summaryrefslogtreecommitdiff
path: root/llvm/lib/CodeGen/GlobalISel/IRTranslator.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'llvm/lib/CodeGen/GlobalISel/IRTranslator.cpp')
-rw-r--r--llvm/lib/CodeGen/GlobalISel/IRTranslator.cpp2400
1 files changed, 2400 insertions, 0 deletions
diff --git a/llvm/lib/CodeGen/GlobalISel/IRTranslator.cpp b/llvm/lib/CodeGen/GlobalISel/IRTranslator.cpp
new file mode 100644
index 0000000000000..45cef4aca8884
--- /dev/null
+++ b/llvm/lib/CodeGen/GlobalISel/IRTranslator.cpp
@@ -0,0 +1,2400 @@
+//===- llvm/CodeGen/GlobalISel/IRTranslator.cpp - IRTranslator ---*- C++ -*-==//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+/// \file
+/// This file implements the IRTranslator class.
+//===----------------------------------------------------------------------===//
+
+#include "llvm/CodeGen/GlobalISel/IRTranslator.h"
+#include "llvm/ADT/PostOrderIterator.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/ScopeExit.h"
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/Analysis/BranchProbabilityInfo.h"
+#include "llvm/Analysis/OptimizationRemarkEmitter.h"
+#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/CodeGen/Analysis.h"
+#include "llvm/CodeGen/FunctionLoweringInfo.h"
+#include "llvm/CodeGen/GlobalISel/CallLowering.h"
+#include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
+#include "llvm/CodeGen/LowLevelType.h"
+#include "llvm/CodeGen/MachineBasicBlock.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineMemOperand.h"
+#include "llvm/CodeGen/MachineOperand.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/StackProtector.h"
+#include "llvm/CodeGen/TargetFrameLowering.h"
+#include "llvm/CodeGen/TargetInstrInfo.h"
+#include "llvm/CodeGen/TargetLowering.h"
+#include "llvm/CodeGen/TargetPassConfig.h"
+#include "llvm/CodeGen/TargetRegisterInfo.h"
+#include "llvm/CodeGen/TargetSubtargetInfo.h"
+#include "llvm/IR/BasicBlock.h"
+#include "llvm/IR/CFG.h"
+#include "llvm/IR/Constant.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DebugInfo.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/GetElementPtrTypeIterator.h"
+#include "llvm/IR/InlineAsm.h"
+#include "llvm/IR/InstrTypes.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Metadata.h"
+#include "llvm/IR/Type.h"
+#include "llvm/IR/User.h"
+#include "llvm/IR/Value.h"
+#include "llvm/MC/MCContext.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/CodeGen.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/LowLevelTypeImpl.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetIntrinsicInfo.h"
+#include "llvm/Target/TargetMachine.h"
+#include <algorithm>
+#include <cassert>
+#include <cstdint>
+#include <iterator>
+#include <string>
+#include <utility>
+#include <vector>
+
+#define DEBUG_TYPE "irtranslator"
+
+using namespace llvm;
+
+static cl::opt<bool>
+ EnableCSEInIRTranslator("enable-cse-in-irtranslator",
+ cl::desc("Should enable CSE in irtranslator"),
+ cl::Optional, cl::init(false));
+char IRTranslator::ID = 0;
+
+INITIALIZE_PASS_BEGIN(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI",
+ false, false)
+INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
+INITIALIZE_PASS_DEPENDENCY(GISelCSEAnalysisWrapperPass)
+INITIALIZE_PASS_END(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI",
+ false, false)
+
+static void reportTranslationError(MachineFunction &MF,
+ const TargetPassConfig &TPC,
+ OptimizationRemarkEmitter &ORE,
+ OptimizationRemarkMissed &R) {
+ MF.getProperties().set(MachineFunctionProperties::Property::FailedISel);
+
+ // Print the function name explicitly if we don't have a debug location (which
+ // makes the diagnostic less useful) or if we're going to emit a raw error.
+ if (!R.getLocation().isValid() || TPC.isGlobalISelAbortEnabled())
+ R << (" (in function: " + MF.getName() + ")").str();
+
+ if (TPC.isGlobalISelAbortEnabled())
+ report_fatal_error(R.getMsg());
+ else
+ ORE.emit(R);
+}
+
+IRTranslator::IRTranslator() : MachineFunctionPass(ID) { }
+
+#ifndef NDEBUG
+namespace {
+/// Verify that every instruction created has the same DILocation as the
+/// instruction being translated.
+class DILocationVerifier : public GISelChangeObserver {
+ const Instruction *CurrInst = nullptr;
+
+public:
+ DILocationVerifier() = default;
+ ~DILocationVerifier() = default;
+
+ const Instruction *getCurrentInst() const { return CurrInst; }
+ void setCurrentInst(const Instruction *Inst) { CurrInst = Inst; }
+
+ void erasingInstr(MachineInstr &MI) override {}
+ void changingInstr(MachineInstr &MI) override {}
+ void changedInstr(MachineInstr &MI) override {}
+
+ void createdInstr(MachineInstr &MI) override {
+ assert(getCurrentInst() && "Inserted instruction without a current MI");
+
+ // Only print the check message if we're actually checking it.
+#ifndef NDEBUG
+ LLVM_DEBUG(dbgs() << "Checking DILocation from " << *CurrInst
+ << " was copied to " << MI);
+#endif
+ // We allow insts in the entry block to have a debug loc line of 0 because
+ // they could have originated from constants, and we don't want a jumpy
+ // debug experience.
+ assert((CurrInst->getDebugLoc() == MI.getDebugLoc() ||
+ MI.getDebugLoc().getLine() == 0) &&
+ "Line info was not transferred to all instructions");
+ }
+};
+} // namespace
+#endif // ifndef NDEBUG
+
+
+void IRTranslator::getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.addRequired<StackProtector>();
+ AU.addRequired<TargetPassConfig>();
+ AU.addRequired<GISelCSEAnalysisWrapperPass>();
+ getSelectionDAGFallbackAnalysisUsage(AU);
+ MachineFunctionPass::getAnalysisUsage(AU);
+}
+
+IRTranslator::ValueToVRegInfo::VRegListT &
+IRTranslator::allocateVRegs(const Value &Val) {
+ assert(!VMap.contains(Val) && "Value already allocated in VMap");
+ auto *Regs = VMap.getVRegs(Val);
+ auto *Offsets = VMap.getOffsets(Val);
+ SmallVector<LLT, 4> SplitTys;
+ computeValueLLTs(*DL, *Val.getType(), SplitTys,
+ Offsets->empty() ? Offsets : nullptr);
+ for (unsigned i = 0; i < SplitTys.size(); ++i)
+ Regs->push_back(0);
+ return *Regs;
+}
+
+ArrayRef<Register> IRTranslator::getOrCreateVRegs(const Value &Val) {
+ auto VRegsIt = VMap.findVRegs(Val);
+ if (VRegsIt != VMap.vregs_end())
+ return *VRegsIt->second;
+
+ if (Val.getType()->isVoidTy())
+ return *VMap.getVRegs(Val);
+
+ // Create entry for this type.
+ auto *VRegs = VMap.getVRegs(Val);
+ auto *Offsets = VMap.getOffsets(Val);
+
+ assert(Val.getType()->isSized() &&
+ "Don't know how to create an empty vreg");
+
+ SmallVector<LLT, 4> SplitTys;
+ computeValueLLTs(*DL, *Val.getType(), SplitTys,
+ Offsets->empty() ? Offsets : nullptr);
+
+ if (!isa<Constant>(Val)) {
+ for (auto Ty : SplitTys)
+ VRegs->push_back(MRI->createGenericVirtualRegister(Ty));
+ return *VRegs;
+ }
+
+ if (Val.getType()->isAggregateType()) {
+ // UndefValue, ConstantAggregateZero
+ auto &C = cast<Constant>(Val);
+ unsigned Idx = 0;
+ while (auto Elt = C.getAggregateElement(Idx++)) {
+ auto EltRegs = getOrCreateVRegs(*Elt);
+ llvm::copy(EltRegs, std::back_inserter(*VRegs));
+ }
+ } else {
+ assert(SplitTys.size() == 1 && "unexpectedly split LLT");
+ VRegs->push_back(MRI->createGenericVirtualRegister(SplitTys[0]));
+ bool Success = translate(cast<Constant>(Val), VRegs->front());
+ if (!Success) {
+ OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
+ MF->getFunction().getSubprogram(),
+ &MF->getFunction().getEntryBlock());
+ R << "unable to translate constant: " << ore::NV("Type", Val.getType());
+ reportTranslationError(*MF, *TPC, *ORE, R);
+ return *VRegs;
+ }
+ }
+
+ return *VRegs;
+}
+
+int IRTranslator::getOrCreateFrameIndex(const AllocaInst &AI) {
+ if (FrameIndices.find(&AI) != FrameIndices.end())
+ return FrameIndices[&AI];
+
+ unsigned ElementSize = DL->getTypeAllocSize(AI.getAllocatedType());
+ unsigned Size =
+ ElementSize * cast<ConstantInt>(AI.getArraySize())->getZExtValue();
+
+ // Always allocate at least one byte.
+ Size = std::max(Size, 1u);
+
+ unsigned Alignment = AI.getAlignment();
+ if (!Alignment)
+ Alignment = DL->getABITypeAlignment(AI.getAllocatedType());
+
+ int &FI = FrameIndices[&AI];
+ FI = MF->getFrameInfo().CreateStackObject(Size, Alignment, false, &AI);
+ return FI;
+}
+
+unsigned IRTranslator::getMemOpAlignment(const Instruction &I) {
+ unsigned Alignment = 0;
+ Type *ValTy = nullptr;
+ if (const StoreInst *SI = dyn_cast<StoreInst>(&I)) {
+ Alignment = SI->getAlignment();
+ ValTy = SI->getValueOperand()->getType();
+ } else if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) {
+ Alignment = LI->getAlignment();
+ ValTy = LI->getType();
+ } else if (const AtomicCmpXchgInst *AI = dyn_cast<AtomicCmpXchgInst>(&I)) {
+ // TODO(PR27168): This instruction has no alignment attribute, but unlike
+ // the default alignment for load/store, the default here is to assume
+ // it has NATURAL alignment, not DataLayout-specified alignment.
+ const DataLayout &DL = AI->getModule()->getDataLayout();
+ Alignment = DL.getTypeStoreSize(AI->getCompareOperand()->getType());
+ ValTy = AI->getCompareOperand()->getType();
+ } else if (const AtomicRMWInst *AI = dyn_cast<AtomicRMWInst>(&I)) {
+ // TODO(PR27168): This instruction has no alignment attribute, but unlike
+ // the default alignment for load/store, the default here is to assume
+ // it has NATURAL alignment, not DataLayout-specified alignment.
+ const DataLayout &DL = AI->getModule()->getDataLayout();
+ Alignment = DL.getTypeStoreSize(AI->getValOperand()->getType());
+ ValTy = AI->getType();
+ } else {
+ OptimizationRemarkMissed R("gisel-irtranslator", "", &I);
+ R << "unable to translate memop: " << ore::NV("Opcode", &I);
+ reportTranslationError(*MF, *TPC, *ORE, R);
+ return 1;
+ }
+
+ return Alignment ? Alignment : DL->getABITypeAlignment(ValTy);
+}
+
+MachineBasicBlock &IRTranslator::getMBB(const BasicBlock &BB) {
+ MachineBasicBlock *&MBB = BBToMBB[&BB];
+ assert(MBB && "BasicBlock was not encountered before");
+ return *MBB;
+}
+
+void IRTranslator::addMachineCFGPred(CFGEdge Edge, MachineBasicBlock *NewPred) {
+ assert(NewPred && "new predecessor must be a real MachineBasicBlock");
+ MachinePreds[Edge].push_back(NewPred);
+}
+
+bool IRTranslator::translateBinaryOp(unsigned Opcode, const User &U,
+ MachineIRBuilder &MIRBuilder) {
+ // Get or create a virtual register for each value.
+ // Unless the value is a Constant => loadimm cst?
+ // or inline constant each time?
+ // Creation of a virtual register needs to have a size.
+ Register Op0 = getOrCreateVReg(*U.getOperand(0));
+ Register Op1 = getOrCreateVReg(*U.getOperand(1));
+ Register Res = getOrCreateVReg(U);
+ uint16_t Flags = 0;
+ if (isa<Instruction>(U)) {
+ const Instruction &I = cast<Instruction>(U);
+ Flags = MachineInstr::copyFlagsFromInstruction(I);
+ }
+
+ MIRBuilder.buildInstr(Opcode, {Res}, {Op0, Op1}, Flags);
+ return true;
+}
+
+bool IRTranslator::translateFSub(const User &U, MachineIRBuilder &MIRBuilder) {
+ // -0.0 - X --> G_FNEG
+ if (isa<Constant>(U.getOperand(0)) &&
+ U.getOperand(0) == ConstantFP::getZeroValueForNegation(U.getType())) {
+ Register Op1 = getOrCreateVReg(*U.getOperand(1));
+ Register Res = getOrCreateVReg(U);
+ uint16_t Flags = 0;
+ if (isa<Instruction>(U)) {
+ const Instruction &I = cast<Instruction>(U);
+ Flags = MachineInstr::copyFlagsFromInstruction(I);
+ }
+ // Negate the last operand of the FSUB
+ MIRBuilder.buildInstr(TargetOpcode::G_FNEG, {Res}, {Op1}, Flags);
+ return true;
+ }
+ return translateBinaryOp(TargetOpcode::G_FSUB, U, MIRBuilder);
+}
+
+bool IRTranslator::translateFNeg(const User &U, MachineIRBuilder &MIRBuilder) {
+ Register Op0 = getOrCreateVReg(*U.getOperand(0));
+ Register Res = getOrCreateVReg(U);
+ uint16_t Flags = 0;
+ if (isa<Instruction>(U)) {
+ const Instruction &I = cast<Instruction>(U);
+ Flags = MachineInstr::copyFlagsFromInstruction(I);
+ }
+ MIRBuilder.buildInstr(TargetOpcode::G_FNEG, {Res}, {Op0}, Flags);
+ return true;
+}
+
+bool IRTranslator::translateCompare(const User &U,
+ MachineIRBuilder &MIRBuilder) {
+ auto *CI = dyn_cast<CmpInst>(&U);
+ Register Op0 = getOrCreateVReg(*U.getOperand(0));
+ Register Op1 = getOrCreateVReg(*U.getOperand(1));
+ Register Res = getOrCreateVReg(U);
+ CmpInst::Predicate Pred =
+ CI ? CI->getPredicate() : static_cast<CmpInst::Predicate>(
+ cast<ConstantExpr>(U).getPredicate());
+ if (CmpInst::isIntPredicate(Pred))
+ MIRBuilder.buildICmp(Pred, Res, Op0, Op1);
+ else if (Pred == CmpInst::FCMP_FALSE)
+ MIRBuilder.buildCopy(
+ Res, getOrCreateVReg(*Constant::getNullValue(U.getType())));
+ else if (Pred == CmpInst::FCMP_TRUE)
+ MIRBuilder.buildCopy(
+ Res, getOrCreateVReg(*Constant::getAllOnesValue(U.getType())));
+ else {
+ assert(CI && "Instruction should be CmpInst");
+ MIRBuilder.buildInstr(TargetOpcode::G_FCMP, {Res}, {Pred, Op0, Op1},
+ MachineInstr::copyFlagsFromInstruction(*CI));
+ }
+
+ return true;
+}
+
+bool IRTranslator::translateRet(const User &U, MachineIRBuilder &MIRBuilder) {
+ const ReturnInst &RI = cast<ReturnInst>(U);
+ const Value *Ret = RI.getReturnValue();
+ if (Ret && DL->getTypeStoreSize(Ret->getType()) == 0)
+ Ret = nullptr;
+
+ ArrayRef<Register> VRegs;
+ if (Ret)
+ VRegs = getOrCreateVRegs(*Ret);
+
+ Register SwiftErrorVReg = 0;
+ if (CLI->supportSwiftError() && SwiftError.getFunctionArg()) {
+ SwiftErrorVReg = SwiftError.getOrCreateVRegUseAt(
+ &RI, &MIRBuilder.getMBB(), SwiftError.getFunctionArg());
+ }
+
+ // The target may mess up with the insertion point, but
+ // this is not important as a return is the last instruction
+ // of the block anyway.
+ return CLI->lowerReturn(MIRBuilder, Ret, VRegs, SwiftErrorVReg);
+}
+
+bool IRTranslator::translateBr(const User &U, MachineIRBuilder &MIRBuilder) {
+ const BranchInst &BrInst = cast<BranchInst>(U);
+ unsigned Succ = 0;
+ if (!BrInst.isUnconditional()) {
+ // We want a G_BRCOND to the true BB followed by an unconditional branch.
+ Register Tst = getOrCreateVReg(*BrInst.getCondition());
+ const BasicBlock &TrueTgt = *cast<BasicBlock>(BrInst.getSuccessor(Succ++));
+ MachineBasicBlock &TrueBB = getMBB(TrueTgt);
+ MIRBuilder.buildBrCond(Tst, TrueBB);
+ }
+
+ const BasicBlock &BrTgt = *cast<BasicBlock>(BrInst.getSuccessor(Succ));
+ MachineBasicBlock &TgtBB = getMBB(BrTgt);
+ MachineBasicBlock &CurBB = MIRBuilder.getMBB();
+
+ // If the unconditional target is the layout successor, fallthrough.
+ if (!CurBB.isLayoutSuccessor(&TgtBB))
+ MIRBuilder.buildBr(TgtBB);
+
+ // Link successors.
+ for (const BasicBlock *Succ : successors(&BrInst))
+ CurBB.addSuccessor(&getMBB(*Succ));
+ return true;
+}
+
+void IRTranslator::addSuccessorWithProb(MachineBasicBlock *Src,
+ MachineBasicBlock *Dst,
+ BranchProbability Prob) {
+ if (!FuncInfo.BPI) {
+ Src->addSuccessorWithoutProb(Dst);
+ return;
+ }
+ if (Prob.isUnknown())
+ Prob = getEdgeProbability(Src, Dst);
+ Src->addSuccessor(Dst, Prob);
+}
+
+BranchProbability
+IRTranslator::getEdgeProbability(const MachineBasicBlock *Src,
+ const MachineBasicBlock *Dst) const {
+ const BasicBlock *SrcBB = Src->getBasicBlock();
+ const BasicBlock *DstBB = Dst->getBasicBlock();
+ if (!FuncInfo.BPI) {
+ // If BPI is not available, set the default probability as 1 / N, where N is
+ // the number of successors.
+ auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
+ return BranchProbability(1, SuccSize);
+ }
+ return FuncInfo.BPI->getEdgeProbability(SrcBB, DstBB);
+}
+
+bool IRTranslator::translateSwitch(const User &U, MachineIRBuilder &MIB) {
+ using namespace SwitchCG;
+ // Extract cases from the switch.
+ const SwitchInst &SI = cast<SwitchInst>(U);
+ BranchProbabilityInfo *BPI = FuncInfo.BPI;
+ CaseClusterVector Clusters;
+ Clusters.reserve(SI.getNumCases());
+ for (auto &I : SI.cases()) {
+ MachineBasicBlock *Succ = &getMBB(*I.getCaseSuccessor());
+ assert(Succ && "Could not find successor mbb in mapping");
+ const ConstantInt *CaseVal = I.getCaseValue();
+ BranchProbability Prob =
+ BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
+ : BranchProbability(1, SI.getNumCases() + 1);
+ Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
+ }
+
+ MachineBasicBlock *DefaultMBB = &getMBB(*SI.getDefaultDest());
+
+ // Cluster adjacent cases with the same destination. We do this at all
+ // optimization levels because it's cheap to do and will make codegen faster
+ // if there are many clusters.
+ sortAndRangeify(Clusters);
+
+ MachineBasicBlock *SwitchMBB = &getMBB(*SI.getParent());
+
+ // If there is only the default destination, jump there directly.
+ if (Clusters.empty()) {
+ SwitchMBB->addSuccessor(DefaultMBB);
+ if (DefaultMBB != SwitchMBB->getNextNode())
+ MIB.buildBr(*DefaultMBB);
+ return true;
+ }
+
+ SL->findJumpTables(Clusters, &SI, DefaultMBB);
+
+ LLVM_DEBUG({
+ dbgs() << "Case clusters: ";
+ for (const CaseCluster &C : Clusters) {
+ if (C.Kind == CC_JumpTable)
+ dbgs() << "JT:";
+ if (C.Kind == CC_BitTests)
+ dbgs() << "BT:";
+
+ C.Low->getValue().print(dbgs(), true);
+ if (C.Low != C.High) {
+ dbgs() << '-';
+ C.High->getValue().print(dbgs(), true);
+ }
+ dbgs() << ' ';
+ }
+ dbgs() << '\n';
+ });
+
+ assert(!Clusters.empty());
+ SwitchWorkList WorkList;
+ CaseClusterIt First = Clusters.begin();
+ CaseClusterIt Last = Clusters.end() - 1;
+ auto DefaultProb = getEdgeProbability(SwitchMBB, DefaultMBB);
+ WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
+
+ // FIXME: At the moment we don't do any splitting optimizations here like
+ // SelectionDAG does, so this worklist only has one entry.
+ while (!WorkList.empty()) {
+ SwitchWorkListItem W = WorkList.back();
+ WorkList.pop_back();
+ if (!lowerSwitchWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB, MIB))
+ return false;
+ }
+ return true;
+}
+
+void IRTranslator::emitJumpTable(SwitchCG::JumpTable &JT,
+ MachineBasicBlock *MBB) {
+ // Emit the code for the jump table
+ assert(JT.Reg != -1U && "Should lower JT Header first!");
+ MachineIRBuilder MIB(*MBB->getParent());
+ MIB.setMBB(*MBB);
+ MIB.setDebugLoc(CurBuilder->getDebugLoc());
+
+ Type *PtrIRTy = Type::getInt8PtrTy(MF->getFunction().getContext());
+ const LLT PtrTy = getLLTForType(*PtrIRTy, *DL);
+
+ auto Table = MIB.buildJumpTable(PtrTy, JT.JTI);
+ MIB.buildBrJT(Table.getReg(0), JT.JTI, JT.Reg);
+}
+
+bool IRTranslator::emitJumpTableHeader(SwitchCG::JumpTable &JT,
+ SwitchCG::JumpTableHeader &JTH,
+ MachineBasicBlock *HeaderBB) {
+ MachineIRBuilder MIB(*HeaderBB->getParent());
+ MIB.setMBB(*HeaderBB);
+ MIB.setDebugLoc(CurBuilder->getDebugLoc());
+
+ const Value &SValue = *JTH.SValue;
+ // Subtract the lowest switch case value from the value being switched on.
+ const LLT SwitchTy = getLLTForType(*SValue.getType(), *DL);
+ Register SwitchOpReg = getOrCreateVReg(SValue);
+ auto FirstCst = MIB.buildConstant(SwitchTy, JTH.First);
+ auto Sub = MIB.buildSub({SwitchTy}, SwitchOpReg, FirstCst);
+
+ // This value may be smaller or larger than the target's pointer type, and
+ // therefore require extension or truncating.
+ Type *PtrIRTy = SValue.getType()->getPointerTo();
+ const LLT PtrScalarTy = LLT::scalar(DL->getTypeSizeInBits(PtrIRTy));
+ Sub = MIB.buildZExtOrTrunc(PtrScalarTy, Sub);
+
+ JT.Reg = Sub.getReg(0);
+
+ if (JTH.OmitRangeCheck) {
+ if (JT.MBB != HeaderBB->getNextNode())
+ MIB.buildBr(*JT.MBB);
+ return true;
+ }
+
+ // Emit the range check for the jump table, and branch to the default block
+ // for the switch statement if the value being switched on exceeds the
+ // largest case in the switch.
+ auto Cst = getOrCreateVReg(
+ *ConstantInt::get(SValue.getType(), JTH.Last - JTH.First));
+ Cst = MIB.buildZExtOrTrunc(PtrScalarTy, Cst).getReg(0);
+ auto Cmp = MIB.buildICmp(CmpInst::ICMP_UGT, LLT::scalar(1), Sub, Cst);
+
+ auto BrCond = MIB.buildBrCond(Cmp.getReg(0), *JT.Default);
+
+ // Avoid emitting unnecessary branches to the next block.
+ if (JT.MBB != HeaderBB->getNextNode())
+ BrCond = MIB.buildBr(*JT.MBB);
+ return true;
+}
+
+void IRTranslator::emitSwitchCase(SwitchCG::CaseBlock &CB,
+ MachineBasicBlock *SwitchBB,
+ MachineIRBuilder &MIB) {
+ Register CondLHS = getOrCreateVReg(*CB.CmpLHS);
+ Register Cond;
+ DebugLoc OldDbgLoc = MIB.getDebugLoc();
+ MIB.setDebugLoc(CB.DbgLoc);
+ MIB.setMBB(*CB.ThisBB);
+
+ if (CB.PredInfo.NoCmp) {
+ // Branch or fall through to TrueBB.
+ addSuccessorWithProb(CB.ThisBB, CB.TrueBB, CB.TrueProb);
+ addMachineCFGPred({SwitchBB->getBasicBlock(), CB.TrueBB->getBasicBlock()},
+ CB.ThisBB);
+ CB.ThisBB->normalizeSuccProbs();
+ if (CB.TrueBB != CB.ThisBB->getNextNode())
+ MIB.buildBr(*CB.TrueBB);
+ MIB.setDebugLoc(OldDbgLoc);
+ return;
+ }
+
+ const LLT i1Ty = LLT::scalar(1);
+ // Build the compare.
+ if (!CB.CmpMHS) {
+ Register CondRHS = getOrCreateVReg(*CB.CmpRHS);
+ Cond = MIB.buildICmp(CB.PredInfo.Pred, i1Ty, CondLHS, CondRHS).getReg(0);
+ } else {
+ assert(CB.PredInfo.Pred == CmpInst::ICMP_SLE &&
+ "Can only handle SLE ranges");
+
+ const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
+ const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
+
+ Register CmpOpReg = getOrCreateVReg(*CB.CmpMHS);
+ if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
+ Register CondRHS = getOrCreateVReg(*CB.CmpRHS);
+ Cond =
+ MIB.buildICmp(CmpInst::ICMP_SLE, i1Ty, CmpOpReg, CondRHS).getReg(0);
+ } else {
+ const LLT &CmpTy = MRI->getType(CmpOpReg);
+ auto Sub = MIB.buildSub({CmpTy}, CmpOpReg, CondLHS);
+ auto Diff = MIB.buildConstant(CmpTy, High - Low);
+ Cond = MIB.buildICmp(CmpInst::ICMP_ULE, i1Ty, Sub, Diff).getReg(0);
+ }
+ }
+
+ // Update successor info
+ addSuccessorWithProb(CB.ThisBB, CB.TrueBB, CB.TrueProb);
+
+ addMachineCFGPred({SwitchBB->getBasicBlock(), CB.TrueBB->getBasicBlock()},
+ CB.ThisBB);
+
+ // TrueBB and FalseBB are always different unless the incoming IR is
+ // degenerate. This only happens when running llc on weird IR.
+ if (CB.TrueBB != CB.FalseBB)
+ addSuccessorWithProb(CB.ThisBB, CB.FalseBB, CB.FalseProb);
+ CB.ThisBB->normalizeSuccProbs();
+
+ // if (SwitchBB->getBasicBlock() != CB.FalseBB->getBasicBlock())
+ addMachineCFGPred({SwitchBB->getBasicBlock(), CB.FalseBB->getBasicBlock()},
+ CB.ThisBB);
+
+ // If the lhs block is the next block, invert the condition so that we can
+ // fall through to the lhs instead of the rhs block.
+ if (CB.TrueBB == CB.ThisBB->getNextNode()) {
+ std::swap(CB.TrueBB, CB.FalseBB);
+ auto True = MIB.buildConstant(i1Ty, 1);
+ Cond = MIB.buildInstr(TargetOpcode::G_XOR, {i1Ty}, {Cond, True}, None)
+ .getReg(0);
+ }
+
+ MIB.buildBrCond(Cond, *CB.TrueBB);
+ MIB.buildBr(*CB.FalseBB);
+ MIB.setDebugLoc(OldDbgLoc);
+}
+
+bool IRTranslator::lowerJumpTableWorkItem(SwitchCG::SwitchWorkListItem W,
+ MachineBasicBlock *SwitchMBB,
+ MachineBasicBlock *CurMBB,
+ MachineBasicBlock *DefaultMBB,
+ MachineIRBuilder &MIB,
+ MachineFunction::iterator BBI,
+ BranchProbability UnhandledProbs,
+ SwitchCG::CaseClusterIt I,
+ MachineBasicBlock *Fallthrough,
+ bool FallthroughUnreachable) {
+ using namespace SwitchCG;
+ MachineFunction *CurMF = SwitchMBB->getParent();
+ // FIXME: Optimize away range check based on pivot comparisons.
+ JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first;
+ SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second;
+ BranchProbability DefaultProb = W.DefaultProb;
+
+ // The jump block hasn't been inserted yet; insert it here.
+ MachineBasicBlock *JumpMBB = JT->MBB;
+ CurMF->insert(BBI, JumpMBB);
+
+ // Since the jump table block is separate from the switch block, we need
+ // to keep track of it as a machine predecessor to the default block,
+ // otherwise we lose the phi edges.
+ addMachineCFGPred({SwitchMBB->getBasicBlock(), DefaultMBB->getBasicBlock()},
+ CurMBB);
+ addMachineCFGPred({SwitchMBB->getBasicBlock(), DefaultMBB->getBasicBlock()},
+ JumpMBB);
+
+ auto JumpProb = I->Prob;
+ auto FallthroughProb = UnhandledProbs;
+
+ // If the default statement is a target of the jump table, we evenly
+ // distribute the default probability to successors of CurMBB. Also
+ // update the probability on the edge from JumpMBB to Fallthrough.
+ for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
+ SE = JumpMBB->succ_end();
+ SI != SE; ++SI) {
+ if (*SI == DefaultMBB) {
+ JumpProb += DefaultProb / 2;
+ FallthroughProb -= DefaultProb / 2;
+ JumpMBB->setSuccProbability(SI, DefaultProb / 2);
+ JumpMBB->normalizeSuccProbs();
+ } else {
+ // Also record edges from the jump table block to it's successors.
+ addMachineCFGPred({SwitchMBB->getBasicBlock(), (*SI)->getBasicBlock()},
+ JumpMBB);
+ }
+ }
+
+ // Skip the range check if the fallthrough block is unreachable.
+ if (FallthroughUnreachable)
+ JTH->OmitRangeCheck = true;
+
+ if (!JTH->OmitRangeCheck)
+ addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
+ addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
+ CurMBB->normalizeSuccProbs();
+
+ // The jump table header will be inserted in our current block, do the
+ // range check, and fall through to our fallthrough block.
+ JTH->HeaderBB = CurMBB;
+ JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
+
+ // If we're in the right place, emit the jump table header right now.
+ if (CurMBB == SwitchMBB) {
+ if (!emitJumpTableHeader(*JT, *JTH, CurMBB))
+ return false;
+ JTH->Emitted = true;
+ }
+ return true;
+}
+bool IRTranslator::lowerSwitchRangeWorkItem(SwitchCG::CaseClusterIt I,
+ Value *Cond,
+ MachineBasicBlock *Fallthrough,
+ bool FallthroughUnreachable,
+ BranchProbability UnhandledProbs,
+ MachineBasicBlock *CurMBB,
+ MachineIRBuilder &MIB,
+ MachineBasicBlock *SwitchMBB) {
+ using namespace SwitchCG;
+ const Value *RHS, *LHS, *MHS;
+ CmpInst::Predicate Pred;
+ if (I->Low == I->High) {
+ // Check Cond == I->Low.
+ Pred = CmpInst::ICMP_EQ;
+ LHS = Cond;
+ RHS = I->Low;
+ MHS = nullptr;
+ } else {
+ // Check I->Low <= Cond <= I->High.
+ Pred = CmpInst::ICMP_SLE;
+ LHS = I->Low;
+ MHS = Cond;
+ RHS = I->High;
+ }
+
+ // If Fallthrough is unreachable, fold away the comparison.
+ // The false probability is the sum of all unhandled cases.
+ CaseBlock CB(Pred, FallthroughUnreachable, LHS, RHS, MHS, I->MBB, Fallthrough,
+ CurMBB, MIB.getDebugLoc(), I->Prob, UnhandledProbs);
+
+ emitSwitchCase(CB, SwitchMBB, MIB);
+ return true;
+}
+
+bool IRTranslator::lowerSwitchWorkItem(SwitchCG::SwitchWorkListItem W,
+ Value *Cond,
+ MachineBasicBlock *SwitchMBB,
+ MachineBasicBlock *DefaultMBB,
+ MachineIRBuilder &MIB) {
+ using namespace SwitchCG;
+ MachineFunction *CurMF = FuncInfo.MF;
+ MachineBasicBlock *NextMBB = nullptr;
+ MachineFunction::iterator BBI(W.MBB);
+ if (++BBI != FuncInfo.MF->end())
+ NextMBB = &*BBI;
+
+ if (EnableOpts) {
+ // Here, we order cases by probability so the most likely case will be
+ // checked first. However, two clusters can have the same probability in
+ // which case their relative ordering is non-deterministic. So we use Low
+ // as a tie-breaker as clusters are guaranteed to never overlap.
+ llvm::sort(W.FirstCluster, W.LastCluster + 1,
+ [](const CaseCluster &a, const CaseCluster &b) {
+ return a.Prob != b.Prob
+ ? a.Prob > b.Prob
+ : a.Low->getValue().slt(b.Low->getValue());
+ });
+
+ // Rearrange the case blocks so that the last one falls through if possible
+ // without changing the order of probabilities.
+ for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster;) {
+ --I;
+ if (I->Prob > W.LastCluster->Prob)
+ break;
+ if (I->Kind == CC_Range && I->MBB == NextMBB) {
+ std::swap(*I, *W.LastCluster);
+ break;
+ }
+ }
+ }
+
+ // Compute total probability.
+ BranchProbability DefaultProb = W.DefaultProb;
+ BranchProbability UnhandledProbs = DefaultProb;
+ for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
+ UnhandledProbs += I->Prob;
+
+ MachineBasicBlock *CurMBB = W.MBB;
+ for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
+ bool FallthroughUnreachable = false;
+ MachineBasicBlock *Fallthrough;
+ if (I == W.LastCluster) {
+ // For the last cluster, fall through to the default destination.
+ Fallthrough = DefaultMBB;
+ FallthroughUnreachable = isa<UnreachableInst>(
+ DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg());
+ } else {
+ Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
+ CurMF->insert(BBI, Fallthrough);
+ }
+ UnhandledProbs -= I->Prob;
+
+ switch (I->Kind) {
+ case CC_BitTests: {
+ LLVM_DEBUG(dbgs() << "Switch to bit test optimization unimplemented");
+ return false; // Bit tests currently unimplemented.
+ }
+ case CC_JumpTable: {
+ if (!lowerJumpTableWorkItem(W, SwitchMBB, CurMBB, DefaultMBB, MIB, BBI,
+ UnhandledProbs, I, Fallthrough,
+ FallthroughUnreachable)) {
+ LLVM_DEBUG(dbgs() << "Failed to lower jump table");
+ return false;
+ }
+ break;
+ }
+ case CC_Range: {
+ if (!lowerSwitchRangeWorkItem(I, Cond, Fallthrough,
+ FallthroughUnreachable, UnhandledProbs,
+ CurMBB, MIB, SwitchMBB)) {
+ LLVM_DEBUG(dbgs() << "Failed to lower switch range");
+ return false;
+ }
+ break;
+ }
+ }
+ CurMBB = Fallthrough;
+ }
+
+ return true;
+}
+
+bool IRTranslator::translateIndirectBr(const User &U,
+ MachineIRBuilder &MIRBuilder) {
+ const IndirectBrInst &BrInst = cast<IndirectBrInst>(U);
+
+ const Register Tgt = getOrCreateVReg(*BrInst.getAddress());
+ MIRBuilder.buildBrIndirect(Tgt);
+
+ // Link successors.
+ MachineBasicBlock &CurBB = MIRBuilder.getMBB();
+ for (const BasicBlock *Succ : successors(&BrInst))
+ CurBB.addSuccessor(&getMBB(*Succ));
+
+ return true;
+}
+
+static bool isSwiftError(const Value *V) {
+ if (auto Arg = dyn_cast<Argument>(V))
+ return Arg->hasSwiftErrorAttr();
+ if (auto AI = dyn_cast<AllocaInst>(V))
+ return AI->isSwiftError();
+ return false;
+}
+
+bool IRTranslator::translateLoad(const User &U, MachineIRBuilder &MIRBuilder) {
+ const LoadInst &LI = cast<LoadInst>(U);
+
+ auto Flags = LI.isVolatile() ? MachineMemOperand::MOVolatile
+ : MachineMemOperand::MONone;
+ Flags |= MachineMemOperand::MOLoad;
+
+ if (DL->getTypeStoreSize(LI.getType()) == 0)
+ return true;
+
+ ArrayRef<Register> Regs = getOrCreateVRegs(LI);
+ ArrayRef<uint64_t> Offsets = *VMap.getOffsets(LI);
+ Register Base = getOrCreateVReg(*LI.getPointerOperand());
+
+ Type *OffsetIRTy = DL->getIntPtrType(LI.getPointerOperandType());
+ LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL);
+
+ if (CLI->supportSwiftError() && isSwiftError(LI.getPointerOperand())) {
+ assert(Regs.size() == 1 && "swifterror should be single pointer");
+ Register VReg = SwiftError.getOrCreateVRegUseAt(&LI, &MIRBuilder.getMBB(),
+ LI.getPointerOperand());
+ MIRBuilder.buildCopy(Regs[0], VReg);
+ return true;
+ }
+
+ const MDNode *Ranges =
+ Regs.size() == 1 ? LI.getMetadata(LLVMContext::MD_range) : nullptr;
+ for (unsigned i = 0; i < Regs.size(); ++i) {
+ Register Addr;
+ MIRBuilder.materializeGEP(Addr, Base, OffsetTy, Offsets[i] / 8);
+
+ MachinePointerInfo Ptr(LI.getPointerOperand(), Offsets[i] / 8);
+ unsigned BaseAlign = getMemOpAlignment(LI);
+ auto MMO = MF->getMachineMemOperand(
+ Ptr, Flags, (MRI->getType(Regs[i]).getSizeInBits() + 7) / 8,
+ MinAlign(BaseAlign, Offsets[i] / 8), AAMDNodes(), Ranges,
+ LI.getSyncScopeID(), LI.getOrdering());
+ MIRBuilder.buildLoad(Regs[i], Addr, *MMO);
+ }
+
+ return true;
+}
+
+bool IRTranslator::translateStore(const User &U, MachineIRBuilder &MIRBuilder) {
+ const StoreInst &SI = cast<StoreInst>(U);
+ auto Flags = SI.isVolatile() ? MachineMemOperand::MOVolatile
+ : MachineMemOperand::MONone;
+ Flags |= MachineMemOperand::MOStore;
+
+ if (DL->getTypeStoreSize(SI.getValueOperand()->getType()) == 0)
+ return true;
+
+ ArrayRef<Register> Vals = getOrCreateVRegs(*SI.getValueOperand());
+ ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*SI.getValueOperand());
+ Register Base = getOrCreateVReg(*SI.getPointerOperand());
+
+ Type *OffsetIRTy = DL->getIntPtrType(SI.getPointerOperandType());
+ LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL);
+
+ if (CLI->supportSwiftError() && isSwiftError(SI.getPointerOperand())) {
+ assert(Vals.size() == 1 && "swifterror should be single pointer");
+
+ Register VReg = SwiftError.getOrCreateVRegDefAt(&SI, &MIRBuilder.getMBB(),
+ SI.getPointerOperand());
+ MIRBuilder.buildCopy(VReg, Vals[0]);
+ return true;
+ }
+
+ for (unsigned i = 0; i < Vals.size(); ++i) {
+ Register Addr;
+ MIRBuilder.materializeGEP(Addr, Base, OffsetTy, Offsets[i] / 8);
+
+ MachinePointerInfo Ptr(SI.getPointerOperand(), Offsets[i] / 8);
+ unsigned BaseAlign = getMemOpAlignment(SI);
+ auto MMO = MF->getMachineMemOperand(
+ Ptr, Flags, (MRI->getType(Vals[i]).getSizeInBits() + 7) / 8,
+ MinAlign(BaseAlign, Offsets[i] / 8), AAMDNodes(), nullptr,
+ SI.getSyncScopeID(), SI.getOrdering());
+ MIRBuilder.buildStore(Vals[i], Addr, *MMO);
+ }
+ return true;
+}
+
+static uint64_t getOffsetFromIndices(const User &U, const DataLayout &DL) {
+ const Value *Src = U.getOperand(0);
+ Type *Int32Ty = Type::getInt32Ty(U.getContext());
+
+ // getIndexedOffsetInType is designed for GEPs, so the first index is the
+ // usual array element rather than looking into the actual aggregate.
+ SmallVector<Value *, 1> Indices;
+ Indices.push_back(ConstantInt::get(Int32Ty, 0));
+
+ if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&U)) {
+ for (auto Idx : EVI->indices())
+ Indices.push_back(ConstantInt::get(Int32Ty, Idx));
+ } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&U)) {
+ for (auto Idx : IVI->indices())
+ Indices.push_back(ConstantInt::get(Int32Ty, Idx));
+ } else {
+ for (unsigned i = 1; i < U.getNumOperands(); ++i)
+ Indices.push_back(U.getOperand(i));
+ }
+
+ return 8 * static_cast<uint64_t>(
+ DL.getIndexedOffsetInType(Src->getType(), Indices));
+}
+
+bool IRTranslator::translateExtractValue(const User &U,
+ MachineIRBuilder &MIRBuilder) {
+ const Value *Src = U.getOperand(0);
+ uint64_t Offset = getOffsetFromIndices(U, *DL);
+ ArrayRef<Register> SrcRegs = getOrCreateVRegs(*Src);
+ ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*Src);
+ unsigned Idx = llvm::lower_bound(Offsets, Offset) - Offsets.begin();
+ auto &DstRegs = allocateVRegs(U);
+
+ for (unsigned i = 0; i < DstRegs.size(); ++i)
+ DstRegs[i] = SrcRegs[Idx++];
+
+ return true;
+}
+
+bool IRTranslator::translateInsertValue(const User &U,
+ MachineIRBuilder &MIRBuilder) {
+ const Value *Src = U.getOperand(0);
+ uint64_t Offset = getOffsetFromIndices(U, *DL);
+ auto &DstRegs = allocateVRegs(U);
+ ArrayRef<uint64_t> DstOffsets = *VMap.getOffsets(U);
+ ArrayRef<Register> SrcRegs = getOrCreateVRegs(*Src);
+ ArrayRef<Register> InsertedRegs = getOrCreateVRegs(*U.getOperand(1));
+ auto InsertedIt = InsertedRegs.begin();
+
+ for (unsigned i = 0; i < DstRegs.size(); ++i) {
+ if (DstOffsets[i] >= Offset && InsertedIt != InsertedRegs.end())
+ DstRegs[i] = *InsertedIt++;
+ else
+ DstRegs[i] = SrcRegs[i];
+ }
+
+ return true;
+}
+
+bool IRTranslator::translateSelect(const User &U,
+ MachineIRBuilder &MIRBuilder) {
+ Register Tst = getOrCreateVReg(*U.getOperand(0));
+ ArrayRef<Register> ResRegs = getOrCreateVRegs(U);
+ ArrayRef<Register> Op0Regs = getOrCreateVRegs(*U.getOperand(1));
+ ArrayRef<Register> Op1Regs = getOrCreateVRegs(*U.getOperand(2));
+
+ const SelectInst &SI = cast<SelectInst>(U);
+ uint16_t Flags = 0;
+ if (const CmpInst *Cmp = dyn_cast<CmpInst>(SI.getCondition()))
+ Flags = MachineInstr::copyFlagsFromInstruction(*Cmp);
+
+ for (unsigned i = 0; i < ResRegs.size(); ++i) {
+ MIRBuilder.buildInstr(TargetOpcode::G_SELECT, {ResRegs[i]},
+ {Tst, Op0Regs[i], Op1Regs[i]}, Flags);
+ }
+
+ return true;
+}
+
+bool IRTranslator::translateBitCast(const User &U,
+ MachineIRBuilder &MIRBuilder) {
+ // If we're bitcasting to the source type, we can reuse the source vreg.
+ if (getLLTForType(*U.getOperand(0)->getType(), *DL) ==
+ getLLTForType(*U.getType(), *DL)) {
+ Register SrcReg = getOrCreateVReg(*U.getOperand(0));
+ auto &Regs = *VMap.getVRegs(U);
+ // If we already assigned a vreg for this bitcast, we can't change that.
+ // Emit a copy to satisfy the users we already emitted.
+ if (!Regs.empty())
+ MIRBuilder.buildCopy(Regs[0], SrcReg);
+ else {
+ Regs.push_back(SrcReg);
+ VMap.getOffsets(U)->push_back(0);
+ }
+ return true;
+ }
+ return translateCast(TargetOpcode::G_BITCAST, U, MIRBuilder);
+}
+
+bool IRTranslator::translateCast(unsigned Opcode, const User &U,
+ MachineIRBuilder &MIRBuilder) {
+ Register Op = getOrCreateVReg(*U.getOperand(0));
+ Register Res = getOrCreateVReg(U);
+ MIRBuilder.buildInstr(Opcode, {Res}, {Op});
+ return true;
+}
+
+bool IRTranslator::translateGetElementPtr(const User &U,
+ MachineIRBuilder &MIRBuilder) {
+ // FIXME: support vector GEPs.
+ if (U.getType()->isVectorTy())
+ return false;
+
+ Value &Op0 = *U.getOperand(0);
+ Register BaseReg = getOrCreateVReg(Op0);
+ Type *PtrIRTy = Op0.getType();
+ LLT PtrTy = getLLTForType(*PtrIRTy, *DL);
+ Type *OffsetIRTy = DL->getIntPtrType(PtrIRTy);
+ LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL);
+
+ int64_t Offset = 0;
+ for (gep_type_iterator GTI = gep_type_begin(&U), E = gep_type_end(&U);
+ GTI != E; ++GTI) {
+ const Value *Idx = GTI.getOperand();
+ if (StructType *StTy = GTI.getStructTypeOrNull()) {
+ unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
+ Offset += DL->getStructLayout(StTy)->getElementOffset(Field);
+ continue;
+ } else {
+ uint64_t ElementSize = DL->getTypeAllocSize(GTI.getIndexedType());
+
+ // If this is a scalar constant or a splat vector of constants,
+ // handle it quickly.
+ if (const auto *CI = dyn_cast<ConstantInt>(Idx)) {
+ Offset += ElementSize * CI->getSExtValue();
+ continue;
+ }
+
+ if (Offset != 0) {
+ LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL);
+ auto OffsetMIB = MIRBuilder.buildConstant({OffsetTy}, Offset);
+ BaseReg =
+ MIRBuilder.buildGEP(PtrTy, BaseReg, OffsetMIB.getReg(0)).getReg(0);
+ Offset = 0;
+ }
+
+ Register IdxReg = getOrCreateVReg(*Idx);
+ if (MRI->getType(IdxReg) != OffsetTy)
+ IdxReg = MIRBuilder.buildSExtOrTrunc(OffsetTy, IdxReg).getReg(0);
+
+ // N = N + Idx * ElementSize;
+ // Avoid doing it for ElementSize of 1.
+ Register GepOffsetReg;
+ if (ElementSize != 1) {
+ auto ElementSizeMIB = MIRBuilder.buildConstant(
+ getLLTForType(*OffsetIRTy, *DL), ElementSize);
+ GepOffsetReg =
+ MIRBuilder.buildMul(OffsetTy, ElementSizeMIB, IdxReg).getReg(0);
+ } else
+ GepOffsetReg = IdxReg;
+
+ BaseReg = MIRBuilder.buildGEP(PtrTy, BaseReg, GepOffsetReg).getReg(0);
+ }
+ }
+
+ if (Offset != 0) {
+ auto OffsetMIB =
+ MIRBuilder.buildConstant(getLLTForType(*OffsetIRTy, *DL), Offset);
+ MIRBuilder.buildGEP(getOrCreateVReg(U), BaseReg, OffsetMIB.getReg(0));
+ return true;
+ }
+
+ MIRBuilder.buildCopy(getOrCreateVReg(U), BaseReg);
+ return true;
+}
+
+bool IRTranslator::translateMemFunc(const CallInst &CI,
+ MachineIRBuilder &MIRBuilder,
+ Intrinsic::ID ID) {
+
+ // If the source is undef, then just emit a nop.
+ if (isa<UndefValue>(CI.getArgOperand(1)))
+ return true;
+
+ ArrayRef<Register> Res;
+ auto ICall = MIRBuilder.buildIntrinsic(ID, Res, true);
+ for (auto AI = CI.arg_begin(), AE = CI.arg_end(); std::next(AI) != AE; ++AI)
+ ICall.addUse(getOrCreateVReg(**AI));
+
+ unsigned DstAlign = 0, SrcAlign = 0;
+ unsigned IsVol =
+ cast<ConstantInt>(CI.getArgOperand(CI.getNumArgOperands() - 1))
+ ->getZExtValue();
+
+ if (auto *MCI = dyn_cast<MemCpyInst>(&CI)) {
+ DstAlign = std::max<unsigned>(MCI->getDestAlignment(), 1);
+ SrcAlign = std::max<unsigned>(MCI->getSourceAlignment(), 1);
+ } else if (auto *MMI = dyn_cast<MemMoveInst>(&CI)) {
+ DstAlign = std::max<unsigned>(MMI->getDestAlignment(), 1);
+ SrcAlign = std::max<unsigned>(MMI->getSourceAlignment(), 1);
+ } else {
+ auto *MSI = cast<MemSetInst>(&CI);
+ DstAlign = std::max<unsigned>(MSI->getDestAlignment(), 1);
+ }
+
+ // We need to propagate the tail call flag from the IR inst as an argument.
+ // Otherwise, we have to pessimize and assume later that we cannot tail call
+ // any memory intrinsics.
+ ICall.addImm(CI.isTailCall() ? 1 : 0);
+
+ // Create mem operands to store the alignment and volatile info.
+ auto VolFlag = IsVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
+ ICall.addMemOperand(MF->getMachineMemOperand(
+ MachinePointerInfo(CI.getArgOperand(0)),
+ MachineMemOperand::MOStore | VolFlag, 1, DstAlign));
+ if (ID != Intrinsic::memset)
+ ICall.addMemOperand(MF->getMachineMemOperand(
+ MachinePointerInfo(CI.getArgOperand(1)),
+ MachineMemOperand::MOLoad | VolFlag, 1, SrcAlign));
+
+ return true;
+}
+
+void IRTranslator::getStackGuard(Register DstReg,
+ MachineIRBuilder &MIRBuilder) {
+ const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
+ MRI->setRegClass(DstReg, TRI->getPointerRegClass(*MF));
+ auto MIB = MIRBuilder.buildInstr(TargetOpcode::LOAD_STACK_GUARD);
+ MIB.addDef(DstReg);
+
+ auto &TLI = *MF->getSubtarget().getTargetLowering();
+ Value *Global = TLI.getSDagStackGuard(*MF->getFunction().getParent());
+ if (!Global)
+ return;
+
+ MachinePointerInfo MPInfo(Global);
+ auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
+ MachineMemOperand::MODereferenceable;
+ MachineMemOperand *MemRef =
+ MF->getMachineMemOperand(MPInfo, Flags, DL->getPointerSizeInBits() / 8,
+ DL->getPointerABIAlignment(0).value());
+ MIB.setMemRefs({MemRef});
+}
+
+bool IRTranslator::translateOverflowIntrinsic(const CallInst &CI, unsigned Op,
+ MachineIRBuilder &MIRBuilder) {
+ ArrayRef<Register> ResRegs = getOrCreateVRegs(CI);
+ MIRBuilder.buildInstr(Op)
+ .addDef(ResRegs[0])
+ .addDef(ResRegs[1])
+ .addUse(getOrCreateVReg(*CI.getOperand(0)))
+ .addUse(getOrCreateVReg(*CI.getOperand(1)));
+
+ return true;
+}
+
+unsigned IRTranslator::getSimpleIntrinsicOpcode(Intrinsic::ID ID) {
+ switch (ID) {
+ default:
+ break;
+ case Intrinsic::bswap:
+ return TargetOpcode::G_BSWAP;
+ case Intrinsic::bitreverse:
+ return TargetOpcode::G_BITREVERSE;
+ case Intrinsic::ceil:
+ return TargetOpcode::G_FCEIL;
+ case Intrinsic::cos:
+ return TargetOpcode::G_FCOS;
+ case Intrinsic::ctpop:
+ return TargetOpcode::G_CTPOP;
+ case Intrinsic::exp:
+ return TargetOpcode::G_FEXP;
+ case Intrinsic::exp2:
+ return TargetOpcode::G_FEXP2;
+ case Intrinsic::fabs:
+ return TargetOpcode::G_FABS;
+ case Intrinsic::copysign:
+ return TargetOpcode::G_FCOPYSIGN;
+ case Intrinsic::minnum:
+ return TargetOpcode::G_FMINNUM;
+ case Intrinsic::maxnum:
+ return TargetOpcode::G_FMAXNUM;
+ case Intrinsic::minimum:
+ return TargetOpcode::G_FMINIMUM;
+ case Intrinsic::maximum:
+ return TargetOpcode::G_FMAXIMUM;
+ case Intrinsic::canonicalize:
+ return TargetOpcode::G_FCANONICALIZE;
+ case Intrinsic::floor:
+ return TargetOpcode::G_FFLOOR;
+ case Intrinsic::fma:
+ return TargetOpcode::G_FMA;
+ case Intrinsic::log:
+ return TargetOpcode::G_FLOG;
+ case Intrinsic::log2:
+ return TargetOpcode::G_FLOG2;
+ case Intrinsic::log10:
+ return TargetOpcode::G_FLOG10;
+ case Intrinsic::nearbyint:
+ return TargetOpcode::G_FNEARBYINT;
+ case Intrinsic::pow:
+ return TargetOpcode::G_FPOW;
+ case Intrinsic::rint:
+ return TargetOpcode::G_FRINT;
+ case Intrinsic::round:
+ return TargetOpcode::G_INTRINSIC_ROUND;
+ case Intrinsic::sin:
+ return TargetOpcode::G_FSIN;
+ case Intrinsic::sqrt:
+ return TargetOpcode::G_FSQRT;
+ case Intrinsic::trunc:
+ return TargetOpcode::G_INTRINSIC_TRUNC;
+ }
+ return Intrinsic::not_intrinsic;
+}
+
+bool IRTranslator::translateSimpleIntrinsic(const CallInst &CI,
+ Intrinsic::ID ID,
+ MachineIRBuilder &MIRBuilder) {
+
+ unsigned Op = getSimpleIntrinsicOpcode(ID);
+
+ // Is this a simple intrinsic?
+ if (Op == Intrinsic::not_intrinsic)
+ return false;
+
+ // Yes. Let's translate it.
+ SmallVector<llvm::SrcOp, 4> VRegs;
+ for (auto &Arg : CI.arg_operands())
+ VRegs.push_back(getOrCreateVReg(*Arg));
+
+ MIRBuilder.buildInstr(Op, {getOrCreateVReg(CI)}, VRegs,
+ MachineInstr::copyFlagsFromInstruction(CI));
+ return true;
+}
+
+bool IRTranslator::translateKnownIntrinsic(const CallInst &CI, Intrinsic::ID ID,
+ MachineIRBuilder &MIRBuilder) {
+
+ // If this is a simple intrinsic (that is, we just need to add a def of
+ // a vreg, and uses for each arg operand, then translate it.
+ if (translateSimpleIntrinsic(CI, ID, MIRBuilder))
+ return true;
+
+ switch (ID) {
+ default:
+ break;
+ case Intrinsic::lifetime_start:
+ case Intrinsic::lifetime_end: {
+ // No stack colouring in O0, discard region information.
+ if (MF->getTarget().getOptLevel() == CodeGenOpt::None)
+ return true;
+
+ unsigned Op = ID == Intrinsic::lifetime_start ? TargetOpcode::LIFETIME_START
+ : TargetOpcode::LIFETIME_END;
+
+ // Get the underlying objects for the location passed on the lifetime
+ // marker.
+ SmallVector<const Value *, 4> Allocas;
+ GetUnderlyingObjects(CI.getArgOperand(1), Allocas, *DL);
+
+ // Iterate over each underlying object, creating lifetime markers for each
+ // static alloca. Quit if we find a non-static alloca.
+ for (const Value *V : Allocas) {
+ const AllocaInst *AI = dyn_cast<AllocaInst>(V);
+ if (!AI)
+ continue;
+
+ if (!AI->isStaticAlloca())
+ return true;
+
+ MIRBuilder.buildInstr(Op).addFrameIndex(getOrCreateFrameIndex(*AI));
+ }
+ return true;
+ }
+ case Intrinsic::dbg_declare: {
+ const DbgDeclareInst &DI = cast<DbgDeclareInst>(CI);
+ assert(DI.getVariable() && "Missing variable");
+
+ const Value *Address = DI.getAddress();
+ if (!Address || isa<UndefValue>(Address)) {
+ LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
+ return true;
+ }
+
+ assert(DI.getVariable()->isValidLocationForIntrinsic(
+ MIRBuilder.getDebugLoc()) &&
+ "Expected inlined-at fields to agree");
+ auto AI = dyn_cast<AllocaInst>(Address);
+ if (AI && AI->isStaticAlloca()) {
+ // Static allocas are tracked at the MF level, no need for DBG_VALUE
+ // instructions (in fact, they get ignored if they *do* exist).
+ MF->setVariableDbgInfo(DI.getVariable(), DI.getExpression(),
+ getOrCreateFrameIndex(*AI), DI.getDebugLoc());
+ } else {
+ // A dbg.declare describes the address of a source variable, so lower it
+ // into an indirect DBG_VALUE.
+ MIRBuilder.buildIndirectDbgValue(getOrCreateVReg(*Address),
+ DI.getVariable(), DI.getExpression());
+ }
+ return true;
+ }
+ case Intrinsic::dbg_label: {
+ const DbgLabelInst &DI = cast<DbgLabelInst>(CI);
+ assert(DI.getLabel() && "Missing label");
+
+ assert(DI.getLabel()->isValidLocationForIntrinsic(
+ MIRBuilder.getDebugLoc()) &&
+ "Expected inlined-at fields to agree");
+
+ MIRBuilder.buildDbgLabel(DI.getLabel());
+ return true;
+ }
+ case Intrinsic::vaend:
+ // No target I know of cares about va_end. Certainly no in-tree target
+ // does. Simplest intrinsic ever!
+ return true;
+ case Intrinsic::vastart: {
+ auto &TLI = *MF->getSubtarget().getTargetLowering();
+ Value *Ptr = CI.getArgOperand(0);
+ unsigned ListSize = TLI.getVaListSizeInBits(*DL) / 8;
+
+ // FIXME: Get alignment
+ MIRBuilder.buildInstr(TargetOpcode::G_VASTART)
+ .addUse(getOrCreateVReg(*Ptr))
+ .addMemOperand(MF->getMachineMemOperand(
+ MachinePointerInfo(Ptr), MachineMemOperand::MOStore, ListSize, 1));
+ return true;
+ }
+ case Intrinsic::dbg_value: {
+ // This form of DBG_VALUE is target-independent.
+ const DbgValueInst &DI = cast<DbgValueInst>(CI);
+ const Value *V = DI.getValue();
+ assert(DI.getVariable()->isValidLocationForIntrinsic(
+ MIRBuilder.getDebugLoc()) &&
+ "Expected inlined-at fields to agree");
+ if (!V) {
+ // Currently the optimizer can produce this; insert an undef to
+ // help debugging. Probably the optimizer should not do this.
+ MIRBuilder.buildDirectDbgValue(0, DI.getVariable(), DI.getExpression());
+ } else if (const auto *CI = dyn_cast<Constant>(V)) {
+ MIRBuilder.buildConstDbgValue(*CI, DI.getVariable(), DI.getExpression());
+ } else {
+ for (Register Reg : getOrCreateVRegs(*V)) {
+ // FIXME: This does not handle register-indirect values at offset 0. The
+ // direct/indirect thing shouldn't really be handled by something as
+ // implicit as reg+noreg vs reg+imm in the first place, but it seems
+ // pretty baked in right now.
+ MIRBuilder.buildDirectDbgValue(Reg, DI.getVariable(), DI.getExpression());
+ }
+ }
+ return true;
+ }
+ case Intrinsic::uadd_with_overflow:
+ return translateOverflowIntrinsic(CI, TargetOpcode::G_UADDO, MIRBuilder);
+ case Intrinsic::sadd_with_overflow:
+ return translateOverflowIntrinsic(CI, TargetOpcode::G_SADDO, MIRBuilder);
+ case Intrinsic::usub_with_overflow:
+ return translateOverflowIntrinsic(CI, TargetOpcode::G_USUBO, MIRBuilder);
+ case Intrinsic::ssub_with_overflow:
+ return translateOverflowIntrinsic(CI, TargetOpcode::G_SSUBO, MIRBuilder);
+ case Intrinsic::umul_with_overflow:
+ return translateOverflowIntrinsic(CI, TargetOpcode::G_UMULO, MIRBuilder);
+ case Intrinsic::smul_with_overflow:
+ return translateOverflowIntrinsic(CI, TargetOpcode::G_SMULO, MIRBuilder);
+ case Intrinsic::fmuladd: {
+ const TargetMachine &TM = MF->getTarget();
+ const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering();
+ Register Dst = getOrCreateVReg(CI);
+ Register Op0 = getOrCreateVReg(*CI.getArgOperand(0));
+ Register Op1 = getOrCreateVReg(*CI.getArgOperand(1));
+ Register Op2 = getOrCreateVReg(*CI.getArgOperand(2));
+ if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
+ TLI.isFMAFasterThanFMulAndFAdd(TLI.getValueType(*DL, CI.getType()))) {
+ // TODO: Revisit this to see if we should move this part of the
+ // lowering to the combiner.
+ MIRBuilder.buildInstr(TargetOpcode::G_FMA, {Dst}, {Op0, Op1, Op2},
+ MachineInstr::copyFlagsFromInstruction(CI));
+ } else {
+ LLT Ty = getLLTForType(*CI.getType(), *DL);
+ auto FMul = MIRBuilder.buildInstr(TargetOpcode::G_FMUL, {Ty}, {Op0, Op1},
+ MachineInstr::copyFlagsFromInstruction(CI));
+ MIRBuilder.buildInstr(TargetOpcode::G_FADD, {Dst}, {FMul, Op2},
+ MachineInstr::copyFlagsFromInstruction(CI));
+ }
+ return true;
+ }
+ case Intrinsic::memcpy:
+ case Intrinsic::memmove:
+ case Intrinsic::memset:
+ return translateMemFunc(CI, MIRBuilder, ID);
+ case Intrinsic::eh_typeid_for: {
+ GlobalValue *GV = ExtractTypeInfo(CI.getArgOperand(0));
+ Register Reg = getOrCreateVReg(CI);
+ unsigned TypeID = MF->getTypeIDFor(GV);
+ MIRBuilder.buildConstant(Reg, TypeID);
+ return true;
+ }
+ case Intrinsic::objectsize:
+ llvm_unreachable("llvm.objectsize.* should have been lowered already");
+
+ case Intrinsic::is_constant:
+ llvm_unreachable("llvm.is.constant.* should have been lowered already");
+
+ case Intrinsic::stackguard:
+ getStackGuard(getOrCreateVReg(CI), MIRBuilder);
+ return true;
+ case Intrinsic::stackprotector: {
+ LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL);
+ Register GuardVal = MRI->createGenericVirtualRegister(PtrTy);
+ getStackGuard(GuardVal, MIRBuilder);
+
+ AllocaInst *Slot = cast<AllocaInst>(CI.getArgOperand(1));
+ int FI = getOrCreateFrameIndex(*Slot);
+ MF->getFrameInfo().setStackProtectorIndex(FI);
+
+ MIRBuilder.buildStore(
+ GuardVal, getOrCreateVReg(*Slot),
+ *MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(*MF, FI),
+ MachineMemOperand::MOStore |
+ MachineMemOperand::MOVolatile,
+ PtrTy.getSizeInBits() / 8, 8));
+ return true;
+ }
+ case Intrinsic::stacksave: {
+ // Save the stack pointer to the location provided by the intrinsic.
+ Register Reg = getOrCreateVReg(CI);
+ Register StackPtr = MF->getSubtarget()
+ .getTargetLowering()
+ ->getStackPointerRegisterToSaveRestore();
+
+ // If the target doesn't specify a stack pointer, then fall back.
+ if (!StackPtr)
+ return false;
+
+ MIRBuilder.buildCopy(Reg, StackPtr);
+ return true;
+ }
+ case Intrinsic::stackrestore: {
+ // Restore the stack pointer from the location provided by the intrinsic.
+ Register Reg = getOrCreateVReg(*CI.getArgOperand(0));
+ Register StackPtr = MF->getSubtarget()
+ .getTargetLowering()
+ ->getStackPointerRegisterToSaveRestore();
+
+ // If the target doesn't specify a stack pointer, then fall back.
+ if (!StackPtr)
+ return false;
+
+ MIRBuilder.buildCopy(StackPtr, Reg);
+ return true;
+ }
+ case Intrinsic::cttz:
+ case Intrinsic::ctlz: {
+ ConstantInt *Cst = cast<ConstantInt>(CI.getArgOperand(1));
+ bool isTrailing = ID == Intrinsic::cttz;
+ unsigned Opcode = isTrailing
+ ? Cst->isZero() ? TargetOpcode::G_CTTZ
+ : TargetOpcode::G_CTTZ_ZERO_UNDEF
+ : Cst->isZero() ? TargetOpcode::G_CTLZ
+ : TargetOpcode::G_CTLZ_ZERO_UNDEF;
+ MIRBuilder.buildInstr(Opcode)
+ .addDef(getOrCreateVReg(CI))
+ .addUse(getOrCreateVReg(*CI.getArgOperand(0)));
+ return true;
+ }
+ case Intrinsic::invariant_start: {
+ LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL);
+ Register Undef = MRI->createGenericVirtualRegister(PtrTy);
+ MIRBuilder.buildUndef(Undef);
+ return true;
+ }
+ case Intrinsic::invariant_end:
+ return true;
+ case Intrinsic::assume:
+ case Intrinsic::var_annotation:
+ case Intrinsic::sideeffect:
+ // Discard annotate attributes, assumptions, and artificial side-effects.
+ return true;
+ }
+ return false;
+}
+
+bool IRTranslator::translateInlineAsm(const CallInst &CI,
+ MachineIRBuilder &MIRBuilder) {
+ const InlineAsm &IA = cast<InlineAsm>(*CI.getCalledValue());
+ if (!IA.getConstraintString().empty())
+ return false;
+
+ unsigned ExtraInfo = 0;
+ if (IA.hasSideEffects())
+ ExtraInfo |= InlineAsm::Extra_HasSideEffects;
+ if (IA.getDialect() == InlineAsm::AD_Intel)
+ ExtraInfo |= InlineAsm::Extra_AsmDialect;
+
+ MIRBuilder.buildInstr(TargetOpcode::INLINEASM)
+ .addExternalSymbol(IA.getAsmString().c_str())
+ .addImm(ExtraInfo);
+
+ return true;
+}
+
+bool IRTranslator::translateCallSite(const ImmutableCallSite &CS,
+ MachineIRBuilder &MIRBuilder) {
+ const Instruction &I = *CS.getInstruction();
+ ArrayRef<Register> Res = getOrCreateVRegs(I);
+
+ SmallVector<ArrayRef<Register>, 8> Args;
+ Register SwiftInVReg = 0;
+ Register SwiftErrorVReg = 0;
+ for (auto &Arg : CS.args()) {
+ if (CLI->supportSwiftError() && isSwiftError(Arg)) {
+ assert(SwiftInVReg == 0 && "Expected only one swift error argument");
+ LLT Ty = getLLTForType(*Arg->getType(), *DL);
+ SwiftInVReg = MRI->createGenericVirtualRegister(Ty);
+ MIRBuilder.buildCopy(SwiftInVReg, SwiftError.getOrCreateVRegUseAt(
+ &I, &MIRBuilder.getMBB(), Arg));
+ Args.emplace_back(makeArrayRef(SwiftInVReg));
+ SwiftErrorVReg =
+ SwiftError.getOrCreateVRegDefAt(&I, &MIRBuilder.getMBB(), Arg);
+ continue;
+ }
+ Args.push_back(getOrCreateVRegs(*Arg));
+ }
+
+ // We don't set HasCalls on MFI here yet because call lowering may decide to
+ // optimize into tail calls. Instead, we defer that to selection where a final
+ // scan is done to check if any instructions are calls.
+ bool Success =
+ CLI->lowerCall(MIRBuilder, CS, Res, Args, SwiftErrorVReg,
+ [&]() { return getOrCreateVReg(*CS.getCalledValue()); });
+
+ // Check if we just inserted a tail call.
+ if (Success) {
+ assert(!HasTailCall && "Can't tail call return twice from block?");
+ const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
+ HasTailCall = TII->isTailCall(*std::prev(MIRBuilder.getInsertPt()));
+ }
+
+ return Success;
+}
+
+bool IRTranslator::translateCall(const User &U, MachineIRBuilder &MIRBuilder) {
+ const CallInst &CI = cast<CallInst>(U);
+ auto TII = MF->getTarget().getIntrinsicInfo();
+ const Function *F = CI.getCalledFunction();
+
+ // FIXME: support Windows dllimport function calls.
+ if (F && F->hasDLLImportStorageClass())
+ return false;
+
+ if (CI.isInlineAsm())
+ return translateInlineAsm(CI, MIRBuilder);
+
+ Intrinsic::ID ID = Intrinsic::not_intrinsic;
+ if (F && F->isIntrinsic()) {
+ ID = F->getIntrinsicID();
+ if (TII && ID == Intrinsic::not_intrinsic)
+ ID = static_cast<Intrinsic::ID>(TII->getIntrinsicID(F));
+ }
+
+ if (!F || !F->isIntrinsic() || ID == Intrinsic::not_intrinsic)
+ return translateCallSite(&CI, MIRBuilder);
+
+ assert(ID != Intrinsic::not_intrinsic && "unknown intrinsic");
+
+ if (translateKnownIntrinsic(CI, ID, MIRBuilder))
+ return true;
+
+ ArrayRef<Register> ResultRegs;
+ if (!CI.getType()->isVoidTy())
+ ResultRegs = getOrCreateVRegs(CI);
+
+ // Ignore the callsite attributes. Backend code is most likely not expecting
+ // an intrinsic to sometimes have side effects and sometimes not.
+ MachineInstrBuilder MIB =
+ MIRBuilder.buildIntrinsic(ID, ResultRegs, !F->doesNotAccessMemory());
+ if (isa<FPMathOperator>(CI))
+ MIB->copyIRFlags(CI);
+
+ for (auto &Arg : enumerate(CI.arg_operands())) {
+ // Some intrinsics take metadata parameters. Reject them.
+ if (isa<MetadataAsValue>(Arg.value()))
+ return false;
+
+ // If this is required to be an immediate, don't materialize it in a
+ // register.
+ if (CI.paramHasAttr(Arg.index(), Attribute::ImmArg)) {
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(Arg.value())) {
+ // imm arguments are more convenient than cimm (and realistically
+ // probably sufficient), so use them.
+ assert(CI->getBitWidth() <= 64 &&
+ "large intrinsic immediates not handled");
+ MIB.addImm(CI->getSExtValue());
+ } else {
+ MIB.addFPImm(cast<ConstantFP>(Arg.value()));
+ }
+ } else {
+ ArrayRef<Register> VRegs = getOrCreateVRegs(*Arg.value());
+ if (VRegs.size() > 1)
+ return false;
+ MIB.addUse(VRegs[0]);
+ }
+ }
+
+ // Add a MachineMemOperand if it is a target mem intrinsic.
+ const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering();
+ TargetLowering::IntrinsicInfo Info;
+ // TODO: Add a GlobalISel version of getTgtMemIntrinsic.
+ if (TLI.getTgtMemIntrinsic(Info, CI, *MF, ID)) {
+ MaybeAlign Align = Info.align;
+ if (!Align)
+ Align = MaybeAlign(
+ DL->getABITypeAlignment(Info.memVT.getTypeForEVT(F->getContext())));
+
+ uint64_t Size = Info.memVT.getStoreSize();
+ MIB.addMemOperand(MF->getMachineMemOperand(
+ MachinePointerInfo(Info.ptrVal), Info.flags, Size, Align->value()));
+ }
+
+ return true;
+}
+
+bool IRTranslator::translateInvoke(const User &U,
+ MachineIRBuilder &MIRBuilder) {
+ const InvokeInst &I = cast<InvokeInst>(U);
+ MCContext &Context = MF->getContext();
+
+ const BasicBlock *ReturnBB = I.getSuccessor(0);
+ const BasicBlock *EHPadBB = I.getSuccessor(1);
+
+ const Value *Callee = I.getCalledValue();
+ const Function *Fn = dyn_cast<Function>(Callee);
+ if (isa<InlineAsm>(Callee))
+ return false;
+
+ // FIXME: support invoking patchpoint and statepoint intrinsics.
+ if (Fn && Fn->isIntrinsic())
+ return false;
+
+ // FIXME: support whatever these are.
+ if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
+ return false;
+
+ // FIXME: support Windows exception handling.
+ if (!isa<LandingPadInst>(EHPadBB->front()))
+ return false;
+
+ // Emit the actual call, bracketed by EH_LABELs so that the MF knows about
+ // the region covered by the try.
+ MCSymbol *BeginSymbol = Context.createTempSymbol();
+ MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(BeginSymbol);
+
+ if (!translateCallSite(&I, MIRBuilder))
+ return false;
+
+ MCSymbol *EndSymbol = Context.createTempSymbol();
+ MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(EndSymbol);
+
+ // FIXME: track probabilities.
+ MachineBasicBlock &EHPadMBB = getMBB(*EHPadBB),
+ &ReturnMBB = getMBB(*ReturnBB);
+ MF->addInvoke(&EHPadMBB, BeginSymbol, EndSymbol);
+ MIRBuilder.getMBB().addSuccessor(&ReturnMBB);
+ MIRBuilder.getMBB().addSuccessor(&EHPadMBB);
+ MIRBuilder.buildBr(ReturnMBB);
+
+ return true;
+}
+
+bool IRTranslator::translateCallBr(const User &U,
+ MachineIRBuilder &MIRBuilder) {
+ // FIXME: Implement this.
+ return false;
+}
+
+bool IRTranslator::translateLandingPad(const User &U,
+ MachineIRBuilder &MIRBuilder) {
+ const LandingPadInst &LP = cast<LandingPadInst>(U);
+
+ MachineBasicBlock &MBB = MIRBuilder.getMBB();
+
+ MBB.setIsEHPad();
+
+ // If there aren't registers to copy the values into (e.g., during SjLj
+ // exceptions), then don't bother.
+ auto &TLI = *MF->getSubtarget().getTargetLowering();
+ const Constant *PersonalityFn = MF->getFunction().getPersonalityFn();
+ if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
+ TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
+ return true;
+
+ // If landingpad's return type is token type, we don't create DAG nodes
+ // for its exception pointer and selector value. The extraction of exception
+ // pointer or selector value from token type landingpads is not currently
+ // supported.
+ if (LP.getType()->isTokenTy())
+ return true;
+
+ // Add a label to mark the beginning of the landing pad. Deletion of the
+ // landing pad can thus be detected via the MachineModuleInfo.
+ MIRBuilder.buildInstr(TargetOpcode::EH_LABEL)
+ .addSym(MF->addLandingPad(&MBB));
+
+ LLT Ty = getLLTForType(*LP.getType(), *DL);
+ Register Undef = MRI->createGenericVirtualRegister(Ty);
+ MIRBuilder.buildUndef(Undef);
+
+ SmallVector<LLT, 2> Tys;
+ for (Type *Ty : cast<StructType>(LP.getType())->elements())
+ Tys.push_back(getLLTForType(*Ty, *DL));
+ assert(Tys.size() == 2 && "Only two-valued landingpads are supported");
+
+ // Mark exception register as live in.
+ Register ExceptionReg = TLI.getExceptionPointerRegister(PersonalityFn);
+ if (!ExceptionReg)
+ return false;
+
+ MBB.addLiveIn(ExceptionReg);
+ ArrayRef<Register> ResRegs = getOrCreateVRegs(LP);
+ MIRBuilder.buildCopy(ResRegs[0], ExceptionReg);
+
+ Register SelectorReg = TLI.getExceptionSelectorRegister(PersonalityFn);
+ if (!SelectorReg)
+ return false;
+
+ MBB.addLiveIn(SelectorReg);
+ Register PtrVReg = MRI->createGenericVirtualRegister(Tys[0]);
+ MIRBuilder.buildCopy(PtrVReg, SelectorReg);
+ MIRBuilder.buildCast(ResRegs[1], PtrVReg);
+
+ return true;
+}
+
+bool IRTranslator::translateAlloca(const User &U,
+ MachineIRBuilder &MIRBuilder) {
+ auto &AI = cast<AllocaInst>(U);
+
+ if (AI.isSwiftError())
+ return true;
+
+ if (AI.isStaticAlloca()) {
+ Register Res = getOrCreateVReg(AI);
+ int FI = getOrCreateFrameIndex(AI);
+ MIRBuilder.buildFrameIndex(Res, FI);
+ return true;
+ }
+
+ // FIXME: support stack probing for Windows.
+ if (MF->getTarget().getTargetTriple().isOSWindows())
+ return false;
+
+ // Now we're in the harder dynamic case.
+ Type *Ty = AI.getAllocatedType();
+ unsigned Align =
+ std::max((unsigned)DL->getPrefTypeAlignment(Ty), AI.getAlignment());
+
+ Register NumElts = getOrCreateVReg(*AI.getArraySize());
+
+ Type *IntPtrIRTy = DL->getIntPtrType(AI.getType());
+ LLT IntPtrTy = getLLTForType(*IntPtrIRTy, *DL);
+ if (MRI->getType(NumElts) != IntPtrTy) {
+ Register ExtElts = MRI->createGenericVirtualRegister(IntPtrTy);
+ MIRBuilder.buildZExtOrTrunc(ExtElts, NumElts);
+ NumElts = ExtElts;
+ }
+
+ Register AllocSize = MRI->createGenericVirtualRegister(IntPtrTy);
+ Register TySize =
+ getOrCreateVReg(*ConstantInt::get(IntPtrIRTy, DL->getTypeAllocSize(Ty)));
+ MIRBuilder.buildMul(AllocSize, NumElts, TySize);
+
+ unsigned StackAlign =
+ MF->getSubtarget().getFrameLowering()->getStackAlignment();
+ if (Align <= StackAlign)
+ Align = 0;
+
+ // Round the size of the allocation up to the stack alignment size
+ // by add SA-1 to the size. This doesn't overflow because we're computing
+ // an address inside an alloca.
+ auto SAMinusOne = MIRBuilder.buildConstant(IntPtrTy, StackAlign - 1);
+ auto AllocAdd = MIRBuilder.buildAdd(IntPtrTy, AllocSize, SAMinusOne,
+ MachineInstr::NoUWrap);
+ auto AlignCst =
+ MIRBuilder.buildConstant(IntPtrTy, ~(uint64_t)(StackAlign - 1));
+ auto AlignedAlloc = MIRBuilder.buildAnd(IntPtrTy, AllocAdd, AlignCst);
+
+ MIRBuilder.buildDynStackAlloc(getOrCreateVReg(AI), AlignedAlloc, Align);
+
+ MF->getFrameInfo().CreateVariableSizedObject(Align ? Align : 1, &AI);
+ assert(MF->getFrameInfo().hasVarSizedObjects());
+ return true;
+}
+
+bool IRTranslator::translateVAArg(const User &U, MachineIRBuilder &MIRBuilder) {
+ // FIXME: We may need more info about the type. Because of how LLT works,
+ // we're completely discarding the i64/double distinction here (amongst
+ // others). Fortunately the ABIs I know of where that matters don't use va_arg
+ // anyway but that's not guaranteed.
+ MIRBuilder.buildInstr(TargetOpcode::G_VAARG)
+ .addDef(getOrCreateVReg(U))
+ .addUse(getOrCreateVReg(*U.getOperand(0)))
+ .addImm(DL->getABITypeAlignment(U.getType()));
+ return true;
+}
+
+bool IRTranslator::translateInsertElement(const User &U,
+ MachineIRBuilder &MIRBuilder) {
+ // If it is a <1 x Ty> vector, use the scalar as it is
+ // not a legal vector type in LLT.
+ if (U.getType()->getVectorNumElements() == 1) {
+ Register Elt = getOrCreateVReg(*U.getOperand(1));
+ auto &Regs = *VMap.getVRegs(U);
+ if (Regs.empty()) {
+ Regs.push_back(Elt);
+ VMap.getOffsets(U)->push_back(0);
+ } else {
+ MIRBuilder.buildCopy(Regs[0], Elt);
+ }
+ return true;
+ }
+
+ Register Res = getOrCreateVReg(U);
+ Register Val = getOrCreateVReg(*U.getOperand(0));
+ Register Elt = getOrCreateVReg(*U.getOperand(1));
+ Register Idx = getOrCreateVReg(*U.getOperand(2));
+ MIRBuilder.buildInsertVectorElement(Res, Val, Elt, Idx);
+ return true;
+}
+
+bool IRTranslator::translateExtractElement(const User &U,
+ MachineIRBuilder &MIRBuilder) {
+ // If it is a <1 x Ty> vector, use the scalar as it is
+ // not a legal vector type in LLT.
+ if (U.getOperand(0)->getType()->getVectorNumElements() == 1) {
+ Register Elt = getOrCreateVReg(*U.getOperand(0));
+ auto &Regs = *VMap.getVRegs(U);
+ if (Regs.empty()) {
+ Regs.push_back(Elt);
+ VMap.getOffsets(U)->push_back(0);
+ } else {
+ MIRBuilder.buildCopy(Regs[0], Elt);
+ }
+ return true;
+ }
+ Register Res = getOrCreateVReg(U);
+ Register Val = getOrCreateVReg(*U.getOperand(0));
+ const auto &TLI = *MF->getSubtarget().getTargetLowering();
+ unsigned PreferredVecIdxWidth = TLI.getVectorIdxTy(*DL).getSizeInBits();
+ Register Idx;
+ if (auto *CI = dyn_cast<ConstantInt>(U.getOperand(1))) {
+ if (CI->getBitWidth() != PreferredVecIdxWidth) {
+ APInt NewIdx = CI->getValue().sextOrTrunc(PreferredVecIdxWidth);
+ auto *NewIdxCI = ConstantInt::get(CI->getContext(), NewIdx);
+ Idx = getOrCreateVReg(*NewIdxCI);
+ }
+ }
+ if (!Idx)
+ Idx = getOrCreateVReg(*U.getOperand(1));
+ if (MRI->getType(Idx).getSizeInBits() != PreferredVecIdxWidth) {
+ const LLT &VecIdxTy = LLT::scalar(PreferredVecIdxWidth);
+ Idx = MIRBuilder.buildSExtOrTrunc(VecIdxTy, Idx)->getOperand(0).getReg();
+ }
+ MIRBuilder.buildExtractVectorElement(Res, Val, Idx);
+ return true;
+}
+
+bool IRTranslator::translateShuffleVector(const User &U,
+ MachineIRBuilder &MIRBuilder) {
+ MIRBuilder.buildInstr(TargetOpcode::G_SHUFFLE_VECTOR)
+ .addDef(getOrCreateVReg(U))
+ .addUse(getOrCreateVReg(*U.getOperand(0)))
+ .addUse(getOrCreateVReg(*U.getOperand(1)))
+ .addShuffleMask(cast<Constant>(U.getOperand(2)));
+ return true;
+}
+
+bool IRTranslator::translatePHI(const User &U, MachineIRBuilder &MIRBuilder) {
+ const PHINode &PI = cast<PHINode>(U);
+
+ SmallVector<MachineInstr *, 4> Insts;
+ for (auto Reg : getOrCreateVRegs(PI)) {
+ auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_PHI, {Reg}, {});
+ Insts.push_back(MIB.getInstr());
+ }
+
+ PendingPHIs.emplace_back(&PI, std::move(Insts));
+ return true;
+}
+
+bool IRTranslator::translateAtomicCmpXchg(const User &U,
+ MachineIRBuilder &MIRBuilder) {
+ const AtomicCmpXchgInst &I = cast<AtomicCmpXchgInst>(U);
+
+ if (I.isWeak())
+ return false;
+
+ auto Flags = I.isVolatile() ? MachineMemOperand::MOVolatile
+ : MachineMemOperand::MONone;
+ Flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
+
+ Type *ResType = I.getType();
+ Type *ValType = ResType->Type::getStructElementType(0);
+
+ auto Res = getOrCreateVRegs(I);
+ Register OldValRes = Res[0];
+ Register SuccessRes = Res[1];
+ Register Addr = getOrCreateVReg(*I.getPointerOperand());
+ Register Cmp = getOrCreateVReg(*I.getCompareOperand());
+ Register NewVal = getOrCreateVReg(*I.getNewValOperand());
+
+ MIRBuilder.buildAtomicCmpXchgWithSuccess(
+ OldValRes, SuccessRes, Addr, Cmp, NewVal,
+ *MF->getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
+ Flags, DL->getTypeStoreSize(ValType),
+ getMemOpAlignment(I), AAMDNodes(), nullptr,
+ I.getSyncScopeID(), I.getSuccessOrdering(),
+ I.getFailureOrdering()));
+ return true;
+}
+
+bool IRTranslator::translateAtomicRMW(const User &U,
+ MachineIRBuilder &MIRBuilder) {
+ const AtomicRMWInst &I = cast<AtomicRMWInst>(U);
+
+ auto Flags = I.isVolatile() ? MachineMemOperand::MOVolatile
+ : MachineMemOperand::MONone;
+ Flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
+
+ Type *ResType = I.getType();
+
+ Register Res = getOrCreateVReg(I);
+ Register Addr = getOrCreateVReg(*I.getPointerOperand());
+ Register Val = getOrCreateVReg(*I.getValOperand());
+
+ unsigned Opcode = 0;
+ switch (I.getOperation()) {
+ default:
+ return false;
+ case AtomicRMWInst::Xchg:
+ Opcode = TargetOpcode::G_ATOMICRMW_XCHG;
+ break;
+ case AtomicRMWInst::Add:
+ Opcode = TargetOpcode::G_ATOMICRMW_ADD;
+ break;
+ case AtomicRMWInst::Sub:
+ Opcode = TargetOpcode::G_ATOMICRMW_SUB;
+ break;
+ case AtomicRMWInst::And:
+ Opcode = TargetOpcode::G_ATOMICRMW_AND;
+ break;
+ case AtomicRMWInst::Nand:
+ Opcode = TargetOpcode::G_ATOMICRMW_NAND;
+ break;
+ case AtomicRMWInst::Or:
+ Opcode = TargetOpcode::G_ATOMICRMW_OR;
+ break;
+ case AtomicRMWInst::Xor:
+ Opcode = TargetOpcode::G_ATOMICRMW_XOR;
+ break;
+ case AtomicRMWInst::Max:
+ Opcode = TargetOpcode::G_ATOMICRMW_MAX;
+ break;
+ case AtomicRMWInst::Min:
+ Opcode = TargetOpcode::G_ATOMICRMW_MIN;
+ break;
+ case AtomicRMWInst::UMax:
+ Opcode = TargetOpcode::G_ATOMICRMW_UMAX;
+ break;
+ case AtomicRMWInst::UMin:
+ Opcode = TargetOpcode::G_ATOMICRMW_UMIN;
+ break;
+ case AtomicRMWInst::FAdd:
+ Opcode = TargetOpcode::G_ATOMICRMW_FADD;
+ break;
+ case AtomicRMWInst::FSub:
+ Opcode = TargetOpcode::G_ATOMICRMW_FSUB;
+ break;
+ }
+
+ MIRBuilder.buildAtomicRMW(
+ Opcode, Res, Addr, Val,
+ *MF->getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
+ Flags, DL->getTypeStoreSize(ResType),
+ getMemOpAlignment(I), AAMDNodes(), nullptr,
+ I.getSyncScopeID(), I.getOrdering()));
+ return true;
+}
+
+bool IRTranslator::translateFence(const User &U,
+ MachineIRBuilder &MIRBuilder) {
+ const FenceInst &Fence = cast<FenceInst>(U);
+ MIRBuilder.buildFence(static_cast<unsigned>(Fence.getOrdering()),
+ Fence.getSyncScopeID());
+ return true;
+}
+
+void IRTranslator::finishPendingPhis() {
+#ifndef NDEBUG
+ DILocationVerifier Verifier;
+ GISelObserverWrapper WrapperObserver(&Verifier);
+ RAIIDelegateInstaller DelInstall(*MF, &WrapperObserver);
+#endif // ifndef NDEBUG
+ for (auto &Phi : PendingPHIs) {
+ const PHINode *PI = Phi.first;
+ ArrayRef<MachineInstr *> ComponentPHIs = Phi.second;
+ MachineBasicBlock *PhiMBB = ComponentPHIs[0]->getParent();
+ EntryBuilder->setDebugLoc(PI->getDebugLoc());
+#ifndef NDEBUG
+ Verifier.setCurrentInst(PI);
+#endif // ifndef NDEBUG
+
+ SmallSet<const MachineBasicBlock *, 16> SeenPreds;
+ for (unsigned i = 0; i < PI->getNumIncomingValues(); ++i) {
+ auto IRPred = PI->getIncomingBlock(i);
+ ArrayRef<Register> ValRegs = getOrCreateVRegs(*PI->getIncomingValue(i));
+ for (auto Pred : getMachinePredBBs({IRPred, PI->getParent()})) {
+ if (SeenPreds.count(Pred) || !PhiMBB->isPredecessor(Pred))
+ continue;
+ SeenPreds.insert(Pred);
+ for (unsigned j = 0; j < ValRegs.size(); ++j) {
+ MachineInstrBuilder MIB(*MF, ComponentPHIs[j]);
+ MIB.addUse(ValRegs[j]);
+ MIB.addMBB(Pred);
+ }
+ }
+ }
+ }
+}
+
+bool IRTranslator::valueIsSplit(const Value &V,
+ SmallVectorImpl<uint64_t> *Offsets) {
+ SmallVector<LLT, 4> SplitTys;
+ if (Offsets && !Offsets->empty())
+ Offsets->clear();
+ computeValueLLTs(*DL, *V.getType(), SplitTys, Offsets);
+ return SplitTys.size() > 1;
+}
+
+bool IRTranslator::translate(const Instruction &Inst) {
+ CurBuilder->setDebugLoc(Inst.getDebugLoc());
+ // We only emit constants into the entry block from here. To prevent jumpy
+ // debug behaviour set the line to 0.
+ if (const DebugLoc &DL = Inst.getDebugLoc())
+ EntryBuilder->setDebugLoc(
+ DebugLoc::get(0, 0, DL.getScope(), DL.getInlinedAt()));
+ else
+ EntryBuilder->setDebugLoc(DebugLoc());
+
+ switch (Inst.getOpcode()) {
+#define HANDLE_INST(NUM, OPCODE, CLASS) \
+ case Instruction::OPCODE: \
+ return translate##OPCODE(Inst, *CurBuilder.get());
+#include "llvm/IR/Instruction.def"
+ default:
+ return false;
+ }
+}
+
+bool IRTranslator::translate(const Constant &C, Register Reg) {
+ if (auto CI = dyn_cast<ConstantInt>(&C))
+ EntryBuilder->buildConstant(Reg, *CI);
+ else if (auto CF = dyn_cast<ConstantFP>(&C))
+ EntryBuilder->buildFConstant(Reg, *CF);
+ else if (isa<UndefValue>(C))
+ EntryBuilder->buildUndef(Reg);
+ else if (isa<ConstantPointerNull>(C)) {
+ // As we are trying to build a constant val of 0 into a pointer,
+ // insert a cast to make them correct with respect to types.
+ unsigned NullSize = DL->getTypeSizeInBits(C.getType());
+ auto *ZeroTy = Type::getIntNTy(C.getContext(), NullSize);
+ auto *ZeroVal = ConstantInt::get(ZeroTy, 0);
+ Register ZeroReg = getOrCreateVReg(*ZeroVal);
+ EntryBuilder->buildCast(Reg, ZeroReg);
+ } else if (auto GV = dyn_cast<GlobalValue>(&C))
+ EntryBuilder->buildGlobalValue(Reg, GV);
+ else if (auto CAZ = dyn_cast<ConstantAggregateZero>(&C)) {
+ if (!CAZ->getType()->isVectorTy())
+ return false;
+ // Return the scalar if it is a <1 x Ty> vector.
+ if (CAZ->getNumElements() == 1)
+ return translate(*CAZ->getElementValue(0u), Reg);
+ SmallVector<Register, 4> Ops;
+ for (unsigned i = 0; i < CAZ->getNumElements(); ++i) {
+ Constant &Elt = *CAZ->getElementValue(i);
+ Ops.push_back(getOrCreateVReg(Elt));
+ }
+ EntryBuilder->buildBuildVector(Reg, Ops);
+ } else if (auto CV = dyn_cast<ConstantDataVector>(&C)) {
+ // Return the scalar if it is a <1 x Ty> vector.
+ if (CV->getNumElements() == 1)
+ return translate(*CV->getElementAsConstant(0), Reg);
+ SmallVector<Register, 4> Ops;
+ for (unsigned i = 0; i < CV->getNumElements(); ++i) {
+ Constant &Elt = *CV->getElementAsConstant(i);
+ Ops.push_back(getOrCreateVReg(Elt));
+ }
+ EntryBuilder->buildBuildVector(Reg, Ops);
+ } else if (auto CE = dyn_cast<ConstantExpr>(&C)) {
+ switch(CE->getOpcode()) {
+#define HANDLE_INST(NUM, OPCODE, CLASS) \
+ case Instruction::OPCODE: \
+ return translate##OPCODE(*CE, *EntryBuilder.get());
+#include "llvm/IR/Instruction.def"
+ default:
+ return false;
+ }
+ } else if (auto CV = dyn_cast<ConstantVector>(&C)) {
+ if (CV->getNumOperands() == 1)
+ return translate(*CV->getOperand(0), Reg);
+ SmallVector<Register, 4> Ops;
+ for (unsigned i = 0; i < CV->getNumOperands(); ++i) {
+ Ops.push_back(getOrCreateVReg(*CV->getOperand(i)));
+ }
+ EntryBuilder->buildBuildVector(Reg, Ops);
+ } else if (auto *BA = dyn_cast<BlockAddress>(&C)) {
+ EntryBuilder->buildBlockAddress(Reg, BA);
+ } else
+ return false;
+
+ return true;
+}
+
+void IRTranslator::finalizeBasicBlock() {
+ for (auto &JTCase : SL->JTCases) {
+ // Emit header first, if it wasn't already emitted.
+ if (!JTCase.first.Emitted)
+ emitJumpTableHeader(JTCase.second, JTCase.first, JTCase.first.HeaderBB);
+
+ emitJumpTable(JTCase.second, JTCase.second.MBB);
+ }
+ SL->JTCases.clear();
+}
+
+void IRTranslator::finalizeFunction() {
+ // Release the memory used by the different maps we
+ // needed during the translation.
+ PendingPHIs.clear();
+ VMap.reset();
+ FrameIndices.clear();
+ MachinePreds.clear();
+ // MachineIRBuilder::DebugLoc can outlive the DILocation it holds. Clear it
+ // to avoid accessing free’d memory (in runOnMachineFunction) and to avoid
+ // destroying it twice (in ~IRTranslator() and ~LLVMContext())
+ EntryBuilder.reset();
+ CurBuilder.reset();
+ FuncInfo.clear();
+}
+
+/// Returns true if a BasicBlock \p BB within a variadic function contains a
+/// variadic musttail call.
+static bool checkForMustTailInVarArgFn(bool IsVarArg, const BasicBlock &BB) {
+ if (!IsVarArg)
+ return false;
+
+ // Walk the block backwards, because tail calls usually only appear at the end
+ // of a block.
+ return std::any_of(BB.rbegin(), BB.rend(), [](const Instruction &I) {
+ const auto *CI = dyn_cast<CallInst>(&I);
+ return CI && CI->isMustTailCall();
+ });
+}
+
+bool IRTranslator::runOnMachineFunction(MachineFunction &CurMF) {
+ MF = &CurMF;
+ const Function &F = MF->getFunction();
+ if (F.empty())
+ return false;
+ GISelCSEAnalysisWrapper &Wrapper =
+ getAnalysis<GISelCSEAnalysisWrapperPass>().getCSEWrapper();
+ // Set the CSEConfig and run the analysis.
+ GISelCSEInfo *CSEInfo = nullptr;
+ TPC = &getAnalysis<TargetPassConfig>();
+ bool EnableCSE = EnableCSEInIRTranslator.getNumOccurrences()
+ ? EnableCSEInIRTranslator
+ : TPC->isGISelCSEEnabled();
+
+ if (EnableCSE) {
+ EntryBuilder = std::make_unique<CSEMIRBuilder>(CurMF);
+ CSEInfo = &Wrapper.get(TPC->getCSEConfig());
+ EntryBuilder->setCSEInfo(CSEInfo);
+ CurBuilder = std::make_unique<CSEMIRBuilder>(CurMF);
+ CurBuilder->setCSEInfo(CSEInfo);
+ } else {
+ EntryBuilder = std::make_unique<MachineIRBuilder>();
+ CurBuilder = std::make_unique<MachineIRBuilder>();
+ }
+ CLI = MF->getSubtarget().getCallLowering();
+ CurBuilder->setMF(*MF);
+ EntryBuilder->setMF(*MF);
+ MRI = &MF->getRegInfo();
+ DL = &F.getParent()->getDataLayout();
+ ORE = std::make_unique<OptimizationRemarkEmitter>(&F);
+ FuncInfo.MF = MF;
+ FuncInfo.BPI = nullptr;
+ const auto &TLI = *MF->getSubtarget().getTargetLowering();
+ const TargetMachine &TM = MF->getTarget();
+ SL = std::make_unique<GISelSwitchLowering>(this, FuncInfo);
+ SL->init(TLI, TM, *DL);
+
+ EnableOpts = TM.getOptLevel() != CodeGenOpt::None && !skipFunction(F);
+
+ assert(PendingPHIs.empty() && "stale PHIs");
+
+ if (!DL->isLittleEndian()) {
+ // Currently we don't properly handle big endian code.
+ OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
+ F.getSubprogram(), &F.getEntryBlock());
+ R << "unable to translate in big endian mode";
+ reportTranslationError(*MF, *TPC, *ORE, R);
+ }
+
+ // Release the per-function state when we return, whether we succeeded or not.
+ auto FinalizeOnReturn = make_scope_exit([this]() { finalizeFunction(); });
+
+ // Setup a separate basic-block for the arguments and constants
+ MachineBasicBlock *EntryBB = MF->CreateMachineBasicBlock();
+ MF->push_back(EntryBB);
+ EntryBuilder->setMBB(*EntryBB);
+
+ DebugLoc DbgLoc = F.getEntryBlock().getFirstNonPHI()->getDebugLoc();
+ SwiftError.setFunction(CurMF);
+ SwiftError.createEntriesInEntryBlock(DbgLoc);
+
+ bool IsVarArg = F.isVarArg();
+ bool HasMustTailInVarArgFn = false;
+
+ // Create all blocks, in IR order, to preserve the layout.
+ for (const BasicBlock &BB: F) {
+ auto *&MBB = BBToMBB[&BB];
+
+ MBB = MF->CreateMachineBasicBlock(&BB);
+ MF->push_back(MBB);
+
+ if (BB.hasAddressTaken())
+ MBB->setHasAddressTaken();
+
+ if (!HasMustTailInVarArgFn)
+ HasMustTailInVarArgFn = checkForMustTailInVarArgFn(IsVarArg, BB);
+ }
+
+ MF->getFrameInfo().setHasMustTailInVarArgFunc(HasMustTailInVarArgFn);
+
+ // Make our arguments/constants entry block fallthrough to the IR entry block.
+ EntryBB->addSuccessor(&getMBB(F.front()));
+
+ // Lower the actual args into this basic block.
+ SmallVector<ArrayRef<Register>, 8> VRegArgs;
+ for (const Argument &Arg: F.args()) {
+ if (DL->getTypeStoreSize(Arg.getType()) == 0)
+ continue; // Don't handle zero sized types.
+ ArrayRef<Register> VRegs = getOrCreateVRegs(Arg);
+ VRegArgs.push_back(VRegs);
+
+ if (Arg.hasSwiftErrorAttr()) {
+ assert(VRegs.size() == 1 && "Too many vregs for Swift error");
+ SwiftError.setCurrentVReg(EntryBB, SwiftError.getFunctionArg(), VRegs[0]);
+ }
+ }
+
+ if (!CLI->lowerFormalArguments(*EntryBuilder.get(), F, VRegArgs)) {
+ OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
+ F.getSubprogram(), &F.getEntryBlock());
+ R << "unable to lower arguments: " << ore::NV("Prototype", F.getType());
+ reportTranslationError(*MF, *TPC, *ORE, R);
+ return false;
+ }
+
+ // Need to visit defs before uses when translating instructions.
+ GISelObserverWrapper WrapperObserver;
+ if (EnableCSE && CSEInfo)
+ WrapperObserver.addObserver(CSEInfo);
+ {
+ ReversePostOrderTraversal<const Function *> RPOT(&F);
+#ifndef NDEBUG
+ DILocationVerifier Verifier;
+ WrapperObserver.addObserver(&Verifier);
+#endif // ifndef NDEBUG
+ RAIIDelegateInstaller DelInstall(*MF, &WrapperObserver);
+ for (const BasicBlock *BB : RPOT) {
+ MachineBasicBlock &MBB = getMBB(*BB);
+ // Set the insertion point of all the following translations to
+ // the end of this basic block.
+ CurBuilder->setMBB(MBB);
+ HasTailCall = false;
+ for (const Instruction &Inst : *BB) {
+ // If we translated a tail call in the last step, then we know
+ // everything after the call is either a return, or something that is
+ // handled by the call itself. (E.g. a lifetime marker or assume
+ // intrinsic.) In this case, we should stop translating the block and
+ // move on.
+ if (HasTailCall)
+ break;
+#ifndef NDEBUG
+ Verifier.setCurrentInst(&Inst);
+#endif // ifndef NDEBUG
+ if (translate(Inst))
+ continue;
+
+ OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
+ Inst.getDebugLoc(), BB);
+ R << "unable to translate instruction: " << ore::NV("Opcode", &Inst);
+
+ if (ORE->allowExtraAnalysis("gisel-irtranslator")) {
+ std::string InstStrStorage;
+ raw_string_ostream InstStr(InstStrStorage);
+ InstStr << Inst;
+
+ R << ": '" << InstStr.str() << "'";
+ }
+
+ reportTranslationError(*MF, *TPC, *ORE, R);
+ return false;
+ }
+
+ finalizeBasicBlock();
+ }
+#ifndef NDEBUG
+ WrapperObserver.removeObserver(&Verifier);
+#endif
+ }
+
+ finishPendingPhis();
+
+ SwiftError.propagateVRegs();
+
+ // Merge the argument lowering and constants block with its single
+ // successor, the LLVM-IR entry block. We want the basic block to
+ // be maximal.
+ assert(EntryBB->succ_size() == 1 &&
+ "Custom BB used for lowering should have only one successor");
+ // Get the successor of the current entry block.
+ MachineBasicBlock &NewEntryBB = **EntryBB->succ_begin();
+ assert(NewEntryBB.pred_size() == 1 &&
+ "LLVM-IR entry block has a predecessor!?");
+ // Move all the instruction from the current entry block to the
+ // new entry block.
+ NewEntryBB.splice(NewEntryBB.begin(), EntryBB, EntryBB->begin(),
+ EntryBB->end());
+
+ // Update the live-in information for the new entry block.
+ for (const MachineBasicBlock::RegisterMaskPair &LiveIn : EntryBB->liveins())
+ NewEntryBB.addLiveIn(LiveIn);
+ NewEntryBB.sortUniqueLiveIns();
+
+ // Get rid of the now empty basic block.
+ EntryBB->removeSuccessor(&NewEntryBB);
+ MF->remove(EntryBB);
+ MF->DeleteMachineBasicBlock(EntryBB);
+
+ assert(&MF->front() == &NewEntryBB &&
+ "New entry wasn't next in the list of basic block!");
+
+ // Initialize stack protector information.
+ StackProtector &SP = getAnalysis<StackProtector>();
+ SP.copyToMachineFrameInfo(MF->getFrameInfo());
+
+ return false;
+}