summaryrefslogtreecommitdiff
path: root/llvm/lib/CodeGen/GlobalISel/InlineAsmLowering.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'llvm/lib/CodeGen/GlobalISel/InlineAsmLowering.cpp')
-rw-r--r--llvm/lib/CodeGen/GlobalISel/InlineAsmLowering.cpp667
1 files changed, 667 insertions, 0 deletions
diff --git a/llvm/lib/CodeGen/GlobalISel/InlineAsmLowering.cpp b/llvm/lib/CodeGen/GlobalISel/InlineAsmLowering.cpp
new file mode 100644
index 0000000000000..2ce1d414e7550
--- /dev/null
+++ b/llvm/lib/CodeGen/GlobalISel/InlineAsmLowering.cpp
@@ -0,0 +1,667 @@
+//===-- lib/CodeGen/GlobalISel/InlineAsmLowering.cpp ----------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+///
+/// \file
+/// This file implements the lowering from LLVM IR inline asm to MIR INLINEASM
+///
+//===----------------------------------------------------------------------===//
+
+#include "llvm/CodeGen/GlobalISel/InlineAsmLowering.h"
+#include "llvm/CodeGen/Analysis.h"
+#include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
+#include "llvm/CodeGen/GlobalISel/Utils.h"
+#include "llvm/CodeGen/MachineOperand.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/TargetLowering.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Module.h"
+
+#define DEBUG_TYPE "inline-asm-lowering"
+
+using namespace llvm;
+
+void InlineAsmLowering::anchor() {}
+
+namespace {
+
+/// GISelAsmOperandInfo - This contains information for each constraint that we
+/// are lowering.
+class GISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
+public:
+ /// Regs - If this is a register or register class operand, this
+ /// contains the set of assigned registers corresponding to the operand.
+ SmallVector<Register, 1> Regs;
+
+ explicit GISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &Info)
+ : TargetLowering::AsmOperandInfo(Info) {}
+};
+
+using GISelAsmOperandInfoVector = SmallVector<GISelAsmOperandInfo, 16>;
+
+class ExtraFlags {
+ unsigned Flags = 0;
+
+public:
+ explicit ExtraFlags(const CallBase &CB) {
+ const InlineAsm *IA = cast<InlineAsm>(CB.getCalledOperand());
+ if (IA->hasSideEffects())
+ Flags |= InlineAsm::Extra_HasSideEffects;
+ if (IA->isAlignStack())
+ Flags |= InlineAsm::Extra_IsAlignStack;
+ if (CB.isConvergent())
+ Flags |= InlineAsm::Extra_IsConvergent;
+ Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
+ }
+
+ void update(const TargetLowering::AsmOperandInfo &OpInfo) {
+ // Ideally, we would only check against memory constraints. However, the
+ // meaning of an Other constraint can be target-specific and we can't easily
+ // reason about it. Therefore, be conservative and set MayLoad/MayStore
+ // for Other constraints as well.
+ if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
+ OpInfo.ConstraintType == TargetLowering::C_Other) {
+ if (OpInfo.Type == InlineAsm::isInput)
+ Flags |= InlineAsm::Extra_MayLoad;
+ else if (OpInfo.Type == InlineAsm::isOutput)
+ Flags |= InlineAsm::Extra_MayStore;
+ else if (OpInfo.Type == InlineAsm::isClobber)
+ Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
+ }
+ }
+
+ unsigned get() const { return Flags; }
+};
+
+} // namespace
+
+/// Assign virtual/physical registers for the specified register operand.
+static void getRegistersForValue(MachineFunction &MF,
+ MachineIRBuilder &MIRBuilder,
+ GISelAsmOperandInfo &OpInfo,
+ GISelAsmOperandInfo &RefOpInfo) {
+
+ const TargetLowering &TLI = *MF.getSubtarget().getTargetLowering();
+ const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
+
+ // No work to do for memory operations.
+ if (OpInfo.ConstraintType == TargetLowering::C_Memory)
+ return;
+
+ // If this is a constraint for a single physreg, or a constraint for a
+ // register class, find it.
+ Register AssignedReg;
+ const TargetRegisterClass *RC;
+ std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint(
+ &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT);
+ // RC is unset only on failure. Return immediately.
+ if (!RC)
+ return;
+
+ // No need to allocate a matching input constraint since the constraint it's
+ // matching to has already been allocated.
+ if (OpInfo.isMatchingInputConstraint())
+ return;
+
+ // Initialize NumRegs.
+ unsigned NumRegs = 1;
+ if (OpInfo.ConstraintVT != MVT::Other)
+ NumRegs =
+ TLI.getNumRegisters(MF.getFunction().getContext(), OpInfo.ConstraintVT);
+
+ // If this is a constraint for a specific physical register, but the type of
+ // the operand requires more than one register to be passed, we allocate the
+ // required amount of physical registers, starting from the selected physical
+ // register.
+ // For this, first retrieve a register iterator for the given register class
+ TargetRegisterClass::iterator I = RC->begin();
+ MachineRegisterInfo &RegInfo = MF.getRegInfo();
+
+ // Advance the iterator to the assigned register (if set)
+ if (AssignedReg) {
+ for (; *I != AssignedReg; ++I)
+ assert(I != RC->end() && "AssignedReg should be a member of provided RC");
+ }
+
+ // Finally, assign the registers. If the AssignedReg isn't set, create virtual
+ // registers with the provided register class
+ for (; NumRegs; --NumRegs, ++I) {
+ assert(I != RC->end() && "Ran out of registers to allocate!");
+ Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC);
+ OpInfo.Regs.push_back(R);
+ }
+}
+
+/// Return an integer indicating how general CT is.
+static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
+ switch (CT) {
+ case TargetLowering::C_Immediate:
+ case TargetLowering::C_Other:
+ case TargetLowering::C_Unknown:
+ return 0;
+ case TargetLowering::C_Register:
+ return 1;
+ case TargetLowering::C_RegisterClass:
+ return 2;
+ case TargetLowering::C_Memory:
+ return 3;
+ }
+ llvm_unreachable("Invalid constraint type");
+}
+
+static void chooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
+ const TargetLowering *TLI) {
+ assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
+ unsigned BestIdx = 0;
+ TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
+ int BestGenerality = -1;
+
+ // Loop over the options, keeping track of the most general one.
+ for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
+ TargetLowering::ConstraintType CType =
+ TLI->getConstraintType(OpInfo.Codes[i]);
+
+ // Indirect 'other' or 'immediate' constraints are not allowed.
+ if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory ||
+ CType == TargetLowering::C_Register ||
+ CType == TargetLowering::C_RegisterClass))
+ continue;
+
+ // If this is an 'other' or 'immediate' constraint, see if the operand is
+ // valid for it. For example, on X86 we might have an 'rI' constraint. If
+ // the operand is an integer in the range [0..31] we want to use I (saving a
+ // load of a register), otherwise we must use 'r'.
+ if (CType == TargetLowering::C_Other ||
+ CType == TargetLowering::C_Immediate) {
+ assert(OpInfo.Codes[i].size() == 1 &&
+ "Unhandled multi-letter 'other' constraint");
+ // FIXME: prefer immediate constraints if the target allows it
+ }
+
+ // Things with matching constraints can only be registers, per gcc
+ // documentation. This mainly affects "g" constraints.
+ if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
+ continue;
+
+ // This constraint letter is more general than the previous one, use it.
+ int Generality = getConstraintGenerality(CType);
+ if (Generality > BestGenerality) {
+ BestType = CType;
+ BestIdx = i;
+ BestGenerality = Generality;
+ }
+ }
+
+ OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
+ OpInfo.ConstraintType = BestType;
+}
+
+static void computeConstraintToUse(const TargetLowering *TLI,
+ TargetLowering::AsmOperandInfo &OpInfo) {
+ assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
+
+ // Single-letter constraints ('r') are very common.
+ if (OpInfo.Codes.size() == 1) {
+ OpInfo.ConstraintCode = OpInfo.Codes[0];
+ OpInfo.ConstraintType = TLI->getConstraintType(OpInfo.ConstraintCode);
+ } else {
+ chooseConstraint(OpInfo, TLI);
+ }
+
+ // 'X' matches anything.
+ if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
+ // Labels and constants are handled elsewhere ('X' is the only thing
+ // that matches labels). For Functions, the type here is the type of
+ // the result, which is not what we want to look at; leave them alone.
+ Value *Val = OpInfo.CallOperandVal;
+ if (isa<BasicBlock>(Val) || isa<ConstantInt>(Val) || isa<Function>(Val))
+ return;
+
+ // Otherwise, try to resolve it to something we know about by looking at
+ // the actual operand type.
+ if (const char *Repl = TLI->LowerXConstraint(OpInfo.ConstraintVT)) {
+ OpInfo.ConstraintCode = Repl;
+ OpInfo.ConstraintType = TLI->getConstraintType(OpInfo.ConstraintCode);
+ }
+ }
+}
+
+static unsigned getNumOpRegs(const MachineInstr &I, unsigned OpIdx) {
+ unsigned Flag = I.getOperand(OpIdx).getImm();
+ return InlineAsm::getNumOperandRegisters(Flag);
+}
+
+static bool buildAnyextOrCopy(Register Dst, Register Src,
+ MachineIRBuilder &MIRBuilder) {
+ const TargetRegisterInfo *TRI =
+ MIRBuilder.getMF().getSubtarget().getRegisterInfo();
+ MachineRegisterInfo *MRI = MIRBuilder.getMRI();
+
+ auto SrcTy = MRI->getType(Src);
+ if (!SrcTy.isValid()) {
+ LLVM_DEBUG(dbgs() << "Source type for copy is not valid\n");
+ return false;
+ }
+ unsigned SrcSize = TRI->getRegSizeInBits(Src, *MRI);
+ unsigned DstSize = TRI->getRegSizeInBits(Dst, *MRI);
+
+ if (DstSize < SrcSize) {
+ LLVM_DEBUG(dbgs() << "Input can't fit in destination reg class\n");
+ return false;
+ }
+
+ // Attempt to anyext small scalar sources.
+ if (DstSize > SrcSize) {
+ if (!SrcTy.isScalar()) {
+ LLVM_DEBUG(dbgs() << "Can't extend non-scalar input to size of"
+ "destination register class\n");
+ return false;
+ }
+ Src = MIRBuilder.buildAnyExt(LLT::scalar(DstSize), Src).getReg(0);
+ }
+
+ MIRBuilder.buildCopy(Dst, Src);
+ return true;
+}
+
+bool InlineAsmLowering::lowerInlineAsm(
+ MachineIRBuilder &MIRBuilder, const CallBase &Call,
+ std::function<ArrayRef<Register>(const Value &Val)> GetOrCreateVRegs)
+ const {
+ const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
+
+ /// ConstraintOperands - Information about all of the constraints.
+ GISelAsmOperandInfoVector ConstraintOperands;
+
+ MachineFunction &MF = MIRBuilder.getMF();
+ const Function &F = MF.getFunction();
+ const DataLayout &DL = F.getParent()->getDataLayout();
+ const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
+
+ MachineRegisterInfo *MRI = MIRBuilder.getMRI();
+
+ TargetLowering::AsmOperandInfoVector TargetConstraints =
+ TLI->ParseConstraints(DL, TRI, Call);
+
+ ExtraFlags ExtraInfo(Call);
+ unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
+ unsigned ResNo = 0; // ResNo - The result number of the next output.
+ for (auto &T : TargetConstraints) {
+ ConstraintOperands.push_back(GISelAsmOperandInfo(T));
+ GISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
+
+ // Compute the value type for each operand.
+ if (OpInfo.Type == InlineAsm::isInput ||
+ (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) {
+
+ OpInfo.CallOperandVal = const_cast<Value *>(Call.getArgOperand(ArgNo++));
+
+ if (isa<BasicBlock>(OpInfo.CallOperandVal)) {
+ LLVM_DEBUG(dbgs() << "Basic block input operands not supported yet\n");
+ return false;
+ }
+
+ Type *OpTy = OpInfo.CallOperandVal->getType();
+
+ // If this is an indirect operand, the operand is a pointer to the
+ // accessed type.
+ if (OpInfo.isIndirect) {
+ PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
+ if (!PtrTy)
+ report_fatal_error("Indirect operand for inline asm not a pointer!");
+ OpTy = PtrTy->getElementType();
+ }
+
+ // FIXME: Support aggregate input operands
+ if (!OpTy->isSingleValueType()) {
+ LLVM_DEBUG(
+ dbgs() << "Aggregate input operands are not supported yet\n");
+ return false;
+ }
+
+ OpInfo.ConstraintVT = TLI->getValueType(DL, OpTy, true).getSimpleVT();
+
+ } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) {
+ assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
+ if (StructType *STy = dyn_cast<StructType>(Call.getType())) {
+ OpInfo.ConstraintVT =
+ TLI->getSimpleValueType(DL, STy->getElementType(ResNo));
+ } else {
+ assert(ResNo == 0 && "Asm only has one result!");
+ OpInfo.ConstraintVT = TLI->getSimpleValueType(DL, Call.getType());
+ }
+ ++ResNo;
+ } else {
+ OpInfo.ConstraintVT = MVT::Other;
+ }
+
+ // Compute the constraint code and ConstraintType to use.
+ computeConstraintToUse(TLI, OpInfo);
+
+ // The selected constraint type might expose new sideeffects
+ ExtraInfo.update(OpInfo);
+ }
+
+ // At this point, all operand types are decided.
+ // Create the MachineInstr, but don't insert it yet since input
+ // operands still need to insert instructions before this one
+ auto Inst = MIRBuilder.buildInstrNoInsert(TargetOpcode::INLINEASM)
+ .addExternalSymbol(IA->getAsmString().c_str())
+ .addImm(ExtraInfo.get());
+
+ // Starting from this operand: flag followed by register(s) will be added as
+ // operands to Inst for each constraint. Used for matching input constraints.
+ unsigned StartIdx = Inst->getNumOperands();
+
+ // Collects the output operands for later processing
+ GISelAsmOperandInfoVector OutputOperands;
+
+ for (auto &OpInfo : ConstraintOperands) {
+ GISelAsmOperandInfo &RefOpInfo =
+ OpInfo.isMatchingInputConstraint()
+ ? ConstraintOperands[OpInfo.getMatchedOperand()]
+ : OpInfo;
+
+ // Assign registers for register operands
+ getRegistersForValue(MF, MIRBuilder, OpInfo, RefOpInfo);
+
+ switch (OpInfo.Type) {
+ case InlineAsm::isOutput:
+ if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
+ unsigned ConstraintID =
+ TLI->getInlineAsmMemConstraint(OpInfo.ConstraintCode);
+ assert(ConstraintID != InlineAsm::Constraint_Unknown &&
+ "Failed to convert memory constraint code to constraint id.");
+
+ // Add information to the INLINEASM instruction to know about this
+ // output.
+ unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
+ OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
+ Inst.addImm(OpFlags);
+ ArrayRef<Register> SourceRegs =
+ GetOrCreateVRegs(*OpInfo.CallOperandVal);
+ assert(
+ SourceRegs.size() == 1 &&
+ "Expected the memory output to fit into a single virtual register");
+ Inst.addReg(SourceRegs[0]);
+ } else {
+ // Otherwise, this outputs to a register (directly for C_Register /
+ // C_RegisterClass. Find a register that we can use.
+ assert(OpInfo.ConstraintType == TargetLowering::C_Register ||
+ OpInfo.ConstraintType == TargetLowering::C_RegisterClass);
+
+ if (OpInfo.Regs.empty()) {
+ LLVM_DEBUG(dbgs()
+ << "Couldn't allocate output register for constraint\n");
+ return false;
+ }
+
+ // Add information to the INLINEASM instruction to know that this
+ // register is set.
+ unsigned Flag = InlineAsm::getFlagWord(
+ OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber
+ : InlineAsm::Kind_RegDef,
+ OpInfo.Regs.size());
+ if (OpInfo.Regs.front().isVirtual()) {
+ // Put the register class of the virtual registers in the flag word.
+ // That way, later passes can recompute register class constraints for
+ // inline assembly as well as normal instructions. Don't do this for
+ // tied operands that can use the regclass information from the def.
+ const TargetRegisterClass *RC = MRI->getRegClass(OpInfo.Regs.front());
+ Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
+ }
+
+ Inst.addImm(Flag);
+
+ for (Register Reg : OpInfo.Regs) {
+ Inst.addReg(Reg,
+ RegState::Define | getImplRegState(Reg.isPhysical()) |
+ (OpInfo.isEarlyClobber ? RegState::EarlyClobber : 0));
+ }
+
+ // Remember this output operand for later processing
+ OutputOperands.push_back(OpInfo);
+ }
+
+ break;
+ case InlineAsm::isInput: {
+ if (OpInfo.isMatchingInputConstraint()) {
+ unsigned DefIdx = OpInfo.getMatchedOperand();
+ // Find operand with register def that corresponds to DefIdx.
+ unsigned InstFlagIdx = StartIdx;
+ for (unsigned i = 0; i < DefIdx; ++i)
+ InstFlagIdx += getNumOpRegs(*Inst, InstFlagIdx) + 1;
+ assert(getNumOpRegs(*Inst, InstFlagIdx) == 1 && "Wrong flag");
+
+ unsigned MatchedOperandFlag = Inst->getOperand(InstFlagIdx).getImm();
+ if (InlineAsm::isMemKind(MatchedOperandFlag)) {
+ LLVM_DEBUG(dbgs() << "Matching input constraint to mem operand not "
+ "supported. This should be target specific.\n");
+ return false;
+ }
+ if (!InlineAsm::isRegDefKind(MatchedOperandFlag) &&
+ !InlineAsm::isRegDefEarlyClobberKind(MatchedOperandFlag)) {
+ LLVM_DEBUG(dbgs() << "Unknown matching constraint\n");
+ return false;
+ }
+
+ // We want to tie input to register in next operand.
+ unsigned DefRegIdx = InstFlagIdx + 1;
+ Register Def = Inst->getOperand(DefRegIdx).getReg();
+
+ // Copy input to new vreg with same reg class as Def
+ const TargetRegisterClass *RC = MRI->getRegClass(Def);
+ ArrayRef<Register> SrcRegs = GetOrCreateVRegs(*OpInfo.CallOperandVal);
+ assert(SrcRegs.size() == 1 && "Single register is expected here");
+ Register Tmp = MRI->createVirtualRegister(RC);
+ if (!buildAnyextOrCopy(Tmp, SrcRegs[0], MIRBuilder))
+ return false;
+
+ // Add Flag and input register operand (Tmp) to Inst. Tie Tmp to Def.
+ unsigned UseFlag = InlineAsm::getFlagWord(InlineAsm::Kind_RegUse, 1);
+ unsigned Flag = InlineAsm::getFlagWordForMatchingOp(UseFlag, DefIdx);
+ Inst.addImm(Flag);
+ Inst.addReg(Tmp);
+ Inst->tieOperands(DefRegIdx, Inst->getNumOperands() - 1);
+ break;
+ }
+
+ if (OpInfo.ConstraintType == TargetLowering::C_Other &&
+ OpInfo.isIndirect) {
+ LLVM_DEBUG(dbgs() << "Indirect input operands with unknown constraint "
+ "not supported yet\n");
+ return false;
+ }
+
+ if (OpInfo.ConstraintType == TargetLowering::C_Immediate ||
+ OpInfo.ConstraintType == TargetLowering::C_Other) {
+
+ std::vector<MachineOperand> Ops;
+ if (!lowerAsmOperandForConstraint(OpInfo.CallOperandVal,
+ OpInfo.ConstraintCode, Ops,
+ MIRBuilder)) {
+ LLVM_DEBUG(dbgs() << "Don't support constraint: "
+ << OpInfo.ConstraintCode << " yet\n");
+ return false;
+ }
+
+ assert(Ops.size() > 0 &&
+ "Expected constraint to be lowered to at least one operand");
+
+ // Add information to the INLINEASM node to know about this input.
+ unsigned OpFlags =
+ InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
+ Inst.addImm(OpFlags);
+ Inst.add(Ops);
+ break;
+ }
+
+ if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
+
+ if (!OpInfo.isIndirect) {
+ LLVM_DEBUG(dbgs()
+ << "Cannot indirectify memory input operands yet\n");
+ return false;
+ }
+
+ assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
+
+ unsigned ConstraintID =
+ TLI->getInlineAsmMemConstraint(OpInfo.ConstraintCode);
+ unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
+ OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
+ Inst.addImm(OpFlags);
+ ArrayRef<Register> SourceRegs =
+ GetOrCreateVRegs(*OpInfo.CallOperandVal);
+ assert(
+ SourceRegs.size() == 1 &&
+ "Expected the memory input to fit into a single virtual register");
+ Inst.addReg(SourceRegs[0]);
+ break;
+ }
+
+ assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
+ OpInfo.ConstraintType == TargetLowering::C_Register) &&
+ "Unknown constraint type!");
+
+ if (OpInfo.isIndirect) {
+ LLVM_DEBUG(dbgs() << "Can't handle indirect register inputs yet "
+ "for constraint '"
+ << OpInfo.ConstraintCode << "'\n");
+ return false;
+ }
+
+ // Copy the input into the appropriate registers.
+ if (OpInfo.Regs.empty()) {
+ LLVM_DEBUG(
+ dbgs()
+ << "Couldn't allocate input register for register constraint\n");
+ return false;
+ }
+
+ unsigned NumRegs = OpInfo.Regs.size();
+ ArrayRef<Register> SourceRegs = GetOrCreateVRegs(*OpInfo.CallOperandVal);
+ assert(NumRegs == SourceRegs.size() &&
+ "Expected the number of input registers to match the number of "
+ "source registers");
+
+ if (NumRegs > 1) {
+ LLVM_DEBUG(dbgs() << "Input operands with multiple input registers are "
+ "not supported yet\n");
+ return false;
+ }
+
+ unsigned Flag = InlineAsm::getFlagWord(InlineAsm::Kind_RegUse, NumRegs);
+ Inst.addImm(Flag);
+ if (!buildAnyextOrCopy(OpInfo.Regs[0], SourceRegs[0], MIRBuilder))
+ return false;
+ Inst.addReg(OpInfo.Regs[0]);
+ break;
+ }
+
+ case InlineAsm::isClobber: {
+
+ unsigned NumRegs = OpInfo.Regs.size();
+ if (NumRegs > 0) {
+ unsigned Flag =
+ InlineAsm::getFlagWord(InlineAsm::Kind_Clobber, NumRegs);
+ Inst.addImm(Flag);
+
+ for (Register Reg : OpInfo.Regs) {
+ Inst.addReg(Reg, RegState::Define | RegState::EarlyClobber |
+ getImplRegState(Reg.isPhysical()));
+ }
+ }
+ break;
+ }
+ }
+ }
+
+ if (const MDNode *SrcLoc = Call.getMetadata("srcloc"))
+ Inst.addMetadata(SrcLoc);
+
+ // All inputs are handled, insert the instruction now
+ MIRBuilder.insertInstr(Inst);
+
+ // Finally, copy the output operands into the output registers
+ ArrayRef<Register> ResRegs = GetOrCreateVRegs(Call);
+ if (ResRegs.size() != OutputOperands.size()) {
+ LLVM_DEBUG(dbgs() << "Expected the number of output registers to match the "
+ "number of destination registers\n");
+ return false;
+ }
+ for (unsigned int i = 0, e = ResRegs.size(); i < e; i++) {
+ GISelAsmOperandInfo &OpInfo = OutputOperands[i];
+
+ if (OpInfo.Regs.empty())
+ continue;
+
+ switch (OpInfo.ConstraintType) {
+ case TargetLowering::C_Register:
+ case TargetLowering::C_RegisterClass: {
+ if (OpInfo.Regs.size() > 1) {
+ LLVM_DEBUG(dbgs() << "Output operands with multiple defining "
+ "registers are not supported yet\n");
+ return false;
+ }
+
+ Register SrcReg = OpInfo.Regs[0];
+ unsigned SrcSize = TRI->getRegSizeInBits(SrcReg, *MRI);
+ if (MRI->getType(ResRegs[i]).getSizeInBits() < SrcSize) {
+ // First copy the non-typed virtual register into a generic virtual
+ // register
+ Register Tmp1Reg =
+ MRI->createGenericVirtualRegister(LLT::scalar(SrcSize));
+ MIRBuilder.buildCopy(Tmp1Reg, SrcReg);
+ // Need to truncate the result of the register
+ MIRBuilder.buildTrunc(ResRegs[i], Tmp1Reg);
+ } else {
+ MIRBuilder.buildCopy(ResRegs[i], SrcReg);
+ }
+ break;
+ }
+ case TargetLowering::C_Immediate:
+ case TargetLowering::C_Other:
+ LLVM_DEBUG(
+ dbgs() << "Cannot lower target specific output constraints yet\n");
+ return false;
+ case TargetLowering::C_Memory:
+ break; // Already handled.
+ case TargetLowering::C_Unknown:
+ LLVM_DEBUG(dbgs() << "Unexpected unknown constraint\n");
+ return false;
+ }
+ }
+
+ return true;
+}
+
+bool InlineAsmLowering::lowerAsmOperandForConstraint(
+ Value *Val, StringRef Constraint, std::vector<MachineOperand> &Ops,
+ MachineIRBuilder &MIRBuilder) const {
+ if (Constraint.size() > 1)
+ return false;
+
+ char ConstraintLetter = Constraint[0];
+ switch (ConstraintLetter) {
+ default:
+ return false;
+ case 'i': // Simple Integer or Relocatable Constant
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
+ assert(CI->getBitWidth() <= 64 &&
+ "expected immediate to fit into 64-bits");
+ // Boolean constants should be zero-extended, others are sign-extended
+ bool IsBool = CI->getBitWidth() == 1;
+ int64_t ExtVal = IsBool ? CI->getZExtValue() : CI->getSExtValue();
+ Ops.push_back(MachineOperand::CreateImm(ExtVal));
+ return true;
+ }
+ return false;
+ }
+}