diff options
Diffstat (limited to 'llvm/lib/CodeGen/InterleavedAccessPass.cpp')
| -rw-r--r-- | llvm/lib/CodeGen/InterleavedAccessPass.cpp | 472 | 
1 files changed, 472 insertions, 0 deletions
| diff --git a/llvm/lib/CodeGen/InterleavedAccessPass.cpp b/llvm/lib/CodeGen/InterleavedAccessPass.cpp new file mode 100644 index 0000000000000..14bc560a561c2 --- /dev/null +++ b/llvm/lib/CodeGen/InterleavedAccessPass.cpp @@ -0,0 +1,472 @@ +//===- InterleavedAccessPass.cpp ------------------------------------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This file implements the Interleaved Access pass, which identifies +// interleaved memory accesses and transforms them into target specific +// intrinsics. +// +// An interleaved load reads data from memory into several vectors, with +// DE-interleaving the data on a factor. An interleaved store writes several +// vectors to memory with RE-interleaving the data on a factor. +// +// As interleaved accesses are difficult to identified in CodeGen (mainly +// because the VECTOR_SHUFFLE DAG node is quite different from the shufflevector +// IR), we identify and transform them to intrinsics in this pass so the +// intrinsics can be easily matched into target specific instructions later in +// CodeGen. +// +// E.g. An interleaved load (Factor = 2): +//        %wide.vec = load <8 x i32>, <8 x i32>* %ptr +//        %v0 = shuffle <8 x i32> %wide.vec, <8 x i32> undef, <0, 2, 4, 6> +//        %v1 = shuffle <8 x i32> %wide.vec, <8 x i32> undef, <1, 3, 5, 7> +// +// It could be transformed into a ld2 intrinsic in AArch64 backend or a vld2 +// intrinsic in ARM backend. +// +// In X86, this can be further optimized into a set of target +// specific loads followed by an optimized sequence of shuffles. +// +// E.g. An interleaved store (Factor = 3): +//        %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1, +//                                    <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> +//        store <12 x i32> %i.vec, <12 x i32>* %ptr +// +// It could be transformed into a st3 intrinsic in AArch64 backend or a vst3 +// intrinsic in ARM backend. +// +// Similarly, a set of interleaved stores can be transformed into an optimized +// sequence of shuffles followed by a set of target specific stores for X86. +// +//===----------------------------------------------------------------------===// + +#include "llvm/ADT/ArrayRef.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/CodeGen/TargetLowering.h" +#include "llvm/CodeGen/TargetPassConfig.h" +#include "llvm/CodeGen/TargetSubtargetInfo.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/Dominators.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/IRBuilder.h" +#include "llvm/IR/InstIterator.h" +#include "llvm/IR/Instruction.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/Type.h" +#include "llvm/Pass.h" +#include "llvm/Support/Casting.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/MathExtras.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Target/TargetMachine.h" +#include <cassert> +#include <utility> + +using namespace llvm; + +#define DEBUG_TYPE "interleaved-access" + +static cl::opt<bool> LowerInterleavedAccesses( +    "lower-interleaved-accesses", +    cl::desc("Enable lowering interleaved accesses to intrinsics"), +    cl::init(true), cl::Hidden); + +namespace { + +class InterleavedAccess : public FunctionPass { +public: +  static char ID; + +  InterleavedAccess() : FunctionPass(ID) { +    initializeInterleavedAccessPass(*PassRegistry::getPassRegistry()); +  } + +  StringRef getPassName() const override { return "Interleaved Access Pass"; } + +  bool runOnFunction(Function &F) override; + +  void getAnalysisUsage(AnalysisUsage &AU) const override { +    AU.addRequired<DominatorTreeWrapperPass>(); +    AU.addPreserved<DominatorTreeWrapperPass>(); +  } + +private: +  DominatorTree *DT = nullptr; +  const TargetLowering *TLI = nullptr; + +  /// The maximum supported interleave factor. +  unsigned MaxFactor; + +  /// Transform an interleaved load into target specific intrinsics. +  bool lowerInterleavedLoad(LoadInst *LI, +                            SmallVector<Instruction *, 32> &DeadInsts); + +  /// Transform an interleaved store into target specific intrinsics. +  bool lowerInterleavedStore(StoreInst *SI, +                             SmallVector<Instruction *, 32> &DeadInsts); + +  /// Returns true if the uses of an interleaved load by the +  /// extractelement instructions in \p Extracts can be replaced by uses of the +  /// shufflevector instructions in \p Shuffles instead. If so, the necessary +  /// replacements are also performed. +  bool tryReplaceExtracts(ArrayRef<ExtractElementInst *> Extracts, +                          ArrayRef<ShuffleVectorInst *> Shuffles); +}; + +} // end anonymous namespace. + +char InterleavedAccess::ID = 0; + +INITIALIZE_PASS_BEGIN(InterleavedAccess, DEBUG_TYPE, +    "Lower interleaved memory accesses to target specific intrinsics", false, +    false) +INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) +INITIALIZE_PASS_END(InterleavedAccess, DEBUG_TYPE, +    "Lower interleaved memory accesses to target specific intrinsics", false, +    false) + +FunctionPass *llvm::createInterleavedAccessPass() { +  return new InterleavedAccess(); +} + +/// Check if the mask is a DE-interleave mask of the given factor +/// \p Factor like: +///     <Index, Index+Factor, ..., Index+(NumElts-1)*Factor> +static bool isDeInterleaveMaskOfFactor(ArrayRef<int> Mask, unsigned Factor, +                                       unsigned &Index) { +  // Check all potential start indices from 0 to (Factor - 1). +  for (Index = 0; Index < Factor; Index++) { +    unsigned i = 0; + +    // Check that elements are in ascending order by Factor. Ignore undef +    // elements. +    for (; i < Mask.size(); i++) +      if (Mask[i] >= 0 && static_cast<unsigned>(Mask[i]) != Index + i * Factor) +        break; + +    if (i == Mask.size()) +      return true; +  } + +  return false; +} + +/// Check if the mask is a DE-interleave mask for an interleaved load. +/// +/// E.g. DE-interleave masks (Factor = 2) could be: +///     <0, 2, 4, 6>    (mask of index 0 to extract even elements) +///     <1, 3, 5, 7>    (mask of index 1 to extract odd elements) +static bool isDeInterleaveMask(ArrayRef<int> Mask, unsigned &Factor, +                               unsigned &Index, unsigned MaxFactor, +                               unsigned NumLoadElements) { +  if (Mask.size() < 2) +    return false; + +  // Check potential Factors. +  for (Factor = 2; Factor <= MaxFactor; Factor++) { +    // Make sure we don't produce a load wider than the input load. +    if (Mask.size() * Factor > NumLoadElements) +      return false; +    if (isDeInterleaveMaskOfFactor(Mask, Factor, Index)) +      return true; +  } + +  return false; +} + +/// Check if the mask can be used in an interleaved store. +// +/// It checks for a more general pattern than the RE-interleave mask. +/// I.e. <x, y, ... z, x+1, y+1, ...z+1, x+2, y+2, ...z+2, ...> +/// E.g. For a Factor of 2 (LaneLen=4): <4, 32, 5, 33, 6, 34, 7, 35> +/// E.g. For a Factor of 3 (LaneLen=4): <4, 32, 16, 5, 33, 17, 6, 34, 18, 7, 35, 19> +/// E.g. For a Factor of 4 (LaneLen=2): <8, 2, 12, 4, 9, 3, 13, 5> +/// +/// The particular case of an RE-interleave mask is: +/// I.e. <0, LaneLen, ... , LaneLen*(Factor - 1), 1, LaneLen + 1, ...> +/// E.g. For a Factor of 2 (LaneLen=4): <0, 4, 1, 5, 2, 6, 3, 7> +static bool isReInterleaveMask(ArrayRef<int> Mask, unsigned &Factor, +                               unsigned MaxFactor, unsigned OpNumElts) { +  unsigned NumElts = Mask.size(); +  if (NumElts < 4) +    return false; + +  // Check potential Factors. +  for (Factor = 2; Factor <= MaxFactor; Factor++) { +    if (NumElts % Factor) +      continue; + +    unsigned LaneLen = NumElts / Factor; +    if (!isPowerOf2_32(LaneLen)) +      continue; + +    // Check whether each element matches the general interleaved rule. +    // Ignore undef elements, as long as the defined elements match the rule. +    // Outer loop processes all factors (x, y, z in the above example) +    unsigned I = 0, J; +    for (; I < Factor; I++) { +      unsigned SavedLaneValue; +      unsigned SavedNoUndefs = 0; + +      // Inner loop processes consecutive accesses (x, x+1... in the example) +      for (J = 0; J < LaneLen - 1; J++) { +        // Lane computes x's position in the Mask +        unsigned Lane = J * Factor + I; +        unsigned NextLane = Lane + Factor; +        int LaneValue = Mask[Lane]; +        int NextLaneValue = Mask[NextLane]; + +        // If both are defined, values must be sequential +        if (LaneValue >= 0 && NextLaneValue >= 0 && +            LaneValue + 1 != NextLaneValue) +          break; + +        // If the next value is undef, save the current one as reference +        if (LaneValue >= 0 && NextLaneValue < 0) { +          SavedLaneValue = LaneValue; +          SavedNoUndefs = 1; +        } + +        // Undefs are allowed, but defined elements must still be consecutive: +        // i.e.: x,..., undef,..., x + 2,..., undef,..., undef,..., x + 5, .... +        // Verify this by storing the last non-undef followed by an undef +        // Check that following non-undef masks are incremented with the +        // corresponding distance. +        if (SavedNoUndefs > 0 && LaneValue < 0) { +          SavedNoUndefs++; +          if (NextLaneValue >= 0 && +              SavedLaneValue + SavedNoUndefs != (unsigned)NextLaneValue) +            break; +        } +      } + +      if (J < LaneLen - 1) +        break; + +      int StartMask = 0; +      if (Mask[I] >= 0) { +        // Check that the start of the I range (J=0) is greater than 0 +        StartMask = Mask[I]; +      } else if (Mask[(LaneLen - 1) * Factor + I] >= 0) { +        // StartMask defined by the last value in lane +        StartMask = Mask[(LaneLen - 1) * Factor + I] - J; +      } else if (SavedNoUndefs > 0) { +        // StartMask defined by some non-zero value in the j loop +        StartMask = SavedLaneValue - (LaneLen - 1 - SavedNoUndefs); +      } +      // else StartMask remains set to 0, i.e. all elements are undefs + +      if (StartMask < 0) +        break; +      // We must stay within the vectors; This case can happen with undefs. +      if (StartMask + LaneLen > OpNumElts*2) +        break; +    } + +    // Found an interleaved mask of current factor. +    if (I == Factor) +      return true; +  } + +  return false; +} + +bool InterleavedAccess::lowerInterleavedLoad( +    LoadInst *LI, SmallVector<Instruction *, 32> &DeadInsts) { +  if (!LI->isSimple()) +    return false; + +  SmallVector<ShuffleVectorInst *, 4> Shuffles; +  SmallVector<ExtractElementInst *, 4> Extracts; + +  // Check if all users of this load are shufflevectors. If we encounter any +  // users that are extractelement instructions, we save them to later check if +  // they can be modifed to extract from one of the shufflevectors instead of +  // the load. +  for (auto UI = LI->user_begin(), E = LI->user_end(); UI != E; UI++) { +    auto *Extract = dyn_cast<ExtractElementInst>(*UI); +    if (Extract && isa<ConstantInt>(Extract->getIndexOperand())) { +      Extracts.push_back(Extract); +      continue; +    } +    ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(*UI); +    if (!SVI || !isa<UndefValue>(SVI->getOperand(1))) +      return false; + +    Shuffles.push_back(SVI); +  } + +  if (Shuffles.empty()) +    return false; + +  unsigned Factor, Index; + +  unsigned NumLoadElements = LI->getType()->getVectorNumElements(); +  // Check if the first shufflevector is DE-interleave shuffle. +  if (!isDeInterleaveMask(Shuffles[0]->getShuffleMask(), Factor, Index, +                          MaxFactor, NumLoadElements)) +    return false; + +  // Holds the corresponding index for each DE-interleave shuffle. +  SmallVector<unsigned, 4> Indices; +  Indices.push_back(Index); + +  Type *VecTy = Shuffles[0]->getType(); + +  // Check if other shufflevectors are also DE-interleaved of the same type +  // and factor as the first shufflevector. +  for (unsigned i = 1; i < Shuffles.size(); i++) { +    if (Shuffles[i]->getType() != VecTy) +      return false; + +    if (!isDeInterleaveMaskOfFactor(Shuffles[i]->getShuffleMask(), Factor, +                                    Index)) +      return false; + +    Indices.push_back(Index); +  } + +  // Try and modify users of the load that are extractelement instructions to +  // use the shufflevector instructions instead of the load. +  if (!tryReplaceExtracts(Extracts, Shuffles)) +    return false; + +  LLVM_DEBUG(dbgs() << "IA: Found an interleaved load: " << *LI << "\n"); + +  // Try to create target specific intrinsics to replace the load and shuffles. +  if (!TLI->lowerInterleavedLoad(LI, Shuffles, Indices, Factor)) +    return false; + +  for (auto SVI : Shuffles) +    DeadInsts.push_back(SVI); + +  DeadInsts.push_back(LI); +  return true; +} + +bool InterleavedAccess::tryReplaceExtracts( +    ArrayRef<ExtractElementInst *> Extracts, +    ArrayRef<ShuffleVectorInst *> Shuffles) { +  // If there aren't any extractelement instructions to modify, there's nothing +  // to do. +  if (Extracts.empty()) +    return true; + +  // Maps extractelement instructions to vector-index pairs. The extractlement +  // instructions will be modified to use the new vector and index operands. +  DenseMap<ExtractElementInst *, std::pair<Value *, int>> ReplacementMap; + +  for (auto *Extract : Extracts) { +    // The vector index that is extracted. +    auto *IndexOperand = cast<ConstantInt>(Extract->getIndexOperand()); +    auto Index = IndexOperand->getSExtValue(); + +    // Look for a suitable shufflevector instruction. The goal is to modify the +    // extractelement instruction (which uses an interleaved load) to use one +    // of the shufflevector instructions instead of the load. +    for (auto *Shuffle : Shuffles) { +      // If the shufflevector instruction doesn't dominate the extract, we +      // can't create a use of it. +      if (!DT->dominates(Shuffle, Extract)) +        continue; + +      // Inspect the indices of the shufflevector instruction. If the shuffle +      // selects the same index that is extracted, we can modify the +      // extractelement instruction. +      SmallVector<int, 4> Indices; +      Shuffle->getShuffleMask(Indices); +      for (unsigned I = 0; I < Indices.size(); ++I) +        if (Indices[I] == Index) { +          assert(Extract->getOperand(0) == Shuffle->getOperand(0) && +                 "Vector operations do not match"); +          ReplacementMap[Extract] = std::make_pair(Shuffle, I); +          break; +        } + +      // If we found a suitable shufflevector instruction, stop looking. +      if (ReplacementMap.count(Extract)) +        break; +    } + +    // If we did not find a suitable shufflevector instruction, the +    // extractelement instruction cannot be modified, so we must give up. +    if (!ReplacementMap.count(Extract)) +      return false; +  } + +  // Finally, perform the replacements. +  IRBuilder<> Builder(Extracts[0]->getContext()); +  for (auto &Replacement : ReplacementMap) { +    auto *Extract = Replacement.first; +    auto *Vector = Replacement.second.first; +    auto Index = Replacement.second.second; +    Builder.SetInsertPoint(Extract); +    Extract->replaceAllUsesWith(Builder.CreateExtractElement(Vector, Index)); +    Extract->eraseFromParent(); +  } + +  return true; +} + +bool InterleavedAccess::lowerInterleavedStore( +    StoreInst *SI, SmallVector<Instruction *, 32> &DeadInsts) { +  if (!SI->isSimple()) +    return false; + +  ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(SI->getValueOperand()); +  if (!SVI || !SVI->hasOneUse()) +    return false; + +  // Check if the shufflevector is RE-interleave shuffle. +  unsigned Factor; +  unsigned OpNumElts = SVI->getOperand(0)->getType()->getVectorNumElements(); +  if (!isReInterleaveMask(SVI->getShuffleMask(), Factor, MaxFactor, OpNumElts)) +    return false; + +  LLVM_DEBUG(dbgs() << "IA: Found an interleaved store: " << *SI << "\n"); + +  // Try to create target specific intrinsics to replace the store and shuffle. +  if (!TLI->lowerInterleavedStore(SI, SVI, Factor)) +    return false; + +  // Already have a new target specific interleaved store. Erase the old store. +  DeadInsts.push_back(SI); +  DeadInsts.push_back(SVI); +  return true; +} + +bool InterleavedAccess::runOnFunction(Function &F) { +  auto *TPC = getAnalysisIfAvailable<TargetPassConfig>(); +  if (!TPC || !LowerInterleavedAccesses) +    return false; + +  LLVM_DEBUG(dbgs() << "*** " << getPassName() << ": " << F.getName() << "\n"); + +  DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); +  auto &TM = TPC->getTM<TargetMachine>(); +  TLI = TM.getSubtargetImpl(F)->getTargetLowering(); +  MaxFactor = TLI->getMaxSupportedInterleaveFactor(); + +  // Holds dead instructions that will be erased later. +  SmallVector<Instruction *, 32> DeadInsts; +  bool Changed = false; + +  for (auto &I : instructions(F)) { +    if (LoadInst *LI = dyn_cast<LoadInst>(&I)) +      Changed |= lowerInterleavedLoad(LI, DeadInsts); + +    if (StoreInst *SI = dyn_cast<StoreInst>(&I)) +      Changed |= lowerInterleavedStore(SI, DeadInsts); +  } + +  for (auto I : DeadInsts) +    I->eraseFromParent(); + +  return Changed; +} | 
