diff options
Diffstat (limited to 'llvm/lib/CodeGen/GlobalISel/IRTranslator.cpp')
| -rw-r--r-- | llvm/lib/CodeGen/GlobalISel/IRTranslator.cpp | 2400 |
1 files changed, 2400 insertions, 0 deletions
diff --git a/llvm/lib/CodeGen/GlobalISel/IRTranslator.cpp b/llvm/lib/CodeGen/GlobalISel/IRTranslator.cpp new file mode 100644 index 0000000000000..45cef4aca8884 --- /dev/null +++ b/llvm/lib/CodeGen/GlobalISel/IRTranslator.cpp @@ -0,0 +1,2400 @@ +//===- llvm/CodeGen/GlobalISel/IRTranslator.cpp - IRTranslator ---*- C++ -*-==// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +/// \file +/// This file implements the IRTranslator class. +//===----------------------------------------------------------------------===// + +#include "llvm/CodeGen/GlobalISel/IRTranslator.h" +#include "llvm/ADT/PostOrderIterator.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/ScopeExit.h" +#include "llvm/ADT/SmallSet.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/Analysis/BranchProbabilityInfo.h" +#include "llvm/Analysis/OptimizationRemarkEmitter.h" +#include "llvm/Analysis/ValueTracking.h" +#include "llvm/CodeGen/Analysis.h" +#include "llvm/CodeGen/FunctionLoweringInfo.h" +#include "llvm/CodeGen/GlobalISel/CallLowering.h" +#include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" +#include "llvm/CodeGen/LowLevelType.h" +#include "llvm/CodeGen/MachineBasicBlock.h" +#include "llvm/CodeGen/MachineFrameInfo.h" +#include "llvm/CodeGen/MachineFunction.h" +#include "llvm/CodeGen/MachineInstrBuilder.h" +#include "llvm/CodeGen/MachineMemOperand.h" +#include "llvm/CodeGen/MachineOperand.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/CodeGen/StackProtector.h" +#include "llvm/CodeGen/TargetFrameLowering.h" +#include "llvm/CodeGen/TargetInstrInfo.h" +#include "llvm/CodeGen/TargetLowering.h" +#include "llvm/CodeGen/TargetPassConfig.h" +#include "llvm/CodeGen/TargetRegisterInfo.h" +#include "llvm/CodeGen/TargetSubtargetInfo.h" +#include "llvm/IR/BasicBlock.h" +#include "llvm/IR/CFG.h" +#include "llvm/IR/Constant.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/DebugInfo.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/GetElementPtrTypeIterator.h" +#include "llvm/IR/InlineAsm.h" +#include "llvm/IR/InstrTypes.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/IntrinsicInst.h" +#include "llvm/IR/Intrinsics.h" +#include "llvm/IR/LLVMContext.h" +#include "llvm/IR/Metadata.h" +#include "llvm/IR/Type.h" +#include "llvm/IR/User.h" +#include "llvm/IR/Value.h" +#include "llvm/MC/MCContext.h" +#include "llvm/Pass.h" +#include "llvm/Support/Casting.h" +#include "llvm/Support/CodeGen.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/LowLevelTypeImpl.h" +#include "llvm/Support/MathExtras.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Target/TargetIntrinsicInfo.h" +#include "llvm/Target/TargetMachine.h" +#include <algorithm> +#include <cassert> +#include <cstdint> +#include <iterator> +#include <string> +#include <utility> +#include <vector> + +#define DEBUG_TYPE "irtranslator" + +using namespace llvm; + +static cl::opt<bool> + EnableCSEInIRTranslator("enable-cse-in-irtranslator", + cl::desc("Should enable CSE in irtranslator"), + cl::Optional, cl::init(false)); +char IRTranslator::ID = 0; + +INITIALIZE_PASS_BEGIN(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI", + false, false) +INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) +INITIALIZE_PASS_DEPENDENCY(GISelCSEAnalysisWrapperPass) +INITIALIZE_PASS_END(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI", + false, false) + +static void reportTranslationError(MachineFunction &MF, + const TargetPassConfig &TPC, + OptimizationRemarkEmitter &ORE, + OptimizationRemarkMissed &R) { + MF.getProperties().set(MachineFunctionProperties::Property::FailedISel); + + // Print the function name explicitly if we don't have a debug location (which + // makes the diagnostic less useful) or if we're going to emit a raw error. + if (!R.getLocation().isValid() || TPC.isGlobalISelAbortEnabled()) + R << (" (in function: " + MF.getName() + ")").str(); + + if (TPC.isGlobalISelAbortEnabled()) + report_fatal_error(R.getMsg()); + else + ORE.emit(R); +} + +IRTranslator::IRTranslator() : MachineFunctionPass(ID) { } + +#ifndef NDEBUG +namespace { +/// Verify that every instruction created has the same DILocation as the +/// instruction being translated. +class DILocationVerifier : public GISelChangeObserver { + const Instruction *CurrInst = nullptr; + +public: + DILocationVerifier() = default; + ~DILocationVerifier() = default; + + const Instruction *getCurrentInst() const { return CurrInst; } + void setCurrentInst(const Instruction *Inst) { CurrInst = Inst; } + + void erasingInstr(MachineInstr &MI) override {} + void changingInstr(MachineInstr &MI) override {} + void changedInstr(MachineInstr &MI) override {} + + void createdInstr(MachineInstr &MI) override { + assert(getCurrentInst() && "Inserted instruction without a current MI"); + + // Only print the check message if we're actually checking it. +#ifndef NDEBUG + LLVM_DEBUG(dbgs() << "Checking DILocation from " << *CurrInst + << " was copied to " << MI); +#endif + // We allow insts in the entry block to have a debug loc line of 0 because + // they could have originated from constants, and we don't want a jumpy + // debug experience. + assert((CurrInst->getDebugLoc() == MI.getDebugLoc() || + MI.getDebugLoc().getLine() == 0) && + "Line info was not transferred to all instructions"); + } +}; +} // namespace +#endif // ifndef NDEBUG + + +void IRTranslator::getAnalysisUsage(AnalysisUsage &AU) const { + AU.addRequired<StackProtector>(); + AU.addRequired<TargetPassConfig>(); + AU.addRequired<GISelCSEAnalysisWrapperPass>(); + getSelectionDAGFallbackAnalysisUsage(AU); + MachineFunctionPass::getAnalysisUsage(AU); +} + +IRTranslator::ValueToVRegInfo::VRegListT & +IRTranslator::allocateVRegs(const Value &Val) { + assert(!VMap.contains(Val) && "Value already allocated in VMap"); + auto *Regs = VMap.getVRegs(Val); + auto *Offsets = VMap.getOffsets(Val); + SmallVector<LLT, 4> SplitTys; + computeValueLLTs(*DL, *Val.getType(), SplitTys, + Offsets->empty() ? Offsets : nullptr); + for (unsigned i = 0; i < SplitTys.size(); ++i) + Regs->push_back(0); + return *Regs; +} + +ArrayRef<Register> IRTranslator::getOrCreateVRegs(const Value &Val) { + auto VRegsIt = VMap.findVRegs(Val); + if (VRegsIt != VMap.vregs_end()) + return *VRegsIt->second; + + if (Val.getType()->isVoidTy()) + return *VMap.getVRegs(Val); + + // Create entry for this type. + auto *VRegs = VMap.getVRegs(Val); + auto *Offsets = VMap.getOffsets(Val); + + assert(Val.getType()->isSized() && + "Don't know how to create an empty vreg"); + + SmallVector<LLT, 4> SplitTys; + computeValueLLTs(*DL, *Val.getType(), SplitTys, + Offsets->empty() ? Offsets : nullptr); + + if (!isa<Constant>(Val)) { + for (auto Ty : SplitTys) + VRegs->push_back(MRI->createGenericVirtualRegister(Ty)); + return *VRegs; + } + + if (Val.getType()->isAggregateType()) { + // UndefValue, ConstantAggregateZero + auto &C = cast<Constant>(Val); + unsigned Idx = 0; + while (auto Elt = C.getAggregateElement(Idx++)) { + auto EltRegs = getOrCreateVRegs(*Elt); + llvm::copy(EltRegs, std::back_inserter(*VRegs)); + } + } else { + assert(SplitTys.size() == 1 && "unexpectedly split LLT"); + VRegs->push_back(MRI->createGenericVirtualRegister(SplitTys[0])); + bool Success = translate(cast<Constant>(Val), VRegs->front()); + if (!Success) { + OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", + MF->getFunction().getSubprogram(), + &MF->getFunction().getEntryBlock()); + R << "unable to translate constant: " << ore::NV("Type", Val.getType()); + reportTranslationError(*MF, *TPC, *ORE, R); + return *VRegs; + } + } + + return *VRegs; +} + +int IRTranslator::getOrCreateFrameIndex(const AllocaInst &AI) { + if (FrameIndices.find(&AI) != FrameIndices.end()) + return FrameIndices[&AI]; + + unsigned ElementSize = DL->getTypeAllocSize(AI.getAllocatedType()); + unsigned Size = + ElementSize * cast<ConstantInt>(AI.getArraySize())->getZExtValue(); + + // Always allocate at least one byte. + Size = std::max(Size, 1u); + + unsigned Alignment = AI.getAlignment(); + if (!Alignment) + Alignment = DL->getABITypeAlignment(AI.getAllocatedType()); + + int &FI = FrameIndices[&AI]; + FI = MF->getFrameInfo().CreateStackObject(Size, Alignment, false, &AI); + return FI; +} + +unsigned IRTranslator::getMemOpAlignment(const Instruction &I) { + unsigned Alignment = 0; + Type *ValTy = nullptr; + if (const StoreInst *SI = dyn_cast<StoreInst>(&I)) { + Alignment = SI->getAlignment(); + ValTy = SI->getValueOperand()->getType(); + } else if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) { + Alignment = LI->getAlignment(); + ValTy = LI->getType(); + } else if (const AtomicCmpXchgInst *AI = dyn_cast<AtomicCmpXchgInst>(&I)) { + // TODO(PR27168): This instruction has no alignment attribute, but unlike + // the default alignment for load/store, the default here is to assume + // it has NATURAL alignment, not DataLayout-specified alignment. + const DataLayout &DL = AI->getModule()->getDataLayout(); + Alignment = DL.getTypeStoreSize(AI->getCompareOperand()->getType()); + ValTy = AI->getCompareOperand()->getType(); + } else if (const AtomicRMWInst *AI = dyn_cast<AtomicRMWInst>(&I)) { + // TODO(PR27168): This instruction has no alignment attribute, but unlike + // the default alignment for load/store, the default here is to assume + // it has NATURAL alignment, not DataLayout-specified alignment. + const DataLayout &DL = AI->getModule()->getDataLayout(); + Alignment = DL.getTypeStoreSize(AI->getValOperand()->getType()); + ValTy = AI->getType(); + } else { + OptimizationRemarkMissed R("gisel-irtranslator", "", &I); + R << "unable to translate memop: " << ore::NV("Opcode", &I); + reportTranslationError(*MF, *TPC, *ORE, R); + return 1; + } + + return Alignment ? Alignment : DL->getABITypeAlignment(ValTy); +} + +MachineBasicBlock &IRTranslator::getMBB(const BasicBlock &BB) { + MachineBasicBlock *&MBB = BBToMBB[&BB]; + assert(MBB && "BasicBlock was not encountered before"); + return *MBB; +} + +void IRTranslator::addMachineCFGPred(CFGEdge Edge, MachineBasicBlock *NewPred) { + assert(NewPred && "new predecessor must be a real MachineBasicBlock"); + MachinePreds[Edge].push_back(NewPred); +} + +bool IRTranslator::translateBinaryOp(unsigned Opcode, const User &U, + MachineIRBuilder &MIRBuilder) { + // Get or create a virtual register for each value. + // Unless the value is a Constant => loadimm cst? + // or inline constant each time? + // Creation of a virtual register needs to have a size. + Register Op0 = getOrCreateVReg(*U.getOperand(0)); + Register Op1 = getOrCreateVReg(*U.getOperand(1)); + Register Res = getOrCreateVReg(U); + uint16_t Flags = 0; + if (isa<Instruction>(U)) { + const Instruction &I = cast<Instruction>(U); + Flags = MachineInstr::copyFlagsFromInstruction(I); + } + + MIRBuilder.buildInstr(Opcode, {Res}, {Op0, Op1}, Flags); + return true; +} + +bool IRTranslator::translateFSub(const User &U, MachineIRBuilder &MIRBuilder) { + // -0.0 - X --> G_FNEG + if (isa<Constant>(U.getOperand(0)) && + U.getOperand(0) == ConstantFP::getZeroValueForNegation(U.getType())) { + Register Op1 = getOrCreateVReg(*U.getOperand(1)); + Register Res = getOrCreateVReg(U); + uint16_t Flags = 0; + if (isa<Instruction>(U)) { + const Instruction &I = cast<Instruction>(U); + Flags = MachineInstr::copyFlagsFromInstruction(I); + } + // Negate the last operand of the FSUB + MIRBuilder.buildInstr(TargetOpcode::G_FNEG, {Res}, {Op1}, Flags); + return true; + } + return translateBinaryOp(TargetOpcode::G_FSUB, U, MIRBuilder); +} + +bool IRTranslator::translateFNeg(const User &U, MachineIRBuilder &MIRBuilder) { + Register Op0 = getOrCreateVReg(*U.getOperand(0)); + Register Res = getOrCreateVReg(U); + uint16_t Flags = 0; + if (isa<Instruction>(U)) { + const Instruction &I = cast<Instruction>(U); + Flags = MachineInstr::copyFlagsFromInstruction(I); + } + MIRBuilder.buildInstr(TargetOpcode::G_FNEG, {Res}, {Op0}, Flags); + return true; +} + +bool IRTranslator::translateCompare(const User &U, + MachineIRBuilder &MIRBuilder) { + auto *CI = dyn_cast<CmpInst>(&U); + Register Op0 = getOrCreateVReg(*U.getOperand(0)); + Register Op1 = getOrCreateVReg(*U.getOperand(1)); + Register Res = getOrCreateVReg(U); + CmpInst::Predicate Pred = + CI ? CI->getPredicate() : static_cast<CmpInst::Predicate>( + cast<ConstantExpr>(U).getPredicate()); + if (CmpInst::isIntPredicate(Pred)) + MIRBuilder.buildICmp(Pred, Res, Op0, Op1); + else if (Pred == CmpInst::FCMP_FALSE) + MIRBuilder.buildCopy( + Res, getOrCreateVReg(*Constant::getNullValue(U.getType()))); + else if (Pred == CmpInst::FCMP_TRUE) + MIRBuilder.buildCopy( + Res, getOrCreateVReg(*Constant::getAllOnesValue(U.getType()))); + else { + assert(CI && "Instruction should be CmpInst"); + MIRBuilder.buildInstr(TargetOpcode::G_FCMP, {Res}, {Pred, Op0, Op1}, + MachineInstr::copyFlagsFromInstruction(*CI)); + } + + return true; +} + +bool IRTranslator::translateRet(const User &U, MachineIRBuilder &MIRBuilder) { + const ReturnInst &RI = cast<ReturnInst>(U); + const Value *Ret = RI.getReturnValue(); + if (Ret && DL->getTypeStoreSize(Ret->getType()) == 0) + Ret = nullptr; + + ArrayRef<Register> VRegs; + if (Ret) + VRegs = getOrCreateVRegs(*Ret); + + Register SwiftErrorVReg = 0; + if (CLI->supportSwiftError() && SwiftError.getFunctionArg()) { + SwiftErrorVReg = SwiftError.getOrCreateVRegUseAt( + &RI, &MIRBuilder.getMBB(), SwiftError.getFunctionArg()); + } + + // The target may mess up with the insertion point, but + // this is not important as a return is the last instruction + // of the block anyway. + return CLI->lowerReturn(MIRBuilder, Ret, VRegs, SwiftErrorVReg); +} + +bool IRTranslator::translateBr(const User &U, MachineIRBuilder &MIRBuilder) { + const BranchInst &BrInst = cast<BranchInst>(U); + unsigned Succ = 0; + if (!BrInst.isUnconditional()) { + // We want a G_BRCOND to the true BB followed by an unconditional branch. + Register Tst = getOrCreateVReg(*BrInst.getCondition()); + const BasicBlock &TrueTgt = *cast<BasicBlock>(BrInst.getSuccessor(Succ++)); + MachineBasicBlock &TrueBB = getMBB(TrueTgt); + MIRBuilder.buildBrCond(Tst, TrueBB); + } + + const BasicBlock &BrTgt = *cast<BasicBlock>(BrInst.getSuccessor(Succ)); + MachineBasicBlock &TgtBB = getMBB(BrTgt); + MachineBasicBlock &CurBB = MIRBuilder.getMBB(); + + // If the unconditional target is the layout successor, fallthrough. + if (!CurBB.isLayoutSuccessor(&TgtBB)) + MIRBuilder.buildBr(TgtBB); + + // Link successors. + for (const BasicBlock *Succ : successors(&BrInst)) + CurBB.addSuccessor(&getMBB(*Succ)); + return true; +} + +void IRTranslator::addSuccessorWithProb(MachineBasicBlock *Src, + MachineBasicBlock *Dst, + BranchProbability Prob) { + if (!FuncInfo.BPI) { + Src->addSuccessorWithoutProb(Dst); + return; + } + if (Prob.isUnknown()) + Prob = getEdgeProbability(Src, Dst); + Src->addSuccessor(Dst, Prob); +} + +BranchProbability +IRTranslator::getEdgeProbability(const MachineBasicBlock *Src, + const MachineBasicBlock *Dst) const { + const BasicBlock *SrcBB = Src->getBasicBlock(); + const BasicBlock *DstBB = Dst->getBasicBlock(); + if (!FuncInfo.BPI) { + // If BPI is not available, set the default probability as 1 / N, where N is + // the number of successors. + auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); + return BranchProbability(1, SuccSize); + } + return FuncInfo.BPI->getEdgeProbability(SrcBB, DstBB); +} + +bool IRTranslator::translateSwitch(const User &U, MachineIRBuilder &MIB) { + using namespace SwitchCG; + // Extract cases from the switch. + const SwitchInst &SI = cast<SwitchInst>(U); + BranchProbabilityInfo *BPI = FuncInfo.BPI; + CaseClusterVector Clusters; + Clusters.reserve(SI.getNumCases()); + for (auto &I : SI.cases()) { + MachineBasicBlock *Succ = &getMBB(*I.getCaseSuccessor()); + assert(Succ && "Could not find successor mbb in mapping"); + const ConstantInt *CaseVal = I.getCaseValue(); + BranchProbability Prob = + BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) + : BranchProbability(1, SI.getNumCases() + 1); + Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); + } + + MachineBasicBlock *DefaultMBB = &getMBB(*SI.getDefaultDest()); + + // Cluster adjacent cases with the same destination. We do this at all + // optimization levels because it's cheap to do and will make codegen faster + // if there are many clusters. + sortAndRangeify(Clusters); + + MachineBasicBlock *SwitchMBB = &getMBB(*SI.getParent()); + + // If there is only the default destination, jump there directly. + if (Clusters.empty()) { + SwitchMBB->addSuccessor(DefaultMBB); + if (DefaultMBB != SwitchMBB->getNextNode()) + MIB.buildBr(*DefaultMBB); + return true; + } + + SL->findJumpTables(Clusters, &SI, DefaultMBB); + + LLVM_DEBUG({ + dbgs() << "Case clusters: "; + for (const CaseCluster &C : Clusters) { + if (C.Kind == CC_JumpTable) + dbgs() << "JT:"; + if (C.Kind == CC_BitTests) + dbgs() << "BT:"; + + C.Low->getValue().print(dbgs(), true); + if (C.Low != C.High) { + dbgs() << '-'; + C.High->getValue().print(dbgs(), true); + } + dbgs() << ' '; + } + dbgs() << '\n'; + }); + + assert(!Clusters.empty()); + SwitchWorkList WorkList; + CaseClusterIt First = Clusters.begin(); + CaseClusterIt Last = Clusters.end() - 1; + auto DefaultProb = getEdgeProbability(SwitchMBB, DefaultMBB); + WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); + + // FIXME: At the moment we don't do any splitting optimizations here like + // SelectionDAG does, so this worklist only has one entry. + while (!WorkList.empty()) { + SwitchWorkListItem W = WorkList.back(); + WorkList.pop_back(); + if (!lowerSwitchWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB, MIB)) + return false; + } + return true; +} + +void IRTranslator::emitJumpTable(SwitchCG::JumpTable &JT, + MachineBasicBlock *MBB) { + // Emit the code for the jump table + assert(JT.Reg != -1U && "Should lower JT Header first!"); + MachineIRBuilder MIB(*MBB->getParent()); + MIB.setMBB(*MBB); + MIB.setDebugLoc(CurBuilder->getDebugLoc()); + + Type *PtrIRTy = Type::getInt8PtrTy(MF->getFunction().getContext()); + const LLT PtrTy = getLLTForType(*PtrIRTy, *DL); + + auto Table = MIB.buildJumpTable(PtrTy, JT.JTI); + MIB.buildBrJT(Table.getReg(0), JT.JTI, JT.Reg); +} + +bool IRTranslator::emitJumpTableHeader(SwitchCG::JumpTable &JT, + SwitchCG::JumpTableHeader &JTH, + MachineBasicBlock *HeaderBB) { + MachineIRBuilder MIB(*HeaderBB->getParent()); + MIB.setMBB(*HeaderBB); + MIB.setDebugLoc(CurBuilder->getDebugLoc()); + + const Value &SValue = *JTH.SValue; + // Subtract the lowest switch case value from the value being switched on. + const LLT SwitchTy = getLLTForType(*SValue.getType(), *DL); + Register SwitchOpReg = getOrCreateVReg(SValue); + auto FirstCst = MIB.buildConstant(SwitchTy, JTH.First); + auto Sub = MIB.buildSub({SwitchTy}, SwitchOpReg, FirstCst); + + // This value may be smaller or larger than the target's pointer type, and + // therefore require extension or truncating. + Type *PtrIRTy = SValue.getType()->getPointerTo(); + const LLT PtrScalarTy = LLT::scalar(DL->getTypeSizeInBits(PtrIRTy)); + Sub = MIB.buildZExtOrTrunc(PtrScalarTy, Sub); + + JT.Reg = Sub.getReg(0); + + if (JTH.OmitRangeCheck) { + if (JT.MBB != HeaderBB->getNextNode()) + MIB.buildBr(*JT.MBB); + return true; + } + + // Emit the range check for the jump table, and branch to the default block + // for the switch statement if the value being switched on exceeds the + // largest case in the switch. + auto Cst = getOrCreateVReg( + *ConstantInt::get(SValue.getType(), JTH.Last - JTH.First)); + Cst = MIB.buildZExtOrTrunc(PtrScalarTy, Cst).getReg(0); + auto Cmp = MIB.buildICmp(CmpInst::ICMP_UGT, LLT::scalar(1), Sub, Cst); + + auto BrCond = MIB.buildBrCond(Cmp.getReg(0), *JT.Default); + + // Avoid emitting unnecessary branches to the next block. + if (JT.MBB != HeaderBB->getNextNode()) + BrCond = MIB.buildBr(*JT.MBB); + return true; +} + +void IRTranslator::emitSwitchCase(SwitchCG::CaseBlock &CB, + MachineBasicBlock *SwitchBB, + MachineIRBuilder &MIB) { + Register CondLHS = getOrCreateVReg(*CB.CmpLHS); + Register Cond; + DebugLoc OldDbgLoc = MIB.getDebugLoc(); + MIB.setDebugLoc(CB.DbgLoc); + MIB.setMBB(*CB.ThisBB); + + if (CB.PredInfo.NoCmp) { + // Branch or fall through to TrueBB. + addSuccessorWithProb(CB.ThisBB, CB.TrueBB, CB.TrueProb); + addMachineCFGPred({SwitchBB->getBasicBlock(), CB.TrueBB->getBasicBlock()}, + CB.ThisBB); + CB.ThisBB->normalizeSuccProbs(); + if (CB.TrueBB != CB.ThisBB->getNextNode()) + MIB.buildBr(*CB.TrueBB); + MIB.setDebugLoc(OldDbgLoc); + return; + } + + const LLT i1Ty = LLT::scalar(1); + // Build the compare. + if (!CB.CmpMHS) { + Register CondRHS = getOrCreateVReg(*CB.CmpRHS); + Cond = MIB.buildICmp(CB.PredInfo.Pred, i1Ty, CondLHS, CondRHS).getReg(0); + } else { + assert(CB.PredInfo.Pred == CmpInst::ICMP_SLE && + "Can only handle SLE ranges"); + + const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); + const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); + + Register CmpOpReg = getOrCreateVReg(*CB.CmpMHS); + if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { + Register CondRHS = getOrCreateVReg(*CB.CmpRHS); + Cond = + MIB.buildICmp(CmpInst::ICMP_SLE, i1Ty, CmpOpReg, CondRHS).getReg(0); + } else { + const LLT &CmpTy = MRI->getType(CmpOpReg); + auto Sub = MIB.buildSub({CmpTy}, CmpOpReg, CondLHS); + auto Diff = MIB.buildConstant(CmpTy, High - Low); + Cond = MIB.buildICmp(CmpInst::ICMP_ULE, i1Ty, Sub, Diff).getReg(0); + } + } + + // Update successor info + addSuccessorWithProb(CB.ThisBB, CB.TrueBB, CB.TrueProb); + + addMachineCFGPred({SwitchBB->getBasicBlock(), CB.TrueBB->getBasicBlock()}, + CB.ThisBB); + + // TrueBB and FalseBB are always different unless the incoming IR is + // degenerate. This only happens when running llc on weird IR. + if (CB.TrueBB != CB.FalseBB) + addSuccessorWithProb(CB.ThisBB, CB.FalseBB, CB.FalseProb); + CB.ThisBB->normalizeSuccProbs(); + + // if (SwitchBB->getBasicBlock() != CB.FalseBB->getBasicBlock()) + addMachineCFGPred({SwitchBB->getBasicBlock(), CB.FalseBB->getBasicBlock()}, + CB.ThisBB); + + // If the lhs block is the next block, invert the condition so that we can + // fall through to the lhs instead of the rhs block. + if (CB.TrueBB == CB.ThisBB->getNextNode()) { + std::swap(CB.TrueBB, CB.FalseBB); + auto True = MIB.buildConstant(i1Ty, 1); + Cond = MIB.buildInstr(TargetOpcode::G_XOR, {i1Ty}, {Cond, True}, None) + .getReg(0); + } + + MIB.buildBrCond(Cond, *CB.TrueBB); + MIB.buildBr(*CB.FalseBB); + MIB.setDebugLoc(OldDbgLoc); +} + +bool IRTranslator::lowerJumpTableWorkItem(SwitchCG::SwitchWorkListItem W, + MachineBasicBlock *SwitchMBB, + MachineBasicBlock *CurMBB, + MachineBasicBlock *DefaultMBB, + MachineIRBuilder &MIB, + MachineFunction::iterator BBI, + BranchProbability UnhandledProbs, + SwitchCG::CaseClusterIt I, + MachineBasicBlock *Fallthrough, + bool FallthroughUnreachable) { + using namespace SwitchCG; + MachineFunction *CurMF = SwitchMBB->getParent(); + // FIXME: Optimize away range check based on pivot comparisons. + JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first; + SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second; + BranchProbability DefaultProb = W.DefaultProb; + + // The jump block hasn't been inserted yet; insert it here. + MachineBasicBlock *JumpMBB = JT->MBB; + CurMF->insert(BBI, JumpMBB); + + // Since the jump table block is separate from the switch block, we need + // to keep track of it as a machine predecessor to the default block, + // otherwise we lose the phi edges. + addMachineCFGPred({SwitchMBB->getBasicBlock(), DefaultMBB->getBasicBlock()}, + CurMBB); + addMachineCFGPred({SwitchMBB->getBasicBlock(), DefaultMBB->getBasicBlock()}, + JumpMBB); + + auto JumpProb = I->Prob; + auto FallthroughProb = UnhandledProbs; + + // If the default statement is a target of the jump table, we evenly + // distribute the default probability to successors of CurMBB. Also + // update the probability on the edge from JumpMBB to Fallthrough. + for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), + SE = JumpMBB->succ_end(); + SI != SE; ++SI) { + if (*SI == DefaultMBB) { + JumpProb += DefaultProb / 2; + FallthroughProb -= DefaultProb / 2; + JumpMBB->setSuccProbability(SI, DefaultProb / 2); + JumpMBB->normalizeSuccProbs(); + } else { + // Also record edges from the jump table block to it's successors. + addMachineCFGPred({SwitchMBB->getBasicBlock(), (*SI)->getBasicBlock()}, + JumpMBB); + } + } + + // Skip the range check if the fallthrough block is unreachable. + if (FallthroughUnreachable) + JTH->OmitRangeCheck = true; + + if (!JTH->OmitRangeCheck) + addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); + addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); + CurMBB->normalizeSuccProbs(); + + // The jump table header will be inserted in our current block, do the + // range check, and fall through to our fallthrough block. + JTH->HeaderBB = CurMBB; + JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. + + // If we're in the right place, emit the jump table header right now. + if (CurMBB == SwitchMBB) { + if (!emitJumpTableHeader(*JT, *JTH, CurMBB)) + return false; + JTH->Emitted = true; + } + return true; +} +bool IRTranslator::lowerSwitchRangeWorkItem(SwitchCG::CaseClusterIt I, + Value *Cond, + MachineBasicBlock *Fallthrough, + bool FallthroughUnreachable, + BranchProbability UnhandledProbs, + MachineBasicBlock *CurMBB, + MachineIRBuilder &MIB, + MachineBasicBlock *SwitchMBB) { + using namespace SwitchCG; + const Value *RHS, *LHS, *MHS; + CmpInst::Predicate Pred; + if (I->Low == I->High) { + // Check Cond == I->Low. + Pred = CmpInst::ICMP_EQ; + LHS = Cond; + RHS = I->Low; + MHS = nullptr; + } else { + // Check I->Low <= Cond <= I->High. + Pred = CmpInst::ICMP_SLE; + LHS = I->Low; + MHS = Cond; + RHS = I->High; + } + + // If Fallthrough is unreachable, fold away the comparison. + // The false probability is the sum of all unhandled cases. + CaseBlock CB(Pred, FallthroughUnreachable, LHS, RHS, MHS, I->MBB, Fallthrough, + CurMBB, MIB.getDebugLoc(), I->Prob, UnhandledProbs); + + emitSwitchCase(CB, SwitchMBB, MIB); + return true; +} + +bool IRTranslator::lowerSwitchWorkItem(SwitchCG::SwitchWorkListItem W, + Value *Cond, + MachineBasicBlock *SwitchMBB, + MachineBasicBlock *DefaultMBB, + MachineIRBuilder &MIB) { + using namespace SwitchCG; + MachineFunction *CurMF = FuncInfo.MF; + MachineBasicBlock *NextMBB = nullptr; + MachineFunction::iterator BBI(W.MBB); + if (++BBI != FuncInfo.MF->end()) + NextMBB = &*BBI; + + if (EnableOpts) { + // Here, we order cases by probability so the most likely case will be + // checked first. However, two clusters can have the same probability in + // which case their relative ordering is non-deterministic. So we use Low + // as a tie-breaker as clusters are guaranteed to never overlap. + llvm::sort(W.FirstCluster, W.LastCluster + 1, + [](const CaseCluster &a, const CaseCluster &b) { + return a.Prob != b.Prob + ? a.Prob > b.Prob + : a.Low->getValue().slt(b.Low->getValue()); + }); + + // Rearrange the case blocks so that the last one falls through if possible + // without changing the order of probabilities. + for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster;) { + --I; + if (I->Prob > W.LastCluster->Prob) + break; + if (I->Kind == CC_Range && I->MBB == NextMBB) { + std::swap(*I, *W.LastCluster); + break; + } + } + } + + // Compute total probability. + BranchProbability DefaultProb = W.DefaultProb; + BranchProbability UnhandledProbs = DefaultProb; + for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) + UnhandledProbs += I->Prob; + + MachineBasicBlock *CurMBB = W.MBB; + for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { + bool FallthroughUnreachable = false; + MachineBasicBlock *Fallthrough; + if (I == W.LastCluster) { + // For the last cluster, fall through to the default destination. + Fallthrough = DefaultMBB; + FallthroughUnreachable = isa<UnreachableInst>( + DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg()); + } else { + Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); + CurMF->insert(BBI, Fallthrough); + } + UnhandledProbs -= I->Prob; + + switch (I->Kind) { + case CC_BitTests: { + LLVM_DEBUG(dbgs() << "Switch to bit test optimization unimplemented"); + return false; // Bit tests currently unimplemented. + } + case CC_JumpTable: { + if (!lowerJumpTableWorkItem(W, SwitchMBB, CurMBB, DefaultMBB, MIB, BBI, + UnhandledProbs, I, Fallthrough, + FallthroughUnreachable)) { + LLVM_DEBUG(dbgs() << "Failed to lower jump table"); + return false; + } + break; + } + case CC_Range: { + if (!lowerSwitchRangeWorkItem(I, Cond, Fallthrough, + FallthroughUnreachable, UnhandledProbs, + CurMBB, MIB, SwitchMBB)) { + LLVM_DEBUG(dbgs() << "Failed to lower switch range"); + return false; + } + break; + } + } + CurMBB = Fallthrough; + } + + return true; +} + +bool IRTranslator::translateIndirectBr(const User &U, + MachineIRBuilder &MIRBuilder) { + const IndirectBrInst &BrInst = cast<IndirectBrInst>(U); + + const Register Tgt = getOrCreateVReg(*BrInst.getAddress()); + MIRBuilder.buildBrIndirect(Tgt); + + // Link successors. + MachineBasicBlock &CurBB = MIRBuilder.getMBB(); + for (const BasicBlock *Succ : successors(&BrInst)) + CurBB.addSuccessor(&getMBB(*Succ)); + + return true; +} + +static bool isSwiftError(const Value *V) { + if (auto Arg = dyn_cast<Argument>(V)) + return Arg->hasSwiftErrorAttr(); + if (auto AI = dyn_cast<AllocaInst>(V)) + return AI->isSwiftError(); + return false; +} + +bool IRTranslator::translateLoad(const User &U, MachineIRBuilder &MIRBuilder) { + const LoadInst &LI = cast<LoadInst>(U); + + auto Flags = LI.isVolatile() ? MachineMemOperand::MOVolatile + : MachineMemOperand::MONone; + Flags |= MachineMemOperand::MOLoad; + + if (DL->getTypeStoreSize(LI.getType()) == 0) + return true; + + ArrayRef<Register> Regs = getOrCreateVRegs(LI); + ArrayRef<uint64_t> Offsets = *VMap.getOffsets(LI); + Register Base = getOrCreateVReg(*LI.getPointerOperand()); + + Type *OffsetIRTy = DL->getIntPtrType(LI.getPointerOperandType()); + LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL); + + if (CLI->supportSwiftError() && isSwiftError(LI.getPointerOperand())) { + assert(Regs.size() == 1 && "swifterror should be single pointer"); + Register VReg = SwiftError.getOrCreateVRegUseAt(&LI, &MIRBuilder.getMBB(), + LI.getPointerOperand()); + MIRBuilder.buildCopy(Regs[0], VReg); + return true; + } + + const MDNode *Ranges = + Regs.size() == 1 ? LI.getMetadata(LLVMContext::MD_range) : nullptr; + for (unsigned i = 0; i < Regs.size(); ++i) { + Register Addr; + MIRBuilder.materializeGEP(Addr, Base, OffsetTy, Offsets[i] / 8); + + MachinePointerInfo Ptr(LI.getPointerOperand(), Offsets[i] / 8); + unsigned BaseAlign = getMemOpAlignment(LI); + auto MMO = MF->getMachineMemOperand( + Ptr, Flags, (MRI->getType(Regs[i]).getSizeInBits() + 7) / 8, + MinAlign(BaseAlign, Offsets[i] / 8), AAMDNodes(), Ranges, + LI.getSyncScopeID(), LI.getOrdering()); + MIRBuilder.buildLoad(Regs[i], Addr, *MMO); + } + + return true; +} + +bool IRTranslator::translateStore(const User &U, MachineIRBuilder &MIRBuilder) { + const StoreInst &SI = cast<StoreInst>(U); + auto Flags = SI.isVolatile() ? MachineMemOperand::MOVolatile + : MachineMemOperand::MONone; + Flags |= MachineMemOperand::MOStore; + + if (DL->getTypeStoreSize(SI.getValueOperand()->getType()) == 0) + return true; + + ArrayRef<Register> Vals = getOrCreateVRegs(*SI.getValueOperand()); + ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*SI.getValueOperand()); + Register Base = getOrCreateVReg(*SI.getPointerOperand()); + + Type *OffsetIRTy = DL->getIntPtrType(SI.getPointerOperandType()); + LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL); + + if (CLI->supportSwiftError() && isSwiftError(SI.getPointerOperand())) { + assert(Vals.size() == 1 && "swifterror should be single pointer"); + + Register VReg = SwiftError.getOrCreateVRegDefAt(&SI, &MIRBuilder.getMBB(), + SI.getPointerOperand()); + MIRBuilder.buildCopy(VReg, Vals[0]); + return true; + } + + for (unsigned i = 0; i < Vals.size(); ++i) { + Register Addr; + MIRBuilder.materializeGEP(Addr, Base, OffsetTy, Offsets[i] / 8); + + MachinePointerInfo Ptr(SI.getPointerOperand(), Offsets[i] / 8); + unsigned BaseAlign = getMemOpAlignment(SI); + auto MMO = MF->getMachineMemOperand( + Ptr, Flags, (MRI->getType(Vals[i]).getSizeInBits() + 7) / 8, + MinAlign(BaseAlign, Offsets[i] / 8), AAMDNodes(), nullptr, + SI.getSyncScopeID(), SI.getOrdering()); + MIRBuilder.buildStore(Vals[i], Addr, *MMO); + } + return true; +} + +static uint64_t getOffsetFromIndices(const User &U, const DataLayout &DL) { + const Value *Src = U.getOperand(0); + Type *Int32Ty = Type::getInt32Ty(U.getContext()); + + // getIndexedOffsetInType is designed for GEPs, so the first index is the + // usual array element rather than looking into the actual aggregate. + SmallVector<Value *, 1> Indices; + Indices.push_back(ConstantInt::get(Int32Ty, 0)); + + if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&U)) { + for (auto Idx : EVI->indices()) + Indices.push_back(ConstantInt::get(Int32Ty, Idx)); + } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&U)) { + for (auto Idx : IVI->indices()) + Indices.push_back(ConstantInt::get(Int32Ty, Idx)); + } else { + for (unsigned i = 1; i < U.getNumOperands(); ++i) + Indices.push_back(U.getOperand(i)); + } + + return 8 * static_cast<uint64_t>( + DL.getIndexedOffsetInType(Src->getType(), Indices)); +} + +bool IRTranslator::translateExtractValue(const User &U, + MachineIRBuilder &MIRBuilder) { + const Value *Src = U.getOperand(0); + uint64_t Offset = getOffsetFromIndices(U, *DL); + ArrayRef<Register> SrcRegs = getOrCreateVRegs(*Src); + ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*Src); + unsigned Idx = llvm::lower_bound(Offsets, Offset) - Offsets.begin(); + auto &DstRegs = allocateVRegs(U); + + for (unsigned i = 0; i < DstRegs.size(); ++i) + DstRegs[i] = SrcRegs[Idx++]; + + return true; +} + +bool IRTranslator::translateInsertValue(const User &U, + MachineIRBuilder &MIRBuilder) { + const Value *Src = U.getOperand(0); + uint64_t Offset = getOffsetFromIndices(U, *DL); + auto &DstRegs = allocateVRegs(U); + ArrayRef<uint64_t> DstOffsets = *VMap.getOffsets(U); + ArrayRef<Register> SrcRegs = getOrCreateVRegs(*Src); + ArrayRef<Register> InsertedRegs = getOrCreateVRegs(*U.getOperand(1)); + auto InsertedIt = InsertedRegs.begin(); + + for (unsigned i = 0; i < DstRegs.size(); ++i) { + if (DstOffsets[i] >= Offset && InsertedIt != InsertedRegs.end()) + DstRegs[i] = *InsertedIt++; + else + DstRegs[i] = SrcRegs[i]; + } + + return true; +} + +bool IRTranslator::translateSelect(const User &U, + MachineIRBuilder &MIRBuilder) { + Register Tst = getOrCreateVReg(*U.getOperand(0)); + ArrayRef<Register> ResRegs = getOrCreateVRegs(U); + ArrayRef<Register> Op0Regs = getOrCreateVRegs(*U.getOperand(1)); + ArrayRef<Register> Op1Regs = getOrCreateVRegs(*U.getOperand(2)); + + const SelectInst &SI = cast<SelectInst>(U); + uint16_t Flags = 0; + if (const CmpInst *Cmp = dyn_cast<CmpInst>(SI.getCondition())) + Flags = MachineInstr::copyFlagsFromInstruction(*Cmp); + + for (unsigned i = 0; i < ResRegs.size(); ++i) { + MIRBuilder.buildInstr(TargetOpcode::G_SELECT, {ResRegs[i]}, + {Tst, Op0Regs[i], Op1Regs[i]}, Flags); + } + + return true; +} + +bool IRTranslator::translateBitCast(const User &U, + MachineIRBuilder &MIRBuilder) { + // If we're bitcasting to the source type, we can reuse the source vreg. + if (getLLTForType(*U.getOperand(0)->getType(), *DL) == + getLLTForType(*U.getType(), *DL)) { + Register SrcReg = getOrCreateVReg(*U.getOperand(0)); + auto &Regs = *VMap.getVRegs(U); + // If we already assigned a vreg for this bitcast, we can't change that. + // Emit a copy to satisfy the users we already emitted. + if (!Regs.empty()) + MIRBuilder.buildCopy(Regs[0], SrcReg); + else { + Regs.push_back(SrcReg); + VMap.getOffsets(U)->push_back(0); + } + return true; + } + return translateCast(TargetOpcode::G_BITCAST, U, MIRBuilder); +} + +bool IRTranslator::translateCast(unsigned Opcode, const User &U, + MachineIRBuilder &MIRBuilder) { + Register Op = getOrCreateVReg(*U.getOperand(0)); + Register Res = getOrCreateVReg(U); + MIRBuilder.buildInstr(Opcode, {Res}, {Op}); + return true; +} + +bool IRTranslator::translateGetElementPtr(const User &U, + MachineIRBuilder &MIRBuilder) { + // FIXME: support vector GEPs. + if (U.getType()->isVectorTy()) + return false; + + Value &Op0 = *U.getOperand(0); + Register BaseReg = getOrCreateVReg(Op0); + Type *PtrIRTy = Op0.getType(); + LLT PtrTy = getLLTForType(*PtrIRTy, *DL); + Type *OffsetIRTy = DL->getIntPtrType(PtrIRTy); + LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL); + + int64_t Offset = 0; + for (gep_type_iterator GTI = gep_type_begin(&U), E = gep_type_end(&U); + GTI != E; ++GTI) { + const Value *Idx = GTI.getOperand(); + if (StructType *StTy = GTI.getStructTypeOrNull()) { + unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); + Offset += DL->getStructLayout(StTy)->getElementOffset(Field); + continue; + } else { + uint64_t ElementSize = DL->getTypeAllocSize(GTI.getIndexedType()); + + // If this is a scalar constant or a splat vector of constants, + // handle it quickly. + if (const auto *CI = dyn_cast<ConstantInt>(Idx)) { + Offset += ElementSize * CI->getSExtValue(); + continue; + } + + if (Offset != 0) { + LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL); + auto OffsetMIB = MIRBuilder.buildConstant({OffsetTy}, Offset); + BaseReg = + MIRBuilder.buildGEP(PtrTy, BaseReg, OffsetMIB.getReg(0)).getReg(0); + Offset = 0; + } + + Register IdxReg = getOrCreateVReg(*Idx); + if (MRI->getType(IdxReg) != OffsetTy) + IdxReg = MIRBuilder.buildSExtOrTrunc(OffsetTy, IdxReg).getReg(0); + + // N = N + Idx * ElementSize; + // Avoid doing it for ElementSize of 1. + Register GepOffsetReg; + if (ElementSize != 1) { + auto ElementSizeMIB = MIRBuilder.buildConstant( + getLLTForType(*OffsetIRTy, *DL), ElementSize); + GepOffsetReg = + MIRBuilder.buildMul(OffsetTy, ElementSizeMIB, IdxReg).getReg(0); + } else + GepOffsetReg = IdxReg; + + BaseReg = MIRBuilder.buildGEP(PtrTy, BaseReg, GepOffsetReg).getReg(0); + } + } + + if (Offset != 0) { + auto OffsetMIB = + MIRBuilder.buildConstant(getLLTForType(*OffsetIRTy, *DL), Offset); + MIRBuilder.buildGEP(getOrCreateVReg(U), BaseReg, OffsetMIB.getReg(0)); + return true; + } + + MIRBuilder.buildCopy(getOrCreateVReg(U), BaseReg); + return true; +} + +bool IRTranslator::translateMemFunc(const CallInst &CI, + MachineIRBuilder &MIRBuilder, + Intrinsic::ID ID) { + + // If the source is undef, then just emit a nop. + if (isa<UndefValue>(CI.getArgOperand(1))) + return true; + + ArrayRef<Register> Res; + auto ICall = MIRBuilder.buildIntrinsic(ID, Res, true); + for (auto AI = CI.arg_begin(), AE = CI.arg_end(); std::next(AI) != AE; ++AI) + ICall.addUse(getOrCreateVReg(**AI)); + + unsigned DstAlign = 0, SrcAlign = 0; + unsigned IsVol = + cast<ConstantInt>(CI.getArgOperand(CI.getNumArgOperands() - 1)) + ->getZExtValue(); + + if (auto *MCI = dyn_cast<MemCpyInst>(&CI)) { + DstAlign = std::max<unsigned>(MCI->getDestAlignment(), 1); + SrcAlign = std::max<unsigned>(MCI->getSourceAlignment(), 1); + } else if (auto *MMI = dyn_cast<MemMoveInst>(&CI)) { + DstAlign = std::max<unsigned>(MMI->getDestAlignment(), 1); + SrcAlign = std::max<unsigned>(MMI->getSourceAlignment(), 1); + } else { + auto *MSI = cast<MemSetInst>(&CI); + DstAlign = std::max<unsigned>(MSI->getDestAlignment(), 1); + } + + // We need to propagate the tail call flag from the IR inst as an argument. + // Otherwise, we have to pessimize and assume later that we cannot tail call + // any memory intrinsics. + ICall.addImm(CI.isTailCall() ? 1 : 0); + + // Create mem operands to store the alignment and volatile info. + auto VolFlag = IsVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; + ICall.addMemOperand(MF->getMachineMemOperand( + MachinePointerInfo(CI.getArgOperand(0)), + MachineMemOperand::MOStore | VolFlag, 1, DstAlign)); + if (ID != Intrinsic::memset) + ICall.addMemOperand(MF->getMachineMemOperand( + MachinePointerInfo(CI.getArgOperand(1)), + MachineMemOperand::MOLoad | VolFlag, 1, SrcAlign)); + + return true; +} + +void IRTranslator::getStackGuard(Register DstReg, + MachineIRBuilder &MIRBuilder) { + const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); + MRI->setRegClass(DstReg, TRI->getPointerRegClass(*MF)); + auto MIB = MIRBuilder.buildInstr(TargetOpcode::LOAD_STACK_GUARD); + MIB.addDef(DstReg); + + auto &TLI = *MF->getSubtarget().getTargetLowering(); + Value *Global = TLI.getSDagStackGuard(*MF->getFunction().getParent()); + if (!Global) + return; + + MachinePointerInfo MPInfo(Global); + auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | + MachineMemOperand::MODereferenceable; + MachineMemOperand *MemRef = + MF->getMachineMemOperand(MPInfo, Flags, DL->getPointerSizeInBits() / 8, + DL->getPointerABIAlignment(0).value()); + MIB.setMemRefs({MemRef}); +} + +bool IRTranslator::translateOverflowIntrinsic(const CallInst &CI, unsigned Op, + MachineIRBuilder &MIRBuilder) { + ArrayRef<Register> ResRegs = getOrCreateVRegs(CI); + MIRBuilder.buildInstr(Op) + .addDef(ResRegs[0]) + .addDef(ResRegs[1]) + .addUse(getOrCreateVReg(*CI.getOperand(0))) + .addUse(getOrCreateVReg(*CI.getOperand(1))); + + return true; +} + +unsigned IRTranslator::getSimpleIntrinsicOpcode(Intrinsic::ID ID) { + switch (ID) { + default: + break; + case Intrinsic::bswap: + return TargetOpcode::G_BSWAP; + case Intrinsic::bitreverse: + return TargetOpcode::G_BITREVERSE; + case Intrinsic::ceil: + return TargetOpcode::G_FCEIL; + case Intrinsic::cos: + return TargetOpcode::G_FCOS; + case Intrinsic::ctpop: + return TargetOpcode::G_CTPOP; + case Intrinsic::exp: + return TargetOpcode::G_FEXP; + case Intrinsic::exp2: + return TargetOpcode::G_FEXP2; + case Intrinsic::fabs: + return TargetOpcode::G_FABS; + case Intrinsic::copysign: + return TargetOpcode::G_FCOPYSIGN; + case Intrinsic::minnum: + return TargetOpcode::G_FMINNUM; + case Intrinsic::maxnum: + return TargetOpcode::G_FMAXNUM; + case Intrinsic::minimum: + return TargetOpcode::G_FMINIMUM; + case Intrinsic::maximum: + return TargetOpcode::G_FMAXIMUM; + case Intrinsic::canonicalize: + return TargetOpcode::G_FCANONICALIZE; + case Intrinsic::floor: + return TargetOpcode::G_FFLOOR; + case Intrinsic::fma: + return TargetOpcode::G_FMA; + case Intrinsic::log: + return TargetOpcode::G_FLOG; + case Intrinsic::log2: + return TargetOpcode::G_FLOG2; + case Intrinsic::log10: + return TargetOpcode::G_FLOG10; + case Intrinsic::nearbyint: + return TargetOpcode::G_FNEARBYINT; + case Intrinsic::pow: + return TargetOpcode::G_FPOW; + case Intrinsic::rint: + return TargetOpcode::G_FRINT; + case Intrinsic::round: + return TargetOpcode::G_INTRINSIC_ROUND; + case Intrinsic::sin: + return TargetOpcode::G_FSIN; + case Intrinsic::sqrt: + return TargetOpcode::G_FSQRT; + case Intrinsic::trunc: + return TargetOpcode::G_INTRINSIC_TRUNC; + } + return Intrinsic::not_intrinsic; +} + +bool IRTranslator::translateSimpleIntrinsic(const CallInst &CI, + Intrinsic::ID ID, + MachineIRBuilder &MIRBuilder) { + + unsigned Op = getSimpleIntrinsicOpcode(ID); + + // Is this a simple intrinsic? + if (Op == Intrinsic::not_intrinsic) + return false; + + // Yes. Let's translate it. + SmallVector<llvm::SrcOp, 4> VRegs; + for (auto &Arg : CI.arg_operands()) + VRegs.push_back(getOrCreateVReg(*Arg)); + + MIRBuilder.buildInstr(Op, {getOrCreateVReg(CI)}, VRegs, + MachineInstr::copyFlagsFromInstruction(CI)); + return true; +} + +bool IRTranslator::translateKnownIntrinsic(const CallInst &CI, Intrinsic::ID ID, + MachineIRBuilder &MIRBuilder) { + + // If this is a simple intrinsic (that is, we just need to add a def of + // a vreg, and uses for each arg operand, then translate it. + if (translateSimpleIntrinsic(CI, ID, MIRBuilder)) + return true; + + switch (ID) { + default: + break; + case Intrinsic::lifetime_start: + case Intrinsic::lifetime_end: { + // No stack colouring in O0, discard region information. + if (MF->getTarget().getOptLevel() == CodeGenOpt::None) + return true; + + unsigned Op = ID == Intrinsic::lifetime_start ? TargetOpcode::LIFETIME_START + : TargetOpcode::LIFETIME_END; + + // Get the underlying objects for the location passed on the lifetime + // marker. + SmallVector<const Value *, 4> Allocas; + GetUnderlyingObjects(CI.getArgOperand(1), Allocas, *DL); + + // Iterate over each underlying object, creating lifetime markers for each + // static alloca. Quit if we find a non-static alloca. + for (const Value *V : Allocas) { + const AllocaInst *AI = dyn_cast<AllocaInst>(V); + if (!AI) + continue; + + if (!AI->isStaticAlloca()) + return true; + + MIRBuilder.buildInstr(Op).addFrameIndex(getOrCreateFrameIndex(*AI)); + } + return true; + } + case Intrinsic::dbg_declare: { + const DbgDeclareInst &DI = cast<DbgDeclareInst>(CI); + assert(DI.getVariable() && "Missing variable"); + + const Value *Address = DI.getAddress(); + if (!Address || isa<UndefValue>(Address)) { + LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); + return true; + } + + assert(DI.getVariable()->isValidLocationForIntrinsic( + MIRBuilder.getDebugLoc()) && + "Expected inlined-at fields to agree"); + auto AI = dyn_cast<AllocaInst>(Address); + if (AI && AI->isStaticAlloca()) { + // Static allocas are tracked at the MF level, no need for DBG_VALUE + // instructions (in fact, they get ignored if they *do* exist). + MF->setVariableDbgInfo(DI.getVariable(), DI.getExpression(), + getOrCreateFrameIndex(*AI), DI.getDebugLoc()); + } else { + // A dbg.declare describes the address of a source variable, so lower it + // into an indirect DBG_VALUE. + MIRBuilder.buildIndirectDbgValue(getOrCreateVReg(*Address), + DI.getVariable(), DI.getExpression()); + } + return true; + } + case Intrinsic::dbg_label: { + const DbgLabelInst &DI = cast<DbgLabelInst>(CI); + assert(DI.getLabel() && "Missing label"); + + assert(DI.getLabel()->isValidLocationForIntrinsic( + MIRBuilder.getDebugLoc()) && + "Expected inlined-at fields to agree"); + + MIRBuilder.buildDbgLabel(DI.getLabel()); + return true; + } + case Intrinsic::vaend: + // No target I know of cares about va_end. Certainly no in-tree target + // does. Simplest intrinsic ever! + return true; + case Intrinsic::vastart: { + auto &TLI = *MF->getSubtarget().getTargetLowering(); + Value *Ptr = CI.getArgOperand(0); + unsigned ListSize = TLI.getVaListSizeInBits(*DL) / 8; + + // FIXME: Get alignment + MIRBuilder.buildInstr(TargetOpcode::G_VASTART) + .addUse(getOrCreateVReg(*Ptr)) + .addMemOperand(MF->getMachineMemOperand( + MachinePointerInfo(Ptr), MachineMemOperand::MOStore, ListSize, 1)); + return true; + } + case Intrinsic::dbg_value: { + // This form of DBG_VALUE is target-independent. + const DbgValueInst &DI = cast<DbgValueInst>(CI); + const Value *V = DI.getValue(); + assert(DI.getVariable()->isValidLocationForIntrinsic( + MIRBuilder.getDebugLoc()) && + "Expected inlined-at fields to agree"); + if (!V) { + // Currently the optimizer can produce this; insert an undef to + // help debugging. Probably the optimizer should not do this. + MIRBuilder.buildDirectDbgValue(0, DI.getVariable(), DI.getExpression()); + } else if (const auto *CI = dyn_cast<Constant>(V)) { + MIRBuilder.buildConstDbgValue(*CI, DI.getVariable(), DI.getExpression()); + } else { + for (Register Reg : getOrCreateVRegs(*V)) { + // FIXME: This does not handle register-indirect values at offset 0. The + // direct/indirect thing shouldn't really be handled by something as + // implicit as reg+noreg vs reg+imm in the first place, but it seems + // pretty baked in right now. + MIRBuilder.buildDirectDbgValue(Reg, DI.getVariable(), DI.getExpression()); + } + } + return true; + } + case Intrinsic::uadd_with_overflow: + return translateOverflowIntrinsic(CI, TargetOpcode::G_UADDO, MIRBuilder); + case Intrinsic::sadd_with_overflow: + return translateOverflowIntrinsic(CI, TargetOpcode::G_SADDO, MIRBuilder); + case Intrinsic::usub_with_overflow: + return translateOverflowIntrinsic(CI, TargetOpcode::G_USUBO, MIRBuilder); + case Intrinsic::ssub_with_overflow: + return translateOverflowIntrinsic(CI, TargetOpcode::G_SSUBO, MIRBuilder); + case Intrinsic::umul_with_overflow: + return translateOverflowIntrinsic(CI, TargetOpcode::G_UMULO, MIRBuilder); + case Intrinsic::smul_with_overflow: + return translateOverflowIntrinsic(CI, TargetOpcode::G_SMULO, MIRBuilder); + case Intrinsic::fmuladd: { + const TargetMachine &TM = MF->getTarget(); + const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering(); + Register Dst = getOrCreateVReg(CI); + Register Op0 = getOrCreateVReg(*CI.getArgOperand(0)); + Register Op1 = getOrCreateVReg(*CI.getArgOperand(1)); + Register Op2 = getOrCreateVReg(*CI.getArgOperand(2)); + if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && + TLI.isFMAFasterThanFMulAndFAdd(TLI.getValueType(*DL, CI.getType()))) { + // TODO: Revisit this to see if we should move this part of the + // lowering to the combiner. + MIRBuilder.buildInstr(TargetOpcode::G_FMA, {Dst}, {Op0, Op1, Op2}, + MachineInstr::copyFlagsFromInstruction(CI)); + } else { + LLT Ty = getLLTForType(*CI.getType(), *DL); + auto FMul = MIRBuilder.buildInstr(TargetOpcode::G_FMUL, {Ty}, {Op0, Op1}, + MachineInstr::copyFlagsFromInstruction(CI)); + MIRBuilder.buildInstr(TargetOpcode::G_FADD, {Dst}, {FMul, Op2}, + MachineInstr::copyFlagsFromInstruction(CI)); + } + return true; + } + case Intrinsic::memcpy: + case Intrinsic::memmove: + case Intrinsic::memset: + return translateMemFunc(CI, MIRBuilder, ID); + case Intrinsic::eh_typeid_for: { + GlobalValue *GV = ExtractTypeInfo(CI.getArgOperand(0)); + Register Reg = getOrCreateVReg(CI); + unsigned TypeID = MF->getTypeIDFor(GV); + MIRBuilder.buildConstant(Reg, TypeID); + return true; + } + case Intrinsic::objectsize: + llvm_unreachable("llvm.objectsize.* should have been lowered already"); + + case Intrinsic::is_constant: + llvm_unreachable("llvm.is.constant.* should have been lowered already"); + + case Intrinsic::stackguard: + getStackGuard(getOrCreateVReg(CI), MIRBuilder); + return true; + case Intrinsic::stackprotector: { + LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL); + Register GuardVal = MRI->createGenericVirtualRegister(PtrTy); + getStackGuard(GuardVal, MIRBuilder); + + AllocaInst *Slot = cast<AllocaInst>(CI.getArgOperand(1)); + int FI = getOrCreateFrameIndex(*Slot); + MF->getFrameInfo().setStackProtectorIndex(FI); + + MIRBuilder.buildStore( + GuardVal, getOrCreateVReg(*Slot), + *MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(*MF, FI), + MachineMemOperand::MOStore | + MachineMemOperand::MOVolatile, + PtrTy.getSizeInBits() / 8, 8)); + return true; + } + case Intrinsic::stacksave: { + // Save the stack pointer to the location provided by the intrinsic. + Register Reg = getOrCreateVReg(CI); + Register StackPtr = MF->getSubtarget() + .getTargetLowering() + ->getStackPointerRegisterToSaveRestore(); + + // If the target doesn't specify a stack pointer, then fall back. + if (!StackPtr) + return false; + + MIRBuilder.buildCopy(Reg, StackPtr); + return true; + } + case Intrinsic::stackrestore: { + // Restore the stack pointer from the location provided by the intrinsic. + Register Reg = getOrCreateVReg(*CI.getArgOperand(0)); + Register StackPtr = MF->getSubtarget() + .getTargetLowering() + ->getStackPointerRegisterToSaveRestore(); + + // If the target doesn't specify a stack pointer, then fall back. + if (!StackPtr) + return false; + + MIRBuilder.buildCopy(StackPtr, Reg); + return true; + } + case Intrinsic::cttz: + case Intrinsic::ctlz: { + ConstantInt *Cst = cast<ConstantInt>(CI.getArgOperand(1)); + bool isTrailing = ID == Intrinsic::cttz; + unsigned Opcode = isTrailing + ? Cst->isZero() ? TargetOpcode::G_CTTZ + : TargetOpcode::G_CTTZ_ZERO_UNDEF + : Cst->isZero() ? TargetOpcode::G_CTLZ + : TargetOpcode::G_CTLZ_ZERO_UNDEF; + MIRBuilder.buildInstr(Opcode) + .addDef(getOrCreateVReg(CI)) + .addUse(getOrCreateVReg(*CI.getArgOperand(0))); + return true; + } + case Intrinsic::invariant_start: { + LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL); + Register Undef = MRI->createGenericVirtualRegister(PtrTy); + MIRBuilder.buildUndef(Undef); + return true; + } + case Intrinsic::invariant_end: + return true; + case Intrinsic::assume: + case Intrinsic::var_annotation: + case Intrinsic::sideeffect: + // Discard annotate attributes, assumptions, and artificial side-effects. + return true; + } + return false; +} + +bool IRTranslator::translateInlineAsm(const CallInst &CI, + MachineIRBuilder &MIRBuilder) { + const InlineAsm &IA = cast<InlineAsm>(*CI.getCalledValue()); + if (!IA.getConstraintString().empty()) + return false; + + unsigned ExtraInfo = 0; + if (IA.hasSideEffects()) + ExtraInfo |= InlineAsm::Extra_HasSideEffects; + if (IA.getDialect() == InlineAsm::AD_Intel) + ExtraInfo |= InlineAsm::Extra_AsmDialect; + + MIRBuilder.buildInstr(TargetOpcode::INLINEASM) + .addExternalSymbol(IA.getAsmString().c_str()) + .addImm(ExtraInfo); + + return true; +} + +bool IRTranslator::translateCallSite(const ImmutableCallSite &CS, + MachineIRBuilder &MIRBuilder) { + const Instruction &I = *CS.getInstruction(); + ArrayRef<Register> Res = getOrCreateVRegs(I); + + SmallVector<ArrayRef<Register>, 8> Args; + Register SwiftInVReg = 0; + Register SwiftErrorVReg = 0; + for (auto &Arg : CS.args()) { + if (CLI->supportSwiftError() && isSwiftError(Arg)) { + assert(SwiftInVReg == 0 && "Expected only one swift error argument"); + LLT Ty = getLLTForType(*Arg->getType(), *DL); + SwiftInVReg = MRI->createGenericVirtualRegister(Ty); + MIRBuilder.buildCopy(SwiftInVReg, SwiftError.getOrCreateVRegUseAt( + &I, &MIRBuilder.getMBB(), Arg)); + Args.emplace_back(makeArrayRef(SwiftInVReg)); + SwiftErrorVReg = + SwiftError.getOrCreateVRegDefAt(&I, &MIRBuilder.getMBB(), Arg); + continue; + } + Args.push_back(getOrCreateVRegs(*Arg)); + } + + // We don't set HasCalls on MFI here yet because call lowering may decide to + // optimize into tail calls. Instead, we defer that to selection where a final + // scan is done to check if any instructions are calls. + bool Success = + CLI->lowerCall(MIRBuilder, CS, Res, Args, SwiftErrorVReg, + [&]() { return getOrCreateVReg(*CS.getCalledValue()); }); + + // Check if we just inserted a tail call. + if (Success) { + assert(!HasTailCall && "Can't tail call return twice from block?"); + const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); + HasTailCall = TII->isTailCall(*std::prev(MIRBuilder.getInsertPt())); + } + + return Success; +} + +bool IRTranslator::translateCall(const User &U, MachineIRBuilder &MIRBuilder) { + const CallInst &CI = cast<CallInst>(U); + auto TII = MF->getTarget().getIntrinsicInfo(); + const Function *F = CI.getCalledFunction(); + + // FIXME: support Windows dllimport function calls. + if (F && F->hasDLLImportStorageClass()) + return false; + + if (CI.isInlineAsm()) + return translateInlineAsm(CI, MIRBuilder); + + Intrinsic::ID ID = Intrinsic::not_intrinsic; + if (F && F->isIntrinsic()) { + ID = F->getIntrinsicID(); + if (TII && ID == Intrinsic::not_intrinsic) + ID = static_cast<Intrinsic::ID>(TII->getIntrinsicID(F)); + } + + if (!F || !F->isIntrinsic() || ID == Intrinsic::not_intrinsic) + return translateCallSite(&CI, MIRBuilder); + + assert(ID != Intrinsic::not_intrinsic && "unknown intrinsic"); + + if (translateKnownIntrinsic(CI, ID, MIRBuilder)) + return true; + + ArrayRef<Register> ResultRegs; + if (!CI.getType()->isVoidTy()) + ResultRegs = getOrCreateVRegs(CI); + + // Ignore the callsite attributes. Backend code is most likely not expecting + // an intrinsic to sometimes have side effects and sometimes not. + MachineInstrBuilder MIB = + MIRBuilder.buildIntrinsic(ID, ResultRegs, !F->doesNotAccessMemory()); + if (isa<FPMathOperator>(CI)) + MIB->copyIRFlags(CI); + + for (auto &Arg : enumerate(CI.arg_operands())) { + // Some intrinsics take metadata parameters. Reject them. + if (isa<MetadataAsValue>(Arg.value())) + return false; + + // If this is required to be an immediate, don't materialize it in a + // register. + if (CI.paramHasAttr(Arg.index(), Attribute::ImmArg)) { + if (ConstantInt *CI = dyn_cast<ConstantInt>(Arg.value())) { + // imm arguments are more convenient than cimm (and realistically + // probably sufficient), so use them. + assert(CI->getBitWidth() <= 64 && + "large intrinsic immediates not handled"); + MIB.addImm(CI->getSExtValue()); + } else { + MIB.addFPImm(cast<ConstantFP>(Arg.value())); + } + } else { + ArrayRef<Register> VRegs = getOrCreateVRegs(*Arg.value()); + if (VRegs.size() > 1) + return false; + MIB.addUse(VRegs[0]); + } + } + + // Add a MachineMemOperand if it is a target mem intrinsic. + const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering(); + TargetLowering::IntrinsicInfo Info; + // TODO: Add a GlobalISel version of getTgtMemIntrinsic. + if (TLI.getTgtMemIntrinsic(Info, CI, *MF, ID)) { + MaybeAlign Align = Info.align; + if (!Align) + Align = MaybeAlign( + DL->getABITypeAlignment(Info.memVT.getTypeForEVT(F->getContext()))); + + uint64_t Size = Info.memVT.getStoreSize(); + MIB.addMemOperand(MF->getMachineMemOperand( + MachinePointerInfo(Info.ptrVal), Info.flags, Size, Align->value())); + } + + return true; +} + +bool IRTranslator::translateInvoke(const User &U, + MachineIRBuilder &MIRBuilder) { + const InvokeInst &I = cast<InvokeInst>(U); + MCContext &Context = MF->getContext(); + + const BasicBlock *ReturnBB = I.getSuccessor(0); + const BasicBlock *EHPadBB = I.getSuccessor(1); + + const Value *Callee = I.getCalledValue(); + const Function *Fn = dyn_cast<Function>(Callee); + if (isa<InlineAsm>(Callee)) + return false; + + // FIXME: support invoking patchpoint and statepoint intrinsics. + if (Fn && Fn->isIntrinsic()) + return false; + + // FIXME: support whatever these are. + if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) + return false; + + // FIXME: support Windows exception handling. + if (!isa<LandingPadInst>(EHPadBB->front())) + return false; + + // Emit the actual call, bracketed by EH_LABELs so that the MF knows about + // the region covered by the try. + MCSymbol *BeginSymbol = Context.createTempSymbol(); + MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(BeginSymbol); + + if (!translateCallSite(&I, MIRBuilder)) + return false; + + MCSymbol *EndSymbol = Context.createTempSymbol(); + MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(EndSymbol); + + // FIXME: track probabilities. + MachineBasicBlock &EHPadMBB = getMBB(*EHPadBB), + &ReturnMBB = getMBB(*ReturnBB); + MF->addInvoke(&EHPadMBB, BeginSymbol, EndSymbol); + MIRBuilder.getMBB().addSuccessor(&ReturnMBB); + MIRBuilder.getMBB().addSuccessor(&EHPadMBB); + MIRBuilder.buildBr(ReturnMBB); + + return true; +} + +bool IRTranslator::translateCallBr(const User &U, + MachineIRBuilder &MIRBuilder) { + // FIXME: Implement this. + return false; +} + +bool IRTranslator::translateLandingPad(const User &U, + MachineIRBuilder &MIRBuilder) { + const LandingPadInst &LP = cast<LandingPadInst>(U); + + MachineBasicBlock &MBB = MIRBuilder.getMBB(); + + MBB.setIsEHPad(); + + // If there aren't registers to copy the values into (e.g., during SjLj + // exceptions), then don't bother. + auto &TLI = *MF->getSubtarget().getTargetLowering(); + const Constant *PersonalityFn = MF->getFunction().getPersonalityFn(); + if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && + TLI.getExceptionSelectorRegister(PersonalityFn) == 0) + return true; + + // If landingpad's return type is token type, we don't create DAG nodes + // for its exception pointer and selector value. The extraction of exception + // pointer or selector value from token type landingpads is not currently + // supported. + if (LP.getType()->isTokenTy()) + return true; + + // Add a label to mark the beginning of the landing pad. Deletion of the + // landing pad can thus be detected via the MachineModuleInfo. + MIRBuilder.buildInstr(TargetOpcode::EH_LABEL) + .addSym(MF->addLandingPad(&MBB)); + + LLT Ty = getLLTForType(*LP.getType(), *DL); + Register Undef = MRI->createGenericVirtualRegister(Ty); + MIRBuilder.buildUndef(Undef); + + SmallVector<LLT, 2> Tys; + for (Type *Ty : cast<StructType>(LP.getType())->elements()) + Tys.push_back(getLLTForType(*Ty, *DL)); + assert(Tys.size() == 2 && "Only two-valued landingpads are supported"); + + // Mark exception register as live in. + Register ExceptionReg = TLI.getExceptionPointerRegister(PersonalityFn); + if (!ExceptionReg) + return false; + + MBB.addLiveIn(ExceptionReg); + ArrayRef<Register> ResRegs = getOrCreateVRegs(LP); + MIRBuilder.buildCopy(ResRegs[0], ExceptionReg); + + Register SelectorReg = TLI.getExceptionSelectorRegister(PersonalityFn); + if (!SelectorReg) + return false; + + MBB.addLiveIn(SelectorReg); + Register PtrVReg = MRI->createGenericVirtualRegister(Tys[0]); + MIRBuilder.buildCopy(PtrVReg, SelectorReg); + MIRBuilder.buildCast(ResRegs[1], PtrVReg); + + return true; +} + +bool IRTranslator::translateAlloca(const User &U, + MachineIRBuilder &MIRBuilder) { + auto &AI = cast<AllocaInst>(U); + + if (AI.isSwiftError()) + return true; + + if (AI.isStaticAlloca()) { + Register Res = getOrCreateVReg(AI); + int FI = getOrCreateFrameIndex(AI); + MIRBuilder.buildFrameIndex(Res, FI); + return true; + } + + // FIXME: support stack probing for Windows. + if (MF->getTarget().getTargetTriple().isOSWindows()) + return false; + + // Now we're in the harder dynamic case. + Type *Ty = AI.getAllocatedType(); + unsigned Align = + std::max((unsigned)DL->getPrefTypeAlignment(Ty), AI.getAlignment()); + + Register NumElts = getOrCreateVReg(*AI.getArraySize()); + + Type *IntPtrIRTy = DL->getIntPtrType(AI.getType()); + LLT IntPtrTy = getLLTForType(*IntPtrIRTy, *DL); + if (MRI->getType(NumElts) != IntPtrTy) { + Register ExtElts = MRI->createGenericVirtualRegister(IntPtrTy); + MIRBuilder.buildZExtOrTrunc(ExtElts, NumElts); + NumElts = ExtElts; + } + + Register AllocSize = MRI->createGenericVirtualRegister(IntPtrTy); + Register TySize = + getOrCreateVReg(*ConstantInt::get(IntPtrIRTy, DL->getTypeAllocSize(Ty))); + MIRBuilder.buildMul(AllocSize, NumElts, TySize); + + unsigned StackAlign = + MF->getSubtarget().getFrameLowering()->getStackAlignment(); + if (Align <= StackAlign) + Align = 0; + + // Round the size of the allocation up to the stack alignment size + // by add SA-1 to the size. This doesn't overflow because we're computing + // an address inside an alloca. + auto SAMinusOne = MIRBuilder.buildConstant(IntPtrTy, StackAlign - 1); + auto AllocAdd = MIRBuilder.buildAdd(IntPtrTy, AllocSize, SAMinusOne, + MachineInstr::NoUWrap); + auto AlignCst = + MIRBuilder.buildConstant(IntPtrTy, ~(uint64_t)(StackAlign - 1)); + auto AlignedAlloc = MIRBuilder.buildAnd(IntPtrTy, AllocAdd, AlignCst); + + MIRBuilder.buildDynStackAlloc(getOrCreateVReg(AI), AlignedAlloc, Align); + + MF->getFrameInfo().CreateVariableSizedObject(Align ? Align : 1, &AI); + assert(MF->getFrameInfo().hasVarSizedObjects()); + return true; +} + +bool IRTranslator::translateVAArg(const User &U, MachineIRBuilder &MIRBuilder) { + // FIXME: We may need more info about the type. Because of how LLT works, + // we're completely discarding the i64/double distinction here (amongst + // others). Fortunately the ABIs I know of where that matters don't use va_arg + // anyway but that's not guaranteed. + MIRBuilder.buildInstr(TargetOpcode::G_VAARG) + .addDef(getOrCreateVReg(U)) + .addUse(getOrCreateVReg(*U.getOperand(0))) + .addImm(DL->getABITypeAlignment(U.getType())); + return true; +} + +bool IRTranslator::translateInsertElement(const User &U, + MachineIRBuilder &MIRBuilder) { + // If it is a <1 x Ty> vector, use the scalar as it is + // not a legal vector type in LLT. + if (U.getType()->getVectorNumElements() == 1) { + Register Elt = getOrCreateVReg(*U.getOperand(1)); + auto &Regs = *VMap.getVRegs(U); + if (Regs.empty()) { + Regs.push_back(Elt); + VMap.getOffsets(U)->push_back(0); + } else { + MIRBuilder.buildCopy(Regs[0], Elt); + } + return true; + } + + Register Res = getOrCreateVReg(U); + Register Val = getOrCreateVReg(*U.getOperand(0)); + Register Elt = getOrCreateVReg(*U.getOperand(1)); + Register Idx = getOrCreateVReg(*U.getOperand(2)); + MIRBuilder.buildInsertVectorElement(Res, Val, Elt, Idx); + return true; +} + +bool IRTranslator::translateExtractElement(const User &U, + MachineIRBuilder &MIRBuilder) { + // If it is a <1 x Ty> vector, use the scalar as it is + // not a legal vector type in LLT. + if (U.getOperand(0)->getType()->getVectorNumElements() == 1) { + Register Elt = getOrCreateVReg(*U.getOperand(0)); + auto &Regs = *VMap.getVRegs(U); + if (Regs.empty()) { + Regs.push_back(Elt); + VMap.getOffsets(U)->push_back(0); + } else { + MIRBuilder.buildCopy(Regs[0], Elt); + } + return true; + } + Register Res = getOrCreateVReg(U); + Register Val = getOrCreateVReg(*U.getOperand(0)); + const auto &TLI = *MF->getSubtarget().getTargetLowering(); + unsigned PreferredVecIdxWidth = TLI.getVectorIdxTy(*DL).getSizeInBits(); + Register Idx; + if (auto *CI = dyn_cast<ConstantInt>(U.getOperand(1))) { + if (CI->getBitWidth() != PreferredVecIdxWidth) { + APInt NewIdx = CI->getValue().sextOrTrunc(PreferredVecIdxWidth); + auto *NewIdxCI = ConstantInt::get(CI->getContext(), NewIdx); + Idx = getOrCreateVReg(*NewIdxCI); + } + } + if (!Idx) + Idx = getOrCreateVReg(*U.getOperand(1)); + if (MRI->getType(Idx).getSizeInBits() != PreferredVecIdxWidth) { + const LLT &VecIdxTy = LLT::scalar(PreferredVecIdxWidth); + Idx = MIRBuilder.buildSExtOrTrunc(VecIdxTy, Idx)->getOperand(0).getReg(); + } + MIRBuilder.buildExtractVectorElement(Res, Val, Idx); + return true; +} + +bool IRTranslator::translateShuffleVector(const User &U, + MachineIRBuilder &MIRBuilder) { + MIRBuilder.buildInstr(TargetOpcode::G_SHUFFLE_VECTOR) + .addDef(getOrCreateVReg(U)) + .addUse(getOrCreateVReg(*U.getOperand(0))) + .addUse(getOrCreateVReg(*U.getOperand(1))) + .addShuffleMask(cast<Constant>(U.getOperand(2))); + return true; +} + +bool IRTranslator::translatePHI(const User &U, MachineIRBuilder &MIRBuilder) { + const PHINode &PI = cast<PHINode>(U); + + SmallVector<MachineInstr *, 4> Insts; + for (auto Reg : getOrCreateVRegs(PI)) { + auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_PHI, {Reg}, {}); + Insts.push_back(MIB.getInstr()); + } + + PendingPHIs.emplace_back(&PI, std::move(Insts)); + return true; +} + +bool IRTranslator::translateAtomicCmpXchg(const User &U, + MachineIRBuilder &MIRBuilder) { + const AtomicCmpXchgInst &I = cast<AtomicCmpXchgInst>(U); + + if (I.isWeak()) + return false; + + auto Flags = I.isVolatile() ? MachineMemOperand::MOVolatile + : MachineMemOperand::MONone; + Flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore; + + Type *ResType = I.getType(); + Type *ValType = ResType->Type::getStructElementType(0); + + auto Res = getOrCreateVRegs(I); + Register OldValRes = Res[0]; + Register SuccessRes = Res[1]; + Register Addr = getOrCreateVReg(*I.getPointerOperand()); + Register Cmp = getOrCreateVReg(*I.getCompareOperand()); + Register NewVal = getOrCreateVReg(*I.getNewValOperand()); + + MIRBuilder.buildAtomicCmpXchgWithSuccess( + OldValRes, SuccessRes, Addr, Cmp, NewVal, + *MF->getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), + Flags, DL->getTypeStoreSize(ValType), + getMemOpAlignment(I), AAMDNodes(), nullptr, + I.getSyncScopeID(), I.getSuccessOrdering(), + I.getFailureOrdering())); + return true; +} + +bool IRTranslator::translateAtomicRMW(const User &U, + MachineIRBuilder &MIRBuilder) { + const AtomicRMWInst &I = cast<AtomicRMWInst>(U); + + auto Flags = I.isVolatile() ? MachineMemOperand::MOVolatile + : MachineMemOperand::MONone; + Flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore; + + Type *ResType = I.getType(); + + Register Res = getOrCreateVReg(I); + Register Addr = getOrCreateVReg(*I.getPointerOperand()); + Register Val = getOrCreateVReg(*I.getValOperand()); + + unsigned Opcode = 0; + switch (I.getOperation()) { + default: + return false; + case AtomicRMWInst::Xchg: + Opcode = TargetOpcode::G_ATOMICRMW_XCHG; + break; + case AtomicRMWInst::Add: + Opcode = TargetOpcode::G_ATOMICRMW_ADD; + break; + case AtomicRMWInst::Sub: + Opcode = TargetOpcode::G_ATOMICRMW_SUB; + break; + case AtomicRMWInst::And: + Opcode = TargetOpcode::G_ATOMICRMW_AND; + break; + case AtomicRMWInst::Nand: + Opcode = TargetOpcode::G_ATOMICRMW_NAND; + break; + case AtomicRMWInst::Or: + Opcode = TargetOpcode::G_ATOMICRMW_OR; + break; + case AtomicRMWInst::Xor: + Opcode = TargetOpcode::G_ATOMICRMW_XOR; + break; + case AtomicRMWInst::Max: + Opcode = TargetOpcode::G_ATOMICRMW_MAX; + break; + case AtomicRMWInst::Min: + Opcode = TargetOpcode::G_ATOMICRMW_MIN; + break; + case AtomicRMWInst::UMax: + Opcode = TargetOpcode::G_ATOMICRMW_UMAX; + break; + case AtomicRMWInst::UMin: + Opcode = TargetOpcode::G_ATOMICRMW_UMIN; + break; + case AtomicRMWInst::FAdd: + Opcode = TargetOpcode::G_ATOMICRMW_FADD; + break; + case AtomicRMWInst::FSub: + Opcode = TargetOpcode::G_ATOMICRMW_FSUB; + break; + } + + MIRBuilder.buildAtomicRMW( + Opcode, Res, Addr, Val, + *MF->getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), + Flags, DL->getTypeStoreSize(ResType), + getMemOpAlignment(I), AAMDNodes(), nullptr, + I.getSyncScopeID(), I.getOrdering())); + return true; +} + +bool IRTranslator::translateFence(const User &U, + MachineIRBuilder &MIRBuilder) { + const FenceInst &Fence = cast<FenceInst>(U); + MIRBuilder.buildFence(static_cast<unsigned>(Fence.getOrdering()), + Fence.getSyncScopeID()); + return true; +} + +void IRTranslator::finishPendingPhis() { +#ifndef NDEBUG + DILocationVerifier Verifier; + GISelObserverWrapper WrapperObserver(&Verifier); + RAIIDelegateInstaller DelInstall(*MF, &WrapperObserver); +#endif // ifndef NDEBUG + for (auto &Phi : PendingPHIs) { + const PHINode *PI = Phi.first; + ArrayRef<MachineInstr *> ComponentPHIs = Phi.second; + MachineBasicBlock *PhiMBB = ComponentPHIs[0]->getParent(); + EntryBuilder->setDebugLoc(PI->getDebugLoc()); +#ifndef NDEBUG + Verifier.setCurrentInst(PI); +#endif // ifndef NDEBUG + + SmallSet<const MachineBasicBlock *, 16> SeenPreds; + for (unsigned i = 0; i < PI->getNumIncomingValues(); ++i) { + auto IRPred = PI->getIncomingBlock(i); + ArrayRef<Register> ValRegs = getOrCreateVRegs(*PI->getIncomingValue(i)); + for (auto Pred : getMachinePredBBs({IRPred, PI->getParent()})) { + if (SeenPreds.count(Pred) || !PhiMBB->isPredecessor(Pred)) + continue; + SeenPreds.insert(Pred); + for (unsigned j = 0; j < ValRegs.size(); ++j) { + MachineInstrBuilder MIB(*MF, ComponentPHIs[j]); + MIB.addUse(ValRegs[j]); + MIB.addMBB(Pred); + } + } + } + } +} + +bool IRTranslator::valueIsSplit(const Value &V, + SmallVectorImpl<uint64_t> *Offsets) { + SmallVector<LLT, 4> SplitTys; + if (Offsets && !Offsets->empty()) + Offsets->clear(); + computeValueLLTs(*DL, *V.getType(), SplitTys, Offsets); + return SplitTys.size() > 1; +} + +bool IRTranslator::translate(const Instruction &Inst) { + CurBuilder->setDebugLoc(Inst.getDebugLoc()); + // We only emit constants into the entry block from here. To prevent jumpy + // debug behaviour set the line to 0. + if (const DebugLoc &DL = Inst.getDebugLoc()) + EntryBuilder->setDebugLoc( + DebugLoc::get(0, 0, DL.getScope(), DL.getInlinedAt())); + else + EntryBuilder->setDebugLoc(DebugLoc()); + + switch (Inst.getOpcode()) { +#define HANDLE_INST(NUM, OPCODE, CLASS) \ + case Instruction::OPCODE: \ + return translate##OPCODE(Inst, *CurBuilder.get()); +#include "llvm/IR/Instruction.def" + default: + return false; + } +} + +bool IRTranslator::translate(const Constant &C, Register Reg) { + if (auto CI = dyn_cast<ConstantInt>(&C)) + EntryBuilder->buildConstant(Reg, *CI); + else if (auto CF = dyn_cast<ConstantFP>(&C)) + EntryBuilder->buildFConstant(Reg, *CF); + else if (isa<UndefValue>(C)) + EntryBuilder->buildUndef(Reg); + else if (isa<ConstantPointerNull>(C)) { + // As we are trying to build a constant val of 0 into a pointer, + // insert a cast to make them correct with respect to types. + unsigned NullSize = DL->getTypeSizeInBits(C.getType()); + auto *ZeroTy = Type::getIntNTy(C.getContext(), NullSize); + auto *ZeroVal = ConstantInt::get(ZeroTy, 0); + Register ZeroReg = getOrCreateVReg(*ZeroVal); + EntryBuilder->buildCast(Reg, ZeroReg); + } else if (auto GV = dyn_cast<GlobalValue>(&C)) + EntryBuilder->buildGlobalValue(Reg, GV); + else if (auto CAZ = dyn_cast<ConstantAggregateZero>(&C)) { + if (!CAZ->getType()->isVectorTy()) + return false; + // Return the scalar if it is a <1 x Ty> vector. + if (CAZ->getNumElements() == 1) + return translate(*CAZ->getElementValue(0u), Reg); + SmallVector<Register, 4> Ops; + for (unsigned i = 0; i < CAZ->getNumElements(); ++i) { + Constant &Elt = *CAZ->getElementValue(i); + Ops.push_back(getOrCreateVReg(Elt)); + } + EntryBuilder->buildBuildVector(Reg, Ops); + } else if (auto CV = dyn_cast<ConstantDataVector>(&C)) { + // Return the scalar if it is a <1 x Ty> vector. + if (CV->getNumElements() == 1) + return translate(*CV->getElementAsConstant(0), Reg); + SmallVector<Register, 4> Ops; + for (unsigned i = 0; i < CV->getNumElements(); ++i) { + Constant &Elt = *CV->getElementAsConstant(i); + Ops.push_back(getOrCreateVReg(Elt)); + } + EntryBuilder->buildBuildVector(Reg, Ops); + } else if (auto CE = dyn_cast<ConstantExpr>(&C)) { + switch(CE->getOpcode()) { +#define HANDLE_INST(NUM, OPCODE, CLASS) \ + case Instruction::OPCODE: \ + return translate##OPCODE(*CE, *EntryBuilder.get()); +#include "llvm/IR/Instruction.def" + default: + return false; + } + } else if (auto CV = dyn_cast<ConstantVector>(&C)) { + if (CV->getNumOperands() == 1) + return translate(*CV->getOperand(0), Reg); + SmallVector<Register, 4> Ops; + for (unsigned i = 0; i < CV->getNumOperands(); ++i) { + Ops.push_back(getOrCreateVReg(*CV->getOperand(i))); + } + EntryBuilder->buildBuildVector(Reg, Ops); + } else if (auto *BA = dyn_cast<BlockAddress>(&C)) { + EntryBuilder->buildBlockAddress(Reg, BA); + } else + return false; + + return true; +} + +void IRTranslator::finalizeBasicBlock() { + for (auto &JTCase : SL->JTCases) { + // Emit header first, if it wasn't already emitted. + if (!JTCase.first.Emitted) + emitJumpTableHeader(JTCase.second, JTCase.first, JTCase.first.HeaderBB); + + emitJumpTable(JTCase.second, JTCase.second.MBB); + } + SL->JTCases.clear(); +} + +void IRTranslator::finalizeFunction() { + // Release the memory used by the different maps we + // needed during the translation. + PendingPHIs.clear(); + VMap.reset(); + FrameIndices.clear(); + MachinePreds.clear(); + // MachineIRBuilder::DebugLoc can outlive the DILocation it holds. Clear it + // to avoid accessing free’d memory (in runOnMachineFunction) and to avoid + // destroying it twice (in ~IRTranslator() and ~LLVMContext()) + EntryBuilder.reset(); + CurBuilder.reset(); + FuncInfo.clear(); +} + +/// Returns true if a BasicBlock \p BB within a variadic function contains a +/// variadic musttail call. +static bool checkForMustTailInVarArgFn(bool IsVarArg, const BasicBlock &BB) { + if (!IsVarArg) + return false; + + // Walk the block backwards, because tail calls usually only appear at the end + // of a block. + return std::any_of(BB.rbegin(), BB.rend(), [](const Instruction &I) { + const auto *CI = dyn_cast<CallInst>(&I); + return CI && CI->isMustTailCall(); + }); +} + +bool IRTranslator::runOnMachineFunction(MachineFunction &CurMF) { + MF = &CurMF; + const Function &F = MF->getFunction(); + if (F.empty()) + return false; + GISelCSEAnalysisWrapper &Wrapper = + getAnalysis<GISelCSEAnalysisWrapperPass>().getCSEWrapper(); + // Set the CSEConfig and run the analysis. + GISelCSEInfo *CSEInfo = nullptr; + TPC = &getAnalysis<TargetPassConfig>(); + bool EnableCSE = EnableCSEInIRTranslator.getNumOccurrences() + ? EnableCSEInIRTranslator + : TPC->isGISelCSEEnabled(); + + if (EnableCSE) { + EntryBuilder = std::make_unique<CSEMIRBuilder>(CurMF); + CSEInfo = &Wrapper.get(TPC->getCSEConfig()); + EntryBuilder->setCSEInfo(CSEInfo); + CurBuilder = std::make_unique<CSEMIRBuilder>(CurMF); + CurBuilder->setCSEInfo(CSEInfo); + } else { + EntryBuilder = std::make_unique<MachineIRBuilder>(); + CurBuilder = std::make_unique<MachineIRBuilder>(); + } + CLI = MF->getSubtarget().getCallLowering(); + CurBuilder->setMF(*MF); + EntryBuilder->setMF(*MF); + MRI = &MF->getRegInfo(); + DL = &F.getParent()->getDataLayout(); + ORE = std::make_unique<OptimizationRemarkEmitter>(&F); + FuncInfo.MF = MF; + FuncInfo.BPI = nullptr; + const auto &TLI = *MF->getSubtarget().getTargetLowering(); + const TargetMachine &TM = MF->getTarget(); + SL = std::make_unique<GISelSwitchLowering>(this, FuncInfo); + SL->init(TLI, TM, *DL); + + EnableOpts = TM.getOptLevel() != CodeGenOpt::None && !skipFunction(F); + + assert(PendingPHIs.empty() && "stale PHIs"); + + if (!DL->isLittleEndian()) { + // Currently we don't properly handle big endian code. + OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", + F.getSubprogram(), &F.getEntryBlock()); + R << "unable to translate in big endian mode"; + reportTranslationError(*MF, *TPC, *ORE, R); + } + + // Release the per-function state when we return, whether we succeeded or not. + auto FinalizeOnReturn = make_scope_exit([this]() { finalizeFunction(); }); + + // Setup a separate basic-block for the arguments and constants + MachineBasicBlock *EntryBB = MF->CreateMachineBasicBlock(); + MF->push_back(EntryBB); + EntryBuilder->setMBB(*EntryBB); + + DebugLoc DbgLoc = F.getEntryBlock().getFirstNonPHI()->getDebugLoc(); + SwiftError.setFunction(CurMF); + SwiftError.createEntriesInEntryBlock(DbgLoc); + + bool IsVarArg = F.isVarArg(); + bool HasMustTailInVarArgFn = false; + + // Create all blocks, in IR order, to preserve the layout. + for (const BasicBlock &BB: F) { + auto *&MBB = BBToMBB[&BB]; + + MBB = MF->CreateMachineBasicBlock(&BB); + MF->push_back(MBB); + + if (BB.hasAddressTaken()) + MBB->setHasAddressTaken(); + + if (!HasMustTailInVarArgFn) + HasMustTailInVarArgFn = checkForMustTailInVarArgFn(IsVarArg, BB); + } + + MF->getFrameInfo().setHasMustTailInVarArgFunc(HasMustTailInVarArgFn); + + // Make our arguments/constants entry block fallthrough to the IR entry block. + EntryBB->addSuccessor(&getMBB(F.front())); + + // Lower the actual args into this basic block. + SmallVector<ArrayRef<Register>, 8> VRegArgs; + for (const Argument &Arg: F.args()) { + if (DL->getTypeStoreSize(Arg.getType()) == 0) + continue; // Don't handle zero sized types. + ArrayRef<Register> VRegs = getOrCreateVRegs(Arg); + VRegArgs.push_back(VRegs); + + if (Arg.hasSwiftErrorAttr()) { + assert(VRegs.size() == 1 && "Too many vregs for Swift error"); + SwiftError.setCurrentVReg(EntryBB, SwiftError.getFunctionArg(), VRegs[0]); + } + } + + if (!CLI->lowerFormalArguments(*EntryBuilder.get(), F, VRegArgs)) { + OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", + F.getSubprogram(), &F.getEntryBlock()); + R << "unable to lower arguments: " << ore::NV("Prototype", F.getType()); + reportTranslationError(*MF, *TPC, *ORE, R); + return false; + } + + // Need to visit defs before uses when translating instructions. + GISelObserverWrapper WrapperObserver; + if (EnableCSE && CSEInfo) + WrapperObserver.addObserver(CSEInfo); + { + ReversePostOrderTraversal<const Function *> RPOT(&F); +#ifndef NDEBUG + DILocationVerifier Verifier; + WrapperObserver.addObserver(&Verifier); +#endif // ifndef NDEBUG + RAIIDelegateInstaller DelInstall(*MF, &WrapperObserver); + for (const BasicBlock *BB : RPOT) { + MachineBasicBlock &MBB = getMBB(*BB); + // Set the insertion point of all the following translations to + // the end of this basic block. + CurBuilder->setMBB(MBB); + HasTailCall = false; + for (const Instruction &Inst : *BB) { + // If we translated a tail call in the last step, then we know + // everything after the call is either a return, or something that is + // handled by the call itself. (E.g. a lifetime marker or assume + // intrinsic.) In this case, we should stop translating the block and + // move on. + if (HasTailCall) + break; +#ifndef NDEBUG + Verifier.setCurrentInst(&Inst); +#endif // ifndef NDEBUG + if (translate(Inst)) + continue; + + OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", + Inst.getDebugLoc(), BB); + R << "unable to translate instruction: " << ore::NV("Opcode", &Inst); + + if (ORE->allowExtraAnalysis("gisel-irtranslator")) { + std::string InstStrStorage; + raw_string_ostream InstStr(InstStrStorage); + InstStr << Inst; + + R << ": '" << InstStr.str() << "'"; + } + + reportTranslationError(*MF, *TPC, *ORE, R); + return false; + } + + finalizeBasicBlock(); + } +#ifndef NDEBUG + WrapperObserver.removeObserver(&Verifier); +#endif + } + + finishPendingPhis(); + + SwiftError.propagateVRegs(); + + // Merge the argument lowering and constants block with its single + // successor, the LLVM-IR entry block. We want the basic block to + // be maximal. + assert(EntryBB->succ_size() == 1 && + "Custom BB used for lowering should have only one successor"); + // Get the successor of the current entry block. + MachineBasicBlock &NewEntryBB = **EntryBB->succ_begin(); + assert(NewEntryBB.pred_size() == 1 && + "LLVM-IR entry block has a predecessor!?"); + // Move all the instruction from the current entry block to the + // new entry block. + NewEntryBB.splice(NewEntryBB.begin(), EntryBB, EntryBB->begin(), + EntryBB->end()); + + // Update the live-in information for the new entry block. + for (const MachineBasicBlock::RegisterMaskPair &LiveIn : EntryBB->liveins()) + NewEntryBB.addLiveIn(LiveIn); + NewEntryBB.sortUniqueLiveIns(); + + // Get rid of the now empty basic block. + EntryBB->removeSuccessor(&NewEntryBB); + MF->remove(EntryBB); + MF->DeleteMachineBasicBlock(EntryBB); + + assert(&MF->front() == &NewEntryBB && + "New entry wasn't next in the list of basic block!"); + + // Initialize stack protector information. + StackProtector &SP = getAnalysis<StackProtector>(); + SP.copyToMachineFrameInfo(MF->getFrameInfo()); + + return false; +} |
