summaryrefslogtreecommitdiff
path: root/llvm/lib/Analysis/ScalarEvolutionExpander.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'llvm/lib/Analysis/ScalarEvolutionExpander.cpp')
-rw-r--r--llvm/lib/Analysis/ScalarEvolutionExpander.cpp2452
1 files changed, 0 insertions, 2452 deletions
diff --git a/llvm/lib/Analysis/ScalarEvolutionExpander.cpp b/llvm/lib/Analysis/ScalarEvolutionExpander.cpp
deleted file mode 100644
index dc5d02aa3a3cb..0000000000000
--- a/llvm/lib/Analysis/ScalarEvolutionExpander.cpp
+++ /dev/null
@@ -1,2452 +0,0 @@
-//===- ScalarEvolutionExpander.cpp - Scalar Evolution Analysis ------------===//
-//
-// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
-// See https://llvm.org/LICENSE.txt for license information.
-// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
-//
-//===----------------------------------------------------------------------===//
-//
-// This file contains the implementation of the scalar evolution expander,
-// which is used to generate the code corresponding to a given scalar evolution
-// expression.
-//
-//===----------------------------------------------------------------------===//
-
-#include "llvm/Analysis/ScalarEvolutionExpander.h"
-#include "llvm/ADT/STLExtras.h"
-#include "llvm/ADT/SmallSet.h"
-#include "llvm/Analysis/InstructionSimplify.h"
-#include "llvm/Analysis/LoopInfo.h"
-#include "llvm/Analysis/TargetTransformInfo.h"
-#include "llvm/IR/DataLayout.h"
-#include "llvm/IR/Dominators.h"
-#include "llvm/IR/IntrinsicInst.h"
-#include "llvm/IR/LLVMContext.h"
-#include "llvm/IR/Module.h"
-#include "llvm/IR/PatternMatch.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/raw_ostream.h"
-
-using namespace llvm;
-using namespace PatternMatch;
-
-/// ReuseOrCreateCast - Arrange for there to be a cast of V to Ty at IP,
-/// reusing an existing cast if a suitable one exists, moving an existing
-/// cast if a suitable one exists but isn't in the right place, or
-/// creating a new one.
-Value *SCEVExpander::ReuseOrCreateCast(Value *V, Type *Ty,
- Instruction::CastOps Op,
- BasicBlock::iterator IP) {
- // This function must be called with the builder having a valid insertion
- // point. It doesn't need to be the actual IP where the uses of the returned
- // cast will be added, but it must dominate such IP.
- // We use this precondition to produce a cast that will dominate all its
- // uses. In particular, this is crucial for the case where the builder's
- // insertion point *is* the point where we were asked to put the cast.
- // Since we don't know the builder's insertion point is actually
- // where the uses will be added (only that it dominates it), we are
- // not allowed to move it.
- BasicBlock::iterator BIP = Builder.GetInsertPoint();
-
- Instruction *Ret = nullptr;
-
- // Check to see if there is already a cast!
- for (User *U : V->users())
- if (U->getType() == Ty)
- if (CastInst *CI = dyn_cast<CastInst>(U))
- if (CI->getOpcode() == Op) {
- // If the cast isn't where we want it, create a new cast at IP.
- // Likewise, do not reuse a cast at BIP because it must dominate
- // instructions that might be inserted before BIP.
- if (BasicBlock::iterator(CI) != IP || BIP == IP) {
- // Create a new cast, and leave the old cast in place in case
- // it is being used as an insert point.
- Ret = CastInst::Create(Op, V, Ty, "", &*IP);
- Ret->takeName(CI);
- CI->replaceAllUsesWith(Ret);
- break;
- }
- Ret = CI;
- break;
- }
-
- // Create a new cast.
- if (!Ret)
- Ret = CastInst::Create(Op, V, Ty, V->getName(), &*IP);
-
- // We assert at the end of the function since IP might point to an
- // instruction with different dominance properties than a cast
- // (an invoke for example) and not dominate BIP (but the cast does).
- assert(SE.DT.dominates(Ret, &*BIP));
-
- rememberInstruction(Ret);
- return Ret;
-}
-
-static BasicBlock::iterator findInsertPointAfter(Instruction *I,
- BasicBlock *MustDominate) {
- BasicBlock::iterator IP = ++I->getIterator();
- if (auto *II = dyn_cast<InvokeInst>(I))
- IP = II->getNormalDest()->begin();
-
- while (isa<PHINode>(IP))
- ++IP;
-
- if (isa<FuncletPadInst>(IP) || isa<LandingPadInst>(IP)) {
- ++IP;
- } else if (isa<CatchSwitchInst>(IP)) {
- IP = MustDominate->getFirstInsertionPt();
- } else {
- assert(!IP->isEHPad() && "unexpected eh pad!");
- }
-
- return IP;
-}
-
-/// InsertNoopCastOfTo - Insert a cast of V to the specified type,
-/// which must be possible with a noop cast, doing what we can to share
-/// the casts.
-Value *SCEVExpander::InsertNoopCastOfTo(Value *V, Type *Ty) {
- Instruction::CastOps Op = CastInst::getCastOpcode(V, false, Ty, false);
- assert((Op == Instruction::BitCast ||
- Op == Instruction::PtrToInt ||
- Op == Instruction::IntToPtr) &&
- "InsertNoopCastOfTo cannot perform non-noop casts!");
- assert(SE.getTypeSizeInBits(V->getType()) == SE.getTypeSizeInBits(Ty) &&
- "InsertNoopCastOfTo cannot change sizes!");
-
- // Short-circuit unnecessary bitcasts.
- if (Op == Instruction::BitCast) {
- if (V->getType() == Ty)
- return V;
- if (CastInst *CI = dyn_cast<CastInst>(V)) {
- if (CI->getOperand(0)->getType() == Ty)
- return CI->getOperand(0);
- }
- }
- // Short-circuit unnecessary inttoptr<->ptrtoint casts.
- if ((Op == Instruction::PtrToInt || Op == Instruction::IntToPtr) &&
- SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(V->getType())) {
- if (CastInst *CI = dyn_cast<CastInst>(V))
- if ((CI->getOpcode() == Instruction::PtrToInt ||
- CI->getOpcode() == Instruction::IntToPtr) &&
- SE.getTypeSizeInBits(CI->getType()) ==
- SE.getTypeSizeInBits(CI->getOperand(0)->getType()))
- return CI->getOperand(0);
- if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
- if ((CE->getOpcode() == Instruction::PtrToInt ||
- CE->getOpcode() == Instruction::IntToPtr) &&
- SE.getTypeSizeInBits(CE->getType()) ==
- SE.getTypeSizeInBits(CE->getOperand(0)->getType()))
- return CE->getOperand(0);
- }
-
- // Fold a cast of a constant.
- if (Constant *C = dyn_cast<Constant>(V))
- return ConstantExpr::getCast(Op, C, Ty);
-
- // Cast the argument at the beginning of the entry block, after
- // any bitcasts of other arguments.
- if (Argument *A = dyn_cast<Argument>(V)) {
- BasicBlock::iterator IP = A->getParent()->getEntryBlock().begin();
- while ((isa<BitCastInst>(IP) &&
- isa<Argument>(cast<BitCastInst>(IP)->getOperand(0)) &&
- cast<BitCastInst>(IP)->getOperand(0) != A) ||
- isa<DbgInfoIntrinsic>(IP))
- ++IP;
- return ReuseOrCreateCast(A, Ty, Op, IP);
- }
-
- // Cast the instruction immediately after the instruction.
- Instruction *I = cast<Instruction>(V);
- BasicBlock::iterator IP = findInsertPointAfter(I, Builder.GetInsertBlock());
- return ReuseOrCreateCast(I, Ty, Op, IP);
-}
-
-/// InsertBinop - Insert the specified binary operator, doing a small amount
-/// of work to avoid inserting an obviously redundant operation, and hoisting
-/// to an outer loop when the opportunity is there and it is safe.
-Value *SCEVExpander::InsertBinop(Instruction::BinaryOps Opcode,
- Value *LHS, Value *RHS,
- SCEV::NoWrapFlags Flags, bool IsSafeToHoist) {
- // Fold a binop with constant operands.
- if (Constant *CLHS = dyn_cast<Constant>(LHS))
- if (Constant *CRHS = dyn_cast<Constant>(RHS))
- return ConstantExpr::get(Opcode, CLHS, CRHS);
-
- // Do a quick scan to see if we have this binop nearby. If so, reuse it.
- unsigned ScanLimit = 6;
- BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
- // Scanning starts from the last instruction before the insertion point.
- BasicBlock::iterator IP = Builder.GetInsertPoint();
- if (IP != BlockBegin) {
- --IP;
- for (; ScanLimit; --IP, --ScanLimit) {
- // Don't count dbg.value against the ScanLimit, to avoid perturbing the
- // generated code.
- if (isa<DbgInfoIntrinsic>(IP))
- ScanLimit++;
-
- auto canGenerateIncompatiblePoison = [&Flags](Instruction *I) {
- // Ensure that no-wrap flags match.
- if (isa<OverflowingBinaryOperator>(I)) {
- if (I->hasNoSignedWrap() != (Flags & SCEV::FlagNSW))
- return true;
- if (I->hasNoUnsignedWrap() != (Flags & SCEV::FlagNUW))
- return true;
- }
- // Conservatively, do not use any instruction which has any of exact
- // flags installed.
- if (isa<PossiblyExactOperator>(I) && I->isExact())
- return true;
- return false;
- };
- if (IP->getOpcode() == (unsigned)Opcode && IP->getOperand(0) == LHS &&
- IP->getOperand(1) == RHS && !canGenerateIncompatiblePoison(&*IP))
- return &*IP;
- if (IP == BlockBegin) break;
- }
- }
-
- // Save the original insertion point so we can restore it when we're done.
- DebugLoc Loc = Builder.GetInsertPoint()->getDebugLoc();
- SCEVInsertPointGuard Guard(Builder, this);
-
- if (IsSafeToHoist) {
- // Move the insertion point out of as many loops as we can.
- while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) {
- if (!L->isLoopInvariant(LHS) || !L->isLoopInvariant(RHS)) break;
- BasicBlock *Preheader = L->getLoopPreheader();
- if (!Preheader) break;
-
- // Ok, move up a level.
- Builder.SetInsertPoint(Preheader->getTerminator());
- }
- }
-
- // If we haven't found this binop, insert it.
- Instruction *BO = cast<Instruction>(Builder.CreateBinOp(Opcode, LHS, RHS));
- BO->setDebugLoc(Loc);
- if (Flags & SCEV::FlagNUW)
- BO->setHasNoUnsignedWrap();
- if (Flags & SCEV::FlagNSW)
- BO->setHasNoSignedWrap();
- rememberInstruction(BO);
-
- return BO;
-}
-
-/// FactorOutConstant - Test if S is divisible by Factor, using signed
-/// division. If so, update S with Factor divided out and return true.
-/// S need not be evenly divisible if a reasonable remainder can be
-/// computed.
-static bool FactorOutConstant(const SCEV *&S, const SCEV *&Remainder,
- const SCEV *Factor, ScalarEvolution &SE,
- const DataLayout &DL) {
- // Everything is divisible by one.
- if (Factor->isOne())
- return true;
-
- // x/x == 1.
- if (S == Factor) {
- S = SE.getConstant(S->getType(), 1);
- return true;
- }
-
- // For a Constant, check for a multiple of the given factor.
- if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
- // 0/x == 0.
- if (C->isZero())
- return true;
- // Check for divisibility.
- if (const SCEVConstant *FC = dyn_cast<SCEVConstant>(Factor)) {
- ConstantInt *CI =
- ConstantInt::get(SE.getContext(), C->getAPInt().sdiv(FC->getAPInt()));
- // If the quotient is zero and the remainder is non-zero, reject
- // the value at this scale. It will be considered for subsequent
- // smaller scales.
- if (!CI->isZero()) {
- const SCEV *Div = SE.getConstant(CI);
- S = Div;
- Remainder = SE.getAddExpr(
- Remainder, SE.getConstant(C->getAPInt().srem(FC->getAPInt())));
- return true;
- }
- }
- }
-
- // In a Mul, check if there is a constant operand which is a multiple
- // of the given factor.
- if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
- // Size is known, check if there is a constant operand which is a multiple
- // of the given factor. If so, we can factor it.
- const SCEVConstant *FC = cast<SCEVConstant>(Factor);
- if (const SCEVConstant *C = dyn_cast<SCEVConstant>(M->getOperand(0)))
- if (!C->getAPInt().srem(FC->getAPInt())) {
- SmallVector<const SCEV *, 4> NewMulOps(M->op_begin(), M->op_end());
- NewMulOps[0] = SE.getConstant(C->getAPInt().sdiv(FC->getAPInt()));
- S = SE.getMulExpr(NewMulOps);
- return true;
- }
- }
-
- // In an AddRec, check if both start and step are divisible.
- if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
- const SCEV *Step = A->getStepRecurrence(SE);
- const SCEV *StepRem = SE.getConstant(Step->getType(), 0);
- if (!FactorOutConstant(Step, StepRem, Factor, SE, DL))
- return false;
- if (!StepRem->isZero())
- return false;
- const SCEV *Start = A->getStart();
- if (!FactorOutConstant(Start, Remainder, Factor, SE, DL))
- return false;
- S = SE.getAddRecExpr(Start, Step, A->getLoop(),
- A->getNoWrapFlags(SCEV::FlagNW));
- return true;
- }
-
- return false;
-}
-
-/// SimplifyAddOperands - Sort and simplify a list of add operands. NumAddRecs
-/// is the number of SCEVAddRecExprs present, which are kept at the end of
-/// the list.
-///
-static void SimplifyAddOperands(SmallVectorImpl<const SCEV *> &Ops,
- Type *Ty,
- ScalarEvolution &SE) {
- unsigned NumAddRecs = 0;
- for (unsigned i = Ops.size(); i > 0 && isa<SCEVAddRecExpr>(Ops[i-1]); --i)
- ++NumAddRecs;
- // Group Ops into non-addrecs and addrecs.
- SmallVector<const SCEV *, 8> NoAddRecs(Ops.begin(), Ops.end() - NumAddRecs);
- SmallVector<const SCEV *, 8> AddRecs(Ops.end() - NumAddRecs, Ops.end());
- // Let ScalarEvolution sort and simplify the non-addrecs list.
- const SCEV *Sum = NoAddRecs.empty() ?
- SE.getConstant(Ty, 0) :
- SE.getAddExpr(NoAddRecs);
- // If it returned an add, use the operands. Otherwise it simplified
- // the sum into a single value, so just use that.
- Ops.clear();
- if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Sum))
- Ops.append(Add->op_begin(), Add->op_end());
- else if (!Sum->isZero())
- Ops.push_back(Sum);
- // Then append the addrecs.
- Ops.append(AddRecs.begin(), AddRecs.end());
-}
-
-/// SplitAddRecs - Flatten a list of add operands, moving addrec start values
-/// out to the top level. For example, convert {a + b,+,c} to a, b, {0,+,d}.
-/// This helps expose more opportunities for folding parts of the expressions
-/// into GEP indices.
-///
-static void SplitAddRecs(SmallVectorImpl<const SCEV *> &Ops,
- Type *Ty,
- ScalarEvolution &SE) {
- // Find the addrecs.
- SmallVector<const SCEV *, 8> AddRecs;
- for (unsigned i = 0, e = Ops.size(); i != e; ++i)
- while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Ops[i])) {
- const SCEV *Start = A->getStart();
- if (Start->isZero()) break;
- const SCEV *Zero = SE.getConstant(Ty, 0);
- AddRecs.push_back(SE.getAddRecExpr(Zero,
- A->getStepRecurrence(SE),
- A->getLoop(),
- A->getNoWrapFlags(SCEV::FlagNW)));
- if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Start)) {
- Ops[i] = Zero;
- Ops.append(Add->op_begin(), Add->op_end());
- e += Add->getNumOperands();
- } else {
- Ops[i] = Start;
- }
- }
- if (!AddRecs.empty()) {
- // Add the addrecs onto the end of the list.
- Ops.append(AddRecs.begin(), AddRecs.end());
- // Resort the operand list, moving any constants to the front.
- SimplifyAddOperands(Ops, Ty, SE);
- }
-}
-
-/// expandAddToGEP - Expand an addition expression with a pointer type into
-/// a GEP instead of using ptrtoint+arithmetic+inttoptr. This helps
-/// BasicAliasAnalysis and other passes analyze the result. See the rules
-/// for getelementptr vs. inttoptr in
-/// http://llvm.org/docs/LangRef.html#pointeraliasing
-/// for details.
-///
-/// Design note: The correctness of using getelementptr here depends on
-/// ScalarEvolution not recognizing inttoptr and ptrtoint operators, as
-/// they may introduce pointer arithmetic which may not be safely converted
-/// into getelementptr.
-///
-/// Design note: It might seem desirable for this function to be more
-/// loop-aware. If some of the indices are loop-invariant while others
-/// aren't, it might seem desirable to emit multiple GEPs, keeping the
-/// loop-invariant portions of the overall computation outside the loop.
-/// However, there are a few reasons this is not done here. Hoisting simple
-/// arithmetic is a low-level optimization that often isn't very
-/// important until late in the optimization process. In fact, passes
-/// like InstructionCombining will combine GEPs, even if it means
-/// pushing loop-invariant computation down into loops, so even if the
-/// GEPs were split here, the work would quickly be undone. The
-/// LoopStrengthReduction pass, which is usually run quite late (and
-/// after the last InstructionCombining pass), takes care of hoisting
-/// loop-invariant portions of expressions, after considering what
-/// can be folded using target addressing modes.
-///
-Value *SCEVExpander::expandAddToGEP(const SCEV *const *op_begin,
- const SCEV *const *op_end,
- PointerType *PTy,
- Type *Ty,
- Value *V) {
- Type *OriginalElTy = PTy->getElementType();
- Type *ElTy = OriginalElTy;
- SmallVector<Value *, 4> GepIndices;
- SmallVector<const SCEV *, 8> Ops(op_begin, op_end);
- bool AnyNonZeroIndices = false;
-
- // Split AddRecs up into parts as either of the parts may be usable
- // without the other.
- SplitAddRecs(Ops, Ty, SE);
-
- Type *IntIdxTy = DL.getIndexType(PTy);
-
- // Descend down the pointer's type and attempt to convert the other
- // operands into GEP indices, at each level. The first index in a GEP
- // indexes into the array implied by the pointer operand; the rest of
- // the indices index into the element or field type selected by the
- // preceding index.
- for (;;) {
- // If the scale size is not 0, attempt to factor out a scale for
- // array indexing.
- SmallVector<const SCEV *, 8> ScaledOps;
- if (ElTy->isSized()) {
- const SCEV *ElSize = SE.getSizeOfExpr(IntIdxTy, ElTy);
- if (!ElSize->isZero()) {
- SmallVector<const SCEV *, 8> NewOps;
- for (const SCEV *Op : Ops) {
- const SCEV *Remainder = SE.getConstant(Ty, 0);
- if (FactorOutConstant(Op, Remainder, ElSize, SE, DL)) {
- // Op now has ElSize factored out.
- ScaledOps.push_back(Op);
- if (!Remainder->isZero())
- NewOps.push_back(Remainder);
- AnyNonZeroIndices = true;
- } else {
- // The operand was not divisible, so add it to the list of operands
- // we'll scan next iteration.
- NewOps.push_back(Op);
- }
- }
- // If we made any changes, update Ops.
- if (!ScaledOps.empty()) {
- Ops = NewOps;
- SimplifyAddOperands(Ops, Ty, SE);
- }
- }
- }
-
- // Record the scaled array index for this level of the type. If
- // we didn't find any operands that could be factored, tentatively
- // assume that element zero was selected (since the zero offset
- // would obviously be folded away).
- Value *Scaled = ScaledOps.empty() ?
- Constant::getNullValue(Ty) :
- expandCodeFor(SE.getAddExpr(ScaledOps), Ty);
- GepIndices.push_back(Scaled);
-
- // Collect struct field index operands.
- while (StructType *STy = dyn_cast<StructType>(ElTy)) {
- bool FoundFieldNo = false;
- // An empty struct has no fields.
- if (STy->getNumElements() == 0) break;
- // Field offsets are known. See if a constant offset falls within any of
- // the struct fields.
- if (Ops.empty())
- break;
- if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[0]))
- if (SE.getTypeSizeInBits(C->getType()) <= 64) {
- const StructLayout &SL = *DL.getStructLayout(STy);
- uint64_t FullOffset = C->getValue()->getZExtValue();
- if (FullOffset < SL.getSizeInBytes()) {
- unsigned ElIdx = SL.getElementContainingOffset(FullOffset);
- GepIndices.push_back(
- ConstantInt::get(Type::getInt32Ty(Ty->getContext()), ElIdx));
- ElTy = STy->getTypeAtIndex(ElIdx);
- Ops[0] =
- SE.getConstant(Ty, FullOffset - SL.getElementOffset(ElIdx));
- AnyNonZeroIndices = true;
- FoundFieldNo = true;
- }
- }
- // If no struct field offsets were found, tentatively assume that
- // field zero was selected (since the zero offset would obviously
- // be folded away).
- if (!FoundFieldNo) {
- ElTy = STy->getTypeAtIndex(0u);
- GepIndices.push_back(
- Constant::getNullValue(Type::getInt32Ty(Ty->getContext())));
- }
- }
-
- if (ArrayType *ATy = dyn_cast<ArrayType>(ElTy))
- ElTy = ATy->getElementType();
- else
- break;
- }
-
- // If none of the operands were convertible to proper GEP indices, cast
- // the base to i8* and do an ugly getelementptr with that. It's still
- // better than ptrtoint+arithmetic+inttoptr at least.
- if (!AnyNonZeroIndices) {
- // Cast the base to i8*.
- V = InsertNoopCastOfTo(V,
- Type::getInt8PtrTy(Ty->getContext(), PTy->getAddressSpace()));
-
- assert(!isa<Instruction>(V) ||
- SE.DT.dominates(cast<Instruction>(V), &*Builder.GetInsertPoint()));
-
- // Expand the operands for a plain byte offset.
- Value *Idx = expandCodeFor(SE.getAddExpr(Ops), Ty);
-
- // Fold a GEP with constant operands.
- if (Constant *CLHS = dyn_cast<Constant>(V))
- if (Constant *CRHS = dyn_cast<Constant>(Idx))
- return ConstantExpr::getGetElementPtr(Type::getInt8Ty(Ty->getContext()),
- CLHS, CRHS);
-
- // Do a quick scan to see if we have this GEP nearby. If so, reuse it.
- unsigned ScanLimit = 6;
- BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
- // Scanning starts from the last instruction before the insertion point.
- BasicBlock::iterator IP = Builder.GetInsertPoint();
- if (IP != BlockBegin) {
- --IP;
- for (; ScanLimit; --IP, --ScanLimit) {
- // Don't count dbg.value against the ScanLimit, to avoid perturbing the
- // generated code.
- if (isa<DbgInfoIntrinsic>(IP))
- ScanLimit++;
- if (IP->getOpcode() == Instruction::GetElementPtr &&
- IP->getOperand(0) == V && IP->getOperand(1) == Idx)
- return &*IP;
- if (IP == BlockBegin) break;
- }
- }
-
- // Save the original insertion point so we can restore it when we're done.
- SCEVInsertPointGuard Guard(Builder, this);
-
- // Move the insertion point out of as many loops as we can.
- while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) {
- if (!L->isLoopInvariant(V) || !L->isLoopInvariant(Idx)) break;
- BasicBlock *Preheader = L->getLoopPreheader();
- if (!Preheader) break;
-
- // Ok, move up a level.
- Builder.SetInsertPoint(Preheader->getTerminator());
- }
-
- // Emit a GEP.
- Value *GEP = Builder.CreateGEP(Builder.getInt8Ty(), V, Idx, "uglygep");
- rememberInstruction(GEP);
-
- return GEP;
- }
-
- {
- SCEVInsertPointGuard Guard(Builder, this);
-
- // Move the insertion point out of as many loops as we can.
- while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) {
- if (!L->isLoopInvariant(V)) break;
-
- bool AnyIndexNotLoopInvariant = any_of(
- GepIndices, [L](Value *Op) { return !L->isLoopInvariant(Op); });
-
- if (AnyIndexNotLoopInvariant)
- break;
-
- BasicBlock *Preheader = L->getLoopPreheader();
- if (!Preheader) break;
-
- // Ok, move up a level.
- Builder.SetInsertPoint(Preheader->getTerminator());
- }
-
- // Insert a pretty getelementptr. Note that this GEP is not marked inbounds,
- // because ScalarEvolution may have changed the address arithmetic to
- // compute a value which is beyond the end of the allocated object.
- Value *Casted = V;
- if (V->getType() != PTy)
- Casted = InsertNoopCastOfTo(Casted, PTy);
- Value *GEP = Builder.CreateGEP(OriginalElTy, Casted, GepIndices, "scevgep");
- Ops.push_back(SE.getUnknown(GEP));
- rememberInstruction(GEP);
- }
-
- return expand(SE.getAddExpr(Ops));
-}
-
-Value *SCEVExpander::expandAddToGEP(const SCEV *Op, PointerType *PTy, Type *Ty,
- Value *V) {
- const SCEV *const Ops[1] = {Op};
- return expandAddToGEP(Ops, Ops + 1, PTy, Ty, V);
-}
-
-/// PickMostRelevantLoop - Given two loops pick the one that's most relevant for
-/// SCEV expansion. If they are nested, this is the most nested. If they are
-/// neighboring, pick the later.
-static const Loop *PickMostRelevantLoop(const Loop *A, const Loop *B,
- DominatorTree &DT) {
- if (!A) return B;
- if (!B) return A;
- if (A->contains(B)) return B;
- if (B->contains(A)) return A;
- if (DT.dominates(A->getHeader(), B->getHeader())) return B;
- if (DT.dominates(B->getHeader(), A->getHeader())) return A;
- return A; // Arbitrarily break the tie.
-}
-
-/// getRelevantLoop - Get the most relevant loop associated with the given
-/// expression, according to PickMostRelevantLoop.
-const Loop *SCEVExpander::getRelevantLoop(const SCEV *S) {
- // Test whether we've already computed the most relevant loop for this SCEV.
- auto Pair = RelevantLoops.insert(std::make_pair(S, nullptr));
- if (!Pair.second)
- return Pair.first->second;
-
- if (isa<SCEVConstant>(S))
- // A constant has no relevant loops.
- return nullptr;
- if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
- if (const Instruction *I = dyn_cast<Instruction>(U->getValue()))
- return Pair.first->second = SE.LI.getLoopFor(I->getParent());
- // A non-instruction has no relevant loops.
- return nullptr;
- }
- if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) {
- const Loop *L = nullptr;
- if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
- L = AR->getLoop();
- for (const SCEV *Op : N->operands())
- L = PickMostRelevantLoop(L, getRelevantLoop(Op), SE.DT);
- return RelevantLoops[N] = L;
- }
- if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S)) {
- const Loop *Result = getRelevantLoop(C->getOperand());
- return RelevantLoops[C] = Result;
- }
- if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
- const Loop *Result = PickMostRelevantLoop(
- getRelevantLoop(D->getLHS()), getRelevantLoop(D->getRHS()), SE.DT);
- return RelevantLoops[D] = Result;
- }
- llvm_unreachable("Unexpected SCEV type!");
-}
-
-namespace {
-
-/// LoopCompare - Compare loops by PickMostRelevantLoop.
-class LoopCompare {
- DominatorTree &DT;
-public:
- explicit LoopCompare(DominatorTree &dt) : DT(dt) {}
-
- bool operator()(std::pair<const Loop *, const SCEV *> LHS,
- std::pair<const Loop *, const SCEV *> RHS) const {
- // Keep pointer operands sorted at the end.
- if (LHS.second->getType()->isPointerTy() !=
- RHS.second->getType()->isPointerTy())
- return LHS.second->getType()->isPointerTy();
-
- // Compare loops with PickMostRelevantLoop.
- if (LHS.first != RHS.first)
- return PickMostRelevantLoop(LHS.first, RHS.first, DT) != LHS.first;
-
- // If one operand is a non-constant negative and the other is not,
- // put the non-constant negative on the right so that a sub can
- // be used instead of a negate and add.
- if (LHS.second->isNonConstantNegative()) {
- if (!RHS.second->isNonConstantNegative())
- return false;
- } else if (RHS.second->isNonConstantNegative())
- return true;
-
- // Otherwise they are equivalent according to this comparison.
- return false;
- }
-};
-
-}
-
-Value *SCEVExpander::visitAddExpr(const SCEVAddExpr *S) {
- Type *Ty = SE.getEffectiveSCEVType(S->getType());
-
- // Collect all the add operands in a loop, along with their associated loops.
- // Iterate in reverse so that constants are emitted last, all else equal, and
- // so that pointer operands are inserted first, which the code below relies on
- // to form more involved GEPs.
- SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops;
- for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(S->op_end()),
- E(S->op_begin()); I != E; ++I)
- OpsAndLoops.push_back(std::make_pair(getRelevantLoop(*I), *I));
-
- // Sort by loop. Use a stable sort so that constants follow non-constants and
- // pointer operands precede non-pointer operands.
- llvm::stable_sort(OpsAndLoops, LoopCompare(SE.DT));
-
- // Emit instructions to add all the operands. Hoist as much as possible
- // out of loops, and form meaningful getelementptrs where possible.
- Value *Sum = nullptr;
- for (auto I = OpsAndLoops.begin(), E = OpsAndLoops.end(); I != E;) {
- const Loop *CurLoop = I->first;
- const SCEV *Op = I->second;
- if (!Sum) {
- // This is the first operand. Just expand it.
- Sum = expand(Op);
- ++I;
- } else if (PointerType *PTy = dyn_cast<PointerType>(Sum->getType())) {
- // The running sum expression is a pointer. Try to form a getelementptr
- // at this level with that as the base.
- SmallVector<const SCEV *, 4> NewOps;
- for (; I != E && I->first == CurLoop; ++I) {
- // If the operand is SCEVUnknown and not instructions, peek through
- // it, to enable more of it to be folded into the GEP.
- const SCEV *X = I->second;
- if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(X))
- if (!isa<Instruction>(U->getValue()))
- X = SE.getSCEV(U->getValue());
- NewOps.push_back(X);
- }
- Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, Sum);
- } else if (PointerType *PTy = dyn_cast<PointerType>(Op->getType())) {
- // The running sum is an integer, and there's a pointer at this level.
- // Try to form a getelementptr. If the running sum is instructions,
- // use a SCEVUnknown to avoid re-analyzing them.
- SmallVector<const SCEV *, 4> NewOps;
- NewOps.push_back(isa<Instruction>(Sum) ? SE.getUnknown(Sum) :
- SE.getSCEV(Sum));
- for (++I; I != E && I->first == CurLoop; ++I)
- NewOps.push_back(I->second);
- Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, expand(Op));
- } else if (Op->isNonConstantNegative()) {
- // Instead of doing a negate and add, just do a subtract.
- Value *W = expandCodeFor(SE.getNegativeSCEV(Op), Ty);
- Sum = InsertNoopCastOfTo(Sum, Ty);
- Sum = InsertBinop(Instruction::Sub, Sum, W, SCEV::FlagAnyWrap,
- /*IsSafeToHoist*/ true);
- ++I;
- } else {
- // A simple add.
- Value *W = expandCodeFor(Op, Ty);
- Sum = InsertNoopCastOfTo(Sum, Ty);
- // Canonicalize a constant to the RHS.
- if (isa<Constant>(Sum)) std::swap(Sum, W);
- Sum = InsertBinop(Instruction::Add, Sum, W, S->getNoWrapFlags(),
- /*IsSafeToHoist*/ true);
- ++I;
- }
- }
-
- return Sum;
-}
-
-Value *SCEVExpander::visitMulExpr(const SCEVMulExpr *S) {
- Type *Ty = SE.getEffectiveSCEVType(S->getType());
-
- // Collect all the mul operands in a loop, along with their associated loops.
- // Iterate in reverse so that constants are emitted last, all else equal.
- SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops;
- for (std::reverse_iterator<SCEVMulExpr::op_iterator> I(S->op_end()),
- E(S->op_begin()); I != E; ++I)
- OpsAndLoops.push_back(std::make_pair(getRelevantLoop(*I), *I));
-
- // Sort by loop. Use a stable sort so that constants follow non-constants.
- llvm::stable_sort(OpsAndLoops, LoopCompare(SE.DT));
-
- // Emit instructions to mul all the operands. Hoist as much as possible
- // out of loops.
- Value *Prod = nullptr;
- auto I = OpsAndLoops.begin();
-
- // Expand the calculation of X pow N in the following manner:
- // Let N = P1 + P2 + ... + PK, where all P are powers of 2. Then:
- // X pow N = (X pow P1) * (X pow P2) * ... * (X pow PK).
- const auto ExpandOpBinPowN = [this, &I, &OpsAndLoops, &Ty]() {
- auto E = I;
- // Calculate how many times the same operand from the same loop is included
- // into this power.
- uint64_t Exponent = 0;
- const uint64_t MaxExponent = UINT64_MAX >> 1;
- // No one sane will ever try to calculate such huge exponents, but if we
- // need this, we stop on UINT64_MAX / 2 because we need to exit the loop
- // below when the power of 2 exceeds our Exponent, and we want it to be
- // 1u << 31 at most to not deal with unsigned overflow.
- while (E != OpsAndLoops.end() && *I == *E && Exponent != MaxExponent) {
- ++Exponent;
- ++E;
- }
- assert(Exponent > 0 && "Trying to calculate a zeroth exponent of operand?");
-
- // Calculate powers with exponents 1, 2, 4, 8 etc. and include those of them
- // that are needed into the result.
- Value *P = expandCodeFor(I->second, Ty);
- Value *Result = nullptr;
- if (Exponent & 1)
- Result = P;
- for (uint64_t BinExp = 2; BinExp <= Exponent; BinExp <<= 1) {
- P = InsertBinop(Instruction::Mul, P, P, SCEV::FlagAnyWrap,
- /*IsSafeToHoist*/ true);
- if (Exponent & BinExp)
- Result = Result ? InsertBinop(Instruction::Mul, Result, P,
- SCEV::FlagAnyWrap,
- /*IsSafeToHoist*/ true)
- : P;
- }
-
- I = E;
- assert(Result && "Nothing was expanded?");
- return Result;
- };
-
- while (I != OpsAndLoops.end()) {
- if (!Prod) {
- // This is the first operand. Just expand it.
- Prod = ExpandOpBinPowN();
- } else if (I->second->isAllOnesValue()) {
- // Instead of doing a multiply by negative one, just do a negate.
- Prod = InsertNoopCastOfTo(Prod, Ty);
- Prod = InsertBinop(Instruction::Sub, Constant::getNullValue(Ty), Prod,
- SCEV::FlagAnyWrap, /*IsSafeToHoist*/ true);
- ++I;
- } else {
- // A simple mul.
- Value *W = ExpandOpBinPowN();
- Prod = InsertNoopCastOfTo(Prod, Ty);
- // Canonicalize a constant to the RHS.
- if (isa<Constant>(Prod)) std::swap(Prod, W);
- const APInt *RHS;
- if (match(W, m_Power2(RHS))) {
- // Canonicalize Prod*(1<<C) to Prod<<C.
- assert(!Ty->isVectorTy() && "vector types are not SCEVable");
- auto NWFlags = S->getNoWrapFlags();
- // clear nsw flag if shl will produce poison value.
- if (RHS->logBase2() == RHS->getBitWidth() - 1)
- NWFlags = ScalarEvolution::clearFlags(NWFlags, SCEV::FlagNSW);
- Prod = InsertBinop(Instruction::Shl, Prod,
- ConstantInt::get(Ty, RHS->logBase2()), NWFlags,
- /*IsSafeToHoist*/ true);
- } else {
- Prod = InsertBinop(Instruction::Mul, Prod, W, S->getNoWrapFlags(),
- /*IsSafeToHoist*/ true);
- }
- }
- }
-
- return Prod;
-}
-
-Value *SCEVExpander::visitUDivExpr(const SCEVUDivExpr *S) {
- Type *Ty = SE.getEffectiveSCEVType(S->getType());
-
- Value *LHS = expandCodeFor(S->getLHS(), Ty);
- if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getRHS())) {
- const APInt &RHS = SC->getAPInt();
- if (RHS.isPowerOf2())
- return InsertBinop(Instruction::LShr, LHS,
- ConstantInt::get(Ty, RHS.logBase2()),
- SCEV::FlagAnyWrap, /*IsSafeToHoist*/ true);
- }
-
- Value *RHS = expandCodeFor(S->getRHS(), Ty);
- return InsertBinop(Instruction::UDiv, LHS, RHS, SCEV::FlagAnyWrap,
- /*IsSafeToHoist*/ SE.isKnownNonZero(S->getRHS()));
-}
-
-/// Move parts of Base into Rest to leave Base with the minimal
-/// expression that provides a pointer operand suitable for a
-/// GEP expansion.
-static void ExposePointerBase(const SCEV *&Base, const SCEV *&Rest,
- ScalarEvolution &SE) {
- while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Base)) {
- Base = A->getStart();
- Rest = SE.getAddExpr(Rest,
- SE.getAddRecExpr(SE.getConstant(A->getType(), 0),
- A->getStepRecurrence(SE),
- A->getLoop(),
- A->getNoWrapFlags(SCEV::FlagNW)));
- }
- if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(Base)) {
- Base = A->getOperand(A->getNumOperands()-1);
- SmallVector<const SCEV *, 8> NewAddOps(A->op_begin(), A->op_end());
- NewAddOps.back() = Rest;
- Rest = SE.getAddExpr(NewAddOps);
- ExposePointerBase(Base, Rest, SE);
- }
-}
-
-/// Determine if this is a well-behaved chain of instructions leading back to
-/// the PHI. If so, it may be reused by expanded expressions.
-bool SCEVExpander::isNormalAddRecExprPHI(PHINode *PN, Instruction *IncV,
- const Loop *L) {
- if (IncV->getNumOperands() == 0 || isa<PHINode>(IncV) ||
- (isa<CastInst>(IncV) && !isa<BitCastInst>(IncV)))
- return false;
- // If any of the operands don't dominate the insert position, bail.
- // Addrec operands are always loop-invariant, so this can only happen
- // if there are instructions which haven't been hoisted.
- if (L == IVIncInsertLoop) {
- for (User::op_iterator OI = IncV->op_begin()+1,
- OE = IncV->op_end(); OI != OE; ++OI)
- if (Instruction *OInst = dyn_cast<Instruction>(OI))
- if (!SE.DT.dominates(OInst, IVIncInsertPos))
- return false;
- }
- // Advance to the next instruction.
- IncV = dyn_cast<Instruction>(IncV->getOperand(0));
- if (!IncV)
- return false;
-
- if (IncV->mayHaveSideEffects())
- return false;
-
- if (IncV == PN)
- return true;
-
- return isNormalAddRecExprPHI(PN, IncV, L);
-}
-
-/// getIVIncOperand returns an induction variable increment's induction
-/// variable operand.
-///
-/// If allowScale is set, any type of GEP is allowed as long as the nonIV
-/// operands dominate InsertPos.
-///
-/// If allowScale is not set, ensure that a GEP increment conforms to one of the
-/// simple patterns generated by getAddRecExprPHILiterally and
-/// expandAddtoGEP. If the pattern isn't recognized, return NULL.
-Instruction *SCEVExpander::getIVIncOperand(Instruction *IncV,
- Instruction *InsertPos,
- bool allowScale) {
- if (IncV == InsertPos)
- return nullptr;
-
- switch (IncV->getOpcode()) {
- default:
- return nullptr;
- // Check for a simple Add/Sub or GEP of a loop invariant step.
- case Instruction::Add:
- case Instruction::Sub: {
- Instruction *OInst = dyn_cast<Instruction>(IncV->getOperand(1));
- if (!OInst || SE.DT.dominates(OInst, InsertPos))
- return dyn_cast<Instruction>(IncV->getOperand(0));
- return nullptr;
- }
- case Instruction::BitCast:
- return dyn_cast<Instruction>(IncV->getOperand(0));
- case Instruction::GetElementPtr:
- for (auto I = IncV->op_begin() + 1, E = IncV->op_end(); I != E; ++I) {
- if (isa<Constant>(*I))
- continue;
- if (Instruction *OInst = dyn_cast<Instruction>(*I)) {
- if (!SE.DT.dominates(OInst, InsertPos))
- return nullptr;
- }
- if (allowScale) {
- // allow any kind of GEP as long as it can be hoisted.
- continue;
- }
- // This must be a pointer addition of constants (pretty), which is already
- // handled, or some number of address-size elements (ugly). Ugly geps
- // have 2 operands. i1* is used by the expander to represent an
- // address-size element.
- if (IncV->getNumOperands() != 2)
- return nullptr;
- unsigned AS = cast<PointerType>(IncV->getType())->getAddressSpace();
- if (IncV->getType() != Type::getInt1PtrTy(SE.getContext(), AS)
- && IncV->getType() != Type::getInt8PtrTy(SE.getContext(), AS))
- return nullptr;
- break;
- }
- return dyn_cast<Instruction>(IncV->getOperand(0));
- }
-}
-
-/// If the insert point of the current builder or any of the builders on the
-/// stack of saved builders has 'I' as its insert point, update it to point to
-/// the instruction after 'I'. This is intended to be used when the instruction
-/// 'I' is being moved. If this fixup is not done and 'I' is moved to a
-/// different block, the inconsistent insert point (with a mismatched
-/// Instruction and Block) can lead to an instruction being inserted in a block
-/// other than its parent.
-void SCEVExpander::fixupInsertPoints(Instruction *I) {
- BasicBlock::iterator It(*I);
- BasicBlock::iterator NewInsertPt = std::next(It);
- if (Builder.GetInsertPoint() == It)
- Builder.SetInsertPoint(&*NewInsertPt);
- for (auto *InsertPtGuard : InsertPointGuards)
- if (InsertPtGuard->GetInsertPoint() == It)
- InsertPtGuard->SetInsertPoint(NewInsertPt);
-}
-
-/// hoistStep - Attempt to hoist a simple IV increment above InsertPos to make
-/// it available to other uses in this loop. Recursively hoist any operands,
-/// until we reach a value that dominates InsertPos.
-bool SCEVExpander::hoistIVInc(Instruction *IncV, Instruction *InsertPos) {
- if (SE.DT.dominates(IncV, InsertPos))
- return true;
-
- // InsertPos must itself dominate IncV so that IncV's new position satisfies
- // its existing users.
- if (isa<PHINode>(InsertPos) ||
- !SE.DT.dominates(InsertPos->getParent(), IncV->getParent()))
- return false;
-
- if (!SE.LI.movementPreservesLCSSAForm(IncV, InsertPos))
- return false;
-
- // Check that the chain of IV operands leading back to Phi can be hoisted.
- SmallVector<Instruction*, 4> IVIncs;
- for(;;) {
- Instruction *Oper = getIVIncOperand(IncV, InsertPos, /*allowScale*/true);
- if (!Oper)
- return false;
- // IncV is safe to hoist.
- IVIncs.push_back(IncV);
- IncV = Oper;
- if (SE.DT.dominates(IncV, InsertPos))
- break;
- }
- for (auto I = IVIncs.rbegin(), E = IVIncs.rend(); I != E; ++I) {
- fixupInsertPoints(*I);
- (*I)->moveBefore(InsertPos);
- }
- return true;
-}
-
-/// Determine if this cyclic phi is in a form that would have been generated by
-/// LSR. We don't care if the phi was actually expanded in this pass, as long
-/// as it is in a low-cost form, for example, no implied multiplication. This
-/// should match any patterns generated by getAddRecExprPHILiterally and
-/// expandAddtoGEP.
-bool SCEVExpander::isExpandedAddRecExprPHI(PHINode *PN, Instruction *IncV,
- const Loop *L) {
- for(Instruction *IVOper = IncV;
- (IVOper = getIVIncOperand(IVOper, L->getLoopPreheader()->getTerminator(),
- /*allowScale=*/false));) {
- if (IVOper == PN)
- return true;
- }
- return false;
-}
-
-/// expandIVInc - Expand an IV increment at Builder's current InsertPos.
-/// Typically this is the LatchBlock terminator or IVIncInsertPos, but we may
-/// need to materialize IV increments elsewhere to handle difficult situations.
-Value *SCEVExpander::expandIVInc(PHINode *PN, Value *StepV, const Loop *L,
- Type *ExpandTy, Type *IntTy,
- bool useSubtract) {
- Value *IncV;
- // If the PHI is a pointer, use a GEP, otherwise use an add or sub.
- if (ExpandTy->isPointerTy()) {
- PointerType *GEPPtrTy = cast<PointerType>(ExpandTy);
- // If the step isn't constant, don't use an implicitly scaled GEP, because
- // that would require a multiply inside the loop.
- if (!isa<ConstantInt>(StepV))
- GEPPtrTy = PointerType::get(Type::getInt1Ty(SE.getContext()),
- GEPPtrTy->getAddressSpace());
- IncV = expandAddToGEP(SE.getSCEV(StepV), GEPPtrTy, IntTy, PN);
- if (IncV->getType() != PN->getType()) {
- IncV = Builder.CreateBitCast(IncV, PN->getType());
- rememberInstruction(IncV);
- }
- } else {
- IncV = useSubtract ?
- Builder.CreateSub(PN, StepV, Twine(IVName) + ".iv.next") :
- Builder.CreateAdd(PN, StepV, Twine(IVName) + ".iv.next");
- rememberInstruction(IncV);
- }
- return IncV;
-}
-
-/// Hoist the addrec instruction chain rooted in the loop phi above the
-/// position. This routine assumes that this is possible (has been checked).
-void SCEVExpander::hoistBeforePos(DominatorTree *DT, Instruction *InstToHoist,
- Instruction *Pos, PHINode *LoopPhi) {
- do {
- if (DT->dominates(InstToHoist, Pos))
- break;
- // Make sure the increment is where we want it. But don't move it
- // down past a potential existing post-inc user.
- fixupInsertPoints(InstToHoist);
- InstToHoist->moveBefore(Pos);
- Pos = InstToHoist;
- InstToHoist = cast<Instruction>(InstToHoist->getOperand(0));
- } while (InstToHoist != LoopPhi);
-}
-
-/// Check whether we can cheaply express the requested SCEV in terms of
-/// the available PHI SCEV by truncation and/or inversion of the step.
-static bool canBeCheaplyTransformed(ScalarEvolution &SE,
- const SCEVAddRecExpr *Phi,
- const SCEVAddRecExpr *Requested,
- bool &InvertStep) {
- Type *PhiTy = SE.getEffectiveSCEVType(Phi->getType());
- Type *RequestedTy = SE.getEffectiveSCEVType(Requested->getType());
-
- if (RequestedTy->getIntegerBitWidth() > PhiTy->getIntegerBitWidth())
- return false;
-
- // Try truncate it if necessary.
- Phi = dyn_cast<SCEVAddRecExpr>(SE.getTruncateOrNoop(Phi, RequestedTy));
- if (!Phi)
- return false;
-
- // Check whether truncation will help.
- if (Phi == Requested) {
- InvertStep = false;
- return true;
- }
-
- // Check whether inverting will help: {R,+,-1} == R - {0,+,1}.
- if (SE.getAddExpr(Requested->getStart(),
- SE.getNegativeSCEV(Requested)) == Phi) {
- InvertStep = true;
- return true;
- }
-
- return false;
-}
-
-static bool IsIncrementNSW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) {
- if (!isa<IntegerType>(AR->getType()))
- return false;
-
- unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth();
- Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2);
- const SCEV *Step = AR->getStepRecurrence(SE);
- const SCEV *OpAfterExtend = SE.getAddExpr(SE.getSignExtendExpr(Step, WideTy),
- SE.getSignExtendExpr(AR, WideTy));
- const SCEV *ExtendAfterOp =
- SE.getSignExtendExpr(SE.getAddExpr(AR, Step), WideTy);
- return ExtendAfterOp == OpAfterExtend;
-}
-
-static bool IsIncrementNUW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) {
- if (!isa<IntegerType>(AR->getType()))
- return false;
-
- unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth();
- Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2);
- const SCEV *Step = AR->getStepRecurrence(SE);
- const SCEV *OpAfterExtend = SE.getAddExpr(SE.getZeroExtendExpr(Step, WideTy),
- SE.getZeroExtendExpr(AR, WideTy));
- const SCEV *ExtendAfterOp =
- SE.getZeroExtendExpr(SE.getAddExpr(AR, Step), WideTy);
- return ExtendAfterOp == OpAfterExtend;
-}
-
-/// getAddRecExprPHILiterally - Helper for expandAddRecExprLiterally. Expand
-/// the base addrec, which is the addrec without any non-loop-dominating
-/// values, and return the PHI.
-PHINode *
-SCEVExpander::getAddRecExprPHILiterally(const SCEVAddRecExpr *Normalized,
- const Loop *L,
- Type *ExpandTy,
- Type *IntTy,
- Type *&TruncTy,
- bool &InvertStep) {
- assert((!IVIncInsertLoop||IVIncInsertPos) && "Uninitialized insert position");
-
- // Reuse a previously-inserted PHI, if present.
- BasicBlock *LatchBlock = L->getLoopLatch();
- if (LatchBlock) {
- PHINode *AddRecPhiMatch = nullptr;
- Instruction *IncV = nullptr;
- TruncTy = nullptr;
- InvertStep = false;
-
- // Only try partially matching scevs that need truncation and/or
- // step-inversion if we know this loop is outside the current loop.
- bool TryNonMatchingSCEV =
- IVIncInsertLoop &&
- SE.DT.properlyDominates(LatchBlock, IVIncInsertLoop->getHeader());
-
- for (PHINode &PN : L->getHeader()->phis()) {
- if (!SE.isSCEVable(PN.getType()))
- continue;
-
- const SCEVAddRecExpr *PhiSCEV = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(&PN));
- if (!PhiSCEV)
- continue;
-
- bool IsMatchingSCEV = PhiSCEV == Normalized;
- // We only handle truncation and inversion of phi recurrences for the
- // expanded expression if the expanded expression's loop dominates the
- // loop we insert to. Check now, so we can bail out early.
- if (!IsMatchingSCEV && !TryNonMatchingSCEV)
- continue;
-
- // TODO: this possibly can be reworked to avoid this cast at all.
- Instruction *TempIncV =
- dyn_cast<Instruction>(PN.getIncomingValueForBlock(LatchBlock));
- if (!TempIncV)
- continue;
-
- // Check whether we can reuse this PHI node.
- if (LSRMode) {
- if (!isExpandedAddRecExprPHI(&PN, TempIncV, L))
- continue;
- if (L == IVIncInsertLoop && !hoistIVInc(TempIncV, IVIncInsertPos))
- continue;
- } else {
- if (!isNormalAddRecExprPHI(&PN, TempIncV, L))
- continue;
- }
-
- // Stop if we have found an exact match SCEV.
- if (IsMatchingSCEV) {
- IncV = TempIncV;
- TruncTy = nullptr;
- InvertStep = false;
- AddRecPhiMatch = &PN;
- break;
- }
-
- // Try whether the phi can be translated into the requested form
- // (truncated and/or offset by a constant).
- if ((!TruncTy || InvertStep) &&
- canBeCheaplyTransformed(SE, PhiSCEV, Normalized, InvertStep)) {
- // Record the phi node. But don't stop we might find an exact match
- // later.
- AddRecPhiMatch = &PN;
- IncV = TempIncV;
- TruncTy = SE.getEffectiveSCEVType(Normalized->getType());
- }
- }
-
- if (AddRecPhiMatch) {
- // Potentially, move the increment. We have made sure in
- // isExpandedAddRecExprPHI or hoistIVInc that this is possible.
- if (L == IVIncInsertLoop)
- hoistBeforePos(&SE.DT, IncV, IVIncInsertPos, AddRecPhiMatch);
-
- // Ok, the add recurrence looks usable.
- // Remember this PHI, even in post-inc mode.
- InsertedValues.insert(AddRecPhiMatch);
- // Remember the increment.
- rememberInstruction(IncV);
- return AddRecPhiMatch;
- }
- }
-
- // Save the original insertion point so we can restore it when we're done.
- SCEVInsertPointGuard Guard(Builder, this);
-
- // Another AddRec may need to be recursively expanded below. For example, if
- // this AddRec is quadratic, the StepV may itself be an AddRec in this
- // loop. Remove this loop from the PostIncLoops set before expanding such
- // AddRecs. Otherwise, we cannot find a valid position for the step
- // (i.e. StepV can never dominate its loop header). Ideally, we could do
- // SavedIncLoops.swap(PostIncLoops), but we generally have a single element,
- // so it's not worth implementing SmallPtrSet::swap.
- PostIncLoopSet SavedPostIncLoops = PostIncLoops;
- PostIncLoops.clear();
-
- // Expand code for the start value into the loop preheader.
- assert(L->getLoopPreheader() &&
- "Can't expand add recurrences without a loop preheader!");
- Value *StartV = expandCodeFor(Normalized->getStart(), ExpandTy,
- L->getLoopPreheader()->getTerminator());
-
- // StartV must have been be inserted into L's preheader to dominate the new
- // phi.
- assert(!isa<Instruction>(StartV) ||
- SE.DT.properlyDominates(cast<Instruction>(StartV)->getParent(),
- L->getHeader()));
-
- // Expand code for the step value. Do this before creating the PHI so that PHI
- // reuse code doesn't see an incomplete PHI.
- const SCEV *Step = Normalized->getStepRecurrence(SE);
- // If the stride is negative, insert a sub instead of an add for the increment
- // (unless it's a constant, because subtracts of constants are canonicalized
- // to adds).
- bool useSubtract = !ExpandTy->isPointerTy() && Step->isNonConstantNegative();
- if (useSubtract)
- Step = SE.getNegativeSCEV(Step);
- // Expand the step somewhere that dominates the loop header.
- Value *StepV = expandCodeFor(Step, IntTy, &L->getHeader()->front());
-
- // The no-wrap behavior proved by IsIncrement(NUW|NSW) is only applicable if
- // we actually do emit an addition. It does not apply if we emit a
- // subtraction.
- bool IncrementIsNUW = !useSubtract && IsIncrementNUW(SE, Normalized);
- bool IncrementIsNSW = !useSubtract && IsIncrementNSW(SE, Normalized);
-
- // Create the PHI.
- BasicBlock *Header = L->getHeader();
- Builder.SetInsertPoint(Header, Header->begin());
- pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header);
- PHINode *PN = Builder.CreatePHI(ExpandTy, std::distance(HPB, HPE),
- Twine(IVName) + ".iv");
- rememberInstruction(PN);
-
- // Create the step instructions and populate the PHI.
- for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) {
- BasicBlock *Pred = *HPI;
-
- // Add a start value.
- if (!L->contains(Pred)) {
- PN->addIncoming(StartV, Pred);
- continue;
- }
-
- // Create a step value and add it to the PHI.
- // If IVIncInsertLoop is non-null and equal to the addrec's loop, insert the
- // instructions at IVIncInsertPos.
- Instruction *InsertPos = L == IVIncInsertLoop ?
- IVIncInsertPos : Pred->getTerminator();
- Builder.SetInsertPoint(InsertPos);
- Value *IncV = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract);
-
- if (isa<OverflowingBinaryOperator>(IncV)) {
- if (IncrementIsNUW)
- cast<BinaryOperator>(IncV)->setHasNoUnsignedWrap();
- if (IncrementIsNSW)
- cast<BinaryOperator>(IncV)->setHasNoSignedWrap();
- }
- PN->addIncoming(IncV, Pred);
- }
-
- // After expanding subexpressions, restore the PostIncLoops set so the caller
- // can ensure that IVIncrement dominates the current uses.
- PostIncLoops = SavedPostIncLoops;
-
- // Remember this PHI, even in post-inc mode.
- InsertedValues.insert(PN);
-
- return PN;
-}
-
-Value *SCEVExpander::expandAddRecExprLiterally(const SCEVAddRecExpr *S) {
- Type *STy = S->getType();
- Type *IntTy = SE.getEffectiveSCEVType(STy);
- const Loop *L = S->getLoop();
-
- // Determine a normalized form of this expression, which is the expression
- // before any post-inc adjustment is made.
- const SCEVAddRecExpr *Normalized = S;
- if (PostIncLoops.count(L)) {
- PostIncLoopSet Loops;
- Loops.insert(L);
- Normalized = cast<SCEVAddRecExpr>(normalizeForPostIncUse(S, Loops, SE));
- }
-
- // Strip off any non-loop-dominating component from the addrec start.
- const SCEV *Start = Normalized->getStart();
- const SCEV *PostLoopOffset = nullptr;
- if (!SE.properlyDominates(Start, L->getHeader())) {
- PostLoopOffset = Start;
- Start = SE.getConstant(Normalized->getType(), 0);
- Normalized = cast<SCEVAddRecExpr>(
- SE.getAddRecExpr(Start, Normalized->getStepRecurrence(SE),
- Normalized->getLoop(),
- Normalized->getNoWrapFlags(SCEV::FlagNW)));
- }
-
- // Strip off any non-loop-dominating component from the addrec step.
- const SCEV *Step = Normalized->getStepRecurrence(SE);
- const SCEV *PostLoopScale = nullptr;
- if (!SE.dominates(Step, L->getHeader())) {
- PostLoopScale = Step;
- Step = SE.getConstant(Normalized->getType(), 1);
- if (!Start->isZero()) {
- // The normalization below assumes that Start is constant zero, so if
- // it isn't re-associate Start to PostLoopOffset.
- assert(!PostLoopOffset && "Start not-null but PostLoopOffset set?");
- PostLoopOffset = Start;
- Start = SE.getConstant(Normalized->getType(), 0);
- }
- Normalized =
- cast<SCEVAddRecExpr>(SE.getAddRecExpr(
- Start, Step, Normalized->getLoop(),
- Normalized->getNoWrapFlags(SCEV::FlagNW)));
- }
-
- // Expand the core addrec. If we need post-loop scaling, force it to
- // expand to an integer type to avoid the need for additional casting.
- Type *ExpandTy = PostLoopScale ? IntTy : STy;
- // We can't use a pointer type for the addrec if the pointer type is
- // non-integral.
- Type *AddRecPHIExpandTy =
- DL.isNonIntegralPointerType(STy) ? Normalized->getType() : ExpandTy;
-
- // In some cases, we decide to reuse an existing phi node but need to truncate
- // it and/or invert the step.
- Type *TruncTy = nullptr;
- bool InvertStep = false;
- PHINode *PN = getAddRecExprPHILiterally(Normalized, L, AddRecPHIExpandTy,
- IntTy, TruncTy, InvertStep);
-
- // Accommodate post-inc mode, if necessary.
- Value *Result;
- if (!PostIncLoops.count(L))
- Result = PN;
- else {
- // In PostInc mode, use the post-incremented value.
- BasicBlock *LatchBlock = L->getLoopLatch();
- assert(LatchBlock && "PostInc mode requires a unique loop latch!");
- Result = PN->getIncomingValueForBlock(LatchBlock);
-
- // For an expansion to use the postinc form, the client must call
- // expandCodeFor with an InsertPoint that is either outside the PostIncLoop
- // or dominated by IVIncInsertPos.
- if (isa<Instruction>(Result) &&
- !SE.DT.dominates(cast<Instruction>(Result),
- &*Builder.GetInsertPoint())) {
- // The induction variable's postinc expansion does not dominate this use.
- // IVUsers tries to prevent this case, so it is rare. However, it can
- // happen when an IVUser outside the loop is not dominated by the latch
- // block. Adjusting IVIncInsertPos before expansion begins cannot handle
- // all cases. Consider a phi outside whose operand is replaced during
- // expansion with the value of the postinc user. Without fundamentally
- // changing the way postinc users are tracked, the only remedy is
- // inserting an extra IV increment. StepV might fold into PostLoopOffset,
- // but hopefully expandCodeFor handles that.
- bool useSubtract =
- !ExpandTy->isPointerTy() && Step->isNonConstantNegative();
- if (useSubtract)
- Step = SE.getNegativeSCEV(Step);
- Value *StepV;
- {
- // Expand the step somewhere that dominates the loop header.
- SCEVInsertPointGuard Guard(Builder, this);
- StepV = expandCodeFor(Step, IntTy, &L->getHeader()->front());
- }
- Result = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract);
- }
- }
-
- // We have decided to reuse an induction variable of a dominating loop. Apply
- // truncation and/or inversion of the step.
- if (TruncTy) {
- Type *ResTy = Result->getType();
- // Normalize the result type.
- if (ResTy != SE.getEffectiveSCEVType(ResTy))
- Result = InsertNoopCastOfTo(Result, SE.getEffectiveSCEVType(ResTy));
- // Truncate the result.
- if (TruncTy != Result->getType()) {
- Result = Builder.CreateTrunc(Result, TruncTy);
- rememberInstruction(Result);
- }
- // Invert the result.
- if (InvertStep) {
- Result = Builder.CreateSub(expandCodeFor(Normalized->getStart(), TruncTy),
- Result);
- rememberInstruction(Result);
- }
- }
-
- // Re-apply any non-loop-dominating scale.
- if (PostLoopScale) {
- assert(S->isAffine() && "Can't linearly scale non-affine recurrences.");
- Result = InsertNoopCastOfTo(Result, IntTy);
- Result = Builder.CreateMul(Result,
- expandCodeFor(PostLoopScale, IntTy));
- rememberInstruction(Result);
- }
-
- // Re-apply any non-loop-dominating offset.
- if (PostLoopOffset) {
- if (PointerType *PTy = dyn_cast<PointerType>(ExpandTy)) {
- if (Result->getType()->isIntegerTy()) {
- Value *Base = expandCodeFor(PostLoopOffset, ExpandTy);
- Result = expandAddToGEP(SE.getUnknown(Result), PTy, IntTy, Base);
- } else {
- Result = expandAddToGEP(PostLoopOffset, PTy, IntTy, Result);
- }
- } else {
- Result = InsertNoopCastOfTo(Result, IntTy);
- Result = Builder.CreateAdd(Result,
- expandCodeFor(PostLoopOffset, IntTy));
- rememberInstruction(Result);
- }
- }
-
- return Result;
-}
-
-Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) {
- // In canonical mode we compute the addrec as an expression of a canonical IV
- // using evaluateAtIteration and expand the resulting SCEV expression. This
- // way we avoid introducing new IVs to carry on the comutation of the addrec
- // throughout the loop.
- //
- // For nested addrecs evaluateAtIteration might need a canonical IV of a
- // type wider than the addrec itself. Emitting a canonical IV of the
- // proper type might produce non-legal types, for example expanding an i64
- // {0,+,2,+,1} addrec would need an i65 canonical IV. To avoid this just fall
- // back to non-canonical mode for nested addrecs.
- if (!CanonicalMode || (S->getNumOperands() > 2))
- return expandAddRecExprLiterally(S);
-
- Type *Ty = SE.getEffectiveSCEVType(S->getType());
- const Loop *L = S->getLoop();
-
- // First check for an existing canonical IV in a suitable type.
- PHINode *CanonicalIV = nullptr;
- if (PHINode *PN = L->getCanonicalInductionVariable())
- if (SE.getTypeSizeInBits(PN->getType()) >= SE.getTypeSizeInBits(Ty))
- CanonicalIV = PN;
-
- // Rewrite an AddRec in terms of the canonical induction variable, if
- // its type is more narrow.
- if (CanonicalIV &&
- SE.getTypeSizeInBits(CanonicalIV->getType()) >
- SE.getTypeSizeInBits(Ty)) {
- SmallVector<const SCEV *, 4> NewOps(S->getNumOperands());
- for (unsigned i = 0, e = S->getNumOperands(); i != e; ++i)
- NewOps[i] = SE.getAnyExtendExpr(S->op_begin()[i], CanonicalIV->getType());
- Value *V = expand(SE.getAddRecExpr(NewOps, S->getLoop(),
- S->getNoWrapFlags(SCEV::FlagNW)));
- BasicBlock::iterator NewInsertPt =
- findInsertPointAfter(cast<Instruction>(V), Builder.GetInsertBlock());
- V = expandCodeFor(SE.getTruncateExpr(SE.getUnknown(V), Ty), nullptr,
- &*NewInsertPt);
- return V;
- }
-
- // {X,+,F} --> X + {0,+,F}
- if (!S->getStart()->isZero()) {
- SmallVector<const SCEV *, 4> NewOps(S->op_begin(), S->op_end());
- NewOps[0] = SE.getConstant(Ty, 0);
- const SCEV *Rest = SE.getAddRecExpr(NewOps, L,
- S->getNoWrapFlags(SCEV::FlagNW));
-
- // Turn things like ptrtoint+arithmetic+inttoptr into GEP. See the
- // comments on expandAddToGEP for details.
- const SCEV *Base = S->getStart();
- // Dig into the expression to find the pointer base for a GEP.
- const SCEV *ExposedRest = Rest;
- ExposePointerBase(Base, ExposedRest, SE);
- // If we found a pointer, expand the AddRec with a GEP.
- if (PointerType *PTy = dyn_cast<PointerType>(Base->getType())) {
- // Make sure the Base isn't something exotic, such as a multiplied
- // or divided pointer value. In those cases, the result type isn't
- // actually a pointer type.
- if (!isa<SCEVMulExpr>(Base) && !isa<SCEVUDivExpr>(Base)) {
- Value *StartV = expand(Base);
- assert(StartV->getType() == PTy && "Pointer type mismatch for GEP!");
- return expandAddToGEP(ExposedRest, PTy, Ty, StartV);
- }
- }
-
- // Just do a normal add. Pre-expand the operands to suppress folding.
- //
- // The LHS and RHS values are factored out of the expand call to make the
- // output independent of the argument evaluation order.
- const SCEV *AddExprLHS = SE.getUnknown(expand(S->getStart()));
- const SCEV *AddExprRHS = SE.getUnknown(expand(Rest));
- return expand(SE.getAddExpr(AddExprLHS, AddExprRHS));
- }
-
- // If we don't yet have a canonical IV, create one.
- if (!CanonicalIV) {
- // Create and insert the PHI node for the induction variable in the
- // specified loop.
- BasicBlock *Header = L->getHeader();
- pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header);
- CanonicalIV = PHINode::Create(Ty, std::distance(HPB, HPE), "indvar",
- &Header->front());
- rememberInstruction(CanonicalIV);
-
- SmallSet<BasicBlock *, 4> PredSeen;
- Constant *One = ConstantInt::get(Ty, 1);
- for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) {
- BasicBlock *HP = *HPI;
- if (!PredSeen.insert(HP).second) {
- // There must be an incoming value for each predecessor, even the
- // duplicates!
- CanonicalIV->addIncoming(CanonicalIV->getIncomingValueForBlock(HP), HP);
- continue;
- }
-
- if (L->contains(HP)) {
- // Insert a unit add instruction right before the terminator
- // corresponding to the back-edge.
- Instruction *Add = BinaryOperator::CreateAdd(CanonicalIV, One,
- "indvar.next",
- HP->getTerminator());
- Add->setDebugLoc(HP->getTerminator()->getDebugLoc());
- rememberInstruction(Add);
- CanonicalIV->addIncoming(Add, HP);
- } else {
- CanonicalIV->addIncoming(Constant::getNullValue(Ty), HP);
- }
- }
- }
-
- // {0,+,1} --> Insert a canonical induction variable into the loop!
- if (S->isAffine() && S->getOperand(1)->isOne()) {
- assert(Ty == SE.getEffectiveSCEVType(CanonicalIV->getType()) &&
- "IVs with types different from the canonical IV should "
- "already have been handled!");
- return CanonicalIV;
- }
-
- // {0,+,F} --> {0,+,1} * F
-
- // If this is a simple linear addrec, emit it now as a special case.
- if (S->isAffine()) // {0,+,F} --> i*F
- return
- expand(SE.getTruncateOrNoop(
- SE.getMulExpr(SE.getUnknown(CanonicalIV),
- SE.getNoopOrAnyExtend(S->getOperand(1),
- CanonicalIV->getType())),
- Ty));
-
- // If this is a chain of recurrences, turn it into a closed form, using the
- // folders, then expandCodeFor the closed form. This allows the folders to
- // simplify the expression without having to build a bunch of special code
- // into this folder.
- const SCEV *IH = SE.getUnknown(CanonicalIV); // Get I as a "symbolic" SCEV.
-
- // Promote S up to the canonical IV type, if the cast is foldable.
- const SCEV *NewS = S;
- const SCEV *Ext = SE.getNoopOrAnyExtend(S, CanonicalIV->getType());
- if (isa<SCEVAddRecExpr>(Ext))
- NewS = Ext;
-
- const SCEV *V = cast<SCEVAddRecExpr>(NewS)->evaluateAtIteration(IH, SE);
- //cerr << "Evaluated: " << *this << "\n to: " << *V << "\n";
-
- // Truncate the result down to the original type, if needed.
- const SCEV *T = SE.getTruncateOrNoop(V, Ty);
- return expand(T);
-}
-
-Value *SCEVExpander::visitTruncateExpr(const SCEVTruncateExpr *S) {
- Type *Ty = SE.getEffectiveSCEVType(S->getType());
- Value *V = expandCodeFor(S->getOperand(),
- SE.getEffectiveSCEVType(S->getOperand()->getType()));
- Value *I = Builder.CreateTrunc(V, Ty);
- rememberInstruction(I);
- return I;
-}
-
-Value *SCEVExpander::visitZeroExtendExpr(const SCEVZeroExtendExpr *S) {
- Type *Ty = SE.getEffectiveSCEVType(S->getType());
- Value *V = expandCodeFor(S->getOperand(),
- SE.getEffectiveSCEVType(S->getOperand()->getType()));
- Value *I = Builder.CreateZExt(V, Ty);
- rememberInstruction(I);
- return I;
-}
-
-Value *SCEVExpander::visitSignExtendExpr(const SCEVSignExtendExpr *S) {
- Type *Ty = SE.getEffectiveSCEVType(S->getType());
- Value *V = expandCodeFor(S->getOperand(),
- SE.getEffectiveSCEVType(S->getOperand()->getType()));
- Value *I = Builder.CreateSExt(V, Ty);
- rememberInstruction(I);
- return I;
-}
-
-Value *SCEVExpander::visitSMaxExpr(const SCEVSMaxExpr *S) {
- Value *LHS = expand(S->getOperand(S->getNumOperands()-1));
- Type *Ty = LHS->getType();
- for (int i = S->getNumOperands()-2; i >= 0; --i) {
- // In the case of mixed integer and pointer types, do the
- // rest of the comparisons as integer.
- Type *OpTy = S->getOperand(i)->getType();
- if (OpTy->isIntegerTy() != Ty->isIntegerTy()) {
- Ty = SE.getEffectiveSCEVType(Ty);
- LHS = InsertNoopCastOfTo(LHS, Ty);
- }
- Value *RHS = expandCodeFor(S->getOperand(i), Ty);
- Value *ICmp = Builder.CreateICmpSGT(LHS, RHS);
- rememberInstruction(ICmp);
- Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "smax");
- rememberInstruction(Sel);
- LHS = Sel;
- }
- // In the case of mixed integer and pointer types, cast the
- // final result back to the pointer type.
- if (LHS->getType() != S->getType())
- LHS = InsertNoopCastOfTo(LHS, S->getType());
- return LHS;
-}
-
-Value *SCEVExpander::visitUMaxExpr(const SCEVUMaxExpr *S) {
- Value *LHS = expand(S->getOperand(S->getNumOperands()-1));
- Type *Ty = LHS->getType();
- for (int i = S->getNumOperands()-2; i >= 0; --i) {
- // In the case of mixed integer and pointer types, do the
- // rest of the comparisons as integer.
- Type *OpTy = S->getOperand(i)->getType();
- if (OpTy->isIntegerTy() != Ty->isIntegerTy()) {
- Ty = SE.getEffectiveSCEVType(Ty);
- LHS = InsertNoopCastOfTo(LHS, Ty);
- }
- Value *RHS = expandCodeFor(S->getOperand(i), Ty);
- Value *ICmp = Builder.CreateICmpUGT(LHS, RHS);
- rememberInstruction(ICmp);
- Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "umax");
- rememberInstruction(Sel);
- LHS = Sel;
- }
- // In the case of mixed integer and pointer types, cast the
- // final result back to the pointer type.
- if (LHS->getType() != S->getType())
- LHS = InsertNoopCastOfTo(LHS, S->getType());
- return LHS;
-}
-
-Value *SCEVExpander::visitSMinExpr(const SCEVSMinExpr *S) {
- Value *LHS = expand(S->getOperand(S->getNumOperands() - 1));
- Type *Ty = LHS->getType();
- for (int i = S->getNumOperands() - 2; i >= 0; --i) {
- // In the case of mixed integer and pointer types, do the
- // rest of the comparisons as integer.
- Type *OpTy = S->getOperand(i)->getType();
- if (OpTy->isIntegerTy() != Ty->isIntegerTy()) {
- Ty = SE.getEffectiveSCEVType(Ty);
- LHS = InsertNoopCastOfTo(LHS, Ty);
- }
- Value *RHS = expandCodeFor(S->getOperand(i), Ty);
- Value *ICmp = Builder.CreateICmpSLT(LHS, RHS);
- rememberInstruction(ICmp);
- Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "smin");
- rememberInstruction(Sel);
- LHS = Sel;
- }
- // In the case of mixed integer and pointer types, cast the
- // final result back to the pointer type.
- if (LHS->getType() != S->getType())
- LHS = InsertNoopCastOfTo(LHS, S->getType());
- return LHS;
-}
-
-Value *SCEVExpander::visitUMinExpr(const SCEVUMinExpr *S) {
- Value *LHS = expand(S->getOperand(S->getNumOperands() - 1));
- Type *Ty = LHS->getType();
- for (int i = S->getNumOperands() - 2; i >= 0; --i) {
- // In the case of mixed integer and pointer types, do the
- // rest of the comparisons as integer.
- Type *OpTy = S->getOperand(i)->getType();
- if (OpTy->isIntegerTy() != Ty->isIntegerTy()) {
- Ty = SE.getEffectiveSCEVType(Ty);
- LHS = InsertNoopCastOfTo(LHS, Ty);
- }
- Value *RHS = expandCodeFor(S->getOperand(i), Ty);
- Value *ICmp = Builder.CreateICmpULT(LHS, RHS);
- rememberInstruction(ICmp);
- Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "umin");
- rememberInstruction(Sel);
- LHS = Sel;
- }
- // In the case of mixed integer and pointer types, cast the
- // final result back to the pointer type.
- if (LHS->getType() != S->getType())
- LHS = InsertNoopCastOfTo(LHS, S->getType());
- return LHS;
-}
-
-Value *SCEVExpander::expandCodeFor(const SCEV *SH, Type *Ty,
- Instruction *IP) {
- setInsertPoint(IP);
- return expandCodeFor(SH, Ty);
-}
-
-Value *SCEVExpander::expandCodeFor(const SCEV *SH, Type *Ty) {
- // Expand the code for this SCEV.
- Value *V = expand(SH);
- if (Ty) {
- assert(SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(SH->getType()) &&
- "non-trivial casts should be done with the SCEVs directly!");
- V = InsertNoopCastOfTo(V, Ty);
- }
- return V;
-}
-
-ScalarEvolution::ValueOffsetPair
-SCEVExpander::FindValueInExprValueMap(const SCEV *S,
- const Instruction *InsertPt) {
- SetVector<ScalarEvolution::ValueOffsetPair> *Set = SE.getSCEVValues(S);
- // If the expansion is not in CanonicalMode, and the SCEV contains any
- // sub scAddRecExpr type SCEV, it is required to expand the SCEV literally.
- if (CanonicalMode || !SE.containsAddRecurrence(S)) {
- // If S is scConstant, it may be worse to reuse an existing Value.
- if (S->getSCEVType() != scConstant && Set) {
- // Choose a Value from the set which dominates the insertPt.
- // insertPt should be inside the Value's parent loop so as not to break
- // the LCSSA form.
- for (auto const &VOPair : *Set) {
- Value *V = VOPair.first;
- ConstantInt *Offset = VOPair.second;
- Instruction *EntInst = nullptr;
- if (V && isa<Instruction>(V) && (EntInst = cast<Instruction>(V)) &&
- S->getType() == V->getType() &&
- EntInst->getFunction() == InsertPt->getFunction() &&
- SE.DT.dominates(EntInst, InsertPt) &&
- (SE.LI.getLoopFor(EntInst->getParent()) == nullptr ||
- SE.LI.getLoopFor(EntInst->getParent())->contains(InsertPt)))
- return {V, Offset};
- }
- }
- }
- return {nullptr, nullptr};
-}
-
-// The expansion of SCEV will either reuse a previous Value in ExprValueMap,
-// or expand the SCEV literally. Specifically, if the expansion is in LSRMode,
-// and the SCEV contains any sub scAddRecExpr type SCEV, it will be expanded
-// literally, to prevent LSR's transformed SCEV from being reverted. Otherwise,
-// the expansion will try to reuse Value from ExprValueMap, and only when it
-// fails, expand the SCEV literally.
-Value *SCEVExpander::expand(const SCEV *S) {
- // Compute an insertion point for this SCEV object. Hoist the instructions
- // as far out in the loop nest as possible.
- Instruction *InsertPt = &*Builder.GetInsertPoint();
-
- // We can move insertion point only if there is no div or rem operations
- // otherwise we are risky to move it over the check for zero denominator.
- auto SafeToHoist = [](const SCEV *S) {
- return !SCEVExprContains(S, [](const SCEV *S) {
- if (const auto *D = dyn_cast<SCEVUDivExpr>(S)) {
- if (const auto *SC = dyn_cast<SCEVConstant>(D->getRHS()))
- // Division by non-zero constants can be hoisted.
- return SC->getValue()->isZero();
- // All other divisions should not be moved as they may be
- // divisions by zero and should be kept within the
- // conditions of the surrounding loops that guard their
- // execution (see PR35406).
- return true;
- }
- return false;
- });
- };
- if (SafeToHoist(S)) {
- for (Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock());;
- L = L->getParentLoop()) {
- if (SE.isLoopInvariant(S, L)) {
- if (!L) break;
- if (BasicBlock *Preheader = L->getLoopPreheader())
- InsertPt = Preheader->getTerminator();
- else
- // LSR sets the insertion point for AddRec start/step values to the
- // block start to simplify value reuse, even though it's an invalid
- // position. SCEVExpander must correct for this in all cases.
- InsertPt = &*L->getHeader()->getFirstInsertionPt();
- } else {
- // If the SCEV is computable at this level, insert it into the header
- // after the PHIs (and after any other instructions that we've inserted
- // there) so that it is guaranteed to dominate any user inside the loop.
- if (L && SE.hasComputableLoopEvolution(S, L) && !PostIncLoops.count(L))
- InsertPt = &*L->getHeader()->getFirstInsertionPt();
- while (InsertPt->getIterator() != Builder.GetInsertPoint() &&
- (isInsertedInstruction(InsertPt) ||
- isa<DbgInfoIntrinsic>(InsertPt)))
- InsertPt = &*std::next(InsertPt->getIterator());
- break;
- }
- }
- }
-
- // IndVarSimplify sometimes sets the insertion point at the block start, even
- // when there are PHIs at that point. We must correct for this.
- if (isa<PHINode>(*InsertPt))
- InsertPt = &*InsertPt->getParent()->getFirstInsertionPt();
-
- // Check to see if we already expanded this here.
- auto I = InsertedExpressions.find(std::make_pair(S, InsertPt));
- if (I != InsertedExpressions.end())
- return I->second;
-
- SCEVInsertPointGuard Guard(Builder, this);
- Builder.SetInsertPoint(InsertPt);
-
- // Expand the expression into instructions.
- ScalarEvolution::ValueOffsetPair VO = FindValueInExprValueMap(S, InsertPt);
- Value *V = VO.first;
-
- if (!V)
- V = visit(S);
- else if (VO.second) {
- if (PointerType *Vty = dyn_cast<PointerType>(V->getType())) {
- Type *Ety = Vty->getPointerElementType();
- int64_t Offset = VO.second->getSExtValue();
- int64_t ESize = SE.getTypeSizeInBits(Ety);
- if ((Offset * 8) % ESize == 0) {
- ConstantInt *Idx =
- ConstantInt::getSigned(VO.second->getType(), -(Offset * 8) / ESize);
- V = Builder.CreateGEP(Ety, V, Idx, "scevgep");
- } else {
- ConstantInt *Idx =
- ConstantInt::getSigned(VO.second->getType(), -Offset);
- unsigned AS = Vty->getAddressSpace();
- V = Builder.CreateBitCast(V, Type::getInt8PtrTy(SE.getContext(), AS));
- V = Builder.CreateGEP(Type::getInt8Ty(SE.getContext()), V, Idx,
- "uglygep");
- V = Builder.CreateBitCast(V, Vty);
- }
- } else {
- V = Builder.CreateSub(V, VO.second);
- }
- }
- // Remember the expanded value for this SCEV at this location.
- //
- // This is independent of PostIncLoops. The mapped value simply materializes
- // the expression at this insertion point. If the mapped value happened to be
- // a postinc expansion, it could be reused by a non-postinc user, but only if
- // its insertion point was already at the head of the loop.
- InsertedExpressions[std::make_pair(S, InsertPt)] = V;
- return V;
-}
-
-void SCEVExpander::rememberInstruction(Value *I) {
- if (!PostIncLoops.empty())
- InsertedPostIncValues.insert(I);
- else
- InsertedValues.insert(I);
-}
-
-/// getOrInsertCanonicalInductionVariable - This method returns the
-/// canonical induction variable of the specified type for the specified
-/// loop (inserting one if there is none). A canonical induction variable
-/// starts at zero and steps by one on each iteration.
-PHINode *
-SCEVExpander::getOrInsertCanonicalInductionVariable(const Loop *L,
- Type *Ty) {
- assert(Ty->isIntegerTy() && "Can only insert integer induction variables!");
-
- // Build a SCEV for {0,+,1}<L>.
- // Conservatively use FlagAnyWrap for now.
- const SCEV *H = SE.getAddRecExpr(SE.getConstant(Ty, 0),
- SE.getConstant(Ty, 1), L, SCEV::FlagAnyWrap);
-
- // Emit code for it.
- SCEVInsertPointGuard Guard(Builder, this);
- PHINode *V =
- cast<PHINode>(expandCodeFor(H, nullptr, &L->getHeader()->front()));
-
- return V;
-}
-
-/// replaceCongruentIVs - Check for congruent phis in this loop header and
-/// replace them with their most canonical representative. Return the number of
-/// phis eliminated.
-///
-/// This does not depend on any SCEVExpander state but should be used in
-/// the same context that SCEVExpander is used.
-unsigned
-SCEVExpander::replaceCongruentIVs(Loop *L, const DominatorTree *DT,
- SmallVectorImpl<WeakTrackingVH> &DeadInsts,
- const TargetTransformInfo *TTI) {
- // Find integer phis in order of increasing width.
- SmallVector<PHINode*, 8> Phis;
- for (PHINode &PN : L->getHeader()->phis())
- Phis.push_back(&PN);
-
- if (TTI)
- llvm::sort(Phis, [](Value *LHS, Value *RHS) {
- // Put pointers at the back and make sure pointer < pointer = false.
- if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
- return RHS->getType()->isIntegerTy() && !LHS->getType()->isIntegerTy();
- return RHS->getType()->getPrimitiveSizeInBits() <
- LHS->getType()->getPrimitiveSizeInBits();
- });
-
- unsigned NumElim = 0;
- DenseMap<const SCEV *, PHINode *> ExprToIVMap;
- // Process phis from wide to narrow. Map wide phis to their truncation
- // so narrow phis can reuse them.
- for (PHINode *Phi : Phis) {
- auto SimplifyPHINode = [&](PHINode *PN) -> Value * {
- if (Value *V = SimplifyInstruction(PN, {DL, &SE.TLI, &SE.DT, &SE.AC}))
- return V;
- if (!SE.isSCEVable(PN->getType()))
- return nullptr;
- auto *Const = dyn_cast<SCEVConstant>(SE.getSCEV(PN));
- if (!Const)
- return nullptr;
- return Const->getValue();
- };
-
- // Fold constant phis. They may be congruent to other constant phis and
- // would confuse the logic below that expects proper IVs.
- if (Value *V = SimplifyPHINode(Phi)) {
- if (V->getType() != Phi->getType())
- continue;
- Phi->replaceAllUsesWith(V);
- DeadInsts.emplace_back(Phi);
- ++NumElim;
- DEBUG_WITH_TYPE(DebugType, dbgs()
- << "INDVARS: Eliminated constant iv: " << *Phi << '\n');
- continue;
- }
-
- if (!SE.isSCEVable(Phi->getType()))
- continue;
-
- PHINode *&OrigPhiRef = ExprToIVMap[SE.getSCEV(Phi)];
- if (!OrigPhiRef) {
- OrigPhiRef = Phi;
- if (Phi->getType()->isIntegerTy() && TTI &&
- TTI->isTruncateFree(Phi->getType(), Phis.back()->getType())) {
- // This phi can be freely truncated to the narrowest phi type. Map the
- // truncated expression to it so it will be reused for narrow types.
- const SCEV *TruncExpr =
- SE.getTruncateExpr(SE.getSCEV(Phi), Phis.back()->getType());
- ExprToIVMap[TruncExpr] = Phi;
- }
- continue;
- }
-
- // Replacing a pointer phi with an integer phi or vice-versa doesn't make
- // sense.
- if (OrigPhiRef->getType()->isPointerTy() != Phi->getType()->isPointerTy())
- continue;
-
- if (BasicBlock *LatchBlock = L->getLoopLatch()) {
- Instruction *OrigInc = dyn_cast<Instruction>(
- OrigPhiRef->getIncomingValueForBlock(LatchBlock));
- Instruction *IsomorphicInc =
- dyn_cast<Instruction>(Phi->getIncomingValueForBlock(LatchBlock));
-
- if (OrigInc && IsomorphicInc) {
- // If this phi has the same width but is more canonical, replace the
- // original with it. As part of the "more canonical" determination,
- // respect a prior decision to use an IV chain.
- if (OrigPhiRef->getType() == Phi->getType() &&
- !(ChainedPhis.count(Phi) ||
- isExpandedAddRecExprPHI(OrigPhiRef, OrigInc, L)) &&
- (ChainedPhis.count(Phi) ||
- isExpandedAddRecExprPHI(Phi, IsomorphicInc, L))) {
- std::swap(OrigPhiRef, Phi);
- std::swap(OrigInc, IsomorphicInc);
- }
- // Replacing the congruent phi is sufficient because acyclic
- // redundancy elimination, CSE/GVN, should handle the
- // rest. However, once SCEV proves that a phi is congruent,
- // it's often the head of an IV user cycle that is isomorphic
- // with the original phi. It's worth eagerly cleaning up the
- // common case of a single IV increment so that DeleteDeadPHIs
- // can remove cycles that had postinc uses.
- const SCEV *TruncExpr =
- SE.getTruncateOrNoop(SE.getSCEV(OrigInc), IsomorphicInc->getType());
- if (OrigInc != IsomorphicInc &&
- TruncExpr == SE.getSCEV(IsomorphicInc) &&
- SE.LI.replacementPreservesLCSSAForm(IsomorphicInc, OrigInc) &&
- hoistIVInc(OrigInc, IsomorphicInc)) {
- DEBUG_WITH_TYPE(DebugType,
- dbgs() << "INDVARS: Eliminated congruent iv.inc: "
- << *IsomorphicInc << '\n');
- Value *NewInc = OrigInc;
- if (OrigInc->getType() != IsomorphicInc->getType()) {
- Instruction *IP = nullptr;
- if (PHINode *PN = dyn_cast<PHINode>(OrigInc))
- IP = &*PN->getParent()->getFirstInsertionPt();
- else
- IP = OrigInc->getNextNode();
-
- IRBuilder<> Builder(IP);
- Builder.SetCurrentDebugLocation(IsomorphicInc->getDebugLoc());
- NewInc = Builder.CreateTruncOrBitCast(
- OrigInc, IsomorphicInc->getType(), IVName);
- }
- IsomorphicInc->replaceAllUsesWith(NewInc);
- DeadInsts.emplace_back(IsomorphicInc);
- }
- }
- }
- DEBUG_WITH_TYPE(DebugType, dbgs() << "INDVARS: Eliminated congruent iv: "
- << *Phi << '\n');
- ++NumElim;
- Value *NewIV = OrigPhiRef;
- if (OrigPhiRef->getType() != Phi->getType()) {
- IRBuilder<> Builder(&*L->getHeader()->getFirstInsertionPt());
- Builder.SetCurrentDebugLocation(Phi->getDebugLoc());
- NewIV = Builder.CreateTruncOrBitCast(OrigPhiRef, Phi->getType(), IVName);
- }
- Phi->replaceAllUsesWith(NewIV);
- DeadInsts.emplace_back(Phi);
- }
- return NumElim;
-}
-
-Value *SCEVExpander::getExactExistingExpansion(const SCEV *S,
- const Instruction *At, Loop *L) {
- Optional<ScalarEvolution::ValueOffsetPair> VO =
- getRelatedExistingExpansion(S, At, L);
- if (VO && VO.getValue().second == nullptr)
- return VO.getValue().first;
- return nullptr;
-}
-
-Optional<ScalarEvolution::ValueOffsetPair>
-SCEVExpander::getRelatedExistingExpansion(const SCEV *S, const Instruction *At,
- Loop *L) {
- using namespace llvm::PatternMatch;
-
- SmallVector<BasicBlock *, 4> ExitingBlocks;
- L->getExitingBlocks(ExitingBlocks);
-
- // Look for suitable value in simple conditions at the loop exits.
- for (BasicBlock *BB : ExitingBlocks) {
- ICmpInst::Predicate Pred;
- Instruction *LHS, *RHS;
-
- if (!match(BB->getTerminator(),
- m_Br(m_ICmp(Pred, m_Instruction(LHS), m_Instruction(RHS)),
- m_BasicBlock(), m_BasicBlock())))
- continue;
-
- if (SE.getSCEV(LHS) == S && SE.DT.dominates(LHS, At))
- return ScalarEvolution::ValueOffsetPair(LHS, nullptr);
-
- if (SE.getSCEV(RHS) == S && SE.DT.dominates(RHS, At))
- return ScalarEvolution::ValueOffsetPair(RHS, nullptr);
- }
-
- // Use expand's logic which is used for reusing a previous Value in
- // ExprValueMap.
- ScalarEvolution::ValueOffsetPair VO = FindValueInExprValueMap(S, At);
- if (VO.first)
- return VO;
-
- // There is potential to make this significantly smarter, but this simple
- // heuristic already gets some interesting cases.
-
- // Can not find suitable value.
- return None;
-}
-
-bool SCEVExpander::isHighCostExpansionHelper(
- const SCEV *S, Loop *L, const Instruction *At,
- SmallPtrSetImpl<const SCEV *> &Processed) {
-
- // If we can find an existing value for this scev available at the point "At"
- // then consider the expression cheap.
- if (At && getRelatedExistingExpansion(S, At, L))
- return false;
-
- // Zero/One operand expressions
- switch (S->getSCEVType()) {
- case scUnknown:
- case scConstant:
- return false;
- case scTruncate:
- return isHighCostExpansionHelper(cast<SCEVTruncateExpr>(S)->getOperand(),
- L, At, Processed);
- case scZeroExtend:
- return isHighCostExpansionHelper(cast<SCEVZeroExtendExpr>(S)->getOperand(),
- L, At, Processed);
- case scSignExtend:
- return isHighCostExpansionHelper(cast<SCEVSignExtendExpr>(S)->getOperand(),
- L, At, Processed);
- }
-
- if (!Processed.insert(S).second)
- return false;
-
- if (auto *UDivExpr = dyn_cast<SCEVUDivExpr>(S)) {
- // If the divisor is a power of two and the SCEV type fits in a native
- // integer (and the LHS not expensive), consider the division cheap
- // irrespective of whether it occurs in the user code since it can be
- // lowered into a right shift.
- if (auto *SC = dyn_cast<SCEVConstant>(UDivExpr->getRHS()))
- if (SC->getAPInt().isPowerOf2()) {
- if (isHighCostExpansionHelper(UDivExpr->getLHS(), L, At, Processed))
- return true;
- const DataLayout &DL =
- L->getHeader()->getParent()->getParent()->getDataLayout();
- unsigned Width = cast<IntegerType>(UDivExpr->getType())->getBitWidth();
- return DL.isIllegalInteger(Width);
- }
-
- // UDivExpr is very likely a UDiv that ScalarEvolution's HowFarToZero or
- // HowManyLessThans produced to compute a precise expression, rather than a
- // UDiv from the user's code. If we can't find a UDiv in the code with some
- // simple searching, assume the former consider UDivExpr expensive to
- // compute.
- BasicBlock *ExitingBB = L->getExitingBlock();
- if (!ExitingBB)
- return true;
-
- // At the beginning of this function we already tried to find existing value
- // for plain 'S'. Now try to lookup 'S + 1' since it is common pattern
- // involving division. This is just a simple search heuristic.
- if (!At)
- At = &ExitingBB->back();
- if (!getRelatedExistingExpansion(
- SE.getAddExpr(S, SE.getConstant(S->getType(), 1)), At, L))
- return true;
- }
-
- // HowManyLessThans uses a Max expression whenever the loop is not guarded by
- // the exit condition.
- if (isa<SCEVMinMaxExpr>(S))
- return true;
-
- // Recurse past nary expressions, which commonly occur in the
- // BackedgeTakenCount. They may already exist in program code, and if not,
- // they are not too expensive rematerialize.
- if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(S)) {
- for (auto *Op : NAry->operands())
- if (isHighCostExpansionHelper(Op, L, At, Processed))
- return true;
- }
-
- // If we haven't recognized an expensive SCEV pattern, assume it's an
- // expression produced by program code.
- return false;
-}
-
-Value *SCEVExpander::expandCodeForPredicate(const SCEVPredicate *Pred,
- Instruction *IP) {
- assert(IP);
- switch (Pred->getKind()) {
- case SCEVPredicate::P_Union:
- return expandUnionPredicate(cast<SCEVUnionPredicate>(Pred), IP);
- case SCEVPredicate::P_Equal:
- return expandEqualPredicate(cast<SCEVEqualPredicate>(Pred), IP);
- case SCEVPredicate::P_Wrap: {
- auto *AddRecPred = cast<SCEVWrapPredicate>(Pred);
- return expandWrapPredicate(AddRecPred, IP);
- }
- }
- llvm_unreachable("Unknown SCEV predicate type");
-}
-
-Value *SCEVExpander::expandEqualPredicate(const SCEVEqualPredicate *Pred,
- Instruction *IP) {
- Value *Expr0 = expandCodeFor(Pred->getLHS(), Pred->getLHS()->getType(), IP);
- Value *Expr1 = expandCodeFor(Pred->getRHS(), Pred->getRHS()->getType(), IP);
-
- Builder.SetInsertPoint(IP);
- auto *I = Builder.CreateICmpNE(Expr0, Expr1, "ident.check");
- return I;
-}
-
-Value *SCEVExpander::generateOverflowCheck(const SCEVAddRecExpr *AR,
- Instruction *Loc, bool Signed) {
- assert(AR->isAffine() && "Cannot generate RT check for "
- "non-affine expression");
-
- SCEVUnionPredicate Pred;
- const SCEV *ExitCount =
- SE.getPredicatedBackedgeTakenCount(AR->getLoop(), Pred);
-
- assert(ExitCount != SE.getCouldNotCompute() && "Invalid loop count");
-
- const SCEV *Step = AR->getStepRecurrence(SE);
- const SCEV *Start = AR->getStart();
-
- Type *ARTy = AR->getType();
- unsigned SrcBits = SE.getTypeSizeInBits(ExitCount->getType());
- unsigned DstBits = SE.getTypeSizeInBits(ARTy);
-
- // The expression {Start,+,Step} has nusw/nssw if
- // Step < 0, Start - |Step| * Backedge <= Start
- // Step >= 0, Start + |Step| * Backedge > Start
- // and |Step| * Backedge doesn't unsigned overflow.
-
- IntegerType *CountTy = IntegerType::get(Loc->getContext(), SrcBits);
- Builder.SetInsertPoint(Loc);
- Value *TripCountVal = expandCodeFor(ExitCount, CountTy, Loc);
-
- IntegerType *Ty =
- IntegerType::get(Loc->getContext(), SE.getTypeSizeInBits(ARTy));
- Type *ARExpandTy = DL.isNonIntegralPointerType(ARTy) ? ARTy : Ty;
-
- Value *StepValue = expandCodeFor(Step, Ty, Loc);
- Value *NegStepValue = expandCodeFor(SE.getNegativeSCEV(Step), Ty, Loc);
- Value *StartValue = expandCodeFor(Start, ARExpandTy, Loc);
-
- ConstantInt *Zero =
- ConstantInt::get(Loc->getContext(), APInt::getNullValue(DstBits));
-
- Builder.SetInsertPoint(Loc);
- // Compute |Step|
- Value *StepCompare = Builder.CreateICmp(ICmpInst::ICMP_SLT, StepValue, Zero);
- Value *AbsStep = Builder.CreateSelect(StepCompare, NegStepValue, StepValue);
-
- // Get the backedge taken count and truncate or extended to the AR type.
- Value *TruncTripCount = Builder.CreateZExtOrTrunc(TripCountVal, Ty);
- auto *MulF = Intrinsic::getDeclaration(Loc->getModule(),
- Intrinsic::umul_with_overflow, Ty);
-
- // Compute |Step| * Backedge
- CallInst *Mul = Builder.CreateCall(MulF, {AbsStep, TruncTripCount}, "mul");
- Value *MulV = Builder.CreateExtractValue(Mul, 0, "mul.result");
- Value *OfMul = Builder.CreateExtractValue(Mul, 1, "mul.overflow");
-
- // Compute:
- // Start + |Step| * Backedge < Start
- // Start - |Step| * Backedge > Start
- Value *Add = nullptr, *Sub = nullptr;
- if (PointerType *ARPtrTy = dyn_cast<PointerType>(ARExpandTy)) {
- const SCEV *MulS = SE.getSCEV(MulV);
- const SCEV *NegMulS = SE.getNegativeSCEV(MulS);
- Add = Builder.CreateBitCast(expandAddToGEP(MulS, ARPtrTy, Ty, StartValue),
- ARPtrTy);
- Sub = Builder.CreateBitCast(
- expandAddToGEP(NegMulS, ARPtrTy, Ty, StartValue), ARPtrTy);
- } else {
- Add = Builder.CreateAdd(StartValue, MulV);
- Sub = Builder.CreateSub(StartValue, MulV);
- }
-
- Value *EndCompareGT = Builder.CreateICmp(
- Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT, Sub, StartValue);
-
- Value *EndCompareLT = Builder.CreateICmp(
- Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, Add, StartValue);
-
- // Select the answer based on the sign of Step.
- Value *EndCheck =
- Builder.CreateSelect(StepCompare, EndCompareGT, EndCompareLT);
-
- // If the backedge taken count type is larger than the AR type,
- // check that we don't drop any bits by truncating it. If we are
- // dropping bits, then we have overflow (unless the step is zero).
- if (SE.getTypeSizeInBits(CountTy) > SE.getTypeSizeInBits(Ty)) {
- auto MaxVal = APInt::getMaxValue(DstBits).zext(SrcBits);
- auto *BackedgeCheck =
- Builder.CreateICmp(ICmpInst::ICMP_UGT, TripCountVal,
- ConstantInt::get(Loc->getContext(), MaxVal));
- BackedgeCheck = Builder.CreateAnd(
- BackedgeCheck, Builder.CreateICmp(ICmpInst::ICMP_NE, StepValue, Zero));
-
- EndCheck = Builder.CreateOr(EndCheck, BackedgeCheck);
- }
-
- EndCheck = Builder.CreateOr(EndCheck, OfMul);
- return EndCheck;
-}
-
-Value *SCEVExpander::expandWrapPredicate(const SCEVWrapPredicate *Pred,
- Instruction *IP) {
- const auto *A = cast<SCEVAddRecExpr>(Pred->getExpr());
- Value *NSSWCheck = nullptr, *NUSWCheck = nullptr;
-
- // Add a check for NUSW
- if (Pred->getFlags() & SCEVWrapPredicate::IncrementNUSW)
- NUSWCheck = generateOverflowCheck(A, IP, false);
-
- // Add a check for NSSW
- if (Pred->getFlags() & SCEVWrapPredicate::IncrementNSSW)
- NSSWCheck = generateOverflowCheck(A, IP, true);
-
- if (NUSWCheck && NSSWCheck)
- return Builder.CreateOr(NUSWCheck, NSSWCheck);
-
- if (NUSWCheck)
- return NUSWCheck;
-
- if (NSSWCheck)
- return NSSWCheck;
-
- return ConstantInt::getFalse(IP->getContext());
-}
-
-Value *SCEVExpander::expandUnionPredicate(const SCEVUnionPredicate *Union,
- Instruction *IP) {
- auto *BoolType = IntegerType::get(IP->getContext(), 1);
- Value *Check = ConstantInt::getNullValue(BoolType);
-
- // Loop over all checks in this set.
- for (auto Pred : Union->getPredicates()) {
- auto *NextCheck = expandCodeForPredicate(Pred, IP);
- Builder.SetInsertPoint(IP);
- Check = Builder.CreateOr(Check, NextCheck);
- }
-
- return Check;
-}
-
-namespace {
-// Search for a SCEV subexpression that is not safe to expand. Any expression
-// that may expand to a !isSafeToSpeculativelyExecute value is unsafe, namely
-// UDiv expressions. We don't know if the UDiv is derived from an IR divide
-// instruction, but the important thing is that we prove the denominator is
-// nonzero before expansion.
-//
-// IVUsers already checks that IV-derived expressions are safe. So this check is
-// only needed when the expression includes some subexpression that is not IV
-// derived.
-//
-// Currently, we only allow division by a nonzero constant here. If this is
-// inadequate, we could easily allow division by SCEVUnknown by using
-// ValueTracking to check isKnownNonZero().
-//
-// We cannot generally expand recurrences unless the step dominates the loop
-// header. The expander handles the special case of affine recurrences by
-// scaling the recurrence outside the loop, but this technique isn't generally
-// applicable. Expanding a nested recurrence outside a loop requires computing
-// binomial coefficients. This could be done, but the recurrence has to be in a
-// perfectly reduced form, which can't be guaranteed.
-struct SCEVFindUnsafe {
- ScalarEvolution &SE;
- bool IsUnsafe;
-
- SCEVFindUnsafe(ScalarEvolution &se): SE(se), IsUnsafe(false) {}
-
- bool follow(const SCEV *S) {
- if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
- const SCEVConstant *SC = dyn_cast<SCEVConstant>(D->getRHS());
- if (!SC || SC->getValue()->isZero()) {
- IsUnsafe = true;
- return false;
- }
- }
- if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
- const SCEV *Step = AR->getStepRecurrence(SE);
- if (!AR->isAffine() && !SE.dominates(Step, AR->getLoop()->getHeader())) {
- IsUnsafe = true;
- return false;
- }
- }
- return true;
- }
- bool isDone() const { return IsUnsafe; }
-};
-}
-
-namespace llvm {
-bool isSafeToExpand(const SCEV *S, ScalarEvolution &SE) {
- SCEVFindUnsafe Search(SE);
- visitAll(S, Search);
- return !Search.IsUnsafe;
-}
-
-bool isSafeToExpandAt(const SCEV *S, const Instruction *InsertionPoint,
- ScalarEvolution &SE) {
- if (!isSafeToExpand(S, SE))
- return false;
- // We have to prove that the expanded site of S dominates InsertionPoint.
- // This is easy when not in the same block, but hard when S is an instruction
- // to be expanded somewhere inside the same block as our insertion point.
- // What we really need here is something analogous to an OrderedBasicBlock,
- // but for the moment, we paper over the problem by handling two common and
- // cheap to check cases.
- if (SE.properlyDominates(S, InsertionPoint->getParent()))
- return true;
- if (SE.dominates(S, InsertionPoint->getParent())) {
- if (InsertionPoint->getParent()->getTerminator() == InsertionPoint)
- return true;
- if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S))
- for (const Value *V : InsertionPoint->operand_values())
- if (V == U->getValue())
- return true;
- }
- return false;
-}
-}