summaryrefslogtreecommitdiff
path: root/llvm/lib/Analysis/LazyValueInfo.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'llvm/lib/Analysis/LazyValueInfo.cpp')
-rw-r--r--llvm/lib/Analysis/LazyValueInfo.cpp2042
1 files changed, 2042 insertions, 0 deletions
diff --git a/llvm/lib/Analysis/LazyValueInfo.cpp b/llvm/lib/Analysis/LazyValueInfo.cpp
new file mode 100644
index 0000000000000..96722f32e3550
--- /dev/null
+++ b/llvm/lib/Analysis/LazyValueInfo.cpp
@@ -0,0 +1,2042 @@
+//===- LazyValueInfo.cpp - Value constraint analysis ------------*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the interface for lazy computation of value constraint
+// information.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Analysis/LazyValueInfo.h"
+#include "llvm/ADT/DenseSet.h"
+#include "llvm/ADT/Optional.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/Analysis/AssumptionCache.h"
+#include "llvm/Analysis/ConstantFolding.h"
+#include "llvm/Analysis/InstructionSimplify.h"
+#include "llvm/Analysis/TargetLibraryInfo.h"
+#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/Analysis/ValueLattice.h"
+#include "llvm/IR/AssemblyAnnotationWriter.h"
+#include "llvm/IR/CFG.h"
+#include "llvm/IR/ConstantRange.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Dominators.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/PatternMatch.h"
+#include "llvm/IR/ValueHandle.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/FormattedStream.h"
+#include "llvm/Support/raw_ostream.h"
+#include <map>
+using namespace llvm;
+using namespace PatternMatch;
+
+#define DEBUG_TYPE "lazy-value-info"
+
+// This is the number of worklist items we will process to try to discover an
+// answer for a given value.
+static const unsigned MaxProcessedPerValue = 500;
+
+char LazyValueInfoWrapperPass::ID = 0;
+INITIALIZE_PASS_BEGIN(LazyValueInfoWrapperPass, "lazy-value-info",
+ "Lazy Value Information Analysis", false, true)
+INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
+INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
+INITIALIZE_PASS_END(LazyValueInfoWrapperPass, "lazy-value-info",
+ "Lazy Value Information Analysis", false, true)
+
+namespace llvm {
+ FunctionPass *createLazyValueInfoPass() { return new LazyValueInfoWrapperPass(); }
+}
+
+AnalysisKey LazyValueAnalysis::Key;
+
+/// Returns true if this lattice value represents at most one possible value.
+/// This is as precise as any lattice value can get while still representing
+/// reachable code.
+static bool hasSingleValue(const ValueLatticeElement &Val) {
+ if (Val.isConstantRange() &&
+ Val.getConstantRange().isSingleElement())
+ // Integer constants are single element ranges
+ return true;
+ if (Val.isConstant())
+ // Non integer constants
+ return true;
+ return false;
+}
+
+/// Combine two sets of facts about the same value into a single set of
+/// facts. Note that this method is not suitable for merging facts along
+/// different paths in a CFG; that's what the mergeIn function is for. This
+/// is for merging facts gathered about the same value at the same location
+/// through two independent means.
+/// Notes:
+/// * This method does not promise to return the most precise possible lattice
+/// value implied by A and B. It is allowed to return any lattice element
+/// which is at least as strong as *either* A or B (unless our facts
+/// conflict, see below).
+/// * Due to unreachable code, the intersection of two lattice values could be
+/// contradictory. If this happens, we return some valid lattice value so as
+/// not confuse the rest of LVI. Ideally, we'd always return Undefined, but
+/// we do not make this guarantee. TODO: This would be a useful enhancement.
+static ValueLatticeElement intersect(const ValueLatticeElement &A,
+ const ValueLatticeElement &B) {
+ // Undefined is the strongest state. It means the value is known to be along
+ // an unreachable path.
+ if (A.isUndefined())
+ return A;
+ if (B.isUndefined())
+ return B;
+
+ // If we gave up for one, but got a useable fact from the other, use it.
+ if (A.isOverdefined())
+ return B;
+ if (B.isOverdefined())
+ return A;
+
+ // Can't get any more precise than constants.
+ if (hasSingleValue(A))
+ return A;
+ if (hasSingleValue(B))
+ return B;
+
+ // Could be either constant range or not constant here.
+ if (!A.isConstantRange() || !B.isConstantRange()) {
+ // TODO: Arbitrary choice, could be improved
+ return A;
+ }
+
+ // Intersect two constant ranges
+ ConstantRange Range =
+ A.getConstantRange().intersectWith(B.getConstantRange());
+ // Note: An empty range is implicitly converted to overdefined internally.
+ // TODO: We could instead use Undefined here since we've proven a conflict
+ // and thus know this path must be unreachable.
+ return ValueLatticeElement::getRange(std::move(Range));
+}
+
+//===----------------------------------------------------------------------===//
+// LazyValueInfoCache Decl
+//===----------------------------------------------------------------------===//
+
+namespace {
+ /// A callback value handle updates the cache when values are erased.
+ class LazyValueInfoCache;
+ struct LVIValueHandle final : public CallbackVH {
+ // Needs to access getValPtr(), which is protected.
+ friend struct DenseMapInfo<LVIValueHandle>;
+
+ LazyValueInfoCache *Parent;
+
+ LVIValueHandle(Value *V, LazyValueInfoCache *P)
+ : CallbackVH(V), Parent(P) { }
+
+ void deleted() override;
+ void allUsesReplacedWith(Value *V) override {
+ deleted();
+ }
+ };
+} // end anonymous namespace
+
+namespace {
+ /// This is the cache kept by LazyValueInfo which
+ /// maintains information about queries across the clients' queries.
+ class LazyValueInfoCache {
+ /// This is all of the cached block information for exactly one Value*.
+ /// The entries are sorted by the BasicBlock* of the
+ /// entries, allowing us to do a lookup with a binary search.
+ /// Over-defined lattice values are recorded in OverDefinedCache to reduce
+ /// memory overhead.
+ struct ValueCacheEntryTy {
+ ValueCacheEntryTy(Value *V, LazyValueInfoCache *P) : Handle(V, P) {}
+ LVIValueHandle Handle;
+ SmallDenseMap<PoisoningVH<BasicBlock>, ValueLatticeElement, 4> BlockVals;
+ };
+
+ /// This tracks, on a per-block basis, the set of values that are
+ /// over-defined at the end of that block.
+ typedef DenseMap<PoisoningVH<BasicBlock>, SmallPtrSet<Value *, 4>>
+ OverDefinedCacheTy;
+ /// Keep track of all blocks that we have ever seen, so we
+ /// don't spend time removing unused blocks from our caches.
+ DenseSet<PoisoningVH<BasicBlock> > SeenBlocks;
+
+ /// This is all of the cached information for all values,
+ /// mapped from Value* to key information.
+ DenseMap<Value *, std::unique_ptr<ValueCacheEntryTy>> ValueCache;
+ OverDefinedCacheTy OverDefinedCache;
+
+
+ public:
+ void insertResult(Value *Val, BasicBlock *BB,
+ const ValueLatticeElement &Result) {
+ SeenBlocks.insert(BB);
+
+ // Insert over-defined values into their own cache to reduce memory
+ // overhead.
+ if (Result.isOverdefined())
+ OverDefinedCache[BB].insert(Val);
+ else {
+ auto It = ValueCache.find_as(Val);
+ if (It == ValueCache.end()) {
+ ValueCache[Val] = std::make_unique<ValueCacheEntryTy>(Val, this);
+ It = ValueCache.find_as(Val);
+ assert(It != ValueCache.end() && "Val was just added to the map!");
+ }
+ It->second->BlockVals[BB] = Result;
+ }
+ }
+
+ bool isOverdefined(Value *V, BasicBlock *BB) const {
+ auto ODI = OverDefinedCache.find(BB);
+
+ if (ODI == OverDefinedCache.end())
+ return false;
+
+ return ODI->second.count(V);
+ }
+
+ bool hasCachedValueInfo(Value *V, BasicBlock *BB) const {
+ if (isOverdefined(V, BB))
+ return true;
+
+ auto I = ValueCache.find_as(V);
+ if (I == ValueCache.end())
+ return false;
+
+ return I->second->BlockVals.count(BB);
+ }
+
+ ValueLatticeElement getCachedValueInfo(Value *V, BasicBlock *BB) const {
+ if (isOverdefined(V, BB))
+ return ValueLatticeElement::getOverdefined();
+
+ auto I = ValueCache.find_as(V);
+ if (I == ValueCache.end())
+ return ValueLatticeElement();
+ auto BBI = I->second->BlockVals.find(BB);
+ if (BBI == I->second->BlockVals.end())
+ return ValueLatticeElement();
+ return BBI->second;
+ }
+
+ /// clear - Empty the cache.
+ void clear() {
+ SeenBlocks.clear();
+ ValueCache.clear();
+ OverDefinedCache.clear();
+ }
+
+ /// Inform the cache that a given value has been deleted.
+ void eraseValue(Value *V);
+
+ /// This is part of the update interface to inform the cache
+ /// that a block has been deleted.
+ void eraseBlock(BasicBlock *BB);
+
+ /// Updates the cache to remove any influence an overdefined value in
+ /// OldSucc might have (unless also overdefined in NewSucc). This just
+ /// flushes elements from the cache and does not add any.
+ void threadEdgeImpl(BasicBlock *OldSucc,BasicBlock *NewSucc);
+
+ friend struct LVIValueHandle;
+ };
+}
+
+void LazyValueInfoCache::eraseValue(Value *V) {
+ for (auto I = OverDefinedCache.begin(), E = OverDefinedCache.end(); I != E;) {
+ // Copy and increment the iterator immediately so we can erase behind
+ // ourselves.
+ auto Iter = I++;
+ SmallPtrSetImpl<Value *> &ValueSet = Iter->second;
+ ValueSet.erase(V);
+ if (ValueSet.empty())
+ OverDefinedCache.erase(Iter);
+ }
+
+ ValueCache.erase(V);
+}
+
+void LVIValueHandle::deleted() {
+ // This erasure deallocates *this, so it MUST happen after we're done
+ // using any and all members of *this.
+ Parent->eraseValue(*this);
+}
+
+void LazyValueInfoCache::eraseBlock(BasicBlock *BB) {
+ // Shortcut if we have never seen this block.
+ DenseSet<PoisoningVH<BasicBlock> >::iterator I = SeenBlocks.find(BB);
+ if (I == SeenBlocks.end())
+ return;
+ SeenBlocks.erase(I);
+
+ auto ODI = OverDefinedCache.find(BB);
+ if (ODI != OverDefinedCache.end())
+ OverDefinedCache.erase(ODI);
+
+ for (auto &I : ValueCache)
+ I.second->BlockVals.erase(BB);
+}
+
+void LazyValueInfoCache::threadEdgeImpl(BasicBlock *OldSucc,
+ BasicBlock *NewSucc) {
+ // When an edge in the graph has been threaded, values that we could not
+ // determine a value for before (i.e. were marked overdefined) may be
+ // possible to solve now. We do NOT try to proactively update these values.
+ // Instead, we clear their entries from the cache, and allow lazy updating to
+ // recompute them when needed.
+
+ // The updating process is fairly simple: we need to drop cached info
+ // for all values that were marked overdefined in OldSucc, and for those same
+ // values in any successor of OldSucc (except NewSucc) in which they were
+ // also marked overdefined.
+ std::vector<BasicBlock*> worklist;
+ worklist.push_back(OldSucc);
+
+ auto I = OverDefinedCache.find(OldSucc);
+ if (I == OverDefinedCache.end())
+ return; // Nothing to process here.
+ SmallVector<Value *, 4> ValsToClear(I->second.begin(), I->second.end());
+
+ // Use a worklist to perform a depth-first search of OldSucc's successors.
+ // NOTE: We do not need a visited list since any blocks we have already
+ // visited will have had their overdefined markers cleared already, and we
+ // thus won't loop to their successors.
+ while (!worklist.empty()) {
+ BasicBlock *ToUpdate = worklist.back();
+ worklist.pop_back();
+
+ // Skip blocks only accessible through NewSucc.
+ if (ToUpdate == NewSucc) continue;
+
+ // If a value was marked overdefined in OldSucc, and is here too...
+ auto OI = OverDefinedCache.find(ToUpdate);
+ if (OI == OverDefinedCache.end())
+ continue;
+ SmallPtrSetImpl<Value *> &ValueSet = OI->second;
+
+ bool changed = false;
+ for (Value *V : ValsToClear) {
+ if (!ValueSet.erase(V))
+ continue;
+
+ // If we removed anything, then we potentially need to update
+ // blocks successors too.
+ changed = true;
+
+ if (ValueSet.empty()) {
+ OverDefinedCache.erase(OI);
+ break;
+ }
+ }
+
+ if (!changed) continue;
+
+ worklist.insert(worklist.end(), succ_begin(ToUpdate), succ_end(ToUpdate));
+ }
+}
+
+
+namespace {
+/// An assembly annotator class to print LazyValueCache information in
+/// comments.
+class LazyValueInfoImpl;
+class LazyValueInfoAnnotatedWriter : public AssemblyAnnotationWriter {
+ LazyValueInfoImpl *LVIImpl;
+ // While analyzing which blocks we can solve values for, we need the dominator
+ // information. Since this is an optional parameter in LVI, we require this
+ // DomTreeAnalysis pass in the printer pass, and pass the dominator
+ // tree to the LazyValueInfoAnnotatedWriter.
+ DominatorTree &DT;
+
+public:
+ LazyValueInfoAnnotatedWriter(LazyValueInfoImpl *L, DominatorTree &DTree)
+ : LVIImpl(L), DT(DTree) {}
+
+ virtual void emitBasicBlockStartAnnot(const BasicBlock *BB,
+ formatted_raw_ostream &OS);
+
+ virtual void emitInstructionAnnot(const Instruction *I,
+ formatted_raw_ostream &OS);
+};
+}
+namespace {
+ // The actual implementation of the lazy analysis and update. Note that the
+ // inheritance from LazyValueInfoCache is intended to be temporary while
+ // splitting the code and then transitioning to a has-a relationship.
+ class LazyValueInfoImpl {
+
+ /// Cached results from previous queries
+ LazyValueInfoCache TheCache;
+
+ /// This stack holds the state of the value solver during a query.
+ /// It basically emulates the callstack of the naive
+ /// recursive value lookup process.
+ SmallVector<std::pair<BasicBlock*, Value*>, 8> BlockValueStack;
+
+ /// Keeps track of which block-value pairs are in BlockValueStack.
+ DenseSet<std::pair<BasicBlock*, Value*> > BlockValueSet;
+
+ /// Push BV onto BlockValueStack unless it's already in there.
+ /// Returns true on success.
+ bool pushBlockValue(const std::pair<BasicBlock *, Value *> &BV) {
+ if (!BlockValueSet.insert(BV).second)
+ return false; // It's already in the stack.
+
+ LLVM_DEBUG(dbgs() << "PUSH: " << *BV.second << " in "
+ << BV.first->getName() << "\n");
+ BlockValueStack.push_back(BV);
+ return true;
+ }
+
+ AssumptionCache *AC; ///< A pointer to the cache of @llvm.assume calls.
+ const DataLayout &DL; ///< A mandatory DataLayout
+ DominatorTree *DT; ///< An optional DT pointer.
+ DominatorTree *DisabledDT; ///< Stores DT if it's disabled.
+
+ ValueLatticeElement getBlockValue(Value *Val, BasicBlock *BB);
+ bool getEdgeValue(Value *V, BasicBlock *F, BasicBlock *T,
+ ValueLatticeElement &Result, Instruction *CxtI = nullptr);
+ bool hasBlockValue(Value *Val, BasicBlock *BB);
+
+ // These methods process one work item and may add more. A false value
+ // returned means that the work item was not completely processed and must
+ // be revisited after going through the new items.
+ bool solveBlockValue(Value *Val, BasicBlock *BB);
+ bool solveBlockValueImpl(ValueLatticeElement &Res, Value *Val,
+ BasicBlock *BB);
+ bool solveBlockValueNonLocal(ValueLatticeElement &BBLV, Value *Val,
+ BasicBlock *BB);
+ bool solveBlockValuePHINode(ValueLatticeElement &BBLV, PHINode *PN,
+ BasicBlock *BB);
+ bool solveBlockValueSelect(ValueLatticeElement &BBLV, SelectInst *S,
+ BasicBlock *BB);
+ Optional<ConstantRange> getRangeForOperand(unsigned Op, Instruction *I,
+ BasicBlock *BB);
+ bool solveBlockValueBinaryOpImpl(
+ ValueLatticeElement &BBLV, Instruction *I, BasicBlock *BB,
+ std::function<ConstantRange(const ConstantRange &,
+ const ConstantRange &)> OpFn);
+ bool solveBlockValueBinaryOp(ValueLatticeElement &BBLV, BinaryOperator *BBI,
+ BasicBlock *BB);
+ bool solveBlockValueCast(ValueLatticeElement &BBLV, CastInst *CI,
+ BasicBlock *BB);
+ bool solveBlockValueOverflowIntrinsic(
+ ValueLatticeElement &BBLV, WithOverflowInst *WO, BasicBlock *BB);
+ bool solveBlockValueIntrinsic(ValueLatticeElement &BBLV, IntrinsicInst *II,
+ BasicBlock *BB);
+ bool solveBlockValueExtractValue(ValueLatticeElement &BBLV,
+ ExtractValueInst *EVI, BasicBlock *BB);
+ void intersectAssumeOrGuardBlockValueConstantRange(Value *Val,
+ ValueLatticeElement &BBLV,
+ Instruction *BBI);
+
+ void solve();
+
+ public:
+ /// This is the query interface to determine the lattice
+ /// value for the specified Value* at the end of the specified block.
+ ValueLatticeElement getValueInBlock(Value *V, BasicBlock *BB,
+ Instruction *CxtI = nullptr);
+
+ /// This is the query interface to determine the lattice
+ /// value for the specified Value* at the specified instruction (generally
+ /// from an assume intrinsic).
+ ValueLatticeElement getValueAt(Value *V, Instruction *CxtI);
+
+ /// This is the query interface to determine the lattice
+ /// value for the specified Value* that is true on the specified edge.
+ ValueLatticeElement getValueOnEdge(Value *V, BasicBlock *FromBB,
+ BasicBlock *ToBB,
+ Instruction *CxtI = nullptr);
+
+ /// Complete flush all previously computed values
+ void clear() {
+ TheCache.clear();
+ }
+
+ /// Printing the LazyValueInfo Analysis.
+ void printLVI(Function &F, DominatorTree &DTree, raw_ostream &OS) {
+ LazyValueInfoAnnotatedWriter Writer(this, DTree);
+ F.print(OS, &Writer);
+ }
+
+ /// This is part of the update interface to inform the cache
+ /// that a block has been deleted.
+ void eraseBlock(BasicBlock *BB) {
+ TheCache.eraseBlock(BB);
+ }
+
+ /// Disables use of the DominatorTree within LVI.
+ void disableDT() {
+ if (DT) {
+ assert(!DisabledDT && "Both DT and DisabledDT are not nullptr!");
+ std::swap(DT, DisabledDT);
+ }
+ }
+
+ /// Enables use of the DominatorTree within LVI. Does nothing if the class
+ /// instance was initialized without a DT pointer.
+ void enableDT() {
+ if (DisabledDT) {
+ assert(!DT && "Both DT and DisabledDT are not nullptr!");
+ std::swap(DT, DisabledDT);
+ }
+ }
+
+ /// This is the update interface to inform the cache that an edge from
+ /// PredBB to OldSucc has been threaded to be from PredBB to NewSucc.
+ void threadEdge(BasicBlock *PredBB,BasicBlock *OldSucc,BasicBlock *NewSucc);
+
+ LazyValueInfoImpl(AssumptionCache *AC, const DataLayout &DL,
+ DominatorTree *DT = nullptr)
+ : AC(AC), DL(DL), DT(DT), DisabledDT(nullptr) {}
+ };
+} // end anonymous namespace
+
+
+void LazyValueInfoImpl::solve() {
+ SmallVector<std::pair<BasicBlock *, Value *>, 8> StartingStack(
+ BlockValueStack.begin(), BlockValueStack.end());
+
+ unsigned processedCount = 0;
+ while (!BlockValueStack.empty()) {
+ processedCount++;
+ // Abort if we have to process too many values to get a result for this one.
+ // Because of the design of the overdefined cache currently being per-block
+ // to avoid naming-related issues (IE it wants to try to give different
+ // results for the same name in different blocks), overdefined results don't
+ // get cached globally, which in turn means we will often try to rediscover
+ // the same overdefined result again and again. Once something like
+ // PredicateInfo is used in LVI or CVP, we should be able to make the
+ // overdefined cache global, and remove this throttle.
+ if (processedCount > MaxProcessedPerValue) {
+ LLVM_DEBUG(
+ dbgs() << "Giving up on stack because we are getting too deep\n");
+ // Fill in the original values
+ while (!StartingStack.empty()) {
+ std::pair<BasicBlock *, Value *> &e = StartingStack.back();
+ TheCache.insertResult(e.second, e.first,
+ ValueLatticeElement::getOverdefined());
+ StartingStack.pop_back();
+ }
+ BlockValueSet.clear();
+ BlockValueStack.clear();
+ return;
+ }
+ std::pair<BasicBlock *, Value *> e = BlockValueStack.back();
+ assert(BlockValueSet.count(e) && "Stack value should be in BlockValueSet!");
+
+ if (solveBlockValue(e.second, e.first)) {
+ // The work item was completely processed.
+ assert(BlockValueStack.back() == e && "Nothing should have been pushed!");
+ assert(TheCache.hasCachedValueInfo(e.second, e.first) &&
+ "Result should be in cache!");
+
+ LLVM_DEBUG(
+ dbgs() << "POP " << *e.second << " in " << e.first->getName() << " = "
+ << TheCache.getCachedValueInfo(e.second, e.first) << "\n");
+
+ BlockValueStack.pop_back();
+ BlockValueSet.erase(e);
+ } else {
+ // More work needs to be done before revisiting.
+ assert(BlockValueStack.back() != e && "Stack should have been pushed!");
+ }
+ }
+}
+
+bool LazyValueInfoImpl::hasBlockValue(Value *Val, BasicBlock *BB) {
+ // If already a constant, there is nothing to compute.
+ if (isa<Constant>(Val))
+ return true;
+
+ return TheCache.hasCachedValueInfo(Val, BB);
+}
+
+ValueLatticeElement LazyValueInfoImpl::getBlockValue(Value *Val,
+ BasicBlock *BB) {
+ // If already a constant, there is nothing to compute.
+ if (Constant *VC = dyn_cast<Constant>(Val))
+ return ValueLatticeElement::get(VC);
+
+ return TheCache.getCachedValueInfo(Val, BB);
+}
+
+static ValueLatticeElement getFromRangeMetadata(Instruction *BBI) {
+ switch (BBI->getOpcode()) {
+ default: break;
+ case Instruction::Load:
+ case Instruction::Call:
+ case Instruction::Invoke:
+ if (MDNode *Ranges = BBI->getMetadata(LLVMContext::MD_range))
+ if (isa<IntegerType>(BBI->getType())) {
+ return ValueLatticeElement::getRange(
+ getConstantRangeFromMetadata(*Ranges));
+ }
+ break;
+ };
+ // Nothing known - will be intersected with other facts
+ return ValueLatticeElement::getOverdefined();
+}
+
+bool LazyValueInfoImpl::solveBlockValue(Value *Val, BasicBlock *BB) {
+ if (isa<Constant>(Val))
+ return true;
+
+ if (TheCache.hasCachedValueInfo(Val, BB)) {
+ // If we have a cached value, use that.
+ LLVM_DEBUG(dbgs() << " reuse BB '" << BB->getName() << "' val="
+ << TheCache.getCachedValueInfo(Val, BB) << '\n');
+
+ // Since we're reusing a cached value, we don't need to update the
+ // OverDefinedCache. The cache will have been properly updated whenever the
+ // cached value was inserted.
+ return true;
+ }
+
+ // Hold off inserting this value into the Cache in case we have to return
+ // false and come back later.
+ ValueLatticeElement Res;
+ if (!solveBlockValueImpl(Res, Val, BB))
+ // Work pushed, will revisit
+ return false;
+
+ TheCache.insertResult(Val, BB, Res);
+ return true;
+}
+
+bool LazyValueInfoImpl::solveBlockValueImpl(ValueLatticeElement &Res,
+ Value *Val, BasicBlock *BB) {
+
+ Instruction *BBI = dyn_cast<Instruction>(Val);
+ if (!BBI || BBI->getParent() != BB)
+ return solveBlockValueNonLocal(Res, Val, BB);
+
+ if (PHINode *PN = dyn_cast<PHINode>(BBI))
+ return solveBlockValuePHINode(Res, PN, BB);
+
+ if (auto *SI = dyn_cast<SelectInst>(BBI))
+ return solveBlockValueSelect(Res, SI, BB);
+
+ // If this value is a nonnull pointer, record it's range and bailout. Note
+ // that for all other pointer typed values, we terminate the search at the
+ // definition. We could easily extend this to look through geps, bitcasts,
+ // and the like to prove non-nullness, but it's not clear that's worth it
+ // compile time wise. The context-insensitive value walk done inside
+ // isKnownNonZero gets most of the profitable cases at much less expense.
+ // This does mean that we have a sensitivity to where the defining
+ // instruction is placed, even if it could legally be hoisted much higher.
+ // That is unfortunate.
+ PointerType *PT = dyn_cast<PointerType>(BBI->getType());
+ if (PT && isKnownNonZero(BBI, DL)) {
+ Res = ValueLatticeElement::getNot(ConstantPointerNull::get(PT));
+ return true;
+ }
+ if (BBI->getType()->isIntegerTy()) {
+ if (auto *CI = dyn_cast<CastInst>(BBI))
+ return solveBlockValueCast(Res, CI, BB);
+
+ if (BinaryOperator *BO = dyn_cast<BinaryOperator>(BBI))
+ return solveBlockValueBinaryOp(Res, BO, BB);
+
+ if (auto *EVI = dyn_cast<ExtractValueInst>(BBI))
+ return solveBlockValueExtractValue(Res, EVI, BB);
+
+ if (auto *II = dyn_cast<IntrinsicInst>(BBI))
+ return solveBlockValueIntrinsic(Res, II, BB);
+ }
+
+ LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName()
+ << "' - unknown inst def found.\n");
+ Res = getFromRangeMetadata(BBI);
+ return true;
+}
+
+static bool InstructionDereferencesPointer(Instruction *I, Value *Ptr) {
+ if (LoadInst *L = dyn_cast<LoadInst>(I)) {
+ return L->getPointerAddressSpace() == 0 &&
+ GetUnderlyingObject(L->getPointerOperand(),
+ L->getModule()->getDataLayout()) == Ptr;
+ }
+ if (StoreInst *S = dyn_cast<StoreInst>(I)) {
+ return S->getPointerAddressSpace() == 0 &&
+ GetUnderlyingObject(S->getPointerOperand(),
+ S->getModule()->getDataLayout()) == Ptr;
+ }
+ if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) {
+ if (MI->isVolatile()) return false;
+
+ // FIXME: check whether it has a valuerange that excludes zero?
+ ConstantInt *Len = dyn_cast<ConstantInt>(MI->getLength());
+ if (!Len || Len->isZero()) return false;
+
+ if (MI->getDestAddressSpace() == 0)
+ if (GetUnderlyingObject(MI->getRawDest(),
+ MI->getModule()->getDataLayout()) == Ptr)
+ return true;
+ if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI))
+ if (MTI->getSourceAddressSpace() == 0)
+ if (GetUnderlyingObject(MTI->getRawSource(),
+ MTI->getModule()->getDataLayout()) == Ptr)
+ return true;
+ }
+ return false;
+}
+
+/// Return true if the allocation associated with Val is ever dereferenced
+/// within the given basic block. This establishes the fact Val is not null,
+/// but does not imply that the memory at Val is dereferenceable. (Val may
+/// point off the end of the dereferenceable part of the object.)
+static bool isObjectDereferencedInBlock(Value *Val, BasicBlock *BB) {
+ assert(Val->getType()->isPointerTy());
+
+ const DataLayout &DL = BB->getModule()->getDataLayout();
+ Value *UnderlyingVal = GetUnderlyingObject(Val, DL);
+ // If 'GetUnderlyingObject' didn't converge, skip it. It won't converge
+ // inside InstructionDereferencesPointer either.
+ if (UnderlyingVal == GetUnderlyingObject(UnderlyingVal, DL, 1))
+ for (Instruction &I : *BB)
+ if (InstructionDereferencesPointer(&I, UnderlyingVal))
+ return true;
+ return false;
+}
+
+bool LazyValueInfoImpl::solveBlockValueNonLocal(ValueLatticeElement &BBLV,
+ Value *Val, BasicBlock *BB) {
+ ValueLatticeElement Result; // Start Undefined.
+
+ // If this is the entry block, we must be asking about an argument. The
+ // value is overdefined.
+ if (BB == &BB->getParent()->getEntryBlock()) {
+ assert(isa<Argument>(Val) && "Unknown live-in to the entry block");
+ // Before giving up, see if we can prove the pointer non-null local to
+ // this particular block.
+ PointerType *PTy = dyn_cast<PointerType>(Val->getType());
+ if (PTy &&
+ (isKnownNonZero(Val, DL) ||
+ (isObjectDereferencedInBlock(Val, BB) &&
+ !NullPointerIsDefined(BB->getParent(), PTy->getAddressSpace())))) {
+ Result = ValueLatticeElement::getNot(ConstantPointerNull::get(PTy));
+ } else {
+ Result = ValueLatticeElement::getOverdefined();
+ }
+ BBLV = Result;
+ return true;
+ }
+
+ // Loop over all of our predecessors, merging what we know from them into
+ // result. If we encounter an unexplored predecessor, we eagerly explore it
+ // in a depth first manner. In practice, this has the effect of discovering
+ // paths we can't analyze eagerly without spending compile times analyzing
+ // other paths. This heuristic benefits from the fact that predecessors are
+ // frequently arranged such that dominating ones come first and we quickly
+ // find a path to function entry. TODO: We should consider explicitly
+ // canonicalizing to make this true rather than relying on this happy
+ // accident.
+ for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
+ ValueLatticeElement EdgeResult;
+ if (!getEdgeValue(Val, *PI, BB, EdgeResult))
+ // Explore that input, then return here
+ return false;
+
+ Result.mergeIn(EdgeResult, DL);
+
+ // If we hit overdefined, exit early. The BlockVals entry is already set
+ // to overdefined.
+ if (Result.isOverdefined()) {
+ LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName()
+ << "' - overdefined because of pred (non local).\n");
+ // Before giving up, see if we can prove the pointer non-null local to
+ // this particular block.
+ PointerType *PTy = dyn_cast<PointerType>(Val->getType());
+ if (PTy && isObjectDereferencedInBlock(Val, BB) &&
+ !NullPointerIsDefined(BB->getParent(), PTy->getAddressSpace())) {
+ Result = ValueLatticeElement::getNot(ConstantPointerNull::get(PTy));
+ }
+
+ BBLV = Result;
+ return true;
+ }
+ }
+
+ // Return the merged value, which is more precise than 'overdefined'.
+ assert(!Result.isOverdefined());
+ BBLV = Result;
+ return true;
+}
+
+bool LazyValueInfoImpl::solveBlockValuePHINode(ValueLatticeElement &BBLV,
+ PHINode *PN, BasicBlock *BB) {
+ ValueLatticeElement Result; // Start Undefined.
+
+ // Loop over all of our predecessors, merging what we know from them into
+ // result. See the comment about the chosen traversal order in
+ // solveBlockValueNonLocal; the same reasoning applies here.
+ for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
+ BasicBlock *PhiBB = PN->getIncomingBlock(i);
+ Value *PhiVal = PN->getIncomingValue(i);
+ ValueLatticeElement EdgeResult;
+ // Note that we can provide PN as the context value to getEdgeValue, even
+ // though the results will be cached, because PN is the value being used as
+ // the cache key in the caller.
+ if (!getEdgeValue(PhiVal, PhiBB, BB, EdgeResult, PN))
+ // Explore that input, then return here
+ return false;
+
+ Result.mergeIn(EdgeResult, DL);
+
+ // If we hit overdefined, exit early. The BlockVals entry is already set
+ // to overdefined.
+ if (Result.isOverdefined()) {
+ LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName()
+ << "' - overdefined because of pred (local).\n");
+
+ BBLV = Result;
+ return true;
+ }
+ }
+
+ // Return the merged value, which is more precise than 'overdefined'.
+ assert(!Result.isOverdefined() && "Possible PHI in entry block?");
+ BBLV = Result;
+ return true;
+}
+
+static ValueLatticeElement getValueFromCondition(Value *Val, Value *Cond,
+ bool isTrueDest = true);
+
+// If we can determine a constraint on the value given conditions assumed by
+// the program, intersect those constraints with BBLV
+void LazyValueInfoImpl::intersectAssumeOrGuardBlockValueConstantRange(
+ Value *Val, ValueLatticeElement &BBLV, Instruction *BBI) {
+ BBI = BBI ? BBI : dyn_cast<Instruction>(Val);
+ if (!BBI)
+ return;
+
+ for (auto &AssumeVH : AC->assumptionsFor(Val)) {
+ if (!AssumeVH)
+ continue;
+ auto *I = cast<CallInst>(AssumeVH);
+ if (!isValidAssumeForContext(I, BBI, DT))
+ continue;
+
+ BBLV = intersect(BBLV, getValueFromCondition(Val, I->getArgOperand(0)));
+ }
+
+ // If guards are not used in the module, don't spend time looking for them
+ auto *GuardDecl = BBI->getModule()->getFunction(
+ Intrinsic::getName(Intrinsic::experimental_guard));
+ if (!GuardDecl || GuardDecl->use_empty())
+ return;
+
+ if (BBI->getIterator() == BBI->getParent()->begin())
+ return;
+ for (Instruction &I : make_range(std::next(BBI->getIterator().getReverse()),
+ BBI->getParent()->rend())) {
+ Value *Cond = nullptr;
+ if (match(&I, m_Intrinsic<Intrinsic::experimental_guard>(m_Value(Cond))))
+ BBLV = intersect(BBLV, getValueFromCondition(Val, Cond));
+ }
+}
+
+bool LazyValueInfoImpl::solveBlockValueSelect(ValueLatticeElement &BBLV,
+ SelectInst *SI, BasicBlock *BB) {
+
+ // Recurse on our inputs if needed
+ if (!hasBlockValue(SI->getTrueValue(), BB)) {
+ if (pushBlockValue(std::make_pair(BB, SI->getTrueValue())))
+ return false;
+ BBLV = ValueLatticeElement::getOverdefined();
+ return true;
+ }
+ ValueLatticeElement TrueVal = getBlockValue(SI->getTrueValue(), BB);
+ // If we hit overdefined, don't ask more queries. We want to avoid poisoning
+ // extra slots in the table if we can.
+ if (TrueVal.isOverdefined()) {
+ BBLV = ValueLatticeElement::getOverdefined();
+ return true;
+ }
+
+ if (!hasBlockValue(SI->getFalseValue(), BB)) {
+ if (pushBlockValue(std::make_pair(BB, SI->getFalseValue())))
+ return false;
+ BBLV = ValueLatticeElement::getOverdefined();
+ return true;
+ }
+ ValueLatticeElement FalseVal = getBlockValue(SI->getFalseValue(), BB);
+ // If we hit overdefined, don't ask more queries. We want to avoid poisoning
+ // extra slots in the table if we can.
+ if (FalseVal.isOverdefined()) {
+ BBLV = ValueLatticeElement::getOverdefined();
+ return true;
+ }
+
+ if (TrueVal.isConstantRange() && FalseVal.isConstantRange()) {
+ const ConstantRange &TrueCR = TrueVal.getConstantRange();
+ const ConstantRange &FalseCR = FalseVal.getConstantRange();
+ Value *LHS = nullptr;
+ Value *RHS = nullptr;
+ SelectPatternResult SPR = matchSelectPattern(SI, LHS, RHS);
+ // Is this a min specifically of our two inputs? (Avoid the risk of
+ // ValueTracking getting smarter looking back past our immediate inputs.)
+ if (SelectPatternResult::isMinOrMax(SPR.Flavor) &&
+ LHS == SI->getTrueValue() && RHS == SI->getFalseValue()) {
+ ConstantRange ResultCR = [&]() {
+ switch (SPR.Flavor) {
+ default:
+ llvm_unreachable("unexpected minmax type!");
+ case SPF_SMIN: /// Signed minimum
+ return TrueCR.smin(FalseCR);
+ case SPF_UMIN: /// Unsigned minimum
+ return TrueCR.umin(FalseCR);
+ case SPF_SMAX: /// Signed maximum
+ return TrueCR.smax(FalseCR);
+ case SPF_UMAX: /// Unsigned maximum
+ return TrueCR.umax(FalseCR);
+ };
+ }();
+ BBLV = ValueLatticeElement::getRange(ResultCR);
+ return true;
+ }
+
+ if (SPR.Flavor == SPF_ABS) {
+ if (LHS == SI->getTrueValue()) {
+ BBLV = ValueLatticeElement::getRange(TrueCR.abs());
+ return true;
+ }
+ if (LHS == SI->getFalseValue()) {
+ BBLV = ValueLatticeElement::getRange(FalseCR.abs());
+ return true;
+ }
+ }
+
+ if (SPR.Flavor == SPF_NABS) {
+ ConstantRange Zero(APInt::getNullValue(TrueCR.getBitWidth()));
+ if (LHS == SI->getTrueValue()) {
+ BBLV = ValueLatticeElement::getRange(Zero.sub(TrueCR.abs()));
+ return true;
+ }
+ if (LHS == SI->getFalseValue()) {
+ BBLV = ValueLatticeElement::getRange(Zero.sub(FalseCR.abs()));
+ return true;
+ }
+ }
+ }
+
+ // Can we constrain the facts about the true and false values by using the
+ // condition itself? This shows up with idioms like e.g. select(a > 5, a, 5).
+ // TODO: We could potentially refine an overdefined true value above.
+ Value *Cond = SI->getCondition();
+ TrueVal = intersect(TrueVal,
+ getValueFromCondition(SI->getTrueValue(), Cond, true));
+ FalseVal = intersect(FalseVal,
+ getValueFromCondition(SI->getFalseValue(), Cond, false));
+
+ // Handle clamp idioms such as:
+ // %24 = constantrange<0, 17>
+ // %39 = icmp eq i32 %24, 0
+ // %40 = add i32 %24, -1
+ // %siv.next = select i1 %39, i32 16, i32 %40
+ // %siv.next = constantrange<0, 17> not <-1, 17>
+ // In general, this can handle any clamp idiom which tests the edge
+ // condition via an equality or inequality.
+ if (auto *ICI = dyn_cast<ICmpInst>(Cond)) {
+ ICmpInst::Predicate Pred = ICI->getPredicate();
+ Value *A = ICI->getOperand(0);
+ if (ConstantInt *CIBase = dyn_cast<ConstantInt>(ICI->getOperand(1))) {
+ auto addConstants = [](ConstantInt *A, ConstantInt *B) {
+ assert(A->getType() == B->getType());
+ return ConstantInt::get(A->getType(), A->getValue() + B->getValue());
+ };
+ // See if either input is A + C2, subject to the constraint from the
+ // condition that A != C when that input is used. We can assume that
+ // that input doesn't include C + C2.
+ ConstantInt *CIAdded;
+ switch (Pred) {
+ default: break;
+ case ICmpInst::ICMP_EQ:
+ if (match(SI->getFalseValue(), m_Add(m_Specific(A),
+ m_ConstantInt(CIAdded)))) {
+ auto ResNot = addConstants(CIBase, CIAdded);
+ FalseVal = intersect(FalseVal,
+ ValueLatticeElement::getNot(ResNot));
+ }
+ break;
+ case ICmpInst::ICMP_NE:
+ if (match(SI->getTrueValue(), m_Add(m_Specific(A),
+ m_ConstantInt(CIAdded)))) {
+ auto ResNot = addConstants(CIBase, CIAdded);
+ TrueVal = intersect(TrueVal,
+ ValueLatticeElement::getNot(ResNot));
+ }
+ break;
+ };
+ }
+ }
+
+ ValueLatticeElement Result; // Start Undefined.
+ Result.mergeIn(TrueVal, DL);
+ Result.mergeIn(FalseVal, DL);
+ BBLV = Result;
+ return true;
+}
+
+Optional<ConstantRange> LazyValueInfoImpl::getRangeForOperand(unsigned Op,
+ Instruction *I,
+ BasicBlock *BB) {
+ if (!hasBlockValue(I->getOperand(Op), BB))
+ if (pushBlockValue(std::make_pair(BB, I->getOperand(Op))))
+ return None;
+
+ const unsigned OperandBitWidth =
+ DL.getTypeSizeInBits(I->getOperand(Op)->getType());
+ ConstantRange Range = ConstantRange::getFull(OperandBitWidth);
+ if (hasBlockValue(I->getOperand(Op), BB)) {
+ ValueLatticeElement Val = getBlockValue(I->getOperand(Op), BB);
+ intersectAssumeOrGuardBlockValueConstantRange(I->getOperand(Op), Val, I);
+ if (Val.isConstantRange())
+ Range = Val.getConstantRange();
+ }
+ return Range;
+}
+
+bool LazyValueInfoImpl::solveBlockValueCast(ValueLatticeElement &BBLV,
+ CastInst *CI,
+ BasicBlock *BB) {
+ if (!CI->getOperand(0)->getType()->isSized()) {
+ // Without knowing how wide the input is, we can't analyze it in any useful
+ // way.
+ BBLV = ValueLatticeElement::getOverdefined();
+ return true;
+ }
+
+ // Filter out casts we don't know how to reason about before attempting to
+ // recurse on our operand. This can cut a long search short if we know we're
+ // not going to be able to get any useful information anways.
+ switch (CI->getOpcode()) {
+ case Instruction::Trunc:
+ case Instruction::SExt:
+ case Instruction::ZExt:
+ case Instruction::BitCast:
+ break;
+ default:
+ // Unhandled instructions are overdefined.
+ LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName()
+ << "' - overdefined (unknown cast).\n");
+ BBLV = ValueLatticeElement::getOverdefined();
+ return true;
+ }
+
+ // Figure out the range of the LHS. If that fails, we still apply the
+ // transfer rule on the full set since we may be able to locally infer
+ // interesting facts.
+ Optional<ConstantRange> LHSRes = getRangeForOperand(0, CI, BB);
+ if (!LHSRes.hasValue())
+ // More work to do before applying this transfer rule.
+ return false;
+ ConstantRange LHSRange = LHSRes.getValue();
+
+ const unsigned ResultBitWidth = CI->getType()->getIntegerBitWidth();
+
+ // NOTE: We're currently limited by the set of operations that ConstantRange
+ // can evaluate symbolically. Enhancing that set will allows us to analyze
+ // more definitions.
+ BBLV = ValueLatticeElement::getRange(LHSRange.castOp(CI->getOpcode(),
+ ResultBitWidth));
+ return true;
+}
+
+bool LazyValueInfoImpl::solveBlockValueBinaryOpImpl(
+ ValueLatticeElement &BBLV, Instruction *I, BasicBlock *BB,
+ std::function<ConstantRange(const ConstantRange &,
+ const ConstantRange &)> OpFn) {
+ // Figure out the ranges of the operands. If that fails, use a
+ // conservative range, but apply the transfer rule anyways. This
+ // lets us pick up facts from expressions like "and i32 (call i32
+ // @foo()), 32"
+ Optional<ConstantRange> LHSRes = getRangeForOperand(0, I, BB);
+ Optional<ConstantRange> RHSRes = getRangeForOperand(1, I, BB);
+ if (!LHSRes.hasValue() || !RHSRes.hasValue())
+ // More work to do before applying this transfer rule.
+ return false;
+
+ ConstantRange LHSRange = LHSRes.getValue();
+ ConstantRange RHSRange = RHSRes.getValue();
+ BBLV = ValueLatticeElement::getRange(OpFn(LHSRange, RHSRange));
+ return true;
+}
+
+bool LazyValueInfoImpl::solveBlockValueBinaryOp(ValueLatticeElement &BBLV,
+ BinaryOperator *BO,
+ BasicBlock *BB) {
+
+ assert(BO->getOperand(0)->getType()->isSized() &&
+ "all operands to binary operators are sized");
+ if (BO->getOpcode() == Instruction::Xor) {
+ // Xor is the only operation not supported by ConstantRange::binaryOp().
+ LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName()
+ << "' - overdefined (unknown binary operator).\n");
+ BBLV = ValueLatticeElement::getOverdefined();
+ return true;
+ }
+
+ return solveBlockValueBinaryOpImpl(BBLV, BO, BB,
+ [BO](const ConstantRange &CR1, const ConstantRange &CR2) {
+ return CR1.binaryOp(BO->getOpcode(), CR2);
+ });
+}
+
+bool LazyValueInfoImpl::solveBlockValueOverflowIntrinsic(
+ ValueLatticeElement &BBLV, WithOverflowInst *WO, BasicBlock *BB) {
+ return solveBlockValueBinaryOpImpl(BBLV, WO, BB,
+ [WO](const ConstantRange &CR1, const ConstantRange &CR2) {
+ return CR1.binaryOp(WO->getBinaryOp(), CR2);
+ });
+}
+
+bool LazyValueInfoImpl::solveBlockValueIntrinsic(
+ ValueLatticeElement &BBLV, IntrinsicInst *II, BasicBlock *BB) {
+ switch (II->getIntrinsicID()) {
+ case Intrinsic::uadd_sat:
+ return solveBlockValueBinaryOpImpl(BBLV, II, BB,
+ [](const ConstantRange &CR1, const ConstantRange &CR2) {
+ return CR1.uadd_sat(CR2);
+ });
+ case Intrinsic::usub_sat:
+ return solveBlockValueBinaryOpImpl(BBLV, II, BB,
+ [](const ConstantRange &CR1, const ConstantRange &CR2) {
+ return CR1.usub_sat(CR2);
+ });
+ case Intrinsic::sadd_sat:
+ return solveBlockValueBinaryOpImpl(BBLV, II, BB,
+ [](const ConstantRange &CR1, const ConstantRange &CR2) {
+ return CR1.sadd_sat(CR2);
+ });
+ case Intrinsic::ssub_sat:
+ return solveBlockValueBinaryOpImpl(BBLV, II, BB,
+ [](const ConstantRange &CR1, const ConstantRange &CR2) {
+ return CR1.ssub_sat(CR2);
+ });
+ default:
+ LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName()
+ << "' - overdefined (unknown intrinsic).\n");
+ BBLV = ValueLatticeElement::getOverdefined();
+ return true;
+ }
+}
+
+bool LazyValueInfoImpl::solveBlockValueExtractValue(
+ ValueLatticeElement &BBLV, ExtractValueInst *EVI, BasicBlock *BB) {
+ if (auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand()))
+ if (EVI->getNumIndices() == 1 && *EVI->idx_begin() == 0)
+ return solveBlockValueOverflowIntrinsic(BBLV, WO, BB);
+
+ // Handle extractvalue of insertvalue to allow further simplification
+ // based on replaced with.overflow intrinsics.
+ if (Value *V = SimplifyExtractValueInst(
+ EVI->getAggregateOperand(), EVI->getIndices(),
+ EVI->getModule()->getDataLayout())) {
+ if (!hasBlockValue(V, BB)) {
+ if (pushBlockValue({ BB, V }))
+ return false;
+ BBLV = ValueLatticeElement::getOverdefined();
+ return true;
+ }
+ BBLV = getBlockValue(V, BB);
+ return true;
+ }
+
+ LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName()
+ << "' - overdefined (unknown extractvalue).\n");
+ BBLV = ValueLatticeElement::getOverdefined();
+ return true;
+}
+
+static ValueLatticeElement getValueFromICmpCondition(Value *Val, ICmpInst *ICI,
+ bool isTrueDest) {
+ Value *LHS = ICI->getOperand(0);
+ Value *RHS = ICI->getOperand(1);
+ CmpInst::Predicate Predicate = ICI->getPredicate();
+
+ if (isa<Constant>(RHS)) {
+ if (ICI->isEquality() && LHS == Val) {
+ // We know that V has the RHS constant if this is a true SETEQ or
+ // false SETNE.
+ if (isTrueDest == (Predicate == ICmpInst::ICMP_EQ))
+ return ValueLatticeElement::get(cast<Constant>(RHS));
+ else
+ return ValueLatticeElement::getNot(cast<Constant>(RHS));
+ }
+ }
+
+ if (!Val->getType()->isIntegerTy())
+ return ValueLatticeElement::getOverdefined();
+
+ // Use ConstantRange::makeAllowedICmpRegion in order to determine the possible
+ // range of Val guaranteed by the condition. Recognize comparisons in the from
+ // of:
+ // icmp <pred> Val, ...
+ // icmp <pred> (add Val, Offset), ...
+ // The latter is the range checking idiom that InstCombine produces. Subtract
+ // the offset from the allowed range for RHS in this case.
+
+ // Val or (add Val, Offset) can be on either hand of the comparison
+ if (LHS != Val && !match(LHS, m_Add(m_Specific(Val), m_ConstantInt()))) {
+ std::swap(LHS, RHS);
+ Predicate = CmpInst::getSwappedPredicate(Predicate);
+ }
+
+ ConstantInt *Offset = nullptr;
+ if (LHS != Val)
+ match(LHS, m_Add(m_Specific(Val), m_ConstantInt(Offset)));
+
+ if (LHS == Val || Offset) {
+ // Calculate the range of values that are allowed by the comparison
+ ConstantRange RHSRange(RHS->getType()->getIntegerBitWidth(),
+ /*isFullSet=*/true);
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS))
+ RHSRange = ConstantRange(CI->getValue());
+ else if (Instruction *I = dyn_cast<Instruction>(RHS))
+ if (auto *Ranges = I->getMetadata(LLVMContext::MD_range))
+ RHSRange = getConstantRangeFromMetadata(*Ranges);
+
+ // If we're interested in the false dest, invert the condition
+ CmpInst::Predicate Pred =
+ isTrueDest ? Predicate : CmpInst::getInversePredicate(Predicate);
+ ConstantRange TrueValues =
+ ConstantRange::makeAllowedICmpRegion(Pred, RHSRange);
+
+ if (Offset) // Apply the offset from above.
+ TrueValues = TrueValues.subtract(Offset->getValue());
+
+ return ValueLatticeElement::getRange(std::move(TrueValues));
+ }
+
+ return ValueLatticeElement::getOverdefined();
+}
+
+// Handle conditions of the form
+// extractvalue(op.with.overflow(%x, C), 1).
+static ValueLatticeElement getValueFromOverflowCondition(
+ Value *Val, WithOverflowInst *WO, bool IsTrueDest) {
+ // TODO: This only works with a constant RHS for now. We could also compute
+ // the range of the RHS, but this doesn't fit into the current structure of
+ // the edge value calculation.
+ const APInt *C;
+ if (WO->getLHS() != Val || !match(WO->getRHS(), m_APInt(C)))
+ return ValueLatticeElement::getOverdefined();
+
+ // Calculate the possible values of %x for which no overflow occurs.
+ ConstantRange NWR = ConstantRange::makeExactNoWrapRegion(
+ WO->getBinaryOp(), *C, WO->getNoWrapKind());
+
+ // If overflow is false, %x is constrained to NWR. If overflow is true, %x is
+ // constrained to it's inverse (all values that might cause overflow).
+ if (IsTrueDest)
+ NWR = NWR.inverse();
+ return ValueLatticeElement::getRange(NWR);
+}
+
+static ValueLatticeElement
+getValueFromCondition(Value *Val, Value *Cond, bool isTrueDest,
+ DenseMap<Value*, ValueLatticeElement> &Visited);
+
+static ValueLatticeElement
+getValueFromConditionImpl(Value *Val, Value *Cond, bool isTrueDest,
+ DenseMap<Value*, ValueLatticeElement> &Visited) {
+ if (ICmpInst *ICI = dyn_cast<ICmpInst>(Cond))
+ return getValueFromICmpCondition(Val, ICI, isTrueDest);
+
+ if (auto *EVI = dyn_cast<ExtractValueInst>(Cond))
+ if (auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand()))
+ if (EVI->getNumIndices() == 1 && *EVI->idx_begin() == 1)
+ return getValueFromOverflowCondition(Val, WO, isTrueDest);
+
+ // Handle conditions in the form of (cond1 && cond2), we know that on the
+ // true dest path both of the conditions hold. Similarly for conditions of
+ // the form (cond1 || cond2), we know that on the false dest path neither
+ // condition holds.
+ BinaryOperator *BO = dyn_cast<BinaryOperator>(Cond);
+ if (!BO || (isTrueDest && BO->getOpcode() != BinaryOperator::And) ||
+ (!isTrueDest && BO->getOpcode() != BinaryOperator::Or))
+ return ValueLatticeElement::getOverdefined();
+
+ // Prevent infinite recursion if Cond references itself as in this example:
+ // Cond: "%tmp4 = and i1 %tmp4, undef"
+ // BL: "%tmp4 = and i1 %tmp4, undef"
+ // BR: "i1 undef"
+ Value *BL = BO->getOperand(0);
+ Value *BR = BO->getOperand(1);
+ if (BL == Cond || BR == Cond)
+ return ValueLatticeElement::getOverdefined();
+
+ return intersect(getValueFromCondition(Val, BL, isTrueDest, Visited),
+ getValueFromCondition(Val, BR, isTrueDest, Visited));
+}
+
+static ValueLatticeElement
+getValueFromCondition(Value *Val, Value *Cond, bool isTrueDest,
+ DenseMap<Value*, ValueLatticeElement> &Visited) {
+ auto I = Visited.find(Cond);
+ if (I != Visited.end())
+ return I->second;
+
+ auto Result = getValueFromConditionImpl(Val, Cond, isTrueDest, Visited);
+ Visited[Cond] = Result;
+ return Result;
+}
+
+ValueLatticeElement getValueFromCondition(Value *Val, Value *Cond,
+ bool isTrueDest) {
+ assert(Cond && "precondition");
+ DenseMap<Value*, ValueLatticeElement> Visited;
+ return getValueFromCondition(Val, Cond, isTrueDest, Visited);
+}
+
+// Return true if Usr has Op as an operand, otherwise false.
+static bool usesOperand(User *Usr, Value *Op) {
+ return find(Usr->operands(), Op) != Usr->op_end();
+}
+
+// Return true if the instruction type of Val is supported by
+// constantFoldUser(). Currently CastInst and BinaryOperator only. Call this
+// before calling constantFoldUser() to find out if it's even worth attempting
+// to call it.
+static bool isOperationFoldable(User *Usr) {
+ return isa<CastInst>(Usr) || isa<BinaryOperator>(Usr);
+}
+
+// Check if Usr can be simplified to an integer constant when the value of one
+// of its operands Op is an integer constant OpConstVal. If so, return it as an
+// lattice value range with a single element or otherwise return an overdefined
+// lattice value.
+static ValueLatticeElement constantFoldUser(User *Usr, Value *Op,
+ const APInt &OpConstVal,
+ const DataLayout &DL) {
+ assert(isOperationFoldable(Usr) && "Precondition");
+ Constant* OpConst = Constant::getIntegerValue(Op->getType(), OpConstVal);
+ // Check if Usr can be simplified to a constant.
+ if (auto *CI = dyn_cast<CastInst>(Usr)) {
+ assert(CI->getOperand(0) == Op && "Operand 0 isn't Op");
+ if (auto *C = dyn_cast_or_null<ConstantInt>(
+ SimplifyCastInst(CI->getOpcode(), OpConst,
+ CI->getDestTy(), DL))) {
+ return ValueLatticeElement::getRange(ConstantRange(C->getValue()));
+ }
+ } else if (auto *BO = dyn_cast<BinaryOperator>(Usr)) {
+ bool Op0Match = BO->getOperand(0) == Op;
+ bool Op1Match = BO->getOperand(1) == Op;
+ assert((Op0Match || Op1Match) &&
+ "Operand 0 nor Operand 1 isn't a match");
+ Value *LHS = Op0Match ? OpConst : BO->getOperand(0);
+ Value *RHS = Op1Match ? OpConst : BO->getOperand(1);
+ if (auto *C = dyn_cast_or_null<ConstantInt>(
+ SimplifyBinOp(BO->getOpcode(), LHS, RHS, DL))) {
+ return ValueLatticeElement::getRange(ConstantRange(C->getValue()));
+ }
+ }
+ return ValueLatticeElement::getOverdefined();
+}
+
+/// Compute the value of Val on the edge BBFrom -> BBTo. Returns false if
+/// Val is not constrained on the edge. Result is unspecified if return value
+/// is false.
+static bool getEdgeValueLocal(Value *Val, BasicBlock *BBFrom,
+ BasicBlock *BBTo, ValueLatticeElement &Result) {
+ // TODO: Handle more complex conditionals. If (v == 0 || v2 < 1) is false, we
+ // know that v != 0.
+ if (BranchInst *BI = dyn_cast<BranchInst>(BBFrom->getTerminator())) {
+ // If this is a conditional branch and only one successor goes to BBTo, then
+ // we may be able to infer something from the condition.
+ if (BI->isConditional() &&
+ BI->getSuccessor(0) != BI->getSuccessor(1)) {
+ bool isTrueDest = BI->getSuccessor(0) == BBTo;
+ assert(BI->getSuccessor(!isTrueDest) == BBTo &&
+ "BBTo isn't a successor of BBFrom");
+ Value *Condition = BI->getCondition();
+
+ // If V is the condition of the branch itself, then we know exactly what
+ // it is.
+ if (Condition == Val) {
+ Result = ValueLatticeElement::get(ConstantInt::get(
+ Type::getInt1Ty(Val->getContext()), isTrueDest));
+ return true;
+ }
+
+ // If the condition of the branch is an equality comparison, we may be
+ // able to infer the value.
+ Result = getValueFromCondition(Val, Condition, isTrueDest);
+ if (!Result.isOverdefined())
+ return true;
+
+ if (User *Usr = dyn_cast<User>(Val)) {
+ assert(Result.isOverdefined() && "Result isn't overdefined");
+ // Check with isOperationFoldable() first to avoid linearly iterating
+ // over the operands unnecessarily which can be expensive for
+ // instructions with many operands.
+ if (isa<IntegerType>(Usr->getType()) && isOperationFoldable(Usr)) {
+ const DataLayout &DL = BBTo->getModule()->getDataLayout();
+ if (usesOperand(Usr, Condition)) {
+ // If Val has Condition as an operand and Val can be folded into a
+ // constant with either Condition == true or Condition == false,
+ // propagate the constant.
+ // eg.
+ // ; %Val is true on the edge to %then.
+ // %Val = and i1 %Condition, true.
+ // br %Condition, label %then, label %else
+ APInt ConditionVal(1, isTrueDest ? 1 : 0);
+ Result = constantFoldUser(Usr, Condition, ConditionVal, DL);
+ } else {
+ // If one of Val's operand has an inferred value, we may be able to
+ // infer the value of Val.
+ // eg.
+ // ; %Val is 94 on the edge to %then.
+ // %Val = add i8 %Op, 1
+ // %Condition = icmp eq i8 %Op, 93
+ // br i1 %Condition, label %then, label %else
+ for (unsigned i = 0; i < Usr->getNumOperands(); ++i) {
+ Value *Op = Usr->getOperand(i);
+ ValueLatticeElement OpLatticeVal =
+ getValueFromCondition(Op, Condition, isTrueDest);
+ if (Optional<APInt> OpConst = OpLatticeVal.asConstantInteger()) {
+ Result = constantFoldUser(Usr, Op, OpConst.getValue(), DL);
+ break;
+ }
+ }
+ }
+ }
+ }
+ if (!Result.isOverdefined())
+ return true;
+ }
+ }
+
+ // If the edge was formed by a switch on the value, then we may know exactly
+ // what it is.
+ if (SwitchInst *SI = dyn_cast<SwitchInst>(BBFrom->getTerminator())) {
+ Value *Condition = SI->getCondition();
+ if (!isa<IntegerType>(Val->getType()))
+ return false;
+ bool ValUsesConditionAndMayBeFoldable = false;
+ if (Condition != Val) {
+ // Check if Val has Condition as an operand.
+ if (User *Usr = dyn_cast<User>(Val))
+ ValUsesConditionAndMayBeFoldable = isOperationFoldable(Usr) &&
+ usesOperand(Usr, Condition);
+ if (!ValUsesConditionAndMayBeFoldable)
+ return false;
+ }
+ assert((Condition == Val || ValUsesConditionAndMayBeFoldable) &&
+ "Condition != Val nor Val doesn't use Condition");
+
+ bool DefaultCase = SI->getDefaultDest() == BBTo;
+ unsigned BitWidth = Val->getType()->getIntegerBitWidth();
+ ConstantRange EdgesVals(BitWidth, DefaultCase/*isFullSet*/);
+
+ for (auto Case : SI->cases()) {
+ APInt CaseValue = Case.getCaseValue()->getValue();
+ ConstantRange EdgeVal(CaseValue);
+ if (ValUsesConditionAndMayBeFoldable) {
+ User *Usr = cast<User>(Val);
+ const DataLayout &DL = BBTo->getModule()->getDataLayout();
+ ValueLatticeElement EdgeLatticeVal =
+ constantFoldUser(Usr, Condition, CaseValue, DL);
+ if (EdgeLatticeVal.isOverdefined())
+ return false;
+ EdgeVal = EdgeLatticeVal.getConstantRange();
+ }
+ if (DefaultCase) {
+ // It is possible that the default destination is the destination of
+ // some cases. We cannot perform difference for those cases.
+ // We know Condition != CaseValue in BBTo. In some cases we can use
+ // this to infer Val == f(Condition) is != f(CaseValue). For now, we
+ // only do this when f is identity (i.e. Val == Condition), but we
+ // should be able to do this for any injective f.
+ if (Case.getCaseSuccessor() != BBTo && Condition == Val)
+ EdgesVals = EdgesVals.difference(EdgeVal);
+ } else if (Case.getCaseSuccessor() == BBTo)
+ EdgesVals = EdgesVals.unionWith(EdgeVal);
+ }
+ Result = ValueLatticeElement::getRange(std::move(EdgesVals));
+ return true;
+ }
+ return false;
+}
+
+/// Compute the value of Val on the edge BBFrom -> BBTo or the value at
+/// the basic block if the edge does not constrain Val.
+bool LazyValueInfoImpl::getEdgeValue(Value *Val, BasicBlock *BBFrom,
+ BasicBlock *BBTo,
+ ValueLatticeElement &Result,
+ Instruction *CxtI) {
+ // If already a constant, there is nothing to compute.
+ if (Constant *VC = dyn_cast<Constant>(Val)) {
+ Result = ValueLatticeElement::get(VC);
+ return true;
+ }
+
+ ValueLatticeElement LocalResult;
+ if (!getEdgeValueLocal(Val, BBFrom, BBTo, LocalResult))
+ // If we couldn't constrain the value on the edge, LocalResult doesn't
+ // provide any information.
+ LocalResult = ValueLatticeElement::getOverdefined();
+
+ if (hasSingleValue(LocalResult)) {
+ // Can't get any more precise here
+ Result = LocalResult;
+ return true;
+ }
+
+ if (!hasBlockValue(Val, BBFrom)) {
+ if (pushBlockValue(std::make_pair(BBFrom, Val)))
+ return false;
+ // No new information.
+ Result = LocalResult;
+ return true;
+ }
+
+ // Try to intersect ranges of the BB and the constraint on the edge.
+ ValueLatticeElement InBlock = getBlockValue(Val, BBFrom);
+ intersectAssumeOrGuardBlockValueConstantRange(Val, InBlock,
+ BBFrom->getTerminator());
+ // We can use the context instruction (generically the ultimate instruction
+ // the calling pass is trying to simplify) here, even though the result of
+ // this function is generally cached when called from the solve* functions
+ // (and that cached result might be used with queries using a different
+ // context instruction), because when this function is called from the solve*
+ // functions, the context instruction is not provided. When called from
+ // LazyValueInfoImpl::getValueOnEdge, the context instruction is provided,
+ // but then the result is not cached.
+ intersectAssumeOrGuardBlockValueConstantRange(Val, InBlock, CxtI);
+
+ Result = intersect(LocalResult, InBlock);
+ return true;
+}
+
+ValueLatticeElement LazyValueInfoImpl::getValueInBlock(Value *V, BasicBlock *BB,
+ Instruction *CxtI) {
+ LLVM_DEBUG(dbgs() << "LVI Getting block end value " << *V << " at '"
+ << BB->getName() << "'\n");
+
+ assert(BlockValueStack.empty() && BlockValueSet.empty());
+ if (!hasBlockValue(V, BB)) {
+ pushBlockValue(std::make_pair(BB, V));
+ solve();
+ }
+ ValueLatticeElement Result = getBlockValue(V, BB);
+ intersectAssumeOrGuardBlockValueConstantRange(V, Result, CxtI);
+
+ LLVM_DEBUG(dbgs() << " Result = " << Result << "\n");
+ return Result;
+}
+
+ValueLatticeElement LazyValueInfoImpl::getValueAt(Value *V, Instruction *CxtI) {
+ LLVM_DEBUG(dbgs() << "LVI Getting value " << *V << " at '" << CxtI->getName()
+ << "'\n");
+
+ if (auto *C = dyn_cast<Constant>(V))
+ return ValueLatticeElement::get(C);
+
+ ValueLatticeElement Result = ValueLatticeElement::getOverdefined();
+ if (auto *I = dyn_cast<Instruction>(V))
+ Result = getFromRangeMetadata(I);
+ intersectAssumeOrGuardBlockValueConstantRange(V, Result, CxtI);
+
+ LLVM_DEBUG(dbgs() << " Result = " << Result << "\n");
+ return Result;
+}
+
+ValueLatticeElement LazyValueInfoImpl::
+getValueOnEdge(Value *V, BasicBlock *FromBB, BasicBlock *ToBB,
+ Instruction *CxtI) {
+ LLVM_DEBUG(dbgs() << "LVI Getting edge value " << *V << " from '"
+ << FromBB->getName() << "' to '" << ToBB->getName()
+ << "'\n");
+
+ ValueLatticeElement Result;
+ if (!getEdgeValue(V, FromBB, ToBB, Result, CxtI)) {
+ solve();
+ bool WasFastQuery = getEdgeValue(V, FromBB, ToBB, Result, CxtI);
+ (void)WasFastQuery;
+ assert(WasFastQuery && "More work to do after problem solved?");
+ }
+
+ LLVM_DEBUG(dbgs() << " Result = " << Result << "\n");
+ return Result;
+}
+
+void LazyValueInfoImpl::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc,
+ BasicBlock *NewSucc) {
+ TheCache.threadEdgeImpl(OldSucc, NewSucc);
+}
+
+//===----------------------------------------------------------------------===//
+// LazyValueInfo Impl
+//===----------------------------------------------------------------------===//
+
+/// This lazily constructs the LazyValueInfoImpl.
+static LazyValueInfoImpl &getImpl(void *&PImpl, AssumptionCache *AC,
+ const DataLayout *DL,
+ DominatorTree *DT = nullptr) {
+ if (!PImpl) {
+ assert(DL && "getCache() called with a null DataLayout");
+ PImpl = new LazyValueInfoImpl(AC, *DL, DT);
+ }
+ return *static_cast<LazyValueInfoImpl*>(PImpl);
+}
+
+bool LazyValueInfoWrapperPass::runOnFunction(Function &F) {
+ Info.AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
+ const DataLayout &DL = F.getParent()->getDataLayout();
+
+ DominatorTreeWrapperPass *DTWP =
+ getAnalysisIfAvailable<DominatorTreeWrapperPass>();
+ Info.DT = DTWP ? &DTWP->getDomTree() : nullptr;
+ Info.TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
+
+ if (Info.PImpl)
+ getImpl(Info.PImpl, Info.AC, &DL, Info.DT).clear();
+
+ // Fully lazy.
+ return false;
+}
+
+void LazyValueInfoWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.setPreservesAll();
+ AU.addRequired<AssumptionCacheTracker>();
+ AU.addRequired<TargetLibraryInfoWrapperPass>();
+}
+
+LazyValueInfo &LazyValueInfoWrapperPass::getLVI() { return Info; }
+
+LazyValueInfo::~LazyValueInfo() { releaseMemory(); }
+
+void LazyValueInfo::releaseMemory() {
+ // If the cache was allocated, free it.
+ if (PImpl) {
+ delete &getImpl(PImpl, AC, nullptr);
+ PImpl = nullptr;
+ }
+}
+
+bool LazyValueInfo::invalidate(Function &F, const PreservedAnalyses &PA,
+ FunctionAnalysisManager::Invalidator &Inv) {
+ // We need to invalidate if we have either failed to preserve this analyses
+ // result directly or if any of its dependencies have been invalidated.
+ auto PAC = PA.getChecker<LazyValueAnalysis>();
+ if (!(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) ||
+ (DT && Inv.invalidate<DominatorTreeAnalysis>(F, PA)))
+ return true;
+
+ return false;
+}
+
+void LazyValueInfoWrapperPass::releaseMemory() { Info.releaseMemory(); }
+
+LazyValueInfo LazyValueAnalysis::run(Function &F,
+ FunctionAnalysisManager &FAM) {
+ auto &AC = FAM.getResult<AssumptionAnalysis>(F);
+ auto &TLI = FAM.getResult<TargetLibraryAnalysis>(F);
+ auto *DT = FAM.getCachedResult<DominatorTreeAnalysis>(F);
+
+ return LazyValueInfo(&AC, &F.getParent()->getDataLayout(), &TLI, DT);
+}
+
+/// Returns true if we can statically tell that this value will never be a
+/// "useful" constant. In practice, this means we've got something like an
+/// alloca or a malloc call for which a comparison against a constant can
+/// only be guarding dead code. Note that we are potentially giving up some
+/// precision in dead code (a constant result) in favour of avoiding a
+/// expensive search for a easily answered common query.
+static bool isKnownNonConstant(Value *V) {
+ V = V->stripPointerCasts();
+ // The return val of alloc cannot be a Constant.
+ if (isa<AllocaInst>(V))
+ return true;
+ return false;
+}
+
+Constant *LazyValueInfo::getConstant(Value *V, BasicBlock *BB,
+ Instruction *CxtI) {
+ // Bail out early if V is known not to be a Constant.
+ if (isKnownNonConstant(V))
+ return nullptr;
+
+ const DataLayout &DL = BB->getModule()->getDataLayout();
+ ValueLatticeElement Result =
+ getImpl(PImpl, AC, &DL, DT).getValueInBlock(V, BB, CxtI);
+
+ if (Result.isConstant())
+ return Result.getConstant();
+ if (Result.isConstantRange()) {
+ const ConstantRange &CR = Result.getConstantRange();
+ if (const APInt *SingleVal = CR.getSingleElement())
+ return ConstantInt::get(V->getContext(), *SingleVal);
+ }
+ return nullptr;
+}
+
+ConstantRange LazyValueInfo::getConstantRange(Value *V, BasicBlock *BB,
+ Instruction *CxtI) {
+ assert(V->getType()->isIntegerTy());
+ unsigned Width = V->getType()->getIntegerBitWidth();
+ const DataLayout &DL = BB->getModule()->getDataLayout();
+ ValueLatticeElement Result =
+ getImpl(PImpl, AC, &DL, DT).getValueInBlock(V, BB, CxtI);
+ if (Result.isUndefined())
+ return ConstantRange::getEmpty(Width);
+ if (Result.isConstantRange())
+ return Result.getConstantRange();
+ // We represent ConstantInt constants as constant ranges but other kinds
+ // of integer constants, i.e. ConstantExpr will be tagged as constants
+ assert(!(Result.isConstant() && isa<ConstantInt>(Result.getConstant())) &&
+ "ConstantInt value must be represented as constantrange");
+ return ConstantRange::getFull(Width);
+}
+
+/// Determine whether the specified value is known to be a
+/// constant on the specified edge. Return null if not.
+Constant *LazyValueInfo::getConstantOnEdge(Value *V, BasicBlock *FromBB,
+ BasicBlock *ToBB,
+ Instruction *CxtI) {
+ const DataLayout &DL = FromBB->getModule()->getDataLayout();
+ ValueLatticeElement Result =
+ getImpl(PImpl, AC, &DL, DT).getValueOnEdge(V, FromBB, ToBB, CxtI);
+
+ if (Result.isConstant())
+ return Result.getConstant();
+ if (Result.isConstantRange()) {
+ const ConstantRange &CR = Result.getConstantRange();
+ if (const APInt *SingleVal = CR.getSingleElement())
+ return ConstantInt::get(V->getContext(), *SingleVal);
+ }
+ return nullptr;
+}
+
+ConstantRange LazyValueInfo::getConstantRangeOnEdge(Value *V,
+ BasicBlock *FromBB,
+ BasicBlock *ToBB,
+ Instruction *CxtI) {
+ unsigned Width = V->getType()->getIntegerBitWidth();
+ const DataLayout &DL = FromBB->getModule()->getDataLayout();
+ ValueLatticeElement Result =
+ getImpl(PImpl, AC, &DL, DT).getValueOnEdge(V, FromBB, ToBB, CxtI);
+
+ if (Result.isUndefined())
+ return ConstantRange::getEmpty(Width);
+ if (Result.isConstantRange())
+ return Result.getConstantRange();
+ // We represent ConstantInt constants as constant ranges but other kinds
+ // of integer constants, i.e. ConstantExpr will be tagged as constants
+ assert(!(Result.isConstant() && isa<ConstantInt>(Result.getConstant())) &&
+ "ConstantInt value must be represented as constantrange");
+ return ConstantRange::getFull(Width);
+}
+
+static LazyValueInfo::Tristate
+getPredicateResult(unsigned Pred, Constant *C, const ValueLatticeElement &Val,
+ const DataLayout &DL, TargetLibraryInfo *TLI) {
+ // If we know the value is a constant, evaluate the conditional.
+ Constant *Res = nullptr;
+ if (Val.isConstant()) {
+ Res = ConstantFoldCompareInstOperands(Pred, Val.getConstant(), C, DL, TLI);
+ if (ConstantInt *ResCI = dyn_cast<ConstantInt>(Res))
+ return ResCI->isZero() ? LazyValueInfo::False : LazyValueInfo::True;
+ return LazyValueInfo::Unknown;
+ }
+
+ if (Val.isConstantRange()) {
+ ConstantInt *CI = dyn_cast<ConstantInt>(C);
+ if (!CI) return LazyValueInfo::Unknown;
+
+ const ConstantRange &CR = Val.getConstantRange();
+ if (Pred == ICmpInst::ICMP_EQ) {
+ if (!CR.contains(CI->getValue()))
+ return LazyValueInfo::False;
+
+ if (CR.isSingleElement())
+ return LazyValueInfo::True;
+ } else if (Pred == ICmpInst::ICMP_NE) {
+ if (!CR.contains(CI->getValue()))
+ return LazyValueInfo::True;
+
+ if (CR.isSingleElement())
+ return LazyValueInfo::False;
+ } else {
+ // Handle more complex predicates.
+ ConstantRange TrueValues = ConstantRange::makeExactICmpRegion(
+ (ICmpInst::Predicate)Pred, CI->getValue());
+ if (TrueValues.contains(CR))
+ return LazyValueInfo::True;
+ if (TrueValues.inverse().contains(CR))
+ return LazyValueInfo::False;
+ }
+ return LazyValueInfo::Unknown;
+ }
+
+ if (Val.isNotConstant()) {
+ // If this is an equality comparison, we can try to fold it knowing that
+ // "V != C1".
+ if (Pred == ICmpInst::ICMP_EQ) {
+ // !C1 == C -> false iff C1 == C.
+ Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE,
+ Val.getNotConstant(), C, DL,
+ TLI);
+ if (Res->isNullValue())
+ return LazyValueInfo::False;
+ } else if (Pred == ICmpInst::ICMP_NE) {
+ // !C1 != C -> true iff C1 == C.
+ Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE,
+ Val.getNotConstant(), C, DL,
+ TLI);
+ if (Res->isNullValue())
+ return LazyValueInfo::True;
+ }
+ return LazyValueInfo::Unknown;
+ }
+
+ return LazyValueInfo::Unknown;
+}
+
+/// Determine whether the specified value comparison with a constant is known to
+/// be true or false on the specified CFG edge. Pred is a CmpInst predicate.
+LazyValueInfo::Tristate
+LazyValueInfo::getPredicateOnEdge(unsigned Pred, Value *V, Constant *C,
+ BasicBlock *FromBB, BasicBlock *ToBB,
+ Instruction *CxtI) {
+ const DataLayout &DL = FromBB->getModule()->getDataLayout();
+ ValueLatticeElement Result =
+ getImpl(PImpl, AC, &DL, DT).getValueOnEdge(V, FromBB, ToBB, CxtI);
+
+ return getPredicateResult(Pred, C, Result, DL, TLI);
+}
+
+LazyValueInfo::Tristate
+LazyValueInfo::getPredicateAt(unsigned Pred, Value *V, Constant *C,
+ Instruction *CxtI) {
+ // Is or is not NonNull are common predicates being queried. If
+ // isKnownNonZero can tell us the result of the predicate, we can
+ // return it quickly. But this is only a fastpath, and falling
+ // through would still be correct.
+ const DataLayout &DL = CxtI->getModule()->getDataLayout();
+ if (V->getType()->isPointerTy() && C->isNullValue() &&
+ isKnownNonZero(V->stripPointerCastsSameRepresentation(), DL)) {
+ if (Pred == ICmpInst::ICMP_EQ)
+ return LazyValueInfo::False;
+ else if (Pred == ICmpInst::ICMP_NE)
+ return LazyValueInfo::True;
+ }
+ ValueLatticeElement Result = getImpl(PImpl, AC, &DL, DT).getValueAt(V, CxtI);
+ Tristate Ret = getPredicateResult(Pred, C, Result, DL, TLI);
+ if (Ret != Unknown)
+ return Ret;
+
+ // Note: The following bit of code is somewhat distinct from the rest of LVI;
+ // LVI as a whole tries to compute a lattice value which is conservatively
+ // correct at a given location. In this case, we have a predicate which we
+ // weren't able to prove about the merged result, and we're pushing that
+ // predicate back along each incoming edge to see if we can prove it
+ // separately for each input. As a motivating example, consider:
+ // bb1:
+ // %v1 = ... ; constantrange<1, 5>
+ // br label %merge
+ // bb2:
+ // %v2 = ... ; constantrange<10, 20>
+ // br label %merge
+ // merge:
+ // %phi = phi [%v1, %v2] ; constantrange<1,20>
+ // %pred = icmp eq i32 %phi, 8
+ // We can't tell from the lattice value for '%phi' that '%pred' is false
+ // along each path, but by checking the predicate over each input separately,
+ // we can.
+ // We limit the search to one step backwards from the current BB and value.
+ // We could consider extending this to search further backwards through the
+ // CFG and/or value graph, but there are non-obvious compile time vs quality
+ // tradeoffs.
+ if (CxtI) {
+ BasicBlock *BB = CxtI->getParent();
+
+ // Function entry or an unreachable block. Bail to avoid confusing
+ // analysis below.
+ pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
+ if (PI == PE)
+ return Unknown;
+
+ // If V is a PHI node in the same block as the context, we need to ask
+ // questions about the predicate as applied to the incoming value along
+ // each edge. This is useful for eliminating cases where the predicate is
+ // known along all incoming edges.
+ if (auto *PHI = dyn_cast<PHINode>(V))
+ if (PHI->getParent() == BB) {
+ Tristate Baseline = Unknown;
+ for (unsigned i = 0, e = PHI->getNumIncomingValues(); i < e; i++) {
+ Value *Incoming = PHI->getIncomingValue(i);
+ BasicBlock *PredBB = PHI->getIncomingBlock(i);
+ // Note that PredBB may be BB itself.
+ Tristate Result = getPredicateOnEdge(Pred, Incoming, C, PredBB, BB,
+ CxtI);
+
+ // Keep going as long as we've seen a consistent known result for
+ // all inputs.
+ Baseline = (i == 0) ? Result /* First iteration */
+ : (Baseline == Result ? Baseline : Unknown); /* All others */
+ if (Baseline == Unknown)
+ break;
+ }
+ if (Baseline != Unknown)
+ return Baseline;
+ }
+
+ // For a comparison where the V is outside this block, it's possible
+ // that we've branched on it before. Look to see if the value is known
+ // on all incoming edges.
+ if (!isa<Instruction>(V) ||
+ cast<Instruction>(V)->getParent() != BB) {
+ // For predecessor edge, determine if the comparison is true or false
+ // on that edge. If they're all true or all false, we can conclude
+ // the value of the comparison in this block.
+ Tristate Baseline = getPredicateOnEdge(Pred, V, C, *PI, BB, CxtI);
+ if (Baseline != Unknown) {
+ // Check that all remaining incoming values match the first one.
+ while (++PI != PE) {
+ Tristate Ret = getPredicateOnEdge(Pred, V, C, *PI, BB, CxtI);
+ if (Ret != Baseline) break;
+ }
+ // If we terminated early, then one of the values didn't match.
+ if (PI == PE) {
+ return Baseline;
+ }
+ }
+ }
+ }
+ return Unknown;
+}
+
+void LazyValueInfo::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc,
+ BasicBlock *NewSucc) {
+ if (PImpl) {
+ const DataLayout &DL = PredBB->getModule()->getDataLayout();
+ getImpl(PImpl, AC, &DL, DT).threadEdge(PredBB, OldSucc, NewSucc);
+ }
+}
+
+void LazyValueInfo::eraseBlock(BasicBlock *BB) {
+ if (PImpl) {
+ const DataLayout &DL = BB->getModule()->getDataLayout();
+ getImpl(PImpl, AC, &DL, DT).eraseBlock(BB);
+ }
+}
+
+
+void LazyValueInfo::printLVI(Function &F, DominatorTree &DTree, raw_ostream &OS) {
+ if (PImpl) {
+ getImpl(PImpl, AC, DL, DT).printLVI(F, DTree, OS);
+ }
+}
+
+void LazyValueInfo::disableDT() {
+ if (PImpl)
+ getImpl(PImpl, AC, DL, DT).disableDT();
+}
+
+void LazyValueInfo::enableDT() {
+ if (PImpl)
+ getImpl(PImpl, AC, DL, DT).enableDT();
+}
+
+// Print the LVI for the function arguments at the start of each basic block.
+void LazyValueInfoAnnotatedWriter::emitBasicBlockStartAnnot(
+ const BasicBlock *BB, formatted_raw_ostream &OS) {
+ // Find if there are latticevalues defined for arguments of the function.
+ auto *F = BB->getParent();
+ for (auto &Arg : F->args()) {
+ ValueLatticeElement Result = LVIImpl->getValueInBlock(
+ const_cast<Argument *>(&Arg), const_cast<BasicBlock *>(BB));
+ if (Result.isUndefined())
+ continue;
+ OS << "; LatticeVal for: '" << Arg << "' is: " << Result << "\n";
+ }
+}
+
+// This function prints the LVI analysis for the instruction I at the beginning
+// of various basic blocks. It relies on calculated values that are stored in
+// the LazyValueInfoCache, and in the absence of cached values, recalculate the
+// LazyValueInfo for `I`, and print that info.
+void LazyValueInfoAnnotatedWriter::emitInstructionAnnot(
+ const Instruction *I, formatted_raw_ostream &OS) {
+
+ auto *ParentBB = I->getParent();
+ SmallPtrSet<const BasicBlock*, 16> BlocksContainingLVI;
+ // We can generate (solve) LVI values only for blocks that are dominated by
+ // the I's parent. However, to avoid generating LVI for all dominating blocks,
+ // that contain redundant/uninteresting information, we print LVI for
+ // blocks that may use this LVI information (such as immediate successor
+ // blocks, and blocks that contain uses of `I`).
+ auto printResult = [&](const BasicBlock *BB) {
+ if (!BlocksContainingLVI.insert(BB).second)
+ return;
+ ValueLatticeElement Result = LVIImpl->getValueInBlock(
+ const_cast<Instruction *>(I), const_cast<BasicBlock *>(BB));
+ OS << "; LatticeVal for: '" << *I << "' in BB: '";
+ BB->printAsOperand(OS, false);
+ OS << "' is: " << Result << "\n";
+ };
+
+ printResult(ParentBB);
+ // Print the LVI analysis results for the immediate successor blocks, that
+ // are dominated by `ParentBB`.
+ for (auto *BBSucc : successors(ParentBB))
+ if (DT.dominates(ParentBB, BBSucc))
+ printResult(BBSucc);
+
+ // Print LVI in blocks where `I` is used.
+ for (auto *U : I->users())
+ if (auto *UseI = dyn_cast<Instruction>(U))
+ if (!isa<PHINode>(UseI) || DT.dominates(ParentBB, UseI->getParent()))
+ printResult(UseI->getParent());
+
+}
+
+namespace {
+// Printer class for LazyValueInfo results.
+class LazyValueInfoPrinter : public FunctionPass {
+public:
+ static char ID; // Pass identification, replacement for typeid
+ LazyValueInfoPrinter() : FunctionPass(ID) {
+ initializeLazyValueInfoPrinterPass(*PassRegistry::getPassRegistry());
+ }
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.setPreservesAll();
+ AU.addRequired<LazyValueInfoWrapperPass>();
+ AU.addRequired<DominatorTreeWrapperPass>();
+ }
+
+ // Get the mandatory dominator tree analysis and pass this in to the
+ // LVIPrinter. We cannot rely on the LVI's DT, since it's optional.
+ bool runOnFunction(Function &F) override {
+ dbgs() << "LVI for function '" << F.getName() << "':\n";
+ auto &LVI = getAnalysis<LazyValueInfoWrapperPass>().getLVI();
+ auto &DTree = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
+ LVI.printLVI(F, DTree, dbgs());
+ return false;
+ }
+};
+}
+
+char LazyValueInfoPrinter::ID = 0;
+INITIALIZE_PASS_BEGIN(LazyValueInfoPrinter, "print-lazy-value-info",
+ "Lazy Value Info Printer Pass", false, false)
+INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass)
+INITIALIZE_PASS_END(LazyValueInfoPrinter, "print-lazy-value-info",
+ "Lazy Value Info Printer Pass", false, false)