diff options
Diffstat (limited to 'llvm/lib/Analysis/LoopInfo.cpp')
-rw-r--r-- | llvm/lib/Analysis/LoopInfo.cpp | 1109 |
1 files changed, 1109 insertions, 0 deletions
diff --git a/llvm/lib/Analysis/LoopInfo.cpp b/llvm/lib/Analysis/LoopInfo.cpp new file mode 100644 index 0000000000000..dbab5db7dbc2d --- /dev/null +++ b/llvm/lib/Analysis/LoopInfo.cpp @@ -0,0 +1,1109 @@ +//===- LoopInfo.cpp - Natural Loop Calculator -----------------------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This file defines the LoopInfo class that is used to identify natural loops +// and determine the loop depth of various nodes of the CFG. Note that the +// loops identified may actually be several natural loops that share the same +// header node... not just a single natural loop. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Analysis/LoopInfo.h" +#include "llvm/ADT/DepthFirstIterator.h" +#include "llvm/ADT/ScopeExit.h" +#include "llvm/ADT/SmallPtrSet.h" +#include "llvm/Analysis/IVDescriptors.h" +#include "llvm/Analysis/LoopInfoImpl.h" +#include "llvm/Analysis/LoopIterator.h" +#include "llvm/Analysis/MemorySSA.h" +#include "llvm/Analysis/MemorySSAUpdater.h" +#include "llvm/Analysis/ScalarEvolutionExpressions.h" +#include "llvm/Analysis/ValueTracking.h" +#include "llvm/Config/llvm-config.h" +#include "llvm/IR/CFG.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/DebugLoc.h" +#include "llvm/IR/Dominators.h" +#include "llvm/IR/IRPrintingPasses.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/LLVMContext.h" +#include "llvm/IR/Metadata.h" +#include "llvm/IR/PassManager.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/raw_ostream.h" +#include <algorithm> +using namespace llvm; + +// Explicitly instantiate methods in LoopInfoImpl.h for IR-level Loops. +template class llvm::LoopBase<BasicBlock, Loop>; +template class llvm::LoopInfoBase<BasicBlock, Loop>; + +// Always verify loopinfo if expensive checking is enabled. +#ifdef EXPENSIVE_CHECKS +bool llvm::VerifyLoopInfo = true; +#else +bool llvm::VerifyLoopInfo = false; +#endif +static cl::opt<bool, true> + VerifyLoopInfoX("verify-loop-info", cl::location(VerifyLoopInfo), + cl::Hidden, cl::desc("Verify loop info (time consuming)")); + +//===----------------------------------------------------------------------===// +// Loop implementation +// + +bool Loop::isLoopInvariant(const Value *V) const { + if (const Instruction *I = dyn_cast<Instruction>(V)) + return !contains(I); + return true; // All non-instructions are loop invariant +} + +bool Loop::hasLoopInvariantOperands(const Instruction *I) const { + return all_of(I->operands(), [this](Value *V) { return isLoopInvariant(V); }); +} + +bool Loop::makeLoopInvariant(Value *V, bool &Changed, Instruction *InsertPt, + MemorySSAUpdater *MSSAU) const { + if (Instruction *I = dyn_cast<Instruction>(V)) + return makeLoopInvariant(I, Changed, InsertPt, MSSAU); + return true; // All non-instructions are loop-invariant. +} + +bool Loop::makeLoopInvariant(Instruction *I, bool &Changed, + Instruction *InsertPt, + MemorySSAUpdater *MSSAU) const { + // Test if the value is already loop-invariant. + if (isLoopInvariant(I)) + return true; + if (!isSafeToSpeculativelyExecute(I)) + return false; + if (I->mayReadFromMemory()) + return false; + // EH block instructions are immobile. + if (I->isEHPad()) + return false; + // Determine the insertion point, unless one was given. + if (!InsertPt) { + BasicBlock *Preheader = getLoopPreheader(); + // Without a preheader, hoisting is not feasible. + if (!Preheader) + return false; + InsertPt = Preheader->getTerminator(); + } + // Don't hoist instructions with loop-variant operands. + for (Value *Operand : I->operands()) + if (!makeLoopInvariant(Operand, Changed, InsertPt, MSSAU)) + return false; + + // Hoist. + I->moveBefore(InsertPt); + if (MSSAU) + if (auto *MUD = MSSAU->getMemorySSA()->getMemoryAccess(I)) + MSSAU->moveToPlace(MUD, InsertPt->getParent(), MemorySSA::End); + + // There is possibility of hoisting this instruction above some arbitrary + // condition. Any metadata defined on it can be control dependent on this + // condition. Conservatively strip it here so that we don't give any wrong + // information to the optimizer. + I->dropUnknownNonDebugMetadata(); + + Changed = true; + return true; +} + +bool Loop::getIncomingAndBackEdge(BasicBlock *&Incoming, + BasicBlock *&Backedge) const { + BasicBlock *H = getHeader(); + + Incoming = nullptr; + Backedge = nullptr; + pred_iterator PI = pred_begin(H); + assert(PI != pred_end(H) && "Loop must have at least one backedge!"); + Backedge = *PI++; + if (PI == pred_end(H)) + return false; // dead loop + Incoming = *PI++; + if (PI != pred_end(H)) + return false; // multiple backedges? + + if (contains(Incoming)) { + if (contains(Backedge)) + return false; + std::swap(Incoming, Backedge); + } else if (!contains(Backedge)) + return false; + + assert(Incoming && Backedge && "expected non-null incoming and backedges"); + return true; +} + +PHINode *Loop::getCanonicalInductionVariable() const { + BasicBlock *H = getHeader(); + + BasicBlock *Incoming = nullptr, *Backedge = nullptr; + if (!getIncomingAndBackEdge(Incoming, Backedge)) + return nullptr; + + // Loop over all of the PHI nodes, looking for a canonical indvar. + for (BasicBlock::iterator I = H->begin(); isa<PHINode>(I); ++I) { + PHINode *PN = cast<PHINode>(I); + if (ConstantInt *CI = + dyn_cast<ConstantInt>(PN->getIncomingValueForBlock(Incoming))) + if (CI->isZero()) + if (Instruction *Inc = + dyn_cast<Instruction>(PN->getIncomingValueForBlock(Backedge))) + if (Inc->getOpcode() == Instruction::Add && Inc->getOperand(0) == PN) + if (ConstantInt *CI = dyn_cast<ConstantInt>(Inc->getOperand(1))) + if (CI->isOne()) + return PN; + } + return nullptr; +} + +/// Get the latch condition instruction. +static ICmpInst *getLatchCmpInst(const Loop &L) { + if (BasicBlock *Latch = L.getLoopLatch()) + if (BranchInst *BI = dyn_cast_or_null<BranchInst>(Latch->getTerminator())) + if (BI->isConditional()) + return dyn_cast<ICmpInst>(BI->getCondition()); + + return nullptr; +} + +/// Return the final value of the loop induction variable if found. +static Value *findFinalIVValue(const Loop &L, const PHINode &IndVar, + const Instruction &StepInst) { + ICmpInst *LatchCmpInst = getLatchCmpInst(L); + if (!LatchCmpInst) + return nullptr; + + Value *Op0 = LatchCmpInst->getOperand(0); + Value *Op1 = LatchCmpInst->getOperand(1); + if (Op0 == &IndVar || Op0 == &StepInst) + return Op1; + + if (Op1 == &IndVar || Op1 == &StepInst) + return Op0; + + return nullptr; +} + +Optional<Loop::LoopBounds> Loop::LoopBounds::getBounds(const Loop &L, + PHINode &IndVar, + ScalarEvolution &SE) { + InductionDescriptor IndDesc; + if (!InductionDescriptor::isInductionPHI(&IndVar, &L, &SE, IndDesc)) + return None; + + Value *InitialIVValue = IndDesc.getStartValue(); + Instruction *StepInst = IndDesc.getInductionBinOp(); + if (!InitialIVValue || !StepInst) + return None; + + const SCEV *Step = IndDesc.getStep(); + Value *StepInstOp1 = StepInst->getOperand(1); + Value *StepInstOp0 = StepInst->getOperand(0); + Value *StepValue = nullptr; + if (SE.getSCEV(StepInstOp1) == Step) + StepValue = StepInstOp1; + else if (SE.getSCEV(StepInstOp0) == Step) + StepValue = StepInstOp0; + + Value *FinalIVValue = findFinalIVValue(L, IndVar, *StepInst); + if (!FinalIVValue) + return None; + + return LoopBounds(L, *InitialIVValue, *StepInst, StepValue, *FinalIVValue, + SE); +} + +using Direction = Loop::LoopBounds::Direction; + +ICmpInst::Predicate Loop::LoopBounds::getCanonicalPredicate() const { + BasicBlock *Latch = L.getLoopLatch(); + assert(Latch && "Expecting valid latch"); + + BranchInst *BI = dyn_cast_or_null<BranchInst>(Latch->getTerminator()); + assert(BI && BI->isConditional() && "Expecting conditional latch branch"); + + ICmpInst *LatchCmpInst = dyn_cast<ICmpInst>(BI->getCondition()); + assert(LatchCmpInst && + "Expecting the latch compare instruction to be a CmpInst"); + + // Need to inverse the predicate when first successor is not the loop + // header + ICmpInst::Predicate Pred = (BI->getSuccessor(0) == L.getHeader()) + ? LatchCmpInst->getPredicate() + : LatchCmpInst->getInversePredicate(); + + if (LatchCmpInst->getOperand(0) == &getFinalIVValue()) + Pred = ICmpInst::getSwappedPredicate(Pred); + + // Need to flip strictness of the predicate when the latch compare instruction + // is not using StepInst + if (LatchCmpInst->getOperand(0) == &getStepInst() || + LatchCmpInst->getOperand(1) == &getStepInst()) + return Pred; + + // Cannot flip strictness of NE and EQ + if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ) + return ICmpInst::getFlippedStrictnessPredicate(Pred); + + Direction D = getDirection(); + if (D == Direction::Increasing) + return ICmpInst::ICMP_SLT; + + if (D == Direction::Decreasing) + return ICmpInst::ICMP_SGT; + + // If cannot determine the direction, then unable to find the canonical + // predicate + return ICmpInst::BAD_ICMP_PREDICATE; +} + +Direction Loop::LoopBounds::getDirection() const { + if (const SCEVAddRecExpr *StepAddRecExpr = + dyn_cast<SCEVAddRecExpr>(SE.getSCEV(&getStepInst()))) + if (const SCEV *StepRecur = StepAddRecExpr->getStepRecurrence(SE)) { + if (SE.isKnownPositive(StepRecur)) + return Direction::Increasing; + if (SE.isKnownNegative(StepRecur)) + return Direction::Decreasing; + } + + return Direction::Unknown; +} + +Optional<Loop::LoopBounds> Loop::getBounds(ScalarEvolution &SE) const { + if (PHINode *IndVar = getInductionVariable(SE)) + return LoopBounds::getBounds(*this, *IndVar, SE); + + return None; +} + +PHINode *Loop::getInductionVariable(ScalarEvolution &SE) const { + if (!isLoopSimplifyForm()) + return nullptr; + + BasicBlock *Header = getHeader(); + assert(Header && "Expected a valid loop header"); + ICmpInst *CmpInst = getLatchCmpInst(*this); + if (!CmpInst) + return nullptr; + + Instruction *LatchCmpOp0 = dyn_cast<Instruction>(CmpInst->getOperand(0)); + Instruction *LatchCmpOp1 = dyn_cast<Instruction>(CmpInst->getOperand(1)); + + for (PHINode &IndVar : Header->phis()) { + InductionDescriptor IndDesc; + if (!InductionDescriptor::isInductionPHI(&IndVar, this, &SE, IndDesc)) + continue; + + Instruction *StepInst = IndDesc.getInductionBinOp(); + + // case 1: + // IndVar = phi[{InitialValue, preheader}, {StepInst, latch}] + // StepInst = IndVar + step + // cmp = StepInst < FinalValue + if (StepInst == LatchCmpOp0 || StepInst == LatchCmpOp1) + return &IndVar; + + // case 2: + // IndVar = phi[{InitialValue, preheader}, {StepInst, latch}] + // StepInst = IndVar + step + // cmp = IndVar < FinalValue + if (&IndVar == LatchCmpOp0 || &IndVar == LatchCmpOp1) + return &IndVar; + } + + return nullptr; +} + +bool Loop::getInductionDescriptor(ScalarEvolution &SE, + InductionDescriptor &IndDesc) const { + if (PHINode *IndVar = getInductionVariable(SE)) + return InductionDescriptor::isInductionPHI(IndVar, this, &SE, IndDesc); + + return false; +} + +bool Loop::isAuxiliaryInductionVariable(PHINode &AuxIndVar, + ScalarEvolution &SE) const { + // Located in the loop header + BasicBlock *Header = getHeader(); + if (AuxIndVar.getParent() != Header) + return false; + + // No uses outside of the loop + for (User *U : AuxIndVar.users()) + if (const Instruction *I = dyn_cast<Instruction>(U)) + if (!contains(I)) + return false; + + InductionDescriptor IndDesc; + if (!InductionDescriptor::isInductionPHI(&AuxIndVar, this, &SE, IndDesc)) + return false; + + // The step instruction opcode should be add or sub. + if (IndDesc.getInductionOpcode() != Instruction::Add && + IndDesc.getInductionOpcode() != Instruction::Sub) + return false; + + // Incremented by a loop invariant step for each loop iteration + return SE.isLoopInvariant(IndDesc.getStep(), this); +} + +BranchInst *Loop::getLoopGuardBranch() const { + if (!isLoopSimplifyForm()) + return nullptr; + + BasicBlock *Preheader = getLoopPreheader(); + BasicBlock *Latch = getLoopLatch(); + assert(Preheader && Latch && + "Expecting a loop with valid preheader and latch"); + + // Loop should be in rotate form. + if (!isLoopExiting(Latch)) + return nullptr; + + // Disallow loops with more than one unique exit block, as we do not verify + // that GuardOtherSucc post dominates all exit blocks. + BasicBlock *ExitFromLatch = getUniqueExitBlock(); + if (!ExitFromLatch) + return nullptr; + + BasicBlock *ExitFromLatchSucc = ExitFromLatch->getUniqueSuccessor(); + if (!ExitFromLatchSucc) + return nullptr; + + BasicBlock *GuardBB = Preheader->getUniquePredecessor(); + if (!GuardBB) + return nullptr; + + assert(GuardBB->getTerminator() && "Expecting valid guard terminator"); + + BranchInst *GuardBI = dyn_cast<BranchInst>(GuardBB->getTerminator()); + if (!GuardBI || GuardBI->isUnconditional()) + return nullptr; + + BasicBlock *GuardOtherSucc = (GuardBI->getSuccessor(0) == Preheader) + ? GuardBI->getSuccessor(1) + : GuardBI->getSuccessor(0); + return (GuardOtherSucc == ExitFromLatchSucc) ? GuardBI : nullptr; +} + +bool Loop::isCanonical(ScalarEvolution &SE) const { + InductionDescriptor IndDesc; + if (!getInductionDescriptor(SE, IndDesc)) + return false; + + ConstantInt *Init = dyn_cast_or_null<ConstantInt>(IndDesc.getStartValue()); + if (!Init || !Init->isZero()) + return false; + + if (IndDesc.getInductionOpcode() != Instruction::Add) + return false; + + ConstantInt *Step = IndDesc.getConstIntStepValue(); + if (!Step || !Step->isOne()) + return false; + + return true; +} + +// Check that 'BB' doesn't have any uses outside of the 'L' +static bool isBlockInLCSSAForm(const Loop &L, const BasicBlock &BB, + DominatorTree &DT) { + for (const Instruction &I : BB) { + // Tokens can't be used in PHI nodes and live-out tokens prevent loop + // optimizations, so for the purposes of considered LCSSA form, we + // can ignore them. + if (I.getType()->isTokenTy()) + continue; + + for (const Use &U : I.uses()) { + const Instruction *UI = cast<Instruction>(U.getUser()); + const BasicBlock *UserBB = UI->getParent(); + if (const PHINode *P = dyn_cast<PHINode>(UI)) + UserBB = P->getIncomingBlock(U); + + // Check the current block, as a fast-path, before checking whether + // the use is anywhere in the loop. Most values are used in the same + // block they are defined in. Also, blocks not reachable from the + // entry are special; uses in them don't need to go through PHIs. + if (UserBB != &BB && !L.contains(UserBB) && + DT.isReachableFromEntry(UserBB)) + return false; + } + } + return true; +} + +bool Loop::isLCSSAForm(DominatorTree &DT) const { + // For each block we check that it doesn't have any uses outside of this loop. + return all_of(this->blocks(), [&](const BasicBlock *BB) { + return isBlockInLCSSAForm(*this, *BB, DT); + }); +} + +bool Loop::isRecursivelyLCSSAForm(DominatorTree &DT, const LoopInfo &LI) const { + // For each block we check that it doesn't have any uses outside of its + // innermost loop. This process will transitively guarantee that the current + // loop and all of the nested loops are in LCSSA form. + return all_of(this->blocks(), [&](const BasicBlock *BB) { + return isBlockInLCSSAForm(*LI.getLoopFor(BB), *BB, DT); + }); +} + +bool Loop::isLoopSimplifyForm() const { + // Normal-form loops have a preheader, a single backedge, and all of their + // exits have all their predecessors inside the loop. + return getLoopPreheader() && getLoopLatch() && hasDedicatedExits(); +} + +// Routines that reform the loop CFG and split edges often fail on indirectbr. +bool Loop::isSafeToClone() const { + // Return false if any loop blocks contain indirectbrs, or there are any calls + // to noduplicate functions. + // FIXME: it should be ok to clone CallBrInst's if we correctly update the + // operand list to reflect the newly cloned labels. + for (BasicBlock *BB : this->blocks()) { + if (isa<IndirectBrInst>(BB->getTerminator()) || + isa<CallBrInst>(BB->getTerminator())) + return false; + + for (Instruction &I : *BB) + if (auto CS = CallSite(&I)) + if (CS.cannotDuplicate()) + return false; + } + return true; +} + +MDNode *Loop::getLoopID() const { + MDNode *LoopID = nullptr; + + // Go through the latch blocks and check the terminator for the metadata. + SmallVector<BasicBlock *, 4> LatchesBlocks; + getLoopLatches(LatchesBlocks); + for (BasicBlock *BB : LatchesBlocks) { + Instruction *TI = BB->getTerminator(); + MDNode *MD = TI->getMetadata(LLVMContext::MD_loop); + + if (!MD) + return nullptr; + + if (!LoopID) + LoopID = MD; + else if (MD != LoopID) + return nullptr; + } + if (!LoopID || LoopID->getNumOperands() == 0 || + LoopID->getOperand(0) != LoopID) + return nullptr; + return LoopID; +} + +void Loop::setLoopID(MDNode *LoopID) const { + assert((!LoopID || LoopID->getNumOperands() > 0) && + "Loop ID needs at least one operand"); + assert((!LoopID || LoopID->getOperand(0) == LoopID) && + "Loop ID should refer to itself"); + + SmallVector<BasicBlock *, 4> LoopLatches; + getLoopLatches(LoopLatches); + for (BasicBlock *BB : LoopLatches) + BB->getTerminator()->setMetadata(LLVMContext::MD_loop, LoopID); +} + +void Loop::setLoopAlreadyUnrolled() { + LLVMContext &Context = getHeader()->getContext(); + + MDNode *DisableUnrollMD = + MDNode::get(Context, MDString::get(Context, "llvm.loop.unroll.disable")); + MDNode *LoopID = getLoopID(); + MDNode *NewLoopID = makePostTransformationMetadata( + Context, LoopID, {"llvm.loop.unroll."}, {DisableUnrollMD}); + setLoopID(NewLoopID); +} + +bool Loop::isAnnotatedParallel() const { + MDNode *DesiredLoopIdMetadata = getLoopID(); + + if (!DesiredLoopIdMetadata) + return false; + + MDNode *ParallelAccesses = + findOptionMDForLoop(this, "llvm.loop.parallel_accesses"); + SmallPtrSet<MDNode *, 4> + ParallelAccessGroups; // For scalable 'contains' check. + if (ParallelAccesses) { + for (const MDOperand &MD : drop_begin(ParallelAccesses->operands(), 1)) { + MDNode *AccGroup = cast<MDNode>(MD.get()); + assert(isValidAsAccessGroup(AccGroup) && + "List item must be an access group"); + ParallelAccessGroups.insert(AccGroup); + } + } + + // The loop branch contains the parallel loop metadata. In order to ensure + // that any parallel-loop-unaware optimization pass hasn't added loop-carried + // dependencies (thus converted the loop back to a sequential loop), check + // that all the memory instructions in the loop belong to an access group that + // is parallel to this loop. + for (BasicBlock *BB : this->blocks()) { + for (Instruction &I : *BB) { + if (!I.mayReadOrWriteMemory()) + continue; + + if (MDNode *AccessGroup = I.getMetadata(LLVMContext::MD_access_group)) { + auto ContainsAccessGroup = [&ParallelAccessGroups](MDNode *AG) -> bool { + if (AG->getNumOperands() == 0) { + assert(isValidAsAccessGroup(AG) && "Item must be an access group"); + return ParallelAccessGroups.count(AG); + } + + for (const MDOperand &AccessListItem : AG->operands()) { + MDNode *AccGroup = cast<MDNode>(AccessListItem.get()); + assert(isValidAsAccessGroup(AccGroup) && + "List item must be an access group"); + if (ParallelAccessGroups.count(AccGroup)) + return true; + } + return false; + }; + + if (ContainsAccessGroup(AccessGroup)) + continue; + } + + // The memory instruction can refer to the loop identifier metadata + // directly or indirectly through another list metadata (in case of + // nested parallel loops). The loop identifier metadata refers to + // itself so we can check both cases with the same routine. + MDNode *LoopIdMD = + I.getMetadata(LLVMContext::MD_mem_parallel_loop_access); + + if (!LoopIdMD) + return false; + + bool LoopIdMDFound = false; + for (const MDOperand &MDOp : LoopIdMD->operands()) { + if (MDOp == DesiredLoopIdMetadata) { + LoopIdMDFound = true; + break; + } + } + + if (!LoopIdMDFound) + return false; + } + } + return true; +} + +DebugLoc Loop::getStartLoc() const { return getLocRange().getStart(); } + +Loop::LocRange Loop::getLocRange() const { + // If we have a debug location in the loop ID, then use it. + if (MDNode *LoopID = getLoopID()) { + DebugLoc Start; + // We use the first DebugLoc in the header as the start location of the loop + // and if there is a second DebugLoc in the header we use it as end location + // of the loop. + for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { + if (DILocation *L = dyn_cast<DILocation>(LoopID->getOperand(i))) { + if (!Start) + Start = DebugLoc(L); + else + return LocRange(Start, DebugLoc(L)); + } + } + + if (Start) + return LocRange(Start); + } + + // Try the pre-header first. + if (BasicBlock *PHeadBB = getLoopPreheader()) + if (DebugLoc DL = PHeadBB->getTerminator()->getDebugLoc()) + return LocRange(DL); + + // If we have no pre-header or there are no instructions with debug + // info in it, try the header. + if (BasicBlock *HeadBB = getHeader()) + return LocRange(HeadBB->getTerminator()->getDebugLoc()); + + return LocRange(); +} + +#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) +LLVM_DUMP_METHOD void Loop::dump() const { print(dbgs()); } + +LLVM_DUMP_METHOD void Loop::dumpVerbose() const { + print(dbgs(), /*Depth=*/0, /*Verbose=*/true); +} +#endif + +//===----------------------------------------------------------------------===// +// UnloopUpdater implementation +// + +namespace { +/// Find the new parent loop for all blocks within the "unloop" whose last +/// backedges has just been removed. +class UnloopUpdater { + Loop &Unloop; + LoopInfo *LI; + + LoopBlocksDFS DFS; + + // Map unloop's immediate subloops to their nearest reachable parents. Nested + // loops within these subloops will not change parents. However, an immediate + // subloop's new parent will be the nearest loop reachable from either its own + // exits *or* any of its nested loop's exits. + DenseMap<Loop *, Loop *> SubloopParents; + + // Flag the presence of an irreducible backedge whose destination is a block + // directly contained by the original unloop. + bool FoundIB; + +public: + UnloopUpdater(Loop *UL, LoopInfo *LInfo) + : Unloop(*UL), LI(LInfo), DFS(UL), FoundIB(false) {} + + void updateBlockParents(); + + void removeBlocksFromAncestors(); + + void updateSubloopParents(); + +protected: + Loop *getNearestLoop(BasicBlock *BB, Loop *BBLoop); +}; +} // end anonymous namespace + +/// Update the parent loop for all blocks that are directly contained within the +/// original "unloop". +void UnloopUpdater::updateBlockParents() { + if (Unloop.getNumBlocks()) { + // Perform a post order CFG traversal of all blocks within this loop, + // propagating the nearest loop from successors to predecessors. + LoopBlocksTraversal Traversal(DFS, LI); + for (BasicBlock *POI : Traversal) { + + Loop *L = LI->getLoopFor(POI); + Loop *NL = getNearestLoop(POI, L); + + if (NL != L) { + // For reducible loops, NL is now an ancestor of Unloop. + assert((NL != &Unloop && (!NL || NL->contains(&Unloop))) && + "uninitialized successor"); + LI->changeLoopFor(POI, NL); + } else { + // Or the current block is part of a subloop, in which case its parent + // is unchanged. + assert((FoundIB || Unloop.contains(L)) && "uninitialized successor"); + } + } + } + // Each irreducible loop within the unloop induces a round of iteration using + // the DFS result cached by Traversal. + bool Changed = FoundIB; + for (unsigned NIters = 0; Changed; ++NIters) { + assert(NIters < Unloop.getNumBlocks() && "runaway iterative algorithm"); + + // Iterate over the postorder list of blocks, propagating the nearest loop + // from successors to predecessors as before. + Changed = false; + for (LoopBlocksDFS::POIterator POI = DFS.beginPostorder(), + POE = DFS.endPostorder(); + POI != POE; ++POI) { + + Loop *L = LI->getLoopFor(*POI); + Loop *NL = getNearestLoop(*POI, L); + if (NL != L) { + assert(NL != &Unloop && (!NL || NL->contains(&Unloop)) && + "uninitialized successor"); + LI->changeLoopFor(*POI, NL); + Changed = true; + } + } + } +} + +/// Remove unloop's blocks from all ancestors below their new parents. +void UnloopUpdater::removeBlocksFromAncestors() { + // Remove all unloop's blocks (including those in nested subloops) from + // ancestors below the new parent loop. + for (Loop::block_iterator BI = Unloop.block_begin(), BE = Unloop.block_end(); + BI != BE; ++BI) { + Loop *OuterParent = LI->getLoopFor(*BI); + if (Unloop.contains(OuterParent)) { + while (OuterParent->getParentLoop() != &Unloop) + OuterParent = OuterParent->getParentLoop(); + OuterParent = SubloopParents[OuterParent]; + } + // Remove blocks from former Ancestors except Unloop itself which will be + // deleted. + for (Loop *OldParent = Unloop.getParentLoop(); OldParent != OuterParent; + OldParent = OldParent->getParentLoop()) { + assert(OldParent && "new loop is not an ancestor of the original"); + OldParent->removeBlockFromLoop(*BI); + } + } +} + +/// Update the parent loop for all subloops directly nested within unloop. +void UnloopUpdater::updateSubloopParents() { + while (!Unloop.empty()) { + Loop *Subloop = *std::prev(Unloop.end()); + Unloop.removeChildLoop(std::prev(Unloop.end())); + + assert(SubloopParents.count(Subloop) && "DFS failed to visit subloop"); + if (Loop *Parent = SubloopParents[Subloop]) + Parent->addChildLoop(Subloop); + else + LI->addTopLevelLoop(Subloop); + } +} + +/// Return the nearest parent loop among this block's successors. If a successor +/// is a subloop header, consider its parent to be the nearest parent of the +/// subloop's exits. +/// +/// For subloop blocks, simply update SubloopParents and return NULL. +Loop *UnloopUpdater::getNearestLoop(BasicBlock *BB, Loop *BBLoop) { + + // Initially for blocks directly contained by Unloop, NearLoop == Unloop and + // is considered uninitialized. + Loop *NearLoop = BBLoop; + + Loop *Subloop = nullptr; + if (NearLoop != &Unloop && Unloop.contains(NearLoop)) { + Subloop = NearLoop; + // Find the subloop ancestor that is directly contained within Unloop. + while (Subloop->getParentLoop() != &Unloop) { + Subloop = Subloop->getParentLoop(); + assert(Subloop && "subloop is not an ancestor of the original loop"); + } + // Get the current nearest parent of the Subloop exits, initially Unloop. + NearLoop = SubloopParents.insert({Subloop, &Unloop}).first->second; + } + + succ_iterator I = succ_begin(BB), E = succ_end(BB); + if (I == E) { + assert(!Subloop && "subloop blocks must have a successor"); + NearLoop = nullptr; // unloop blocks may now exit the function. + } + for (; I != E; ++I) { + if (*I == BB) + continue; // self loops are uninteresting + + Loop *L = LI->getLoopFor(*I); + if (L == &Unloop) { + // This successor has not been processed. This path must lead to an + // irreducible backedge. + assert((FoundIB || !DFS.hasPostorder(*I)) && "should have seen IB"); + FoundIB = true; + } + if (L != &Unloop && Unloop.contains(L)) { + // Successor is in a subloop. + if (Subloop) + continue; // Branching within subloops. Ignore it. + + // BB branches from the original into a subloop header. + assert(L->getParentLoop() == &Unloop && "cannot skip into nested loops"); + + // Get the current nearest parent of the Subloop's exits. + L = SubloopParents[L]; + // L could be Unloop if the only exit was an irreducible backedge. + } + if (L == &Unloop) { + continue; + } + // Handle critical edges from Unloop into a sibling loop. + if (L && !L->contains(&Unloop)) { + L = L->getParentLoop(); + } + // Remember the nearest parent loop among successors or subloop exits. + if (NearLoop == &Unloop || !NearLoop || NearLoop->contains(L)) + NearLoop = L; + } + if (Subloop) { + SubloopParents[Subloop] = NearLoop; + return BBLoop; + } + return NearLoop; +} + +LoopInfo::LoopInfo(const DomTreeBase<BasicBlock> &DomTree) { analyze(DomTree); } + +bool LoopInfo::invalidate(Function &F, const PreservedAnalyses &PA, + FunctionAnalysisManager::Invalidator &) { + // Check whether the analysis, all analyses on functions, or the function's + // CFG have been preserved. + auto PAC = PA.getChecker<LoopAnalysis>(); + return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>() || + PAC.preservedSet<CFGAnalyses>()); +} + +void LoopInfo::erase(Loop *Unloop) { + assert(!Unloop->isInvalid() && "Loop has already been erased!"); + + auto InvalidateOnExit = make_scope_exit([&]() { destroy(Unloop); }); + + // First handle the special case of no parent loop to simplify the algorithm. + if (!Unloop->getParentLoop()) { + // Since BBLoop had no parent, Unloop blocks are no longer in a loop. + for (Loop::block_iterator I = Unloop->block_begin(), + E = Unloop->block_end(); + I != E; ++I) { + + // Don't reparent blocks in subloops. + if (getLoopFor(*I) != Unloop) + continue; + + // Blocks no longer have a parent but are still referenced by Unloop until + // the Unloop object is deleted. + changeLoopFor(*I, nullptr); + } + + // Remove the loop from the top-level LoopInfo object. + for (iterator I = begin();; ++I) { + assert(I != end() && "Couldn't find loop"); + if (*I == Unloop) { + removeLoop(I); + break; + } + } + + // Move all of the subloops to the top-level. + while (!Unloop->empty()) + addTopLevelLoop(Unloop->removeChildLoop(std::prev(Unloop->end()))); + + return; + } + + // Update the parent loop for all blocks within the loop. Blocks within + // subloops will not change parents. + UnloopUpdater Updater(Unloop, this); + Updater.updateBlockParents(); + + // Remove blocks from former ancestor loops. + Updater.removeBlocksFromAncestors(); + + // Add direct subloops as children in their new parent loop. + Updater.updateSubloopParents(); + + // Remove unloop from its parent loop. + Loop *ParentLoop = Unloop->getParentLoop(); + for (Loop::iterator I = ParentLoop->begin();; ++I) { + assert(I != ParentLoop->end() && "Couldn't find loop"); + if (*I == Unloop) { + ParentLoop->removeChildLoop(I); + break; + } + } +} + +AnalysisKey LoopAnalysis::Key; + +LoopInfo LoopAnalysis::run(Function &F, FunctionAnalysisManager &AM) { + // FIXME: Currently we create a LoopInfo from scratch for every function. + // This may prove to be too wasteful due to deallocating and re-allocating + // memory each time for the underlying map and vector datastructures. At some + // point it may prove worthwhile to use a freelist and recycle LoopInfo + // objects. I don't want to add that kind of complexity until the scope of + // the problem is better understood. + LoopInfo LI; + LI.analyze(AM.getResult<DominatorTreeAnalysis>(F)); + return LI; +} + +PreservedAnalyses LoopPrinterPass::run(Function &F, + FunctionAnalysisManager &AM) { + AM.getResult<LoopAnalysis>(F).print(OS); + return PreservedAnalyses::all(); +} + +void llvm::printLoop(Loop &L, raw_ostream &OS, const std::string &Banner) { + + if (forcePrintModuleIR()) { + // handling -print-module-scope + OS << Banner << " (loop: "; + L.getHeader()->printAsOperand(OS, false); + OS << ")\n"; + + // printing whole module + OS << *L.getHeader()->getModule(); + return; + } + + OS << Banner; + + auto *PreHeader = L.getLoopPreheader(); + if (PreHeader) { + OS << "\n; Preheader:"; + PreHeader->print(OS); + OS << "\n; Loop:"; + } + + for (auto *Block : L.blocks()) + if (Block) + Block->print(OS); + else + OS << "Printing <null> block"; + + SmallVector<BasicBlock *, 8> ExitBlocks; + L.getExitBlocks(ExitBlocks); + if (!ExitBlocks.empty()) { + OS << "\n; Exit blocks"; + for (auto *Block : ExitBlocks) + if (Block) + Block->print(OS); + else + OS << "Printing <null> block"; + } +} + +MDNode *llvm::findOptionMDForLoopID(MDNode *LoopID, StringRef Name) { + // No loop metadata node, no loop properties. + if (!LoopID) + return nullptr; + + // First operand should refer to the metadata node itself, for legacy reasons. + assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); + assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); + + // Iterate over the metdata node operands and look for MDString metadata. + for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) { + MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); + if (!MD || MD->getNumOperands() < 1) + continue; + MDString *S = dyn_cast<MDString>(MD->getOperand(0)); + if (!S) + continue; + // Return the operand node if MDString holds expected metadata. + if (Name.equals(S->getString())) + return MD; + } + + // Loop property not found. + return nullptr; +} + +MDNode *llvm::findOptionMDForLoop(const Loop *TheLoop, StringRef Name) { + return findOptionMDForLoopID(TheLoop->getLoopID(), Name); +} + +bool llvm::isValidAsAccessGroup(MDNode *Node) { + return Node->getNumOperands() == 0 && Node->isDistinct(); +} + +MDNode *llvm::makePostTransformationMetadata(LLVMContext &Context, + MDNode *OrigLoopID, + ArrayRef<StringRef> RemovePrefixes, + ArrayRef<MDNode *> AddAttrs) { + // First remove any existing loop metadata related to this transformation. + SmallVector<Metadata *, 4> MDs; + + // Reserve first location for self reference to the LoopID metadata node. + TempMDTuple TempNode = MDNode::getTemporary(Context, None); + MDs.push_back(TempNode.get()); + + // Remove metadata for the transformation that has been applied or that became + // outdated. + if (OrigLoopID) { + for (unsigned i = 1, ie = OrigLoopID->getNumOperands(); i < ie; ++i) { + bool IsVectorMetadata = false; + Metadata *Op = OrigLoopID->getOperand(i); + if (MDNode *MD = dyn_cast<MDNode>(Op)) { + const MDString *S = dyn_cast<MDString>(MD->getOperand(0)); + if (S) + IsVectorMetadata = + llvm::any_of(RemovePrefixes, [S](StringRef Prefix) -> bool { + return S->getString().startswith(Prefix); + }); + } + if (!IsVectorMetadata) + MDs.push_back(Op); + } + } + + // Add metadata to avoid reapplying a transformation, such as + // llvm.loop.unroll.disable and llvm.loop.isvectorized. + MDs.append(AddAttrs.begin(), AddAttrs.end()); + + MDNode *NewLoopID = MDNode::getDistinct(Context, MDs); + // Replace the temporary node with a self-reference. + NewLoopID->replaceOperandWith(0, NewLoopID); + return NewLoopID; +} + +//===----------------------------------------------------------------------===// +// LoopInfo implementation +// + +char LoopInfoWrapperPass::ID = 0; +INITIALIZE_PASS_BEGIN(LoopInfoWrapperPass, "loops", "Natural Loop Information", + true, true) +INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) +INITIALIZE_PASS_END(LoopInfoWrapperPass, "loops", "Natural Loop Information", + true, true) + +bool LoopInfoWrapperPass::runOnFunction(Function &) { + releaseMemory(); + LI.analyze(getAnalysis<DominatorTreeWrapperPass>().getDomTree()); + return false; +} + +void LoopInfoWrapperPass::verifyAnalysis() const { + // LoopInfoWrapperPass is a FunctionPass, but verifying every loop in the + // function each time verifyAnalysis is called is very expensive. The + // -verify-loop-info option can enable this. In order to perform some + // checking by default, LoopPass has been taught to call verifyLoop manually + // during loop pass sequences. + if (VerifyLoopInfo) { + auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); + LI.verify(DT); + } +} + +void LoopInfoWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { + AU.setPreservesAll(); + AU.addRequiredTransitive<DominatorTreeWrapperPass>(); +} + +void LoopInfoWrapperPass::print(raw_ostream &OS, const Module *) const { + LI.print(OS); +} + +PreservedAnalyses LoopVerifierPass::run(Function &F, + FunctionAnalysisManager &AM) { + LoopInfo &LI = AM.getResult<LoopAnalysis>(F); + auto &DT = AM.getResult<DominatorTreeAnalysis>(F); + LI.verify(DT); + return PreservedAnalyses::all(); +} + +//===----------------------------------------------------------------------===// +// LoopBlocksDFS implementation +// + +/// Traverse the loop blocks and store the DFS result. +/// Useful for clients that just want the final DFS result and don't need to +/// visit blocks during the initial traversal. +void LoopBlocksDFS::perform(LoopInfo *LI) { + LoopBlocksTraversal Traversal(*this, LI); + for (LoopBlocksTraversal::POTIterator POI = Traversal.begin(), + POE = Traversal.end(); + POI != POE; ++POI) + ; +} |