diff options
Diffstat (limited to 'llvm/lib/Analysis/models/inliner')
-rw-r--r-- | llvm/lib/Analysis/models/inliner/saved_model.pbtxt | 32634 | ||||
-rw-r--r-- | llvm/lib/Analysis/models/inliner/variables/variables.data-00000-of-00001 | bin | 0 -> 39110 bytes | |||
-rw-r--r-- | llvm/lib/Analysis/models/inliner/variables/variables.index | bin | 0 -> 377 bytes |
3 files changed, 32634 insertions, 0 deletions
diff --git a/llvm/lib/Analysis/models/inliner/saved_model.pbtxt b/llvm/lib/Analysis/models/inliner/saved_model.pbtxt new file mode 100644 index 0000000000000..ec522a8b7c353 --- /dev/null +++ b/llvm/lib/Analysis/models/inliner/saved_model.pbtxt @@ -0,0 +1,32634 @@ +saved_model_schema_version: 1 +meta_graphs { + meta_info_def { + stripped_op_list { + op { + name: "Const" + output_arg { + name: "output" + type_attr: "dtype" + } + attr { + name: "value" + type: "tensor" + } + attr { + name: "dtype" + type: "type" + } + } + op { + name: "NoOp" + } + op { + name: "PartitionedCall" + input_arg { + name: "args" + type_list_attr: "Tin" + } + output_arg { + name: "output" + type_list_attr: "Tout" + } + attr { + name: "Tin" + type: "list(type)" + has_minimum: true + } + attr { + name: "Tout" + type: "list(type)" + has_minimum: true + } + attr { + name: "f" + type: "func" + } + attr { + name: "config" + type: "string" + default_value { + s: "" + } + } + attr { + name: "config_proto" + type: "string" + default_value { + s: "" + } + } + attr { + name: "executor_type" + type: "string" + default_value { + s: "" + } + } + } + op { + name: "Placeholder" + output_arg { + name: "output" + type_attr: "dtype" + } + attr { + name: "dtype" + type: "type" + } + attr { + name: "shape" + type: "shape" + default_value { + shape { + unknown_rank: true + } + } + } + } + op { + name: "ReadVariableOp" + input_arg { + name: "resource" + type: DT_RESOURCE + } + output_arg { + name: "value" + type_attr: "dtype" + } + attr { + name: "dtype" + type: "type" + } + is_stateful: true + } + op { + name: "StatefulPartitionedCall" + input_arg { + name: "args" + type_list_attr: "Tin" + } + output_arg { + name: "output" + type_list_attr: "Tout" + } + attr { + name: "Tin" + type: "list(type)" + has_minimum: true + } + attr { + name: "Tout" + type: "list(type)" + has_minimum: true + } + attr { + name: "f" + type: "func" + } + attr { + name: "config" + type: "string" + default_value { + s: "" + } + } + attr { + name: "config_proto" + type: "string" + default_value { + s: "" + } + } + attr { + name: "executor_type" + type: "string" + default_value { + s: "" + } + } + is_stateful: true + } + op { + name: "VarHandleOp" + output_arg { + name: "resource" + type: DT_RESOURCE + } + attr { + name: "container" + type: "string" + default_value { + s: "" + } + } + attr { + name: "shared_name" + type: "string" + default_value { + s: "" + } + } + attr { + name: "dtype" + type: "type" + } + attr { + name: "shape" + type: "shape" + } + attr { + name: "allowed_devices" + type: "list(string)" + default_value { + list { + } + } + } + is_stateful: true + } + } + tags: "serve" + tensorflow_version: "1.15.0" + tensorflow_git_version: "unknown" + stripped_default_attrs: true + } + graph_def { + node { + name: "train_step" + op: "VarHandleOp" + attr { + key: "_output_shapes" + value { + list { + shape { + } + } + } + } + attr { + key: "dtype" + value { + type: DT_INT64 + } + } + attr { + key: "shape" + value { + shape { + } + } + } + attr { + key: "shared_name" + value { + s: "train_step" + } + } + } + node { + name: "train_step/Read/ReadVariableOp" + op: "ReadVariableOp" + input: "train_step" + attr { + key: "_output_shapes" + value { + list { + shape { + } + } + } + } + attr { + key: "dtype" + value { + type: DT_INT64 + } + } + } + node { + name: "QNetwork/EncodingNetwork/dense/kernel" + op: "VarHandleOp" + attr { + key: "_output_shapes" + value { + list { + shape { + } + } + } + } + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + attr { + key: "shape" + value { + shape { + dim { + size: 34 + } + dim { + size: 100 + } + } + } + } + attr { + key: "shared_name" + value { + s: "QNetwork/EncodingNetwork/dense/kernel" + } + } + } + node { + name: "QNetwork/EncodingNetwork/dense/kernel/Read/ReadVariableOp" + op: "ReadVariableOp" + input: "QNetwork/EncodingNetwork/dense/kernel" + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 34 + } + dim { + size: 100 + } + } + } + } + } + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + } + node { + name: "QNetwork/EncodingNetwork/dense/bias" + op: "VarHandleOp" + attr { + key: "_output_shapes" + value { + list { + shape { + } + } + } + } + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + attr { + key: "shape" + value { + shape { + dim { + size: 100 + } + } + } + } + attr { + key: "shared_name" + value { + s: "QNetwork/EncodingNetwork/dense/bias" + } + } + } + node { + name: "QNetwork/EncodingNetwork/dense/bias/Read/ReadVariableOp" + op: "ReadVariableOp" + input: "QNetwork/EncodingNetwork/dense/bias" + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 100 + } + } + } + } + } + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + } + node { + name: "QNetwork/EncodingNetwork/dense_1/kernel" + op: "VarHandleOp" + attr { + key: "_output_shapes" + value { + list { + shape { + } + } + } + } + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + attr { + key: "shape" + value { + shape { + dim { + size: 100 + } + dim { + size: 40 + } + } + } + } + attr { + key: "shared_name" + value { + s: "QNetwork/EncodingNetwork/dense_1/kernel" + } + } + } + node { + name: "QNetwork/EncodingNetwork/dense_1/kernel/Read/ReadVariableOp" + op: "ReadVariableOp" + input: "QNetwork/EncodingNetwork/dense_1/kernel" + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 100 + } + dim { + size: 40 + } + } + } + } + } + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + } + node { + name: "QNetwork/EncodingNetwork/dense_1/bias" + op: "VarHandleOp" + attr { + key: "_output_shapes" + value { + list { + shape { + } + } + } + } + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + attr { + key: "shape" + value { + shape { + dim { + size: 40 + } + } + } + } + attr { + key: "shared_name" + value { + s: "QNetwork/EncodingNetwork/dense_1/bias" + } + } + } + node { + name: "QNetwork/EncodingNetwork/dense_1/bias/Read/ReadVariableOp" + op: "ReadVariableOp" + input: "QNetwork/EncodingNetwork/dense_1/bias" + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 40 + } + } + } + } + } + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + } + node { + name: "QNetwork/dense_2/kernel" + op: "VarHandleOp" + attr { + key: "_output_shapes" + value { + list { + shape { + } + } + } + } + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + attr { + key: "shape" + value { + shape { + dim { + size: 40 + } + dim { + size: 2 + } + } + } + } + attr { + key: "shared_name" + value { + s: "QNetwork/dense_2/kernel" + } + } + } + node { + name: "QNetwork/dense_2/kernel/Read/ReadVariableOp" + op: "ReadVariableOp" + input: "QNetwork/dense_2/kernel" + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 40 + } + dim { + size: 2 + } + } + } + } + } + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + } + node { + name: "QNetwork/dense_2/bias" + op: "VarHandleOp" + attr { + key: "_output_shapes" + value { + list { + shape { + } + } + } + } + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + attr { + key: "shape" + value { + shape { + dim { + size: 2 + } + } + } + } + attr { + key: "shared_name" + value { + s: "QNetwork/dense_2/bias" + } + } + } + node { + name: "QNetwork/dense_2/bias/Read/ReadVariableOp" + op: "ReadVariableOp" + input: "QNetwork/dense_2/bias" + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 2 + } + } + } + } + } + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + } + node { + name: "NoOp" + op: "NoOp" + } + node { + name: "Const" + op: "Const" + device: "/device:CPU:0" + attr { + key: "_output_shapes" + value { + list { + shape { + } + } + } + } + attr { + key: "dtype" + value { + type: DT_STRING + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_STRING + tensor_shape { + } + string_val: "\nu\n\023\010\001\022\017_time_step_spec\n\024\010\002\022\020_trajectory_spec\n\023\010\003\022\017_wrapped_policy\n\016\010\004\022\ntrain_step\n\023\010\005\022\017model_variables\n\016\010\006\022\nsignatures\n\030\n\017\010\007\022\013observation\n\005\010\007\022\0013\n\030\n\017\010\007\022\013observation\n\005\010\007\022\0011\n;\n\016\010\010\022\n_q_network\n\023\010\001\022\017_time_step_spec\n\024\010\t\022\020_trajectory_spec\nE\022C\n\016VARIABLE_VALUE\022\ntrain_step\032%train_step/.ATTRIBUTES/VARIABLE_VALUE\n*\n\005\010\n\022\0010\n\005\010\013\022\0011\n\005\010\014\022\0012\n\005\010\r\022\0013\n\005\010\016\022\0014\n\005\010\017\022\0015\n\000\n\000\n\214\001\n\026\010\020\022\022_input_tensor_spec\n\014\010\021\022\010_encoder\n\022\010\022\022\016_q_value_layer\n\r\010\023\022\tvariables\n\031\010\024\022\025regularization_losses\n\027\010\025\022\023trainable_variables\n\r\010\026\022\tkeras_api\n\030\n\017\010\007\022\013observation\n\005\010\007\022\0011\ng\022e\n\016VARIABLE_VALUE\022%QNetwork/EncodingNetwork/dense/kernel\032,model_variables/0/.ATTRIBUTES/VARIABLE_VALUE\ne\022c\n\016VARIABLE_VALUE\022#QNetwork/EncodingNetwork/dense/bias\032,model_variables/1/.ATTRIBUTES/VARIABLE_VALUE\ni\022g\n\016VARIABLE_VALUE\022\'QNetwork/EncodingNetwork/dense_1/kernel\032,model_variables/2/.ATTRIBUTES/VARIABLE_VALUE\ng\022e\n\016VARIABLE_VALUE\022%QNetwork/EncodingNetwork/dense_1/bias\032,model_variables/3/.ATTRIBUTES/VARIABLE_VALUE\nY\022W\n\016VARIABLE_VALUE\022\027QNetwork/dense_2/kernel\032,model_variables/4/.ATTRIBUTES/VARIABLE_VALUE\nW\022U\n\016VARIABLE_VALUE\022\025QNetwork/dense_2/bias\032,model_variables/5/.ATTRIBUTES/VARIABLE_VALUE\n\000\n\334\001\n\026\010\027\022\022_input_tensor_spec\n\027\010\030\022\023_preprocessing_nest\n\036\010\031\022\032_flat_preprocessing_layers\n\033\010\032\022\027_preprocessing_combiner\n\032\010\033\022\026_postprocessing_layers\n\r\010\034\022\tvariables\n\031\010\035\022\025regularization_losses\n\027\010\036\022\023trainable_variables\n\r\010\037\022\tkeras_api\nh\n\n\010\016\022\006kernel\n\010\010\017\022\004bias\n\r\010 \022\tvariables\n\031\010!\022\025regularization_losses\n\027\010\"\022\023trainable_variables\n\r\010#\022\tkeras_api\n*\n\005\010\n\022\0010\n\005\010\013\022\0011\n\005\010\014\022\0012\n\005\010\r\022\0013\n\005\010\016\022\0014\n\005\010\017\022\0015\n\000\n*\n\005\010\n\022\0010\n\005\010\013\022\0011\n\005\010\014\022\0012\n\005\010\r\022\0013\n\005\010\016\022\0014\n\005\010\017\022\0015\n\255\001\n\021\010$\022\rlayer_metrics\n\r\010\023\022\tvariables\n\037\010%\022\033layer_regularization_losses\n\013\010&\022\007metrics\n\n\010\'\022\006layers\n\031\010\024\022\025regularization_losses\n\033\010(\022\027non_trainable_variables\n\027\010\025\022\023trainable_variables\n\000\n\000\nV\n\005\010)\022\0010\n\005\010*\022\0011\n\005\010+\022\0012\n\005\010,\022\0013\n\005\010-\022\0014\n\005\010.\022\0015\n\005\010/\022\0016\n\005\0100\022\0017\n\005\0101\022\0018\n\005\0102\022\0019\n\006\0103\022\00210\n\006\0104\022\00211\nR\n\r\0105\022\tvariables\n\031\0106\022\025regularization_losses\n\027\0107\022\023trainable_variables\n\r\0108\022\tkeras_api\n\025\n\005\0109\022\0010\n\005\010:\022\0011\n\005\010;\022\0012\n\034\n\005\010\n\022\0010\n\005\010\013\022\0011\n\005\010\014\022\0012\n\005\010\r\022\0013\n\000\n\034\n\005\010\n\022\0010\n\005\010\013\022\0011\n\005\010\014\022\0012\n\005\010\r\022\0013\n\255\001\n\021\010<\022\rlayer_metrics\n\r\010\034\022\tvariables\n\037\010=\022\033layer_regularization_losses\n\013\010>\022\007metrics\n\n\010?\022\006layers\n\031\010\035\022\025regularization_losses\n\033\010@\022\027non_trainable_variables\n\027\010\036\022\023trainable_variables\n\016\n\005\010\016\022\0010\n\005\010\017\022\0011\n\000\n\016\n\005\010\016\022\0010\n\005\010\017\022\0011\n\255\001\n\021\010A\022\rlayer_metrics\n\r\010 \022\tvariables\n\037\010B\022\033layer_regularization_losses\n\013\010C\022\007metrics\n\n\010D\022\006layers\n\031\010!\022\025regularization_losses\n\033\010E\022\027non_trainable_variables\n\027\010\"\022\023trainable_variables\n\000\n\000\n\000\n\016\n\005\010\021\022\0010\n\005\010\022\022\0011\n\000\nR\n\r\010F\022\tvariables\n\031\010G\022\025regularization_losses\n\027\010H\022\023trainable_variables\n\r\010I\022\tkeras_api\nR\n\r\010J\022\tvariables\n\031\010K\022\025regularization_losses\n\027\010L\022\023trainable_variables\n\r\010M\022\tkeras_api\nR\n\r\010N\022\tvariables\n\031\010O\022\025regularization_losses\n\027\010P\022\023trainable_variables\n\r\010Q\022\tkeras_api\nR\n\r\010R\022\tvariables\n\031\010S\022\025regularization_losses\n\027\010T\022\023trainable_variables\n\r\010U\022\tkeras_api\nR\n\r\010V\022\tvariables\n\031\010W\022\025regularization_losses\n\027\010X\022\023trainable_variables\n\r\010Y\022\tkeras_api\nR\n\r\010Z\022\tvariables\n\031\010[\022\025regularization_losses\n\027\010\\\022\023trainable_variables\n\r\010]\022\tkeras_api\nR\n\r\010^\022\tvariables\n\031\010_\022\025regularization_losses\n\027\010`\022\023trainable_variables\n\r\010a\022\tkeras_api\nR\n\r\010b\022\tvariables\n\031\010c\022\025regularization_losses\n\027\010d\022\023trainable_variables\n\r\010e\022\tkeras_api\nR\n\r\010f\022\tvariables\n\031\010g\022\025regularization_losses\n\027\010h\022\023trainable_variables\n\r\010i\022\tkeras_api\nR\n\r\010j\022\tvariables\n\031\010k\022\025regularization_losses\n\027\010l\022\023trainable_variables\n\r\010m\022\tkeras_api\nR\n\r\010n\022\tvariables\n\031\010o\022\025regularization_losses\n\027\010p\022\023trainable_variables\n\r\010q\022\tkeras_api\nR\n\r\010r\022\tvariables\n\031\010s\022\025regularization_losses\n\027\010t\022\023trainable_variables\n\r\010u\022\tkeras_api\n\000\n\000\n\000\n\255\001\n\021\010v\022\rlayer_metrics\n\r\0105\022\tvariables\n\037\010w\022\033layer_regularization_losses\n\013\010x\022\007metrics\n\n\010y\022\006layers\n\031\0106\022\025regularization_losses\n\033\010z\022\027non_trainable_variables\n\027\0107\022\023trainable_variables\nR\n\r\010{\022\tvariables\n\031\010|\022\025regularization_losses\n\027\010}\022\023trainable_variables\n\r\010~\022\tkeras_api\nk\n\n\010\n\022\006kernel\n\010\010\013\022\004bias\n\r\010\177\022\tvariables\n\032\010\200\001\022\025regularization_losses\n\030\010\201\001\022\023trainable_variables\n\016\010\202\001\022\tkeras_api\nl\n\n\010\014\022\006kernel\n\010\010\r\022\004bias\n\016\010\203\001\022\tvariables\n\032\010\204\001\022\025regularization_losses\n\030\010\205\001\022\023trainable_variables\n\016\010\206\001\022\tkeras_api\n\000\n\000\n\000\nv\n\005\010)\022\0010\n\005\010*\022\0011\n\005\010+\022\0012\n\005\010,\022\0013\n\005\010-\022\0014\n\005\010.\022\0015\n\005\010/\022\0016\n\005\0100\022\0017\n\005\0101\022\0018\n\005\0102\022\0019\n\006\0103\022\00210\n\006\0104\022\00211\n\006\010\032\022\00212\n\006\0109\022\00213\n\006\010:\022\00214\n\006\010;\022\00215\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\262\001\n\022\010\207\001\022\rlayer_metrics\n\r\010F\022\tvariables\n \010\210\001\022\033layer_regularization_losses\n\014\010\211\001\022\007metrics\n\013\010\212\001\022\006layers\n\031\010G\022\025regularization_losses\n\034\010\213\001\022\027non_trainable_variables\n\027\010H\022\023trainable_variables\n\000\n\000\n\000\n\262\001\n\022\010\214\001\022\rlayer_metrics\n\r\010J\022\tvariables\n \010\215\001\022\033layer_regularization_losses\n\014\010\216\001\022\007metrics\n\013\010\217\001\022\006layers\n\031\010K\022\025regularization_losses\n\034\010\220\001\022\027non_trainable_variables\n\027\010L\022\023trainable_variables\n\000\n\000\n\000\n\262\001\n\022\010\221\001\022\rlayer_metrics\n\r\010N\022\tvariables\n \010\222\001\022\033layer_regularization_losses\n\014\010\223\001\022\007metrics\n\013\010\224\001\022\006layers\n\031\010O\022\025regularization_losses\n\034\010\225\001\022\027non_trainable_variables\n\027\010P\022\023trainable_variables\n\000\n\000\n\000\n\262\001\n\022\010\226\001\022\rlayer_metrics\n\r\010R\022\tvariables\n \010\227\001\022\033layer_regularization_losses\n\014\010\230\001\022\007metrics\n\013\010\231\001\022\006layers\n\031\010S\022\025regularization_losses\n\034\010\232\001\022\027non_trainable_variables\n\027\010T\022\023trainable_variables\n\000\n\000\n\000\n\262\001\n\022\010\233\001\022\rlayer_metrics\n\r\010V\022\tvariables\n \010\234\001\022\033layer_regularization_losses\n\014\010\235\001\022\007metrics\n\013\010\236\001\022\006layers\n\031\010W\022\025regularization_losses\n\034\010\237\001\022\027non_trainable_variables\n\027\010X\022\023trainable_variables\n\000\n\000\n\000\n\262\001\n\022\010\240\001\022\rlayer_metrics\n\r\010Z\022\tvariables\n \010\241\001\022\033layer_regularization_losses\n\014\010\242\001\022\007metrics\n\013\010\243\001\022\006layers\n\031\010[\022\025regularization_losses\n\034\010\244\001\022\027non_trainable_variables\n\027\010\\\022\023trainable_variables\n\000\n\000\n\000\n\262\001\n\022\010\245\001\022\rlayer_metrics\n\r\010^\022\tvariables\n \010\246\001\022\033layer_regularization_losses\n\014\010\247\001\022\007metrics\n\013\010\250\001\022\006layers\n\031\010_\022\025regularization_losses\n\034\010\251\001\022\027non_trainable_variables\n\027\010`\022\023trainable_variables\n\000\n\000\n\000\n\262\001\n\022\010\252\001\022\rlayer_metrics\n\r\010b\022\tvariables\n \010\253\001\022\033layer_regularization_losses\n\014\010\254\001\022\007metrics\n\013\010\255\001\022\006layers\n\031\010c\022\025regularization_losses\n\034\010\256\001\022\027non_trainable_variables\n\027\010d\022\023trainable_variables\n\000\n\000\n\000\n\262\001\n\022\010\257\001\022\rlayer_metrics\n\r\010f\022\tvariables\n \010\260\001\022\033layer_regularization_losses\n\014\010\261\001\022\007metrics\n\013\010\262\001\022\006layers\n\031\010g\022\025regularization_losses\n\034\010\263\001\022\027non_trainable_variables\n\027\010h\022\023trainable_variables\n\000\n\000\n\000\n\262\001\n\022\010\264\001\022\rlayer_metrics\n\r\010j\022\tvariables\n \010\265\001\022\033layer_regularization_losses\n\014\010\266\001\022\007metrics\n\013\010\267\001\022\006layers\n\031\010k\022\025regularization_losses\n\034\010\270\001\022\027non_trainable_variables\n\027\010l\022\023trainable_variables\n\000\n\000\n\000\n\262\001\n\022\010\271\001\022\rlayer_metrics\n\r\010n\022\tvariables\n \010\272\001\022\033layer_regularization_losses\n\014\010\273\001\022\007metrics\n\013\010\274\001\022\006layers\n\031\010o\022\025regularization_losses\n\034\010\275\001\022\027non_trainable_variables\n\027\010p\022\023trainable_variables\n\000\n\000\n\000\n\262\001\n\022\010\276\001\022\rlayer_metrics\n\r\010r\022\tvariables\n \010\277\001\022\033layer_regularization_losses\n\014\010\300\001\022\007metrics\n\013\010\301\001\022\006layers\n\031\010s\022\025regularization_losses\n\034\010\302\001\022\027non_trainable_variables\n\027\010t\022\023trainable_variables\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\262\001\n\022\010\303\001\022\rlayer_metrics\n\r\010{\022\tvariables\n \010\304\001\022\033layer_regularization_losses\n\014\010\305\001\022\007metrics\n\013\010\306\001\022\006layers\n\031\010|\022\025regularization_losses\n\034\010\307\001\022\027non_trainable_variables\n\027\010}\022\023trainable_variables\n\016\n\005\010\n\022\0010\n\005\010\013\022\0011\n\000\n\016\n\005\010\n\022\0010\n\005\010\013\022\0011\n\264\001\n\022\010\310\001\022\rlayer_metrics\n\r\010\177\022\tvariables\n \010\311\001\022\033layer_regularization_losses\n\014\010\312\001\022\007metrics\n\013\010\313\001\022\006layers\n\032\010\200\001\022\025regularization_losses\n\034\010\314\001\022\027non_trainable_variables\n\030\010\201\001\022\023trainable_variables\n\016\n\005\010\014\022\0010\n\005\010\r\022\0011\n\000\n\016\n\005\010\014\022\0010\n\005\010\r\022\0011\n\265\001\n\022\010\315\001\022\rlayer_metrics\n\016\010\203\001\022\tvariables\n \010\316\001\022\033layer_regularization_losses\n\014\010\317\001\022\007metrics\n\013\010\320\001\022\006layers\n\032\010\204\001\022\025regularization_losses\n\034\010\321\001\022\027non_trainable_variables\n\030\010\205\001\022\023trainable_variables\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000" + } + } + } + } + node { + name: "action_callee_basic_block_count" + op: "Placeholder" + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + } + } + } + } + attr { + key: "dtype" + value { + type: DT_INT64 + } + } + attr { + key: "shape" + value { + shape { + dim { + size: 1 + } + } + } + } + } + node { + name: "action_callee_conditionally_executed_blocks" + op: "Placeholder" + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + } + } + } + } + attr { + key: "dtype" + value { + type: DT_INT64 + } + } + attr { + key: "shape" + value { + shape { + dim { + size: 1 + } + } + } + } + } + node { + name: "action_callee_users" + op: "Placeholder" + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + } + } + } + } + attr { + key: "dtype" + value { + type: DT_INT64 + } + } + attr { + key: "shape" + value { + shape { + dim { + size: 1 + } + } + } + } + } + node { + name: "action_caller_basic_block_count" + op: "Placeholder" + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + } + } + } + } + attr { + key: "dtype" + value { + type: DT_INT64 + } + } + attr { + key: "shape" + value { + shape { + dim { + size: 1 + } + } + } + } + } + node { + name: "action_caller_conditionally_executed_blocks" + op: "Placeholder" + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + } + } + } + } + attr { + key: "dtype" + value { + type: DT_INT64 + } + } + attr { + key: "shape" + value { + shape { + dim { + size: 1 + } + } + } + } + } + node { + name: "action_caller_users" + op: "Placeholder" + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + } + } + } + } + attr { + key: "dtype" + value { + type: DT_INT64 + } + } + attr { + key: "shape" + value { + shape { + dim { + size: 1 + } + } + } + } + } + node { + name: "action_callsite_height" + op: "Placeholder" + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + } + } + } + } + attr { + key: "dtype" + value { + type: DT_INT64 + } + } + attr { + key: "shape" + value { + shape { + dim { + size: 1 + } + } + } + } + } + node { + name: "action_cost_estimate" + op: "Placeholder" + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + } + } + } + } + attr { + key: "dtype" + value { + type: DT_INT64 + } + } + attr { + key: "shape" + value { + shape { + dim { + size: 1 + } + } + } + } + } + node { + name: "action_discount" + op: "Placeholder" + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + } + } + } + } + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + attr { + key: "shape" + value { + shape { + dim { + size: 1 + } + } + } + } + } + node { + name: "action_edge_count" + op: "Placeholder" + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + } + } + } + } + attr { + key: "dtype" + value { + type: DT_INT64 + } + } + attr { + key: "shape" + value { + shape { + dim { + size: 1 + } + } + } + } + } + node { + name: "action_inlining_default" + op: "Placeholder" + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + } + } + } + } + attr { + key: "dtype" + value { + type: DT_INT64 + } + } + attr { + key: "shape" + value { + shape { + dim { + size: 1 + } + } + } + } + } + node { + name: "action_node_count" + op: "Placeholder" + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + } + } + } + } + attr { + key: "dtype" + value { + type: DT_INT64 + } + } + attr { + key: "shape" + value { + shape { + dim { + size: 1 + } + } + } + } + } + node { + name: "action_nr_ctant_params" + op: "Placeholder" + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + } + } + } + } + attr { + key: "dtype" + value { + type: DT_INT64 + } + } + attr { + key: "shape" + value { + shape { + dim { + size: 1 + } + } + } + } + } + node { + name: "action_reward" + op: "Placeholder" + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + } + } + } + } + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + attr { + key: "shape" + value { + shape { + dim { + size: 1 + } + } + } + } + } + node { + name: "action_step_type" + op: "Placeholder" + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + } + } + } + } + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "shape" + value { + shape { + dim { + size: 1 + } + } + } + } + } + node { + name: "StatefulPartitionedCall" + op: "StatefulPartitionedCall" + input: "action_callee_basic_block_count" + input: "action_callee_conditionally_executed_blocks" + input: "action_callee_users" + input: "action_caller_basic_block_count" + input: "action_caller_conditionally_executed_blocks" + input: "action_caller_users" + input: "action_callsite_height" + input: "action_cost_estimate" + input: "action_discount" + input: "action_edge_count" + input: "action_inlining_default" + input: "action_node_count" + input: "action_nr_ctant_params" + input: "action_reward" + input: "action_step_type" + input: "QNetwork/EncodingNetwork/dense/kernel" + input: "QNetwork/EncodingNetwork/dense/bias" + input: "QNetwork/EncodingNetwork/dense_1/kernel" + input: "QNetwork/EncodingNetwork/dense_1/bias" + input: "QNetwork/dense_2/kernel" + input: "QNetwork/dense_2/bias" + attr { + key: "Tin" + value { + list { + type: DT_INT64 + type: DT_INT64 + type: DT_INT64 + type: DT_INT64 + type: DT_INT64 + type: DT_INT64 + type: DT_INT64 + type: DT_INT64 + type: DT_FLOAT + type: DT_INT64 + type: DT_INT64 + type: DT_INT64 + type: DT_INT64 + type: DT_FLOAT + type: DT_INT32 + type: DT_RESOURCE + type: DT_RESOURCE + type: DT_RESOURCE + type: DT_RESOURCE + type: DT_RESOURCE + type: DT_RESOURCE + } + } + } + attr { + key: "Tout" + value { + list { + type: DT_INT64 + } + } + } + attr { + key: "_collective_manager_ids" + value { + list { + } + } + } + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + } + } + } + } + attr { + key: "_read_only_resource_inputs" + value { + list { + i: 15 + i: 16 + i: 17 + i: 18 + i: 19 + i: 20 + } + } + } + attr { + key: "config_proto" + value { + s: "\n\007\n\003CPU\020\001\n\007\n\003GPU\020\0012\005*\0010J\0008\001" + } + } + attr { + key: "f" + value { + func { + name: "__inference_signature_wrapper_4619026" + } + } + } + } + node { + name: "PartitionedCall" + op: "PartitionedCall" + attr { + key: "Tin" + value { + list { + } + } + } + attr { + key: "Tout" + value { + list { + } + } + } + attr { + key: "_collective_manager_ids" + value { + list { + } + } + } + attr { + key: "_read_only_resource_inputs" + value { + list { + } + } + } + attr { + key: "config_proto" + value { + s: "\n\007\n\003CPU\020\001\n\007\n\003GPU\020\0012\005*\0010J\0008\001" + } + } + attr { + key: "f" + value { + func { + name: "__inference_signature_wrapper_4619033" + } + } + } + } + node { + name: "StatefulPartitionedCall_1" + op: "StatefulPartitionedCall" + input: "train_step" + attr { + key: "Tin" + value { + list { + type: DT_RESOURCE + } + } + } + attr { + key: "Tout" + value { + list { + type: DT_INT64 + } + } + } + attr { + key: "_collective_manager_ids" + value { + list { + } + } + } + attr { + key: "_output_shapes" + value { + list { + shape { + } + } + } + } + attr { + key: "_read_only_resource_inputs" + value { + list { + i: 0 + } + } + } + attr { + key: "config_proto" + value { + s: "\n\007\n\003CPU\020\001\n\007\n\003GPU\020\0012\005*\0010J\0008\001" + } + } + attr { + key: "f" + value { + func { + name: "__inference_signature_wrapper_4619048" + } + } + } + } + node { + name: "saver_filename" + op: "Placeholder" + attr { + key: "_output_shapes" + value { + list { + shape { + } + } + } + } + attr { + key: "dtype" + value { + type: DT_STRING + } + } + attr { + key: "shape" + value { + shape { + } + } + } + } + node { + name: "StatefulPartitionedCall_2" + op: "StatefulPartitionedCall" + input: "saver_filename" + input: "train_step/Read/ReadVariableOp" + input: "QNetwork/EncodingNetwork/dense/kernel/Read/ReadVariableOp" + input: "QNetwork/EncodingNetwork/dense/bias/Read/ReadVariableOp" + input: "QNetwork/EncodingNetwork/dense_1/kernel/Read/ReadVariableOp" + input: "QNetwork/EncodingNetwork/dense_1/bias/Read/ReadVariableOp" + input: "QNetwork/dense_2/kernel/Read/ReadVariableOp" + input: "QNetwork/dense_2/bias/Read/ReadVariableOp" + input: "Const" + attr { + key: "Tin" + value { + list { + type: DT_STRING + type: DT_INT64 + type: DT_FLOAT + type: DT_FLOAT + type: DT_FLOAT + type: DT_FLOAT + type: DT_FLOAT + type: DT_FLOAT + type: DT_STRING + } + } + } + attr { + key: "Tout" + value { + list { + type: DT_STRING + } + } + } + attr { + key: "_collective_manager_ids" + value { + list { + } + } + } + attr { + key: "_output_shapes" + value { + list { + shape { + } + } + } + } + attr { + key: "_read_only_resource_inputs" + value { + list { + } + } + } + attr { + key: "config_proto" + value { + s: "\n\007\n\003CPU\020\001\n\007\n\003GPU\020\0012\005*\0010J\0008\001" + } + } + attr { + key: "f" + value { + func { + name: "__inference__traced_save_4619143" + } + } + } + } + node { + name: "StatefulPartitionedCall_3" + op: "StatefulPartitionedCall" + input: "saver_filename" + input: "train_step" + input: "QNetwork/EncodingNetwork/dense/kernel" + input: "QNetwork/EncodingNetwork/dense/bias" + input: "QNetwork/EncodingNetwork/dense_1/kernel" + input: "QNetwork/EncodingNetwork/dense_1/bias" + input: "QNetwork/dense_2/kernel" + input: "QNetwork/dense_2/bias" + attr { + key: "Tin" + value { + list { + type: DT_STRING + type: DT_RESOURCE + type: DT_RESOURCE + type: DT_RESOURCE + type: DT_RESOURCE + type: DT_RESOURCE + type: DT_RESOURCE + type: DT_RESOURCE + } + } + } + attr { + key: "Tout" + value { + list { + type: DT_STRING + } + } + } + attr { + key: "_collective_manager_ids" + value { + list { + } + } + } + attr { + key: "_output_shapes" + value { + list { + shape { + } + } + } + } + attr { + key: "_read_only_resource_inputs" + value { + list { + } + } + } + attr { + key: "config_proto" + value { + s: "\n\007\n\003CPU\020\001\n\007\n\003GPU\020\0012\005*\0010J\0008\001" + } + } + attr { + key: "f" + value { + func { + name: "__inference__traced_restore_4619176" + } + } + } + } + library { + function { + signature { + name: "__inference_signature_wrapper_4619048" + input_arg { + name: "unknown" + type: DT_RESOURCE + } + output_arg { + name: "identity" + type: DT_INT64 + } + is_stateful: true + control_output: "StatefulPartitionedCall" + } + node_def { + name: "StatefulPartitionedCall" + op: "StatefulPartitionedCall" + input: "unknown" + attr { + key: "Tin" + value { + list { + type: DT_RESOURCE + } + } + } + attr { + key: "Tout" + value { + list { + type: DT_INT64 + } + } + } + attr { + key: "_collective_manager_ids" + value { + list { + } + } + } + attr { + key: "_output_shapes" + value { + list { + shape { + } + } + } + } + attr { + key: "_read_only_resource_inputs" + value { + list { + i: 0 + } + } + } + attr { + key: "config_proto" + value { + s: "\n\007\n\003CPU\020\001\n\007\n\003GPU\020\0012\005*\0010J\0008\001" + } + } + attr { + key: "f" + value { + func { + name: "__inference_function_with_signature_4619040" + } + } + } + experimental_debug_info { + original_node_names: "StatefulPartitionedCall" + } + } + node_def { + name: "Identity" + op: "Identity" + input: "StatefulPartitionedCall:output:0" + input: "^StatefulPartitionedCall" + attr { + key: "T" + value { + type: DT_INT64 + } + } + attr { + key: "_output_shapes" + value { + list { + shape { + } + } + } + } + experimental_debug_info { + original_node_names: "Identity" + } + } + ret { + key: "identity" + value: "Identity:output:0" + } + attr { + key: "_input_shapes" + value { + list { + shape { + unknown_rank: true + } + } + } + } + control_ret { + key: "StatefulPartitionedCall" + value: "StatefulPartitionedCall" + } + arg_attr { + key: 0 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + } + } + } + } + } + } + } + function { + signature { + name: "__inference_function_with_signature_4619029" + } + node_def { + name: "PartitionedCall" + op: "PartitionedCall" + attr { + key: "Tin" + value { + list { + } + } + } + attr { + key: "Tout" + value { + list { + } + } + } + attr { + key: "_collective_manager_ids" + value { + list { + } + } + } + attr { + key: "_output_shapes" + value { + list { + } + } + } + attr { + key: "_read_only_resource_inputs" + value { + list { + } + } + } + attr { + key: "config_proto" + value { + s: "\n\007\n\003CPU\020\001\n\007\n\003GPU\020\0012\005*\0010J\0008\001" + } + } + attr { + key: "f" + value { + func { + name: "__inference_function_722" + } + } + } + experimental_debug_info { + original_node_names: "PartitionedCall" + } + } + attr { + key: "_input_shapes" + value { + } + } + } + function { + signature { + name: "__inference_action_931" + input_arg { + name: "time_step" + type: DT_INT32 + } + input_arg { + name: "time_step_1" + type: DT_FLOAT + } + input_arg { + name: "time_step_2" + type: DT_FLOAT + } + input_arg { + name: "time_step_3" + type: DT_INT64 + } + input_arg { + name: "time_step_4" + type: DT_INT64 + } + input_arg { + name: "time_step_5" + type: DT_INT64 + } + input_arg { + name: "time_step_6" + type: DT_INT64 + } + input_arg { + name: "time_step_7" + type: DT_INT64 + } + input_arg { + name: "time_step_8" + type: DT_INT64 + } + input_arg { + name: "time_step_9" + type: DT_INT64 + } + input_arg { + name: "time_step_10" + type: DT_INT64 + } + input_arg { + name: "time_step_11" + type: DT_INT64 + } + input_arg { + name: "time_step_12" + type: DT_INT64 + } + input_arg { + name: "time_step_13" + type: DT_INT64 + } + input_arg { + name: "time_step_14" + type: DT_INT64 + } + input_arg { + name: "qnetwork_encodingnetwork_dense_matmul_readvariableop_resource" + type: DT_RESOURCE + } + input_arg { + name: "qnetwork_encodingnetwork_dense_biasadd_readvariableop_resource" + type: DT_RESOURCE + } + input_arg { + name: "qnetwork_encodingnetwork_dense_1_matmul_readvariableop_resource" + type: DT_RESOURCE + } + input_arg { + name: "qnetwork_encodingnetwork_dense_1_biasadd_readvariableop_resource" + type: DT_RESOURCE + } + input_arg { + name: "qnetwork_dense_2_matmul_readvariableop_resource" + type: DT_RESOURCE + } + input_arg { + name: "qnetwork_dense_2_biasadd_readvariableop_resource" + type: DT_RESOURCE + } + output_arg { + name: "identity" + type: DT_INT64 + } + is_stateful: true + } + node_def { + name: "QNetwork/EncodingNetwork/lambda/expand_dims/ExpandDims/dim" + op: "Const" + attr { + key: "_output_shapes" + value { + list { + shape { + } + } + } + } + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + } + int_val: -1 + } + } + } + experimental_debug_info { + original_node_names: "QNetwork/EncodingNetwork/lambda/expand_dims/ExpandDims/dim" + } + } + node_def { + name: "QNetwork/EncodingNetwork/lambda/expand_dims/ExpandDims" + op: "ExpandDims" + input: "time_step_3" + input: "QNetwork/EncodingNetwork/lambda/expand_dims/ExpandDims/dim:output:0" + attr { + key: "T" + value { + type: DT_INT64 + } + } + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + dim { + size: 1 + } + } + } + } + } + experimental_debug_info { + original_node_names: "QNetwork/EncodingNetwork/lambda/expand_dims/ExpandDims" + } + } + node_def { + name: "QNetwork/EncodingNetwork/lambda/Bucketize" + op: "Bucketize" + input: "QNetwork/EncodingNetwork/lambda/expand_dims/ExpandDims:output:0" + attr { + key: "T" + value { + type: DT_INT64 + } + } + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + dim { + size: 1 + } + } + } + } + } + attr { + key: "boundaries" + value { + list { + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 7 + f: 7 + f: 7 + f: 7 + f: 7 + f: 7 + f: 7 + f: 7 + f: 8 + f: 8 + f: 8 + f: 8 + f: 8 + f: 8 + f: 8 + f: 8 + f: 8 + f: 8 + f: 8 + f: 8 + f: 8 + f: 8 + f: 9 + f: 9 + f: 9 + f: 9 + f: 10 + f: 10 + f: 11 + f: 12 + f: 13 + f: 14 + f: 14 + f: 14 + f: 16 + f: 17 + f: 19 + f: 23 + f: 27 + f: 39 + } + } + } + experimental_debug_info { + original_node_names: "QNetwork/EncodingNetwork/lambda/Bucketize" + } + } + node_def { + name: "QNetwork/EncodingNetwork/lambda/Cast" + op: "Cast" + input: "QNetwork/EncodingNetwork/lambda/Bucketize:output:0" + attr { + key: "DstT" + value { + type: DT_FLOAT + } + } + attr { + key: "SrcT" + value { + type: DT_INT32 + } + } + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + dim { + size: 1 + } + } + } + } + } + experimental_debug_info { + original_node_names: "QNetwork/EncodingNetwork/lambda/Cast" + } + } + node_def { + name: "QNetwork/EncodingNetwork/lambda/truediv/y" + op: "Const" + attr { + key: "_output_shapes" + value { + list { + shape { + } + } + } + } + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_FLOAT + tensor_shape { + } + float_val: 999 + } + } + } + experimental_debug_info { + original_node_names: "QNetwork/EncodingNetwork/lambda/truediv/y" + } + } + node_def { + name: "QNetwork/EncodingNetwork/lambda/truediv" + op: "RealDiv" + input: "QNetwork/EncodingNetwork/lambda/Cast:y:0" + input: "QNetwork/EncodingNetwork/lambda/truediv/y:output:0" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + dim { + size: 1 + } + } + } + } + } + experimental_debug_info { + original_node_names: "QNetwork/EncodingNetwork/lambda/truediv" + } + } + node_def { + name: "QNetwork/EncodingNetwork/lambda/Sqrt" + op: "Sqrt" + input: "QNetwork/EncodingNetwork/lambda/truediv:z:0" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + dim { + size: 1 + } + } + } + } + } + experimental_debug_info { + original_node_names: "QNetwork/EncodingNetwork/lambda/Sqrt" + } + } + node_def { + name: "QNetwork/EncodingNetwork/lambda/mul" + op: "Mul" + input: "QNetwork/EncodingNetwork/lambda/truediv:z:0" + input: "QNetwork/EncodingNetwork/lambda/truediv:z:0" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + dim { + size: 1 + } + } + } + } + } + experimental_debug_info { + original_node_names: "QNetwork/EncodingNetwork/lambda/mul" + } + } + node_def { + name: "QNetwork/EncodingNetwork/lambda/concat/axis" + op: "Const" + attr { + key: "_output_shapes" + value { + list { + shape { + } + } + } + } + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + } + int_val: -1 + } + } + } + experimental_debug_info { + original_node_names: "QNetwork/EncodingNetwork/lambda/concat/axis" + } + } + node_def { + name: "QNetwork/EncodingNetwork/lambda/concat" + op: "ConcatV2" + input: "QNetwork/EncodingNetwork/lambda/truediv:z:0" + input: "QNetwork/EncodingNetwork/lambda/Sqrt:y:0" + input: "QNetwork/EncodingNetwork/lambda/mul:z:0" + input: "QNetwork/EncodingNetwork/lambda/concat/axis:output:0" + attr { + key: "N" + value { + i: 3 + } + } + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + dim { + size: 3 + } + } + } + } + } + experimental_debug_info { + original_node_names: "QNetwork/EncodingNetwork/lambda/concat" + } + } + node_def { + name: "QNetwork/EncodingNetwork/lambda_1/expand_dims/ExpandDims/dim" + op: "Const" + attr { + key: "_output_shapes" + value { + list { + shape { + } + } + } + } + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + } + int_val: -1 + } + } + } + experimental_debug_info { + original_node_names: "QNetwork/EncodingNetwork/lambda_1/expand_dims/ExpandDims/dim" + } + } + node_def { + name: "QNetwork/EncodingNetwork/lambda_1/expand_dims/ExpandDims" + op: "ExpandDims" + input: "time_step_4" + input: "QNetwork/EncodingNetwork/lambda_1/expand_dims/ExpandDims/dim:output:0" + attr { + key: "T" + value { + type: DT_INT64 + } + } + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + dim { + size: 1 + } + } + } + } + } + experimental_debug_info { + original_node_names: "QNetwork/EncodingNetwork/lambda_1/expand_dims/ExpandDims" + } + } + node_def { + name: "QNetwork/EncodingNetwork/lambda_1/Bucketize" + op: "Bucketize" + input: "QNetwork/EncodingNetwork/lambda_1/expand_dims/ExpandDims:output:0" + attr { + key: "T" + value { + type: DT_INT64 + } + } + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + dim { + size: 1 + } + } + } + } + } + attr { + key: "boundaries" + value { + list { + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 3 + f: 3 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 7 + f: 8 + f: 8 + f: 8 + f: 8 + f: 9 + f: 10 + f: 10 + f: 10 + f: 12 + f: 12 + f: 12 + f: 14 + f: 14 + f: 18 + f: 20 + f: 23 + f: 30 + f: 41 + } + } + } + experimental_debug_info { + original_node_names: "QNetwork/EncodingNetwork/lambda_1/Bucketize" + } + } + node_def { + name: "QNetwork/EncodingNetwork/lambda_1/Cast" + op: "Cast" + input: "QNetwork/EncodingNetwork/lambda_1/Bucketize:output:0" + attr { + key: "DstT" + value { + type: DT_FLOAT + } + } + attr { + key: "SrcT" + value { + type: DT_INT32 + } + } + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + dim { + size: 1 + } + } + } + } + } + experimental_debug_info { + original_node_names: "QNetwork/EncodingNetwork/lambda_1/Cast" + } + } + node_def { + name: "QNetwork/EncodingNetwork/lambda_1/truediv/y" + op: "Const" + attr { + key: "_output_shapes" + value { + list { + shape { + } + } + } + } + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_FLOAT + tensor_shape { + } + float_val: 999 + } + } + } + experimental_debug_info { + original_node_names: "QNetwork/EncodingNetwork/lambda_1/truediv/y" + } + } + node_def { + name: "QNetwork/EncodingNetwork/lambda_1/truediv" + op: "RealDiv" + input: "QNetwork/EncodingNetwork/lambda_1/Cast:y:0" + input: "QNetwork/EncodingNetwork/lambda_1/truediv/y:output:0" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + dim { + size: 1 + } + } + } + } + } + experimental_debug_info { + original_node_names: "QNetwork/EncodingNetwork/lambda_1/truediv" + } + } + node_def { + name: "QNetwork/EncodingNetwork/lambda_1/Sqrt" + op: "Sqrt" + input: "QNetwork/EncodingNetwork/lambda_1/truediv:z:0" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + dim { + size: 1 + } + } + } + } + } + experimental_debug_info { + original_node_names: "QNetwork/EncodingNetwork/lambda_1/Sqrt" + } + } + node_def { + name: "QNetwork/EncodingNetwork/lambda_1/mul" + op: "Mul" + input: "QNetwork/EncodingNetwork/lambda_1/truediv:z:0" + input: "QNetwork/EncodingNetwork/lambda_1/truediv:z:0" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + dim { + size: 1 + } + } + } + } + } + experimental_debug_info { + original_node_names: "QNetwork/EncodingNetwork/lambda_1/mul" + } + } + node_def { + name: "QNetwork/EncodingNetwork/lambda_1/concat/axis" + op: "Const" + attr { + key: "_output_shapes" + value { + list { + shape { + } + } + } + } + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + } + int_val: -1 + } + } + } + experimental_debug_info { + original_node_names: "QNetwork/EncodingNetwork/lambda_1/concat/axis" + } + } + node_def { + name: "QNetwork/EncodingNetwork/lambda_1/concat" + op: "ConcatV2" + input: "QNetwork/EncodingNetwork/lambda_1/truediv:z:0" + input: "QNetwork/EncodingNetwork/lambda_1/Sqrt:y:0" + input: "QNetwork/EncodingNetwork/lambda_1/mul:z:0" + input: "QNetwork/EncodingNetwork/lambda_1/concat/axis:output:0" + attr { + key: "N" + value { + i: 3 + } + } + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + dim { + size: 3 + } + } + } + } + } + experimental_debug_info { + original_node_names: "QNetwork/EncodingNetwork/lambda_1/concat" + } + } + node_def { + name: "QNetwork/EncodingNetwork/lambda_2/expand_dims/ExpandDims/dim" + op: "Const" + attr { + key: "_output_shapes" + value { + list { + shape { + } + } + } + } + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + } + int_val: -1 + } + } + } + experimental_debug_info { + original_node_names: "QNetwork/EncodingNetwork/lambda_2/expand_dims/ExpandDims/dim" + } + } + node_def { + name: "QNetwork/EncodingNetwork/lambda_2/expand_dims/ExpandDims" + op: "ExpandDims" + input: "time_step_5" + input: "QNetwork/EncodingNetwork/lambda_2/expand_dims/ExpandDims/dim:output:0" + attr { + key: "T" + value { + type: DT_INT64 + } + } + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + dim { + size: 1 + } + } + } + } + } + experimental_debug_info { + original_node_names: "QNetwork/EncodingNetwork/lambda_2/expand_dims/ExpandDims" + } + } + node_def { + name: "QNetwork/EncodingNetwork/lambda_2/Bucketize" + op: "Bucketize" + input: "QNetwork/EncodingNetwork/lambda_2/expand_dims/ExpandDims:output:0" + attr { + key: "T" + value { + type: DT_INT64 + } + } + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + dim { + size: 1 + } + } + } + } + } + attr { + key: "boundaries" + value { + list { + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 7 + f: 7 + f: 7 + f: 7 + f: 7 + f: 7 + f: 7 + f: 7 + f: 7 + f: 7 + f: 7 + f: 7 + f: 7 + f: 7 + f: 7 + f: 7 + f: 7 + f: 7 + f: 7 + f: 7 + f: 7 + f: 7 + f: 7 + f: 7 + f: 7 + f: 7 + f: 7 + f: 7 + f: 7 + f: 7 + f: 7 + f: 7 + f: 8 + f: 8 + f: 8 + f: 8 + f: 8 + f: 8 + f: 8 + f: 8 + f: 8 + f: 8 + f: 8 + f: 8 + f: 8 + f: 8 + f: 8 + f: 8 + f: 8 + f: 8 + f: 8 + f: 8 + f: 9 + f: 9 + f: 9 + f: 9 + f: 9 + f: 9 + f: 9 + f: 9 + f: 9 + f: 9 + f: 9 + f: 9 + f: 9 + f: 9 + f: 9 + f: 9 + f: 9 + f: 9 + f: 9 + f: 9 + f: 9 + f: 9 + f: 10 + f: 10 + f: 10 + f: 10 + f: 10 + f: 10 + f: 10 + f: 10 + f: 10 + f: 10 + f: 10 + f: 10 + f: 10 + f: 10 + f: 11 + f: 11 + f: 11 + f: 11 + f: 11 + f: 11 + f: 11 + f: 11 + f: 11 + f: 11 + f: 11 + f: 11 + f: 12 + f: 12 + f: 12 + f: 12 + f: 12 + f: 12 + f: 12 + f: 12 + f: 12 + f: 12 + f: 13 + f: 13 + f: 13 + f: 13 + f: 13 + f: 13 + f: 13 + f: 13 + f: 13 + f: 13 + f: 13 + f: 13 + f: 13 + f: 14 + f: 14 + f: 14 + f: 14 + f: 14 + f: 14 + f: 14 + f: 14 + f: 14 + f: 14 + f: 14 + f: 14 + f: 15 + f: 15 + f: 15 + f: 15 + f: 15 + f: 15 + f: 15 + f: 16 + f: 16 + f: 16 + f: 16 + f: 16 + f: 16 + f: 17 + f: 17 + f: 17 + f: 17 + f: 17 + f: 17 + f: 17 + f: 17 + f: 17 + f: 18 + f: 18 + f: 18 + f: 18 + f: 18 + f: 19 + f: 19 + f: 19 + f: 19 + f: 19 + f: 20 + f: 20 + f: 20 + f: 20 + f: 20 + f: 21 + f: 21 + f: 21 + f: 21 + f: 21 + f: 21 + f: 21 + f: 22 + f: 22 + f: 22 + f: 22 + f: 23 + f: 23 + f: 23 + f: 24 + f: 24 + f: 24 + f: 25 + f: 25 + f: 25 + f: 25 + f: 25 + f: 25 + f: 26 + f: 26 + f: 26 + f: 27 + f: 27 + f: 27 + f: 27 + f: 28 + f: 28 + f: 29 + f: 29 + f: 29 + f: 29 + f: 30 + f: 30 + f: 31 + f: 31 + f: 31 + f: 31 + f: 32 + f: 32 + f: 33 + f: 33 + f: 33 + f: 34 + f: 34 + f: 34 + f: 34 + f: 35 + f: 35 + f: 36 + f: 36 + f: 37 + f: 37 + f: 37 + f: 38 + f: 38 + f: 39 + f: 39 + f: 40 + f: 40 + f: 41 + f: 41 + f: 41 + f: 42 + f: 43 + f: 43 + f: 44 + f: 44 + f: 45 + f: 45 + f: 46 + f: 46 + f: 46 + f: 47 + f: 47 + f: 48 + f: 49 + f: 49 + f: 50 + f: 50 + f: 51 + f: 52 + f: 53 + f: 53 + f: 54 + f: 55 + f: 56 + f: 57 + f: 57 + f: 58 + f: 59 + f: 60 + f: 61 + f: 61 + f: 63 + f: 63 + f: 64 + f: 65 + f: 66 + f: 67 + f: 67 + f: 69 + f: 70 + f: 71 + f: 72 + f: 73 + f: 74 + f: 75 + f: 77 + f: 78 + f: 79 + f: 80 + f: 81 + f: 82 + f: 83 + f: 85 + f: 86 + f: 88 + f: 89 + f: 91 + f: 92 + f: 94 + f: 96 + f: 97 + f: 99 + f: 100 + f: 101 + f: 103 + f: 105 + f: 107 + f: 109 + f: 111 + f: 113 + f: 115 + f: 118 + f: 121 + f: 123 + f: 126 + f: 128 + f: 130 + f: 133 + f: 135 + f: 137 + f: 140 + f: 143 + f: 146 + f: 148 + f: 151 + f: 154 + f: 157 + f: 161 + f: 163 + f: 166 + f: 169 + f: 173 + f: 178 + f: 183 + f: 189 + f: 193 + f: 197 + f: 202 + f: 208 + f: 213 + f: 218 + f: 223 + f: 228 + f: 233 + f: 239 + f: 245 + f: 250 + f: 257 + f: 262 + f: 269 + f: 277 + f: 284 + f: 292 + f: 300 + f: 308 + f: 319 + f: 329 + f: 340 + f: 349 + f: 359 + f: 371 + f: 382 + f: 394 + f: 410 + f: 423 + f: 435 + f: 445 + f: 462 + f: 480 + f: 492 + f: 506 + f: 519 + f: 536 + f: 557 + f: 577 + f: 598 + f: 622 + f: 655 + f: 679 + f: 707 + f: 733 + f: 751 + f: 787 + f: 814 + f: 847 + f: 897 + f: 934 + f: 997 + f: 1062 + f: 1111 + f: 1181 + f: 1275 + f: 1385 + f: 1465 + f: 1603 + f: 1769 + f: 2057 + f: 2257 + f: 2803 + f: 3468 + f: 4417 + f: 6538 + f: 16126 + f: 23446 + f: 33536 + } + } + } + experimental_debug_info { + original_node_names: "QNetwork/EncodingNetwork/lambda_2/Bucketize" + } + } + node_def { + name: "QNetwork/EncodingNetwork/lambda_2/Cast" + op: "Cast" + input: "QNetwork/EncodingNetwork/lambda_2/Bucketize:output:0" + attr { + key: "DstT" + value { + type: DT_FLOAT + } + } + attr { + key: "SrcT" + value { + type: DT_INT32 + } + } + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + dim { + size: 1 + } + } + } + } + } + experimental_debug_info { + original_node_names: "QNetwork/EncodingNetwork/lambda_2/Cast" + } + } + node_def { + name: "QNetwork/EncodingNetwork/lambda_2/truediv/y" + op: "Const" + attr { + key: "_output_shapes" + value { + list { + shape { + } + } + } + } + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_FLOAT + tensor_shape { + } + float_val: 999 + } + } + } + experimental_debug_info { + original_node_names: "QNetwork/EncodingNetwork/lambda_2/truediv/y" + } + } + node_def { + name: "QNetwork/EncodingNetwork/lambda_2/truediv" + op: "RealDiv" + input: "QNetwork/EncodingNetwork/lambda_2/Cast:y:0" + input: "QNetwork/EncodingNetwork/lambda_2/truediv/y:output:0" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + dim { + size: 1 + } + } + } + } + } + experimental_debug_info { + original_node_names: "QNetwork/EncodingNetwork/lambda_2/truediv" + } + } + node_def { + name: "QNetwork/EncodingNetwork/lambda_2/Sqrt" + op: "Sqrt" + input: "QNetwork/EncodingNetwork/lambda_2/truediv:z:0" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + dim { + size: 1 + } + } + } + } + } + experimental_debug_info { + original_node_names: "QNetwork/EncodingNetwork/lambda_2/Sqrt" + } + } + node_def { + name: "QNetwork/EncodingNetwork/lambda_2/mul" + op: "Mul" + input: "QNetwork/EncodingNetwork/lambda_2/truediv:z:0" + input: "QNetwork/EncodingNetwork/lambda_2/truediv:z:0" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + dim { + size: 1 + } + } + } + } + } + experimental_debug_info { + original_node_names: "QNetwork/EncodingNetwork/lambda_2/mul" + } + } + node_def { + name: "QNetwork/EncodingNetwork/lambda_2/concat/axis" + op: "Const" + attr { + key: "_output_shapes" + value { + list { + shape { + } + } + } + } + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + } + int_val: -1 + } + } + } + experimental_debug_info { + original_node_names: "QNetwork/EncodingNetwork/lambda_2/concat/axis" + } + } + node_def { + name: "QNetwork/EncodingNetwork/lambda_2/concat" + op: "ConcatV2" + input: "QNetwork/EncodingNetwork/lambda_2/truediv:z:0" + input: "QNetwork/EncodingNetwork/lambda_2/Sqrt:y:0" + input: "QNetwork/EncodingNetwork/lambda_2/mul:z:0" + input: "QNetwork/EncodingNetwork/lambda_2/concat/axis:output:0" + attr { + key: "N" + value { + i: 3 + } + } + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + dim { + size: 3 + } + } + } + } + } + experimental_debug_info { + original_node_names: "QNetwork/EncodingNetwork/lambda_2/concat" + } + } + node_def { + name: "QNetwork/EncodingNetwork/lambda_3/expand_dims/ExpandDims/dim" + op: "Const" + attr { + key: "_output_shapes" + value { + list { + shape { + } + } + } + } + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + } + int_val: -1 + } + } + } + experimental_debug_info { + original_node_names: "QNetwork/EncodingNetwork/lambda_3/expand_dims/ExpandDims/dim" + } + } + node_def { + name: "QNetwork/EncodingNetwork/lambda_3/expand_dims/ExpandDims" + op: "ExpandDims" + input: "time_step_6" + input: "QNetwork/EncodingNetwork/lambda_3/expand_dims/ExpandDims/dim:output:0" + attr { + key: "T" + value { + type: DT_INT64 + } + } + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + dim { + size: 1 + } + } + } + } + } + experimental_debug_info { + original_node_names: "QNetwork/EncodingNetwork/lambda_3/expand_dims/ExpandDims" + } + } + node_def { + name: "QNetwork/EncodingNetwork/lambda_3/Bucketize" + op: "Bucketize" + input: "QNetwork/EncodingNetwork/lambda_3/expand_dims/ExpandDims:output:0" + attr { + key: "T" + value { + type: DT_INT64 + } + } + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + dim { + size: 1 + } + } + } + } + } + attr { + key: "boundaries" + value { + list { + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 7 + f: 7 + f: 7 + f: 7 + f: 7 + f: 7 + f: 7 + f: 7 + f: 7 + f: 7 + f: 7 + f: 7 + f: 7 + f: 7 + f: 7 + f: 7 + f: 7 + f: 7 + f: 7 + f: 7 + f: 7 + f: 7 + f: 7 + f: 7 + f: 7 + f: 7 + f: 7 + f: 7 + f: 7 + f: 7 + f: 7 + f: 8 + f: 8 + f: 8 + f: 8 + f: 8 + f: 8 + f: 8 + f: 8 + f: 8 + f: 8 + f: 8 + f: 8 + f: 8 + f: 8 + f: 8 + f: 8 + f: 8 + f: 8 + f: 8 + f: 8 + f: 9 + f: 9 + f: 9 + f: 9 + f: 9 + f: 9 + f: 9 + f: 9 + f: 9 + f: 9 + f: 9 + f: 9 + f: 9 + f: 9 + f: 9 + f: 9 + f: 9 + f: 10 + f: 10 + f: 10 + f: 10 + f: 10 + f: 10 + f: 10 + f: 10 + f: 10 + f: 10 + f: 10 + f: 10 + f: 10 + f: 10 + f: 10 + f: 11 + f: 11 + f: 11 + f: 11 + f: 11 + f: 11 + f: 11 + f: 11 + f: 11 + f: 11 + f: 11 + f: 11 + f: 11 + f: 11 + f: 12 + f: 12 + f: 12 + f: 12 + f: 12 + f: 12 + f: 12 + f: 12 + f: 12 + f: 12 + f: 12 + f: 12 + f: 13 + f: 13 + f: 13 + f: 13 + f: 13 + f: 13 + f: 13 + f: 13 + f: 13 + f: 13 + f: 13 + f: 13 + f: 13 + f: 13 + f: 13 + f: 13 + f: 13 + f: 13 + f: 14 + f: 14 + f: 14 + f: 14 + f: 14 + f: 14 + f: 14 + f: 14 + f: 15 + f: 15 + f: 15 + f: 15 + f: 15 + f: 15 + f: 15 + f: 15 + f: 15 + f: 16 + f: 16 + f: 16 + f: 16 + f: 16 + f: 16 + f: 16 + f: 16 + f: 16 + f: 16 + f: 17 + f: 17 + f: 17 + f: 17 + f: 17 + f: 17 + f: 17 + f: 18 + f: 18 + f: 18 + f: 18 + f: 18 + f: 18 + f: 18 + f: 18 + f: 18 + f: 18 + f: 18 + f: 19 + f: 19 + f: 19 + f: 19 + f: 19 + f: 19 + f: 19 + f: 20 + f: 20 + f: 20 + f: 20 + f: 20 + f: 21 + f: 21 + f: 21 + f: 21 + f: 21 + f: 21 + f: 22 + f: 22 + f: 22 + f: 22 + f: 22 + f: 22 + f: 22 + f: 23 + f: 23 + f: 23 + f: 24 + f: 24 + f: 24 + f: 24 + f: 24 + f: 24 + f: 25 + f: 25 + f: 25 + f: 25 + f: 25 + f: 26 + f: 26 + f: 26 + f: 26 + f: 27 + f: 27 + f: 27 + f: 27 + f: 27 + f: 28 + f: 28 + f: 28 + f: 29 + f: 29 + f: 29 + f: 29 + f: 30 + f: 30 + f: 30 + f: 31 + f: 31 + f: 31 + f: 32 + f: 32 + f: 32 + f: 33 + f: 33 + f: 33 + f: 34 + f: 34 + f: 34 + f: 34 + f: 35 + f: 35 + f: 35 + f: 36 + f: 36 + f: 36 + f: 37 + f: 37 + f: 37 + f: 38 + f: 38 + f: 38 + f: 38 + f: 39 + f: 39 + f: 40 + f: 40 + f: 41 + f: 41 + f: 42 + f: 43 + f: 43 + f: 44 + f: 45 + f: 45 + f: 46 + f: 47 + f: 47 + f: 48 + f: 49 + f: 49 + f: 50 + f: 50 + f: 52 + f: 52 + f: 53 + f: 54 + f: 55 + f: 55 + f: 57 + f: 58 + f: 59 + f: 60 + f: 62 + f: 64 + f: 65 + f: 66 + f: 68 + f: 70 + f: 70 + f: 70 + f: 70 + f: 70 + f: 71 + f: 73 + f: 75 + f: 76 + f: 78 + f: 81 + f: 84 + f: 86 + f: 90 + f: 94 + f: 98 + f: 101 + f: 106 + f: 111 + f: 117 + f: 123 + f: 130 + f: 138 + f: 146 + f: 157 + f: 163 + f: 176 + f: 187 + f: 198 + f: 214 + f: 227 + f: 252 + f: 280 + f: 327 + f: 395 + f: 506 + f: 671 + f: 1025 + f: 1971 + } + } + } + experimental_debug_info { + original_node_names: "QNetwork/EncodingNetwork/lambda_3/Bucketize" + } + } + node_def { + name: "QNetwork/EncodingNetwork/lambda_3/Cast" + op: "Cast" + input: "QNetwork/EncodingNetwork/lambda_3/Bucketize:output:0" + attr { + key: "DstT" + value { + type: DT_FLOAT + } + } + attr { + key: "SrcT" + value { + type: DT_INT32 + } + } + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + dim { + size: 1 + } + } + } + } + } + experimental_debug_info { + original_node_names: "QNetwork/EncodingNetwork/lambda_3/Cast" + } + } + node_def { + name: "QNetwork/EncodingNetwork/lambda_3/truediv/y" + op: "Const" + attr { + key: "_output_shapes" + value { + list { + shape { + } + } + } + } + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_FLOAT + tensor_shape { + } + float_val: 999 + } + } + } + experimental_debug_info { + original_node_names: "QNetwork/EncodingNetwork/lambda_3/truediv/y" + } + } + node_def { + name: "QNetwork/EncodingNetwork/lambda_3/truediv" + op: "RealDiv" + input: "QNetwork/EncodingNetwork/lambda_3/Cast:y:0" + input: "QNetwork/EncodingNetwork/lambda_3/truediv/y:output:0" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + dim { + size: 1 + } + } + } + } + } + experimental_debug_info { + original_node_names: "QNetwork/EncodingNetwork/lambda_3/truediv" + } + } + node_def { + name: "QNetwork/EncodingNetwork/lambda_3/Sqrt" + op: "Sqrt" + input: "QNetwork/EncodingNetwork/lambda_3/truediv:z:0" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + dim { + size: 1 + } + } + } + } + } + experimental_debug_info { + original_node_names: "QNetwork/EncodingNetwork/lambda_3/Sqrt" + } + } + node_def { + name: "QNetwork/EncodingNetwork/lambda_3/mul" + op: "Mul" + input: "QNetwork/EncodingNetwork/lambda_3/truediv:z:0" + input: "QNetwork/EncodingNetwork/lambda_3/truediv:z:0" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + dim { + size: 1 + } + } + } + } + } + experimental_debug_info { + original_node_names: "QNetwork/EncodingNetwork/lambda_3/mul" + } + } + node_def { + name: "QNetwork/EncodingNetwork/lambda_3/concat/axis" + op: "Const" + attr { + key: "_output_shapes" + value { + list { + shape { + } + } + } + } + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + } + int_val: -1 + } + } + } + experimental_debug_info { + original_node_names: "QNetwork/EncodingNetwork/lambda_3/concat/axis" + } + } + node_def { + name: "QNetwork/EncodingNetwork/lambda_3/concat" + op: "ConcatV2" + input: "QNetwork/EncodingNetwork/lambda_3/truediv:z:0" + input: "QNetwork/EncodingNetwork/lambda_3/Sqrt:y:0" + input: "QNetwork/EncodingNetwork/lambda_3/mul:z:0" + input: "QNetwork/EncodingNetwork/lambda_3/concat/axis:output:0" + attr { + key: "N" + value { + i: 3 + } + } + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + dim { + size: 3 + } + } + } + } + } + experimental_debug_info { + original_node_names: "QNetwork/EncodingNetwork/lambda_3/concat" + } + } + node_def { + name: "QNetwork/EncodingNetwork/lambda_4/expand_dims/ExpandDims/dim" + op: "Const" + attr { + key: "_output_shapes" + value { + list { + shape { + } + } + } + } + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + } + int_val: -1 + } + } + } + experimental_debug_info { + original_node_names: "QNetwork/EncodingNetwork/lambda_4/expand_dims/ExpandDims/dim" + } + } + node_def { + name: "QNetwork/EncodingNetwork/lambda_4/expand_dims/ExpandDims" + op: "ExpandDims" + input: "time_step_7" + input: "QNetwork/EncodingNetwork/lambda_4/expand_dims/ExpandDims/dim:output:0" + attr { + key: "T" + value { + type: DT_INT64 + } + } + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + dim { + size: 1 + } + } + } + } + } + experimental_debug_info { + original_node_names: "QNetwork/EncodingNetwork/lambda_4/expand_dims/ExpandDims" + } + } + node_def { + name: "QNetwork/EncodingNetwork/lambda_4/Bucketize" + op: "Bucketize" + input: "QNetwork/EncodingNetwork/lambda_4/expand_dims/ExpandDims:output:0" + attr { + key: "T" + value { + type: DT_INT64 + } + } + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + dim { + size: 1 + } + } + } + } + } + attr { + key: "boundaries" + value { + list { + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 5 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 7 + f: 8 + f: 8 + f: 8 + f: 8 + f: 8 + f: 8 + f: 8 + f: 8 + f: 8 + f: 8 + f: 8 + f: 8 + f: 8 + f: 8 + f: 8 + f: 8 + f: 8 + f: 8 + f: 8 + f: 8 + f: 8 + f: 8 + f: 8 + f: 8 + f: 8 + f: 8 + f: 8 + f: 8 + f: 8 + f: 8 + f: 8 + f: 8 + f: 8 + f: 8 + f: 10 + f: 10 + f: 10 + f: 10 + f: 10 + f: 10 + f: 10 + f: 10 + f: 10 + f: 10 + f: 10 + f: 10 + f: 10 + f: 10 + f: 10 + f: 10 + f: 10 + f: 10 + f: 10 + f: 10 + f: 10 + f: 10 + f: 10 + f: 10 + f: 10 + f: 10 + f: 10 + f: 10 + f: 11 + f: 11 + f: 11 + f: 12 + f: 12 + f: 12 + f: 12 + f: 12 + f: 12 + f: 12 + f: 12 + f: 12 + f: 12 + f: 12 + f: 12 + f: 12 + f: 12 + f: 12 + f: 12 + f: 12 + f: 12 + f: 13 + f: 13 + f: 14 + f: 14 + f: 14 + f: 14 + f: 14 + f: 14 + f: 14 + f: 14 + f: 14 + f: 14 + f: 14 + f: 14 + f: 14 + f: 14 + f: 14 + f: 14 + f: 16 + f: 16 + f: 16 + f: 16 + f: 16 + f: 16 + f: 16 + f: 16 + f: 16 + f: 16 + f: 16 + f: 16 + f: 16 + f: 16 + f: 16 + f: 16 + f: 18 + f: 18 + f: 18 + f: 18 + f: 18 + f: 18 + f: 18 + f: 18 + f: 18 + f: 18 + f: 18 + f: 18 + f: 18 + f: 19 + f: 19 + f: 20 + f: 20 + f: 20 + f: 20 + f: 20 + f: 20 + f: 20 + f: 20 + f: 21 + f: 22 + f: 22 + f: 22 + f: 22 + f: 22 + f: 22 + f: 22 + f: 22 + f: 22 + f: 24 + f: 24 + f: 24 + f: 24 + f: 24 + f: 24 + f: 24 + f: 24 + f: 25 + f: 26 + f: 26 + f: 26 + f: 26 + f: 26 + f: 26 + f: 26 + f: 26 + f: 26 + f: 26 + f: 27 + f: 28 + f: 28 + f: 28 + f: 28 + f: 28 + f: 29 + f: 30 + f: 30 + f: 30 + f: 30 + f: 30 + f: 30 + f: 31 + f: 32 + f: 32 + f: 32 + f: 32 + f: 32 + f: 34 + f: 34 + f: 34 + f: 34 + f: 34 + f: 34 + f: 35 + f: 36 + f: 36 + f: 36 + f: 37 + f: 38 + f: 38 + f: 38 + f: 39 + f: 40 + f: 40 + f: 41 + f: 42 + f: 42 + f: 43 + f: 44 + f: 44 + f: 46 + f: 46 + f: 47 + f: 48 + f: 48 + f: 50 + f: 50 + f: 52 + f: 52 + f: 54 + f: 55 + f: 55 + f: 56 + f: 57 + f: 58 + f: 60 + f: 60 + f: 60 + f: 60 + f: 60 + f: 60 + f: 62 + f: 62 + f: 64 + f: 65 + f: 66 + f: 68 + f: 70 + f: 72 + f: 74 + f: 77 + f: 80 + f: 82 + f: 86 + f: 89 + f: 92 + f: 96 + f: 99 + f: 104 + f: 108 + f: 114 + f: 119 + f: 125 + f: 131 + f: 139 + f: 146 + f: 157 + f: 167 + f: 176 + f: 188 + f: 198 + f: 215 + f: 236 + f: 262 + f: 306 + f: 376 + f: 462 + f: 596 + f: 942 + f: 1428 + } + } + } + experimental_debug_info { + original_node_names: "QNetwork/EncodingNetwork/lambda_4/Bucketize" + } + } + node_def { + name: "QNetwork/EncodingNetwork/lambda_4/Cast" + op: "Cast" + input: "QNetwork/EncodingNetwork/lambda_4/Bucketize:output:0" + attr { + key: "DstT" + value { + type: DT_FLOAT + } + } + attr { + key: "SrcT" + value { + type: DT_INT32 + } + } + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + dim { + size: 1 + } + } + } + } + } + experimental_debug_info { + original_node_names: "QNetwork/EncodingNetwork/lambda_4/Cast" + } + } + node_def { + name: "QNetwork/EncodingNetwork/lambda_4/truediv/y" + op: "Const" + attr { + key: "_output_shapes" + value { + list { + shape { + } + } + } + } + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_FLOAT + tensor_shape { + } + float_val: 999 + } + } + } + experimental_debug_info { + original_node_names: "QNetwork/EncodingNetwork/lambda_4/truediv/y" + } + } + node_def { + name: "QNetwork/EncodingNetwork/lambda_4/truediv" + op: "RealDiv" + input: "QNetwork/EncodingNetwork/lambda_4/Cast:y:0" + input: "QNetwork/EncodingNetwork/lambda_4/truediv/y:output:0" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + dim { + size: 1 + } + } + } + } + } + experimental_debug_info { + original_node_names: "QNetwork/EncodingNetwork/lambda_4/truediv" + } + } + node_def { + name: "QNetwork/EncodingNetwork/lambda_4/Sqrt" + op: "Sqrt" + input: "QNetwork/EncodingNetwork/lambda_4/truediv:z:0" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + dim { + size: 1 + } + } + } + } + } + experimental_debug_info { + original_node_names: "QNetwork/EncodingNetwork/lambda_4/Sqrt" + } + } + node_def { + name: "QNetwork/EncodingNetwork/lambda_4/mul" + op: "Mul" + input: "QNetwork/EncodingNetwork/lambda_4/truediv:z:0" + input: "QNetwork/EncodingNetwork/lambda_4/truediv:z:0" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + dim { + size: 1 + } + } + } + } + } + experimental_debug_info { + original_node_names: "QNetwork/EncodingNetwork/lambda_4/mul" + } + } + node_def { + name: "QNetwork/EncodingNetwork/lambda_4/concat/axis" + op: "Const" + attr { + key: "_output_shapes" + value { + list { + shape { + } + } + } + } + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + } + int_val: -1 + } + } + } + experimental_debug_info { + original_node_names: "QNetwork/EncodingNetwork/lambda_4/concat/axis" + } + } + node_def { + name: "QNetwork/EncodingNetwork/lambda_4/concat" + op: "ConcatV2" + input: "QNetwork/EncodingNetwork/lambda_4/truediv:z:0" + input: "QNetwork/EncodingNetwork/lambda_4/Sqrt:y:0" + input: "QNetwork/EncodingNetwork/lambda_4/mul:z:0" + input: "QNetwork/EncodingNetwork/lambda_4/concat/axis:output:0" + attr { + key: "N" + value { + i: 3 + } + } + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + dim { + size: 3 + } + } + } + } + } + experimental_debug_info { + original_node_names: "QNetwork/EncodingNetwork/lambda_4/concat" + } + } + node_def { + name: "QNetwork/EncodingNetwork/lambda_5/expand_dims/ExpandDims/dim" + op: "Const" + attr { + key: "_output_shapes" + value { + list { + shape { + } + } + } + } + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + } + int_val: -1 + } + } + } + experimental_debug_info { + original_node_names: "QNetwork/EncodingNetwork/lambda_5/expand_dims/ExpandDims/dim" + } + } + node_def { + name: "QNetwork/EncodingNetwork/lambda_5/expand_dims/ExpandDims" + op: "ExpandDims" + input: "time_step_8" + input: "QNetwork/EncodingNetwork/lambda_5/expand_dims/ExpandDims/dim:output:0" + attr { + key: "T" + value { + type: DT_INT64 + } + } + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + dim { + size: 1 + } + } + } + } + } + experimental_debug_info { + original_node_names: "QNetwork/EncodingNetwork/lambda_5/expand_dims/ExpandDims" + } + } + node_def { + name: "QNetwork/EncodingNetwork/lambda_5/Bucketize" + op: "Bucketize" + input: "QNetwork/EncodingNetwork/lambda_5/expand_dims/ExpandDims:output:0" + attr { + key: "T" + value { + type: DT_INT64 + } + } + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + dim { + size: 1 + } + } + } + } + } + attr { + key: "boundaries" + value { + list { + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 7 + f: 7 + f: 7 + f: 7 + f: 7 + f: 7 + f: 7 + f: 7 + f: 7 + f: 8 + f: 8 + f: 8 + f: 8 + f: 8 + f: 9 + f: 9 + f: 9 + f: 9 + f: 9 + f: 10 + f: 10 + f: 11 + f: 11 + f: 12 + f: 13 + f: 14 + f: 15 + f: 16 + f: 18 + f: 20 + f: 23 + f: 29 + f: 38 + f: 60 + } + } + } + experimental_debug_info { + original_node_names: "QNetwork/EncodingNetwork/lambda_5/Bucketize" + } + } + node_def { + name: "QNetwork/EncodingNetwork/lambda_5/Cast" + op: "Cast" + input: "QNetwork/EncodingNetwork/lambda_5/Bucketize:output:0" + attr { + key: "DstT" + value { + type: DT_FLOAT + } + } + attr { + key: "SrcT" + value { + type: DT_INT32 + } + } + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + dim { + size: 1 + } + } + } + } + } + experimental_debug_info { + original_node_names: "QNetwork/EncodingNetwork/lambda_5/Cast" + } + } + node_def { + name: "QNetwork/EncodingNetwork/lambda_5/truediv/y" + op: "Const" + attr { + key: "_output_shapes" + value { + list { + shape { + } + } + } + } + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_FLOAT + tensor_shape { + } + float_val: 999 + } + } + } + experimental_debug_info { + original_node_names: "QNetwork/EncodingNetwork/lambda_5/truediv/y" + } + } + node_def { + name: "QNetwork/EncodingNetwork/lambda_5/truediv" + op: "RealDiv" + input: "QNetwork/EncodingNetwork/lambda_5/Cast:y:0" + input: "QNetwork/EncodingNetwork/lambda_5/truediv/y:output:0" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + dim { + size: 1 + } + } + } + } + } + experimental_debug_info { + original_node_names: "QNetwork/EncodingNetwork/lambda_5/truediv" + } + } + node_def { + name: "QNetwork/EncodingNetwork/lambda_5/Sqrt" + op: "Sqrt" + input: "QNetwork/EncodingNetwork/lambda_5/truediv:z:0" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + dim { + size: 1 + } + } + } + } + } + experimental_debug_info { + original_node_names: "QNetwork/EncodingNetwork/lambda_5/Sqrt" + } + } + node_def { + name: "QNetwork/EncodingNetwork/lambda_5/mul" + op: "Mul" + input: "QNetwork/EncodingNetwork/lambda_5/truediv:z:0" + input: "QNetwork/EncodingNetwork/lambda_5/truediv:z:0" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + dim { + size: 1 + } + } + } + } + } + experimental_debug_info { + original_node_names: "QNetwork/EncodingNetwork/lambda_5/mul" + } + } + node_def { + name: "QNetwork/EncodingNetwork/lambda_5/concat/axis" + op: "Const" + attr { + key: "_output_shapes" + value { + list { + shape { + } + } + } + } + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + } + int_val: -1 + } + } + } + experimental_debug_info { + original_node_names: "QNetwork/EncodingNetwork/lambda_5/concat/axis" + } + } + node_def { + name: "QNetwork/EncodingNetwork/lambda_5/concat" + op: "ConcatV2" + input: "QNetwork/EncodingNetwork/lambda_5/truediv:z:0" + input: "QNetwork/EncodingNetwork/lambda_5/Sqrt:y:0" + input: "QNetwork/EncodingNetwork/lambda_5/mul:z:0" + input: "QNetwork/EncodingNetwork/lambda_5/concat/axis:output:0" + attr { + key: "N" + value { + i: 3 + } + } + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + dim { + size: 3 + } + } + } + } + } + experimental_debug_info { + original_node_names: "QNetwork/EncodingNetwork/lambda_5/concat" + } + } + node_def { + name: "QNetwork/EncodingNetwork/lambda_6/expand_dims/ExpandDims/dim" + op: "Const" + attr { + key: "_output_shapes" + value { + list { + shape { + } + } + } + } + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + } + int_val: -1 + } + } + } + experimental_debug_info { + original_node_names: "QNetwork/EncodingNetwork/lambda_6/expand_dims/ExpandDims/dim" + } + } + node_def { + name: "QNetwork/EncodingNetwork/lambda_6/expand_dims/ExpandDims" + op: "ExpandDims" + input: "time_step_9" + input: "QNetwork/EncodingNetwork/lambda_6/expand_dims/ExpandDims/dim:output:0" + attr { + key: "T" + value { + type: DT_INT64 + } + } + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + dim { + size: 1 + } + } + } + } + } + experimental_debug_info { + original_node_names: "QNetwork/EncodingNetwork/lambda_6/expand_dims/ExpandDims" + } + } + node_def { + name: "QNetwork/EncodingNetwork/lambda_6/Bucketize" + op: "Bucketize" + input: "QNetwork/EncodingNetwork/lambda_6/expand_dims/ExpandDims:output:0" + attr { + key: "T" + value { + type: DT_INT64 + } + } + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + dim { + size: 1 + } + } + } + } + } + attr { + key: "boundaries" + value { + list { + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 3 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 4 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 6 + f: 7 + f: 7 + f: 7 + f: 7 + f: 7 + f: 7 + f: 7 + f: 7 + f: 7 + f: 7 + f: 7 + f: 7 + f: 7 + f: 7 + f: 7 + f: 7 + f: 7 + f: 7 + f: 7 + f: 7 + f: 7 + f: 7 + f: 7 + f: 7 + f: 7 + f: 7 + f: 7 + f: 7 + f: 7 + f: 7 + f: 7 + f: 7 + f: 7 + f: 7 + f: 7 + f: 7 + f: 7 + f: 7 + f: 7 + f: 7 + f: 7 + f: 7 + f: 7 + f: 7 + f: 7 + f: 7 + f: 7 + f: 7 + f: 7 + f: 7 + f: 7 + f: 7 + f: 7 + f: 7 + f: 7 + f: 7 + f: 7 + f: 7 + f: 7 + f: 7 + f: 7 + f: 7 + f: 7 + f: 7 + f: 7 + f: 7 + f: 7 + f: 7 + f: 7 + f: 7 + f: 7 + f: 7 + f: 7 + f: 7 + f: 7 + f: 8 + f: 8 + f: 8 + f: 8 + f: 8 + f: 8 + f: 8 + f: 8 + f: 8 + f: 8 + f: 8 + f: 8 + f: 8 + f: 8 + f: 8 + f: 8 + f: 8 + f: 8 + f: 8 + f: 8 + f: 8 + f: 8 + f: 8 + f: 8 + f: 8 + f: 8 + f: 8 + f: 8 + f: 8 + f: 8 + f: 8 + f: 8 + f: 8 + f: 8 + f: 8 + f: 8 + f: 8 + f: 8 + f: 8 + f: 8 + f: 8 + f: 8 + f: 8 + f: 8 + f: 8 + f: 8 + f: 8 + f: 8 + f: 8 + f: 8 + f: 8 + f: 8 + f: 8 + f: 8 + f: 8 + f: 8 + f: 8 + f: 8 + f: 9 + f: 9 + f: 9 + f: 9 + f: 9 + f: 9 + f: 9 + f: 9 + f: 9 + f: 9 + f: 9 + f: 9 + f: 9 + f: 9 + f: 9 + f: 9 + f: 9 + f: 9 + f: 9 + f: 9 + f: 9 + f: 9 + f: 9 + f: 9 + f: 9 + f: 9 + f: 9 + f: 9 + f: 9 + f: 9 + f: 9 + f: 9 + f: 9 + f: 9 + f: 9 + f: 9 + f: 9 + f: 9 + f: 9 + f: 9 + f: 9 + f: 9 + f: 9 + f: 9 + f: 9 + f: 9 + f: 9 + f: 9 + f: 9 + f: 9 + f: 9 + f: 9 + f: 9 + f: 9 + f: 9 + f: 9 + f: 9 + f: 9 + f: 9 + f: 9 + f: 9 + f: 9 + f: 9 + f: 9 + f: 9 + f: 10 + f: 10 + f: 10 + f: 10 + f: 10 + f: 10 + f: 10 + f: 10 + f: 10 + f: 10 + f: 10 + f: 10 + f: 10 + f: 10 + f: 10 + f: 10 + f: 10 + f: 10 + f: 10 + f: 10 + f: 10 + f: 10 + f: 10 + f: 10 + f: 10 + f: 10 + f: 10 + f: 10 + f: 10 + f: 10 + f: 10 + f: 10 + f: 10 + f: 10 + f: 10 + f: 10 + f: 10 + f: 10 + f: 10 + f: 10 + f: 10 + f: 10 + f: 11 + f: 11 + f: 11 + f: 11 + f: 11 + f: 11 + f: 11 + f: 11 + f: 11 + f: 11 + f: 11 + f: 11 + f: 11 + f: 11 + f: 11 + f: 11 + f: 11 + f: 11 + f: 11 + f: 11 + f: 11 + f: 11 + f: 11 + f: 11 + f: 11 + f: 11 + f: 11 + f: 11 + f: 11 + f: 11 + f: 11 + f: 11 + f: 11 + f: 11 + f: 11 + f: 11 + f: 11 + f: 11 + f: 12 + f: 12 + f: 12 + f: 12 + f: 12 + f: 12 + f: 12 + f: 12 + f: 12 + f: 12 + f: 12 + f: 12 + f: 12 + f: 12 + f: 12 + f: 12 + f: 12 + f: 12 + f: 12 + f: 12 + f: 12 + f: 12 + f: 12 + f: 12 + f: 12 + f: 12 + f: 12 + f: 12 + f: 13 + f: 13 + f: 13 + f: 13 + f: 13 + f: 13 + f: 13 + f: 13 + f: 13 + f: 13 + f: 13 + f: 13 + f: 13 + f: 13 + f: 13 + f: 13 + f: 13 + f: 13 + f: 13 + f: 13 + f: 13 + f: 13 + f: 13 + f: 13 + f: 14 + f: 14 + f: 14 + f: 14 + f: 14 + f: 14 + f: 14 + f: 14 + f: 14 + f: 14 + f: 14 + f: 14 + f: 14 + f: 14 + f: 14 + f: 14 + f: 14 + f: 14 + f: 14 + f: 14 + f: 14 + f: 14 + f: 15 + f: 15 + f: 15 + f: 15 + f: 15 + f: 15 + f: 15 + f: 15 + f: 15 + f: 15 + f: 15 + f: 15 + f: 15 + f: 15 + f: 15 + f: 15 + f: 15 + f: 15 + f: 15 + f: 16 + f: 16 + f: 16 + f: 16 + f: 16 + f: 16 + f: 16 + f: 16 + f: 16 + f: 16 + f: 16 + f: 16 + f: 16 + f: 16 + f: 16 + f: 16 + f: 17 + f: 17 + f: 17 + f: 17 + f: 17 + f: 17 + f: 17 + f: 17 + f: 17 + f: 17 + f: 17 + f: 17 + f: 17 + f: 17 + f: 17 + f: 17 + f: 18 + f: 18 + f: 18 + f: 18 + f: 18 + f: 18 + f: 18 + f: 18 + f: 18 + f: 18 + f: 18 + f: 18 + f: 18 + f: 19 + f: 19 + f: 19 + f: 19 + f: 19 + f: 19 + f: 19 + f: 19 + f: 19 + f: 19 + f: 19 + f: 19 + f: 20 + f: 20 + f: 20 + f: 20 + f: 20 + f: 20 + f: 20 + f: 20 + f: 20 + f: 21 + f: 21 + f: 21 + f: 21 + f: 21 + f: 21 + f: 21 + f: 21 + f: 22 + f: 22 + f: 22 + f: 22 + f: 22 + f: 22 + f: 22 + f: 22 + f: 23 + f: 23 + f: 23 + f: 23 + f: 23 + f: 23 + f: 23 + f: 24 + f: 24 + f: 24 + f: 24 + f: 24 + f: 25 + f: 25 + f: 25 + f: 25 + f: 25 + f: 26 + f: 26 + f: 26 + f: 26 + f: 27 + f: 27 + f: 27 + f: 28 + f: 28 + f: 28 + f: 29 + f: 29 + f: 30 + f: 30 + f: 30 + f: 31 + f: 31 + f: 32 + f: 32 + f: 33 + f: 33 + f: 34 + f: 35 + f: 37 + f: 38 + f: 40 + f: 46 + f: 51 + } + } + } + experimental_debug_info { + original_node_names: "QNetwork/EncodingNetwork/lambda_6/Bucketize" + } + } + node_def { + name: "QNetwork/EncodingNetwork/lambda_6/Cast" + op: "Cast" + input: "QNetwork/EncodingNetwork/lambda_6/Bucketize:output:0" + attr { + key: "DstT" + value { + type: DT_FLOAT + } + } + attr { + key: "SrcT" + value { + type: DT_INT32 + } + } + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + dim { + size: 1 + } + } + } + } + } + experimental_debug_info { + original_node_names: "QNetwork/EncodingNetwork/lambda_6/Cast" + } + } + node_def { + name: "QNetwork/EncodingNetwork/lambda_6/truediv/y" + op: "Const" + attr { + key: "_output_shapes" + value { + list { + shape { + } + } + } + } + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_FLOAT + tensor_shape { + } + float_val: 999 + } + } + } + experimental_debug_info { + original_node_names: "QNetwork/EncodingNetwork/lambda_6/truediv/y" + } + } + node_def { + name: "QNetwork/EncodingNetwork/lambda_6/truediv" + op: "RealDiv" + input: "QNetwork/EncodingNetwork/lambda_6/Cast:y:0" + input: "QNetwork/EncodingNetwork/lambda_6/truediv/y:output:0" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + dim { + size: 1 + } + } + } + } + } + experimental_debug_info { + original_node_names: "QNetwork/EncodingNetwork/lambda_6/truediv" + } + } + node_def { + name: "QNetwork/EncodingNetwork/lambda_6/Sqrt" + op: "Sqrt" + input: "QNetwork/EncodingNetwork/lambda_6/truediv:z:0" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + dim { + size: 1 + } + } + } + } + } + experimental_debug_info { + original_node_names: "QNetwork/EncodingNetwork/lambda_6/Sqrt" + } + } + node_def { + name: "QNetwork/EncodingNetwork/lambda_6/mul" + op: "Mul" + input: "QNetwork/EncodingNetwork/lambda_6/truediv:z:0" + input: "QNetwork/EncodingNetwork/lambda_6/truediv:z:0" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + dim { + size: 1 + } + } + } + } + } + experimental_debug_info { + original_node_names: "QNetwork/EncodingNetwork/lambda_6/mul" + } + } + node_def { + name: "QNetwork/EncodingNetwork/lambda_6/concat/axis" + op: "Const" + attr { + key: "_output_shapes" + value { + list { + shape { + } + } + } + } + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + } + int_val: -1 + } + } + } + experimental_debug_info { + original_node_names: "QNetwork/EncodingNetwork/lambda_6/concat/axis" + } + } + node_def { + name: "QNetwork/EncodingNetwork/lambda_6/concat" + op: "ConcatV2" + input: "QNetwork/EncodingNetwork/lambda_6/truediv:z:0" + input: "QNetwork/EncodingNetwork/lambda_6/Sqrt:y:0" + input: "QNetwork/EncodingNetwork/lambda_6/mul:z:0" + input: "QNetwork/EncodingNetwork/lambda_6/concat/axis:output:0" + attr { + key: "N" + value { + i: 3 + } + } + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + dim { + size: 3 + } + } + } + } + } + experimental_debug_info { + original_node_names: "QNetwork/EncodingNetwork/lambda_6/concat" + } + } + node_def { + name: "QNetwork/EncodingNetwork/lambda_7/expand_dims/ExpandDims/dim" + op: "Const" + attr { + key: "_output_shapes" + value { + list { + shape { + } + } + } + } + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + } + int_val: -1 + } + } + } + experimental_debug_info { + original_node_names: "QNetwork/EncodingNetwork/lambda_7/expand_dims/ExpandDims/dim" + } + } + node_def { + name: "QNetwork/EncodingNetwork/lambda_7/expand_dims/ExpandDims" + op: "ExpandDims" + input: "time_step_10" + input: "QNetwork/EncodingNetwork/lambda_7/expand_dims/ExpandDims/dim:output:0" + attr { + key: "T" + value { + type: DT_INT64 + } + } + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + dim { + size: 1 + } + } + } + } + } + experimental_debug_info { + original_node_names: "QNetwork/EncodingNetwork/lambda_7/expand_dims/ExpandDims" + } + } + node_def { + name: "QNetwork/EncodingNetwork/lambda_7/Bucketize" + op: "Bucketize" + input: "QNetwork/EncodingNetwork/lambda_7/expand_dims/ExpandDims:output:0" + attr { + key: "T" + value { + type: DT_INT64 + } + } + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + dim { + size: 1 + } + } + } + } + } + attr { + key: "boundaries" + value { + list { + f: -15035 + f: -15030 + f: -15025 + f: -15000 + f: -14985 + f: -14945 + f: -14745 + f: -70 + f: -55 + f: -55 + f: -50 + f: -50 + f: -50 + f: -45 + f: -45 + f: -45 + f: -45 + f: -45 + f: -45 + f: -45 + f: -45 + f: -45 + f: -40 + f: -40 + f: -40 + f: -40 + f: -40 + f: -40 + f: -40 + f: -40 + f: -40 + f: -40 + f: -40 + f: -40 + f: -40 + f: -40 + f: -40 + f: -40 + f: -40 + f: -40 + f: -40 + f: -40 + f: -40 + f: -40 + f: -40 + f: -40 + f: -40 + f: -40 + f: -40 + f: -40 + f: -40 + f: -40 + f: -40 + f: -40 + f: -40 + f: -40 + f: -40 + f: -40 + f: -40 + f: -40 + f: -40 + f: -40 + f: -40 + f: -40 + f: -40 + f: -40 + f: -40 + f: -40 + f: -40 + f: -40 + f: -40 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -35 + f: -30 + f: -30 + f: -30 + f: -30 + f: -30 + f: -30 + f: -30 + f: -30 + f: -30 + f: -30 + f: -30 + f: -30 + f: -30 + f: -30 + f: -30 + f: -30 + f: -30 + f: -30 + f: -30 + f: -30 + f: -30 + f: -30 + f: -30 + f: -30 + f: -30 + f: -30 + f: -30 + f: -30 + f: -30 + f: -30 + f: -30 + f: -30 + f: -30 + f: -30 + f: -30 + f: -30 + f: -30 + f: -30 + f: -30 + f: -30 + f: -30 + f: -30 + f: -30 + f: -30 + f: -30 + f: -30 + f: -30 + f: -30 + f: -30 + f: -30 + f: -30 + f: -30 + f: -30 + f: -30 + f: -30 + f: -30 + f: -30 + f: -30 + f: -30 + f: -30 + f: -30 + f: -30 + f: -30 + f: -30 + f: -30 + f: -30 + f: -30 + f: -30 + f: -30 + f: -30 + f: -30 + f: -30 + f: -30 + f: -30 + f: -30 + f: -30 + f: -30 + f: -30 + f: -30 + f: -30 + f: -30 + f: -30 + f: -30 + f: -30 + f: -30 + f: -30 + f: -30 + f: -30 + f: -30 + f: -30 + f: -30 + f: -30 + f: -30 + f: -30 + f: -30 + f: -30 + f: -30 + f: -30 + f: -30 + f: -30 + f: -30 + f: -30 + f: -30 + f: -30 + f: -30 + f: -30 + f: -30 + f: -30 + f: -30 + f: -30 + f: -30 + f: -30 + f: -30 + f: -30 + f: -30 + f: -30 + f: -30 + f: -30 + f: -30 + f: -30 + f: -30 + f: -30 + f: -30 + f: -30 + f: -30 + f: -30 + f: -30 + f: -30 + f: -30 + f: -30 + f: -30 + f: -30 + f: -30 + f: -30 + f: -30 + f: -30 + f: -30 + f: -30 + f: -30 + f: -30 + f: -30 + f: -30 + f: -30 + f: -30 + f: -25 + f: -25 + f: -25 + f: -25 + f: -25 + f: -25 + f: -25 + f: -25 + f: -25 + f: -25 + f: -25 + f: -25 + f: -25 + f: -25 + f: -25 + f: -25 + f: -25 + f: -25 + f: -25 + f: -25 + f: -25 + f: -25 + f: -25 + f: -25 + f: -25 + f: -25 + f: -25 + f: -25 + f: -25 + f: -25 + f: -25 + f: -25 + f: -25 + f: -25 + f: -25 + f: -25 + f: -25 + f: -25 + f: -25 + f: -25 + f: -25 + f: -25 + f: -25 + f: -25 + f: -25 + f: -25 + f: -25 + f: -25 + f: -25 + f: -25 + f: -25 + f: -25 + f: -25 + f: -25 + f: -25 + f: -20 + f: -20 + f: -20 + f: -20 + f: -20 + f: -20 + f: -20 + f: -20 + f: -20 + f: -20 + f: -20 + f: -20 + f: -20 + f: -20 + f: -20 + f: -20 + f: -20 + f: -20 + f: -20 + f: -20 + f: -20 + f: -20 + f: -20 + f: -20 + f: -20 + f: -20 + f: -20 + f: -20 + f: -20 + f: -20 + f: -20 + f: -20 + f: -20 + f: -15 + f: -15 + f: -15 + f: -15 + f: -15 + f: -15 + f: -15 + f: -15 + f: -15 + f: -15 + f: -15 + f: -15 + f: -15 + f: -15 + f: -15 + f: -15 + f: -15 + f: -15 + f: -15 + f: -15 + f: -15 + f: -15 + f: -15 + f: -15 + f: -15 + f: -15 + f: -15 + f: -15 + f: -10 + f: -10 + f: -10 + f: -10 + f: -10 + f: -10 + f: -10 + f: -10 + f: -10 + f: -10 + f: -10 + f: -5 + f: -5 + f: -5 + f: -5 + f: -5 + f: -5 + f: -5 + f: -5 + f: -5 + f: -5 + f: -5 + f: -5 + f: -5 + f: -5 + f: -5 + f: -5 + f: -5 + f: -5 + f: -5 + f: -5 + f: -5 + f: -5 + f: -5 + f: -5 + f: -5 + f: -5 + f: -5 + f: -5 + f: -5 + f: -5 + f: -5 + f: -5 + f: -5 + f: -5 + f: -5 + f: -5 + f: -5 + f: -5 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 5 + f: 10 + f: 10 + f: 10 + f: 10 + f: 10 + f: 10 + f: 10 + f: 10 + f: 10 + f: 10 + f: 10 + f: 10 + f: 10 + f: 10 + f: 10 + f: 10 + f: 10 + f: 10 + f: 10 + f: 10 + f: 10 + f: 10 + f: 10 + f: 10 + f: 10 + f: 10 + f: 10 + f: 10 + f: 15 + f: 15 + f: 15 + f: 15 + f: 15 + f: 15 + f: 15 + f: 15 + f: 15 + f: 15 + f: 15 + f: 15 + f: 15 + f: 15 + f: 15 + f: 15 + f: 15 + f: 15 + f: 15 + f: 15 + f: 15 + f: 15 + f: 15 + f: 15 + f: 15 + f: 15 + f: 15 + f: 15 + f: 15 + f: 15 + f: 15 + f: 15 + f: 15 + f: 15 + f: 20 + f: 20 + f: 20 + f: 20 + f: 20 + f: 20 + f: 20 + f: 20 + f: 20 + f: 20 + f: 20 + f: 20 + f: 20 + f: 20 + f: 20 + f: 20 + f: 20 + f: 20 + f: 20 + f: 20 + f: 25 + f: 25 + f: 25 + f: 25 + f: 25 + f: 25 + f: 25 + f: 30 + f: 30 + f: 30 + f: 30 + f: 30 + f: 30 + f: 35 + f: 35 + f: 35 + f: 35 + f: 35 + f: 35 + f: 35 + f: 35 + f: 35 + f: 35 + f: 35 + f: 35 + f: 35 + f: 35 + f: 35 + f: 35 + f: 35 + f: 35 + f: 40 + f: 40 + f: 40 + f: 40 + f: 40 + f: 40 + f: 40 + f: 40 + f: 40 + f: 40 + f: 40 + f: 40 + f: 45 + f: 45 + f: 45 + f: 45 + f: 45 + f: 45 + f: 45 + f: 45 + f: 45 + f: 45 + f: 50 + f: 50 + f: 50 + f: 50 + f: 50 + f: 50 + f: 50 + f: 50 + f: 50 + f: 55 + f: 55 + f: 60 + f: 60 + f: 60 + f: 60 + f: 60 + f: 60 + f: 60 + f: 60 + f: 60 + f: 60 + f: 65 + f: 65 + f: 65 + f: 65 + f: 65 + f: 65 + f: 65 + f: 65 + f: 65 + f: 65 + f: 65 + f: 65 + f: 70 + f: 70 + f: 70 + f: 70 + f: 70 + f: 70 + f: 70 + f: 75 + f: 75 + f: 80 + f: 80 + f: 80 + f: 85 + f: 85 + f: 85 + f: 90 + f: 90 + f: 90 + f: 90 + f: 95 + f: 95 + f: 100 + f: 100 + f: 105 + f: 110 + f: 115 + f: 120 + f: 125 + f: 125 + f: 130 + f: 140 + f: 140 + f: 145 + f: 150 + f: 155 + f: 160 + f: 160 + f: 165 + f: 170 + f: 175 + f: 180 + f: 190 + f: 200 + f: 210 + f: 215 + f: 220 + f: 220 + f: 230 + f: 235 + f: 245 + f: 250 + f: 260 + f: 275 + f: 290 + f: 305 + f: 325 + f: 350 + f: 370 + f: 390 + f: 425 + f: 460 + f: 500 + f: 560 + f: 650 + f: 790 + f: 1025 + f: 1600 + } + } + } + experimental_debug_info { + original_node_names: "QNetwork/EncodingNetwork/lambda_7/Bucketize" + } + } + node_def { + name: "QNetwork/EncodingNetwork/lambda_7/Cast" + op: "Cast" + input: "QNetwork/EncodingNetwork/lambda_7/Bucketize:output:0" + attr { + key: "DstT" + value { + type: DT_FLOAT + } + } + attr { + key: "SrcT" + value { + type: DT_INT32 + } + } + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + dim { + size: 1 + } + } + } + } + } + experimental_debug_info { + original_node_names: "QNetwork/EncodingNetwork/lambda_7/Cast" + } + } + node_def { + name: "QNetwork/EncodingNetwork/lambda_7/truediv/y" + op: "Const" + attr { + key: "_output_shapes" + value { + list { + shape { + } + } + } + } + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_FLOAT + tensor_shape { + } + float_val: 999 + } + } + } + experimental_debug_info { + original_node_names: "QNetwork/EncodingNetwork/lambda_7/truediv/y" + } + } + node_def { + name: "QNetwork/EncodingNetwork/lambda_7/truediv" + op: "RealDiv" + input: "QNetwork/EncodingNetwork/lambda_7/Cast:y:0" + input: "QNetwork/EncodingNetwork/lambda_7/truediv/y:output:0" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + dim { + size: 1 + } + } + } + } + } + experimental_debug_info { + original_node_names: "QNetwork/EncodingNetwork/lambda_7/truediv" + } + } + node_def { + name: "QNetwork/EncodingNetwork/lambda_7/Sqrt" + op: "Sqrt" + input: "QNetwork/EncodingNetwork/lambda_7/truediv:z:0" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + dim { + size: 1 + } + } + } + } + } + experimental_debug_info { + original_node_names: "QNetwork/EncodingNetwork/lambda_7/Sqrt" + } + } + node_def { + name: "QNetwork/EncodingNetwork/lambda_7/mul" + op: "Mul" + input: "QNetwork/EncodingNetwork/lambda_7/truediv:z:0" + input: "QNetwork/EncodingNetwork/lambda_7/truediv:z:0" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + dim { + size: 1 + } + } + } + } + } + experimental_debug_info { + original_node_names: "QNetwork/EncodingNetwork/lambda_7/mul" + } + } + node_def { + name: "QNetwork/EncodingNetwork/lambda_7/concat/axis" + op: "Const" + attr { + key: "_output_shapes" + value { + list { + shape { + } + } + } + } + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + } + int_val: -1 + } + } + } + experimental_debug_info { + original_node_names: "QNetwork/EncodingNetwork/lambda_7/concat/axis" + } + } + node_def { + name: "QNetwork/EncodingNetwork/lambda_7/concat" + op: "ConcatV2" + input: "QNetwork/EncodingNetwork/lambda_7/truediv:z:0" + input: "QNetwork/EncodingNetwork/lambda_7/Sqrt:y:0" + input: "QNetwork/EncodingNetwork/lambda_7/mul:z:0" + input: "QNetwork/EncodingNetwork/lambda_7/concat/axis:output:0" + attr { + key: "N" + value { + i: 3 + } + } + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + dim { + size: 3 + } + } + } + } + } + experimental_debug_info { + original_node_names: "QNetwork/EncodingNetwork/lambda_7/concat" + } + } + node_def { + name: "QNetwork/EncodingNetwork/lambda_8/expand_dims/ExpandDims/dim" + op: "Const" + attr { + key: "_output_shapes" + value { + list { + shape { + } + } + } + } + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + } + int_val: -1 + } + } + } + experimental_debug_info { + original_node_names: "QNetwork/EncodingNetwork/lambda_8/expand_dims/ExpandDims/dim" + } + } + node_def { + name: "QNetwork/EncodingNetwork/lambda_8/expand_dims/ExpandDims" + op: "ExpandDims" + input: "time_step_11" + input: "QNetwork/EncodingNetwork/lambda_8/expand_dims/ExpandDims/dim:output:0" + attr { + key: "T" + value { + type: DT_INT64 + } + } + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + dim { + size: 1 + } + } + } + } + } + experimental_debug_info { + original_node_names: "QNetwork/EncodingNetwork/lambda_8/expand_dims/ExpandDims" + } + } + node_def { + name: "QNetwork/EncodingNetwork/lambda_8/Bucketize" + op: "Bucketize" + input: "QNetwork/EncodingNetwork/lambda_8/expand_dims/ExpandDims:output:0" + attr { + key: "T" + value { + type: DT_INT64 + } + } + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + dim { + size: 1 + } + } + } + } + } + attr { + key: "boundaries" + value { + list { + f: 18 + f: 29 + f: 39 + f: 48 + f: 57 + f: 64 + f: 70 + f: 76 + f: 82 + f: 87 + f: 92 + f: 97 + f: 101 + f: 105 + f: 109 + f: 113 + f: 116 + f: 120 + f: 123 + f: 127 + f: 130 + f: 134 + f: 137 + f: 140 + f: 143 + f: 146 + f: 149 + f: 152 + f: 156 + f: 159 + f: 162 + f: 165 + f: 168 + f: 171 + f: 174 + f: 177 + f: 180 + f: 183 + f: 186 + f: 188 + f: 191 + f: 194 + f: 197 + f: 200 + f: 203 + f: 205 + f: 208 + f: 211 + f: 214 + f: 217 + f: 219 + f: 222 + f: 225 + f: 228 + f: 231 + f: 233 + f: 236 + f: 239 + f: 242 + f: 244 + f: 247 + f: 250 + f: 253 + f: 255 + f: 258 + f: 261 + f: 264 + f: 266 + f: 269 + f: 272 + f: 275 + f: 278 + f: 280 + f: 283 + f: 286 + f: 289 + f: 292 + f: 294 + f: 297 + f: 300 + f: 303 + f: 305 + f: 308 + f: 311 + f: 314 + f: 317 + f: 319 + f: 322 + f: 325 + f: 327 + f: 330 + f: 333 + f: 336 + f: 339 + f: 341 + f: 344 + f: 347 + f: 350 + f: 353 + f: 355 + f: 358 + f: 361 + f: 364 + f: 367 + f: 370 + f: 373 + f: 375 + f: 378 + f: 381 + f: 384 + f: 387 + f: 390 + f: 393 + f: 396 + f: 399 + f: 401 + f: 404 + f: 407 + f: 410 + f: 413 + f: 416 + f: 419 + f: 422 + f: 425 + f: 428 + f: 431 + f: 434 + f: 437 + f: 440 + f: 443 + f: 446 + f: 449 + f: 452 + f: 455 + f: 458 + f: 461 + f: 464 + f: 467 + f: 470 + f: 473 + f: 476 + f: 479 + f: 483 + f: 486 + f: 489 + f: 492 + f: 495 + f: 498 + f: 501 + f: 504 + f: 507 + f: 511 + f: 514 + f: 517 + f: 520 + f: 523 + f: 526 + f: 530 + f: 533 + f: 536 + f: 539 + f: 542 + f: 545 + f: 549 + f: 552 + f: 555 + f: 558 + f: 562 + f: 565 + f: 569 + f: 572 + f: 575 + f: 579 + f: 582 + f: 585 + f: 589 + f: 592 + f: 595 + f: 599 + f: 602 + f: 605 + f: 609 + f: 612 + f: 616 + f: 620 + f: 623 + f: 626 + f: 630 + f: 634 + f: 637 + f: 641 + f: 644 + f: 648 + f: 651 + f: 655 + f: 658 + f: 662 + f: 665 + f: 669 + f: 672 + f: 676 + f: 680 + f: 683 + f: 687 + f: 691 + f: 694 + f: 698 + f: 702 + f: 705 + f: 709 + f: 712 + f: 716 + f: 720 + f: 724 + f: 727 + f: 731 + f: 735 + f: 739 + f: 742 + f: 746 + f: 750 + f: 754 + f: 758 + f: 761 + f: 765 + f: 769 + f: 773 + f: 777 + f: 780 + f: 784 + f: 788 + f: 792 + f: 796 + f: 800 + f: 804 + f: 808 + f: 812 + f: 816 + f: 820 + f: 823 + f: 828 + f: 832 + f: 836 + f: 840 + f: 844 + f: 848 + f: 852 + f: 856 + f: 860 + f: 864 + f: 868 + f: 873 + f: 877 + f: 881 + f: 885 + f: 889 + f: 893 + f: 897 + f: 902 + f: 906 + f: 910 + f: 914 + f: 919 + f: 923 + f: 927 + f: 931 + f: 935 + f: 940 + f: 944 + f: 948 + f: 953 + f: 957 + f: 962 + f: 966 + f: 970 + f: 975 + f: 979 + f: 984 + f: 988 + f: 993 + f: 997 + f: 1002 + f: 1006 + f: 1011 + f: 1015 + f: 1020 + f: 1024 + f: 1029 + f: 1034 + f: 1038 + f: 1043 + f: 1047 + f: 1052 + f: 1057 + f: 1062 + f: 1066 + f: 1071 + f: 1076 + f: 1081 + f: 1086 + f: 1090 + f: 1095 + f: 1100 + f: 1105 + f: 1110 + f: 1114 + f: 1119 + f: 1124 + f: 1129 + f: 1134 + f: 1139 + f: 1144 + f: 1149 + f: 1154 + f: 1159 + f: 1164 + f: 1169 + f: 1174 + f: 1179 + f: 1184 + f: 1189 + f: 1194 + f: 1199 + f: 1204 + f: 1209 + f: 1215 + f: 1220 + f: 1225 + f: 1230 + f: 1235 + f: 1241 + f: 1246 + f: 1251 + f: 1257 + f: 1262 + f: 1267 + f: 1273 + f: 1278 + f: 1284 + f: 1289 + f: 1294 + f: 1300 + f: 1305 + f: 1311 + f: 1316 + f: 1322 + f: 1327 + f: 1333 + f: 1338 + f: 1344 + f: 1350 + f: 1355 + f: 1361 + f: 1367 + f: 1372 + f: 1378 + f: 1383 + f: 1389 + f: 1395 + f: 1401 + f: 1407 + f: 1413 + f: 1418 + f: 1424 + f: 1430 + f: 1436 + f: 1442 + f: 1448 + f: 1454 + f: 1459 + f: 1465 + f: 1472 + f: 1477 + f: 1483 + f: 1489 + f: 1495 + f: 1501 + f: 1507 + f: 1514 + f: 1520 + f: 1526 + f: 1532 + f: 1538 + f: 1545 + f: 1551 + f: 1557 + f: 1564 + f: 1570 + f: 1576 + f: 1583 + f: 1589 + f: 1596 + f: 1602 + f: 1608 + f: 1615 + f: 1621 + f: 1628 + f: 1634 + f: 1641 + f: 1647 + f: 1654 + f: 1661 + f: 1667 + f: 1674 + f: 1681 + f: 1687 + f: 1694 + f: 1701 + f: 1708 + f: 1715 + f: 1722 + f: 1729 + f: 1735 + f: 1742 + f: 1749 + f: 1756 + f: 1763 + f: 1770 + f: 1777 + f: 1784 + f: 1791 + f: 1798 + f: 1806 + f: 1812 + f: 1820 + f: 1827 + f: 1835 + f: 1841 + f: 1849 + f: 1856 + f: 1863 + f: 1871 + f: 1878 + f: 1885 + f: 1893 + f: 1901 + f: 1908 + f: 1915 + f: 1923 + f: 1930 + f: 1938 + f: 1946 + f: 1953 + f: 1961 + f: 1969 + f: 1976 + f: 1984 + f: 1992 + f: 2000 + f: 2007 + f: 2015 + f: 2023 + f: 2031 + f: 2039 + f: 2047 + f: 2055 + f: 2063 + f: 2071 + f: 2079 + f: 2087 + f: 2095 + f: 2104 + f: 2112 + f: 2120 + f: 2128 + f: 2137 + f: 2146 + f: 2154 + f: 2162 + f: 2171 + f: 2179 + f: 2188 + f: 2197 + f: 2205 + f: 2214 + f: 2223 + f: 2232 + f: 2241 + f: 2250 + f: 2258 + f: 2268 + f: 2277 + f: 2285 + f: 2294 + f: 2304 + f: 2313 + f: 2322 + f: 2331 + f: 2340 + f: 2350 + f: 2359 + f: 2368 + f: 2378 + f: 2388 + f: 2397 + f: 2407 + f: 2416 + f: 2426 + f: 2436 + f: 2446 + f: 2455 + f: 2465 + f: 2475 + f: 2485 + f: 2495 + f: 2505 + f: 2515 + f: 2525 + f: 2535 + f: 2545 + f: 2556 + f: 2566 + f: 2577 + f: 2587 + f: 2598 + f: 2609 + f: 2620 + f: 2631 + f: 2641 + f: 2652 + f: 2663 + f: 2674 + f: 2685 + f: 2696 + f: 2708 + f: 2719 + f: 2730 + f: 2742 + f: 2753 + f: 2764 + f: 2776 + f: 2788 + f: 2799 + f: 2811 + f: 2823 + f: 2835 + f: 2847 + f: 2858 + f: 2870 + f: 2882 + f: 2894 + f: 2906 + f: 2919 + f: 2931 + f: 2943 + f: 2956 + f: 2968 + f: 2981 + f: 2994 + f: 3006 + f: 3019 + f: 3032 + f: 3045 + f: 3058 + f: 3070 + f: 3083 + f: 3096 + f: 3109 + f: 3121 + f: 3134 + f: 3148 + f: 3161 + f: 3174 + f: 3187 + f: 3200 + f: 3214 + f: 3228 + f: 3242 + f: 3255 + f: 3268 + f: 3283 + f: 3297 + f: 3310 + f: 3325 + f: 3340 + f: 3353 + f: 3368 + f: 3383 + f: 3398 + f: 3412 + f: 3427 + f: 3442 + f: 3457 + f: 3471 + f: 3487 + f: 3502 + f: 3516 + f: 3531 + f: 3546 + f: 3561 + f: 3577 + f: 3593 + f: 3608 + f: 3625 + f: 3641 + f: 3657 + f: 3673 + f: 3690 + f: 3706 + f: 3722 + f: 3738 + f: 3755 + f: 3772 + f: 3789 + f: 3805 + f: 3823 + f: 3839 + f: 3856 + f: 3873 + f: 3891 + f: 3908 + f: 3926 + f: 3944 + f: 3960 + f: 3977 + f: 3995 + f: 4013 + f: 4031 + f: 4048 + f: 4067 + f: 4085 + f: 4104 + f: 4122 + f: 4140 + f: 4159 + f: 4177 + f: 4196 + f: 4215 + f: 4234 + f: 4253 + f: 4272 + f: 4291 + f: 4311 + f: 4332 + f: 4351 + f: 4371 + f: 4391 + f: 4412 + f: 4433 + f: 4454 + f: 4474 + f: 4496 + f: 4518 + f: 4538 + f: 4558 + f: 4579 + f: 4601 + f: 4619 + f: 4640 + f: 4662 + f: 4684 + f: 4706 + f: 4728 + f: 4751 + f: 4771 + f: 4794 + f: 4818 + f: 4840 + f: 4863 + f: 4887 + f: 4910 + f: 4933 + f: 4956 + f: 4980 + f: 5004 + f: 5028 + f: 5052 + f: 5076 + f: 5100 + f: 5125 + f: 5152 + f: 5175 + f: 5200 + f: 5226 + f: 5251 + f: 5278 + f: 5304 + f: 5329 + f: 5354 + f: 5381 + f: 5407 + f: 5433 + f: 5460 + f: 5488 + f: 5516 + f: 5544 + f: 5573 + f: 5600 + f: 5628 + f: 5656 + f: 5684 + f: 5713 + f: 5741 + f: 5771 + f: 5799 + f: 5830 + f: 5860 + f: 5891 + f: 5921 + f: 5951 + f: 5980 + f: 6010 + f: 6041 + f: 6073 + f: 6105 + f: 6133 + f: 6163 + f: 6195 + f: 6227 + f: 6258 + f: 6291 + f: 6322 + f: 6356 + f: 6390 + f: 6424 + f: 6457 + f: 6491 + f: 6527 + f: 6561 + f: 6596 + f: 6631 + f: 6665 + f: 6701 + f: 6736 + f: 6771 + f: 6805 + f: 6840 + f: 6877 + f: 6911 + f: 6947 + f: 6985 + f: 7022 + f: 7059 + f: 7097 + f: 7135 + f: 7174 + f: 7212 + f: 7251 + f: 7289 + f: 7327 + f: 7366 + f: 7406 + f: 7447 + f: 7486 + f: 7525 + f: 7566 + f: 7606 + f: 7646 + f: 7688 + f: 7728 + f: 7771 + f: 7814 + f: 7859 + f: 7901 + f: 7949 + f: 7992 + f: 8036 + f: 8082 + f: 8127 + f: 8173 + f: 8218 + f: 8262 + f: 8309 + f: 8353 + f: 8397 + f: 8444 + f: 8489 + f: 8539 + f: 8585 + f: 8632 + f: 8682 + f: 8727 + f: 8777 + f: 8828 + f: 8879 + f: 8929 + f: 8982 + f: 9037 + f: 9087 + f: 9140 + f: 9193 + f: 9250 + f: 9305 + f: 9361 + f: 9418 + f: 9475 + f: 9532 + f: 9589 + f: 9644 + f: 9699 + f: 9758 + f: 9818 + f: 9875 + f: 9935 + f: 9997 + f: 10057 + f: 10117 + f: 10174 + f: 10232 + f: 10296 + f: 10356 + f: 10419 + f: 10482 + f: 10546 + f: 10608 + f: 10670 + f: 10729 + f: 10790 + f: 10855 + f: 10920 + f: 10990 + f: 11054 + f: 11118 + f: 11181 + f: 11248 + f: 11316 + f: 11385 + f: 11454 + f: 11526 + f: 11597 + f: 11667 + f: 11740 + f: 11820 + f: 11897 + f: 11973 + f: 12046 + f: 12126 + f: 12204 + f: 12287 + f: 12370 + f: 12456 + f: 12538 + f: 12627 + f: 12714 + f: 12799 + f: 12883 + f: 12971 + f: 13062 + f: 13154 + f: 13233 + f: 13328 + f: 13418 + f: 13511 + f: 13607 + f: 13709 + f: 13806 + f: 13903 + f: 14002 + f: 14104 + f: 14200 + f: 14288 + f: 14391 + f: 14488 + f: 14590 + f: 14698 + f: 14808 + f: 14910 + f: 15020 + f: 15126 + f: 15238 + f: 15347 + f: 15456 + f: 15574 + f: 15692 + f: 15786 + f: 15896 + f: 16016 + f: 16136 + f: 16250 + f: 16352 + f: 16474 + f: 16575 + f: 16702 + f: 16835 + f: 16965 + f: 17096 + f: 17232 + f: 17370 + f: 17443 + f: 17581 + f: 17719 + f: 17864 + f: 17976 + f: 18116 + f: 18250 + f: 18396 + f: 18540 + f: 18690 + f: 18840 + f: 18989 + f: 19136 + f: 19294 + f: 19445 + f: 19589 + f: 19750 + f: 19905 + f: 20064 + f: 20191 + f: 20325 + f: 20497 + f: 20662 + f: 20833 + f: 20981 + f: 21152 + f: 21334 + f: 21510 + f: 21642 + f: 21821 + f: 22001 + f: 22186 + f: 22379 + f: 22568 + f: 22770 + f: 22958 + f: 23162 + f: 23360 + f: 23524 + f: 23737 + f: 23960 + f: 24175 + f: 24395 + f: 24631 + f: 24865 + f: 25091 + f: 25327 + f: 25580 + f: 25833 + f: 26089 + f: 26361 + f: 26636 + f: 26889 + f: 27155 + f: 27436 + f: 27715 + f: 28003 + f: 28303 + f: 28600 + f: 28916 + f: 29223 + f: 29553 + f: 29884 + f: 30200 + f: 30538 + f: 30868 + f: 31211 + f: 31548 + f: 31881 + f: 32253 + f: 32605 + f: 32980 + f: 33385 + f: 33805 + f: 34254 + f: 34723 + f: 35167 + f: 35666 + f: 36125 + f: 36652 + f: 37177 + f: 37739 + f: 38321 + f: 38932 + f: 39640 + f: 40337 + f: 41000 + f: 41626 + f: 42385 + f: 43122 + f: 43890 + f: 44687 + f: 45609 + f: 46520 + f: 47489 + f: 48432 + f: 49458 + f: 50511 + f: 51561 + f: 52568 + f: 53676 + f: 54936 + f: 56071 + f: 57302 + f: 58513 + f: 59800 + f: 61192 + f: 62702 + f: 64205 + f: 65868 + f: 67780 + f: 69960 + f: 72330 + f: 74918 + f: 77540 + f: 80344 + f: 83727 + f: 87662 + f: 93589 + f: 101441 + f: 110544 + } + } + } + experimental_debug_info { + original_node_names: "QNetwork/EncodingNetwork/lambda_8/Bucketize" + } + } + node_def { + name: "QNetwork/EncodingNetwork/lambda_8/Cast" + op: "Cast" + input: "QNetwork/EncodingNetwork/lambda_8/Bucketize:output:0" + attr { + key: "DstT" + value { + type: DT_FLOAT + } + } + attr { + key: "SrcT" + value { + type: DT_INT32 + } + } + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + dim { + size: 1 + } + } + } + } + } + experimental_debug_info { + original_node_names: "QNetwork/EncodingNetwork/lambda_8/Cast" + } + } + node_def { + name: "QNetwork/EncodingNetwork/lambda_8/truediv/y" + op: "Const" + attr { + key: "_output_shapes" + value { + list { + shape { + } + } + } + } + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_FLOAT + tensor_shape { + } + float_val: 999 + } + } + } + experimental_debug_info { + original_node_names: "QNetwork/EncodingNetwork/lambda_8/truediv/y" + } + } + node_def { + name: "QNetwork/EncodingNetwork/lambda_8/truediv" + op: "RealDiv" + input: "QNetwork/EncodingNetwork/lambda_8/Cast:y:0" + input: "QNetwork/EncodingNetwork/lambda_8/truediv/y:output:0" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + dim { + size: 1 + } + } + } + } + } + experimental_debug_info { + original_node_names: "QNetwork/EncodingNetwork/lambda_8/truediv" + } + } + node_def { + name: "QNetwork/EncodingNetwork/lambda_8/Sqrt" + op: "Sqrt" + input: "QNetwork/EncodingNetwork/lambda_8/truediv:z:0" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + dim { + size: 1 + } + } + } + } + } + experimental_debug_info { + original_node_names: "QNetwork/EncodingNetwork/lambda_8/Sqrt" + } + } + node_def { + name: "QNetwork/EncodingNetwork/lambda_8/mul" + op: "Mul" + input: "QNetwork/EncodingNetwork/lambda_8/truediv:z:0" + input: "QNetwork/EncodingNetwork/lambda_8/truediv:z:0" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + dim { + size: 1 + } + } + } + } + } + experimental_debug_info { + original_node_names: "QNetwork/EncodingNetwork/lambda_8/mul" + } + } + node_def { + name: "QNetwork/EncodingNetwork/lambda_8/concat/axis" + op: "Const" + attr { + key: "_output_shapes" + value { + list { + shape { + } + } + } + } + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + } + int_val: -1 + } + } + } + experimental_debug_info { + original_node_names: "QNetwork/EncodingNetwork/lambda_8/concat/axis" + } + } + node_def { + name: "QNetwork/EncodingNetwork/lambda_8/concat" + op: "ConcatV2" + input: "QNetwork/EncodingNetwork/lambda_8/truediv:z:0" + input: "QNetwork/EncodingNetwork/lambda_8/Sqrt:y:0" + input: "QNetwork/EncodingNetwork/lambda_8/mul:z:0" + input: "QNetwork/EncodingNetwork/lambda_8/concat/axis:output:0" + attr { + key: "N" + value { + i: 3 + } + } + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + dim { + size: 3 + } + } + } + } + } + experimental_debug_info { + original_node_names: "QNetwork/EncodingNetwork/lambda_8/concat" + } + } + node_def { + name: "QNetwork/EncodingNetwork/lambda_9/expand_dims/ExpandDims/dim" + op: "Const" + attr { + key: "_output_shapes" + value { + list { + shape { + } + } + } + } + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + } + int_val: -1 + } + } + } + experimental_debug_info { + original_node_names: "QNetwork/EncodingNetwork/lambda_9/expand_dims/ExpandDims/dim" + } + } + node_def { + name: "QNetwork/EncodingNetwork/lambda_9/expand_dims/ExpandDims" + op: "ExpandDims" + input: "time_step_12" + input: "QNetwork/EncodingNetwork/lambda_9/expand_dims/ExpandDims/dim:output:0" + attr { + key: "T" + value { + type: DT_INT64 + } + } + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + dim { + size: 1 + } + } + } + } + } + experimental_debug_info { + original_node_names: "QNetwork/EncodingNetwork/lambda_9/expand_dims/ExpandDims" + } + } + node_def { + name: "QNetwork/EncodingNetwork/lambda_9/zeros_like" + op: "Const" + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + dim { + size: 1 + } + } + } + } + } + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_FLOAT + tensor_shape { + dim { + size: 1 + } + dim { + size: 1 + } + } + float_val: 0 + } + } + } + experimental_debug_info { + original_node_names: "QNetwork/EncodingNetwork/lambda_9/zeros_like" + } + } + node_def { + name: "QNetwork/EncodingNetwork/lambda_10/expand_dims/ExpandDims/dim" + op: "Const" + attr { + key: "_output_shapes" + value { + list { + shape { + } + } + } + } + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + } + int_val: -1 + } + } + } + experimental_debug_info { + original_node_names: "QNetwork/EncodingNetwork/lambda_10/expand_dims/ExpandDims/dim" + } + } + node_def { + name: "QNetwork/EncodingNetwork/lambda_10/expand_dims/ExpandDims" + op: "ExpandDims" + input: "time_step_13" + input: "QNetwork/EncodingNetwork/lambda_10/expand_dims/ExpandDims/dim:output:0" + attr { + key: "T" + value { + type: DT_INT64 + } + } + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + dim { + size: 1 + } + } + } + } + } + experimental_debug_info { + original_node_names: "QNetwork/EncodingNetwork/lambda_10/expand_dims/ExpandDims" + } + } + node_def { + name: "QNetwork/EncodingNetwork/lambda_10/Bucketize" + op: "Bucketize" + input: "QNetwork/EncodingNetwork/lambda_10/expand_dims/ExpandDims:output:0" + attr { + key: "T" + value { + type: DT_INT64 + } + } + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + dim { + size: 1 + } + } + } + } + } + attr { + key: "boundaries" + value { + list { + f: 13 + f: 38 + f: 56 + f: 70 + f: 82 + f: 94 + f: 104 + f: 114 + f: 123 + f: 131 + f: 139 + f: 148 + f: 152 + f: 153 + f: 158 + f: 163 + f: 170 + f: 174 + f: 178 + f: 180 + f: 183 + f: 186 + f: 188 + f: 190 + f: 192 + f: 196 + f: 198 + f: 201 + f: 205 + f: 208 + f: 212 + f: 215 + f: 219 + f: 221 + f: 225 + f: 227 + f: 229 + f: 232 + f: 233 + f: 236 + f: 239 + f: 242 + f: 245 + f: 248 + f: 250 + f: 252 + f: 254 + f: 256 + f: 259 + f: 261 + f: 264 + f: 267 + f: 270 + f: 272 + f: 275 + f: 278 + f: 280 + f: 283 + f: 285 + f: 287 + f: 290 + f: 293 + f: 295 + f: 297 + f: 300 + f: 303 + f: 305 + f: 308 + f: 311 + f: 313 + f: 316 + f: 319 + f: 322 + f: 325 + f: 329 + f: 331 + f: 333 + f: 336 + f: 338 + f: 340 + f: 343 + f: 345 + f: 347 + f: 347 + f: 349 + f: 351 + f: 353 + f: 355 + f: 357 + f: 359 + f: 361 + f: 363 + f: 365 + f: 368 + f: 369 + f: 371 + f: 373 + f: 375 + f: 377 + f: 380 + f: 382 + f: 385 + f: 387 + f: 389 + f: 391 + f: 394 + f: 396 + f: 398 + f: 400 + f: 403 + f: 405 + f: 408 + f: 410 + f: 412 + f: 415 + f: 417 + f: 420 + f: 422 + f: 425 + f: 427 + f: 429 + f: 432 + f: 434 + f: 437 + f: 439 + f: 442 + f: 444 + f: 446 + f: 449 + f: 451 + f: 454 + f: 456 + f: 458 + f: 461 + f: 463 + f: 466 + f: 469 + f: 472 + f: 474 + f: 476 + f: 479 + f: 482 + f: 483 + f: 486 + f: 489 + f: 492 + f: 495 + f: 498 + f: 500 + f: 503 + f: 505 + f: 508 + f: 510 + f: 513 + f: 516 + f: 519 + f: 522 + f: 524 + f: 528 + f: 530 + f: 533 + f: 536 + f: 539 + f: 541 + f: 544 + f: 547 + f: 550 + f: 553 + f: 556 + f: 559 + f: 561 + f: 563 + f: 567 + f: 570 + f: 572 + f: 575 + f: 577 + f: 580 + f: 584 + f: 586 + f: 589 + f: 592 + f: 595 + f: 598 + f: 601 + f: 605 + f: 607 + f: 611 + f: 613 + f: 617 + f: 620 + f: 623 + f: 626 + f: 629 + f: 632 + f: 635 + f: 639 + f: 642 + f: 645 + f: 648 + f: 651 + f: 654 + f: 657 + f: 660 + f: 662 + f: 666 + f: 669 + f: 672 + f: 676 + f: 679 + f: 682 + f: 685 + f: 688 + f: 690 + f: 693 + f: 696 + f: 699 + f: 702 + f: 705 + f: 709 + f: 712 + f: 714 + f: 718 + f: 721 + f: 724 + f: 726 + f: 728 + f: 729 + f: 731 + f: 734 + f: 737 + f: 741 + f: 745 + f: 748 + f: 750 + f: 753 + f: 756 + f: 760 + f: 763 + f: 766 + f: 770 + f: 773 + f: 776 + f: 779 + f: 782 + f: 786 + f: 788 + f: 793 + f: 796 + f: 798 + f: 802 + f: 805 + f: 808 + f: 811 + f: 815 + f: 818 + f: 820 + f: 824 + f: 827 + f: 829 + f: 832 + f: 835 + f: 838 + f: 842 + f: 846 + f: 849 + f: 854 + f: 857 + f: 860 + f: 864 + f: 867 + f: 871 + f: 875 + f: 879 + f: 882 + f: 887 + f: 890 + f: 893 + f: 897 + f: 901 + f: 905 + f: 908 + f: 911 + f: 915 + f: 918 + f: 921 + f: 925 + f: 929 + f: 932 + f: 934 + f: 937 + f: 940 + f: 943 + f: 946 + f: 950 + f: 953 + f: 956 + f: 961 + f: 965 + f: 969 + f: 973 + f: 976 + f: 980 + f: 982 + f: 985 + f: 990 + f: 994 + f: 997 + f: 1001 + f: 1005 + f: 1007 + f: 1010 + f: 1014 + f: 1018 + f: 1022 + f: 1025 + f: 1028 + f: 1033 + f: 1035 + f: 1038 + f: 1042 + f: 1047 + f: 1052 + f: 1056 + f: 1060 + f: 1063 + f: 1067 + f: 1071 + f: 1075 + f: 1079 + f: 1083 + f: 1086 + f: 1088 + f: 1092 + f: 1097 + f: 1102 + f: 1106 + f: 1109 + f: 1113 + f: 1117 + f: 1120 + f: 1125 + f: 1129 + f: 1134 + f: 1137 + f: 1142 + f: 1146 + f: 1150 + f: 1151 + f: 1155 + f: 1159 + f: 1162 + f: 1166 + f: 1170 + f: 1174 + f: 1177 + f: 1181 + f: 1185 + f: 1188 + f: 1193 + f: 1196 + f: 1203 + f: 1207 + f: 1212 + f: 1214 + f: 1217 + f: 1220 + f: 1222 + f: 1222 + f: 1226 + f: 1229 + f: 1233 + f: 1237 + f: 1241 + f: 1246 + f: 1250 + f: 1253 + f: 1257 + f: 1262 + f: 1267 + f: 1272 + f: 1278 + f: 1283 + f: 1287 + f: 1293 + f: 1297 + f: 1301 + f: 1304 + f: 1309 + f: 1315 + f: 1320 + f: 1325 + f: 1329 + f: 1333 + f: 1336 + f: 1341 + f: 1344 + f: 1348 + f: 1351 + f: 1357 + f: 1363 + f: 1368 + f: 1374 + f: 1379 + f: 1383 + f: 1386 + f: 1391 + f: 1395 + f: 1399 + f: 1403 + f: 1407 + f: 1410 + f: 1415 + f: 1418 + f: 1423 + f: 1428 + f: 1432 + f: 1436 + f: 1438 + f: 1442 + f: 1446 + f: 1450 + f: 1454 + f: 1462 + f: 1467 + f: 1472 + f: 1477 + f: 1483 + f: 1488 + f: 1492 + f: 1496 + f: 1503 + f: 1508 + f: 1513 + f: 1518 + f: 1520 + f: 1526 + f: 1531 + f: 1534 + f: 1538 + f: 1542 + f: 1546 + f: 1552 + f: 1558 + f: 1564 + f: 1568 + f: 1573 + f: 1578 + f: 1581 + f: 1590 + f: 1596 + f: 1601 + f: 1606 + f: 1611 + f: 1616 + f: 1622 + f: 1629 + f: 1634 + f: 1640 + f: 1647 + f: 1651 + f: 1657 + f: 1660 + f: 1665 + f: 1672 + f: 1678 + f: 1686 + f: 1692 + f: 1698 + f: 1704 + f: 1709 + f: 1714 + f: 1719 + f: 1724 + f: 1730 + f: 1737 + f: 1744 + f: 1751 + f: 1755 + f: 1761 + f: 1764 + f: 1772 + f: 1778 + f: 1784 + f: 1789 + f: 1799 + f: 1804 + f: 1811 + f: 1819 + f: 1825 + f: 1830 + f: 1838 + f: 1849 + f: 1858 + f: 1862 + f: 1868 + f: 1872 + f: 1878 + f: 1885 + f: 1888 + f: 1892 + f: 1897 + f: 1902 + f: 1907 + f: 1919 + f: 1926 + f: 1932 + f: 1936 + f: 1941 + f: 1946 + f: 1952 + f: 1960 + f: 1968 + f: 1977 + f: 1985 + f: 1992 + f: 1997 + f: 2006 + f: 2012 + f: 2018 + f: 2026 + f: 2034 + f: 2044 + f: 2050 + f: 2057 + f: 2064 + f: 2069 + f: 2075 + f: 2082 + f: 2091 + f: 2098 + f: 2107 + f: 2122 + f: 2126 + f: 2135 + f: 2146 + f: 2149 + f: 2157 + f: 2163 + f: 2172 + f: 2178 + f: 2184 + f: 2191 + f: 2198 + f: 2208 + f: 2216 + f: 2223 + f: 2235 + f: 2242 + f: 2252 + f: 2263 + f: 2272 + f: 2277 + f: 2288 + f: 2296 + f: 2306 + f: 2311 + f: 2318 + f: 2323 + f: 2334 + f: 2341 + f: 2356 + f: 2366 + f: 2373 + f: 2379 + f: 2386 + f: 2407 + f: 2416 + f: 2423 + f: 2432 + f: 2438 + f: 2448 + f: 2453 + f: 2464 + f: 2473 + f: 2473 + f: 2481 + f: 2492 + f: 2504 + f: 2511 + f: 2523 + f: 2529 + f: 2537 + f: 2545 + f: 2556 + f: 2566 + f: 2575 + f: 2584 + f: 2592 + f: 2602 + f: 2613 + f: 2624 + f: 2636 + f: 2643 + f: 2647 + f: 2652 + f: 2664 + f: 2675 + f: 2688 + f: 2693 + f: 2702 + f: 2709 + f: 2722 + f: 2739 + f: 2754 + f: 2766 + f: 2776 + f: 2786 + f: 2799 + f: 2810 + f: 2832 + f: 2840 + f: 2849 + f: 2860 + f: 2873 + f: 2889 + f: 2908 + f: 2914 + f: 2926 + f: 2939 + f: 2950 + f: 2961 + f: 2969 + f: 2978 + f: 2990 + f: 2999 + f: 3023 + f: 3032 + f: 3049 + f: 3066 + f: 3085 + f: 3101 + f: 3107 + f: 3117 + f: 3129 + f: 3144 + f: 3167 + f: 3190 + f: 3212 + f: 3229 + f: 3238 + f: 3264 + f: 3293 + f: 3302 + f: 3309 + f: 3314 + f: 3323 + f: 3344 + f: 3352 + f: 3362 + f: 3390 + f: 3400 + f: 3411 + f: 3435 + f: 3456 + f: 3470 + f: 3485 + f: 3498 + f: 3505 + f: 3519 + f: 3539 + f: 3545 + f: 3545 + f: 3560 + f: 3576 + f: 3597 + f: 3607 + f: 3621 + f: 3641 + f: 3665 + f: 3679 + f: 3701 + f: 3714 + f: 3733 + f: 3741 + f: 3745 + f: 3757 + f: 3773 + f: 3787 + f: 3795 + f: 3805 + f: 3822 + f: 3835 + f: 3844 + f: 3861 + f: 3872 + f: 3878 + f: 3897 + f: 3919 + f: 3941 + f: 3971 + f: 4004 + f: 4014 + f: 4019 + f: 4061 + f: 4068 + f: 4089 + f: 4108 + f: 4117 + f: 4125 + f: 4146 + f: 4165 + f: 4194 + f: 4204 + f: 4224 + f: 4236 + f: 4263 + f: 4290 + f: 4301 + f: 4319 + f: 4326 + f: 4347 + f: 4369 + f: 4386 + f: 4413 + f: 4435 + f: 4451 + f: 4451 + f: 4451 + f: 4476 + f: 4500 + f: 4539 + f: 4579 + f: 4592 + f: 4600 + f: 4622 + f: 4650 + f: 4683 + f: 4714 + f: 4742 + f: 4755 + f: 4771 + f: 4788 + f: 4816 + f: 4828 + f: 4831 + f: 4831 + f: 4831 + f: 4843 + f: 4852 + f: 4865 + f: 4896 + f: 4915 + f: 4931 + f: 4952 + f: 4965 + f: 4983 + f: 5007 + f: 5043 + f: 5061 + f: 5081 + f: 5095 + f: 5122 + f: 5143 + f: 5171 + f: 5204 + f: 5226 + f: 5233 + f: 5250 + f: 5281 + f: 5320 + f: 5323 + f: 5328 + f: 5345 + f: 5374 + f: 5413 + f: 5466 + f: 5492 + f: 5524 + f: 5555 + f: 5567 + f: 5610 + f: 5676 + f: 5701 + f: 5716 + f: 5744 + f: 5768 + f: 5795 + f: 5818 + f: 5854 + f: 5906 + f: 5934 + f: 5960 + f: 5975 + f: 5993 + f: 6025 + f: 6034 + f: 6051 + f: 6082 + f: 6106 + f: 6125 + f: 6159 + f: 6187 + f: 6242 + f: 6287 + f: 6311 + f: 6332 + f: 6348 + f: 6358 + f: 6368 + f: 6377 + f: 6402 + f: 6407 + f: 6428 + f: 6450 + f: 6475 + f: 6498 + f: 6505 + f: 6533 + f: 6565 + f: 6580 + f: 6595 + f: 6611 + f: 6654 + f: 6658 + f: 6705 + f: 6751 + f: 6786 + f: 6828 + f: 6876 + f: 6896 + f: 6948 + f: 6964 + f: 7065 + f: 7082 + f: 7118 + f: 7184 + f: 7214 + f: 7271 + f: 7310 + f: 7357 + f: 7405 + f: 7506 + f: 7613 + f: 7641 + f: 7675 + f: 7720 + f: 7781 + f: 7833 + f: 7860 + f: 7898 + f: 7929 + f: 8044 + f: 8104 + f: 8148 + f: 8236 + f: 8273 + f: 8313 + f: 8349 + f: 8381 + f: 8409 + f: 8498 + f: 8507 + f: 8524 + f: 8570 + f: 8607 + f: 8630 + f: 8637 + f: 8675 + f: 8700 + f: 8714 + f: 8734 + f: 8776 + f: 8836 + f: 8854 + f: 8867 + f: 8868 + f: 9065 + f: 9113 + f: 9121 + f: 9241 + f: 9357 + f: 9360 + f: 9585 + f: 9613 + f: 9684 + f: 9727 + f: 9751 + f: 9777 + f: 9802 + f: 9889 + f: 9903 + f: 9914 + f: 9978 + f: 10061 + f: 10192 + f: 10213 + f: 10345 + f: 10369 + f: 10404 + f: 10430 + f: 10471 + f: 10481 + f: 10489 + f: 10492 + f: 10494 + f: 10524 + f: 10554 + f: 10557 + f: 10560 + f: 10562 + f: 10641 + f: 10716 + f: 10842 + f: 10897 + f: 10967 + f: 11053 + f: 11128 + f: 11137 + f: 11328 + f: 11336 + f: 11401 + f: 11532 + f: 11573 + f: 11860 + f: 11880 + f: 12013 + f: 12305 + f: 12358 + f: 12386 + f: 12404 + f: 12456 + f: 12456 + f: 12476 + f: 12615 + f: 12677 + f: 12981 + f: 13094 + f: 13197 + f: 13708 + f: 13717 + f: 13788 + f: 14049 + f: 14112 + f: 14224 + f: 14257 + f: 14681 + f: 14901 + f: 15006 + f: 15071 + f: 15100 + f: 15248 + f: 15669 + f: 15877 + f: 15953 + f: 15953 + f: 16066 + f: 16072 + f: 16271 + f: 16292 + f: 16386 + f: 16490 + f: 16633 + f: 16670 + f: 16834 + f: 16896 + f: 17543 + f: 17693 + f: 17800 + f: 17859 + f: 18397 + f: 18811 + f: 18826 + f: 18971 + f: 19304 + f: 19319 + f: 19695 + f: 20378 + f: 20865 + f: 21313 + f: 21330 + f: 22321 + f: 22760 + f: 22770 + f: 23783 + f: 23785 + f: 24525 + f: 24844 + f: 24848 + f: 24964 + f: 24966 + f: 27468 + f: 27478 + f: 27555 + f: 27555 + f: 28215 + f: 28219 + f: 28336 + f: 28490 + f: 30213 + f: 30228 + f: 30242 + f: 34116 + f: 43518 + f: 43518 + f: 43518 + f: 43852 + f: 43852 + f: 43852 + } + } + } + experimental_debug_info { + original_node_names: "QNetwork/EncodingNetwork/lambda_10/Bucketize" + } + } + node_def { + name: "QNetwork/EncodingNetwork/lambda_10/Cast" + op: "Cast" + input: "QNetwork/EncodingNetwork/lambda_10/Bucketize:output:0" + attr { + key: "DstT" + value { + type: DT_FLOAT + } + } + attr { + key: "SrcT" + value { + type: DT_INT32 + } + } + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + dim { + size: 1 + } + } + } + } + } + experimental_debug_info { + original_node_names: "QNetwork/EncodingNetwork/lambda_10/Cast" + } + } + node_def { + name: "QNetwork/EncodingNetwork/lambda_10/truediv/y" + op: "Const" + attr { + key: "_output_shapes" + value { + list { + shape { + } + } + } + } + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_FLOAT + tensor_shape { + } + float_val: 999 + } + } + } + experimental_debug_info { + original_node_names: "QNetwork/EncodingNetwork/lambda_10/truediv/y" + } + } + node_def { + name: "QNetwork/EncodingNetwork/lambda_10/truediv" + op: "RealDiv" + input: "QNetwork/EncodingNetwork/lambda_10/Cast:y:0" + input: "QNetwork/EncodingNetwork/lambda_10/truediv/y:output:0" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + dim { + size: 1 + } + } + } + } + } + experimental_debug_info { + original_node_names: "QNetwork/EncodingNetwork/lambda_10/truediv" + } + } + node_def { + name: "QNetwork/EncodingNetwork/lambda_10/Sqrt" + op: "Sqrt" + input: "QNetwork/EncodingNetwork/lambda_10/truediv:z:0" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + dim { + size: 1 + } + } + } + } + } + experimental_debug_info { + original_node_names: "QNetwork/EncodingNetwork/lambda_10/Sqrt" + } + } + node_def { + name: "QNetwork/EncodingNetwork/lambda_10/mul" + op: "Mul" + input: "QNetwork/EncodingNetwork/lambda_10/truediv:z:0" + input: "QNetwork/EncodingNetwork/lambda_10/truediv:z:0" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + dim { + size: 1 + } + } + } + } + } + experimental_debug_info { + original_node_names: "QNetwork/EncodingNetwork/lambda_10/mul" + } + } + node_def { + name: "QNetwork/EncodingNetwork/lambda_10/concat/axis" + op: "Const" + attr { + key: "_output_shapes" + value { + list { + shape { + } + } + } + } + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + } + int_val: -1 + } + } + } + experimental_debug_info { + original_node_names: "QNetwork/EncodingNetwork/lambda_10/concat/axis" + } + } + node_def { + name: "QNetwork/EncodingNetwork/lambda_10/concat" + op: "ConcatV2" + input: "QNetwork/EncodingNetwork/lambda_10/truediv:z:0" + input: "QNetwork/EncodingNetwork/lambda_10/Sqrt:y:0" + input: "QNetwork/EncodingNetwork/lambda_10/mul:z:0" + input: "QNetwork/EncodingNetwork/lambda_10/concat/axis:output:0" + attr { + key: "N" + value { + i: 3 + } + } + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + dim { + size: 3 + } + } + } + } + } + experimental_debug_info { + original_node_names: "QNetwork/EncodingNetwork/lambda_10/concat" + } + } + node_def { + name: "QNetwork/EncodingNetwork/lambda_11/expand_dims/ExpandDims/dim" + op: "Const" + attr { + key: "_output_shapes" + value { + list { + shape { + } + } + } + } + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + } + int_val: -1 + } + } + } + experimental_debug_info { + original_node_names: "QNetwork/EncodingNetwork/lambda_11/expand_dims/ExpandDims/dim" + } + } + node_def { + name: "QNetwork/EncodingNetwork/lambda_11/expand_dims/ExpandDims" + op: "ExpandDims" + input: "time_step_14" + input: "QNetwork/EncodingNetwork/lambda_11/expand_dims/ExpandDims/dim:output:0" + attr { + key: "T" + value { + type: DT_INT64 + } + } + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + dim { + size: 1 + } + } + } + } + } + experimental_debug_info { + original_node_names: "QNetwork/EncodingNetwork/lambda_11/expand_dims/ExpandDims" + } + } + node_def { + name: "QNetwork/EncodingNetwork/lambda_11/Bucketize" + op: "Bucketize" + input: "QNetwork/EncodingNetwork/lambda_11/expand_dims/ExpandDims:output:0" + attr { + key: "T" + value { + type: DT_INT64 + } + } + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + dim { + size: 1 + } + } + } + } + } + attr { + key: "boundaries" + value { + list { + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 0 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 1 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 2 + f: 3 + f: 4 + } + } + } + experimental_debug_info { + original_node_names: "QNetwork/EncodingNetwork/lambda_11/Bucketize" + } + } + node_def { + name: "QNetwork/EncodingNetwork/lambda_11/Cast" + op: "Cast" + input: "QNetwork/EncodingNetwork/lambda_11/Bucketize:output:0" + attr { + key: "DstT" + value { + type: DT_FLOAT + } + } + attr { + key: "SrcT" + value { + type: DT_INT32 + } + } + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + dim { + size: 1 + } + } + } + } + } + experimental_debug_info { + original_node_names: "QNetwork/EncodingNetwork/lambda_11/Cast" + } + } + node_def { + name: "QNetwork/EncodingNetwork/lambda_11/truediv/y" + op: "Const" + attr { + key: "_output_shapes" + value { + list { + shape { + } + } + } + } + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_FLOAT + tensor_shape { + } + float_val: 999 + } + } + } + experimental_debug_info { + original_node_names: "QNetwork/EncodingNetwork/lambda_11/truediv/y" + } + } + node_def { + name: "QNetwork/EncodingNetwork/lambda_11/truediv" + op: "RealDiv" + input: "QNetwork/EncodingNetwork/lambda_11/Cast:y:0" + input: "QNetwork/EncodingNetwork/lambda_11/truediv/y:output:0" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + dim { + size: 1 + } + } + } + } + } + experimental_debug_info { + original_node_names: "QNetwork/EncodingNetwork/lambda_11/truediv" + } + } + node_def { + name: "QNetwork/EncodingNetwork/lambda_11/Sqrt" + op: "Sqrt" + input: "QNetwork/EncodingNetwork/lambda_11/truediv:z:0" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + dim { + size: 1 + } + } + } + } + } + experimental_debug_info { + original_node_names: "QNetwork/EncodingNetwork/lambda_11/Sqrt" + } + } + node_def { + name: "QNetwork/EncodingNetwork/lambda_11/mul" + op: "Mul" + input: "QNetwork/EncodingNetwork/lambda_11/truediv:z:0" + input: "QNetwork/EncodingNetwork/lambda_11/truediv:z:0" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + dim { + size: 1 + } + } + } + } + } + experimental_debug_info { + original_node_names: "QNetwork/EncodingNetwork/lambda_11/mul" + } + } + node_def { + name: "QNetwork/EncodingNetwork/lambda_11/concat/axis" + op: "Const" + attr { + key: "_output_shapes" + value { + list { + shape { + } + } + } + } + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + } + int_val: -1 + } + } + } + experimental_debug_info { + original_node_names: "QNetwork/EncodingNetwork/lambda_11/concat/axis" + } + } + node_def { + name: "QNetwork/EncodingNetwork/lambda_11/concat" + op: "ConcatV2" + input: "QNetwork/EncodingNetwork/lambda_11/truediv:z:0" + input: "QNetwork/EncodingNetwork/lambda_11/Sqrt:y:0" + input: "QNetwork/EncodingNetwork/lambda_11/mul:z:0" + input: "QNetwork/EncodingNetwork/lambda_11/concat/axis:output:0" + attr { + key: "N" + value { + i: 3 + } + } + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + dim { + size: 3 + } + } + } + } + } + experimental_debug_info { + original_node_names: "QNetwork/EncodingNetwork/lambda_11/concat" + } + } + node_def { + name: "QNetwork/EncodingNetwork/concatenate/concat/axis" + op: "Const" + attr { + key: "_output_shapes" + value { + list { + shape { + } + } + } + } + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + } + int_val: 1 + } + } + } + experimental_debug_info { + original_node_names: "QNetwork/EncodingNetwork/concatenate/concat/axis" + } + } + node_def { + name: "QNetwork/EncodingNetwork/concatenate/concat" + op: "ConcatV2" + input: "QNetwork/EncodingNetwork/lambda/concat:output:0" + input: "QNetwork/EncodingNetwork/lambda_1/concat:output:0" + input: "QNetwork/EncodingNetwork/lambda_2/concat:output:0" + input: "QNetwork/EncodingNetwork/lambda_3/concat:output:0" + input: "QNetwork/EncodingNetwork/lambda_4/concat:output:0" + input: "QNetwork/EncodingNetwork/lambda_5/concat:output:0" + input: "QNetwork/EncodingNetwork/lambda_6/concat:output:0" + input: "QNetwork/EncodingNetwork/lambda_7/concat:output:0" + input: "QNetwork/EncodingNetwork/lambda_8/concat:output:0" + input: "QNetwork/EncodingNetwork/lambda_9/zeros_like:output:0" + input: "QNetwork/EncodingNetwork/lambda_10/concat:output:0" + input: "QNetwork/EncodingNetwork/lambda_11/concat:output:0" + input: "QNetwork/EncodingNetwork/concatenate/concat/axis:output:0" + attr { + key: "N" + value { + i: 12 + } + } + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + dim { + size: 34 + } + } + } + } + } + experimental_debug_info { + original_node_names: "QNetwork/EncodingNetwork/concatenate/concat" + } + } + node_def { + name: "QNetwork/EncodingNetwork/flatten/Const" + op: "Const" + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 2 + } + } + } + } + } + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + dim { + size: 2 + } + } + tensor_content: "\377\377\377\377\"\000\000\000" + } + } + } + experimental_debug_info { + original_node_names: "QNetwork/EncodingNetwork/flatten/Const" + } + } + node_def { + name: "QNetwork/EncodingNetwork/flatten/Reshape" + op: "Reshape" + input: "QNetwork/EncodingNetwork/concatenate/concat:output:0" + input: "QNetwork/EncodingNetwork/flatten/Const:output:0" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + dim { + size: 34 + } + } + } + } + } + experimental_debug_info { + original_node_names: "QNetwork/EncodingNetwork/flatten/Reshape" + } + } + node_def { + name: "QNetwork/EncodingNetwork/dense/MatMul/ReadVariableOp" + op: "ReadVariableOp" + input: "qnetwork_encodingnetwork_dense_matmul_readvariableop_resource" + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 34 + } + dim { + size: 100 + } + } + } + } + } + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + experimental_debug_info { + original_node_names: "QNetwork/EncodingNetwork/dense/MatMul/ReadVariableOp" + } + } + node_def { + name: "QNetwork/EncodingNetwork/dense/MatMul" + op: "MatMul" + input: "QNetwork/EncodingNetwork/flatten/Reshape:output:0" + input: "QNetwork/EncodingNetwork/dense/MatMul/ReadVariableOp:value:0" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + dim { + size: 100 + } + } + } + } + } + experimental_debug_info { + original_node_names: "QNetwork/EncodingNetwork/dense/MatMul" + } + } + node_def { + name: "QNetwork/EncodingNetwork/dense/BiasAdd/ReadVariableOp" + op: "ReadVariableOp" + input: "qnetwork_encodingnetwork_dense_biasadd_readvariableop_resource" + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 100 + } + } + } + } + } + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + experimental_debug_info { + original_node_names: "QNetwork/EncodingNetwork/dense/BiasAdd/ReadVariableOp" + } + } + node_def { + name: "QNetwork/EncodingNetwork/dense/BiasAdd" + op: "BiasAdd" + input: "QNetwork/EncodingNetwork/dense/MatMul:product:0" + input: "QNetwork/EncodingNetwork/dense/BiasAdd/ReadVariableOp:value:0" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + dim { + size: 100 + } + } + } + } + } + experimental_debug_info { + original_node_names: "QNetwork/EncodingNetwork/dense/BiasAdd" + } + } + node_def { + name: "QNetwork/EncodingNetwork/dense/Relu" + op: "Relu" + input: "QNetwork/EncodingNetwork/dense/BiasAdd:output:0" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + dim { + size: 100 + } + } + } + } + } + experimental_debug_info { + original_node_names: "QNetwork/EncodingNetwork/dense/Relu" + } + } + node_def { + name: "QNetwork/EncodingNetwork/dense_1/MatMul/ReadVariableOp" + op: "ReadVariableOp" + input: "qnetwork_encodingnetwork_dense_1_matmul_readvariableop_resource" + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 100 + } + dim { + size: 40 + } + } + } + } + } + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + experimental_debug_info { + original_node_names: "QNetwork/EncodingNetwork/dense_1/MatMul/ReadVariableOp" + } + } + node_def { + name: "QNetwork/EncodingNetwork/dense_1/MatMul" + op: "MatMul" + input: "QNetwork/EncodingNetwork/dense/Relu:activations:0" + input: "QNetwork/EncodingNetwork/dense_1/MatMul/ReadVariableOp:value:0" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + dim { + size: 40 + } + } + } + } + } + experimental_debug_info { + original_node_names: "QNetwork/EncodingNetwork/dense_1/MatMul" + } + } + node_def { + name: "QNetwork/EncodingNetwork/dense_1/BiasAdd/ReadVariableOp" + op: "ReadVariableOp" + input: "qnetwork_encodingnetwork_dense_1_biasadd_readvariableop_resource" + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 40 + } + } + } + } + } + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + experimental_debug_info { + original_node_names: "QNetwork/EncodingNetwork/dense_1/BiasAdd/ReadVariableOp" + } + } + node_def { + name: "QNetwork/EncodingNetwork/dense_1/BiasAdd" + op: "BiasAdd" + input: "QNetwork/EncodingNetwork/dense_1/MatMul:product:0" + input: "QNetwork/EncodingNetwork/dense_1/BiasAdd/ReadVariableOp:value:0" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + dim { + size: 40 + } + } + } + } + } + experimental_debug_info { + original_node_names: "QNetwork/EncodingNetwork/dense_1/BiasAdd" + } + } + node_def { + name: "QNetwork/EncodingNetwork/dense_1/Relu" + op: "Relu" + input: "QNetwork/EncodingNetwork/dense_1/BiasAdd:output:0" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + dim { + size: 40 + } + } + } + } + } + experimental_debug_info { + original_node_names: "QNetwork/EncodingNetwork/dense_1/Relu" + } + } + node_def { + name: "QNetwork/dense_2/MatMul/ReadVariableOp" + op: "ReadVariableOp" + input: "qnetwork_dense_2_matmul_readvariableop_resource" + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 40 + } + dim { + size: 2 + } + } + } + } + } + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + experimental_debug_info { + original_node_names: "QNetwork/dense_2/MatMul/ReadVariableOp" + } + } + node_def { + name: "QNetwork/dense_2/MatMul" + op: "MatMul" + input: "QNetwork/EncodingNetwork/dense_1/Relu:activations:0" + input: "QNetwork/dense_2/MatMul/ReadVariableOp:value:0" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + dim { + size: 2 + } + } + } + } + } + experimental_debug_info { + original_node_names: "QNetwork/dense_2/MatMul" + } + } + node_def { + name: "QNetwork/dense_2/BiasAdd/ReadVariableOp" + op: "ReadVariableOp" + input: "qnetwork_dense_2_biasadd_readvariableop_resource" + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 2 + } + } + } + } + } + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + experimental_debug_info { + original_node_names: "QNetwork/dense_2/BiasAdd/ReadVariableOp" + } + } + node_def { + name: "QNetwork/dense_2/BiasAdd" + op: "BiasAdd" + input: "QNetwork/dense_2/MatMul:product:0" + input: "QNetwork/dense_2/BiasAdd/ReadVariableOp:value:0" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + dim { + size: 2 + } + } + } + } + } + experimental_debug_info { + original_node_names: "QNetwork/dense_2/BiasAdd" + } + } + node_def { + name: "ShiftedCategorical_1/mode/ArgMax/dimension" + op: "Const" + attr { + key: "_output_shapes" + value { + list { + shape { + } + } + } + } + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + } + int_val: -1 + } + } + } + experimental_debug_info { + original_node_names: "ShiftedCategorical_1/mode/ArgMax/dimension" + } + } + node_def { + name: "ShiftedCategorical_1/mode/ArgMax" + op: "ArgMax" + input: "QNetwork/dense_2/BiasAdd:output:0" + input: "ShiftedCategorical_1/mode/ArgMax/dimension:output:0" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + } + } + } + } + experimental_debug_info { + original_node_names: "ShiftedCategorical_1/mode/ArgMax" + } + } + node_def { + name: "add/y" + op: "Const" + attr { + key: "_output_shapes" + value { + list { + shape { + } + } + } + } + attr { + key: "dtype" + value { + type: DT_INT64 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT64 + tensor_shape { + } + int64_val: 0 + } + } + } + experimental_debug_info { + original_node_names: "add/y" + } + } + node_def { + name: "add" + op: "AddV2" + input: "ShiftedCategorical_1/mode/ArgMax:output:0" + input: "add/y:output:0" + attr { + key: "T" + value { + type: DT_INT64 + } + } + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + } + } + } + } + experimental_debug_info { + original_node_names: "add" + } + } + node_def { + name: "Deterministic/atol" + op: "Const" + attr { + key: "_output_shapes" + value { + list { + shape { + } + } + } + } + attr { + key: "dtype" + value { + type: DT_INT64 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT64 + tensor_shape { + } + int64_val: 0 + } + } + } + experimental_debug_info { + original_node_names: "Deterministic/atol" + } + } + node_def { + name: "Deterministic/rtol" + op: "Const" + attr { + key: "_output_shapes" + value { + list { + shape { + } + } + } + } + attr { + key: "dtype" + value { + type: DT_INT64 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT64 + tensor_shape { + } + int64_val: 0 + } + } + } + experimental_debug_info { + original_node_names: "Deterministic/rtol" + } + } + node_def { + name: "Deterministic_1/sample/sample_shape/x" + op: "Const" + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + } + } + } + } + } + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_FLOAT + tensor_shape { + dim { + } + } + } + } + } + experimental_debug_info { + original_node_names: "Deterministic_1/sample/sample_shape/x" + } + } + node_def { + name: "Deterministic_1/sample/sample_shape" + op: "Cast" + input: "Deterministic_1/sample/sample_shape/x:output:0" + attr { + key: "DstT" + value { + type: DT_INT32 + } + } + attr { + key: "SrcT" + value { + type: DT_FLOAT + } + } + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + } + } + } + } + } + experimental_debug_info { + original_node_names: "Deterministic_1/sample/sample_shape" + } + } + node_def { + name: "Deterministic_1/sample/Shape" + op: "Const" + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + } + } + } + } + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + dim { + size: 1 + } + } + int_val: 1 + } + } + } + experimental_debug_info { + original_node_names: "Deterministic_1/sample/Shape" + } + } + node_def { + name: "Deterministic_1/sample/Shape_1" + op: "Const" + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + } + } + } + } + } + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + dim { + } + } + } + } + } + experimental_debug_info { + original_node_names: "Deterministic_1/sample/Shape_1" + } + } + node_def { + name: "Deterministic_1/sample/Shape_2" + op: "Const" + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + } + } + } + } + } + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + dim { + } + } + } + } + } + experimental_debug_info { + original_node_names: "Deterministic_1/sample/Shape_2" + } + } + node_def { + name: "Deterministic_1/sample/BroadcastArgs" + op: "BroadcastArgs" + input: "Deterministic_1/sample/Shape_1:output:0" + input: "Deterministic_1/sample/Shape_2:output:0" + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + } + } + } + } + } + experimental_debug_info { + original_node_names: "Deterministic_1/sample/BroadcastArgs" + } + } + node_def { + name: "Deterministic_1/sample/BroadcastArgs_1" + op: "BroadcastArgs" + input: "Deterministic_1/sample/Shape:output:0" + input: "Deterministic_1/sample/BroadcastArgs:r0:0" + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + } + } + } + } + experimental_debug_info { + original_node_names: "Deterministic_1/sample/BroadcastArgs_1" + } + } + node_def { + name: "Deterministic_1/sample/Const" + op: "Const" + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + } + } + } + } + } + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + dim { + } + } + } + } + } + experimental_debug_info { + original_node_names: "Deterministic_1/sample/Const" + } + } + node_def { + name: "Deterministic_1/sample/concat/values_0" + op: "Const" + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + } + } + } + } + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + dim { + size: 1 + } + } + int_val: 1 + } + } + } + experimental_debug_info { + original_node_names: "Deterministic_1/sample/concat/values_0" + } + } + node_def { + name: "Deterministic_1/sample/concat/axis" + op: "Const" + attr { + key: "_output_shapes" + value { + list { + shape { + } + } + } + } + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + } + int_val: 0 + } + } + } + experimental_debug_info { + original_node_names: "Deterministic_1/sample/concat/axis" + } + } + node_def { + name: "Deterministic_1/sample/concat" + op: "ConcatV2" + input: "Deterministic_1/sample/concat/values_0:output:0" + input: "Deterministic_1/sample/BroadcastArgs_1:r0:0" + input: "Deterministic_1/sample/Const:output:0" + input: "Deterministic_1/sample/concat/axis:output:0" + attr { + key: "N" + value { + i: 3 + } + } + attr { + key: "T" + value { + type: DT_INT32 + } + } + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 2 + } + } + } + } + } + experimental_debug_info { + original_node_names: "Deterministic_1/sample/concat" + } + } + node_def { + name: "Deterministic_1/sample/BroadcastTo" + op: "BroadcastTo" + input: "add:z:0" + input: "Deterministic_1/sample/concat:output:0" + attr { + key: "T" + value { + type: DT_INT64 + } + } + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + dim { + size: 1 + } + } + } + } + } + experimental_debug_info { + original_node_names: "Deterministic_1/sample/BroadcastTo" + } + } + node_def { + name: "Deterministic_1/sample/Shape_3" + op: "Const" + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 2 + } + } + } + } + } + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + dim { + size: 2 + } + } + tensor_content: "\001\000\000\000\001\000\000\000" + } + } + } + experimental_debug_info { + original_node_names: "Deterministic_1/sample/Shape_3" + } + } + node_def { + name: "Deterministic_1/sample/strided_slice/stack" + op: "Const" + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + } + } + } + } + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + dim { + size: 1 + } + } + int_val: 1 + } + } + } + experimental_debug_info { + original_node_names: "Deterministic_1/sample/strided_slice/stack" + } + } + node_def { + name: "Deterministic_1/sample/strided_slice/stack_1" + op: "Const" + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + } + } + } + } + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + dim { + size: 1 + } + } + int_val: 0 + } + } + } + experimental_debug_info { + original_node_names: "Deterministic_1/sample/strided_slice/stack_1" + } + } + node_def { + name: "Deterministic_1/sample/strided_slice/stack_2" + op: "Const" + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + } + } + } + } + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + dim { + size: 1 + } + } + int_val: 1 + } + } + } + experimental_debug_info { + original_node_names: "Deterministic_1/sample/strided_slice/stack_2" + } + } + node_def { + name: "Deterministic_1/sample/strided_slice" + op: "StridedSlice" + input: "Deterministic_1/sample/Shape_3:output:0" + input: "Deterministic_1/sample/strided_slice/stack:output:0" + input: "Deterministic_1/sample/strided_slice/stack_1:output:0" + input: "Deterministic_1/sample/strided_slice/stack_2:output:0" + attr { + key: "Index" + value { + type: DT_INT32 + } + } + attr { + key: "T" + value { + type: DT_INT32 + } + } + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + } + } + } + } + attr { + key: "end_mask" + value { + i: 1 + } + } + experimental_debug_info { + original_node_names: "Deterministic_1/sample/strided_slice" + } + } + node_def { + name: "Deterministic_1/sample/concat_1/axis" + op: "Const" + attr { + key: "_output_shapes" + value { + list { + shape { + } + } + } + } + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + } + int_val: 0 + } + } + } + experimental_debug_info { + original_node_names: "Deterministic_1/sample/concat_1/axis" + } + } + node_def { + name: "Deterministic_1/sample/concat_1" + op: "ConcatV2" + input: "Deterministic_1/sample/sample_shape:y:0" + input: "Deterministic_1/sample/strided_slice:output:0" + input: "Deterministic_1/sample/concat_1/axis:output:0" + attr { + key: "N" + value { + i: 2 + } + } + attr { + key: "T" + value { + type: DT_INT32 + } + } + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + } + } + } + } + experimental_debug_info { + original_node_names: "Deterministic_1/sample/concat_1" + } + } + node_def { + name: "Deterministic_1/sample/Reshape" + op: "Reshape" + input: "Deterministic_1/sample/BroadcastTo:output:0" + input: "Deterministic_1/sample/concat_1:output:0" + attr { + key: "T" + value { + type: DT_INT64 + } + } + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + } + } + } + } + experimental_debug_info { + original_node_names: "Deterministic_1/sample/Reshape" + } + } + node_def { + name: "clip_by_value/Minimum/y" + op: "Const" + attr { + key: "_output_shapes" + value { + list { + shape { + } + } + } + } + attr { + key: "dtype" + value { + type: DT_INT64 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT64 + tensor_shape { + } + int64_val: 1 + } + } + } + experimental_debug_info { + original_node_names: "clip_by_value/Minimum/y" + } + } + node_def { + name: "clip_by_value/Minimum" + op: "Minimum" + input: "Deterministic_1/sample/Reshape:output:0" + input: "clip_by_value/Minimum/y:output:0" + attr { + key: "T" + value { + type: DT_INT64 + } + } + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + } + } + } + } + experimental_debug_info { + original_node_names: "clip_by_value/Minimum" + } + } + node_def { + name: "clip_by_value/y" + op: "Const" + attr { + key: "_output_shapes" + value { + list { + shape { + } + } + } + } + attr { + key: "dtype" + value { + type: DT_INT64 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT64 + tensor_shape { + } + int64_val: 0 + } + } + } + experimental_debug_info { + original_node_names: "clip_by_value/y" + } + } + node_def { + name: "clip_by_value" + op: "Maximum" + input: "clip_by_value/Minimum:z:0" + input: "clip_by_value/y:output:0" + attr { + key: "T" + value { + type: DT_INT64 + } + } + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + } + } + } + } + experimental_debug_info { + original_node_names: "clip_by_value" + } + } + node_def { + name: "Identity" + op: "Identity" + input: "clip_by_value:z:0" + attr { + key: "T" + value { + type: DT_INT64 + } + } + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + } + } + } + } + experimental_debug_info { + original_node_names: "Identity" + } + } + ret { + key: "identity" + value: "Identity:output:0" + } + attr { + key: "_input_shapes" + value { + list { + shape { + dim { + size: 1 + } + } + shape { + dim { + size: 1 + } + } + shape { + dim { + size: 1 + } + } + shape { + dim { + size: 1 + } + } + shape { + dim { + size: 1 + } + } + shape { + dim { + size: 1 + } + } + shape { + dim { + size: 1 + } + } + shape { + dim { + size: 1 + } + } + shape { + dim { + size: 1 + } + } + shape { + dim { + size: 1 + } + } + shape { + dim { + size: 1 + } + } + shape { + dim { + size: 1 + } + } + shape { + dim { + size: 1 + } + } + shape { + dim { + size: 1 + } + } + shape { + dim { + size: 1 + } + } + shape { + unknown_rank: true + } + shape { + unknown_rank: true + } + shape { + unknown_rank: true + } + shape { + unknown_rank: true + } + shape { + unknown_rank: true + } + shape { + unknown_rank: true + } + } + } + } + arg_attr { + key: 0 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + } + } + } + } + attr { + key: "_user_specified_name" + value { + s: "time_step" + } + } + } + } + arg_attr { + key: 1 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + } + } + } + } + attr { + key: "_user_specified_name" + value { + s: "time_step" + } + } + } + } + arg_attr { + key: 2 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + } + } + } + } + attr { + key: "_user_specified_name" + value { + s: "time_step" + } + } + } + } + arg_attr { + key: 3 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + } + } + } + } + attr { + key: "_user_specified_name" + value { + s: "time_step" + } + } + } + } + arg_attr { + key: 4 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + } + } + } + } + attr { + key: "_user_specified_name" + value { + s: "time_step" + } + } + } + } + arg_attr { + key: 5 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + } + } + } + } + attr { + key: "_user_specified_name" + value { + s: "time_step" + } + } + } + } + arg_attr { + key: 6 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + } + } + } + } + attr { + key: "_user_specified_name" + value { + s: "time_step" + } + } + } + } + arg_attr { + key: 7 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + } + } + } + } + attr { + key: "_user_specified_name" + value { + s: "time_step" + } + } + } + } + arg_attr { + key: 8 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + } + } + } + } + attr { + key: "_user_specified_name" + value { + s: "time_step" + } + } + } + } + arg_attr { + key: 9 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + } + } + } + } + attr { + key: "_user_specified_name" + value { + s: "time_step" + } + } + } + } + arg_attr { + key: 10 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + } + } + } + } + attr { + key: "_user_specified_name" + value { + s: "time_step" + } + } + } + } + arg_attr { + key: 11 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + } + } + } + } + attr { + key: "_user_specified_name" + value { + s: "time_step" + } + } + } + } + arg_attr { + key: 12 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + } + } + } + } + attr { + key: "_user_specified_name" + value { + s: "time_step" + } + } + } + } + arg_attr { + key: 13 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + } + } + } + } + attr { + key: "_user_specified_name" + value { + s: "time_step" + } + } + } + } + arg_attr { + key: 14 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + } + } + } + } + attr { + key: "_user_specified_name" + value { + s: "time_step" + } + } + } + } + arg_attr { + key: 15 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + } + } + } + } + } + } + arg_attr { + key: 16 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + } + } + } + } + } + } + arg_attr { + key: 17 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + } + } + } + } + } + } + arg_attr { + key: 18 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + } + } + } + } + } + } + arg_attr { + key: 19 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + } + } + } + } + } + } + arg_attr { + key: 20 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + } + } + } + } + } + } + } + function { + signature { + name: "__inference_signature_wrapper_4619033" + } + node_def { + name: "PartitionedCall" + op: "PartitionedCall" + attr { + key: "Tin" + value { + list { + } + } + } + attr { + key: "Tout" + value { + list { + } + } + } + attr { + key: "_collective_manager_ids" + value { + list { + } + } + } + attr { + key: "_output_shapes" + value { + list { + } + } + } + attr { + key: "_read_only_resource_inputs" + value { + list { + } + } + } + attr { + key: "config_proto" + value { + s: "\n\007\n\003CPU\020\001\n\007\n\003GPU\020\0012\005*\0010J\0008\001" + } + } + attr { + key: "f" + value { + func { + name: "__inference_function_with_signature_4619029" + } + } + } + experimental_debug_info { + original_node_names: "PartitionedCall" + } + } + attr { + key: "_input_shapes" + value { + } + } + } + function { + signature { + name: "__inference__traced_save_4619143" + input_arg { + name: "file_prefix" + type: DT_STRING + } + input_arg { + name: "savev2_train_step_read_readvariableop" + type: DT_INT64 + } + input_arg { + name: "savev2_qnetwork_encodingnetwork_dense_kernel_read_readvariableop" + type: DT_FLOAT + } + input_arg { + name: "savev2_qnetwork_encodingnetwork_dense_bias_read_readvariableop" + type: DT_FLOAT + } + input_arg { + name: "savev2_qnetwork_encodingnetwork_dense_1_kernel_read_readvariableop" + type: DT_FLOAT + } + input_arg { + name: "savev2_qnetwork_encodingnetwork_dense_1_bias_read_readvariableop" + type: DT_FLOAT + } + input_arg { + name: "savev2_qnetwork_dense_2_kernel_read_readvariableop" + type: DT_FLOAT + } + input_arg { + name: "savev2_qnetwork_dense_2_bias_read_readvariableop" + type: DT_FLOAT + } + input_arg { + name: "savev2_1_const" + type: DT_STRING + } + output_arg { + name: "identity_1" + type: DT_STRING + } + is_stateful: true + control_output: "MergeV2Checkpoints" + control_output: "SaveV2" + control_output: "SaveV2_1" + } + node_def { + name: "StaticRegexFullMatch" + op: "StaticRegexFullMatch" + input: "file_prefix" + device: "/device:CPU:*" + attr { + key: "_output_shapes" + value { + list { + shape { + } + } + } + } + attr { + key: "pattern" + value { + s: "^s3://.*" + } + } + experimental_debug_info { + original_node_names: "StaticRegexFullMatch" + } + } + node_def { + name: "Const" + op: "Const" + device: "/device:CPU:*" + attr { + key: "_output_shapes" + value { + list { + shape { + } + } + } + } + attr { + key: "dtype" + value { + type: DT_STRING + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_STRING + tensor_shape { + } + string_val: ".part" + } + } + } + experimental_debug_info { + original_node_names: "Const" + } + } + node_def { + name: "Const_1" + op: "Const" + device: "/device:CPU:*" + attr { + key: "_output_shapes" + value { + list { + shape { + } + } + } + } + attr { + key: "dtype" + value { + type: DT_STRING + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_STRING + tensor_shape { + } + string_val: "_temp_f4c8d2e64931472295be68a11e57e937/part" + } + } + } + experimental_debug_info { + original_node_names: "Const_1" + } + } + node_def { + name: "Select" + op: "Select" + input: "StaticRegexFullMatch:output:0" + input: "Const:output:0" + input: "Const_1:output:0" + device: "/device:CPU:*" + attr { + key: "T" + value { + type: DT_STRING + } + } + attr { + key: "_output_shapes" + value { + list { + shape { + } + } + } + } + experimental_debug_info { + original_node_names: "Select" + } + } + node_def { + name: "StringJoin" + op: "StringJoin" + input: "file_prefix" + input: "Select:output:0" + device: "/device:CPU:*" + attr { + key: "N" + value { + i: 2 + } + } + attr { + key: "_output_shapes" + value { + list { + shape { + } + } + } + } + experimental_debug_info { + original_node_names: "StringJoin" + } + } + node_def { + name: "num_shards" + op: "Const" + attr { + key: "_output_shapes" + value { + list { + shape { + } + } + } + } + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + } + int_val: 2 + } + } + } + experimental_debug_info { + original_node_names: "num_shards" + } + } + node_def { + name: "ShardedFilename/shard" + op: "Const" + device: "/device:CPU:0" + attr { + key: "_output_shapes" + value { + list { + shape { + } + } + } + } + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + } + int_val: 0 + } + } + } + experimental_debug_info { + original_node_names: "ShardedFilename/shard" + } + } + node_def { + name: "ShardedFilename" + op: "ShardedFilename" + input: "StringJoin:output:0" + input: "ShardedFilename/shard:output:0" + input: "num_shards:output:0" + device: "/device:CPU:0" + attr { + key: "_output_shapes" + value { + list { + shape { + } + } + } + } + experimental_debug_info { + original_node_names: "ShardedFilename" + } + } + node_def { + name: "SaveV2/tensor_names" + op: "Const" + device: "/device:CPU:0" + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 7 + } + } + } + } + } + attr { + key: "dtype" + value { + type: DT_STRING + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_STRING + tensor_shape { + dim { + size: 7 + } + } + string_val: "train_step/.ATTRIBUTES/VARIABLE_VALUE" + string_val: "model_variables/0/.ATTRIBUTES/VARIABLE_VALUE" + string_val: "model_variables/1/.ATTRIBUTES/VARIABLE_VALUE" + string_val: "model_variables/2/.ATTRIBUTES/VARIABLE_VALUE" + string_val: "model_variables/3/.ATTRIBUTES/VARIABLE_VALUE" + string_val: "model_variables/4/.ATTRIBUTES/VARIABLE_VALUE" + string_val: "model_variables/5/.ATTRIBUTES/VARIABLE_VALUE" + } + } + } + experimental_debug_info { + original_node_names: "SaveV2/tensor_names" + } + } + node_def { + name: "SaveV2/shape_and_slices" + op: "Const" + device: "/device:CPU:0" + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 7 + } + } + } + } + } + attr { + key: "dtype" + value { + type: DT_STRING + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_STRING + tensor_shape { + dim { + size: 7 + } + } + string_val: "" + string_val: "" + string_val: "" + string_val: "" + string_val: "" + string_val: "" + string_val: "" + } + } + } + experimental_debug_info { + original_node_names: "SaveV2/shape_and_slices" + } + } + node_def { + name: "SaveV2" + op: "SaveV2" + input: "ShardedFilename:filename:0" + input: "SaveV2/tensor_names:output:0" + input: "SaveV2/shape_and_slices:output:0" + input: "savev2_train_step_read_readvariableop" + input: "savev2_qnetwork_encodingnetwork_dense_kernel_read_readvariableop" + input: "savev2_qnetwork_encodingnetwork_dense_bias_read_readvariableop" + input: "savev2_qnetwork_encodingnetwork_dense_1_kernel_read_readvariableop" + input: "savev2_qnetwork_encodingnetwork_dense_1_bias_read_readvariableop" + input: "savev2_qnetwork_dense_2_kernel_read_readvariableop" + input: "savev2_qnetwork_dense_2_bias_read_readvariableop" + device: "/device:CPU:0" + attr { + key: "_output_shapes" + value { + list { + } + } + } + attr { + key: "dtypes" + value { + list { + type: DT_INT64 + type: DT_FLOAT + type: DT_FLOAT + type: DT_FLOAT + type: DT_FLOAT + type: DT_FLOAT + type: DT_FLOAT + } + } + } + experimental_debug_info { + original_node_names: "SaveV2" + } + } + node_def { + name: "ShardedFilename_1/shard" + op: "Const" + device: "/device:CPU:0" + attr { + key: "_output_shapes" + value { + list { + shape { + } + } + } + } + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + } + int_val: 1 + } + } + } + experimental_debug_info { + original_node_names: "ShardedFilename_1/shard" + } + } + node_def { + name: "ShardedFilename_1" + op: "ShardedFilename" + input: "StringJoin:output:0" + input: "ShardedFilename_1/shard:output:0" + input: "num_shards:output:0" + device: "/device:CPU:0" + attr { + key: "_output_shapes" + value { + list { + shape { + } + } + } + } + experimental_debug_info { + original_node_names: "ShardedFilename_1" + } + } + node_def { + name: "SaveV2_1/tensor_names" + op: "Const" + device: "/device:CPU:0" + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + } + } + } + } + attr { + key: "dtype" + value { + type: DT_STRING + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_STRING + tensor_shape { + dim { + size: 1 + } + } + string_val: "_CHECKPOINTABLE_OBJECT_GRAPH" + } + } + } + experimental_debug_info { + original_node_names: "SaveV2_1/tensor_names" + } + } + node_def { + name: "SaveV2_1/shape_and_slices" + op: "Const" + device: "/device:CPU:0" + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + } + } + } + } + attr { + key: "dtype" + value { + type: DT_STRING + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_STRING + tensor_shape { + dim { + size: 1 + } + } + string_val: "" + } + } + } + experimental_debug_info { + original_node_names: "SaveV2_1/shape_and_slices" + } + } + node_def { + name: "SaveV2_1" + op: "SaveV2" + input: "ShardedFilename_1:filename:0" + input: "SaveV2_1/tensor_names:output:0" + input: "SaveV2_1/shape_and_slices:output:0" + input: "savev2_1_const" + input: "^SaveV2" + device: "/device:CPU:0" + attr { + key: "_output_shapes" + value { + list { + } + } + } + attr { + key: "dtypes" + value { + list { + type: DT_STRING + } + } + } + experimental_debug_info { + original_node_names: "SaveV2_1" + } + } + node_def { + name: "MergeV2Checkpoints/checkpoint_prefixes" + op: "Pack" + input: "ShardedFilename:filename:0" + input: "ShardedFilename_1:filename:0" + input: "^SaveV2" + input: "^SaveV2_1" + device: "/device:CPU:0" + attr { + key: "N" + value { + i: 2 + } + } + attr { + key: "T" + value { + type: DT_STRING + } + } + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 2 + } + } + } + } + } + experimental_debug_info { + original_node_names: "MergeV2Checkpoints/checkpoint_prefixes" + } + } + node_def { + name: "MergeV2Checkpoints" + op: "MergeV2Checkpoints" + input: "MergeV2Checkpoints/checkpoint_prefixes:output:0" + input: "file_prefix" + input: "^SaveV2_1" + device: "/device:CPU:0" + attr { + key: "_output_shapes" + value { + list { + } + } + } + experimental_debug_info { + original_node_names: "MergeV2Checkpoints" + } + } + node_def { + name: "Identity" + op: "Identity" + input: "file_prefix" + input: "^MergeV2Checkpoints" + device: "/device:CPU:0" + attr { + key: "T" + value { + type: DT_STRING + } + } + attr { + key: "_output_shapes" + value { + list { + shape { + } + } + } + } + experimental_debug_info { + original_node_names: "Identity" + } + } + node_def { + name: "Identity_1" + op: "Identity" + input: "Identity:output:0" + input: "^MergeV2Checkpoints" + input: "^SaveV2" + input: "^SaveV2_1" + attr { + key: "T" + value { + type: DT_STRING + } + } + attr { + key: "_output_shapes" + value { + list { + shape { + } + } + } + } + experimental_debug_info { + original_node_names: "Identity_1" + } + } + ret { + key: "identity_1" + value: "Identity_1:output:0" + } + attr { + key: "_input_shapes" + value { + list { + shape { + } + shape { + } + shape { + dim { + size: 34 + } + dim { + size: 100 + } + } + shape { + dim { + size: 100 + } + } + shape { + dim { + size: 100 + } + dim { + size: 40 + } + } + shape { + dim { + size: 40 + } + } + shape { + dim { + size: 40 + } + dim { + size: 2 + } + } + shape { + dim { + size: 2 + } + } + shape { + } + } + } + } + control_ret { + key: "MergeV2Checkpoints" + value: "MergeV2Checkpoints" + } + control_ret { + key: "SaveV2" + value: "SaveV2" + } + control_ret { + key: "SaveV2_1" + value: "SaveV2_1" + } + arg_attr { + key: 0 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + } + } + } + } + attr { + key: "_user_specified_name" + value { + s: "file_prefix" + } + } + } + } + arg_attr { + key: 1 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + } + } + } + } + } + } + arg_attr { + key: 2 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 34 + } + dim { + size: 100 + } + } + } + } + } + } + } + arg_attr { + key: 3 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 100 + } + } + } + } + } + } + } + arg_attr { + key: 4 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 100 + } + dim { + size: 40 + } + } + } + } + } + } + } + arg_attr { + key: 5 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 40 + } + } + } + } + } + } + } + arg_attr { + key: 6 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 40 + } + dim { + size: 2 + } + } + } + } + } + } + } + arg_attr { + key: 7 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 2 + } + } + } + } + } + } + } + arg_attr { + key: 8 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + } + } + } + } + } + } + } + function { + signature { + name: "__inference_function_722" + } + attr { + key: "_input_shapes" + value { + } + } + } + function { + signature { + name: "__inference_signature_wrapper_4619026" + input_arg { + name: "callee_basic_block_count" + type: DT_INT64 + } + input_arg { + name: "callee_conditionally_executed_blocks" + type: DT_INT64 + } + input_arg { + name: "callee_users" + type: DT_INT64 + } + input_arg { + name: "caller_basic_block_count" + type: DT_INT64 + } + input_arg { + name: "caller_conditionally_executed_blocks" + type: DT_INT64 + } + input_arg { + name: "caller_users" + type: DT_INT64 + } + input_arg { + name: "callsite_height" + type: DT_INT64 + } + input_arg { + name: "cost_estimate" + type: DT_INT64 + } + input_arg { + name: "discount" + type: DT_FLOAT + } + input_arg { + name: "edge_count" + type: DT_INT64 + } + input_arg { + name: "inlining_default" + type: DT_INT64 + } + input_arg { + name: "node_count" + type: DT_INT64 + } + input_arg { + name: "nr_ctant_params" + type: DT_INT64 + } + input_arg { + name: "reward" + type: DT_FLOAT + } + input_arg { + name: "step_type" + type: DT_INT32 + } + input_arg { + name: "unknown" + type: DT_RESOURCE + } + input_arg { + name: "unknown_0" + type: DT_RESOURCE + } + input_arg { + name: "unknown_1" + type: DT_RESOURCE + } + input_arg { + name: "unknown_2" + type: DT_RESOURCE + } + input_arg { + name: "unknown_3" + type: DT_RESOURCE + } + input_arg { + name: "unknown_4" + type: DT_RESOURCE + } + output_arg { + name: "identity" + type: DT_INT64 + } + is_stateful: true + control_output: "StatefulPartitionedCall" + } + node_def { + name: "StatefulPartitionedCall" + op: "StatefulPartitionedCall" + input: "step_type" + input: "reward" + input: "discount" + input: "callee_basic_block_count" + input: "callee_conditionally_executed_blocks" + input: "callee_users" + input: "caller_basic_block_count" + input: "caller_conditionally_executed_blocks" + input: "caller_users" + input: "callsite_height" + input: "cost_estimate" + input: "edge_count" + input: "inlining_default" + input: "node_count" + input: "nr_ctant_params" + input: "unknown" + input: "unknown_0" + input: "unknown_1" + input: "unknown_2" + input: "unknown_3" + input: "unknown_4" + attr { + key: "Tin" + value { + list { + type: DT_INT32 + type: DT_FLOAT + type: DT_FLOAT + type: DT_INT64 + type: DT_INT64 + type: DT_INT64 + type: DT_INT64 + type: DT_INT64 + type: DT_INT64 + type: DT_INT64 + type: DT_INT64 + type: DT_INT64 + type: DT_INT64 + type: DT_INT64 + type: DT_INT64 + type: DT_RESOURCE + type: DT_RESOURCE + type: DT_RESOURCE + type: DT_RESOURCE + type: DT_RESOURCE + type: DT_RESOURCE + } + } + } + attr { + key: "Tout" + value { + list { + type: DT_INT64 + } + } + } + attr { + key: "_collective_manager_ids" + value { + list { + } + } + } + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + } + } + } + } + attr { + key: "_read_only_resource_inputs" + value { + list { + i: 15 + i: 16 + i: 17 + i: 18 + i: 19 + i: 20 + } + } + } + attr { + key: "config_proto" + value { + s: "\n\007\n\003CPU\020\001\n\007\n\003GPU\020\0012\005*\0010J\0008\001" + } + } + attr { + key: "f" + value { + func { + name: "__inference_function_with_signature_4618993" + } + } + } + experimental_debug_info { + original_node_names: "StatefulPartitionedCall" + } + } + node_def { + name: "Identity" + op: "Identity" + input: "StatefulPartitionedCall:output:0" + input: "^StatefulPartitionedCall" + attr { + key: "T" + value { + type: DT_INT64 + } + } + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + } + } + } + } + experimental_debug_info { + original_node_names: "Identity" + } + } + ret { + key: "identity" + value: "Identity:output:0" + } + attr { + key: "_input_shapes" + value { + list { + shape { + dim { + size: 1 + } + } + shape { + dim { + size: 1 + } + } + shape { + dim { + size: 1 + } + } + shape { + dim { + size: 1 + } + } + shape { + dim { + size: 1 + } + } + shape { + dim { + size: 1 + } + } + shape { + dim { + size: 1 + } + } + shape { + dim { + size: 1 + } + } + shape { + dim { + size: 1 + } + } + shape { + dim { + size: 1 + } + } + shape { + dim { + size: 1 + } + } + shape { + dim { + size: 1 + } + } + shape { + dim { + size: 1 + } + } + shape { + dim { + size: 1 + } + } + shape { + dim { + size: 1 + } + } + shape { + unknown_rank: true + } + shape { + unknown_rank: true + } + shape { + unknown_rank: true + } + shape { + unknown_rank: true + } + shape { + unknown_rank: true + } + shape { + unknown_rank: true + } + } + } + } + control_ret { + key: "StatefulPartitionedCall" + value: "StatefulPartitionedCall" + } + arg_attr { + key: 0 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + } + } + } + } + attr { + key: "_user_specified_name" + value { + s: "callee_basic_block_count" + } + } + } + } + arg_attr { + key: 1 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + } + } + } + } + attr { + key: "_user_specified_name" + value { + s: "callee_conditionally_executed_blocks" + } + } + } + } + arg_attr { + key: 2 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + } + } + } + } + attr { + key: "_user_specified_name" + value { + s: "callee_users" + } + } + } + } + arg_attr { + key: 3 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + } + } + } + } + attr { + key: "_user_specified_name" + value { + s: "caller_basic_block_count" + } + } + } + } + arg_attr { + key: 4 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + } + } + } + } + attr { + key: "_user_specified_name" + value { + s: "caller_conditionally_executed_blocks" + } + } + } + } + arg_attr { + key: 5 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + } + } + } + } + attr { + key: "_user_specified_name" + value { + s: "caller_users" + } + } + } + } + arg_attr { + key: 6 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + } + } + } + } + attr { + key: "_user_specified_name" + value { + s: "callsite_height" + } + } + } + } + arg_attr { + key: 7 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + } + } + } + } + attr { + key: "_user_specified_name" + value { + s: "cost_estimate" + } + } + } + } + arg_attr { + key: 8 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + } + } + } + } + attr { + key: "_user_specified_name" + value { + s: "discount" + } + } + } + } + arg_attr { + key: 9 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + } + } + } + } + attr { + key: "_user_specified_name" + value { + s: "edge_count" + } + } + } + } + arg_attr { + key: 10 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + } + } + } + } + attr { + key: "_user_specified_name" + value { + s: "inlining_default" + } + } + } + } + arg_attr { + key: 11 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + } + } + } + } + attr { + key: "_user_specified_name" + value { + s: "node_count" + } + } + } + } + arg_attr { + key: 12 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + } + } + } + } + attr { + key: "_user_specified_name" + value { + s: "nr_ctant_params" + } + } + } + } + arg_attr { + key: 13 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + } + } + } + } + attr { + key: "_user_specified_name" + value { + s: "reward" + } + } + } + } + arg_attr { + key: 14 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + } + } + } + } + attr { + key: "_user_specified_name" + value { + s: "step_type" + } + } + } + } + arg_attr { + key: 15 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + } + } + } + } + } + } + arg_attr { + key: 16 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + } + } + } + } + } + } + arg_attr { + key: 17 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + } + } + } + } + } + } + arg_attr { + key: 18 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + } + } + } + } + } + } + arg_attr { + key: 19 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + } + } + } + } + } + } + arg_attr { + key: 20 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + } + } + } + } + } + } + } + function { + signature { + name: "__inference_function_with_signature_4618993" + input_arg { + name: "step_type" + type: DT_INT32 + } + input_arg { + name: "reward" + type: DT_FLOAT + } + input_arg { + name: "discount" + type: DT_FLOAT + } + input_arg { + name: "callee_basic_block_count" + type: DT_INT64 + } + input_arg { + name: "callee_conditionally_executed_blocks" + type: DT_INT64 + } + input_arg { + name: "callee_users" + type: DT_INT64 + } + input_arg { + name: "caller_basic_block_count" + type: DT_INT64 + } + input_arg { + name: "caller_conditionally_executed_blocks" + type: DT_INT64 + } + input_arg { + name: "caller_users" + type: DT_INT64 + } + input_arg { + name: "callsite_height" + type: DT_INT64 + } + input_arg { + name: "cost_estimate" + type: DT_INT64 + } + input_arg { + name: "edge_count" + type: DT_INT64 + } + input_arg { + name: "inlining_default" + type: DT_INT64 + } + input_arg { + name: "node_count" + type: DT_INT64 + } + input_arg { + name: "nr_ctant_params" + type: DT_INT64 + } + input_arg { + name: "unknown" + type: DT_RESOURCE + } + input_arg { + name: "unknown_0" + type: DT_RESOURCE + } + input_arg { + name: "unknown_1" + type: DT_RESOURCE + } + input_arg { + name: "unknown_2" + type: DT_RESOURCE + } + input_arg { + name: "unknown_3" + type: DT_RESOURCE + } + input_arg { + name: "unknown_4" + type: DT_RESOURCE + } + output_arg { + name: "identity" + type: DT_INT64 + } + is_stateful: true + control_output: "StatefulPartitionedCall" + } + node_def { + name: "StatefulPartitionedCall" + op: "StatefulPartitionedCall" + input: "step_type" + input: "reward" + input: "discount" + input: "callee_basic_block_count" + input: "callee_conditionally_executed_blocks" + input: "callee_users" + input: "caller_basic_block_count" + input: "caller_conditionally_executed_blocks" + input: "caller_users" + input: "callsite_height" + input: "cost_estimate" + input: "edge_count" + input: "inlining_default" + input: "node_count" + input: "nr_ctant_params" + input: "unknown" + input: "unknown_0" + input: "unknown_1" + input: "unknown_2" + input: "unknown_3" + input: "unknown_4" + attr { + key: "Tin" + value { + list { + type: DT_INT32 + type: DT_FLOAT + type: DT_FLOAT + type: DT_INT64 + type: DT_INT64 + type: DT_INT64 + type: DT_INT64 + type: DT_INT64 + type: DT_INT64 + type: DT_INT64 + type: DT_INT64 + type: DT_INT64 + type: DT_INT64 + type: DT_INT64 + type: DT_INT64 + type: DT_RESOURCE + type: DT_RESOURCE + type: DT_RESOURCE + type: DT_RESOURCE + type: DT_RESOURCE + type: DT_RESOURCE + } + } + } + attr { + key: "Tout" + value { + list { + type: DT_INT64 + } + } + } + attr { + key: "_collective_manager_ids" + value { + list { + } + } + } + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + } + } + } + } + attr { + key: "_read_only_resource_inputs" + value { + list { + i: 15 + i: 16 + i: 17 + i: 18 + i: 19 + i: 20 + } + } + } + attr { + key: "config_proto" + value { + s: "\n\007\n\003CPU\020\001\n\007\n\003GPU\020\0012\005*\0010J\0008\001" + } + } + attr { + key: "f" + value { + func { + name: "__inference_polymorphic_action_fn_4618978" + } + } + } + experimental_debug_info { + original_node_names: "StatefulPartitionedCall" + } + } + node_def { + name: "Identity" + op: "Identity" + input: "StatefulPartitionedCall:output:0" + input: "^StatefulPartitionedCall" + attr { + key: "T" + value { + type: DT_INT64 + } + } + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + } + } + } + } + experimental_debug_info { + original_node_names: "Identity" + } + } + ret { + key: "identity" + value: "Identity:output:0" + } + attr { + key: "_input_shapes" + value { + list { + shape { + dim { + size: 1 + } + } + shape { + dim { + size: 1 + } + } + shape { + dim { + size: 1 + } + } + shape { + dim { + size: 1 + } + } + shape { + dim { + size: 1 + } + } + shape { + dim { + size: 1 + } + } + shape { + dim { + size: 1 + } + } + shape { + dim { + size: 1 + } + } + shape { + dim { + size: 1 + } + } + shape { + dim { + size: 1 + } + } + shape { + dim { + size: 1 + } + } + shape { + dim { + size: 1 + } + } + shape { + dim { + size: 1 + } + } + shape { + dim { + size: 1 + } + } + shape { + dim { + size: 1 + } + } + shape { + unknown_rank: true + } + shape { + unknown_rank: true + } + shape { + unknown_rank: true + } + shape { + unknown_rank: true + } + shape { + unknown_rank: true + } + shape { + unknown_rank: true + } + } + } + } + control_ret { + key: "StatefulPartitionedCall" + value: "StatefulPartitionedCall" + } + arg_attr { + key: 0 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + } + } + } + } + attr { + key: "_user_specified_name" + value { + s: "step_type" + } + } + } + } + arg_attr { + key: 1 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + } + } + } + } + attr { + key: "_user_specified_name" + value { + s: "reward" + } + } + } + } + arg_attr { + key: 2 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + } + } + } + } + attr { + key: "_user_specified_name" + value { + s: "discount" + } + } + } + } + arg_attr { + key: 3 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + } + } + } + } + attr { + key: "_user_specified_name" + value { + s: "callee_basic_block_count" + } + } + } + } + arg_attr { + key: 4 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + } + } + } + } + attr { + key: "_user_specified_name" + value { + s: "callee_conditionally_executed_blocks" + } + } + } + } + arg_attr { + key: 5 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + } + } + } + } + attr { + key: "_user_specified_name" + value { + s: "callee_users" + } + } + } + } + arg_attr { + key: 6 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + } + } + } + } + attr { + key: "_user_specified_name" + value { + s: "caller_basic_block_count" + } + } + } + } + arg_attr { + key: 7 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + } + } + } + } + attr { + key: "_user_specified_name" + value { + s: "caller_conditionally_executed_blocks" + } + } + } + } + arg_attr { + key: 8 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + } + } + } + } + attr { + key: "_user_specified_name" + value { + s: "caller_users" + } + } + } + } + arg_attr { + key: 9 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + } + } + } + } + attr { + key: "_user_specified_name" + value { + s: "callsite_height" + } + } + } + } + arg_attr { + key: 10 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + } + } + } + } + attr { + key: "_user_specified_name" + value { + s: "cost_estimate" + } + } + } + } + arg_attr { + key: 11 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + } + } + } + } + attr { + key: "_user_specified_name" + value { + s: "edge_count" + } + } + } + } + arg_attr { + key: 12 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + } + } + } + } + attr { + key: "_user_specified_name" + value { + s: "inlining_default" + } + } + } + } + arg_attr { + key: 13 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + } + } + } + } + attr { + key: "_user_specified_name" + value { + s: "node_count" + } + } + } + } + arg_attr { + key: 14 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + } + } + } + } + attr { + key: "_user_specified_name" + value { + s: "nr_ctant_params" + } + } + } + } + arg_attr { + key: 15 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + } + } + } + } + } + } + arg_attr { + key: 16 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + } + } + } + } + } + } + arg_attr { + key: 17 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + } + } + } + } + } + } + arg_attr { + key: 18 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + } + } + } + } + } + } + arg_attr { + key: 19 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + } + } + } + } + } + } + arg_attr { + key: 20 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + } + } + } + } + } + } + } + function { + signature { + name: "__inference_polymorphic_action_fn_4619080" + input_arg { + name: "time_step_step_type" + type: DT_INT32 + } + input_arg { + name: "time_step_reward" + type: DT_FLOAT + } + input_arg { + name: "time_step_discount" + type: DT_FLOAT + } + input_arg { + name: "time_step_observation_callee_basic_block_count" + type: DT_INT64 + } + input_arg { + name: "time_step_observation_callee_conditionally_executed_blocks" + type: DT_INT64 + } + input_arg { + name: "time_step_observation_callee_users" + type: DT_INT64 + } + input_arg { + name: "time_step_observation_caller_basic_block_count" + type: DT_INT64 + } + input_arg { + name: "time_step_observation_caller_conditionally_executed_blocks" + type: DT_INT64 + } + input_arg { + name: "time_step_observation_caller_users" + type: DT_INT64 + } + input_arg { + name: "time_step_observation_callsite_height" + type: DT_INT64 + } + input_arg { + name: "time_step_observation_cost_estimate" + type: DT_INT64 + } + input_arg { + name: "time_step_observation_edge_count" + type: DT_INT64 + } + input_arg { + name: "time_step_observation_inlining_default" + type: DT_INT64 + } + input_arg { + name: "time_step_observation_node_count" + type: DT_INT64 + } + input_arg { + name: "time_step_observation_nr_ctant_params" + type: DT_INT64 + } + input_arg { + name: "unknown" + type: DT_RESOURCE + } + input_arg { + name: "unknown_0" + type: DT_RESOURCE + } + input_arg { + name: "unknown_1" + type: DT_RESOURCE + } + input_arg { + name: "unknown_2" + type: DT_RESOURCE + } + input_arg { + name: "unknown_3" + type: DT_RESOURCE + } + input_arg { + name: "unknown_4" + type: DT_RESOURCE + } + output_arg { + name: "identity" + type: DT_INT64 + } + is_stateful: true + control_output: "StatefulPartitionedCall" + } + node_def { + name: "StatefulPartitionedCall" + op: "StatefulPartitionedCall" + input: "time_step_step_type" + input: "time_step_reward" + input: "time_step_discount" + input: "time_step_observation_callee_basic_block_count" + input: "time_step_observation_callee_conditionally_executed_blocks" + input: "time_step_observation_callee_users" + input: "time_step_observation_caller_basic_block_count" + input: "time_step_observation_caller_conditionally_executed_blocks" + input: "time_step_observation_caller_users" + input: "time_step_observation_callsite_height" + input: "time_step_observation_cost_estimate" + input: "time_step_observation_edge_count" + input: "time_step_observation_inlining_default" + input: "time_step_observation_node_count" + input: "time_step_observation_nr_ctant_params" + input: "unknown" + input: "unknown_0" + input: "unknown_1" + input: "unknown_2" + input: "unknown_3" + input: "unknown_4" + attr { + key: "Tin" + value { + list { + type: DT_INT32 + type: DT_FLOAT + type: DT_FLOAT + type: DT_INT64 + type: DT_INT64 + type: DT_INT64 + type: DT_INT64 + type: DT_INT64 + type: DT_INT64 + type: DT_INT64 + type: DT_INT64 + type: DT_INT64 + type: DT_INT64 + type: DT_INT64 + type: DT_INT64 + type: DT_RESOURCE + type: DT_RESOURCE + type: DT_RESOURCE + type: DT_RESOURCE + type: DT_RESOURCE + type: DT_RESOURCE + } + } + } + attr { + key: "Tout" + value { + list { + type: DT_INT64 + } + } + } + attr { + key: "_collective_manager_ids" + value { + list { + } + } + } + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + } + } + } + } + attr { + key: "_read_only_resource_inputs" + value { + list { + i: 15 + i: 16 + i: 17 + i: 18 + i: 19 + i: 20 + } + } + } + attr { + key: "config_proto" + value { + s: "\n\007\n\003CPU\020\001\n\007\n\003GPU\020\0012\005*\0010J\0008\001" + } + } + attr { + key: "f" + value { + func { + name: "__inference_action_931" + } + } + } + experimental_debug_info { + original_node_names: "StatefulPartitionedCall" + } + } + node_def { + name: "Identity" + op: "Identity" + input: "StatefulPartitionedCall:output:0" + input: "^StatefulPartitionedCall" + attr { + key: "T" + value { + type: DT_INT64 + } + } + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + } + } + } + } + experimental_debug_info { + original_node_names: "Identity" + } + } + ret { + key: "identity" + value: "Identity:output:0" + } + attr { + key: "_input_shapes" + value { + list { + shape { + dim { + size: 1 + } + } + shape { + dim { + size: 1 + } + } + shape { + dim { + size: 1 + } + } + shape { + dim { + size: 1 + } + } + shape { + dim { + size: 1 + } + } + shape { + dim { + size: 1 + } + } + shape { + dim { + size: 1 + } + } + shape { + dim { + size: 1 + } + } + shape { + dim { + size: 1 + } + } + shape { + dim { + size: 1 + } + } + shape { + dim { + size: 1 + } + } + shape { + dim { + size: 1 + } + } + shape { + dim { + size: 1 + } + } + shape { + dim { + size: 1 + } + } + shape { + dim { + size: 1 + } + } + shape { + unknown_rank: true + } + shape { + unknown_rank: true + } + shape { + unknown_rank: true + } + shape { + unknown_rank: true + } + shape { + unknown_rank: true + } + shape { + unknown_rank: true + } + } + } + } + control_ret { + key: "StatefulPartitionedCall" + value: "StatefulPartitionedCall" + } + arg_attr { + key: 0 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + } + } + } + } + attr { + key: "_user_specified_name" + value { + s: "time_step/step_type" + } + } + } + } + arg_attr { + key: 1 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + } + } + } + } + attr { + key: "_user_specified_name" + value { + s: "time_step/reward" + } + } + } + } + arg_attr { + key: 2 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + } + } + } + } + attr { + key: "_user_specified_name" + value { + s: "time_step/discount" + } + } + } + } + arg_attr { + key: 3 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + } + } + } + } + attr { + key: "_user_specified_name" + value { + s: "time_step/observation/callee_basic_block_count" + } + } + } + } + arg_attr { + key: 4 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + } + } + } + } + attr { + key: "_user_specified_name" + value { + s: "time_step/observation/callee_conditionally_executed_blocks" + } + } + } + } + arg_attr { + key: 5 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + } + } + } + } + attr { + key: "_user_specified_name" + value { + s: "time_step/observation/callee_users" + } + } + } + } + arg_attr { + key: 6 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + } + } + } + } + attr { + key: "_user_specified_name" + value { + s: "time_step/observation/caller_basic_block_count" + } + } + } + } + arg_attr { + key: 7 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + } + } + } + } + attr { + key: "_user_specified_name" + value { + s: "time_step/observation/caller_conditionally_executed_blocks" + } + } + } + } + arg_attr { + key: 8 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + } + } + } + } + attr { + key: "_user_specified_name" + value { + s: "time_step/observation/caller_users" + } + } + } + } + arg_attr { + key: 9 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + } + } + } + } + attr { + key: "_user_specified_name" + value { + s: "time_step/observation/callsite_height" + } + } + } + } + arg_attr { + key: 10 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + } + } + } + } + attr { + key: "_user_specified_name" + value { + s: "time_step/observation/cost_estimate" + } + } + } + } + arg_attr { + key: 11 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + } + } + } + } + attr { + key: "_user_specified_name" + value { + s: "time_step/observation/edge_count" + } + } + } + } + arg_attr { + key: 12 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + } + } + } + } + attr { + key: "_user_specified_name" + value { + s: "time_step/observation/inlining_default" + } + } + } + } + arg_attr { + key: 13 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + } + } + } + } + attr { + key: "_user_specified_name" + value { + s: "time_step/observation/node_count" + } + } + } + } + arg_attr { + key: 14 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + } + } + } + } + attr { + key: "_user_specified_name" + value { + s: "time_step/observation/nr_ctant_params" + } + } + } + } + arg_attr { + key: 15 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + } + } + } + } + } + } + arg_attr { + key: 16 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + } + } + } + } + } + } + arg_attr { + key: 17 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + } + } + } + } + } + } + arg_attr { + key: 18 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + } + } + } + } + } + } + arg_attr { + key: 19 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + } + } + } + } + } + } + arg_attr { + key: 20 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + } + } + } + } + } + } + } + function { + signature { + name: "__inference_function_with_signature_4619040" + input_arg { + name: "unknown" + type: DT_RESOURCE + } + output_arg { + name: "identity" + type: DT_INT64 + } + is_stateful: true + control_output: "StatefulPartitionedCall" + } + node_def { + name: "StatefulPartitionedCall" + op: "StatefulPartitionedCall" + input: "unknown" + attr { + key: "Tin" + value { + list { + type: DT_RESOURCE + } + } + } + attr { + key: "Tout" + value { + list { + type: DT_INT64 + } + } + } + attr { + key: "_collective_manager_ids" + value { + list { + } + } + } + attr { + key: "_output_shapes" + value { + list { + shape { + } + } + } + } + attr { + key: "_read_only_resource_inputs" + value { + list { + i: 0 + } + } + } + attr { + key: "config_proto" + value { + s: "\n\007\n\003CPU\020\001\n\007\n\003GPU\020\0012\005*\0010J\0008\001" + } + } + attr { + key: "f" + value { + func { + name: "__inference_<lambda>_728" + } + } + } + experimental_debug_info { + original_node_names: "StatefulPartitionedCall" + } + } + node_def { + name: "Identity" + op: "Identity" + input: "StatefulPartitionedCall:output:0" + input: "^StatefulPartitionedCall" + attr { + key: "T" + value { + type: DT_INT64 + } + } + attr { + key: "_output_shapes" + value { + list { + shape { + } + } + } + } + experimental_debug_info { + original_node_names: "Identity" + } + } + ret { + key: "identity" + value: "Identity:output:0" + } + attr { + key: "_input_shapes" + value { + list { + shape { + unknown_rank: true + } + } + } + } + control_ret { + key: "StatefulPartitionedCall" + value: "StatefulPartitionedCall" + } + arg_attr { + key: 0 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + } + } + } + } + } + } + } + function { + signature { + name: "__inference_polymorphic_action_fn_4618978" + input_arg { + name: "time_step" + type: DT_INT32 + } + input_arg { + name: "time_step_1" + type: DT_FLOAT + } + input_arg { + name: "time_step_2" + type: DT_FLOAT + } + input_arg { + name: "time_step_3" + type: DT_INT64 + } + input_arg { + name: "time_step_4" + type: DT_INT64 + } + input_arg { + name: "time_step_5" + type: DT_INT64 + } + input_arg { + name: "time_step_6" + type: DT_INT64 + } + input_arg { + name: "time_step_7" + type: DT_INT64 + } + input_arg { + name: "time_step_8" + type: DT_INT64 + } + input_arg { + name: "time_step_9" + type: DT_INT64 + } + input_arg { + name: "time_step_10" + type: DT_INT64 + } + input_arg { + name: "time_step_11" + type: DT_INT64 + } + input_arg { + name: "time_step_12" + type: DT_INT64 + } + input_arg { + name: "time_step_13" + type: DT_INT64 + } + input_arg { + name: "time_step_14" + type: DT_INT64 + } + input_arg { + name: "unknown" + type: DT_RESOURCE + } + input_arg { + name: "unknown_0" + type: DT_RESOURCE + } + input_arg { + name: "unknown_1" + type: DT_RESOURCE + } + input_arg { + name: "unknown_2" + type: DT_RESOURCE + } + input_arg { + name: "unknown_3" + type: DT_RESOURCE + } + input_arg { + name: "unknown_4" + type: DT_RESOURCE + } + output_arg { + name: "identity" + type: DT_INT64 + } + is_stateful: true + control_output: "StatefulPartitionedCall" + } + node_def { + name: "StatefulPartitionedCall" + op: "StatefulPartitionedCall" + input: "time_step" + input: "time_step_1" + input: "time_step_2" + input: "time_step_3" + input: "time_step_4" + input: "time_step_5" + input: "time_step_6" + input: "time_step_7" + input: "time_step_8" + input: "time_step_9" + input: "time_step_10" + input: "time_step_11" + input: "time_step_12" + input: "time_step_13" + input: "time_step_14" + input: "unknown" + input: "unknown_0" + input: "unknown_1" + input: "unknown_2" + input: "unknown_3" + input: "unknown_4" + attr { + key: "Tin" + value { + list { + type: DT_INT32 + type: DT_FLOAT + type: DT_FLOAT + type: DT_INT64 + type: DT_INT64 + type: DT_INT64 + type: DT_INT64 + type: DT_INT64 + type: DT_INT64 + type: DT_INT64 + type: DT_INT64 + type: DT_INT64 + type: DT_INT64 + type: DT_INT64 + type: DT_INT64 + type: DT_RESOURCE + type: DT_RESOURCE + type: DT_RESOURCE + type: DT_RESOURCE + type: DT_RESOURCE + type: DT_RESOURCE + } + } + } + attr { + key: "Tout" + value { + list { + type: DT_INT64 + } + } + } + attr { + key: "_collective_manager_ids" + value { + list { + } + } + } + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + } + } + } + } + attr { + key: "_read_only_resource_inputs" + value { + list { + i: 15 + i: 16 + i: 17 + i: 18 + i: 19 + i: 20 + } + } + } + attr { + key: "config_proto" + value { + s: "\n\007\n\003CPU\020\001\n\007\n\003GPU\020\0012\005*\0010J\0008\001" + } + } + attr { + key: "f" + value { + func { + name: "__inference_action_931" + } + } + } + experimental_debug_info { + original_node_names: "StatefulPartitionedCall" + } + } + node_def { + name: "Identity" + op: "Identity" + input: "StatefulPartitionedCall:output:0" + input: "^StatefulPartitionedCall" + attr { + key: "T" + value { + type: DT_INT64 + } + } + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + } + } + } + } + experimental_debug_info { + original_node_names: "Identity" + } + } + ret { + key: "identity" + value: "Identity:output:0" + } + attr { + key: "_input_shapes" + value { + list { + shape { + dim { + size: 1 + } + } + shape { + dim { + size: 1 + } + } + shape { + dim { + size: 1 + } + } + shape { + dim { + size: 1 + } + } + shape { + dim { + size: 1 + } + } + shape { + dim { + size: 1 + } + } + shape { + dim { + size: 1 + } + } + shape { + dim { + size: 1 + } + } + shape { + dim { + size: 1 + } + } + shape { + dim { + size: 1 + } + } + shape { + dim { + size: 1 + } + } + shape { + dim { + size: 1 + } + } + shape { + dim { + size: 1 + } + } + shape { + dim { + size: 1 + } + } + shape { + dim { + size: 1 + } + } + shape { + unknown_rank: true + } + shape { + unknown_rank: true + } + shape { + unknown_rank: true + } + shape { + unknown_rank: true + } + shape { + unknown_rank: true + } + shape { + unknown_rank: true + } + } + } + } + control_ret { + key: "StatefulPartitionedCall" + value: "StatefulPartitionedCall" + } + arg_attr { + key: 0 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + } + } + } + } + attr { + key: "_user_specified_name" + value { + s: "time_step" + } + } + } + } + arg_attr { + key: 1 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + } + } + } + } + attr { + key: "_user_specified_name" + value { + s: "time_step" + } + } + } + } + arg_attr { + key: 2 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + } + } + } + } + attr { + key: "_user_specified_name" + value { + s: "time_step" + } + } + } + } + arg_attr { + key: 3 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + } + } + } + } + attr { + key: "_user_specified_name" + value { + s: "time_step" + } + } + } + } + arg_attr { + key: 4 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + } + } + } + } + attr { + key: "_user_specified_name" + value { + s: "time_step" + } + } + } + } + arg_attr { + key: 5 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + } + } + } + } + attr { + key: "_user_specified_name" + value { + s: "time_step" + } + } + } + } + arg_attr { + key: 6 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + } + } + } + } + attr { + key: "_user_specified_name" + value { + s: "time_step" + } + } + } + } + arg_attr { + key: 7 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + } + } + } + } + attr { + key: "_user_specified_name" + value { + s: "time_step" + } + } + } + } + arg_attr { + key: 8 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + } + } + } + } + attr { + key: "_user_specified_name" + value { + s: "time_step" + } + } + } + } + arg_attr { + key: 9 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + } + } + } + } + attr { + key: "_user_specified_name" + value { + s: "time_step" + } + } + } + } + arg_attr { + key: 10 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + } + } + } + } + attr { + key: "_user_specified_name" + value { + s: "time_step" + } + } + } + } + arg_attr { + key: 11 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + } + } + } + } + attr { + key: "_user_specified_name" + value { + s: "time_step" + } + } + } + } + arg_attr { + key: 12 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + } + } + } + } + attr { + key: "_user_specified_name" + value { + s: "time_step" + } + } + } + } + arg_attr { + key: 13 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + } + } + } + } + attr { + key: "_user_specified_name" + value { + s: "time_step" + } + } + } + } + arg_attr { + key: 14 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + } + } + } + } + attr { + key: "_user_specified_name" + value { + s: "time_step" + } + } + } + } + arg_attr { + key: 15 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + } + } + } + } + } + } + arg_attr { + key: 16 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + } + } + } + } + } + } + arg_attr { + key: 17 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + } + } + } + } + } + } + arg_attr { + key: 18 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + } + } + } + } + } + } + arg_attr { + key: 19 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + } + } + } + } + } + } + arg_attr { + key: 20 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + } + } + } + } + } + } + } + function { + signature { + name: "__inference_polymorphic_action_fn_946" + input_arg { + name: "step_type" + type: DT_INT32 + } + input_arg { + name: "reward" + type: DT_FLOAT + } + input_arg { + name: "discount" + type: DT_FLOAT + } + input_arg { + name: "callee_basic_block_count" + type: DT_INT64 + } + input_arg { + name: "callee_conditionally_executed_blocks" + type: DT_INT64 + } + input_arg { + name: "callee_users" + type: DT_INT64 + } + input_arg { + name: "caller_basic_block_count" + type: DT_INT64 + } + input_arg { + name: "caller_conditionally_executed_blocks" + type: DT_INT64 + } + input_arg { + name: "caller_users" + type: DT_INT64 + } + input_arg { + name: "callsite_height" + type: DT_INT64 + } + input_arg { + name: "cost_estimate" + type: DT_INT64 + } + input_arg { + name: "edge_count" + type: DT_INT64 + } + input_arg { + name: "inlining_default" + type: DT_INT64 + } + input_arg { + name: "node_count" + type: DT_INT64 + } + input_arg { + name: "nr_ctant_params" + type: DT_INT64 + } + input_arg { + name: "unknown" + type: DT_RESOURCE + } + input_arg { + name: "unknown_0" + type: DT_RESOURCE + } + input_arg { + name: "unknown_1" + type: DT_RESOURCE + } + input_arg { + name: "unknown_2" + type: DT_RESOURCE + } + input_arg { + name: "unknown_3" + type: DT_RESOURCE + } + input_arg { + name: "unknown_4" + type: DT_RESOURCE + } + output_arg { + name: "identity" + type: DT_INT64 + } + is_stateful: true + control_output: "StatefulPartitionedCall" + } + node_def { + name: "StatefulPartitionedCall" + op: "StatefulPartitionedCall" + input: "step_type" + input: "reward" + input: "discount" + input: "callee_basic_block_count" + input: "callee_conditionally_executed_blocks" + input: "callee_users" + input: "caller_basic_block_count" + input: "caller_conditionally_executed_blocks" + input: "caller_users" + input: "callsite_height" + input: "cost_estimate" + input: "edge_count" + input: "inlining_default" + input: "node_count" + input: "nr_ctant_params" + input: "unknown" + input: "unknown_0" + input: "unknown_1" + input: "unknown_2" + input: "unknown_3" + input: "unknown_4" + attr { + key: "Tin" + value { + list { + type: DT_INT32 + type: DT_FLOAT + type: DT_FLOAT + type: DT_INT64 + type: DT_INT64 + type: DT_INT64 + type: DT_INT64 + type: DT_INT64 + type: DT_INT64 + type: DT_INT64 + type: DT_INT64 + type: DT_INT64 + type: DT_INT64 + type: DT_INT64 + type: DT_INT64 + type: DT_RESOURCE + type: DT_RESOURCE + type: DT_RESOURCE + type: DT_RESOURCE + type: DT_RESOURCE + type: DT_RESOURCE + } + } + } + attr { + key: "Tout" + value { + list { + type: DT_INT64 + } + } + } + attr { + key: "_collective_manager_ids" + value { + list { + } + } + } + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + } + } + } + } + attr { + key: "_read_only_resource_inputs" + value { + list { + i: 15 + i: 16 + i: 17 + i: 18 + i: 19 + i: 20 + } + } + } + attr { + key: "config_proto" + value { + s: "\n\007\n\003CPU\020\001\n\007\n\003GPU\020\0012\005*\0010J\0008\001" + } + } + attr { + key: "f" + value { + func { + name: "__inference_action_931" + } + } + } + experimental_debug_info { + original_node_names: "StatefulPartitionedCall" + } + } + node_def { + name: "Identity" + op: "Identity" + input: "StatefulPartitionedCall:output:0" + input: "^StatefulPartitionedCall" + attr { + key: "T" + value { + type: DT_INT64 + } + } + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + } + } + } + } + experimental_debug_info { + original_node_names: "Identity" + } + } + ret { + key: "identity" + value: "Identity:output:0" + } + attr { + key: "_input_shapes" + value { + list { + shape { + dim { + size: 1 + } + } + shape { + dim { + size: 1 + } + } + shape { + dim { + size: 1 + } + } + shape { + dim { + size: 1 + } + } + shape { + dim { + size: 1 + } + } + shape { + dim { + size: 1 + } + } + shape { + dim { + size: 1 + } + } + shape { + dim { + size: 1 + } + } + shape { + dim { + size: 1 + } + } + shape { + dim { + size: 1 + } + } + shape { + dim { + size: 1 + } + } + shape { + dim { + size: 1 + } + } + shape { + dim { + size: 1 + } + } + shape { + dim { + size: 1 + } + } + shape { + dim { + size: 1 + } + } + shape { + unknown_rank: true + } + shape { + unknown_rank: true + } + shape { + unknown_rank: true + } + shape { + unknown_rank: true + } + shape { + unknown_rank: true + } + shape { + unknown_rank: true + } + } + } + } + control_ret { + key: "StatefulPartitionedCall" + value: "StatefulPartitionedCall" + } + arg_attr { + key: 0 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + } + } + } + } + attr { + key: "_user_specified_name" + value { + s: "step_type" + } + } + } + } + arg_attr { + key: 1 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + } + } + } + } + attr { + key: "_user_specified_name" + value { + s: "reward" + } + } + } + } + arg_attr { + key: 2 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + } + } + } + } + attr { + key: "_user_specified_name" + value { + s: "discount" + } + } + } + } + arg_attr { + key: 3 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + } + } + } + } + attr { + key: "_user_specified_name" + value { + s: "callee_basic_block_count" + } + } + } + } + arg_attr { + key: 4 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + } + } + } + } + attr { + key: "_user_specified_name" + value { + s: "callee_conditionally_executed_blocks" + } + } + } + } + arg_attr { + key: 5 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + } + } + } + } + attr { + key: "_user_specified_name" + value { + s: "callee_users" + } + } + } + } + arg_attr { + key: 6 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + } + } + } + } + attr { + key: "_user_specified_name" + value { + s: "caller_basic_block_count" + } + } + } + } + arg_attr { + key: 7 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + } + } + } + } + attr { + key: "_user_specified_name" + value { + s: "caller_conditionally_executed_blocks" + } + } + } + } + arg_attr { + key: 8 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + } + } + } + } + attr { + key: "_user_specified_name" + value { + s: "caller_users" + } + } + } + } + arg_attr { + key: 9 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + } + } + } + } + attr { + key: "_user_specified_name" + value { + s: "callsite_height" + } + } + } + } + arg_attr { + key: 10 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + } + } + } + } + attr { + key: "_user_specified_name" + value { + s: "cost_estimate" + } + } + } + } + arg_attr { + key: 11 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + } + } + } + } + attr { + key: "_user_specified_name" + value { + s: "edge_count" + } + } + } + } + arg_attr { + key: 12 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + } + } + } + } + attr { + key: "_user_specified_name" + value { + s: "inlining_default" + } + } + } + } + arg_attr { + key: 13 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + } + } + } + } + attr { + key: "_user_specified_name" + value { + s: "node_count" + } + } + } + } + arg_attr { + key: 14 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + } + } + } + } + attr { + key: "_user_specified_name" + value { + s: "nr_ctant_params" + } + } + } + } + arg_attr { + key: 15 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + } + } + } + } + } + } + arg_attr { + key: 16 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + } + } + } + } + } + } + arg_attr { + key: 17 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + } + } + } + } + } + } + arg_attr { + key: 18 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + } + } + } + } + } + } + arg_attr { + key: 19 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + } + } + } + } + } + } + arg_attr { + key: 20 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + } + } + } + } + } + } + } + function { + signature { + name: "__inference__traced_restore_4619176" + input_arg { + name: "file_prefix" + type: DT_STRING + } + input_arg { + name: "assignvariableop_train_step" + type: DT_RESOURCE + } + input_arg { + name: "assignvariableop_1_qnetwork_encodingnetwork_dense_kernel" + type: DT_RESOURCE + } + input_arg { + name: "assignvariableop_2_qnetwork_encodingnetwork_dense_bias" + type: DT_RESOURCE + } + input_arg { + name: "assignvariableop_3_qnetwork_encodingnetwork_dense_1_kernel" + type: DT_RESOURCE + } + input_arg { + name: "assignvariableop_4_qnetwork_encodingnetwork_dense_1_bias" + type: DT_RESOURCE + } + input_arg { + name: "assignvariableop_5_qnetwork_dense_2_kernel" + type: DT_RESOURCE + } + input_arg { + name: "assignvariableop_6_qnetwork_dense_2_bias" + type: DT_RESOURCE + } + output_arg { + name: "identity_8" + type: DT_STRING + } + is_stateful: true + control_output: "AssignVariableOp" + control_output: "AssignVariableOp_1" + control_output: "AssignVariableOp_2" + control_output: "AssignVariableOp_3" + control_output: "AssignVariableOp_4" + control_output: "AssignVariableOp_5" + control_output: "AssignVariableOp_6" + control_output: "RestoreV2" + control_output: "RestoreV2_1" + } + node_def { + name: "RestoreV2/tensor_names" + op: "Const" + device: "/device:CPU:0" + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 7 + } + } + } + } + } + attr { + key: "dtype" + value { + type: DT_STRING + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_STRING + tensor_shape { + dim { + size: 7 + } + } + string_val: "train_step/.ATTRIBUTES/VARIABLE_VALUE" + string_val: "model_variables/0/.ATTRIBUTES/VARIABLE_VALUE" + string_val: "model_variables/1/.ATTRIBUTES/VARIABLE_VALUE" + string_val: "model_variables/2/.ATTRIBUTES/VARIABLE_VALUE" + string_val: "model_variables/3/.ATTRIBUTES/VARIABLE_VALUE" + string_val: "model_variables/4/.ATTRIBUTES/VARIABLE_VALUE" + string_val: "model_variables/5/.ATTRIBUTES/VARIABLE_VALUE" + } + } + } + experimental_debug_info { + original_node_names: "RestoreV2/tensor_names" + } + } + node_def { + name: "RestoreV2/shape_and_slices" + op: "Const" + device: "/device:CPU:0" + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 7 + } + } + } + } + } + attr { + key: "dtype" + value { + type: DT_STRING + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_STRING + tensor_shape { + dim { + size: 7 + } + } + string_val: "" + string_val: "" + string_val: "" + string_val: "" + string_val: "" + string_val: "" + string_val: "" + } + } + } + experimental_debug_info { + original_node_names: "RestoreV2/shape_and_slices" + } + } + node_def { + name: "RestoreV2" + op: "RestoreV2" + input: "file_prefix" + input: "RestoreV2/tensor_names:output:0" + input: "RestoreV2/shape_and_slices:output:0" + device: "/device:CPU:0" + attr { + key: "_output_shapes" + value { + list { + shape { + unknown_rank: true + } + shape { + unknown_rank: true + } + shape { + unknown_rank: true + } + shape { + unknown_rank: true + } + shape { + unknown_rank: true + } + shape { + unknown_rank: true + } + shape { + unknown_rank: true + } + } + } + } + attr { + key: "dtypes" + value { + list { + type: DT_INT64 + type: DT_FLOAT + type: DT_FLOAT + type: DT_FLOAT + type: DT_FLOAT + type: DT_FLOAT + type: DT_FLOAT + } + } + } + experimental_debug_info { + original_node_names: "RestoreV2" + } + } + node_def { + name: "Identity" + op: "Identity" + input: "RestoreV2:tensors:0" + attr { + key: "T" + value { + type: DT_INT64 + } + } + attr { + key: "_output_shapes" + value { + list { + shape { + unknown_rank: true + } + } + } + } + experimental_debug_info { + original_node_names: "Identity" + } + } + node_def { + name: "AssignVariableOp" + op: "AssignVariableOp" + input: "assignvariableop_train_step" + input: "Identity:output:0" + attr { + key: "_output_shapes" + value { + list { + } + } + } + attr { + key: "dtype" + value { + type: DT_INT64 + } + } + experimental_debug_info { + original_node_names: "AssignVariableOp" + } + } + node_def { + name: "Identity_1" + op: "Identity" + input: "RestoreV2:tensors:1" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_output_shapes" + value { + list { + shape { + unknown_rank: true + } + } + } + } + experimental_debug_info { + original_node_names: "Identity_1" + } + } + node_def { + name: "AssignVariableOp_1" + op: "AssignVariableOp" + input: "assignvariableop_1_qnetwork_encodingnetwork_dense_kernel" + input: "Identity_1:output:0" + attr { + key: "_output_shapes" + value { + list { + } + } + } + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + experimental_debug_info { + original_node_names: "AssignVariableOp_1" + } + } + node_def { + name: "Identity_2" + op: "Identity" + input: "RestoreV2:tensors:2" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_output_shapes" + value { + list { + shape { + unknown_rank: true + } + } + } + } + experimental_debug_info { + original_node_names: "Identity_2" + } + } + node_def { + name: "AssignVariableOp_2" + op: "AssignVariableOp" + input: "assignvariableop_2_qnetwork_encodingnetwork_dense_bias" + input: "Identity_2:output:0" + attr { + key: "_output_shapes" + value { + list { + } + } + } + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + experimental_debug_info { + original_node_names: "AssignVariableOp_2" + } + } + node_def { + name: "Identity_3" + op: "Identity" + input: "RestoreV2:tensors:3" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_output_shapes" + value { + list { + shape { + unknown_rank: true + } + } + } + } + experimental_debug_info { + original_node_names: "Identity_3" + } + } + node_def { + name: "AssignVariableOp_3" + op: "AssignVariableOp" + input: "assignvariableop_3_qnetwork_encodingnetwork_dense_1_kernel" + input: "Identity_3:output:0" + attr { + key: "_output_shapes" + value { + list { + } + } + } + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + experimental_debug_info { + original_node_names: "AssignVariableOp_3" + } + } + node_def { + name: "Identity_4" + op: "Identity" + input: "RestoreV2:tensors:4" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_output_shapes" + value { + list { + shape { + unknown_rank: true + } + } + } + } + experimental_debug_info { + original_node_names: "Identity_4" + } + } + node_def { + name: "AssignVariableOp_4" + op: "AssignVariableOp" + input: "assignvariableop_4_qnetwork_encodingnetwork_dense_1_bias" + input: "Identity_4:output:0" + attr { + key: "_output_shapes" + value { + list { + } + } + } + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + experimental_debug_info { + original_node_names: "AssignVariableOp_4" + } + } + node_def { + name: "Identity_5" + op: "Identity" + input: "RestoreV2:tensors:5" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_output_shapes" + value { + list { + shape { + unknown_rank: true + } + } + } + } + experimental_debug_info { + original_node_names: "Identity_5" + } + } + node_def { + name: "AssignVariableOp_5" + op: "AssignVariableOp" + input: "assignvariableop_5_qnetwork_dense_2_kernel" + input: "Identity_5:output:0" + attr { + key: "_output_shapes" + value { + list { + } + } + } + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + experimental_debug_info { + original_node_names: "AssignVariableOp_5" + } + } + node_def { + name: "Identity_6" + op: "Identity" + input: "RestoreV2:tensors:6" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_output_shapes" + value { + list { + shape { + unknown_rank: true + } + } + } + } + experimental_debug_info { + original_node_names: "Identity_6" + } + } + node_def { + name: "AssignVariableOp_6" + op: "AssignVariableOp" + input: "assignvariableop_6_qnetwork_dense_2_bias" + input: "Identity_6:output:0" + attr { + key: "_output_shapes" + value { + list { + } + } + } + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + experimental_debug_info { + original_node_names: "AssignVariableOp_6" + } + } + node_def { + name: "RestoreV2_1/tensor_names" + op: "Const" + device: "/device:CPU:0" + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + } + } + } + } + attr { + key: "dtype" + value { + type: DT_STRING + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_STRING + tensor_shape { + dim { + size: 1 + } + } + string_val: "_CHECKPOINTABLE_OBJECT_GRAPH" + } + } + } + experimental_debug_info { + original_node_names: "RestoreV2_1/tensor_names" + } + } + node_def { + name: "RestoreV2_1/shape_and_slices" + op: "Const" + device: "/device:CPU:0" + attr { + key: "_output_shapes" + value { + list { + shape { + dim { + size: 1 + } + } + } + } + } + attr { + key: "dtype" + value { + type: DT_STRING + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_STRING + tensor_shape { + dim { + size: 1 + } + } + string_val: "" + } + } + } + experimental_debug_info { + original_node_names: "RestoreV2_1/shape_and_slices" + } + } + node_def { + name: "RestoreV2_1" + op: "RestoreV2" + input: "file_prefix" + input: "RestoreV2_1/tensor_names:output:0" + input: "RestoreV2_1/shape_and_slices:output:0" + input: "^RestoreV2" + device: "/device:CPU:0" + attr { + key: "_output_shapes" + value { + list { + shape { + unknown_rank: true + } + } + } + } + attr { + key: "dtypes" + value { + list { + type: DT_STRING + } + } + } + experimental_debug_info { + original_node_names: "RestoreV2_1" + } + } + node_def { + name: "NoOp" + op: "NoOp" + device: "/device:CPU:0" + attr { + key: "_output_shapes" + value { + list { + } + } + } + experimental_debug_info { + original_node_names: "NoOp" + } + } + node_def { + name: "Identity_7" + op: "Identity" + input: "file_prefix" + input: "^AssignVariableOp" + input: "^AssignVariableOp_1" + input: "^AssignVariableOp_2" + input: "^AssignVariableOp_3" + input: "^AssignVariableOp_4" + input: "^AssignVariableOp_5" + input: "^AssignVariableOp_6" + input: "^NoOp" + device: "/device:CPU:0" + attr { + key: "T" + value { + type: DT_STRING + } + } + attr { + key: "_output_shapes" + value { + list { + shape { + } + } + } + } + experimental_debug_info { + original_node_names: "Identity_7" + } + } + node_def { + name: "Identity_8" + op: "Identity" + input: "Identity_7:output:0" + input: "^AssignVariableOp" + input: "^AssignVariableOp_1" + input: "^AssignVariableOp_2" + input: "^AssignVariableOp_3" + input: "^AssignVariableOp_4" + input: "^AssignVariableOp_5" + input: "^AssignVariableOp_6" + input: "^RestoreV2" + input: "^RestoreV2_1" + attr { + key: "T" + value { + type: DT_STRING + } + } + attr { + key: "_output_shapes" + value { + list { + shape { + } + } + } + } + experimental_debug_info { + original_node_names: "Identity_8" + } + } + ret { + key: "identity_8" + value: "Identity_8:output:0" + } + attr { + key: "_input_shapes" + value { + list { + shape { + } + shape { + unknown_rank: true + } + shape { + unknown_rank: true + } + shape { + unknown_rank: true + } + shape { + unknown_rank: true + } + shape { + unknown_rank: true + } + shape { + unknown_rank: true + } + shape { + unknown_rank: true + } + } + } + } + control_ret { + key: "AssignVariableOp" + value: "AssignVariableOp" + } + control_ret { + key: "AssignVariableOp_1" + value: "AssignVariableOp_1" + } + control_ret { + key: "AssignVariableOp_2" + value: "AssignVariableOp_2" + } + control_ret { + key: "AssignVariableOp_3" + value: "AssignVariableOp_3" + } + control_ret { + key: "AssignVariableOp_4" + value: "AssignVariableOp_4" + } + control_ret { + key: "AssignVariableOp_5" + value: "AssignVariableOp_5" + } + control_ret { + key: "AssignVariableOp_6" + value: "AssignVariableOp_6" + } + control_ret { + key: "RestoreV2" + value: "RestoreV2" + } + control_ret { + key: "RestoreV2_1" + value: "RestoreV2_1" + } + arg_attr { + key: 0 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + } + } + } + } + attr { + key: "_user_specified_name" + value { + s: "file_prefix" + } + } + } + } + arg_attr { + key: 1 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + } + } + } + } + } + } + arg_attr { + key: 2 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + } + } + } + } + } + } + arg_attr { + key: 3 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + } + } + } + } + } + } + arg_attr { + key: 4 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + } + } + } + } + } + } + arg_attr { + key: 5 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + } + } + } + } + } + } + arg_attr { + key: 6 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + } + } + } + } + } + } + arg_attr { + key: 7 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + } + } + } + } + } + } + } + function { + signature { + name: "__inference_<lambda>_728" + input_arg { + name: "readvariableop_resource" + type: DT_RESOURCE + } + output_arg { + name: "identity" + type: DT_INT64 + } + is_stateful: true + } + node_def { + name: "ReadVariableOp" + op: "ReadVariableOp" + input: "readvariableop_resource" + attr { + key: "_output_shapes" + value { + list { + shape { + } + } + } + } + attr { + key: "dtype" + value { + type: DT_INT64 + } + } + experimental_debug_info { + original_node_names: "ReadVariableOp" + } + } + node_def { + name: "Identity" + op: "Identity" + input: "ReadVariableOp:value:0" + attr { + key: "T" + value { + type: DT_INT64 + } + } + attr { + key: "_output_shapes" + value { + list { + shape { + } + } + } + } + experimental_debug_info { + original_node_names: "Identity" + } + } + ret { + key: "identity" + value: "Identity:output:0" + } + attr { + key: "_input_shapes" + value { + list { + shape { + unknown_rank: true + } + } + } + } + arg_attr { + key: 0 + value { + attr { + key: "_output_shapes" + value { + list { + shape { + } + } + } + } + } + } + } + } + versions { + producer: 357 + min_consumer: 12 + } + } + saver_def { + filename_tensor_name: "saver_filename:0" + save_tensor_name: "StatefulPartitionedCall_2:0" + restore_op_name: "StatefulPartitionedCall_3" + version: V2 + } + collection_def { + key: "saved_model_main_op" + value { + node_list { + value: "NoOp" + } + } + } + signature_def { + key: "__saved_model_init_op" + value { + outputs { + key: "__saved_model_init_op" + value { + name: "NoOp" + tensor_shape { + unknown_rank: true + } + } + } + } + } + signature_def { + key: "action" + value { + inputs { + key: "callee_basic_block_count" + value { + name: "action_callee_basic_block_count:0" + dtype: DT_INT64 + tensor_shape { + dim { + size: 1 + } + } + } + } + inputs { + key: "callee_conditionally_executed_blocks" + value { + name: "action_callee_conditionally_executed_blocks:0" + dtype: DT_INT64 + tensor_shape { + dim { + size: 1 + } + } + } + } + inputs { + key: "callee_users" + value { + name: "action_callee_users:0" + dtype: DT_INT64 + tensor_shape { + dim { + size: 1 + } + } + } + } + inputs { + key: "caller_basic_block_count" + value { + name: "action_caller_basic_block_count:0" + dtype: DT_INT64 + tensor_shape { + dim { + size: 1 + } + } + } + } + inputs { + key: "caller_conditionally_executed_blocks" + value { + name: "action_caller_conditionally_executed_blocks:0" + dtype: DT_INT64 + tensor_shape { + dim { + size: 1 + } + } + } + } + inputs { + key: "caller_users" + value { + name: "action_caller_users:0" + dtype: DT_INT64 + tensor_shape { + dim { + size: 1 + } + } + } + } + inputs { + key: "callsite_height" + value { + name: "action_callsite_height:0" + dtype: DT_INT64 + tensor_shape { + dim { + size: 1 + } + } + } + } + inputs { + key: "cost_estimate" + value { + name: "action_cost_estimate:0" + dtype: DT_INT64 + tensor_shape { + dim { + size: 1 + } + } + } + } + inputs { + key: "discount" + value { + name: "action_discount:0" + dtype: DT_FLOAT + tensor_shape { + dim { + size: 1 + } + } + } + } + inputs { + key: "edge_count" + value { + name: "action_edge_count:0" + dtype: DT_INT64 + tensor_shape { + dim { + size: 1 + } + } + } + } + inputs { + key: "inlining_default" + value { + name: "action_inlining_default:0" + dtype: DT_INT64 + tensor_shape { + dim { + size: 1 + } + } + } + } + inputs { + key: "node_count" + value { + name: "action_node_count:0" + dtype: DT_INT64 + tensor_shape { + dim { + size: 1 + } + } + } + } + inputs { + key: "nr_ctant_params" + value { + name: "action_nr_ctant_params:0" + dtype: DT_INT64 + tensor_shape { + dim { + size: 1 + } + } + } + } + inputs { + key: "reward" + value { + name: "action_reward:0" + dtype: DT_FLOAT + tensor_shape { + dim { + size: 1 + } + } + } + } + inputs { + key: "step_type" + value { + name: "action_step_type:0" + dtype: DT_INT32 + tensor_shape { + dim { + size: 1 + } + } + } + } + outputs { + key: "inlining_decision" + value { + name: "StatefulPartitionedCall:0" + dtype: DT_INT64 + tensor_shape { + dim { + size: 1 + } + } + } + } + method_name: "tensorflow/serving/predict" + } + } + signature_def { + key: "get_initial_state" + value { + method_name: "tensorflow/serving/predict" + } + } + signature_def { + key: "get_train_step" + value { + outputs { + key: "int64" + value { + name: "StatefulPartitionedCall_1:0" + dtype: DT_INT64 + tensor_shape { + } + } + } + method_name: "tensorflow/serving/predict" + } + } + object_graph_def { + nodes { + children { + node_id: 1 + local_name: "_time_step_spec" + } + children { + node_id: 2 + local_name: "_trajectory_spec" + } + children { + node_id: 3 + local_name: "_wrapped_policy" + } + children { + node_id: 4 + local_name: "train_step" + } + children { + node_id: 5 + local_name: "model_variables" + } + children { + node_id: 6 + local_name: "signatures" + } + children { + node_id: 210 + local_name: "action" + } + children { + node_id: 211 + local_name: "get_initial_state" + } + children { + node_id: 212 + local_name: "get_train_step" + } + user_object { + identifier: "_generic_user_object" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + children { + node_id: 7 + local_name: "observation" + } + children { + node_id: 7 + local_name: "3" + } + user_object { + identifier: "trackable_tuple_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + children { + node_id: 7 + local_name: "observation" + } + children { + node_id: 7 + local_name: "1" + } + user_object { + identifier: "trackable_tuple_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + children { + node_id: 8 + local_name: "_q_network" + } + children { + node_id: 1 + local_name: "_time_step_spec" + } + children { + node_id: 9 + local_name: "_trajectory_spec" + } + user_object { + identifier: "_generic_user_object" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + variable { + dtype: DT_INT64 + shape { + } + name: "train_step" + } + } + nodes { + children { + node_id: 10 + local_name: "0" + } + children { + node_id: 11 + local_name: "1" + } + children { + node_id: 12 + local_name: "2" + } + children { + node_id: 13 + local_name: "3" + } + children { + node_id: 14 + local_name: "4" + } + children { + node_id: 15 + local_name: "5" + } + user_object { + identifier: "trackable_list_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + children { + node_id: 213 + local_name: "action" + } + children { + node_id: 214 + local_name: "get_initial_state" + } + children { + node_id: 215 + local_name: "get_train_step" + } + user_object { + identifier: "signature_map" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + user_object { + identifier: "trackable_dict_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + children { + node_id: 16 + local_name: "_input_tensor_spec" + } + children { + node_id: 17 + local_name: "_encoder" + } + children { + node_id: 18 + local_name: "_q_value_layer" + } + children { + node_id: 19 + local_name: "variables" + } + children { + node_id: 20 + local_name: "regularization_losses" + } + children { + node_id: 21 + local_name: "trainable_variables" + } + children { + node_id: 22 + local_name: "keras_api" + } + children { + node_id: 216 + local_name: "__call__" + } + children { + node_id: 217 + local_name: "call_and_return_all_conditional_losses" + } + user_object { + identifier: "_tf_keras_network" + version { + producer: 1 + min_consumer: 1 + } + metadata: "{\"class_name\": \"QNetwork\", \"name\": \"QNetwork\", \"trainable\": true, \"expects_training_arg\": true, \"dtype\": \"float32\", \"batch_input_shape\": null, \"config\": {\"layer was saved without config\": true}, \"is_graph_network\": false}" + } + } + nodes { + children { + node_id: 7 + local_name: "observation" + } + children { + node_id: 7 + local_name: "1" + } + user_object { + identifier: "trackable_tuple_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + variable { + dtype: DT_FLOAT + shape { + dim { + size: 34 + } + dim { + size: 100 + } + } + trainable: true + name: "QNetwork/EncodingNetwork/dense/kernel" + } + } + nodes { + variable { + dtype: DT_FLOAT + shape { + dim { + size: 100 + } + } + trainable: true + name: "QNetwork/EncodingNetwork/dense/bias" + } + } + nodes { + variable { + dtype: DT_FLOAT + shape { + dim { + size: 100 + } + dim { + size: 40 + } + } + trainable: true + name: "QNetwork/EncodingNetwork/dense_1/kernel" + } + } + nodes { + variable { + dtype: DT_FLOAT + shape { + dim { + size: 40 + } + } + trainable: true + name: "QNetwork/EncodingNetwork/dense_1/bias" + } + } + nodes { + variable { + dtype: DT_FLOAT + shape { + dim { + size: 40 + } + dim { + size: 2 + } + } + trainable: true + name: "QNetwork/dense_2/kernel" + } + } + nodes { + variable { + dtype: DT_FLOAT + shape { + dim { + size: 2 + } + } + trainable: true + name: "QNetwork/dense_2/bias" + } + } + nodes { + user_object { + identifier: "trackable_dict_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + children { + node_id: 23 + local_name: "_input_tensor_spec" + } + children { + node_id: 24 + local_name: "_preprocessing_nest" + } + children { + node_id: 25 + local_name: "_flat_preprocessing_layers" + } + children { + node_id: 26 + local_name: "_preprocessing_combiner" + } + children { + node_id: 27 + local_name: "_postprocessing_layers" + } + children { + node_id: 28 + local_name: "variables" + } + children { + node_id: 29 + local_name: "regularization_losses" + } + children { + node_id: 30 + local_name: "trainable_variables" + } + children { + node_id: 31 + local_name: "keras_api" + } + children { + node_id: 218 + local_name: "__call__" + } + children { + node_id: 219 + local_name: "call_and_return_all_conditional_losses" + } + user_object { + identifier: "_tf_keras_network" + version { + producer: 1 + min_consumer: 1 + } + metadata: "{\"class_name\": \"EncodingNetwork\", \"name\": \"EncodingNetwork\", \"trainable\": true, \"expects_training_arg\": true, \"dtype\": \"float32\", \"batch_input_shape\": null, \"config\": {\"layer was saved without config\": true}, \"is_graph_network\": false}" + } + } + nodes { + children { + node_id: 14 + local_name: "kernel" + } + children { + node_id: 15 + local_name: "bias" + } + children { + node_id: 32 + local_name: "variables" + } + children { + node_id: 33 + local_name: "regularization_losses" + } + children { + node_id: 34 + local_name: "trainable_variables" + } + children { + node_id: 35 + local_name: "keras_api" + } + children { + node_id: 220 + local_name: "__call__" + } + children { + node_id: 221 + local_name: "call_and_return_all_conditional_losses" + } + user_object { + identifier: "_tf_keras_layer" + version { + producer: 1 + min_consumer: 1 + } + metadata: "{\"class_name\": \"Dense\", \"name\": \"dense_2\", \"trainable\": true, \"expects_training_arg\": false, \"dtype\": \"float32\", \"batch_input_shape\": null, \"stateful\": false, \"config\": {\"name\": \"dense_2\", \"trainable\": true, \"dtype\": \"float32\", \"units\": 2, \"activation\": \"linear\", \"use_bias\": true, \"kernel_initializer\": {\"class_name\": \"RandomUniform\", \"config\": {\"minval\": -0.03, \"maxval\": 0.03, \"seed\": null, \"dtype\": \"float32\"}}, \"bias_initializer\": {\"class_name\": \"Constant\", \"config\": {\"value\": -0.2, \"dtype\": \"float32\"}}, \"kernel_regularizer\": null, \"bias_regularizer\": null, \"activity_regularizer\": null, \"kernel_constraint\": null, \"bias_constraint\": null}, \"input_spec\": {\"class_name\": \"InputSpec\", \"config\": {\"dtype\": null, \"shape\": null, \"ndim\": null, \"max_ndim\": null, \"min_ndim\": 2, \"axes\": {\"-1\": 40}}}, \"build_input_shape\": {\"class_name\": \"TensorShape\", \"items\": [0, 40]}}" + } + } + nodes { + children { + node_id: 10 + local_name: "0" + } + children { + node_id: 11 + local_name: "1" + } + children { + node_id: 12 + local_name: "2" + } + children { + node_id: 13 + local_name: "3" + } + children { + node_id: 14 + local_name: "4" + } + children { + node_id: 15 + local_name: "5" + } + user_object { + identifier: "trackable_list_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + user_object { + identifier: "trackable_list_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + children { + node_id: 10 + local_name: "0" + } + children { + node_id: 11 + local_name: "1" + } + children { + node_id: 12 + local_name: "2" + } + children { + node_id: 13 + local_name: "3" + } + children { + node_id: 14 + local_name: "4" + } + children { + node_id: 15 + local_name: "5" + } + user_object { + identifier: "trackable_list_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + children { + node_id: 36 + local_name: "layer_metrics" + } + children { + node_id: 19 + local_name: "variables" + } + children { + node_id: 37 + local_name: "layer_regularization_losses" + } + children { + node_id: 38 + local_name: "metrics" + } + children { + node_id: 39 + local_name: "layers" + } + children { + node_id: 20 + local_name: "regularization_losses" + } + children { + node_id: 40 + local_name: "non_trainable_variables" + } + children { + node_id: 21 + local_name: "trainable_variables" + } + children { + node_id: 216 + local_name: "__call__" + } + children { + node_id: 217 + local_name: "call_and_return_all_conditional_losses" + } + children { + node_id: 217 + local_name: "call_and_return_conditional_losses" + } + user_object { + identifier: "_generic_user_object" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + user_object { + identifier: "trackable_dict_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + user_object { + identifier: "trackable_dict_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + children { + node_id: 41 + local_name: "0" + } + children { + node_id: 42 + local_name: "1" + } + children { + node_id: 43 + local_name: "2" + } + children { + node_id: 44 + local_name: "3" + } + children { + node_id: 45 + local_name: "4" + } + children { + node_id: 46 + local_name: "5" + } + children { + node_id: 47 + local_name: "6" + } + children { + node_id: 48 + local_name: "7" + } + children { + node_id: 49 + local_name: "8" + } + children { + node_id: 50 + local_name: "9" + } + children { + node_id: 51 + local_name: "10" + } + children { + node_id: 52 + local_name: "11" + } + user_object { + identifier: "trackable_list_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + children { + node_id: 53 + local_name: "variables" + } + children { + node_id: 54 + local_name: "regularization_losses" + } + children { + node_id: 55 + local_name: "trainable_variables" + } + children { + node_id: 56 + local_name: "keras_api" + } + children { + node_id: 222 + local_name: "__call__" + } + children { + node_id: 223 + local_name: "call_and_return_all_conditional_losses" + } + user_object { + identifier: "_tf_keras_layer" + version { + producer: 1 + min_consumer: 1 + } + metadata: "{\"class_name\": \"Concatenate\", \"name\": \"concatenate\", \"trainable\": true, \"expects_training_arg\": false, \"dtype\": \"float32\", \"batch_input_shape\": null, \"stateful\": false, \"config\": {\"name\": \"concatenate\", \"trainable\": true, \"dtype\": \"float32\", \"axis\": -1}, \"build_input_shape\": [{\"class_name\": \"TensorShape\", \"items\": [0, 3]}, {\"class_name\": \"TensorShape\", \"items\": [0, 3]}, {\"class_name\": \"TensorShape\", \"items\": [0, 3]}, {\"class_name\": \"TensorShape\", \"items\": [0, 3]}, {\"class_name\": \"TensorShape\", \"items\": [0, 3]}, {\"class_name\": \"TensorShape\", \"items\": [0, 3]}, {\"class_name\": \"TensorShape\", \"items\": [0, 3]}, {\"class_name\": \"TensorShape\", \"items\": [0, 3]}, {\"class_name\": \"TensorShape\", \"items\": [0, 3]}, {\"class_name\": \"TensorShape\", \"items\": [0, 1]}, {\"class_name\": \"TensorShape\", \"items\": [0, 3]}, {\"class_name\": \"TensorShape\", \"items\": [0, 3]}]}" + } + } + nodes { + children { + node_id: 57 + local_name: "0" + } + children { + node_id: 58 + local_name: "1" + } + children { + node_id: 59 + local_name: "2" + } + user_object { + identifier: "trackable_list_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + children { + node_id: 10 + local_name: "0" + } + children { + node_id: 11 + local_name: "1" + } + children { + node_id: 12 + local_name: "2" + } + children { + node_id: 13 + local_name: "3" + } + user_object { + identifier: "trackable_list_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + user_object { + identifier: "trackable_list_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + children { + node_id: 10 + local_name: "0" + } + children { + node_id: 11 + local_name: "1" + } + children { + node_id: 12 + local_name: "2" + } + children { + node_id: 13 + local_name: "3" + } + user_object { + identifier: "trackable_list_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + children { + node_id: 60 + local_name: "layer_metrics" + } + children { + node_id: 28 + local_name: "variables" + } + children { + node_id: 61 + local_name: "layer_regularization_losses" + } + children { + node_id: 62 + local_name: "metrics" + } + children { + node_id: 63 + local_name: "layers" + } + children { + node_id: 29 + local_name: "regularization_losses" + } + children { + node_id: 64 + local_name: "non_trainable_variables" + } + children { + node_id: 30 + local_name: "trainable_variables" + } + children { + node_id: 218 + local_name: "__call__" + } + children { + node_id: 219 + local_name: "call_and_return_all_conditional_losses" + } + children { + node_id: 219 + local_name: "call_and_return_conditional_losses" + } + user_object { + identifier: "_generic_user_object" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + children { + node_id: 14 + local_name: "0" + } + children { + node_id: 15 + local_name: "1" + } + user_object { + identifier: "trackable_list_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + user_object { + identifier: "trackable_list_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + children { + node_id: 14 + local_name: "0" + } + children { + node_id: 15 + local_name: "1" + } + user_object { + identifier: "trackable_list_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + children { + node_id: 65 + local_name: "layer_metrics" + } + children { + node_id: 32 + local_name: "variables" + } + children { + node_id: 66 + local_name: "layer_regularization_losses" + } + children { + node_id: 67 + local_name: "metrics" + } + children { + node_id: 68 + local_name: "layers" + } + children { + node_id: 33 + local_name: "regularization_losses" + } + children { + node_id: 69 + local_name: "non_trainable_variables" + } + children { + node_id: 34 + local_name: "trainable_variables" + } + children { + node_id: 220 + local_name: "__call__" + } + children { + node_id: 221 + local_name: "call_and_return_all_conditional_losses" + } + children { + node_id: 221 + local_name: "call_and_return_conditional_losses" + } + user_object { + identifier: "_generic_user_object" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + user_object { + identifier: "trackable_dict_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + user_object { + identifier: "trackable_list_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + user_object { + identifier: "trackable_list_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + children { + node_id: 17 + local_name: "0" + } + children { + node_id: 18 + local_name: "1" + } + user_object { + identifier: "trackable_list_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + user_object { + identifier: "trackable_list_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + children { + node_id: 70 + local_name: "variables" + } + children { + node_id: 71 + local_name: "regularization_losses" + } + children { + node_id: 72 + local_name: "trainable_variables" + } + children { + node_id: 73 + local_name: "keras_api" + } + children { + node_id: 224 + local_name: "__call__" + } + children { + node_id: 225 + local_name: "call_and_return_all_conditional_losses" + } + user_object { + identifier: "_tf_keras_layer" + version { + producer: 1 + min_consumer: 1 + } + metadata: "{\"class_name\": \"Lambda\", \"name\": \"lambda\", \"trainable\": true, \"expects_training_arg\": true, \"dtype\": \"float32\", \"batch_input_shape\": null, \"stateful\": false, \"config\": {\"name\": \"lambda\", \"trainable\": true, \"dtype\": \"float32\", \"function\": {\"class_name\": \"__tuple__\", \"items\": [\"4wEAAAAAAAAAAwAAAAUAAAATAAAAc0QAAACIAHwAgwF9AXQAagF0AmoDfAGIAYMCdABqBIMCdAWI\\nAYMBGwB9AnQAagZ8AnQAagd8AoMBfAJ8AhQAZwNkA2QCjQJTACkETukBAAAAKQHaBGF4aXPp////\\n/ykI2gJ0ZtoEY2FzdNoOY29udHJpYl9sYXllcnPaCWJ1Y2tldGl6ZdoHZmxvYXQzMtoDbGVu2gZj\\nb25jYXTaBHNxcnQpA9oDb2Jz2gxleHBhbmRlZF9vYnPaAXgpAtoOZXhwYW5kX2RpbXNfb3DaCHF1\\nYW50aWxlqQD69C9leHBvcnQvaGRhMy9ib3JnbGV0L2xvY2FsX3JhbV9mc19kaXJzLzAueXVuZGlf\\nbXVwcGV0XzBfMTIyNzA4MzMuMTMueXVuZGkuMTk0NzMxNDE3OTYxLjhmNGY5Zjk4Y2I3YTMwNTUv\\nYnVpbGRfdGFyZ2V0X3RyYWluX3Bhcl9kOTc1NzUzNzAxNmEyZWI4L3RyYWluLnBhci9nb29nbGUz\\nL2xlYXJuaW5nL3NtYXJ0Y2hvaWNlcy9yZXNlYXJjaC9jbGllbnRzL2NvbXBpbGVyX29wdC9wb2xp\\nY3lfdHJhaW5pbmcvZmVhdHVyZV9vcHMucHnaDW5vcm1hbGl6YXRpb24wAAAAcwoAAAAAAQgBBAEK\\nARAB\\n\", null, {\"class_name\": \"__tuple__\", \"items\": [{\"class_name\": \"ExpandDims\", \"config\": {\"name\": \"expand_dims\", \"trainable\": true, \"dtype\": \"float32\", \"axis\": -1}}, [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 9.0, 9.0, 9.0, 9.0, 10.0, 10.0, 11.0, 12.0, 13.0, 14.0, 14.0, 14.0, 16.0, 17.0, 19.0, 23.0, 27.0, 39.0]]}]}, \"function_type\": \"lambda\", \"module\": \"google3.learning.smartchoices.research.clients.compiler_opt.policy_training.feature_ops\", \"output_shape\": null, \"output_shape_type\": \"raw\", \"output_shape_module\": null, \"arguments\": {}}}" + } + } + nodes { + children { + node_id: 74 + local_name: "variables" + } + children { + node_id: 75 + local_name: "regularization_losses" + } + children { + node_id: 76 + local_name: "trainable_variables" + } + children { + node_id: 77 + local_name: "keras_api" + } + children { + node_id: 226 + local_name: "__call__" + } + children { + node_id: 227 + local_name: "call_and_return_all_conditional_losses" + } + user_object { + identifier: "_tf_keras_layer" + version { + producer: 1 + min_consumer: 1 + } + metadata: "{\"class_name\": \"Lambda\", \"name\": \"lambda_1\", \"trainable\": true, \"expects_training_arg\": true, \"dtype\": \"float32\", \"batch_input_shape\": null, \"stateful\": false, \"config\": {\"name\": \"lambda_1\", \"trainable\": true, \"dtype\": \"float32\", \"function\": {\"class_name\": \"__tuple__\", \"items\": [\"4wEAAAAAAAAAAwAAAAUAAAATAAAAc0QAAACIAHwAgwF9AXQAagF0AmoDfAGIAYMCdABqBIMCdAWI\\nAYMBGwB9AnQAagZ8AnQAagd8AoMBfAJ8AhQAZwNkA2QCjQJTACkETukBAAAAKQHaBGF4aXPp////\\n/ykI2gJ0ZtoEY2FzdNoOY29udHJpYl9sYXllcnPaCWJ1Y2tldGl6ZdoHZmxvYXQzMtoDbGVu2gZj\\nb25jYXTaBHNxcnQpA9oDb2Jz2gxleHBhbmRlZF9vYnPaAXgpAtoOZXhwYW5kX2RpbXNfb3DaCHF1\\nYW50aWxlqQD69C9leHBvcnQvaGRhMy9ib3JnbGV0L2xvY2FsX3JhbV9mc19kaXJzLzAueXVuZGlf\\nbXVwcGV0XzBfMTIyNzA4MzMuMTMueXVuZGkuMTk0NzMxNDE3OTYxLjhmNGY5Zjk4Y2I3YTMwNTUv\\nYnVpbGRfdGFyZ2V0X3RyYWluX3Bhcl9kOTc1NzUzNzAxNmEyZWI4L3RyYWluLnBhci9nb29nbGUz\\nL2xlYXJuaW5nL3NtYXJ0Y2hvaWNlcy9yZXNlYXJjaC9jbGllbnRzL2NvbXBpbGVyX29wdC9wb2xp\\nY3lfdHJhaW5pbmcvZmVhdHVyZV9vcHMucHnaDW5vcm1hbGl6YXRpb24wAAAAcwoAAAAAAQgBBAEK\\nARAB\\n\", null, {\"class_name\": \"__tuple__\", \"items\": [{\"class_name\": \"ExpandDims\", \"config\": {\"name\": \"expand_dims\", \"trainable\": true, \"dtype\": \"float32\", \"axis\": -1}}, [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 3.0, 3.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 7.0, 8.0, 8.0, 8.0, 8.0, 9.0, 10.0, 10.0, 10.0, 12.0, 12.0, 12.0, 14.0, 14.0, 18.0, 20.0, 23.0, 30.0, 41.0]]}]}, \"function_type\": \"lambda\", \"module\": \"google3.learning.smartchoices.research.clients.compiler_opt.policy_training.feature_ops\", \"output_shape\": null, \"output_shape_type\": \"raw\", \"output_shape_module\": null, \"arguments\": {}}}" + } + } + nodes { + children { + node_id: 78 + local_name: "variables" + } + children { + node_id: 79 + local_name: "regularization_losses" + } + children { + node_id: 80 + local_name: "trainable_variables" + } + children { + node_id: 81 + local_name: "keras_api" + } + children { + node_id: 228 + local_name: "__call__" + } + children { + node_id: 229 + local_name: "call_and_return_all_conditional_losses" + } + user_object { + identifier: "_tf_keras_layer" + version { + producer: 1 + min_consumer: 1 + } + metadata: "{\"class_name\": \"Lambda\", \"name\": \"lambda_2\", \"trainable\": true, \"expects_training_arg\": true, \"dtype\": \"float32\", \"batch_input_shape\": null, \"stateful\": false, \"config\": {\"name\": \"lambda_2\", \"trainable\": true, \"dtype\": \"float32\", \"function\": {\"class_name\": \"__tuple__\", \"items\": [\"4wEAAAAAAAAAAwAAAAUAAAATAAAAc0QAAACIAHwAgwF9AXQAagF0AmoDfAGIAYMCdABqBIMCdAWI\\nAYMBGwB9AnQAagZ8AnQAagd8AoMBfAJ8AhQAZwNkA2QCjQJTACkETukBAAAAKQHaBGF4aXPp////\\n/ykI2gJ0ZtoEY2FzdNoOY29udHJpYl9sYXllcnPaCWJ1Y2tldGl6ZdoHZmxvYXQzMtoDbGVu2gZj\\nb25jYXTaBHNxcnQpA9oDb2Jz2gxleHBhbmRlZF9vYnPaAXgpAtoOZXhwYW5kX2RpbXNfb3DaCHF1\\nYW50aWxlqQD69C9leHBvcnQvaGRhMy9ib3JnbGV0L2xvY2FsX3JhbV9mc19kaXJzLzAueXVuZGlf\\nbXVwcGV0XzBfMTIyNzA4MzMuMTMueXVuZGkuMTk0NzMxNDE3OTYxLjhmNGY5Zjk4Y2I3YTMwNTUv\\nYnVpbGRfdGFyZ2V0X3RyYWluX3Bhcl9kOTc1NzUzNzAxNmEyZWI4L3RyYWluLnBhci9nb29nbGUz\\nL2xlYXJuaW5nL3NtYXJ0Y2hvaWNlcy9yZXNlYXJjaC9jbGllbnRzL2NvbXBpbGVyX29wdC9wb2xp\\nY3lfdHJhaW5pbmcvZmVhdHVyZV9vcHMucHnaDW5vcm1hbGl6YXRpb24wAAAAcwoAAAAAAQgBBAEK\\nARAB\\n\", null, {\"class_name\": \"__tuple__\", \"items\": [{\"class_name\": \"ExpandDims\", \"config\": {\"name\": \"expand_dims\", \"trainable\": true, \"dtype\": \"float32\", \"axis\": -1}}, [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 14.0, 14.0, 14.0, 14.0, 14.0, 14.0, 14.0, 14.0, 14.0, 14.0, 14.0, 14.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 16.0, 16.0, 16.0, 16.0, 16.0, 16.0, 17.0, 17.0, 17.0, 17.0, 17.0, 17.0, 17.0, 17.0, 17.0, 18.0, 18.0, 18.0, 18.0, 18.0, 19.0, 19.0, 19.0, 19.0, 19.0, 20.0, 20.0, 20.0, 20.0, 20.0, 21.0, 21.0, 21.0, 21.0, 21.0, 21.0, 21.0, 22.0, 22.0, 22.0, 22.0, 23.0, 23.0, 23.0, 24.0, 24.0, 24.0, 25.0, 25.0, 25.0, 25.0, 25.0, 25.0, 26.0, 26.0, 26.0, 27.0, 27.0, 27.0, 27.0, 28.0, 28.0, 29.0, 29.0, 29.0, 29.0, 30.0, 30.0, 31.0, 31.0, 31.0, 31.0, 32.0, 32.0, 33.0, 33.0, 33.0, 34.0, 34.0, 34.0, 34.0, 35.0, 35.0, 36.0, 36.0, 37.0, 37.0, 37.0, 38.0, 38.0, 39.0, 39.0, 40.0, 40.0, 41.0, 41.0, 41.0, 42.0, 43.0, 43.0, 44.0, 44.0, 45.0, 45.0, 46.0, 46.0, 46.0, 47.0, 47.0, 48.0, 49.0, 49.0, 50.0, 50.0, 51.0, 52.0, 53.0, 53.0, 54.0, 55.0, 56.0, 57.0, 57.0, 58.0, 59.0, 60.0, 61.0, 61.0, 63.0, 63.0, 64.0, 65.0, 66.0, 67.0, 67.0, 69.0, 70.0, 71.0, 72.0, 73.0, 74.0, 75.0, 77.0, 78.0, 79.0, 80.0, 81.0, 82.0, 83.0, 85.0, 86.0, 88.0, 89.0, 91.0, 92.0, 94.0, 96.0, 97.0, 99.0, 100.0, 101.0, 103.0, 105.0, 107.0, 109.0, 111.0, 113.0, 115.0, 118.0, 121.0, 123.0, 126.0, 128.0, 130.0, 133.0, 135.0, 137.0, 140.0, 143.0, 146.0, 148.0, 151.0, 154.0, 157.0, 161.0, 163.0, 166.0, 169.0, 173.0, 178.0, 183.0, 189.0, 193.0, 197.0, 202.0, 208.0, 213.0, 218.0, 223.0, 228.0, 233.0, 239.0, 245.0, 250.0, 257.0, 262.0, 269.0, 277.0, 284.0, 292.0, 300.0, 308.0, 319.0, 329.0, 340.0, 349.0, 359.0, 371.0, 382.0, 394.0, 410.0, 423.0, 435.0, 445.0, 462.0, 480.0, 492.0, 506.0, 519.0, 536.0, 557.0, 577.0, 598.0, 622.0, 655.0, 679.0, 707.0, 733.0, 751.0, 787.0, 814.0, 847.0, 897.0, 934.0, 997.0, 1062.0, 1111.0, 1181.0, 1275.0, 1385.0, 1465.0, 1603.0, 1769.0, 2057.0, 2257.0, 2803.0, 3468.0, 4417.0, 6538.0, 16126.0, 23446.0, 33536.0]]}]}, \"function_type\": \"lambda\", \"module\": \"google3.learning.smartchoices.research.clients.compiler_opt.policy_training.feature_ops\", \"output_shape\": null, \"output_shape_type\": \"raw\", \"output_shape_module\": null, \"arguments\": {}}}" + } + } + nodes { + children { + node_id: 82 + local_name: "variables" + } + children { + node_id: 83 + local_name: "regularization_losses" + } + children { + node_id: 84 + local_name: "trainable_variables" + } + children { + node_id: 85 + local_name: "keras_api" + } + children { + node_id: 230 + local_name: "__call__" + } + children { + node_id: 231 + local_name: "call_and_return_all_conditional_losses" + } + user_object { + identifier: "_tf_keras_layer" + version { + producer: 1 + min_consumer: 1 + } + metadata: "{\"class_name\": \"Lambda\", \"name\": \"lambda_3\", \"trainable\": true, \"expects_training_arg\": true, \"dtype\": \"float32\", \"batch_input_shape\": null, \"stateful\": false, \"config\": {\"name\": \"lambda_3\", \"trainable\": true, \"dtype\": \"float32\", \"function\": {\"class_name\": \"__tuple__\", \"items\": [\"4wEAAAAAAAAAAwAAAAUAAAATAAAAc0QAAACIAHwAgwF9AXQAagF0AmoDfAGIAYMCdABqBIMCdAWI\\nAYMBGwB9AnQAagZ8AnQAagd8AoMBfAJ8AhQAZwNkA2QCjQJTACkETukBAAAAKQHaBGF4aXPp////\\n/ykI2gJ0ZtoEY2FzdNoOY29udHJpYl9sYXllcnPaCWJ1Y2tldGl6ZdoHZmxvYXQzMtoDbGVu2gZj\\nb25jYXTaBHNxcnQpA9oDb2Jz2gxleHBhbmRlZF9vYnPaAXgpAtoOZXhwYW5kX2RpbXNfb3DaCHF1\\nYW50aWxlqQD69C9leHBvcnQvaGRhMy9ib3JnbGV0L2xvY2FsX3JhbV9mc19kaXJzLzAueXVuZGlf\\nbXVwcGV0XzBfMTIyNzA4MzMuMTMueXVuZGkuMTk0NzMxNDE3OTYxLjhmNGY5Zjk4Y2I3YTMwNTUv\\nYnVpbGRfdGFyZ2V0X3RyYWluX3Bhcl9kOTc1NzUzNzAxNmEyZWI4L3RyYWluLnBhci9nb29nbGUz\\nL2xlYXJuaW5nL3NtYXJ0Y2hvaWNlcy9yZXNlYXJjaC9jbGllbnRzL2NvbXBpbGVyX29wdC9wb2xp\\nY3lfdHJhaW5pbmcvZmVhdHVyZV9vcHMucHnaDW5vcm1hbGl6YXRpb24wAAAAcwoAAAAAAQgBBAEK\\nARAB\\n\", null, {\"class_name\": \"__tuple__\", \"items\": [{\"class_name\": \"ExpandDims\", \"config\": {\"name\": \"expand_dims\", \"trainable\": true, \"dtype\": \"float32\", \"axis\": -1}}, [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 14.0, 14.0, 14.0, 14.0, 14.0, 14.0, 14.0, 14.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 16.0, 16.0, 16.0, 16.0, 16.0, 16.0, 16.0, 16.0, 16.0, 16.0, 17.0, 17.0, 17.0, 17.0, 17.0, 17.0, 17.0, 18.0, 18.0, 18.0, 18.0, 18.0, 18.0, 18.0, 18.0, 18.0, 18.0, 18.0, 19.0, 19.0, 19.0, 19.0, 19.0, 19.0, 19.0, 20.0, 20.0, 20.0, 20.0, 20.0, 21.0, 21.0, 21.0, 21.0, 21.0, 21.0, 22.0, 22.0, 22.0, 22.0, 22.0, 22.0, 22.0, 23.0, 23.0, 23.0, 24.0, 24.0, 24.0, 24.0, 24.0, 24.0, 25.0, 25.0, 25.0, 25.0, 25.0, 26.0, 26.0, 26.0, 26.0, 27.0, 27.0, 27.0, 27.0, 27.0, 28.0, 28.0, 28.0, 29.0, 29.0, 29.0, 29.0, 30.0, 30.0, 30.0, 31.0, 31.0, 31.0, 32.0, 32.0, 32.0, 33.0, 33.0, 33.0, 34.0, 34.0, 34.0, 34.0, 35.0, 35.0, 35.0, 36.0, 36.0, 36.0, 37.0, 37.0, 37.0, 38.0, 38.0, 38.0, 38.0, 39.0, 39.0, 40.0, 40.0, 41.0, 41.0, 42.0, 43.0, 43.0, 44.0, 45.0, 45.0, 46.0, 47.0, 47.0, 48.0, 49.0, 49.0, 50.0, 50.0, 52.0, 52.0, 53.0, 54.0, 55.0, 55.0, 57.0, 58.0, 59.0, 60.0, 62.0, 64.0, 65.0, 66.0, 68.0, 70.0, 70.0, 70.0, 70.0, 70.0, 71.0, 73.0, 75.0, 76.0, 78.0, 81.0, 84.0, 86.0, 90.0, 94.0, 98.0, 101.0, 106.0, 111.0, 117.0, 123.0, 130.0, 138.0, 146.0, 157.0, 163.0, 176.0, 187.0, 198.0, 214.0, 227.0, 252.0, 280.0, 327.0, 395.0, 506.0, 671.0, 1025.0, 1971.0]]}]}, \"function_type\": \"lambda\", \"module\": \"google3.learning.smartchoices.research.clients.compiler_opt.policy_training.feature_ops\", \"output_shape\": null, \"output_shape_type\": \"raw\", \"output_shape_module\": null, \"arguments\": {}}}" + } + } + nodes { + children { + node_id: 86 + local_name: "variables" + } + children { + node_id: 87 + local_name: "regularization_losses" + } + children { + node_id: 88 + local_name: "trainable_variables" + } + children { + node_id: 89 + local_name: "keras_api" + } + children { + node_id: 232 + local_name: "__call__" + } + children { + node_id: 233 + local_name: "call_and_return_all_conditional_losses" + } + user_object { + identifier: "_tf_keras_layer" + version { + producer: 1 + min_consumer: 1 + } + metadata: "{\"class_name\": \"Lambda\", \"name\": \"lambda_4\", \"trainable\": true, \"expects_training_arg\": true, \"dtype\": \"float32\", \"batch_input_shape\": null, \"stateful\": false, \"config\": {\"name\": \"lambda_4\", \"trainable\": true, \"dtype\": \"float32\", \"function\": {\"class_name\": \"__tuple__\", \"items\": [\"4wEAAAAAAAAAAwAAAAUAAAATAAAAc0QAAACIAHwAgwF9AXQAagF0AmoDfAGIAYMCdABqBIMCdAWI\\nAYMBGwB9AnQAagZ8AnQAagd8AoMBfAJ8AhQAZwNkA2QCjQJTACkETukBAAAAKQHaBGF4aXPp////\\n/ykI2gJ0ZtoEY2FzdNoOY29udHJpYl9sYXllcnPaCWJ1Y2tldGl6ZdoHZmxvYXQzMtoDbGVu2gZj\\nb25jYXTaBHNxcnQpA9oDb2Jz2gxleHBhbmRlZF9vYnPaAXgpAtoOZXhwYW5kX2RpbXNfb3DaCHF1\\nYW50aWxlqQD69C9leHBvcnQvaGRhMy9ib3JnbGV0L2xvY2FsX3JhbV9mc19kaXJzLzAueXVuZGlf\\nbXVwcGV0XzBfMTIyNzA4MzMuMTMueXVuZGkuMTk0NzMxNDE3OTYxLjhmNGY5Zjk4Y2I3YTMwNTUv\\nYnVpbGRfdGFyZ2V0X3RyYWluX3Bhcl9kOTc1NzUzNzAxNmEyZWI4L3RyYWluLnBhci9nb29nbGUz\\nL2xlYXJuaW5nL3NtYXJ0Y2hvaWNlcy9yZXNlYXJjaC9jbGllbnRzL2NvbXBpbGVyX29wdC9wb2xp\\nY3lfdHJhaW5pbmcvZmVhdHVyZV9vcHMucHnaDW5vcm1hbGl6YXRpb24wAAAAcwoAAAAAAQgBBAEK\\nARAB\\n\", null, {\"class_name\": \"__tuple__\", \"items\": [{\"class_name\": \"ExpandDims\", \"config\": {\"name\": \"expand_dims\", \"trainable\": true, \"dtype\": \"float32\", \"axis\": -1}}, [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 5.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 7.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 11.0, 11.0, 11.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 13.0, 13.0, 14.0, 14.0, 14.0, 14.0, 14.0, 14.0, 14.0, 14.0, 14.0, 14.0, 14.0, 14.0, 14.0, 14.0, 14.0, 14.0, 16.0, 16.0, 16.0, 16.0, 16.0, 16.0, 16.0, 16.0, 16.0, 16.0, 16.0, 16.0, 16.0, 16.0, 16.0, 16.0, 18.0, 18.0, 18.0, 18.0, 18.0, 18.0, 18.0, 18.0, 18.0, 18.0, 18.0, 18.0, 18.0, 19.0, 19.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 21.0, 22.0, 22.0, 22.0, 22.0, 22.0, 22.0, 22.0, 22.0, 22.0, 24.0, 24.0, 24.0, 24.0, 24.0, 24.0, 24.0, 24.0, 25.0, 26.0, 26.0, 26.0, 26.0, 26.0, 26.0, 26.0, 26.0, 26.0, 26.0, 27.0, 28.0, 28.0, 28.0, 28.0, 28.0, 29.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 31.0, 32.0, 32.0, 32.0, 32.0, 32.0, 34.0, 34.0, 34.0, 34.0, 34.0, 34.0, 35.0, 36.0, 36.0, 36.0, 37.0, 38.0, 38.0, 38.0, 39.0, 40.0, 40.0, 41.0, 42.0, 42.0, 43.0, 44.0, 44.0, 46.0, 46.0, 47.0, 48.0, 48.0, 50.0, 50.0, 52.0, 52.0, 54.0, 55.0, 55.0, 56.0, 57.0, 58.0, 60.0, 60.0, 60.0, 60.0, 60.0, 60.0, 62.0, 62.0, 64.0, 65.0, 66.0, 68.0, 70.0, 72.0, 74.0, 77.0, 80.0, 82.0, 86.0, 89.0, 92.0, 96.0, 99.0, 104.0, 108.0, 114.0, 119.0, 125.0, 131.0, 139.0, 146.0, 157.0, 167.0, 176.0, 188.0, 198.0, 215.0, 236.0, 262.0, 306.0, 376.0, 462.0, 596.0, 942.0, 1428.0]]}]}, \"function_type\": \"lambda\", \"module\": \"google3.learning.smartchoices.research.clients.compiler_opt.policy_training.feature_ops\", \"output_shape\": null, \"output_shape_type\": \"raw\", \"output_shape_module\": null, \"arguments\": {}}}" + } + } + nodes { + children { + node_id: 90 + local_name: "variables" + } + children { + node_id: 91 + local_name: "regularization_losses" + } + children { + node_id: 92 + local_name: "trainable_variables" + } + children { + node_id: 93 + local_name: "keras_api" + } + children { + node_id: 234 + local_name: "__call__" + } + children { + node_id: 235 + local_name: "call_and_return_all_conditional_losses" + } + user_object { + identifier: "_tf_keras_layer" + version { + producer: 1 + min_consumer: 1 + } + metadata: "{\"class_name\": \"Lambda\", \"name\": \"lambda_5\", \"trainable\": true, \"expects_training_arg\": true, \"dtype\": \"float32\", \"batch_input_shape\": null, \"stateful\": false, \"config\": {\"name\": \"lambda_5\", \"trainable\": true, \"dtype\": \"float32\", \"function\": {\"class_name\": \"__tuple__\", \"items\": [\"4wEAAAAAAAAAAwAAAAUAAAATAAAAc0QAAACIAHwAgwF9AXQAagF0AmoDfAGIAYMCdABqBIMCdAWI\\nAYMBGwB9AnQAagZ8AnQAagd8AoMBfAJ8AhQAZwNkA2QCjQJTACkETukBAAAAKQHaBGF4aXPp////\\n/ykI2gJ0ZtoEY2FzdNoOY29udHJpYl9sYXllcnPaCWJ1Y2tldGl6ZdoHZmxvYXQzMtoDbGVu2gZj\\nb25jYXTaBHNxcnQpA9oDb2Jz2gxleHBhbmRlZF9vYnPaAXgpAtoOZXhwYW5kX2RpbXNfb3DaCHF1\\nYW50aWxlqQD69C9leHBvcnQvaGRhMy9ib3JnbGV0L2xvY2FsX3JhbV9mc19kaXJzLzAueXVuZGlf\\nbXVwcGV0XzBfMTIyNzA4MzMuMTMueXVuZGkuMTk0NzMxNDE3OTYxLjhmNGY5Zjk4Y2I3YTMwNTUv\\nYnVpbGRfdGFyZ2V0X3RyYWluX3Bhcl9kOTc1NzUzNzAxNmEyZWI4L3RyYWluLnBhci9nb29nbGUz\\nL2xlYXJuaW5nL3NtYXJ0Y2hvaWNlcy9yZXNlYXJjaC9jbGllbnRzL2NvbXBpbGVyX29wdC9wb2xp\\nY3lfdHJhaW5pbmcvZmVhdHVyZV9vcHMucHnaDW5vcm1hbGl6YXRpb24wAAAAcwoAAAAAAQgBBAEK\\nARAB\\n\", null, {\"class_name\": \"__tuple__\", \"items\": [{\"class_name\": \"ExpandDims\", \"config\": {\"name\": \"expand_dims\", \"trainable\": true, \"dtype\": \"float32\", \"axis\": -1}}, [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 8.0, 8.0, 8.0, 8.0, 8.0, 9.0, 9.0, 9.0, 9.0, 9.0, 10.0, 10.0, 11.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 18.0, 20.0, 23.0, 29.0, 38.0, 60.0]]}]}, \"function_type\": \"lambda\", \"module\": \"google3.learning.smartchoices.research.clients.compiler_opt.policy_training.feature_ops\", \"output_shape\": null, \"output_shape_type\": \"raw\", \"output_shape_module\": null, \"arguments\": {}}}" + } + } + nodes { + children { + node_id: 94 + local_name: "variables" + } + children { + node_id: 95 + local_name: "regularization_losses" + } + children { + node_id: 96 + local_name: "trainable_variables" + } + children { + node_id: 97 + local_name: "keras_api" + } + children { + node_id: 236 + local_name: "__call__" + } + children { + node_id: 237 + local_name: "call_and_return_all_conditional_losses" + } + user_object { + identifier: "_tf_keras_layer" + version { + producer: 1 + min_consumer: 1 + } + metadata: "{\"class_name\": \"Lambda\", \"name\": \"lambda_6\", \"trainable\": true, \"expects_training_arg\": true, \"dtype\": \"float32\", \"batch_input_shape\": null, \"stateful\": false, \"config\": {\"name\": \"lambda_6\", \"trainable\": true, \"dtype\": \"float32\", \"function\": {\"class_name\": \"__tuple__\", \"items\": [\"4wEAAAAAAAAAAwAAAAUAAAATAAAAc0QAAACIAHwAgwF9AXQAagF0AmoDfAGIAYMCdABqBIMCdAWI\\nAYMBGwB9AnQAagZ8AnQAagd8AoMBfAJ8AhQAZwNkA2QCjQJTACkETukBAAAAKQHaBGF4aXPp////\\n/ykI2gJ0ZtoEY2FzdNoOY29udHJpYl9sYXllcnPaCWJ1Y2tldGl6ZdoHZmxvYXQzMtoDbGVu2gZj\\nb25jYXTaBHNxcnQpA9oDb2Jz2gxleHBhbmRlZF9vYnPaAXgpAtoOZXhwYW5kX2RpbXNfb3DaCHF1\\nYW50aWxlqQD69C9leHBvcnQvaGRhMy9ib3JnbGV0L2xvY2FsX3JhbV9mc19kaXJzLzAueXVuZGlf\\nbXVwcGV0XzBfMTIyNzA4MzMuMTMueXVuZGkuMTk0NzMxNDE3OTYxLjhmNGY5Zjk4Y2I3YTMwNTUv\\nYnVpbGRfdGFyZ2V0X3RyYWluX3Bhcl9kOTc1NzUzNzAxNmEyZWI4L3RyYWluLnBhci9nb29nbGUz\\nL2xlYXJuaW5nL3NtYXJ0Y2hvaWNlcy9yZXNlYXJjaC9jbGllbnRzL2NvbXBpbGVyX29wdC9wb2xp\\nY3lfdHJhaW5pbmcvZmVhdHVyZV9vcHMucHnaDW5vcm1hbGl6YXRpb24wAAAAcwoAAAAAAQgBBAEK\\nARAB\\n\", null, {\"class_name\": \"__tuple__\", \"items\": [{\"class_name\": \"ExpandDims\", \"config\": {\"name\": \"expand_dims\", \"trainable\": true, \"dtype\": \"float32\", \"axis\": -1}}, [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 14.0, 14.0, 14.0, 14.0, 14.0, 14.0, 14.0, 14.0, 14.0, 14.0, 14.0, 14.0, 14.0, 14.0, 14.0, 14.0, 14.0, 14.0, 14.0, 14.0, 14.0, 14.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 16.0, 16.0, 16.0, 16.0, 16.0, 16.0, 16.0, 16.0, 16.0, 16.0, 16.0, 16.0, 16.0, 16.0, 16.0, 16.0, 17.0, 17.0, 17.0, 17.0, 17.0, 17.0, 17.0, 17.0, 17.0, 17.0, 17.0, 17.0, 17.0, 17.0, 17.0, 17.0, 18.0, 18.0, 18.0, 18.0, 18.0, 18.0, 18.0, 18.0, 18.0, 18.0, 18.0, 18.0, 18.0, 19.0, 19.0, 19.0, 19.0, 19.0, 19.0, 19.0, 19.0, 19.0, 19.0, 19.0, 19.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 21.0, 21.0, 21.0, 21.0, 21.0, 21.0, 21.0, 21.0, 22.0, 22.0, 22.0, 22.0, 22.0, 22.0, 22.0, 22.0, 23.0, 23.0, 23.0, 23.0, 23.0, 23.0, 23.0, 24.0, 24.0, 24.0, 24.0, 24.0, 25.0, 25.0, 25.0, 25.0, 25.0, 26.0, 26.0, 26.0, 26.0, 27.0, 27.0, 27.0, 28.0, 28.0, 28.0, 29.0, 29.0, 30.0, 30.0, 30.0, 31.0, 31.0, 32.0, 32.0, 33.0, 33.0, 34.0, 35.0, 37.0, 38.0, 40.0, 46.0, 51.0]]}]}, \"function_type\": \"lambda\", \"module\": \"google3.learning.smartchoices.research.clients.compiler_opt.policy_training.feature_ops\", \"output_shape\": null, \"output_shape_type\": \"raw\", \"output_shape_module\": null, \"arguments\": {}}}" + } + } + nodes { + children { + node_id: 98 + local_name: "variables" + } + children { + node_id: 99 + local_name: "regularization_losses" + } + children { + node_id: 100 + local_name: "trainable_variables" + } + children { + node_id: 101 + local_name: "keras_api" + } + children { + node_id: 238 + local_name: "__call__" + } + children { + node_id: 239 + local_name: "call_and_return_all_conditional_losses" + } + user_object { + identifier: "_tf_keras_layer" + version { + producer: 1 + min_consumer: 1 + } + metadata: "{\"class_name\": \"Lambda\", \"name\": \"lambda_7\", \"trainable\": true, \"expects_training_arg\": true, \"dtype\": \"float32\", \"batch_input_shape\": null, \"stateful\": false, \"config\": {\"name\": \"lambda_7\", \"trainable\": true, \"dtype\": \"float32\", \"function\": {\"class_name\": \"__tuple__\", \"items\": [\"4wEAAAAAAAAAAwAAAAUAAAATAAAAc0QAAACIAHwAgwF9AXQAagF0AmoDfAGIAYMCdABqBIMCdAWI\\nAYMBGwB9AnQAagZ8AnQAagd8AoMBfAJ8AhQAZwNkA2QCjQJTACkETukBAAAAKQHaBGF4aXPp////\\n/ykI2gJ0ZtoEY2FzdNoOY29udHJpYl9sYXllcnPaCWJ1Y2tldGl6ZdoHZmxvYXQzMtoDbGVu2gZj\\nb25jYXTaBHNxcnQpA9oDb2Jz2gxleHBhbmRlZF9vYnPaAXgpAtoOZXhwYW5kX2RpbXNfb3DaCHF1\\nYW50aWxlqQD69C9leHBvcnQvaGRhMy9ib3JnbGV0L2xvY2FsX3JhbV9mc19kaXJzLzAueXVuZGlf\\nbXVwcGV0XzBfMTIyNzA4MzMuMTMueXVuZGkuMTk0NzMxNDE3OTYxLjhmNGY5Zjk4Y2I3YTMwNTUv\\nYnVpbGRfdGFyZ2V0X3RyYWluX3Bhcl9kOTc1NzUzNzAxNmEyZWI4L3RyYWluLnBhci9nb29nbGUz\\nL2xlYXJuaW5nL3NtYXJ0Y2hvaWNlcy9yZXNlYXJjaC9jbGllbnRzL2NvbXBpbGVyX29wdC9wb2xp\\nY3lfdHJhaW5pbmcvZmVhdHVyZV9vcHMucHnaDW5vcm1hbGl6YXRpb24wAAAAcwoAAAAAAQgBBAEK\\nARAB\\n\", null, {\"class_name\": \"__tuple__\", \"items\": [{\"class_name\": \"ExpandDims\", \"config\": {\"name\": \"expand_dims\", \"trainable\": true, \"dtype\": \"float32\", \"axis\": -1}}, [-15035.0, -15030.0, -15025.0, -15000.0, -14985.0, -14945.0, -14745.0, -70.0, -55.0, -55.0, -50.0, -50.0, -50.0, -45.0, -45.0, -45.0, -45.0, -45.0, -45.0, -45.0, -45.0, -45.0, -40.0, -40.0, -40.0, -40.0, -40.0, -40.0, -40.0, -40.0, -40.0, -40.0, -40.0, -40.0, -40.0, -40.0, -40.0, -40.0, -40.0, -40.0, -40.0, -40.0, -40.0, -40.0, -40.0, -40.0, -40.0, -40.0, -40.0, -40.0, -40.0, -40.0, -40.0, -40.0, -40.0, -40.0, -40.0, -40.0, -40.0, -40.0, -40.0, -40.0, -40.0, -40.0, -40.0, -40.0, -40.0, -40.0, -40.0, -40.0, -40.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -25.0, -25.0, -25.0, -25.0, -25.0, -25.0, -25.0, -25.0, -25.0, -25.0, -25.0, -25.0, -25.0, -25.0, -25.0, -25.0, -25.0, -25.0, -25.0, -25.0, -25.0, -25.0, -25.0, -25.0, -25.0, -25.0, -25.0, -25.0, -25.0, -25.0, -25.0, -25.0, -25.0, -25.0, -25.0, -25.0, -25.0, -25.0, -25.0, -25.0, -25.0, -25.0, -25.0, -25.0, -25.0, -25.0, -25.0, -25.0, -25.0, -25.0, -25.0, -25.0, -25.0, -25.0, -25.0, -20.0, -20.0, -20.0, -20.0, -20.0, -20.0, -20.0, -20.0, -20.0, -20.0, -20.0, -20.0, -20.0, -20.0, -20.0, -20.0, -20.0, -20.0, -20.0, -20.0, -20.0, -20.0, -20.0, -20.0, -20.0, -20.0, -20.0, -20.0, -20.0, -20.0, -20.0, -20.0, -20.0, -15.0, -15.0, -15.0, -15.0, -15.0, -15.0, -15.0, -15.0, -15.0, -15.0, -15.0, -15.0, -15.0, -15.0, -15.0, -15.0, -15.0, -15.0, -15.0, -15.0, -15.0, -15.0, -15.0, -15.0, -15.0, -15.0, -15.0, -15.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -5.0, -5.0, -5.0, -5.0, -5.0, -5.0, -5.0, -5.0, -5.0, -5.0, -5.0, -5.0, -5.0, -5.0, -5.0, -5.0, -5.0, -5.0, -5.0, -5.0, -5.0, -5.0, -5.0, -5.0, -5.0, -5.0, -5.0, -5.0, -5.0, -5.0, -5.0, -5.0, -5.0, -5.0, -5.0, -5.0, -5.0, -5.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 25.0, 25.0, 25.0, 25.0, 25.0, 25.0, 25.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 35.0, 35.0, 35.0, 35.0, 35.0, 35.0, 35.0, 35.0, 35.0, 35.0, 35.0, 35.0, 35.0, 35.0, 35.0, 35.0, 35.0, 35.0, 40.0, 40.0, 40.0, 40.0, 40.0, 40.0, 40.0, 40.0, 40.0, 40.0, 40.0, 40.0, 45.0, 45.0, 45.0, 45.0, 45.0, 45.0, 45.0, 45.0, 45.0, 45.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 55.0, 55.0, 60.0, 60.0, 60.0, 60.0, 60.0, 60.0, 60.0, 60.0, 60.0, 60.0, 65.0, 65.0, 65.0, 65.0, 65.0, 65.0, 65.0, 65.0, 65.0, 65.0, 65.0, 65.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 75.0, 75.0, 80.0, 80.0, 80.0, 85.0, 85.0, 85.0, 90.0, 90.0, 90.0, 90.0, 95.0, 95.0, 100.0, 100.0, 105.0, 110.0, 115.0, 120.0, 125.0, 125.0, 130.0, 140.0, 140.0, 145.0, 150.0, 155.0, 160.0, 160.0, 165.0, 170.0, 175.0, 180.0, 190.0, 200.0, 210.0, 215.0, 220.0, 220.0, 230.0, 235.0, 245.0, 250.0, 260.0, 275.0, 290.0, 305.0, 325.0, 350.0, 370.0, 390.0, 425.0, 460.0, 500.0, 560.0, 650.0, 790.0, 1025.0, 1600.0]]}]}, \"function_type\": \"lambda\", \"module\": \"google3.learning.smartchoices.research.clients.compiler_opt.policy_training.feature_ops\", \"output_shape\": null, \"output_shape_type\": \"raw\", \"output_shape_module\": null, \"arguments\": {}}}" + } + } + nodes { + children { + node_id: 102 + local_name: "variables" + } + children { + node_id: 103 + local_name: "regularization_losses" + } + children { + node_id: 104 + local_name: "trainable_variables" + } + children { + node_id: 105 + local_name: "keras_api" + } + children { + node_id: 240 + local_name: "__call__" + } + children { + node_id: 241 + local_name: "call_and_return_all_conditional_losses" + } + user_object { + identifier: "_tf_keras_layer" + version { + producer: 1 + min_consumer: 1 + } + metadata: "{\"class_name\": \"Lambda\", \"name\": \"lambda_8\", \"trainable\": true, \"expects_training_arg\": true, \"dtype\": \"float32\", \"batch_input_shape\": null, \"stateful\": false, \"config\": {\"name\": \"lambda_8\", \"trainable\": true, \"dtype\": \"float32\", \"function\": {\"class_name\": \"__tuple__\", \"items\": [\"4wEAAAAAAAAAAwAAAAUAAAATAAAAc0QAAACIAHwAgwF9AXQAagF0AmoDfAGIAYMCdABqBIMCdAWI\\nAYMBGwB9AnQAagZ8AnQAagd8AoMBfAJ8AhQAZwNkA2QCjQJTACkETukBAAAAKQHaBGF4aXPp////\\n/ykI2gJ0ZtoEY2FzdNoOY29udHJpYl9sYXllcnPaCWJ1Y2tldGl6ZdoHZmxvYXQzMtoDbGVu2gZj\\nb25jYXTaBHNxcnQpA9oDb2Jz2gxleHBhbmRlZF9vYnPaAXgpAtoOZXhwYW5kX2RpbXNfb3DaCHF1\\nYW50aWxlqQD69C9leHBvcnQvaGRhMy9ib3JnbGV0L2xvY2FsX3JhbV9mc19kaXJzLzAueXVuZGlf\\nbXVwcGV0XzBfMTIyNzA4MzMuMTMueXVuZGkuMTk0NzMxNDE3OTYxLjhmNGY5Zjk4Y2I3YTMwNTUv\\nYnVpbGRfdGFyZ2V0X3RyYWluX3Bhcl9kOTc1NzUzNzAxNmEyZWI4L3RyYWluLnBhci9nb29nbGUz\\nL2xlYXJuaW5nL3NtYXJ0Y2hvaWNlcy9yZXNlYXJjaC9jbGllbnRzL2NvbXBpbGVyX29wdC9wb2xp\\nY3lfdHJhaW5pbmcvZmVhdHVyZV9vcHMucHnaDW5vcm1hbGl6YXRpb24wAAAAcwoAAAAAAQgBBAEK\\nARAB\\n\", null, {\"class_name\": \"__tuple__\", \"items\": [{\"class_name\": \"ExpandDims\", \"config\": {\"name\": \"expand_dims\", \"trainable\": true, \"dtype\": \"float32\", \"axis\": -1}}, [18.0, 29.0, 39.0, 48.0, 57.0, 64.0, 70.0, 76.0, 82.0, 87.0, 92.0, 97.0, 101.0, 105.0, 109.0, 113.0, 116.0, 120.0, 123.0, 127.0, 130.0, 134.0, 137.0, 140.0, 143.0, 146.0, 149.0, 152.0, 156.0, 159.0, 162.0, 165.0, 168.0, 171.0, 174.0, 177.0, 180.0, 183.0, 186.0, 188.0, 191.0, 194.0, 197.0, 200.0, 203.0, 205.0, 208.0, 211.0, 214.0, 217.0, 219.0, 222.0, 225.0, 228.0, 231.0, 233.0, 236.0, 239.0, 242.0, 244.0, 247.0, 250.0, 253.0, 255.0, 258.0, 261.0, 264.0, 266.0, 269.0, 272.0, 275.0, 278.0, 280.0, 283.0, 286.0, 289.0, 292.0, 294.0, 297.0, 300.0, 303.0, 305.0, 308.0, 311.0, 314.0, 317.0, 319.0, 322.0, 325.0, 327.0, 330.0, 333.0, 336.0, 339.0, 341.0, 344.0, 347.0, 350.0, 353.0, 355.0, 358.0, 361.0, 364.0, 367.0, 370.0, 373.0, 375.0, 378.0, 381.0, 384.0, 387.0, 390.0, 393.0, 396.0, 399.0, 401.0, 404.0, 407.0, 410.0, 413.0, 416.0, 419.0, 422.0, 425.0, 428.0, 431.0, 434.0, 437.0, 440.0, 443.0, 446.0, 449.0, 452.0, 455.0, 458.0, 461.0, 464.0, 467.0, 470.0, 473.0, 476.0, 479.0, 483.0, 486.0, 489.0, 492.0, 495.0, 498.0, 501.0, 504.0, 507.0, 511.0, 514.0, 517.0, 520.0, 523.0, 526.0, 530.0, 533.0, 536.0, 539.0, 542.0, 545.0, 549.0, 552.0, 555.0, 558.0, 562.0, 565.0, 569.0, 572.0, 575.0, 579.0, 582.0, 585.0, 589.0, 592.0, 595.0, 599.0, 602.0, 605.0, 609.0, 612.0, 616.0, 620.0, 623.0, 626.0, 630.0, 634.0, 637.0, 641.0, 644.0, 648.0, 651.0, 655.0, 658.0, 662.0, 665.0, 669.0, 672.0, 676.0, 680.0, 683.0, 687.0, 691.0, 694.0, 698.0, 702.0, 705.0, 709.0, 712.0, 716.0, 720.0, 724.0, 727.0, 731.0, 735.0, 739.0, 742.0, 746.0, 750.0, 754.0, 758.0, 761.0, 765.0, 769.0, 773.0, 777.0, 780.0, 784.0, 788.0, 792.0, 796.0, 800.0, 804.0, 808.0, 812.0, 816.0, 820.0, 823.0, 828.0, 832.0, 836.0, 840.0, 844.0, 848.0, 852.0, 856.0, 860.0, 864.0, 868.0, 873.0, 877.0, 881.0, 885.0, 889.0, 893.0, 897.0, 902.0, 906.0, 910.0, 914.0, 919.0, 923.0, 927.0, 931.0, 935.0, 940.0, 944.0, 948.0, 953.0, 957.0, 962.0, 966.0, 970.0, 975.0, 979.0, 984.0, 988.0, 993.0, 997.0, 1002.0, 1006.0, 1011.0, 1015.0, 1020.0, 1024.0, 1029.0, 1034.0, 1038.0, 1043.0, 1047.0, 1052.0, 1057.0, 1062.0, 1066.0, 1071.0, 1076.0, 1081.0, 1086.0, 1090.0, 1095.0, 1100.0, 1105.0, 1110.0, 1114.0, 1119.0, 1124.0, 1129.0, 1134.0, 1139.0, 1144.0, 1149.0, 1154.0, 1159.0, 1164.0, 1169.0, 1174.0, 1179.0, 1184.0, 1189.0, 1194.0, 1199.0, 1204.0, 1209.0, 1215.0, 1220.0, 1225.0, 1230.0, 1235.0, 1241.0, 1246.0, 1251.0, 1257.0, 1262.0, 1267.0, 1273.0, 1278.0, 1284.0, 1289.0, 1294.0, 1300.0, 1305.0, 1311.0, 1316.0, 1322.0, 1327.0, 1333.0, 1338.0, 1344.0, 1350.0, 1355.0, 1361.0, 1367.0, 1372.0, 1378.0, 1383.0, 1389.0, 1395.0, 1401.0, 1407.0, 1413.0, 1418.0, 1424.0, 1430.0, 1436.0, 1442.0, 1448.0, 1454.0, 1459.0, 1465.0, 1472.0, 1477.0, 1483.0, 1489.0, 1495.0, 1501.0, 1507.0, 1514.0, 1520.0, 1526.0, 1532.0, 1538.0, 1545.0, 1551.0, 1557.0, 1564.0, 1570.0, 1576.0, 1583.0, 1589.0, 1596.0, 1602.0, 1608.0, 1615.0, 1621.0, 1628.0, 1634.0, 1641.0, 1647.0, 1654.0, 1661.0, 1667.0, 1674.0, 1681.0, 1687.0, 1694.0, 1701.0, 1708.0, 1715.0, 1722.0, 1729.0, 1735.0, 1742.0, 1749.0, 1756.0, 1763.0, 1770.0, 1777.0, 1784.0, 1791.0, 1798.0, 1806.0, 1812.0, 1820.0, 1827.0, 1835.0, 1841.0, 1849.0, 1856.0, 1863.0, 1871.0, 1878.0, 1885.0, 1893.0, 1901.0, 1908.0, 1915.0, 1923.0, 1930.0, 1938.0, 1946.0, 1953.0, 1961.0, 1969.0, 1976.0, 1984.0, 1992.0, 2000.0, 2007.0, 2015.0, 2023.0, 2031.0, 2039.0, 2047.0, 2055.0, 2063.0, 2071.0, 2079.0, 2087.0, 2095.0, 2104.0, 2112.0, 2120.0, 2128.0, 2137.0, 2146.0, 2154.0, 2162.0, 2171.0, 2179.0, 2188.0, 2197.0, 2205.0, 2214.0, 2223.0, 2232.0, 2241.0, 2250.0, 2258.0, 2268.0, 2277.0, 2285.0, 2294.0, 2304.0, 2313.0, 2322.0, 2331.0, 2340.0, 2350.0, 2359.0, 2368.0, 2378.0, 2388.0, 2397.0, 2407.0, 2416.0, 2426.0, 2436.0, 2446.0, 2455.0, 2465.0, 2475.0, 2485.0, 2495.0, 2505.0, 2515.0, 2525.0, 2535.0, 2545.0, 2556.0, 2566.0, 2577.0, 2587.0, 2598.0, 2609.0, 2620.0, 2631.0, 2641.0, 2652.0, 2663.0, 2674.0, 2685.0, 2696.0, 2708.0, 2719.0, 2730.0, 2742.0, 2753.0, 2764.0, 2776.0, 2788.0, 2799.0, 2811.0, 2823.0, 2835.0, 2847.0, 2858.0, 2870.0, 2882.0, 2894.0, 2906.0, 2919.0, 2931.0, 2943.0, 2956.0, 2968.0, 2981.0, 2994.0, 3006.0, 3019.0, 3032.0, 3045.0, 3058.0, 3070.0, 3083.0, 3096.0, 3109.0, 3121.0, 3134.0, 3148.0, 3161.0, 3174.0, 3187.0, 3200.0, 3214.0, 3228.0, 3242.0, 3255.0, 3268.0, 3283.0, 3297.0, 3310.0, 3325.0, 3340.0, 3353.0, 3368.0, 3383.0, 3398.0, 3412.0, 3427.0, 3442.0, 3457.0, 3471.0, 3487.0, 3502.0, 3516.0, 3531.0, 3546.0, 3561.0, 3577.0, 3593.0, 3608.0, 3625.0, 3641.0, 3657.0, 3673.0, 3690.0, 3706.0, 3722.0, 3738.0, 3755.0, 3772.0, 3789.0, 3805.0, 3823.0, 3839.0, 3856.0, 3873.0, 3891.0, 3908.0, 3926.0, 3944.0, 3960.0, 3977.0, 3995.0, 4013.0, 4031.0, 4048.0, 4067.0, 4085.0, 4104.0, 4122.0, 4140.0, 4159.0, 4177.0, 4196.0, 4215.0, 4234.0, 4253.0, 4272.0, 4291.0, 4311.0, 4332.0, 4351.0, 4371.0, 4391.0, 4412.0, 4433.0, 4454.0, 4474.0, 4496.0, 4518.0, 4538.0, 4558.0, 4579.0, 4601.0, 4619.0, 4640.0, 4662.0, 4684.0, 4706.0, 4728.0, 4751.0, 4771.0, 4794.0, 4818.0, 4840.0, 4863.0, 4887.0, 4910.0, 4933.0, 4956.0, 4980.0, 5004.0, 5028.0, 5052.0, 5076.0, 5100.0, 5125.0, 5152.0, 5175.0, 5200.0, 5226.0, 5251.0, 5278.0, 5304.0, 5329.0, 5354.0, 5381.0, 5407.0, 5433.0, 5460.0, 5488.0, 5516.0, 5544.0, 5573.0, 5600.0, 5628.0, 5656.0, 5684.0, 5713.0, 5741.0, 5771.0, 5799.0, 5830.0, 5860.0, 5891.0, 5921.0, 5951.0, 5980.0, 6010.0, 6041.0, 6073.0, 6105.0, 6133.0, 6163.0, 6195.0, 6227.0, 6258.0, 6291.0, 6322.0, 6356.0, 6390.0, 6424.0, 6457.0, 6491.0, 6527.0, 6561.0, 6596.0, 6631.0, 6665.0, 6701.0, 6736.0, 6771.0, 6805.0, 6840.0, 6877.0, 6911.0, 6947.0, 6985.0, 7022.0, 7059.0, 7097.0, 7135.0, 7174.0, 7212.0, 7251.0, 7289.0, 7327.0, 7366.0, 7406.0, 7447.0, 7486.0, 7525.0, 7566.0, 7606.0, 7646.0, 7688.0, 7728.0, 7771.0, 7814.0, 7859.0, 7901.0, 7949.0, 7992.0, 8036.0, 8082.0, 8127.0, 8173.0, 8218.0, 8262.0, 8309.0, 8353.0, 8397.0, 8444.0, 8489.0, 8539.0, 8585.0, 8632.0, 8682.0, 8727.0, 8777.0, 8828.0, 8879.0, 8929.0, 8982.0, 9037.0, 9087.0, 9140.0, 9193.0, 9250.0, 9305.0, 9361.0, 9418.0, 9475.0, 9532.0, 9589.0, 9644.0, 9699.0, 9758.0, 9818.0, 9875.0, 9935.0, 9997.0, 10057.0, 10117.0, 10174.0, 10232.0, 10296.0, 10356.0, 10419.0, 10482.0, 10546.0, 10608.0, 10670.0, 10729.0, 10790.0, 10855.0, 10920.0, 10990.0, 11054.0, 11118.0, 11181.0, 11248.0, 11316.0, 11385.0, 11454.0, 11526.0, 11597.0, 11667.0, 11740.0, 11820.0, 11897.0, 11973.0, 12046.0, 12126.0, 12204.0, 12287.0, 12370.0, 12456.0, 12538.0, 12627.0, 12714.0, 12799.0, 12883.0, 12971.0, 13062.0, 13154.0, 13233.0, 13328.0, 13418.0, 13511.0, 13607.0, 13709.0, 13806.0, 13903.0, 14002.0, 14104.0, 14200.0, 14288.0, 14391.0, 14488.0, 14590.0, 14698.0, 14808.0, 14910.0, 15020.0, 15126.0, 15238.0, 15347.0, 15456.0, 15574.0, 15692.0, 15786.0, 15896.0, 16016.0, 16136.0, 16250.0, 16352.0, 16474.0, 16575.0, 16702.0, 16835.0, 16965.0, 17096.0, 17232.0, 17370.0, 17443.0, 17581.0, 17719.0, 17864.0, 17976.0, 18116.0, 18250.0, 18396.0, 18540.0, 18690.0, 18840.0, 18989.0, 19136.0, 19294.0, 19445.0, 19589.0, 19750.0, 19905.0, 20064.0, 20191.0, 20325.0, 20497.0, 20662.0, 20833.0, 20981.0, 21152.0, 21334.0, 21510.0, 21642.0, 21821.0, 22001.0, 22186.0, 22379.0, 22568.0, 22770.0, 22958.0, 23162.0, 23360.0, 23524.0, 23737.0, 23960.0, 24175.0, 24395.0, 24631.0, 24865.0, 25091.0, 25327.0, 25580.0, 25833.0, 26089.0, 26361.0, 26636.0, 26889.0, 27155.0, 27436.0, 27715.0, 28003.0, 28303.0, 28600.0, 28916.0, 29223.0, 29553.0, 29884.0, 30200.0, 30538.0, 30868.0, 31211.0, 31548.0, 31881.0, 32253.0, 32605.0, 32980.0, 33385.0, 33805.0, 34254.0, 34723.0, 35167.0, 35666.0, 36125.0, 36652.0, 37177.0, 37739.0, 38321.0, 38932.0, 39640.0, 40337.0, 41000.0, 41626.0, 42385.0, 43122.0, 43890.0, 44687.0, 45609.0, 46520.0, 47489.0, 48432.0, 49458.0, 50511.0, 51561.0, 52568.0, 53676.0, 54936.0, 56071.0, 57302.0, 58513.0, 59800.0, 61192.0, 62702.0, 64205.0, 65868.0, 67780.0, 69960.0, 72330.0, 74918.0, 77540.0, 80344.0, 83727.0, 87662.0, 93589.0, 101441.0, 110544.0]]}]}, \"function_type\": \"lambda\", \"module\": \"google3.learning.smartchoices.research.clients.compiler_opt.policy_training.feature_ops\", \"output_shape\": null, \"output_shape_type\": \"raw\", \"output_shape_module\": null, \"arguments\": {}}}" + } + } + nodes { + children { + node_id: 106 + local_name: "variables" + } + children { + node_id: 107 + local_name: "regularization_losses" + } + children { + node_id: 108 + local_name: "trainable_variables" + } + children { + node_id: 109 + local_name: "keras_api" + } + children { + node_id: 242 + local_name: "__call__" + } + children { + node_id: 243 + local_name: "call_and_return_all_conditional_losses" + } + user_object { + identifier: "_tf_keras_layer" + version { + producer: 1 + min_consumer: 1 + } + metadata: "{\"class_name\": \"Lambda\", \"name\": \"lambda_9\", \"trainable\": true, \"expects_training_arg\": true, \"dtype\": \"float32\", \"batch_input_shape\": null, \"stateful\": false, \"config\": {\"name\": \"lambda_9\", \"trainable\": true, \"dtype\": \"float32\", \"function\": {\"class_name\": \"__tuple__\", \"items\": [\"4wEAAAAAAAAAAgAAAAQAAAATAAAAcxgAAACIAHwAgwF9AXQAagF8AXQAagJkAY0CUwApAk4pAdoF\\nZHR5cGUpA9oCdGbaCnplcm9zX2xpa2XaB2Zsb2F0MzIpAtoDb2Jz2gxleHBhbmRlZF9vYnMpAdoO\\nZXhwYW5kX2RpbXNfb3CpAPr0L2V4cG9ydC9oZGEzL2JvcmdsZXQvbG9jYWxfcmFtX2ZzX2RpcnMv\\nMC55dW5kaV9tdXBwZXRfMF8xMjI3MDgzMy4xMy55dW5kaS4xOTQ3MzE0MTc5NjEuOGY0ZjlmOThj\\nYjdhMzA1NS9idWlsZF90YXJnZXRfdHJhaW5fcGFyX2Q5NzU3NTM3MDE2YTJlYjgvdHJhaW4ucGFy\\nL2dvb2dsZTMvbGVhcm5pbmcvc21hcnRjaG9pY2VzL3Jlc2VhcmNoL2NsaWVudHMvY29tcGlsZXJf\\nb3B0L3BvbGljeV90cmFpbmluZy9mZWF0dXJlX29wcy5wedoPZGlzY2FyZF9mZWF0dXJlJwAAAHME\\nAAAAAAEIAQ==\\n\", null, {\"class_name\": \"__tuple__\", \"items\": [{\"class_name\": \"ExpandDims\", \"config\": {\"name\": \"expand_dims\", \"trainable\": true, \"dtype\": \"float32\", \"axis\": -1}}]}]}, \"function_type\": \"lambda\", \"module\": \"google3.learning.smartchoices.research.clients.compiler_opt.policy_training.feature_ops\", \"output_shape\": null, \"output_shape_type\": \"raw\", \"output_shape_module\": null, \"arguments\": {}}}" + } + } + nodes { + children { + node_id: 110 + local_name: "variables" + } + children { + node_id: 111 + local_name: "regularization_losses" + } + children { + node_id: 112 + local_name: "trainable_variables" + } + children { + node_id: 113 + local_name: "keras_api" + } + children { + node_id: 244 + local_name: "__call__" + } + children { + node_id: 245 + local_name: "call_and_return_all_conditional_losses" + } + user_object { + identifier: "_tf_keras_layer" + version { + producer: 1 + min_consumer: 1 + } + metadata: "{\"class_name\": \"Lambda\", \"name\": \"lambda_10\", \"trainable\": true, \"expects_training_arg\": true, \"dtype\": \"float32\", \"batch_input_shape\": null, \"stateful\": false, \"config\": {\"name\": \"lambda_10\", \"trainable\": true, \"dtype\": \"float32\", \"function\": {\"class_name\": \"__tuple__\", \"items\": [\"4wEAAAAAAAAAAwAAAAUAAAATAAAAc0QAAACIAHwAgwF9AXQAagF0AmoDfAGIAYMCdABqBIMCdAWI\\nAYMBGwB9AnQAagZ8AnQAagd8AoMBfAJ8AhQAZwNkA2QCjQJTACkETukBAAAAKQHaBGF4aXPp////\\n/ykI2gJ0ZtoEY2FzdNoOY29udHJpYl9sYXllcnPaCWJ1Y2tldGl6ZdoHZmxvYXQzMtoDbGVu2gZj\\nb25jYXTaBHNxcnQpA9oDb2Jz2gxleHBhbmRlZF9vYnPaAXgpAtoOZXhwYW5kX2RpbXNfb3DaCHF1\\nYW50aWxlqQD69C9leHBvcnQvaGRhMy9ib3JnbGV0L2xvY2FsX3JhbV9mc19kaXJzLzAueXVuZGlf\\nbXVwcGV0XzBfMTIyNzA4MzMuMTMueXVuZGkuMTk0NzMxNDE3OTYxLjhmNGY5Zjk4Y2I3YTMwNTUv\\nYnVpbGRfdGFyZ2V0X3RyYWluX3Bhcl9kOTc1NzUzNzAxNmEyZWI4L3RyYWluLnBhci9nb29nbGUz\\nL2xlYXJuaW5nL3NtYXJ0Y2hvaWNlcy9yZXNlYXJjaC9jbGllbnRzL2NvbXBpbGVyX29wdC9wb2xp\\nY3lfdHJhaW5pbmcvZmVhdHVyZV9vcHMucHnaDW5vcm1hbGl6YXRpb24wAAAAcwoAAAAAAQgBBAEK\\nARAB\\n\", null, {\"class_name\": \"__tuple__\", \"items\": [{\"class_name\": \"ExpandDims\", \"config\": {\"name\": \"expand_dims\", \"trainable\": true, \"dtype\": \"float32\", \"axis\": -1}}, [13.0, 38.0, 56.0, 70.0, 82.0, 94.0, 104.0, 114.0, 123.0, 131.0, 139.0, 148.0, 152.0, 153.0, 158.0, 163.0, 170.0, 174.0, 178.0, 180.0, 183.0, 186.0, 188.0, 190.0, 192.0, 196.0, 198.0, 201.0, 205.0, 208.0, 212.0, 215.0, 219.0, 221.0, 225.0, 227.0, 229.0, 232.0, 233.0, 236.0, 239.0, 242.0, 245.0, 248.0, 250.0, 252.0, 254.0, 256.0, 259.0, 261.0, 264.0, 267.0, 270.0, 272.0, 275.0, 278.0, 280.0, 283.0, 285.0, 287.0, 290.0, 293.0, 295.0, 297.0, 300.0, 303.0, 305.0, 308.0, 311.0, 313.0, 316.0, 319.0, 322.0, 325.0, 329.0, 331.0, 333.0, 336.0, 338.0, 340.0, 343.0, 345.0, 347.0, 347.0, 349.0, 351.0, 353.0, 355.0, 357.0, 359.0, 361.0, 363.0, 365.0, 368.0, 369.0, 371.0, 373.0, 375.0, 377.0, 380.0, 382.0, 385.0, 387.0, 389.0, 391.0, 394.0, 396.0, 398.0, 400.0, 403.0, 405.0, 408.0, 410.0, 412.0, 415.0, 417.0, 420.0, 422.0, 425.0, 427.0, 429.0, 432.0, 434.0, 437.0, 439.0, 442.0, 444.0, 446.0, 449.0, 451.0, 454.0, 456.0, 458.0, 461.0, 463.0, 466.0, 469.0, 472.0, 474.0, 476.0, 479.0, 482.0, 483.0, 486.0, 489.0, 492.0, 495.0, 498.0, 500.0, 503.0, 505.0, 508.0, 510.0, 513.0, 516.0, 519.0, 522.0, 524.0, 528.0, 530.0, 533.0, 536.0, 539.0, 541.0, 544.0, 547.0, 550.0, 553.0, 556.0, 559.0, 561.0, 563.0, 567.0, 570.0, 572.0, 575.0, 577.0, 580.0, 584.0, 586.0, 589.0, 592.0, 595.0, 598.0, 601.0, 605.0, 607.0, 611.0, 613.0, 617.0, 620.0, 623.0, 626.0, 629.0, 632.0, 635.0, 639.0, 642.0, 645.0, 648.0, 651.0, 654.0, 657.0, 660.0, 662.0, 666.0, 669.0, 672.0, 676.0, 679.0, 682.0, 685.0, 688.0, 690.0, 693.0, 696.0, 699.0, 702.0, 705.0, 709.0, 712.0, 714.0, 718.0, 721.0, 724.0, 726.0, 728.0, 729.0, 731.0, 734.0, 737.0, 741.0, 745.0, 748.0, 750.0, 753.0, 756.0, 760.0, 763.0, 766.0, 770.0, 773.0, 776.0, 779.0, 782.0, 786.0, 788.0, 793.0, 796.0, 798.0, 802.0, 805.0, 808.0, 811.0, 815.0, 818.0, 820.0, 824.0, 827.0, 829.0, 832.0, 835.0, 838.0, 842.0, 846.0, 849.0, 854.0, 857.0, 860.0, 864.0, 867.0, 871.0, 875.0, 879.0, 882.0, 887.0, 890.0, 893.0, 897.0, 901.0, 905.0, 908.0, 911.0, 915.0, 918.0, 921.0, 925.0, 929.0, 932.0, 934.0, 937.0, 940.0, 943.0, 946.0, 950.0, 953.0, 956.0, 961.0, 965.0, 969.0, 973.0, 976.0, 980.0, 982.0, 985.0, 990.0, 994.0, 997.0, 1001.0, 1005.0, 1007.0, 1010.0, 1014.0, 1018.0, 1022.0, 1025.0, 1028.0, 1033.0, 1035.0, 1038.0, 1042.0, 1047.0, 1052.0, 1056.0, 1060.0, 1063.0, 1067.0, 1071.0, 1075.0, 1079.0, 1083.0, 1086.0, 1088.0, 1092.0, 1097.0, 1102.0, 1106.0, 1109.0, 1113.0, 1117.0, 1120.0, 1125.0, 1129.0, 1134.0, 1137.0, 1142.0, 1146.0, 1150.0, 1151.0, 1155.0, 1159.0, 1162.0, 1166.0, 1170.0, 1174.0, 1177.0, 1181.0, 1185.0, 1188.0, 1193.0, 1196.0, 1203.0, 1207.0, 1212.0, 1214.0, 1217.0, 1220.0, 1222.0, 1222.0, 1226.0, 1229.0, 1233.0, 1237.0, 1241.0, 1246.0, 1250.0, 1253.0, 1257.0, 1262.0, 1267.0, 1272.0, 1278.0, 1283.0, 1287.0, 1293.0, 1297.0, 1301.0, 1304.0, 1309.0, 1315.0, 1320.0, 1325.0, 1329.0, 1333.0, 1336.0, 1341.0, 1344.0, 1348.0, 1351.0, 1357.0, 1363.0, 1368.0, 1374.0, 1379.0, 1383.0, 1386.0, 1391.0, 1395.0, 1399.0, 1403.0, 1407.0, 1410.0, 1415.0, 1418.0, 1423.0, 1428.0, 1432.0, 1436.0, 1438.0, 1442.0, 1446.0, 1450.0, 1454.0, 1462.0, 1467.0, 1472.0, 1477.0, 1483.0, 1488.0, 1492.0, 1496.0, 1503.0, 1508.0, 1513.0, 1518.0, 1520.0, 1526.0, 1531.0, 1534.0, 1538.0, 1542.0, 1546.0, 1552.0, 1558.0, 1564.0, 1568.0, 1573.0, 1578.0, 1581.0, 1590.0, 1596.0, 1601.0, 1606.0, 1611.0, 1616.0, 1622.0, 1629.0, 1634.0, 1640.0, 1647.0, 1651.0, 1657.0, 1660.0, 1665.0, 1672.0, 1678.0, 1686.0, 1692.0, 1698.0, 1704.0, 1709.0, 1714.0, 1719.0, 1724.0, 1730.0, 1737.0, 1744.0, 1751.0, 1755.0, 1761.0, 1764.0, 1772.0, 1778.0, 1784.0, 1789.0, 1799.0, 1804.0, 1811.0, 1819.0, 1825.0, 1830.0, 1838.0, 1849.0, 1858.0, 1862.0, 1868.0, 1872.0, 1878.0, 1885.0, 1888.0, 1892.0, 1897.0, 1902.0, 1907.0, 1919.0, 1926.0, 1932.0, 1936.0, 1941.0, 1946.0, 1952.0, 1960.0, 1968.0, 1977.0, 1985.0, 1992.0, 1997.0, 2006.0, 2012.0, 2018.0, 2026.0, 2034.0, 2044.0, 2050.0, 2057.0, 2064.0, 2069.0, 2075.0, 2082.0, 2091.0, 2098.0, 2107.0, 2122.0, 2126.0, 2135.0, 2146.0, 2149.0, 2157.0, 2163.0, 2172.0, 2178.0, 2184.0, 2191.0, 2198.0, 2208.0, 2216.0, 2223.0, 2235.0, 2242.0, 2252.0, 2263.0, 2272.0, 2277.0, 2288.0, 2296.0, 2306.0, 2311.0, 2318.0, 2323.0, 2334.0, 2341.0, 2356.0, 2366.0, 2373.0, 2379.0, 2386.0, 2407.0, 2416.0, 2423.0, 2432.0, 2438.0, 2448.0, 2453.0, 2464.0, 2473.0, 2473.0, 2481.0, 2492.0, 2504.0, 2511.0, 2523.0, 2529.0, 2537.0, 2545.0, 2556.0, 2566.0, 2575.0, 2584.0, 2592.0, 2602.0, 2613.0, 2624.0, 2636.0, 2643.0, 2647.0, 2652.0, 2664.0, 2675.0, 2688.0, 2693.0, 2702.0, 2709.0, 2722.0, 2739.0, 2754.0, 2766.0, 2776.0, 2786.0, 2799.0, 2810.0, 2832.0, 2840.0, 2849.0, 2860.0, 2873.0, 2889.0, 2908.0, 2914.0, 2926.0, 2939.0, 2950.0, 2961.0, 2969.0, 2978.0, 2990.0, 2999.0, 3023.0, 3032.0, 3049.0, 3066.0, 3085.0, 3101.0, 3107.0, 3117.0, 3129.0, 3144.0, 3167.0, 3190.0, 3212.0, 3229.0, 3238.0, 3264.0, 3293.0, 3302.0, 3309.0, 3314.0, 3323.0, 3344.0, 3352.0, 3362.0, 3390.0, 3400.0, 3411.0, 3435.0, 3456.0, 3470.0, 3485.0, 3498.0, 3505.0, 3519.0, 3539.0, 3545.0, 3545.0, 3560.0, 3576.0, 3597.0, 3607.0, 3621.0, 3641.0, 3665.0, 3679.0, 3701.0, 3714.0, 3733.0, 3741.0, 3745.0, 3757.0, 3773.0, 3787.0, 3795.0, 3805.0, 3822.0, 3835.0, 3844.0, 3861.0, 3872.0, 3878.0, 3897.0, 3919.0, 3941.0, 3971.0, 4004.0, 4014.0, 4019.0, 4061.0, 4068.0, 4089.0, 4108.0, 4117.0, 4125.0, 4146.0, 4165.0, 4194.0, 4204.0, 4224.0, 4236.0, 4263.0, 4290.0, 4301.0, 4319.0, 4326.0, 4347.0, 4369.0, 4386.0, 4413.0, 4435.0, 4451.0, 4451.0, 4451.0, 4476.0, 4500.0, 4539.0, 4579.0, 4592.0, 4600.0, 4622.0, 4650.0, 4683.0, 4714.0, 4742.0, 4755.0, 4771.0, 4788.0, 4816.0, 4828.0, 4831.0, 4831.0, 4831.0, 4843.0, 4852.0, 4865.0, 4896.0, 4915.0, 4931.0, 4952.0, 4965.0, 4983.0, 5007.0, 5043.0, 5061.0, 5081.0, 5095.0, 5122.0, 5143.0, 5171.0, 5204.0, 5226.0, 5233.0, 5250.0, 5281.0, 5320.0, 5323.0, 5328.0, 5345.0, 5374.0, 5413.0, 5466.0, 5492.0, 5524.0, 5555.0, 5567.0, 5610.0, 5676.0, 5701.0, 5716.0, 5744.0, 5768.0, 5795.0, 5818.0, 5854.0, 5906.0, 5934.0, 5960.0, 5975.0, 5993.0, 6025.0, 6034.0, 6051.0, 6082.0, 6106.0, 6125.0, 6159.0, 6187.0, 6242.0, 6287.0, 6311.0, 6332.0, 6348.0, 6358.0, 6368.0, 6377.0, 6402.0, 6407.0, 6428.0, 6450.0, 6475.0, 6498.0, 6505.0, 6533.0, 6565.0, 6580.0, 6595.0, 6611.0, 6654.0, 6658.0, 6705.0, 6751.0, 6786.0, 6828.0, 6876.0, 6896.0, 6948.0, 6964.0, 7065.0, 7082.0, 7118.0, 7184.0, 7214.0, 7271.0, 7310.0, 7357.0, 7405.0, 7506.0, 7613.0, 7641.0, 7675.0, 7720.0, 7781.0, 7833.0, 7860.0, 7898.0, 7929.0, 8044.0, 8104.0, 8148.0, 8236.0, 8273.0, 8313.0, 8349.0, 8381.0, 8409.0, 8498.0, 8507.0, 8524.0, 8570.0, 8607.0, 8630.0, 8637.0, 8675.0, 8700.0, 8714.0, 8734.0, 8776.0, 8836.0, 8854.0, 8867.0, 8868.0, 9065.0, 9113.0, 9121.0, 9241.0, 9357.0, 9360.0, 9585.0, 9613.0, 9684.0, 9727.0, 9751.0, 9777.0, 9802.0, 9889.0, 9903.0, 9914.0, 9978.0, 10061.0, 10192.0, 10213.0, 10345.0, 10369.0, 10404.0, 10430.0, 10471.0, 10481.0, 10489.0, 10492.0, 10494.0, 10524.0, 10554.0, 10557.0, 10560.0, 10562.0, 10641.0, 10716.0, 10842.0, 10897.0, 10967.0, 11053.0, 11128.0, 11137.0, 11328.0, 11336.0, 11401.0, 11532.0, 11573.0, 11860.0, 11880.0, 12013.0, 12305.0, 12358.0, 12386.0, 12404.0, 12456.0, 12456.0, 12476.0, 12615.0, 12677.0, 12981.0, 13094.0, 13197.0, 13708.0, 13717.0, 13788.0, 14049.0, 14112.0, 14224.0, 14257.0, 14681.0, 14901.0, 15006.0, 15071.0, 15100.0, 15248.0, 15669.0, 15877.0, 15953.0, 15953.0, 16066.0, 16072.0, 16271.0, 16292.0, 16386.0, 16490.0, 16633.0, 16670.0, 16834.0, 16896.0, 17543.0, 17693.0, 17800.0, 17859.0, 18397.0, 18811.0, 18826.0, 18971.0, 19304.0, 19319.0, 19695.0, 20378.0, 20865.0, 21313.0, 21330.0, 22321.0, 22760.0, 22770.0, 23783.0, 23785.0, 24525.0, 24844.0, 24848.0, 24964.0, 24966.0, 27468.0, 27478.0, 27555.0, 27555.0, 28215.0, 28219.0, 28336.0, 28490.0, 30213.0, 30228.0, 30242.0, 34116.0, 43518.0, 43518.0, 43518.0, 43852.0, 43852.0, 43852.0]]}]}, \"function_type\": \"lambda\", \"module\": \"google3.learning.smartchoices.research.clients.compiler_opt.policy_training.feature_ops\", \"output_shape\": null, \"output_shape_type\": \"raw\", \"output_shape_module\": null, \"arguments\": {}}}" + } + } + nodes { + children { + node_id: 114 + local_name: "variables" + } + children { + node_id: 115 + local_name: "regularization_losses" + } + children { + node_id: 116 + local_name: "trainable_variables" + } + children { + node_id: 117 + local_name: "keras_api" + } + children { + node_id: 246 + local_name: "__call__" + } + children { + node_id: 247 + local_name: "call_and_return_all_conditional_losses" + } + user_object { + identifier: "_tf_keras_layer" + version { + producer: 1 + min_consumer: 1 + } + metadata: "{\"class_name\": \"Lambda\", \"name\": \"lambda_11\", \"trainable\": true, \"expects_training_arg\": true, \"dtype\": \"float32\", \"batch_input_shape\": null, \"stateful\": false, \"config\": {\"name\": \"lambda_11\", \"trainable\": true, \"dtype\": \"float32\", \"function\": {\"class_name\": \"__tuple__\", \"items\": [\"4wEAAAAAAAAAAwAAAAUAAAATAAAAc0QAAACIAHwAgwF9AXQAagF0AmoDfAGIAYMCdABqBIMCdAWI\\nAYMBGwB9AnQAagZ8AnQAagd8AoMBfAJ8AhQAZwNkA2QCjQJTACkETukBAAAAKQHaBGF4aXPp////\\n/ykI2gJ0ZtoEY2FzdNoOY29udHJpYl9sYXllcnPaCWJ1Y2tldGl6ZdoHZmxvYXQzMtoDbGVu2gZj\\nb25jYXTaBHNxcnQpA9oDb2Jz2gxleHBhbmRlZF9vYnPaAXgpAtoOZXhwYW5kX2RpbXNfb3DaCHF1\\nYW50aWxlqQD69C9leHBvcnQvaGRhMy9ib3JnbGV0L2xvY2FsX3JhbV9mc19kaXJzLzAueXVuZGlf\\nbXVwcGV0XzBfMTIyNzA4MzMuMTMueXVuZGkuMTk0NzMxNDE3OTYxLjhmNGY5Zjk4Y2I3YTMwNTUv\\nYnVpbGRfdGFyZ2V0X3RyYWluX3Bhcl9kOTc1NzUzNzAxNmEyZWI4L3RyYWluLnBhci9nb29nbGUz\\nL2xlYXJuaW5nL3NtYXJ0Y2hvaWNlcy9yZXNlYXJjaC9jbGllbnRzL2NvbXBpbGVyX29wdC9wb2xp\\nY3lfdHJhaW5pbmcvZmVhdHVyZV9vcHMucHnaDW5vcm1hbGl6YXRpb24wAAAAcwoAAAAAAQgBBAEK\\nARAB\\n\", null, {\"class_name\": \"__tuple__\", \"items\": [{\"class_name\": \"ExpandDims\", \"config\": {\"name\": \"expand_dims\", \"trainable\": true, \"dtype\": \"float32\", \"axis\": -1}}, [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 3.0, 4.0]]}]}, \"function_type\": \"lambda\", \"module\": \"google3.learning.smartchoices.research.clients.compiler_opt.policy_training.feature_ops\", \"output_shape\": null, \"output_shape_type\": \"raw\", \"output_shape_module\": null, \"arguments\": {}}}" + } + } + nodes { + user_object { + identifier: "trackable_list_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + user_object { + identifier: "trackable_list_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + user_object { + identifier: "trackable_list_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + children { + node_id: 118 + local_name: "layer_metrics" + } + children { + node_id: 53 + local_name: "variables" + } + children { + node_id: 119 + local_name: "layer_regularization_losses" + } + children { + node_id: 120 + local_name: "metrics" + } + children { + node_id: 121 + local_name: "layers" + } + children { + node_id: 54 + local_name: "regularization_losses" + } + children { + node_id: 122 + local_name: "non_trainable_variables" + } + children { + node_id: 55 + local_name: "trainable_variables" + } + children { + node_id: 222 + local_name: "__call__" + } + children { + node_id: 223 + local_name: "call_and_return_all_conditional_losses" + } + children { + node_id: 223 + local_name: "call_and_return_conditional_losses" + } + user_object { + identifier: "_generic_user_object" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + children { + node_id: 123 + local_name: "variables" + } + children { + node_id: 124 + local_name: "regularization_losses" + } + children { + node_id: 125 + local_name: "trainable_variables" + } + children { + node_id: 126 + local_name: "keras_api" + } + children { + node_id: 248 + local_name: "__call__" + } + children { + node_id: 249 + local_name: "call_and_return_all_conditional_losses" + } + user_object { + identifier: "_tf_keras_layer" + version { + producer: 1 + min_consumer: 1 + } + metadata: "{\"class_name\": \"Flatten\", \"name\": \"flatten\", \"trainable\": true, \"expects_training_arg\": false, \"dtype\": \"float32\", \"batch_input_shape\": null, \"stateful\": false, \"config\": {\"name\": \"flatten\", \"trainable\": true, \"dtype\": \"float32\", \"data_format\": \"channels_last\"}, \"input_spec\": {\"class_name\": \"InputSpec\", \"config\": {\"dtype\": null, \"shape\": null, \"ndim\": null, \"max_ndim\": null, \"min_ndim\": 1, \"axes\": {}}}}" + } + } + nodes { + children { + node_id: 10 + local_name: "kernel" + } + children { + node_id: 11 + local_name: "bias" + } + children { + node_id: 127 + local_name: "variables" + } + children { + node_id: 128 + local_name: "regularization_losses" + } + children { + node_id: 129 + local_name: "trainable_variables" + } + children { + node_id: 130 + local_name: "keras_api" + } + children { + node_id: 250 + local_name: "__call__" + } + children { + node_id: 251 + local_name: "call_and_return_all_conditional_losses" + } + user_object { + identifier: "_tf_keras_layer" + version { + producer: 1 + min_consumer: 1 + } + metadata: "{\"class_name\": \"Dense\", \"name\": \"dense\", \"trainable\": true, \"expects_training_arg\": false, \"dtype\": \"float32\", \"batch_input_shape\": null, \"stateful\": false, \"config\": {\"name\": \"dense\", \"trainable\": true, \"dtype\": \"float32\", \"units\": 100, \"activation\": \"relu\", \"use_bias\": true, \"kernel_initializer\": {\"class_name\": \"VarianceScaling\", \"config\": {\"scale\": 2.0, \"mode\": \"fan_in\", \"distribution\": \"truncated_normal\", \"seed\": null, \"dtype\": \"float32\"}}, \"bias_initializer\": {\"class_name\": \"Zeros\", \"config\": {}}, \"kernel_regularizer\": null, \"bias_regularizer\": null, \"activity_regularizer\": null, \"kernel_constraint\": null, \"bias_constraint\": null}, \"input_spec\": {\"class_name\": \"InputSpec\", \"config\": {\"dtype\": null, \"shape\": null, \"ndim\": null, \"max_ndim\": null, \"min_ndim\": 2, \"axes\": {\"-1\": 34}}}, \"build_input_shape\": {\"class_name\": \"TensorShape\", \"items\": [0, 34]}}" + } + } + nodes { + children { + node_id: 12 + local_name: "kernel" + } + children { + node_id: 13 + local_name: "bias" + } + children { + node_id: 131 + local_name: "variables" + } + children { + node_id: 132 + local_name: "regularization_losses" + } + children { + node_id: 133 + local_name: "trainable_variables" + } + children { + node_id: 134 + local_name: "keras_api" + } + children { + node_id: 252 + local_name: "__call__" + } + children { + node_id: 253 + local_name: "call_and_return_all_conditional_losses" + } + user_object { + identifier: "_tf_keras_layer" + version { + producer: 1 + min_consumer: 1 + } + metadata: "{\"class_name\": \"Dense\", \"name\": \"dense_1\", \"trainable\": true, \"expects_training_arg\": false, \"dtype\": \"float32\", \"batch_input_shape\": null, \"stateful\": false, \"config\": {\"name\": \"dense_1\", \"trainable\": true, \"dtype\": \"float32\", \"units\": 40, \"activation\": \"relu\", \"use_bias\": true, \"kernel_initializer\": {\"class_name\": \"VarianceScaling\", \"config\": {\"scale\": 2.0, \"mode\": \"fan_in\", \"distribution\": \"truncated_normal\", \"seed\": null, \"dtype\": \"float32\"}}, \"bias_initializer\": {\"class_name\": \"Zeros\", \"config\": {}}, \"kernel_regularizer\": null, \"bias_regularizer\": null, \"activity_regularizer\": null, \"kernel_constraint\": null, \"bias_constraint\": null}, \"input_spec\": {\"class_name\": \"InputSpec\", \"config\": {\"dtype\": null, \"shape\": null, \"ndim\": null, \"max_ndim\": null, \"min_ndim\": 2, \"axes\": {\"-1\": 100}}}, \"build_input_shape\": {\"class_name\": \"TensorShape\", \"items\": [0, 100]}}" + } + } + nodes { + user_object { + identifier: "trackable_dict_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + user_object { + identifier: "trackable_list_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + user_object { + identifier: "trackable_list_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + children { + node_id: 41 + local_name: "0" + } + children { + node_id: 42 + local_name: "1" + } + children { + node_id: 43 + local_name: "2" + } + children { + node_id: 44 + local_name: "3" + } + children { + node_id: 45 + local_name: "4" + } + children { + node_id: 46 + local_name: "5" + } + children { + node_id: 47 + local_name: "6" + } + children { + node_id: 48 + local_name: "7" + } + children { + node_id: 49 + local_name: "8" + } + children { + node_id: 50 + local_name: "9" + } + children { + node_id: 51 + local_name: "10" + } + children { + node_id: 52 + local_name: "11" + } + children { + node_id: 26 + local_name: "12" + } + children { + node_id: 57 + local_name: "13" + } + children { + node_id: 58 + local_name: "14" + } + children { + node_id: 59 + local_name: "15" + } + user_object { + identifier: "trackable_list_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + user_object { + identifier: "trackable_list_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + user_object { + identifier: "trackable_dict_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + user_object { + identifier: "trackable_list_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + user_object { + identifier: "trackable_list_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + user_object { + identifier: "trackable_list_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + user_object { + identifier: "trackable_list_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + user_object { + identifier: "trackable_list_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + user_object { + identifier: "trackable_list_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + user_object { + identifier: "trackable_list_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + children { + node_id: 135 + local_name: "layer_metrics" + } + children { + node_id: 70 + local_name: "variables" + } + children { + node_id: 136 + local_name: "layer_regularization_losses" + } + children { + node_id: 137 + local_name: "metrics" + } + children { + node_id: 138 + local_name: "layers" + } + children { + node_id: 71 + local_name: "regularization_losses" + } + children { + node_id: 139 + local_name: "non_trainable_variables" + } + children { + node_id: 72 + local_name: "trainable_variables" + } + children { + node_id: 224 + local_name: "__call__" + } + children { + node_id: 225 + local_name: "call_and_return_all_conditional_losses" + } + children { + node_id: 225 + local_name: "call_and_return_conditional_losses" + } + user_object { + identifier: "_generic_user_object" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + user_object { + identifier: "trackable_list_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + user_object { + identifier: "trackable_list_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + user_object { + identifier: "trackable_list_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + children { + node_id: 140 + local_name: "layer_metrics" + } + children { + node_id: 74 + local_name: "variables" + } + children { + node_id: 141 + local_name: "layer_regularization_losses" + } + children { + node_id: 142 + local_name: "metrics" + } + children { + node_id: 143 + local_name: "layers" + } + children { + node_id: 75 + local_name: "regularization_losses" + } + children { + node_id: 144 + local_name: "non_trainable_variables" + } + children { + node_id: 76 + local_name: "trainable_variables" + } + children { + node_id: 226 + local_name: "__call__" + } + children { + node_id: 227 + local_name: "call_and_return_all_conditional_losses" + } + children { + node_id: 227 + local_name: "call_and_return_conditional_losses" + } + user_object { + identifier: "_generic_user_object" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + user_object { + identifier: "trackable_list_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + user_object { + identifier: "trackable_list_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + user_object { + identifier: "trackable_list_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + children { + node_id: 145 + local_name: "layer_metrics" + } + children { + node_id: 78 + local_name: "variables" + } + children { + node_id: 146 + local_name: "layer_regularization_losses" + } + children { + node_id: 147 + local_name: "metrics" + } + children { + node_id: 148 + local_name: "layers" + } + children { + node_id: 79 + local_name: "regularization_losses" + } + children { + node_id: 149 + local_name: "non_trainable_variables" + } + children { + node_id: 80 + local_name: "trainable_variables" + } + children { + node_id: 228 + local_name: "__call__" + } + children { + node_id: 229 + local_name: "call_and_return_all_conditional_losses" + } + children { + node_id: 229 + local_name: "call_and_return_conditional_losses" + } + user_object { + identifier: "_generic_user_object" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + user_object { + identifier: "trackable_list_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + user_object { + identifier: "trackable_list_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + user_object { + identifier: "trackable_list_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + children { + node_id: 150 + local_name: "layer_metrics" + } + children { + node_id: 82 + local_name: "variables" + } + children { + node_id: 151 + local_name: "layer_regularization_losses" + } + children { + node_id: 152 + local_name: "metrics" + } + children { + node_id: 153 + local_name: "layers" + } + children { + node_id: 83 + local_name: "regularization_losses" + } + children { + node_id: 154 + local_name: "non_trainable_variables" + } + children { + node_id: 84 + local_name: "trainable_variables" + } + children { + node_id: 230 + local_name: "__call__" + } + children { + node_id: 231 + local_name: "call_and_return_all_conditional_losses" + } + children { + node_id: 231 + local_name: "call_and_return_conditional_losses" + } + user_object { + identifier: "_generic_user_object" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + user_object { + identifier: "trackable_list_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + user_object { + identifier: "trackable_list_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + user_object { + identifier: "trackable_list_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + children { + node_id: 155 + local_name: "layer_metrics" + } + children { + node_id: 86 + local_name: "variables" + } + children { + node_id: 156 + local_name: "layer_regularization_losses" + } + children { + node_id: 157 + local_name: "metrics" + } + children { + node_id: 158 + local_name: "layers" + } + children { + node_id: 87 + local_name: "regularization_losses" + } + children { + node_id: 159 + local_name: "non_trainable_variables" + } + children { + node_id: 88 + local_name: "trainable_variables" + } + children { + node_id: 232 + local_name: "__call__" + } + children { + node_id: 233 + local_name: "call_and_return_all_conditional_losses" + } + children { + node_id: 233 + local_name: "call_and_return_conditional_losses" + } + user_object { + identifier: "_generic_user_object" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + user_object { + identifier: "trackable_list_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + user_object { + identifier: "trackable_list_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + user_object { + identifier: "trackable_list_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + children { + node_id: 160 + local_name: "layer_metrics" + } + children { + node_id: 90 + local_name: "variables" + } + children { + node_id: 161 + local_name: "layer_regularization_losses" + } + children { + node_id: 162 + local_name: "metrics" + } + children { + node_id: 163 + local_name: "layers" + } + children { + node_id: 91 + local_name: "regularization_losses" + } + children { + node_id: 164 + local_name: "non_trainable_variables" + } + children { + node_id: 92 + local_name: "trainable_variables" + } + children { + node_id: 234 + local_name: "__call__" + } + children { + node_id: 235 + local_name: "call_and_return_all_conditional_losses" + } + children { + node_id: 235 + local_name: "call_and_return_conditional_losses" + } + user_object { + identifier: "_generic_user_object" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + user_object { + identifier: "trackable_list_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + user_object { + identifier: "trackable_list_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + user_object { + identifier: "trackable_list_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + children { + node_id: 165 + local_name: "layer_metrics" + } + children { + node_id: 94 + local_name: "variables" + } + children { + node_id: 166 + local_name: "layer_regularization_losses" + } + children { + node_id: 167 + local_name: "metrics" + } + children { + node_id: 168 + local_name: "layers" + } + children { + node_id: 95 + local_name: "regularization_losses" + } + children { + node_id: 169 + local_name: "non_trainable_variables" + } + children { + node_id: 96 + local_name: "trainable_variables" + } + children { + node_id: 236 + local_name: "__call__" + } + children { + node_id: 237 + local_name: "call_and_return_all_conditional_losses" + } + children { + node_id: 237 + local_name: "call_and_return_conditional_losses" + } + user_object { + identifier: "_generic_user_object" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + user_object { + identifier: "trackable_list_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + user_object { + identifier: "trackable_list_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + user_object { + identifier: "trackable_list_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + children { + node_id: 170 + local_name: "layer_metrics" + } + children { + node_id: 98 + local_name: "variables" + } + children { + node_id: 171 + local_name: "layer_regularization_losses" + } + children { + node_id: 172 + local_name: "metrics" + } + children { + node_id: 173 + local_name: "layers" + } + children { + node_id: 99 + local_name: "regularization_losses" + } + children { + node_id: 174 + local_name: "non_trainable_variables" + } + children { + node_id: 100 + local_name: "trainable_variables" + } + children { + node_id: 238 + local_name: "__call__" + } + children { + node_id: 239 + local_name: "call_and_return_all_conditional_losses" + } + children { + node_id: 239 + local_name: "call_and_return_conditional_losses" + } + user_object { + identifier: "_generic_user_object" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + user_object { + identifier: "trackable_list_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + user_object { + identifier: "trackable_list_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + user_object { + identifier: "trackable_list_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + children { + node_id: 175 + local_name: "layer_metrics" + } + children { + node_id: 102 + local_name: "variables" + } + children { + node_id: 176 + local_name: "layer_regularization_losses" + } + children { + node_id: 177 + local_name: "metrics" + } + children { + node_id: 178 + local_name: "layers" + } + children { + node_id: 103 + local_name: "regularization_losses" + } + children { + node_id: 179 + local_name: "non_trainable_variables" + } + children { + node_id: 104 + local_name: "trainable_variables" + } + children { + node_id: 240 + local_name: "__call__" + } + children { + node_id: 241 + local_name: "call_and_return_all_conditional_losses" + } + children { + node_id: 241 + local_name: "call_and_return_conditional_losses" + } + user_object { + identifier: "_generic_user_object" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + user_object { + identifier: "trackable_list_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + user_object { + identifier: "trackable_list_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + user_object { + identifier: "trackable_list_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + children { + node_id: 180 + local_name: "layer_metrics" + } + children { + node_id: 106 + local_name: "variables" + } + children { + node_id: 181 + local_name: "layer_regularization_losses" + } + children { + node_id: 182 + local_name: "metrics" + } + children { + node_id: 183 + local_name: "layers" + } + children { + node_id: 107 + local_name: "regularization_losses" + } + children { + node_id: 184 + local_name: "non_trainable_variables" + } + children { + node_id: 108 + local_name: "trainable_variables" + } + children { + node_id: 242 + local_name: "__call__" + } + children { + node_id: 243 + local_name: "call_and_return_all_conditional_losses" + } + children { + node_id: 243 + local_name: "call_and_return_conditional_losses" + } + user_object { + identifier: "_generic_user_object" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + user_object { + identifier: "trackable_list_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + user_object { + identifier: "trackable_list_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + user_object { + identifier: "trackable_list_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + children { + node_id: 185 + local_name: "layer_metrics" + } + children { + node_id: 110 + local_name: "variables" + } + children { + node_id: 186 + local_name: "layer_regularization_losses" + } + children { + node_id: 187 + local_name: "metrics" + } + children { + node_id: 188 + local_name: "layers" + } + children { + node_id: 111 + local_name: "regularization_losses" + } + children { + node_id: 189 + local_name: "non_trainable_variables" + } + children { + node_id: 112 + local_name: "trainable_variables" + } + children { + node_id: 244 + local_name: "__call__" + } + children { + node_id: 245 + local_name: "call_and_return_all_conditional_losses" + } + children { + node_id: 245 + local_name: "call_and_return_conditional_losses" + } + user_object { + identifier: "_generic_user_object" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + user_object { + identifier: "trackable_list_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + user_object { + identifier: "trackable_list_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + user_object { + identifier: "trackable_list_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + children { + node_id: 190 + local_name: "layer_metrics" + } + children { + node_id: 114 + local_name: "variables" + } + children { + node_id: 191 + local_name: "layer_regularization_losses" + } + children { + node_id: 192 + local_name: "metrics" + } + children { + node_id: 193 + local_name: "layers" + } + children { + node_id: 115 + local_name: "regularization_losses" + } + children { + node_id: 194 + local_name: "non_trainable_variables" + } + children { + node_id: 116 + local_name: "trainable_variables" + } + children { + node_id: 246 + local_name: "__call__" + } + children { + node_id: 247 + local_name: "call_and_return_all_conditional_losses" + } + children { + node_id: 247 + local_name: "call_and_return_conditional_losses" + } + user_object { + identifier: "_generic_user_object" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + user_object { + identifier: "trackable_dict_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + user_object { + identifier: "trackable_list_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + user_object { + identifier: "trackable_list_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + user_object { + identifier: "trackable_list_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + user_object { + identifier: "trackable_list_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + user_object { + identifier: "trackable_list_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + user_object { + identifier: "trackable_list_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + user_object { + identifier: "trackable_list_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + children { + node_id: 195 + local_name: "layer_metrics" + } + children { + node_id: 123 + local_name: "variables" + } + children { + node_id: 196 + local_name: "layer_regularization_losses" + } + children { + node_id: 197 + local_name: "metrics" + } + children { + node_id: 198 + local_name: "layers" + } + children { + node_id: 124 + local_name: "regularization_losses" + } + children { + node_id: 199 + local_name: "non_trainable_variables" + } + children { + node_id: 125 + local_name: "trainable_variables" + } + children { + node_id: 248 + local_name: "__call__" + } + children { + node_id: 249 + local_name: "call_and_return_all_conditional_losses" + } + children { + node_id: 249 + local_name: "call_and_return_conditional_losses" + } + user_object { + identifier: "_generic_user_object" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + children { + node_id: 10 + local_name: "0" + } + children { + node_id: 11 + local_name: "1" + } + user_object { + identifier: "trackable_list_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + user_object { + identifier: "trackable_list_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + children { + node_id: 10 + local_name: "0" + } + children { + node_id: 11 + local_name: "1" + } + user_object { + identifier: "trackable_list_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + children { + node_id: 200 + local_name: "layer_metrics" + } + children { + node_id: 127 + local_name: "variables" + } + children { + node_id: 201 + local_name: "layer_regularization_losses" + } + children { + node_id: 202 + local_name: "metrics" + } + children { + node_id: 203 + local_name: "layers" + } + children { + node_id: 128 + local_name: "regularization_losses" + } + children { + node_id: 204 + local_name: "non_trainable_variables" + } + children { + node_id: 129 + local_name: "trainable_variables" + } + children { + node_id: 250 + local_name: "__call__" + } + children { + node_id: 251 + local_name: "call_and_return_all_conditional_losses" + } + children { + node_id: 251 + local_name: "call_and_return_conditional_losses" + } + user_object { + identifier: "_generic_user_object" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + children { + node_id: 12 + local_name: "0" + } + children { + node_id: 13 + local_name: "1" + } + user_object { + identifier: "trackable_list_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + user_object { + identifier: "trackable_list_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + children { + node_id: 12 + local_name: "0" + } + children { + node_id: 13 + local_name: "1" + } + user_object { + identifier: "trackable_list_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + children { + node_id: 205 + local_name: "layer_metrics" + } + children { + node_id: 131 + local_name: "variables" + } + children { + node_id: 206 + local_name: "layer_regularization_losses" + } + children { + node_id: 207 + local_name: "metrics" + } + children { + node_id: 208 + local_name: "layers" + } + children { + node_id: 132 + local_name: "regularization_losses" + } + children { + node_id: 209 + local_name: "non_trainable_variables" + } + children { + node_id: 133 + local_name: "trainable_variables" + } + children { + node_id: 252 + local_name: "__call__" + } + children { + node_id: 253 + local_name: "call_and_return_all_conditional_losses" + } + children { + node_id: 253 + local_name: "call_and_return_conditional_losses" + } + user_object { + identifier: "_generic_user_object" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + user_object { + identifier: "trackable_dict_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + user_object { + identifier: "trackable_list_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + user_object { + identifier: "trackable_list_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + user_object { + identifier: "trackable_list_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + user_object { + identifier: "trackable_list_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + user_object { + identifier: "trackable_dict_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + user_object { + identifier: "trackable_list_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + user_object { + identifier: "trackable_list_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + user_object { + identifier: "trackable_list_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + user_object { + identifier: "trackable_list_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + user_object { + identifier: "trackable_dict_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + user_object { + identifier: "trackable_list_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + user_object { + identifier: "trackable_list_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + user_object { + identifier: "trackable_list_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + user_object { + identifier: "trackable_list_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + user_object { + identifier: "trackable_dict_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + user_object { + identifier: "trackable_list_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + user_object { + identifier: "trackable_list_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + user_object { + identifier: "trackable_list_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + user_object { + identifier: "trackable_list_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + user_object { + identifier: "trackable_dict_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + user_object { + identifier: "trackable_list_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + user_object { + identifier: "trackable_list_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + user_object { + identifier: "trackable_list_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + user_object { + identifier: "trackable_list_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + user_object { + identifier: "trackable_dict_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + user_object { + identifier: "trackable_list_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + user_object { + identifier: "trackable_list_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + user_object { + identifier: "trackable_list_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + user_object { + identifier: "trackable_list_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + user_object { + identifier: "trackable_dict_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + user_object { + identifier: "trackable_list_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + user_object { + identifier: "trackable_list_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + user_object { + identifier: "trackable_list_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + user_object { + identifier: "trackable_list_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + user_object { + identifier: "trackable_dict_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + user_object { + identifier: "trackable_list_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + user_object { + identifier: "trackable_list_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + user_object { + identifier: "trackable_list_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + user_object { + identifier: "trackable_list_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + user_object { + identifier: "trackable_dict_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + user_object { + identifier: "trackable_list_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + user_object { + identifier: "trackable_list_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + user_object { + identifier: "trackable_list_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + user_object { + identifier: "trackable_list_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + user_object { + identifier: "trackable_dict_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + user_object { + identifier: "trackable_list_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + user_object { + identifier: "trackable_list_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + user_object { + identifier: "trackable_list_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + user_object { + identifier: "trackable_list_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + user_object { + identifier: "trackable_dict_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + user_object { + identifier: "trackable_list_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + user_object { + identifier: "trackable_list_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + user_object { + identifier: "trackable_list_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + user_object { + identifier: "trackable_list_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + user_object { + identifier: "trackable_dict_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + user_object { + identifier: "trackable_list_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + user_object { + identifier: "trackable_list_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + user_object { + identifier: "trackable_list_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + user_object { + identifier: "trackable_list_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + user_object { + identifier: "trackable_dict_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + user_object { + identifier: "trackable_list_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + user_object { + identifier: "trackable_list_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + user_object { + identifier: "trackable_list_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + user_object { + identifier: "trackable_list_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + user_object { + identifier: "trackable_dict_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + user_object { + identifier: "trackable_list_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + user_object { + identifier: "trackable_list_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + user_object { + identifier: "trackable_list_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + user_object { + identifier: "trackable_list_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + user_object { + identifier: "trackable_dict_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + user_object { + identifier: "trackable_list_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + user_object { + identifier: "trackable_list_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + user_object { + identifier: "trackable_list_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + user_object { + identifier: "trackable_list_wrapper" + version { + producer: 1 + min_consumer: 1 + } + } + } + nodes { + function { + concrete_functions: "__inference_polymorphic_action_fn_4619080" + concrete_functions: "__inference_polymorphic_action_fn_946" + function_spec { + fullargspec { + named_tuple_value { + name: "FullArgSpec" + values { + key: "args" + value { + list_value { + values { + string_value: "time_step" + } + values { + string_value: "policy_state" + } + } + } + } + values { + key: "varargs" + value { + none_value { + } + } + } + values { + key: "varkw" + value { + none_value { + } + } + } + values { + key: "defaults" + value { + tuple_value { + values { + tuple_value { + } + } + } + } + } + values { + key: "kwonlyargs" + value { + list_value { + } + } + } + values { + key: "kwonlydefaults" + value { + none_value { + } + } + } + values { + key: "annotations" + value { + dict_value { + } + } + } + } + } + input_signature { + none_value { + } + } + } + } + } + nodes { + function { + concrete_functions: "__inference_function_722" + function_spec { + fullargspec { + named_tuple_value { + name: "FullArgSpec" + values { + key: "args" + value { + list_value { + values { + string_value: "self" + } + } + } + } + values { + key: "varargs" + value { + none_value { + } + } + } + values { + key: "varkw" + value { + none_value { + } + } + } + values { + key: "defaults" + value { + none_value { + } + } + } + values { + key: "kwonlyargs" + value { + list_value { + } + } + } + values { + key: "kwonlydefaults" + value { + dict_value { + } + } + } + values { + key: "annotations" + value { + dict_value { + } + } + } + } + } + input_signature { + none_value { + } + } + } + } + } + nodes { + bare_concrete_function { + concrete_function_name: "__inference_<lambda>_728" + } + } + nodes { + bare_concrete_function { + concrete_function_name: "__inference_signature_wrapper_4619026" + argument_keywords: "callee_basic_block_count" + argument_keywords: "callee_conditionally_executed_blocks" + argument_keywords: "callee_users" + argument_keywords: "caller_basic_block_count" + argument_keywords: "caller_conditionally_executed_blocks" + argument_keywords: "caller_users" + argument_keywords: "callsite_height" + argument_keywords: "cost_estimate" + argument_keywords: "discount" + argument_keywords: "edge_count" + argument_keywords: "inlining_default" + argument_keywords: "node_count" + argument_keywords: "nr_ctant_params" + argument_keywords: "reward" + argument_keywords: "step_type" + } + } + nodes { + bare_concrete_function { + concrete_function_name: "__inference_signature_wrapper_4619033" + } + } + nodes { + bare_concrete_function { + concrete_function_name: "__inference_signature_wrapper_4619048" + } + } + nodes { + function { + function_spec { + fullargspec { + named_tuple_value { + name: "FullArgSpec" + values { + key: "args" + value { + list_value { + values { + string_value: "self" + } + values { + string_value: "observation" + } + values { + string_value: "step_type" + } + values { + string_value: "network_state" + } + values { + string_value: "training" + } + } + } + } + values { + key: "varargs" + value { + none_value { + } + } + } + values { + key: "varkw" + value { + none_value { + } + } + } + values { + key: "defaults" + value { + list_value { + values { + none_value { + } + } + values { + tuple_value { + } + } + values { + bool_value: false + } + } + } + } + values { + key: "kwonlyargs" + value { + list_value { + } + } + } + values { + key: "kwonlydefaults" + value { + dict_value { + } + } + } + values { + key: "annotations" + value { + dict_value { + } + } + } + } + } + is_method: true + input_signature { + none_value { + } + } + } + } + } + nodes { + function { + function_spec { + fullargspec { + named_tuple_value { + name: "FullArgSpec" + values { + key: "args" + value { + list_value { + values { + string_value: "self" + } + values { + string_value: "observation" + } + values { + string_value: "step_type" + } + values { + string_value: "network_state" + } + values { + string_value: "training" + } + } + } + } + values { + key: "varargs" + value { + none_value { + } + } + } + values { + key: "varkw" + value { + none_value { + } + } + } + values { + key: "defaults" + value { + list_value { + values { + none_value { + } + } + values { + tuple_value { + } + } + values { + bool_value: false + } + } + } + } + values { + key: "kwonlyargs" + value { + list_value { + } + } + } + values { + key: "kwonlydefaults" + value { + dict_value { + } + } + } + values { + key: "annotations" + value { + dict_value { + } + } + } + } + } + is_method: true + input_signature { + none_value { + } + } + } + } + } + nodes { + function { + function_spec { + fullargspec { + named_tuple_value { + name: "FullArgSpec" + values { + key: "args" + value { + list_value { + values { + string_value: "self" + } + values { + string_value: "observation" + } + values { + string_value: "step_type" + } + values { + string_value: "network_state" + } + values { + string_value: "training" + } + } + } + } + values { + key: "varargs" + value { + none_value { + } + } + } + values { + key: "varkw" + value { + none_value { + } + } + } + values { + key: "defaults" + value { + list_value { + values { + none_value { + } + } + values { + tuple_value { + } + } + values { + bool_value: false + } + } + } + } + values { + key: "kwonlyargs" + value { + list_value { + } + } + } + values { + key: "kwonlydefaults" + value { + dict_value { + } + } + } + values { + key: "annotations" + value { + dict_value { + } + } + } + } + } + is_method: true + input_signature { + none_value { + } + } + } + } + } + nodes { + function { + function_spec { + fullargspec { + named_tuple_value { + name: "FullArgSpec" + values { + key: "args" + value { + list_value { + values { + string_value: "self" + } + values { + string_value: "observation" + } + values { + string_value: "step_type" + } + values { + string_value: "network_state" + } + values { + string_value: "training" + } + } + } + } + values { + key: "varargs" + value { + none_value { + } + } + } + values { + key: "varkw" + value { + none_value { + } + } + } + values { + key: "defaults" + value { + list_value { + values { + none_value { + } + } + values { + tuple_value { + } + } + values { + bool_value: false + } + } + } + } + values { + key: "kwonlyargs" + value { + list_value { + } + } + } + values { + key: "kwonlydefaults" + value { + dict_value { + } + } + } + values { + key: "annotations" + value { + dict_value { + } + } + } + } + } + is_method: true + input_signature { + none_value { + } + } + } + } + } + nodes { + function { + function_spec { + fullargspec { + named_tuple_value { + name: "FullArgSpec" + values { + key: "args" + value { + list_value { + values { + string_value: "self" + } + values { + string_value: "inputs" + } + } + } + } + values { + key: "varargs" + value { + none_value { + } + } + } + values { + key: "varkw" + value { + none_value { + } + } + } + values { + key: "defaults" + value { + none_value { + } + } + } + values { + key: "kwonlyargs" + value { + list_value { + } + } + } + values { + key: "kwonlydefaults" + value { + none_value { + } + } + } + values { + key: "annotations" + value { + dict_value { + } + } + } + } + } + is_method: true + input_signature { + none_value { + } + } + } + } + } + nodes { + function { + function_spec { + fullargspec { + named_tuple_value { + name: "FullArgSpec" + values { + key: "args" + value { + list_value { + values { + string_value: "self" + } + values { + string_value: "inputs" + } + } + } + } + values { + key: "varargs" + value { + none_value { + } + } + } + values { + key: "varkw" + value { + none_value { + } + } + } + values { + key: "defaults" + value { + none_value { + } + } + } + values { + key: "kwonlyargs" + value { + list_value { + } + } + } + values { + key: "kwonlydefaults" + value { + none_value { + } + } + } + values { + key: "annotations" + value { + dict_value { + } + } + } + } + } + is_method: true + input_signature { + none_value { + } + } + } + } + } + nodes { + function { + function_spec { + fullargspec { + named_tuple_value { + name: "FullArgSpec" + values { + key: "args" + value { + list_value { + values { + string_value: "self" + } + values { + string_value: "inputs" + } + } + } + } + values { + key: "varargs" + value { + none_value { + } + } + } + values { + key: "varkw" + value { + none_value { + } + } + } + values { + key: "defaults" + value { + none_value { + } + } + } + values { + key: "kwonlyargs" + value { + list_value { + } + } + } + values { + key: "kwonlydefaults" + value { + none_value { + } + } + } + values { + key: "annotations" + value { + dict_value { + } + } + } + } + } + is_method: true + input_signature { + none_value { + } + } + } + } + } + nodes { + function { + function_spec { + fullargspec { + named_tuple_value { + name: "FullArgSpec" + values { + key: "args" + value { + list_value { + values { + string_value: "self" + } + values { + string_value: "inputs" + } + } + } + } + values { + key: "varargs" + value { + none_value { + } + } + } + values { + key: "varkw" + value { + none_value { + } + } + } + values { + key: "defaults" + value { + none_value { + } + } + } + values { + key: "kwonlyargs" + value { + list_value { + } + } + } + values { + key: "kwonlydefaults" + value { + none_value { + } + } + } + values { + key: "annotations" + value { + dict_value { + } + } + } + } + } + is_method: true + input_signature { + none_value { + } + } + } + } + } + nodes { + function { + function_spec { + fullargspec { + named_tuple_value { + name: "FullArgSpec" + values { + key: "args" + value { + list_value { + values { + string_value: "self" + } + values { + string_value: "inputs" + } + values { + string_value: "mask" + } + values { + string_value: "training" + } + } + } + } + values { + key: "varargs" + value { + none_value { + } + } + } + values { + key: "varkw" + value { + none_value { + } + } + } + values { + key: "defaults" + value { + list_value { + values { + none_value { + } + } + values { + bool_value: false + } + } + } + } + values { + key: "kwonlyargs" + value { + list_value { + } + } + } + values { + key: "kwonlydefaults" + value { + dict_value { + } + } + } + values { + key: "annotations" + value { + dict_value { + } + } + } + } + } + is_method: true + input_signature { + none_value { + } + } + } + } + } + nodes { + function { + function_spec { + fullargspec { + named_tuple_value { + name: "FullArgSpec" + values { + key: "args" + value { + list_value { + values { + string_value: "self" + } + values { + string_value: "inputs" + } + values { + string_value: "mask" + } + values { + string_value: "training" + } + } + } + } + values { + key: "varargs" + value { + none_value { + } + } + } + values { + key: "varkw" + value { + none_value { + } + } + } + values { + key: "defaults" + value { + list_value { + values { + none_value { + } + } + values { + bool_value: false + } + } + } + } + values { + key: "kwonlyargs" + value { + list_value { + } + } + } + values { + key: "kwonlydefaults" + value { + dict_value { + } + } + } + values { + key: "annotations" + value { + dict_value { + } + } + } + } + } + is_method: true + input_signature { + none_value { + } + } + } + } + } + nodes { + function { + function_spec { + fullargspec { + named_tuple_value { + name: "FullArgSpec" + values { + key: "args" + value { + list_value { + values { + string_value: "self" + } + values { + string_value: "inputs" + } + values { + string_value: "mask" + } + values { + string_value: "training" + } + } + } + } + values { + key: "varargs" + value { + none_value { + } + } + } + values { + key: "varkw" + value { + none_value { + } + } + } + values { + key: "defaults" + value { + list_value { + values { + none_value { + } + } + values { + bool_value: false + } + } + } + } + values { + key: "kwonlyargs" + value { + list_value { + } + } + } + values { + key: "kwonlydefaults" + value { + dict_value { + } + } + } + values { + key: "annotations" + value { + dict_value { + } + } + } + } + } + is_method: true + input_signature { + none_value { + } + } + } + } + } + nodes { + function { + function_spec { + fullargspec { + named_tuple_value { + name: "FullArgSpec" + values { + key: "args" + value { + list_value { + values { + string_value: "self" + } + values { + string_value: "inputs" + } + values { + string_value: "mask" + } + values { + string_value: "training" + } + } + } + } + values { + key: "varargs" + value { + none_value { + } + } + } + values { + key: "varkw" + value { + none_value { + } + } + } + values { + key: "defaults" + value { + list_value { + values { + none_value { + } + } + values { + bool_value: false + } + } + } + } + values { + key: "kwonlyargs" + value { + list_value { + } + } + } + values { + key: "kwonlydefaults" + value { + dict_value { + } + } + } + values { + key: "annotations" + value { + dict_value { + } + } + } + } + } + is_method: true + input_signature { + none_value { + } + } + } + } + } + nodes { + function { + function_spec { + fullargspec { + named_tuple_value { + name: "FullArgSpec" + values { + key: "args" + value { + list_value { + values { + string_value: "self" + } + values { + string_value: "inputs" + } + values { + string_value: "mask" + } + values { + string_value: "training" + } + } + } + } + values { + key: "varargs" + value { + none_value { + } + } + } + values { + key: "varkw" + value { + none_value { + } + } + } + values { + key: "defaults" + value { + list_value { + values { + none_value { + } + } + values { + bool_value: false + } + } + } + } + values { + key: "kwonlyargs" + value { + list_value { + } + } + } + values { + key: "kwonlydefaults" + value { + dict_value { + } + } + } + values { + key: "annotations" + value { + dict_value { + } + } + } + } + } + is_method: true + input_signature { + none_value { + } + } + } + } + } + nodes { + function { + function_spec { + fullargspec { + named_tuple_value { + name: "FullArgSpec" + values { + key: "args" + value { + list_value { + values { + string_value: "self" + } + values { + string_value: "inputs" + } + values { + string_value: "mask" + } + values { + string_value: "training" + } + } + } + } + values { + key: "varargs" + value { + none_value { + } + } + } + values { + key: "varkw" + value { + none_value { + } + } + } + values { + key: "defaults" + value { + list_value { + values { + none_value { + } + } + values { + bool_value: false + } + } + } + } + values { + key: "kwonlyargs" + value { + list_value { + } + } + } + values { + key: "kwonlydefaults" + value { + dict_value { + } + } + } + values { + key: "annotations" + value { + dict_value { + } + } + } + } + } + is_method: true + input_signature { + none_value { + } + } + } + } + } + nodes { + function { + function_spec { + fullargspec { + named_tuple_value { + name: "FullArgSpec" + values { + key: "args" + value { + list_value { + values { + string_value: "self" + } + values { + string_value: "inputs" + } + values { + string_value: "mask" + } + values { + string_value: "training" + } + } + } + } + values { + key: "varargs" + value { + none_value { + } + } + } + values { + key: "varkw" + value { + none_value { + } + } + } + values { + key: "defaults" + value { + list_value { + values { + none_value { + } + } + values { + bool_value: false + } + } + } + } + values { + key: "kwonlyargs" + value { + list_value { + } + } + } + values { + key: "kwonlydefaults" + value { + dict_value { + } + } + } + values { + key: "annotations" + value { + dict_value { + } + } + } + } + } + is_method: true + input_signature { + none_value { + } + } + } + } + } + nodes { + function { + function_spec { + fullargspec { + named_tuple_value { + name: "FullArgSpec" + values { + key: "args" + value { + list_value { + values { + string_value: "self" + } + values { + string_value: "inputs" + } + values { + string_value: "mask" + } + values { + string_value: "training" + } + } + } + } + values { + key: "varargs" + value { + none_value { + } + } + } + values { + key: "varkw" + value { + none_value { + } + } + } + values { + key: "defaults" + value { + list_value { + values { + none_value { + } + } + values { + bool_value: false + } + } + } + } + values { + key: "kwonlyargs" + value { + list_value { + } + } + } + values { + key: "kwonlydefaults" + value { + dict_value { + } + } + } + values { + key: "annotations" + value { + dict_value { + } + } + } + } + } + is_method: true + input_signature { + none_value { + } + } + } + } + } + nodes { + function { + function_spec { + fullargspec { + named_tuple_value { + name: "FullArgSpec" + values { + key: "args" + value { + list_value { + values { + string_value: "self" + } + values { + string_value: "inputs" + } + values { + string_value: "mask" + } + values { + string_value: "training" + } + } + } + } + values { + key: "varargs" + value { + none_value { + } + } + } + values { + key: "varkw" + value { + none_value { + } + } + } + values { + key: "defaults" + value { + list_value { + values { + none_value { + } + } + values { + bool_value: false + } + } + } + } + values { + key: "kwonlyargs" + value { + list_value { + } + } + } + values { + key: "kwonlydefaults" + value { + dict_value { + } + } + } + values { + key: "annotations" + value { + dict_value { + } + } + } + } + } + is_method: true + input_signature { + none_value { + } + } + } + } + } + nodes { + function { + function_spec { + fullargspec { + named_tuple_value { + name: "FullArgSpec" + values { + key: "args" + value { + list_value { + values { + string_value: "self" + } + values { + string_value: "inputs" + } + values { + string_value: "mask" + } + values { + string_value: "training" + } + } + } + } + values { + key: "varargs" + value { + none_value { + } + } + } + values { + key: "varkw" + value { + none_value { + } + } + } + values { + key: "defaults" + value { + list_value { + values { + none_value { + } + } + values { + bool_value: false + } + } + } + } + values { + key: "kwonlyargs" + value { + list_value { + } + } + } + values { + key: "kwonlydefaults" + value { + dict_value { + } + } + } + values { + key: "annotations" + value { + dict_value { + } + } + } + } + } + is_method: true + input_signature { + none_value { + } + } + } + } + } + nodes { + function { + function_spec { + fullargspec { + named_tuple_value { + name: "FullArgSpec" + values { + key: "args" + value { + list_value { + values { + string_value: "self" + } + values { + string_value: "inputs" + } + values { + string_value: "mask" + } + values { + string_value: "training" + } + } + } + } + values { + key: "varargs" + value { + none_value { + } + } + } + values { + key: "varkw" + value { + none_value { + } + } + } + values { + key: "defaults" + value { + list_value { + values { + none_value { + } + } + values { + bool_value: false + } + } + } + } + values { + key: "kwonlyargs" + value { + list_value { + } + } + } + values { + key: "kwonlydefaults" + value { + dict_value { + } + } + } + values { + key: "annotations" + value { + dict_value { + } + } + } + } + } + is_method: true + input_signature { + none_value { + } + } + } + } + } + nodes { + function { + function_spec { + fullargspec { + named_tuple_value { + name: "FullArgSpec" + values { + key: "args" + value { + list_value { + values { + string_value: "self" + } + values { + string_value: "inputs" + } + values { + string_value: "mask" + } + values { + string_value: "training" + } + } + } + } + values { + key: "varargs" + value { + none_value { + } + } + } + values { + key: "varkw" + value { + none_value { + } + } + } + values { + key: "defaults" + value { + list_value { + values { + none_value { + } + } + values { + bool_value: false + } + } + } + } + values { + key: "kwonlyargs" + value { + list_value { + } + } + } + values { + key: "kwonlydefaults" + value { + dict_value { + } + } + } + values { + key: "annotations" + value { + dict_value { + } + } + } + } + } + is_method: true + input_signature { + none_value { + } + } + } + } + } + nodes { + function { + function_spec { + fullargspec { + named_tuple_value { + name: "FullArgSpec" + values { + key: "args" + value { + list_value { + values { + string_value: "self" + } + values { + string_value: "inputs" + } + values { + string_value: "mask" + } + values { + string_value: "training" + } + } + } + } + values { + key: "varargs" + value { + none_value { + } + } + } + values { + key: "varkw" + value { + none_value { + } + } + } + values { + key: "defaults" + value { + list_value { + values { + none_value { + } + } + values { + bool_value: false + } + } + } + } + values { + key: "kwonlyargs" + value { + list_value { + } + } + } + values { + key: "kwonlydefaults" + value { + dict_value { + } + } + } + values { + key: "annotations" + value { + dict_value { + } + } + } + } + } + is_method: true + input_signature { + none_value { + } + } + } + } + } + nodes { + function { + function_spec { + fullargspec { + named_tuple_value { + name: "FullArgSpec" + values { + key: "args" + value { + list_value { + values { + string_value: "self" + } + values { + string_value: "inputs" + } + values { + string_value: "mask" + } + values { + string_value: "training" + } + } + } + } + values { + key: "varargs" + value { + none_value { + } + } + } + values { + key: "varkw" + value { + none_value { + } + } + } + values { + key: "defaults" + value { + list_value { + values { + none_value { + } + } + values { + bool_value: false + } + } + } + } + values { + key: "kwonlyargs" + value { + list_value { + } + } + } + values { + key: "kwonlydefaults" + value { + dict_value { + } + } + } + values { + key: "annotations" + value { + dict_value { + } + } + } + } + } + is_method: true + input_signature { + none_value { + } + } + } + } + } + nodes { + function { + function_spec { + fullargspec { + named_tuple_value { + name: "FullArgSpec" + values { + key: "args" + value { + list_value { + values { + string_value: "self" + } + values { + string_value: "inputs" + } + values { + string_value: "mask" + } + values { + string_value: "training" + } + } + } + } + values { + key: "varargs" + value { + none_value { + } + } + } + values { + key: "varkw" + value { + none_value { + } + } + } + values { + key: "defaults" + value { + list_value { + values { + none_value { + } + } + values { + bool_value: false + } + } + } + } + values { + key: "kwonlyargs" + value { + list_value { + } + } + } + values { + key: "kwonlydefaults" + value { + dict_value { + } + } + } + values { + key: "annotations" + value { + dict_value { + } + } + } + } + } + is_method: true + input_signature { + none_value { + } + } + } + } + } + nodes { + function { + function_spec { + fullargspec { + named_tuple_value { + name: "FullArgSpec" + values { + key: "args" + value { + list_value { + values { + string_value: "self" + } + values { + string_value: "inputs" + } + values { + string_value: "mask" + } + values { + string_value: "training" + } + } + } + } + values { + key: "varargs" + value { + none_value { + } + } + } + values { + key: "varkw" + value { + none_value { + } + } + } + values { + key: "defaults" + value { + list_value { + values { + none_value { + } + } + values { + bool_value: false + } + } + } + } + values { + key: "kwonlyargs" + value { + list_value { + } + } + } + values { + key: "kwonlydefaults" + value { + dict_value { + } + } + } + values { + key: "annotations" + value { + dict_value { + } + } + } + } + } + is_method: true + input_signature { + none_value { + } + } + } + } + } + nodes { + function { + function_spec { + fullargspec { + named_tuple_value { + name: "FullArgSpec" + values { + key: "args" + value { + list_value { + values { + string_value: "self" + } + values { + string_value: "inputs" + } + values { + string_value: "mask" + } + values { + string_value: "training" + } + } + } + } + values { + key: "varargs" + value { + none_value { + } + } + } + values { + key: "varkw" + value { + none_value { + } + } + } + values { + key: "defaults" + value { + list_value { + values { + none_value { + } + } + values { + bool_value: false + } + } + } + } + values { + key: "kwonlyargs" + value { + list_value { + } + } + } + values { + key: "kwonlydefaults" + value { + dict_value { + } + } + } + values { + key: "annotations" + value { + dict_value { + } + } + } + } + } + is_method: true + input_signature { + none_value { + } + } + } + } + } + nodes { + function { + function_spec { + fullargspec { + named_tuple_value { + name: "FullArgSpec" + values { + key: "args" + value { + list_value { + values { + string_value: "self" + } + values { + string_value: "inputs" + } + values { + string_value: "mask" + } + values { + string_value: "training" + } + } + } + } + values { + key: "varargs" + value { + none_value { + } + } + } + values { + key: "varkw" + value { + none_value { + } + } + } + values { + key: "defaults" + value { + list_value { + values { + none_value { + } + } + values { + bool_value: false + } + } + } + } + values { + key: "kwonlyargs" + value { + list_value { + } + } + } + values { + key: "kwonlydefaults" + value { + dict_value { + } + } + } + values { + key: "annotations" + value { + dict_value { + } + } + } + } + } + is_method: true + input_signature { + none_value { + } + } + } + } + } + nodes { + function { + function_spec { + fullargspec { + named_tuple_value { + name: "FullArgSpec" + values { + key: "args" + value { + list_value { + values { + string_value: "self" + } + values { + string_value: "inputs" + } + values { + string_value: "mask" + } + values { + string_value: "training" + } + } + } + } + values { + key: "varargs" + value { + none_value { + } + } + } + values { + key: "varkw" + value { + none_value { + } + } + } + values { + key: "defaults" + value { + list_value { + values { + none_value { + } + } + values { + bool_value: false + } + } + } + } + values { + key: "kwonlyargs" + value { + list_value { + } + } + } + values { + key: "kwonlydefaults" + value { + dict_value { + } + } + } + values { + key: "annotations" + value { + dict_value { + } + } + } + } + } + is_method: true + input_signature { + none_value { + } + } + } + } + } + nodes { + function { + function_spec { + fullargspec { + named_tuple_value { + name: "FullArgSpec" + values { + key: "args" + value { + list_value { + values { + string_value: "self" + } + values { + string_value: "inputs" + } + values { + string_value: "mask" + } + values { + string_value: "training" + } + } + } + } + values { + key: "varargs" + value { + none_value { + } + } + } + values { + key: "varkw" + value { + none_value { + } + } + } + values { + key: "defaults" + value { + list_value { + values { + none_value { + } + } + values { + bool_value: false + } + } + } + } + values { + key: "kwonlyargs" + value { + list_value { + } + } + } + values { + key: "kwonlydefaults" + value { + dict_value { + } + } + } + values { + key: "annotations" + value { + dict_value { + } + } + } + } + } + is_method: true + input_signature { + none_value { + } + } + } + } + } + nodes { + function { + function_spec { + fullargspec { + named_tuple_value { + name: "FullArgSpec" + values { + key: "args" + value { + list_value { + values { + string_value: "self" + } + values { + string_value: "inputs" + } + values { + string_value: "mask" + } + values { + string_value: "training" + } + } + } + } + values { + key: "varargs" + value { + none_value { + } + } + } + values { + key: "varkw" + value { + none_value { + } + } + } + values { + key: "defaults" + value { + list_value { + values { + none_value { + } + } + values { + bool_value: false + } + } + } + } + values { + key: "kwonlyargs" + value { + list_value { + } + } + } + values { + key: "kwonlydefaults" + value { + dict_value { + } + } + } + values { + key: "annotations" + value { + dict_value { + } + } + } + } + } + is_method: true + input_signature { + none_value { + } + } + } + } + } + nodes { + function { + function_spec { + fullargspec { + named_tuple_value { + name: "FullArgSpec" + values { + key: "args" + value { + list_value { + values { + string_value: "self" + } + values { + string_value: "inputs" + } + values { + string_value: "mask" + } + values { + string_value: "training" + } + } + } + } + values { + key: "varargs" + value { + none_value { + } + } + } + values { + key: "varkw" + value { + none_value { + } + } + } + values { + key: "defaults" + value { + list_value { + values { + none_value { + } + } + values { + bool_value: false + } + } + } + } + values { + key: "kwonlyargs" + value { + list_value { + } + } + } + values { + key: "kwonlydefaults" + value { + dict_value { + } + } + } + values { + key: "annotations" + value { + dict_value { + } + } + } + } + } + is_method: true + input_signature { + none_value { + } + } + } + } + } + nodes { + function { + function_spec { + fullargspec { + named_tuple_value { + name: "FullArgSpec" + values { + key: "args" + value { + list_value { + values { + string_value: "self" + } + values { + string_value: "inputs" + } + values { + string_value: "mask" + } + values { + string_value: "training" + } + } + } + } + values { + key: "varargs" + value { + none_value { + } + } + } + values { + key: "varkw" + value { + none_value { + } + } + } + values { + key: "defaults" + value { + list_value { + values { + none_value { + } + } + values { + bool_value: false + } + } + } + } + values { + key: "kwonlyargs" + value { + list_value { + } + } + } + values { + key: "kwonlydefaults" + value { + dict_value { + } + } + } + values { + key: "annotations" + value { + dict_value { + } + } + } + } + } + is_method: true + input_signature { + none_value { + } + } + } + } + } + nodes { + function { + function_spec { + fullargspec { + named_tuple_value { + name: "FullArgSpec" + values { + key: "args" + value { + list_value { + values { + string_value: "self" + } + values { + string_value: "inputs" + } + values { + string_value: "mask" + } + values { + string_value: "training" + } + } + } + } + values { + key: "varargs" + value { + none_value { + } + } + } + values { + key: "varkw" + value { + none_value { + } + } + } + values { + key: "defaults" + value { + list_value { + values { + none_value { + } + } + values { + bool_value: false + } + } + } + } + values { + key: "kwonlyargs" + value { + list_value { + } + } + } + values { + key: "kwonlydefaults" + value { + dict_value { + } + } + } + values { + key: "annotations" + value { + dict_value { + } + } + } + } + } + is_method: true + input_signature { + none_value { + } + } + } + } + } + nodes { + function { + function_spec { + fullargspec { + named_tuple_value { + name: "FullArgSpec" + values { + key: "args" + value { + list_value { + values { + string_value: "self" + } + values { + string_value: "inputs" + } + } + } + } + values { + key: "varargs" + value { + none_value { + } + } + } + values { + key: "varkw" + value { + none_value { + } + } + } + values { + key: "defaults" + value { + none_value { + } + } + } + values { + key: "kwonlyargs" + value { + list_value { + } + } + } + values { + key: "kwonlydefaults" + value { + none_value { + } + } + } + values { + key: "annotations" + value { + dict_value { + } + } + } + } + } + is_method: true + input_signature { + none_value { + } + } + } + } + } + nodes { + function { + function_spec { + fullargspec { + named_tuple_value { + name: "FullArgSpec" + values { + key: "args" + value { + list_value { + values { + string_value: "self" + } + values { + string_value: "inputs" + } + } + } + } + values { + key: "varargs" + value { + none_value { + } + } + } + values { + key: "varkw" + value { + none_value { + } + } + } + values { + key: "defaults" + value { + none_value { + } + } + } + values { + key: "kwonlyargs" + value { + list_value { + } + } + } + values { + key: "kwonlydefaults" + value { + none_value { + } + } + } + values { + key: "annotations" + value { + dict_value { + } + } + } + } + } + is_method: true + input_signature { + none_value { + } + } + } + } + } + nodes { + function { + function_spec { + fullargspec { + named_tuple_value { + name: "FullArgSpec" + values { + key: "args" + value { + list_value { + values { + string_value: "self" + } + values { + string_value: "inputs" + } + } + } + } + values { + key: "varargs" + value { + none_value { + } + } + } + values { + key: "varkw" + value { + none_value { + } + } + } + values { + key: "defaults" + value { + none_value { + } + } + } + values { + key: "kwonlyargs" + value { + list_value { + } + } + } + values { + key: "kwonlydefaults" + value { + none_value { + } + } + } + values { + key: "annotations" + value { + dict_value { + } + } + } + } + } + is_method: true + input_signature { + none_value { + } + } + } + } + } + nodes { + function { + function_spec { + fullargspec { + named_tuple_value { + name: "FullArgSpec" + values { + key: "args" + value { + list_value { + values { + string_value: "self" + } + values { + string_value: "inputs" + } + } + } + } + values { + key: "varargs" + value { + none_value { + } + } + } + values { + key: "varkw" + value { + none_value { + } + } + } + values { + key: "defaults" + value { + none_value { + } + } + } + values { + key: "kwonlyargs" + value { + list_value { + } + } + } + values { + key: "kwonlydefaults" + value { + none_value { + } + } + } + values { + key: "annotations" + value { + dict_value { + } + } + } + } + } + is_method: true + input_signature { + none_value { + } + } + } + } + } + nodes { + function { + function_spec { + fullargspec { + named_tuple_value { + name: "FullArgSpec" + values { + key: "args" + value { + list_value { + values { + string_value: "self" + } + values { + string_value: "inputs" + } + } + } + } + values { + key: "varargs" + value { + none_value { + } + } + } + values { + key: "varkw" + value { + none_value { + } + } + } + values { + key: "defaults" + value { + none_value { + } + } + } + values { + key: "kwonlyargs" + value { + list_value { + } + } + } + values { + key: "kwonlydefaults" + value { + none_value { + } + } + } + values { + key: "annotations" + value { + dict_value { + } + } + } + } + } + is_method: true + input_signature { + none_value { + } + } + } + } + } + nodes { + function { + function_spec { + fullargspec { + named_tuple_value { + name: "FullArgSpec" + values { + key: "args" + value { + list_value { + values { + string_value: "self" + } + values { + string_value: "inputs" + } + } + } + } + values { + key: "varargs" + value { + none_value { + } + } + } + values { + key: "varkw" + value { + none_value { + } + } + } + values { + key: "defaults" + value { + none_value { + } + } + } + values { + key: "kwonlyargs" + value { + list_value { + } + } + } + values { + key: "kwonlydefaults" + value { + none_value { + } + } + } + values { + key: "annotations" + value { + dict_value { + } + } + } + } + } + is_method: true + input_signature { + none_value { + } + } + } + } + } + concrete_functions { + key: "__inference_<lambda>_728" + value { + bound_inputs: 4 + canonicalized_input_signature { + tuple_value { + values { + tuple_value { + } + } + values { + dict_value { + } + } + } + } + output_signature { + tensor_spec_value { + shape { + } + dtype: DT_INT64 + } + } + } + } + concrete_functions { + key: "__inference_function_722" + value { + canonicalized_input_signature { + tuple_value { + values { + tuple_value { + } + } + values { + dict_value { + } + } + } + } + output_signature { + tuple_value { + } + } + } + } + concrete_functions { + key: "__inference_polymorphic_action_fn_4619080" + value { + bound_inputs: 10 + bound_inputs: 11 + bound_inputs: 12 + bound_inputs: 13 + bound_inputs: 14 + bound_inputs: 15 + canonicalized_input_signature { + tuple_value { + values { + tuple_value { + values { + named_tuple_value { + name: "TimeStep" + values { + key: "step_type" + value { + tensor_spec_value { + name: "time_step/step_type" + shape { + dim { + size: 1 + } + } + dtype: DT_INT32 + } + } + } + values { + key: "reward" + value { + tensor_spec_value { + name: "time_step/reward" + shape { + dim { + size: 1 + } + } + dtype: DT_FLOAT + } + } + } + values { + key: "discount" + value { + tensor_spec_value { + name: "time_step/discount" + shape { + dim { + size: 1 + } + } + dtype: DT_FLOAT + } + } + } + values { + key: "observation" + value { + dict_value { + fields { + key: "callee_basic_block_count" + value { + tensor_spec_value { + name: "time_step/observation/callee_basic_block_count" + shape { + dim { + size: 1 + } + } + dtype: DT_INT64 + } + } + } + fields { + key: "callee_conditionally_executed_blocks" + value { + tensor_spec_value { + name: "time_step/observation/callee_conditionally_executed_blocks" + shape { + dim { + size: 1 + } + } + dtype: DT_INT64 + } + } + } + fields { + key: "callee_users" + value { + tensor_spec_value { + name: "time_step/observation/callee_users" + shape { + dim { + size: 1 + } + } + dtype: DT_INT64 + } + } + } + fields { + key: "caller_basic_block_count" + value { + tensor_spec_value { + name: "time_step/observation/caller_basic_block_count" + shape { + dim { + size: 1 + } + } + dtype: DT_INT64 + } + } + } + fields { + key: "caller_conditionally_executed_blocks" + value { + tensor_spec_value { + name: "time_step/observation/caller_conditionally_executed_blocks" + shape { + dim { + size: 1 + } + } + dtype: DT_INT64 + } + } + } + fields { + key: "caller_users" + value { + tensor_spec_value { + name: "time_step/observation/caller_users" + shape { + dim { + size: 1 + } + } + dtype: DT_INT64 + } + } + } + fields { + key: "callsite_height" + value { + tensor_spec_value { + name: "time_step/observation/callsite_height" + shape { + dim { + size: 1 + } + } + dtype: DT_INT64 + } + } + } + fields { + key: "cost_estimate" + value { + tensor_spec_value { + name: "time_step/observation/cost_estimate" + shape { + dim { + size: 1 + } + } + dtype: DT_INT64 + } + } + } + fields { + key: "edge_count" + value { + tensor_spec_value { + name: "time_step/observation/edge_count" + shape { + dim { + size: 1 + } + } + dtype: DT_INT64 + } + } + } + fields { + key: "inlining_default" + value { + tensor_spec_value { + name: "time_step/observation/inlining_default" + shape { + dim { + size: 1 + } + } + dtype: DT_INT64 + } + } + } + fields { + key: "node_count" + value { + tensor_spec_value { + name: "time_step/observation/node_count" + shape { + dim { + size: 1 + } + } + dtype: DT_INT64 + } + } + } + fields { + key: "nr_ctant_params" + value { + tensor_spec_value { + name: "time_step/observation/nr_ctant_params" + shape { + dim { + size: 1 + } + } + dtype: DT_INT64 + } + } + } + } + } + } + } + } + values { + tuple_value { + } + } + } + } + values { + dict_value { + } + } + } + } + output_signature { + named_tuple_value { + name: "PolicyStep" + values { + key: "action" + value { + tensor_spec_value { + name: "action" + shape { + dim { + size: 1 + } + } + dtype: DT_INT64 + } + } + } + values { + key: "state" + value { + tuple_value { + } + } + } + values { + key: "info" + value { + tuple_value { + } + } + } + } + } + } + } + concrete_functions { + key: "__inference_polymorphic_action_fn_946" + value { + bound_inputs: 10 + bound_inputs: 11 + bound_inputs: 12 + bound_inputs: 13 + bound_inputs: 14 + bound_inputs: 15 + canonicalized_input_signature { + tuple_value { + values { + tuple_value { + values { + named_tuple_value { + name: "TimeStep" + values { + key: "step_type" + value { + tensor_spec_value { + name: "step_type" + shape { + dim { + size: 1 + } + } + dtype: DT_INT32 + } + } + } + values { + key: "reward" + value { + tensor_spec_value { + name: "reward" + shape { + dim { + size: 1 + } + } + dtype: DT_FLOAT + } + } + } + values { + key: "discount" + value { + tensor_spec_value { + name: "discount" + shape { + dim { + size: 1 + } + } + dtype: DT_FLOAT + } + } + } + values { + key: "observation" + value { + dict_value { + fields { + key: "callee_basic_block_count" + value { + tensor_spec_value { + name: "callee_basic_block_count" + shape { + dim { + size: 1 + } + } + dtype: DT_INT64 + } + } + } + fields { + key: "callee_conditionally_executed_blocks" + value { + tensor_spec_value { + name: "callee_conditionally_executed_blocks" + shape { + dim { + size: 1 + } + } + dtype: DT_INT64 + } + } + } + fields { + key: "callee_users" + value { + tensor_spec_value { + name: "callee_users" + shape { + dim { + size: 1 + } + } + dtype: DT_INT64 + } + } + } + fields { + key: "caller_basic_block_count" + value { + tensor_spec_value { + name: "caller_basic_block_count" + shape { + dim { + size: 1 + } + } + dtype: DT_INT64 + } + } + } + fields { + key: "caller_conditionally_executed_blocks" + value { + tensor_spec_value { + name: "caller_conditionally_executed_blocks" + shape { + dim { + size: 1 + } + } + dtype: DT_INT64 + } + } + } + fields { + key: "caller_users" + value { + tensor_spec_value { + name: "caller_users" + shape { + dim { + size: 1 + } + } + dtype: DT_INT64 + } + } + } + fields { + key: "callsite_height" + value { + tensor_spec_value { + name: "callsite_height" + shape { + dim { + size: 1 + } + } + dtype: DT_INT64 + } + } + } + fields { + key: "cost_estimate" + value { + tensor_spec_value { + name: "cost_estimate" + shape { + dim { + size: 1 + } + } + dtype: DT_INT64 + } + } + } + fields { + key: "edge_count" + value { + tensor_spec_value { + name: "edge_count" + shape { + dim { + size: 1 + } + } + dtype: DT_INT64 + } + } + } + fields { + key: "inlining_default" + value { + tensor_spec_value { + name: "inlining_default" + shape { + dim { + size: 1 + } + } + dtype: DT_INT64 + } + } + } + fields { + key: "node_count" + value { + tensor_spec_value { + name: "node_count" + shape { + dim { + size: 1 + } + } + dtype: DT_INT64 + } + } + } + fields { + key: "nr_ctant_params" + value { + tensor_spec_value { + name: "nr_ctant_params" + shape { + dim { + size: 1 + } + } + dtype: DT_INT64 + } + } + } + } + } + } + } + } + values { + tuple_value { + } + } + } + } + values { + dict_value { + } + } + } + } + output_signature { + named_tuple_value { + name: "PolicyStep" + values { + key: "action" + value { + tensor_spec_value { + name: "action" + shape { + dim { + size: 1 + } + } + dtype: DT_INT64 + } + } + } + values { + key: "state" + value { + tuple_value { + } + } + } + values { + key: "info" + value { + tuple_value { + } + } + } + } + } + } + } + concrete_functions { + key: "__inference_signature_wrapper_4619026" + value { + bound_inputs: 10 + bound_inputs: 11 + bound_inputs: 12 + bound_inputs: 13 + bound_inputs: 14 + bound_inputs: 15 + canonicalized_input_signature { + tuple_value { + values { + tuple_value { + } + } + values { + dict_value { + fields { + key: "callee_basic_block_count" + value { + tensor_spec_value { + name: "callee_basic_block_count" + shape { + dim { + size: 1 + } + } + dtype: DT_INT64 + } + } + } + fields { + key: "callee_conditionally_executed_blocks" + value { + tensor_spec_value { + name: "callee_conditionally_executed_blocks" + shape { + dim { + size: 1 + } + } + dtype: DT_INT64 + } + } + } + fields { + key: "callee_users" + value { + tensor_spec_value { + name: "callee_users" + shape { + dim { + size: 1 + } + } + dtype: DT_INT64 + } + } + } + fields { + key: "caller_basic_block_count" + value { + tensor_spec_value { + name: "caller_basic_block_count" + shape { + dim { + size: 1 + } + } + dtype: DT_INT64 + } + } + } + fields { + key: "caller_conditionally_executed_blocks" + value { + tensor_spec_value { + name: "caller_conditionally_executed_blocks" + shape { + dim { + size: 1 + } + } + dtype: DT_INT64 + } + } + } + fields { + key: "caller_users" + value { + tensor_spec_value { + name: "caller_users" + shape { + dim { + size: 1 + } + } + dtype: DT_INT64 + } + } + } + fields { + key: "callsite_height" + value { + tensor_spec_value { + name: "callsite_height" + shape { + dim { + size: 1 + } + } + dtype: DT_INT64 + } + } + } + fields { + key: "cost_estimate" + value { + tensor_spec_value { + name: "cost_estimate" + shape { + dim { + size: 1 + } + } + dtype: DT_INT64 + } + } + } + fields { + key: "discount" + value { + tensor_spec_value { + name: "discount" + shape { + dim { + size: 1 + } + } + dtype: DT_FLOAT + } + } + } + fields { + key: "edge_count" + value { + tensor_spec_value { + name: "edge_count" + shape { + dim { + size: 1 + } + } + dtype: DT_INT64 + } + } + } + fields { + key: "inlining_default" + value { + tensor_spec_value { + name: "inlining_default" + shape { + dim { + size: 1 + } + } + dtype: DT_INT64 + } + } + } + fields { + key: "node_count" + value { + tensor_spec_value { + name: "node_count" + shape { + dim { + size: 1 + } + } + dtype: DT_INT64 + } + } + } + fields { + key: "nr_ctant_params" + value { + tensor_spec_value { + name: "nr_ctant_params" + shape { + dim { + size: 1 + } + } + dtype: DT_INT64 + } + } + } + fields { + key: "reward" + value { + tensor_spec_value { + name: "reward" + shape { + dim { + size: 1 + } + } + dtype: DT_FLOAT + } + } + } + fields { + key: "step_type" + value { + tensor_spec_value { + name: "step_type" + shape { + dim { + size: 1 + } + } + dtype: DT_INT32 + } + } + } + } + } + } + } + output_signature { + dict_value { + fields { + key: "inlining_decision" + value { + tensor_spec_value { + name: "inlining_decision" + shape { + dim { + size: 1 + } + } + dtype: DT_INT64 + } + } + } + } + } + } + } + concrete_functions { + key: "__inference_signature_wrapper_4619033" + value { + canonicalized_input_signature { + tuple_value { + values { + tuple_value { + } + } + values { + dict_value { + } + } + } + } + output_signature { + dict_value { + } + } + } + } + concrete_functions { + key: "__inference_signature_wrapper_4619048" + value { + bound_inputs: 4 + canonicalized_input_signature { + tuple_value { + values { + tuple_value { + } + } + values { + dict_value { + } + } + } + } + output_signature { + dict_value { + fields { + key: "int64" + value { + tensor_spec_value { + name: "int64" + shape { + } + dtype: DT_INT64 + } + } + } + } + } + } + } + } +} + diff --git a/llvm/lib/Analysis/models/inliner/variables/variables.data-00000-of-00001 b/llvm/lib/Analysis/models/inliner/variables/variables.data-00000-of-00001 Binary files differnew file mode 100644 index 0000000000000..ee7d7060867e7 --- /dev/null +++ b/llvm/lib/Analysis/models/inliner/variables/variables.data-00000-of-00001 diff --git a/llvm/lib/Analysis/models/inliner/variables/variables.index b/llvm/lib/Analysis/models/inliner/variables/variables.index Binary files differnew file mode 100644 index 0000000000000..7e0c10c1780e0 --- /dev/null +++ b/llvm/lib/Analysis/models/inliner/variables/variables.index |