_back_val(); + auto E = (*N)->call_end(); + while (I != E) { + Node &ChildN = I->getNode(); + if (ChildN.DFSNumber == 0) { + // We haven't yet visited this child, so descend, pushing the current + // node onto the stack. + DFSStack.push_back({N, I}); + + assert(!G->SCCMap.count(&ChildN) && + "Found a node with 0 DFS number but already in an SCC!"); + ChildN.DFSNumber = ChildN.LowLink = NextDFSNumber++; + N = &ChildN; + I = (*N)->call_begin(); + E = (*N)->call_end(); + continue; + } + + // Check for the child already being part of some component. + if (ChildN.DFSNumber == -1) { + if (G->lookupSCC(ChildN) == &OldSCC) { + // If the child is part of the old SCC, we know that it can reach + // every other node, so we have formed a cycle. Pull the entire DFS + // and pending stacks into it. See the comment above about setting + // up the old SCC for why we do this. + int OldSize = OldSCC.size(); + OldSCC.Nodes.push_back(N); + OldSCC.Nodes.append(PendingSCCStack.begin(), PendingSCCStack.end()); + PendingSCCStack.clear(); + while (!DFSStack.empty()) + OldSCC.Nodes.push_back(DFSStack.pop_back_val().first); + for (Node &N : make_range(OldSCC.begin() + OldSize, OldSCC.end())) { + N.DFSNumber = N.LowLink = -1; + G->SCCMap[&N] = &OldSCC; + } + N = nullptr; + break; + } + + // If the child has already been added to some child component, it + // couldn't impact the low-link of this parent because it isn't + // connected, and thus its low-link isn't relevant so skip it. + ++I; + continue; + } + + // Track the lowest linked child as the lowest link for this node. + assert(ChildN.LowLink > 0 && "Must have a positive low-link number!"); + if (ChildN.LowLink < N->LowLink) + N->LowLink = ChildN.LowLink; + + // Move to the next edge. + ++I; + } + if (!N) + // Cleared the DFS early, start another round. + break; + + // We've finished processing N and its descendants, put it on our pending + // SCC stack to eventually get merged into an SCC of nodes. + PendingSCCStack.push_back(N); + + // If this node is linked to some lower entry, continue walking up the + // stack. + if (N->LowLink != N->DFSNumber) + continue; + + // Otherwise, we've completed an SCC. Append it to our post order list of + // SCCs. + int RootDFSNumber = N->DFSNumber; + // Find the range of the node stack by walking down until we pass the + // root DFS number. + auto SCCNodes = make_range( + PendingSCCStack.rbegin(), + find_if(reverse(PendingSCCStack), [RootDFSNumber](const Node *N) { + return N->DFSNumber < RootDFSNumber; + })); + + // Form a new SCC out of these nodes and then clear them off our pending + // stack. + NewSCCs.push_back(G->createSCC(*this, SCCNodes)); + for (Node &N : *NewSCCs.back()) { + N.DFSNumber = N.LowLink = -1; + G->SCCMap[&N] = NewSCCs.back(); + } + PendingSCCStack.erase(SCCNodes.end().base(), PendingSCCStack.end()); + } while (!DFSStack.empty()); + } + + // Insert the remaining SCCs before the old one. The old SCC can reach all + // other SCCs we form because it contains the target node of the removed edge + // of the old SCC. This means that we will have edges into all of the new + // SCCs, which means the old one must come last for postorder. + int OldIdx = SCCIndices[&OldSCC]; + SCCs.insert(SCCs.begin() + OldIdx, NewSCCs.begin(), NewSCCs.end()); + + // Update the mapping from SCC* to index to use the new SCC*s, and remove the + // old SCC from the mapping. + for (int Idx = OldIdx, Size = SCCs.size(); Idx < Size; ++Idx) + SCCIndices[SCCs[Idx]] = Idx; + + return make_range(SCCs.begin() + OldIdx, + SCCs.begin() + OldIdx + NewSCCs.size()); +} + +void LazyCallGraph::RefSCC::switchOutgoingEdgeToCall(Node &SourceN, + Node &TargetN) { + assert(!(*SourceN)[TargetN].isCall() && "Must start with a ref edge!"); + + assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC."); + assert(G->lookupRefSCC(TargetN) != this && + "Target must not be in this RefSCC."); +#ifdef EXPENSIVE_CHECKS + assert(G->lookupRefSCC(TargetN)->isDescendantOf(*this) && + "Target must be a descendant of the Source."); +#endif + + // Edges between RefSCCs are the same regardless of call or ref, so we can + // just flip the edge here. + SourceN->setEdgeKind(TargetN, Edge::Call); + +#ifndef NDEBUG + // Check that the RefSCC is still valid. + verify(); +#endif +} + +void LazyCallGraph::RefSCC::switchOutgoingEdgeToRef(Node &SourceN, + Node &TargetN) { + assert((*SourceN)[TargetN].isCall() && "Must start with a call edge!"); + + assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC."); + assert(G->lookupRefSCC(TargetN) != this && + "Target must not be in this RefSCC."); +#ifdef EXPENSIVE_CHECKS + assert(G->lookupRefSCC(TargetN)->isDescendantOf(*this) && + "Target must be a descendant of the Source."); +#endif + + // Edges between RefSCCs are the same regardless of call or ref, so we can + // just flip the edge here. + SourceN->setEdgeKind(TargetN, Edge::Ref); + +#ifndef NDEBUG + // Check that the RefSCC is still valid. + verify(); +#endif +} + +void LazyCallGraph::RefSCC::insertInternalRefEdge(Node &SourceN, + Node &TargetN) { + assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC."); + assert(G->lookupRefSCC(TargetN) == this && "Target must be in this RefSCC."); + + SourceN->insertEdgeInternal(TargetN, Edge::Ref); + +#ifndef NDEBUG + // Check that the RefSCC is still valid. + verify(); +#endif +} + +void LazyCallGraph::RefSCC::insertOutgoingEdge(Node &SourceN, Node &TargetN, + Edge::Kind EK) { + // First insert it into the caller. + SourceN->insertEdgeInternal(TargetN, EK); + + assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC."); + + assert(G->lookupRefSCC(TargetN) != this && + "Target must not be in this RefSCC."); +#ifdef EXPENSIVE_CHECKS + assert(G->lookupRefSCC(TargetN)->isDescendantOf(*this) && + "Target must be a descendant of the Source."); +#endif + +#ifndef NDEBUG + // Check that the RefSCC is still valid. + verify(); +#endif +} + +SmallVector<LazyCallGraph::RefSCC *, 1> +LazyCallGraph::RefSCC::insertIncomingRefEdge(Node &SourceN, Node &TargetN) { + assert(G->lookupRefSCC(TargetN) == this && "Target must be in this RefSCC."); + RefSCC &SourceC = *G->lookupRefSCC(SourceN); + assert(&SourceC != this && "Source must not be in this RefSCC."); +#ifdef EXPENSIVE_CHECKS + assert(SourceC.isDescendantOf(*this) && + "Source must be a descendant of the Target."); +#endif + + SmallVector<RefSCC *, 1> DeletedRefSCCs; + +#ifndef NDEBUG + // In a debug build, verify the RefSCC is valid to start with and when this + // routine finishes. + verify(); + auto VerifyOnExit = make_scope_exit([&]() { verify(); }); +#endif + + int SourceIdx = G->RefSCCIndices[&SourceC]; + int TargetIdx = G->RefSCCIndices[this]; + assert(SourceIdx < TargetIdx && + "Postorder list doesn't see edge as incoming!"); + + // Compute the RefSCCs which (transitively) reach the source. We do this by + // working backwards from the source using the parent set in each RefSCC, + // skipping any RefSCCs that don't fall in the postorder range. This has the + // advantage of walking the sparser parent edge (in high fan-out graphs) but + // more importantly this removes examining all forward edges in all RefSCCs + // within the postorder range which aren't in fact connected. Only connected + // RefSCCs (and their edges) are visited here. + auto ComputeSourceConnectedSet = [&](SmallPtrSetImpl<RefSCC *> &Set) { + Set.insert(&SourceC); + auto IsConnected = [&](RefSCC &RC) { + for (SCC &C : RC) + for (Node &N : C) + for (Edge &E : *N) + if (Set.count(G->lookupRefSCC(E.getNode()))) + return true; + + return false; + }; + + for (RefSCC *C : make_range(G->PostOrderRefSCCs.begin() + SourceIdx + 1, + G->PostOrderRefSCCs.begin() + TargetIdx + 1)) + if (IsConnected(*C)) + Set.insert(C); + }; + + // Use a normal worklist to find which SCCs the target connects to. We still + // bound the search based on the range in the postorder list we care about, + // but because this is forward connectivity we just "recurse" through the + // edges. + auto ComputeTargetConnectedSet = [&](SmallPtrSetImpl<RefSCC *> &Set) { + Set.insert(this); + SmallVector<RefSCC *, 4> Worklist; + Worklist.push_back(this); + do { + RefSCC &RC = *Worklist.pop_back_val(); + for (SCC &C : RC) + for (Node &N : C) + for (Edge &E : *N) { + RefSCC &EdgeRC = *G->lookupRefSCC(E.getNode()); + if (G->getRefSCCIndex(EdgeRC) <= SourceIdx) + // Not in the postorder sequence between source and target. + continue; + + if (Set.insert(&EdgeRC).second) + Worklist.push_back(&EdgeRC); + } + } while (!Worklist.empty()); + }; + + // Use a generic helper to update the postorder sequence of RefSCCs and return + // a range of any RefSCCs connected into a cycle by inserting this edge. This + // routine will also take care of updating the indices into the postorder + // sequence. + iterator_range<SmallVectorImpl<RefSCC *>::iterator> MergeRange = + updatePostorderSequenceForEdgeInsertion( + SourceC, *this, G->PostOrderRefSCCs, G->RefSCCIndices, + ComputeSourceConnectedSet, ComputeTargetConnectedSet); + + // Build a set so we can do fast tests for whether a RefSCC will end up as + // part of the merged RefSCC. + SmallPtrSet<RefSCC *, 16> MergeSet(MergeRange.begin(), MergeRange.end()); + + // This RefSCC will always be part of that set, so just insert it here. + MergeSet.insert(this); + + // Now that we have identified all of the SCCs which need to be merged into + // a connected set with the inserted edge, merge all of them into this SCC. + SmallVector<SCC *, 16> MergedSCCs; + int SCCIndex = 0; + for (RefSCC *RC : MergeRange) { + assert(RC != this && "We're merging into the target RefSCC, so it " + "shouldn't be in the range."); + + // Walk the inner SCCs to update their up-pointer and walk all the edges to + // update any parent sets. + // FIXME: We should try to find a way to avoid this (rather expensive) edge + // walk by updating the parent sets in some other manner. + for (SCC &InnerC : *RC) { + InnerC.OuterRefSCC = this; + SCCIndices[&InnerC] = SCCIndex++; + for (Node &N : InnerC) + G->SCCMap[&N] = &InnerC; + } + + // Now merge in the SCCs. We can actually move here so try to reuse storage + // the first time through. + if (MergedSCCs.empty()) + MergedSCCs = std::move(RC->SCCs); + else + MergedSCCs.append(RC->SCCs.begin(), RC->SCCs.end()); + RC->SCCs.clear(); + DeletedRefSCCs.push_back(RC); + } + + // Append our original SCCs to the merged list and move it into place. + for (SCC &InnerC : *this) + SCCIndices[&InnerC] = SCCIndex++; + MergedSCCs.append(SCCs.begin(), SCCs.end()); + SCCs = std::move(MergedSCCs); + + // Remove the merged away RefSCCs from the post order sequence. + for (RefSCC *RC : MergeRange) + G->RefSCCIndices.erase(RC); + int IndexOffset = MergeRange.end() - MergeRange.begin(); + auto EraseEnd = + G->PostOrderRefSCCs.erase(MergeRange.begin(), MergeRange.end()); + for (RefSCC *RC : make_range(EraseEnd, G->PostOrderRefSCCs.end())) + G->RefSCCIndices[RC] -= IndexOffset; + + // At this point we have a merged RefSCC with a post-order SCCs list, just + // connect the nodes to form the new edge. + SourceN->insertEdgeInternal(TargetN, Edge::Ref); + + // We return the list of SCCs which were merged so that callers can + // invalidate any data they have associated with those SCCs. Note that these + // SCCs are no longer in an interesting state (they are totally empty) but + // the pointers will remain stable for the life of the graph itself. + return DeletedRefSCCs; +} + +void LazyCallGraph::RefSCC::removeOutgoingEdge(Node &SourceN, Node &TargetN) { + assert(G->lookupRefSCC(SourceN) == this && + "The source must be a member of this RefSCC."); + assert(G->lookupRefSCC(TargetN) != this && + "The target must not be a member of this RefSCC"); + +#ifndef NDEBUG + // In a debug build, verify the RefSCC is valid to start with and when this + // routine finishes. + verify(); + auto VerifyOnExit = make_scope_exit([&]() { verify(); }); +#endif + + // First remove it from the node. + bool Removed = SourceN->removeEdgeInternal(TargetN); + (void)Removed; + assert(Removed && "Target not in the edge set for this caller?"); +} + +SmallVector<LazyCallGraph::RefSCC *, 1> +LazyCallGraph::RefSCC::removeInternalRefEdge(Node &SourceN, + ArrayRef<Node *> TargetNs) { + // We return a list of the resulting *new* RefSCCs in post-order. + SmallVector<RefSCC *, 1> Result; + +#ifndef NDEBUG + // In a debug build, verify the RefSCC is valid to start with and that either + // we return an empty list of result RefSCCs and this RefSCC remains valid, + // or we return new RefSCCs and this RefSCC is dead. + verify(); + auto VerifyOnExit = make_scope_exit([&]() { + // If we didn't replace our RefSCC with new ones, check that this one + // remains valid. + if (G) + verify(); + }); +#endif + + // First remove the actual edges. + for (Node *TargetN : TargetNs) { + assert(!(*SourceN)[*TargetN].isCall() && + "Cannot remove a call edge, it must first be made a ref edge"); + + bool Removed = SourceN->removeEdgeInternal(*TargetN); + (void)Removed; + assert(Removed && "Target not in the edge set for this caller?"); + } + + // Direct self references don't impact the ref graph at all. + if (llvm::all_of(TargetNs, + [&](Node *TargetN) { return &SourceN == TargetN; })) + return Result; + + // If all targets are in the same SCC as the source, because no call edges + // were removed there is no RefSCC structure change. + SCC &SourceC = *G->lookupSCC(SourceN); + if (llvm::all_of(TargetNs, [&](Node *TargetN) { + return G->lookupSCC(*TargetN) == &SourceC; + })) + return Result; + + // We build somewhat synthetic new RefSCCs by providing a postorder mapping + // for each inner SCC. We store these inside the low-link field of the nodes + // rather than associated with SCCs because this saves a round-trip through + // the node->SCC map and in the common case, SCCs are small. We will verify + // that we always give the same number to every node in the SCC such that + // these are equivalent. + int PostOrderNumber = 0; + + // Reset all the other nodes to prepare for a DFS over them, and add them to + // our worklist. + SmallVector<Node *, 8> Worklist; + for (SCC *C : SCCs) { + for (Node &N : *C) + N.DFSNumber = N.LowLink = 0; + + Worklist.append(C->Nodes.begin(), C->Nodes.end()); + } + + // Track the number of nodes in this RefSCC so that we can quickly recognize + // an important special case of the edge removal not breaking the cycle of + // this RefSCC. + const int NumRefSCCNodes = Worklist.size(); + + SmallVector<std::pair<Node *, EdgeSequence::iterator>, 4> DFSStack; + SmallVector<Node *, 4> PendingRefSCCStack; + do { + assert(DFSStack.empty() && + "Cannot begin a new root with a non-empty DFS stack!"); + assert(PendingRefSCCStack.empty() && + "Cannot begin a new root with pending nodes for an SCC!"); + + Node *RootN = Worklist.pop_back_val(); + // Skip any nodes we've already reached in the DFS. + if (RootN->DFSNumber != 0) { + assert(RootN->DFSNumber == -1 && + "Shouldn't have any mid-DFS root nodes!"); + continue; + } + + RootN->DFSNumber = RootN->LowLink = 1; + int NextDFSNumber = 2; + + DFSStack.push_back({RootN, (*RootN)->begin()}); + do { + Node *N; + EdgeSequence::iterator I; + std::tie(N, I) = DFSStack.pop_back_val(); + auto E = (*N)->end(); + + assert(N->DFSNumber != 0 && "We should always assign a DFS number " + "before processing a node."); + + while (I != E) { + Node &ChildN = I->getNode(); + if (ChildN.DFSNumber == 0) { + // Mark that we should start at this child when next this node is the + // top of the stack. We don't start at the next child to ensure this + // child's lowlink is reflected. + DFSStack.push_back({N, I}); + + // Continue, resetting to the child node. + ChildN.LowLink = ChildN.DFSNumber = NextDFSNumber++; + N = &ChildN; + I = ChildN->begin(); + E = ChildN->end(); + continue; + } + if (ChildN.DFSNumber == -1) { + // If this child isn't currently in this RefSCC, no need to process + // it. + ++I; + continue; + } + + // Track the lowest link of the children, if any are still in the stack. + // Any child not on the stack will have a LowLink of -1. + assert(ChildN.LowLink != 0 && + "Low-link must not be zero with a non-zero DFS number."); + if (ChildN.LowLink >= 0 && ChildN.LowLink < N->LowLink) + N->LowLink = ChildN.LowLink; + ++I; + } + + // We've finished processing N and its descendants, put it on our pending + // stack to eventually get merged into a RefSCC. + PendingRefSCCStack.push_back(N); + + // If this node is linked to some lower entry, continue walking up the + // stack. + if (N->LowLink != N->DFSNumber) { + assert(!DFSStack.empty() && + "We never found a viable root for a RefSCC to pop off!"); + continue; + } + + // Otherwise, form a new RefSCC from the top of the pending node stack. + int RefSCCNumber = PostOrderNumber++; + int RootDFSNumber = N->DFSNumber; + + // Find the range of the node stack by walking down until we pass the + // root DFS number. Update the DFS numbers and low link numbers in the + // process to avoid re-walking this list where possible. + auto StackRI = find_if(reverse(PendingRefSCCStack), [&](Node *N) { + if (N->DFSNumber < RootDFSNumber) + // We've found the bottom. + return true; + + // Update this node and keep scanning. + N->DFSNumber = -1; + // Save the post-order number in the lowlink field so that we can use + // it to map SCCs into new RefSCCs after we finish the DFS. + N->LowLink = RefSCCNumber; + return false; + }); + auto RefSCCNodes = make_range(StackRI.base(), PendingRefSCCStack.end()); + + // If we find a cycle containing all nodes originally in this RefSCC then + // the removal hasn't changed the structure at all. This is an important + // special case and we can directly exit the entire routine more + // efficiently as soon as we discover it. + if (llvm::size(RefSCCNodes) == NumRefSCCNodes) { + // Clear out the low link field as we won't need it. + for (Node *N : RefSCCNodes) + N->LowLink = -1; + // Return the empty result immediately. + return Result; + } + + // We've already marked the nodes internally with the RefSCC number so + // just clear them off the stack and continue. + PendingRefSCCStack.erase(RefSCCNodes.begin(), PendingRefSCCStack.end()); + } while (!DFSStack.empty()); + + assert(DFSStack.empty() && "Didn't flush the entire DFS stack!"); + assert(PendingRefSCCStack.empty() && "Didn't flush all pending nodes!"); + } while (!Worklist.empty()); + + assert(PostOrderNumber > 1 && + "Should never finish the DFS when the existing RefSCC remains valid!"); + + // Otherwise we create a collection of new RefSCC nodes and build + // a radix-sort style map from postorder number to these new RefSCCs. We then + // append SCCs to each of these RefSCCs in the order they occurred in the + // original SCCs container. + for (int i = 0; i < PostOrderNumber; ++i) + Result.push_back(G->createRefSCC(*G)); + + // Insert the resulting postorder sequence into the global graph postorder + // sequence before the current RefSCC in that sequence, and then remove the + // current one. + // + // FIXME: It'd be nice to change the APIs so that we returned an iterator + // range over the global postorder sequence and generally use that sequence + // rather than building a separate result vector here. + int Idx = G->getRefSCCIndex(*this); + G->PostOrderRefSCCs.erase(G->PostOrderRefSCCs.begin() + Idx); + G->PostOrderRefSCCs.insert(G->PostOrderRefSCCs.begin() + Idx, Result.begin(), + Result.end()); + for (int i : seq<int>(Idx, G->PostOrderRefSCCs.size())) + G->RefSCCIndices[G->PostOrderRefSCCs[i]] = i; + + for (SCC *C : SCCs) { + // We store the SCC number in the node's low-link field above. + int SCCNumber = C->begin()->LowLink; + // Clear out all of the SCC's node's low-link fields now that we're done + // using them as side-storage. + for (Node &N : *C) { + assert(N.LowLink == SCCNumber && + "Cannot have different numbers for nodes in the same SCC!"); + N.LowLink = -1; + } + + RefSCC &RC = *Result[SCCNumber]; + int SCCIndex = RC.SCCs.size(); + RC.SCCs.push_back(C); + RC.SCCIndices[C] = SCCIndex; + C->OuterRefSCC = &RC; + } + + // Now that we've moved things into the new RefSCCs, clear out our current + // one. + G = nullptr; + SCCs.clear(); + SCCIndices.clear(); + +#ifndef NDEBUG + // Verify the new RefSCCs we've built. + for (RefSCC *RC : Result) + RC->verify(); +#endif + + // Return the new list of SCCs. + return Result; +} + +void LazyCallGraph::RefSCC::handleTrivialEdgeInsertion(Node &SourceN, + Node &TargetN) { + // The only trivial case that requires any graph updates is when we add new + // ref edge and may connect different RefSCCs along that path. This is only + // because of the parents set. Every other part of the graph remains constant + // after this edge insertion. + assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC."); + RefSCC &TargetRC = *G->lookupRefSCC(TargetN); + if (&TargetRC == this) + return; + +#ifdef EXPENSIVE_CHECKS + assert(TargetRC.isDescendantOf(*this) && + "Target must be a descendant of the Source."); +#endif +} + +void LazyCallGraph::RefSCC::insertTrivialCallEdge(Node &SourceN, + Node &TargetN) { +#ifndef NDEBUG + // Check that the RefSCC is still valid when we finish. + auto ExitVerifier = make_scope_exit([this] { verify(); }); + +#ifdef EXPENSIVE_CHECKS + // Check that we aren't breaking some invariants of the SCC graph. Note that + // this is quadratic in the number of edges in the call graph! + SCC &SourceC = *G->lookupSCC(SourceN); + SCC &TargetC = *G->lookupSCC(TargetN); + if (&SourceC != &TargetC) + assert(SourceC.isAncestorOf(TargetC) && + "Call edge is not trivial in the SCC graph!"); +#endif // EXPENSIVE_CHECKS +#endif // NDEBUG + + // First insert it into the source or find the existing edge. + auto InsertResult = + SourceN->EdgeIndexMap.insert({&TargetN, SourceN->Edges.size()}); + if (!InsertResult.second) { + // Already an edge, just update it. + Edge &E = SourceN->Edges[InsertResult.first->second]; + if (E.isCall()) + return; // Nothing to do! + E.setKind(Edge::Call); + } else { + // Create the new edge. + SourceN->Edges.emplace_back(TargetN, Edge::Call); + } + + // Now that we have the edge, handle the graph fallout. + handleTrivialEdgeInsertion(SourceN, TargetN); +} + +void LazyCallGraph::RefSCC::insertTrivialRefEdge(Node &SourceN, Node &TargetN) { +#ifndef NDEBUG + // Check that the RefSCC is still valid when we finish. + auto ExitVerifier = make_scope_exit([this] { verify(); }); + +#ifdef EXPENSIVE_CHECKS + // Check that we aren't breaking some invariants of the RefSCC graph. + RefSCC &SourceRC = *G->lookupRefSCC(SourceN); + RefSCC &TargetRC = *G->lookupRefSCC(TargetN); + if (&SourceRC != &TargetRC) + assert(SourceRC.isAncestorOf(TargetRC) && + "Ref edge is not trivial in the RefSCC graph!"); +#endif // EXPENSIVE_CHECKS +#endif // NDEBUG + + // First insert it into the source or find the existing edge. + auto InsertResult = + SourceN->EdgeIndexMap.insert({&TargetN, SourceN->Edges.size()}); + if (!InsertResult.second) + // Already an edge, we're done. + return; + + // Create the new edge. + SourceN->Edges.emplace_back(TargetN, Edge::Ref); + + // Now that we have the edge, handle the graph fallout. + handleTrivialEdgeInsertion(SourceN, TargetN); +} + +void LazyCallGraph::RefSCC::replaceNodeFunction(Node &N, Function &NewF) { + Function &OldF = N.getFunction(); + +#ifndef NDEBUG + // Check that the RefSCC is still valid when we finish. + auto ExitVerifier = make_scope_exit([this] { verify(); }); + + assert(G->lookupRefSCC(N) == this && + "Cannot replace the function of a node outside this RefSCC."); + + assert(G->NodeMap.find(&NewF) == G->NodeMap.end() && + "Must not have already walked the new function!'"); + + // It is important that this replacement not introduce graph changes so we + // insist that the caller has already removed every use of the original + // function and that all uses of the new function correspond to existing + // edges in the graph. The common and expected way to use this is when + // replacing the function itself in the IR without changing the call graph + // shape and just updating the analysis based on that. + assert(&OldF != &NewF && "Cannot replace a function with itself!"); + assert(OldF.use_empty() && + "Must have moved all uses from the old function to the new!"); +#endif + + N.replaceFunction(NewF); + + // Update various call graph maps. + G->NodeMap.erase(&OldF); + G->NodeMap[&NewF] = &N; +} + +void LazyCallGraph::insertEdge(Node &SourceN, Node &TargetN, Edge::Kind EK) { + assert(SCCMap.empty() && + "This method cannot be called after SCCs have been formed!"); + + return SourceN->insertEdgeInternal(TargetN, EK); +} + +void LazyCallGraph::removeEdge(Node &SourceN, Node &TargetN) { + assert(SCCMap.empty() && + "This method cannot be called after SCCs have been formed!"); + + bool Removed = SourceN->removeEdgeInternal(TargetN); + (void)Removed; + assert(Removed && "Target not in the edge set for this caller?"); +} + +void LazyCallGraph::removeDeadFunction(Function &F) { + // FIXME: This is unnecessarily restrictive. We should be able to remove + // functions which recursively call themselves. + assert(F.use_empty() && + "This routine should only be called on trivially dead functions!"); + + // We shouldn't remove library functions as they are never really dead while + // the call graph is in use -- every function definition refers to them. + assert(!isLibFunction(F) && + "Must not remove lib functions from the call graph!"); + + auto NI = NodeMap.find(&F); + if (NI == NodeMap.end()) + // Not in the graph at all! + return; + + Node &N = *NI->second; + NodeMap.erase(NI); + + // Remove this from the entry edges if present. + EntryEdges.removeEdgeInternal(N); + + if (SCCMap.empty()) { + // No SCCs have been formed, so removing this is fine and there is nothing + // else necessary at this point but clearing out the node. + N.clear(); + return; + } + + // Cannot remove a function which has yet to be visited in the DFS walk, so + // if we have a node at all then we must have an SCC and RefSCC. + auto CI = SCCMap.find(&N); + assert(CI != SCCMap.end() && + "Tried to remove a node without an SCC after DFS walk started!"); + SCC &C = *CI->second; + SCCMap.erase(CI); + RefSCC &RC = C.getOuterRefSCC(); + + // This node must be the only member of its SCC as it has no callers, and + // that SCC must be the only member of a RefSCC as it has no references. + // Validate these properties first. + assert(C.size() == 1 && "Dead functions must be in a singular SCC"); + assert(RC.size() == 1 && "Dead functions must be in a singular RefSCC"); + + auto RCIndexI = RefSCCIndices.find(&RC); + int RCIndex = RCIndexI->second; + PostOrderRefSCCs.erase(PostOrderRefSCCs.begin() + RCIndex); + RefSCCIndices.erase(RCIndexI); + for (int i = RCIndex, Size = PostOrderRefSCCs.size(); i < Size; ++i) + RefSCCIndices[PostOrderRefSCCs[i]] = i; + + // Finally clear out all the data structures from the node down through the + // components. + N.clear(); + N.G = nullptr; + N.F = nullptr; + C.clear(); + RC.clear(); + RC.G = nullptr; + + // Nothing to delete as all the objects are allocated in stable bump pointer + // allocators. +} + +LazyCallGraph::Node &LazyCallGraph::insertInto(Function &F, Node *&MappedN) { + return *new (MappedN = BPA.Allocate()) Node(*this, F); +} + +void LazyCallGraph::updateGraphPtrs() { + // Walk the node map to update their graph pointers. While this iterates in + // an unstable order, the order has no effect so it remains correct. + for (auto &FunctionNodePair : NodeMap) + FunctionNodePair.second->G = this; + + for (auto *RC : PostOrderRefSCCs) + RC->G = this; +} + +template <typename RootsT, typename GetBeginT, typename GetEndT, + typename GetNodeT, typename FormSCCCallbackT> +void LazyCallGraph::buildGenericSCCs(RootsT &&Roots, GetBeginT &&GetBegin, + GetEndT &&GetEnd, GetNodeT &&GetNode, + FormSCCCallbackT &&FormSCC) { + using EdgeItT = decltype(GetBegin(std::declval<Node &>())); + + SmallVector<std::pair<Node *, EdgeItT>, 16> DFSStack; + SmallVector<Node *, 16> PendingSCCStack; + + // Scan down the stack and DFS across the call edges. + for (Node *RootN : Roots) { + assert(DFSStack.empty() && + "Cannot begin a new root with a non-empty DFS stack!"); + assert(PendingSCCStack.empty() && + "Cannot begin a new root with pending nodes for an SCC!"); + + // Skip any nodes we've already reached in the DFS. + if (RootN->DFSNumber != 0) { + assert(RootN->DFSNumber == -1 && + "Shouldn't have any mid-DFS root nodes!"); + continue; + } + + RootN->DFSNumber = RootN->LowLink = 1; + int NextDFSNumber = 2; + + DFSStack.push_back({RootN, GetBegin(*RootN)}); + do { + Node *N; + EdgeItT I; + std::tie(N, I) = DFSStack.pop_back_val(); + auto E = GetEnd(*N); + while (I != E) { + Node &ChildN = GetNode(I); + if (ChildN.DFSNumber == 0) { + // We haven't yet visited this child, so descend, pushing the current + // node onto the stack. + DFSStack.push_back({N, I}); + + ChildN.DFSNumber = ChildN.LowLink = NextDFSNumber++; + N = &ChildN; + I = GetBegin(*N); + E = GetEnd(*N); + continue; + } + + // If the child has already been added to some child component, it + // couldn't impact the low-link of this parent because it isn't + // connected, and thus its low-link isn't relevant so skip it. + if (ChildN.DFSNumber == -1) { + ++I; + continue; + } + + // Track the lowest linked child as the lowest link for this node. + assert(ChildN.LowLink > 0 && "Must have a positive low-link number!"); + if (ChildN.LowLink < N->LowLink) + N->LowLink = ChildN.LowLink; + + // Move to the next edge. + ++I; + } + + // We've finished processing N and its descendants, put it on our pending + // SCC stack to eventually get merged into an SCC of nodes. + PendingSCCStack.push_back(N); + + // If this node is linked to some lower entry, continue walking up the + // stack. + if (N->LowLink != N->DFSNumber) + continue; + + // Otherwise, we've completed an SCC. Append it to our post order list of + // SCCs. + int RootDFSNumber = N->DFSNumber; + // Find the range of the node stack by walking down until we pass the + // root DFS number. + auto SCCNodes = make_range( + PendingSCCStack.rbegin(), + find_if(reverse(PendingSCCStack), [RootDFSNumber](const Node *N) { + return N->DFSNumber < RootDFSNumber; + })); + // Form a new SCC out of these nodes and then clear them off our pending + // stack. + FormSCC(SCCNodes); + PendingSCCStack.erase(SCCNodes.end().base(), PendingSCCStack.end()); + } while (!DFSStack.empty()); + } +} + +/// Build the internal SCCs for a RefSCC from a sequence of nodes. +/// +/// Appends the SCCs to the provided vector and updates the map with their +/// indices. Both the vector and map must be empty when passed into this +/// routine. +void LazyCallGraph::buildSCCs(RefSCC &RC, node_stack_range Nodes) { + assert(RC.SCCs.empty() && "Already built SCCs!"); + assert(RC.SCCIndices.empty() && "Already mapped SCC indices!"); + + for (Node *N : Nodes) { + assert(N->LowLink >= (*Nodes.begin())->LowLink && + "We cannot have a low link in an SCC lower than its root on the " + "stack!"); + + // This node will go into the next RefSCC, clear out its DFS and low link + // as we scan. + N->DFSNumber = N->LowLink = 0; + } + + // Each RefSCC contains a DAG of the call SCCs. To build these, we do + // a direct walk of the call edges using Tarjan's algorithm. We reuse the + // internal storage as we won't need it for the outer graph's DFS any longer. + buildGenericSCCs( + Nodes, [](Node &N) { return N->call_begin(); }, + [](Node &N) { return N->call_end(); }, + [](EdgeSequence::call_iterator I) -> Node & { return I->getNode(); }, + [this, &RC](node_stack_range Nodes) { + RC.SCCs.push_back(createSCC(RC, Nodes)); + for (Node &N : *RC.SCCs.back()) { + N.DFSNumber = N.LowLink = -1; + SCCMap[&N] = RC.SCCs.back(); + } + }); + + // Wire up the SCC indices. + for (int i = 0, Size = RC.SCCs.size(); i < Size; ++i) + RC.SCCIndices[RC.SCCs[i]] = i; +} + +void LazyCallGraph::buildRefSCCs() { + if (EntryEdges.empty() || !PostOrderRefSCCs.empty()) + // RefSCCs are either non-existent or already built! + return; + + assert(RefSCCIndices.empty() && "Already mapped RefSCC indices!"); + + SmallVector<Node *, 16> Roots; + for (Edge &E : *this) + Roots.push_back(&E.getNode()); + + // The roots will be popped of a stack, so use reverse to get a less + // surprising order. This doesn't change any of the semantics anywhere. + std::reverse(Roots.begin(), Roots.end()); + + buildGenericSCCs( + Roots, + [](Node &N) { + // We need to populate each node as we begin to walk its edges. + N.populate(); + return N->begin(); + }, + [](Node &N) { return N->end(); }, + [](EdgeSequence::iterator I) -> Node & { return I->getNode(); }, + [this](node_stack_range Nodes) { + RefSCC *NewRC = createRefSCC(*this); + buildSCCs(*NewRC, Nodes); + + // Push the new node into the postorder list and remember its position + // in the index map. + bool Inserted = + RefSCCIndices.insert({NewRC, PostOrderRefSCCs.size()}).second; + (void)Inserted; + assert(Inserted && "Cannot already have this RefSCC in the index map!"); + PostOrderRefSCCs.push_back(NewRC); +#ifndef NDEBUG + NewRC->verify(); +#endif + }); +} + +AnalysisKey LazyCallGraphAnalysis::Key; + +LazyCallGraphPrinterPass::LazyCallGraphPrinterPass(raw_ostream &OS) : OS(OS) {} + +static void printNode(raw_ostream &OS, LazyCallGraph::Node &N) { + OS << " Edges in function: " << N.getFunction().getName() << "\n"; + for (LazyCallGraph::Edge &E : N.populate()) + OS << " " << (E.isCall() ? "call" : "ref ") << " -> " + << E.getFunction().getName() << "\n"; + + OS << "\n"; +} + +static void printSCC(raw_ostream &OS, LazyCallGraph::SCC &C) { + OS << " SCC with " << C.size() << " functions:\n"; + + for (LazyCallGraph::Node &N : C) + OS << " " << N.getFunction().getName() << "\n"; +} + +static void printRefSCC(raw_ostream &OS, LazyCallGraph::RefSCC &C) { + OS << " RefSCC with " << C.size() << " call SCCs:\n"; + + for (LazyCallGraph::SCC &InnerC : C) + printSCC(OS, InnerC); + + OS << "\n"; +} + +PreservedAnalyses LazyCallGraphPrinterPass::run(Module &M, + ModuleAnalysisManager &AM) { + LazyCallGraph &G = AM.getResult<LazyCallGraphAnalysis>(M); + + OS << "Printing the call graph for module: " << M.getModuleIdentifier() + << "\n\n"; + + for (Function &F : M) + printNode(OS, G.get(F)); + + G.buildRefSCCs(); + for (LazyCallGraph::RefSCC &C : G.postorder_ref_sccs()) + printRefSCC(OS, C); + + return PreservedAnalyses::all(); +} + +LazyCallGraphDOTPrinterPass::LazyCallGraphDOTPrinterPass(raw_ostream &OS) + : OS(OS) {} + +static void printNodeDOT(raw_ostream &OS, LazyCallGraph::Node &N) { + std::string Name = "\"" + DOT::EscapeString(N.getFunction().getName()) + "\""; + + for (LazyCallGraph::Edge &E : N.populate()) { + OS << " " << Name << " -> \"" + << DOT::EscapeString(E.getFunction().getName()) << "\""; + if (!E.isCall()) // It is a ref edge. + OS << " [style=dashed,label=\"ref\"]"; + OS << ";\n"; + } + + OS << "\n"; +} + +PreservedAnalyses LazyCallGraphDOTPrinterPass::run(Module &M, + ModuleAnalysisManager &AM) { + LazyCallGraph &G = AM.getResult<LazyCallGraphAnalysis>(M); + + OS << "digraph \"" << DOT::EscapeString(M.getModuleIdentifier()) << "\" {\n"; + + for (Function &F : M) + printNodeDOT(OS, G.get(F)); + + OS << "}\n"; + + return PreservedAnalyses::all(); +} |