diff options
Diffstat (limited to 'llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp')
| -rw-r--r-- | llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp | 20866 | 
1 files changed, 20866 insertions, 0 deletions
diff --git a/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp b/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp new file mode 100644 index 0000000000000..e8950b58d42df --- /dev/null +++ b/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp @@ -0,0 +1,20866 @@ +//===- DAGCombiner.cpp - Implement a DAG node combiner --------------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This pass combines dag nodes to form fewer, simpler DAG nodes.  It can be run +// both before and after the DAG is legalized. +// +// This pass is not a substitute for the LLVM IR instcombine pass. This pass is +// primarily intended to handle simplification opportunities that are implicit +// in the LLVM IR and exposed by the various codegen lowering phases. +// +//===----------------------------------------------------------------------===// + +#include "llvm/ADT/APFloat.h" +#include "llvm/ADT/APInt.h" +#include "llvm/ADT/ArrayRef.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/IntervalMap.h" +#include "llvm/ADT/None.h" +#include "llvm/ADT/Optional.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/SetVector.h" +#include "llvm/ADT/SmallPtrSet.h" +#include "llvm/ADT/SmallSet.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/Analysis/AliasAnalysis.h" +#include "llvm/Analysis/MemoryLocation.h" +#include "llvm/CodeGen/DAGCombine.h" +#include "llvm/CodeGen/ISDOpcodes.h" +#include "llvm/CodeGen/MachineFrameInfo.h" +#include "llvm/CodeGen/MachineFunction.h" +#include "llvm/CodeGen/MachineMemOperand.h" +#include "llvm/CodeGen/RuntimeLibcalls.h" +#include "llvm/CodeGen/SelectionDAG.h" +#include "llvm/CodeGen/SelectionDAGAddressAnalysis.h" +#include "llvm/CodeGen/SelectionDAGNodes.h" +#include "llvm/CodeGen/SelectionDAGTargetInfo.h" +#include "llvm/CodeGen/TargetLowering.h" +#include "llvm/CodeGen/TargetRegisterInfo.h" +#include "llvm/CodeGen/TargetSubtargetInfo.h" +#include "llvm/CodeGen/ValueTypes.h" +#include "llvm/IR/Attributes.h" +#include "llvm/IR/Constant.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/LLVMContext.h" +#include "llvm/IR/Metadata.h" +#include "llvm/Support/Casting.h" +#include "llvm/Support/CodeGen.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Compiler.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/KnownBits.h" +#include "llvm/Support/MachineValueType.h" +#include "llvm/Support/MathExtras.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Target/TargetMachine.h" +#include "llvm/Target/TargetOptions.h" +#include <algorithm> +#include <cassert> +#include <cstdint> +#include <functional> +#include <iterator> +#include <string> +#include <tuple> +#include <utility> + +using namespace llvm; + +#define DEBUG_TYPE "dagcombine" + +STATISTIC(NodesCombined   , "Number of dag nodes combined"); +STATISTIC(PreIndexedNodes , "Number of pre-indexed nodes created"); +STATISTIC(PostIndexedNodes, "Number of post-indexed nodes created"); +STATISTIC(OpsNarrowed     , "Number of load/op/store narrowed"); +STATISTIC(LdStFP2Int      , "Number of fp load/store pairs transformed to int"); +STATISTIC(SlicedLoads, "Number of load sliced"); +STATISTIC(NumFPLogicOpsConv, "Number of logic ops converted to fp ops"); + +static cl::opt<bool> +CombinerGlobalAA("combiner-global-alias-analysis", cl::Hidden, +                 cl::desc("Enable DAG combiner's use of IR alias analysis")); + +static cl::opt<bool> +UseTBAA("combiner-use-tbaa", cl::Hidden, cl::init(true), +        cl::desc("Enable DAG combiner's use of TBAA")); + +#ifndef NDEBUG +static cl::opt<std::string> +CombinerAAOnlyFunc("combiner-aa-only-func", cl::Hidden, +                   cl::desc("Only use DAG-combiner alias analysis in this" +                            " function")); +#endif + +/// Hidden option to stress test load slicing, i.e., when this option +/// is enabled, load slicing bypasses most of its profitability guards. +static cl::opt<bool> +StressLoadSlicing("combiner-stress-load-slicing", cl::Hidden, +                  cl::desc("Bypass the profitability model of load slicing"), +                  cl::init(false)); + +static cl::opt<bool> +  MaySplitLoadIndex("combiner-split-load-index", cl::Hidden, cl::init(true), +                    cl::desc("DAG combiner may split indexing from loads")); + +static cl::opt<bool> +    EnableStoreMerging("combiner-store-merging", cl::Hidden, cl::init(true), +                       cl::desc("DAG combiner enable merging multiple stores " +                                "into a wider store")); + +static cl::opt<unsigned> TokenFactorInlineLimit( +    "combiner-tokenfactor-inline-limit", cl::Hidden, cl::init(2048), +    cl::desc("Limit the number of operands to inline for Token Factors")); + +static cl::opt<unsigned> StoreMergeDependenceLimit( +    "combiner-store-merge-dependence-limit", cl::Hidden, cl::init(10), +    cl::desc("Limit the number of times for the same StoreNode and RootNode " +             "to bail out in store merging dependence check")); + +namespace { + +  class DAGCombiner { +    SelectionDAG &DAG; +    const TargetLowering &TLI; +    CombineLevel Level; +    CodeGenOpt::Level OptLevel; +    bool LegalOperations = false; +    bool LegalTypes = false; +    bool ForCodeSize; + +    /// Worklist of all of the nodes that need to be simplified. +    /// +    /// This must behave as a stack -- new nodes to process are pushed onto the +    /// back and when processing we pop off of the back. +    /// +    /// The worklist will not contain duplicates but may contain null entries +    /// due to nodes being deleted from the underlying DAG. +    SmallVector<SDNode *, 64> Worklist; + +    /// Mapping from an SDNode to its position on the worklist. +    /// +    /// This is used to find and remove nodes from the worklist (by nulling +    /// them) when they are deleted from the underlying DAG. It relies on +    /// stable indices of nodes within the worklist. +    DenseMap<SDNode *, unsigned> WorklistMap; +    /// This records all nodes attempted to add to the worklist since we +    /// considered a new worklist entry. As we keep do not add duplicate nodes +    /// in the worklist, this is different from the tail of the worklist. +    SmallSetVector<SDNode *, 32> PruningList; + +    /// Set of nodes which have been combined (at least once). +    /// +    /// This is used to allow us to reliably add any operands of a DAG node +    /// which have not yet been combined to the worklist. +    SmallPtrSet<SDNode *, 32> CombinedNodes; + +    /// Map from candidate StoreNode to the pair of RootNode and count. +    /// The count is used to track how many times we have seen the StoreNode +    /// with the same RootNode bail out in dependence check. If we have seen +    /// the bail out for the same pair many times over a limit, we won't +    /// consider the StoreNode with the same RootNode as store merging +    /// candidate again. +    DenseMap<SDNode *, std::pair<SDNode *, unsigned>> StoreRootCountMap; + +    // AA - Used for DAG load/store alias analysis. +    AliasAnalysis *AA; + +    /// When an instruction is simplified, add all users of the instruction to +    /// the work lists because they might get more simplified now. +    void AddUsersToWorklist(SDNode *N) { +      for (SDNode *Node : N->uses()) +        AddToWorklist(Node); +    } + +    // Prune potentially dangling nodes. This is called after +    // any visit to a node, but should also be called during a visit after any +    // failed combine which may have created a DAG node. +    void clearAddedDanglingWorklistEntries() { +      // Check any nodes added to the worklist to see if they are prunable. +      while (!PruningList.empty()) { +        auto *N = PruningList.pop_back_val(); +        if (N->use_empty()) +          recursivelyDeleteUnusedNodes(N); +      } +    } + +    SDNode *getNextWorklistEntry() { +      // Before we do any work, remove nodes that are not in use. +      clearAddedDanglingWorklistEntries(); +      SDNode *N = nullptr; +      // The Worklist holds the SDNodes in order, but it may contain null +      // entries. +      while (!N && !Worklist.empty()) { +        N = Worklist.pop_back_val(); +      } + +      if (N) { +        bool GoodWorklistEntry = WorklistMap.erase(N); +        (void)GoodWorklistEntry; +        assert(GoodWorklistEntry && +               "Found a worklist entry without a corresponding map entry!"); +      } +      return N; +    } + +    /// Call the node-specific routine that folds each particular type of node. +    SDValue visit(SDNode *N); + +  public: +    DAGCombiner(SelectionDAG &D, AliasAnalysis *AA, CodeGenOpt::Level OL) +        : DAG(D), TLI(D.getTargetLoweringInfo()), Level(BeforeLegalizeTypes), +          OptLevel(OL), AA(AA) { +      ForCodeSize = DAG.getMachineFunction().getFunction().hasOptSize(); + +      MaximumLegalStoreInBits = 0; +      for (MVT VT : MVT::all_valuetypes()) +        if (EVT(VT).isSimple() && VT != MVT::Other && +            TLI.isTypeLegal(EVT(VT)) && +            VT.getSizeInBits() >= MaximumLegalStoreInBits) +          MaximumLegalStoreInBits = VT.getSizeInBits(); +    } + +    void ConsiderForPruning(SDNode *N) { +      // Mark this for potential pruning. +      PruningList.insert(N); +    } + +    /// Add to the worklist making sure its instance is at the back (next to be +    /// processed.) +    void AddToWorklist(SDNode *N) { +      assert(N->getOpcode() != ISD::DELETED_NODE && +             "Deleted Node added to Worklist"); + +      // Skip handle nodes as they can't usefully be combined and confuse the +      // zero-use deletion strategy. +      if (N->getOpcode() == ISD::HANDLENODE) +        return; + +      ConsiderForPruning(N); + +      if (WorklistMap.insert(std::make_pair(N, Worklist.size())).second) +        Worklist.push_back(N); +    } + +    /// Remove all instances of N from the worklist. +    void removeFromWorklist(SDNode *N) { +      CombinedNodes.erase(N); +      PruningList.remove(N); +      StoreRootCountMap.erase(N); + +      auto It = WorklistMap.find(N); +      if (It == WorklistMap.end()) +        return; // Not in the worklist. + +      // Null out the entry rather than erasing it to avoid a linear operation. +      Worklist[It->second] = nullptr; +      WorklistMap.erase(It); +    } + +    void deleteAndRecombine(SDNode *N); +    bool recursivelyDeleteUnusedNodes(SDNode *N); + +    /// Replaces all uses of the results of one DAG node with new values. +    SDValue CombineTo(SDNode *N, const SDValue *To, unsigned NumTo, +                      bool AddTo = true); + +    /// Replaces all uses of the results of one DAG node with new values. +    SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true) { +      return CombineTo(N, &Res, 1, AddTo); +    } + +    /// Replaces all uses of the results of one DAG node with new values. +    SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1, +                      bool AddTo = true) { +      SDValue To[] = { Res0, Res1 }; +      return CombineTo(N, To, 2, AddTo); +    } + +    void CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO); + +  private: +    unsigned MaximumLegalStoreInBits; + +    /// Check the specified integer node value to see if it can be simplified or +    /// if things it uses can be simplified by bit propagation. +    /// If so, return true. +    bool SimplifyDemandedBits(SDValue Op) { +      unsigned BitWidth = Op.getScalarValueSizeInBits(); +      APInt DemandedBits = APInt::getAllOnesValue(BitWidth); +      return SimplifyDemandedBits(Op, DemandedBits); +    } + +    bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits) { +      EVT VT = Op.getValueType(); +      unsigned NumElts = VT.isVector() ? VT.getVectorNumElements() : 1; +      APInt DemandedElts = APInt::getAllOnesValue(NumElts); +      return SimplifyDemandedBits(Op, DemandedBits, DemandedElts); +    } + +    /// Check the specified vector node value to see if it can be simplified or +    /// if things it uses can be simplified as it only uses some of the +    /// elements. If so, return true. +    bool SimplifyDemandedVectorElts(SDValue Op) { +      unsigned NumElts = Op.getValueType().getVectorNumElements(); +      APInt DemandedElts = APInt::getAllOnesValue(NumElts); +      return SimplifyDemandedVectorElts(Op, DemandedElts); +    } + +    bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, +                              const APInt &DemandedElts); +    bool SimplifyDemandedVectorElts(SDValue Op, const APInt &DemandedElts, +                                    bool AssumeSingleUse = false); + +    bool CombineToPreIndexedLoadStore(SDNode *N); +    bool CombineToPostIndexedLoadStore(SDNode *N); +    SDValue SplitIndexingFromLoad(LoadSDNode *LD); +    bool SliceUpLoad(SDNode *N); + +    // Scalars have size 0 to distinguish from singleton vectors. +    SDValue ForwardStoreValueToDirectLoad(LoadSDNode *LD); +    bool getTruncatedStoreValue(StoreSDNode *ST, SDValue &Val); +    bool extendLoadedValueToExtension(LoadSDNode *LD, SDValue &Val); + +    /// Replace an ISD::EXTRACT_VECTOR_ELT of a load with a narrowed +    ///   load. +    /// +    /// \param EVE ISD::EXTRACT_VECTOR_ELT to be replaced. +    /// \param InVecVT type of the input vector to EVE with bitcasts resolved. +    /// \param EltNo index of the vector element to load. +    /// \param OriginalLoad load that EVE came from to be replaced. +    /// \returns EVE on success SDValue() on failure. +    SDValue scalarizeExtractedVectorLoad(SDNode *EVE, EVT InVecVT, +                                         SDValue EltNo, +                                         LoadSDNode *OriginalLoad); +    void ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad); +    SDValue PromoteOperand(SDValue Op, EVT PVT, bool &Replace); +    SDValue SExtPromoteOperand(SDValue Op, EVT PVT); +    SDValue ZExtPromoteOperand(SDValue Op, EVT PVT); +    SDValue PromoteIntBinOp(SDValue Op); +    SDValue PromoteIntShiftOp(SDValue Op); +    SDValue PromoteExtend(SDValue Op); +    bool PromoteLoad(SDValue Op); + +    /// Call the node-specific routine that knows how to fold each +    /// particular type of node. If that doesn't do anything, try the +    /// target-specific DAG combines. +    SDValue combine(SDNode *N); + +    // Visitation implementation - Implement dag node combining for different +    // node types.  The semantics are as follows: +    // Return Value: +    //   SDValue.getNode() == 0 - No change was made +    //   SDValue.getNode() == N - N was replaced, is dead and has been handled. +    //   otherwise              - N should be replaced by the returned Operand. +    // +    SDValue visitTokenFactor(SDNode *N); +    SDValue visitMERGE_VALUES(SDNode *N); +    SDValue visitADD(SDNode *N); +    SDValue visitADDLike(SDNode *N); +    SDValue visitADDLikeCommutative(SDValue N0, SDValue N1, SDNode *LocReference); +    SDValue visitSUB(SDNode *N); +    SDValue visitADDSAT(SDNode *N); +    SDValue visitSUBSAT(SDNode *N); +    SDValue visitADDC(SDNode *N); +    SDValue visitADDO(SDNode *N); +    SDValue visitUADDOLike(SDValue N0, SDValue N1, SDNode *N); +    SDValue visitSUBC(SDNode *N); +    SDValue visitSUBO(SDNode *N); +    SDValue visitADDE(SDNode *N); +    SDValue visitADDCARRY(SDNode *N); +    SDValue visitADDCARRYLike(SDValue N0, SDValue N1, SDValue CarryIn, SDNode *N); +    SDValue visitSUBE(SDNode *N); +    SDValue visitSUBCARRY(SDNode *N); +    SDValue visitMUL(SDNode *N); +    SDValue visitMULFIX(SDNode *N); +    SDValue useDivRem(SDNode *N); +    SDValue visitSDIV(SDNode *N); +    SDValue visitSDIVLike(SDValue N0, SDValue N1, SDNode *N); +    SDValue visitUDIV(SDNode *N); +    SDValue visitUDIVLike(SDValue N0, SDValue N1, SDNode *N); +    SDValue visitREM(SDNode *N); +    SDValue visitMULHU(SDNode *N); +    SDValue visitMULHS(SDNode *N); +    SDValue visitSMUL_LOHI(SDNode *N); +    SDValue visitUMUL_LOHI(SDNode *N); +    SDValue visitMULO(SDNode *N); +    SDValue visitIMINMAX(SDNode *N); +    SDValue visitAND(SDNode *N); +    SDValue visitANDLike(SDValue N0, SDValue N1, SDNode *N); +    SDValue visitOR(SDNode *N); +    SDValue visitORLike(SDValue N0, SDValue N1, SDNode *N); +    SDValue visitXOR(SDNode *N); +    SDValue SimplifyVBinOp(SDNode *N); +    SDValue visitSHL(SDNode *N); +    SDValue visitSRA(SDNode *N); +    SDValue visitSRL(SDNode *N); +    SDValue visitFunnelShift(SDNode *N); +    SDValue visitRotate(SDNode *N); +    SDValue visitABS(SDNode *N); +    SDValue visitBSWAP(SDNode *N); +    SDValue visitBITREVERSE(SDNode *N); +    SDValue visitCTLZ(SDNode *N); +    SDValue visitCTLZ_ZERO_UNDEF(SDNode *N); +    SDValue visitCTTZ(SDNode *N); +    SDValue visitCTTZ_ZERO_UNDEF(SDNode *N); +    SDValue visitCTPOP(SDNode *N); +    SDValue visitSELECT(SDNode *N); +    SDValue visitVSELECT(SDNode *N); +    SDValue visitSELECT_CC(SDNode *N); +    SDValue visitSETCC(SDNode *N); +    SDValue visitSETCCCARRY(SDNode *N); +    SDValue visitSIGN_EXTEND(SDNode *N); +    SDValue visitZERO_EXTEND(SDNode *N); +    SDValue visitANY_EXTEND(SDNode *N); +    SDValue visitAssertExt(SDNode *N); +    SDValue visitSIGN_EXTEND_INREG(SDNode *N); +    SDValue visitSIGN_EXTEND_VECTOR_INREG(SDNode *N); +    SDValue visitZERO_EXTEND_VECTOR_INREG(SDNode *N); +    SDValue visitTRUNCATE(SDNode *N); +    SDValue visitBITCAST(SDNode *N); +    SDValue visitBUILD_PAIR(SDNode *N); +    SDValue visitFADD(SDNode *N); +    SDValue visitFSUB(SDNode *N); +    SDValue visitFMUL(SDNode *N); +    SDValue visitFMA(SDNode *N); +    SDValue visitFDIV(SDNode *N); +    SDValue visitFREM(SDNode *N); +    SDValue visitFSQRT(SDNode *N); +    SDValue visitFCOPYSIGN(SDNode *N); +    SDValue visitFPOW(SDNode *N); +    SDValue visitSINT_TO_FP(SDNode *N); +    SDValue visitUINT_TO_FP(SDNode *N); +    SDValue visitFP_TO_SINT(SDNode *N); +    SDValue visitFP_TO_UINT(SDNode *N); +    SDValue visitFP_ROUND(SDNode *N); +    SDValue visitFP_EXTEND(SDNode *N); +    SDValue visitFNEG(SDNode *N); +    SDValue visitFABS(SDNode *N); +    SDValue visitFCEIL(SDNode *N); +    SDValue visitFTRUNC(SDNode *N); +    SDValue visitFFLOOR(SDNode *N); +    SDValue visitFMINNUM(SDNode *N); +    SDValue visitFMAXNUM(SDNode *N); +    SDValue visitFMINIMUM(SDNode *N); +    SDValue visitFMAXIMUM(SDNode *N); +    SDValue visitBRCOND(SDNode *N); +    SDValue visitBR_CC(SDNode *N); +    SDValue visitLOAD(SDNode *N); + +    SDValue replaceStoreChain(StoreSDNode *ST, SDValue BetterChain); +    SDValue replaceStoreOfFPConstant(StoreSDNode *ST); + +    SDValue visitSTORE(SDNode *N); +    SDValue visitLIFETIME_END(SDNode *N); +    SDValue visitINSERT_VECTOR_ELT(SDNode *N); +    SDValue visitEXTRACT_VECTOR_ELT(SDNode *N); +    SDValue visitBUILD_VECTOR(SDNode *N); +    SDValue visitCONCAT_VECTORS(SDNode *N); +    SDValue visitEXTRACT_SUBVECTOR(SDNode *N); +    SDValue visitVECTOR_SHUFFLE(SDNode *N); +    SDValue visitSCALAR_TO_VECTOR(SDNode *N); +    SDValue visitINSERT_SUBVECTOR(SDNode *N); +    SDValue visitMLOAD(SDNode *N); +    SDValue visitMSTORE(SDNode *N); +    SDValue visitMGATHER(SDNode *N); +    SDValue visitMSCATTER(SDNode *N); +    SDValue visitFP_TO_FP16(SDNode *N); +    SDValue visitFP16_TO_FP(SDNode *N); +    SDValue visitVECREDUCE(SDNode *N); + +    SDValue visitFADDForFMACombine(SDNode *N); +    SDValue visitFSUBForFMACombine(SDNode *N); +    SDValue visitFMULForFMADistributiveCombine(SDNode *N); + +    SDValue XformToShuffleWithZero(SDNode *N); +    bool reassociationCanBreakAddressingModePattern(unsigned Opc, +                                                    const SDLoc &DL, SDValue N0, +                                                    SDValue N1); +    SDValue reassociateOpsCommutative(unsigned Opc, const SDLoc &DL, SDValue N0, +                                      SDValue N1); +    SDValue reassociateOps(unsigned Opc, const SDLoc &DL, SDValue N0, +                           SDValue N1, SDNodeFlags Flags); + +    SDValue visitShiftByConstant(SDNode *N); + +    SDValue foldSelectOfConstants(SDNode *N); +    SDValue foldVSelectOfConstants(SDNode *N); +    SDValue foldBinOpIntoSelect(SDNode *BO); +    bool SimplifySelectOps(SDNode *SELECT, SDValue LHS, SDValue RHS); +    SDValue hoistLogicOpWithSameOpcodeHands(SDNode *N); +    SDValue SimplifySelect(const SDLoc &DL, SDValue N0, SDValue N1, SDValue N2); +    SDValue SimplifySelectCC(const SDLoc &DL, SDValue N0, SDValue N1, +                             SDValue N2, SDValue N3, ISD::CondCode CC, +                             bool NotExtCompare = false); +    SDValue convertSelectOfFPConstantsToLoadOffset( +        const SDLoc &DL, SDValue N0, SDValue N1, SDValue N2, SDValue N3, +        ISD::CondCode CC); +    SDValue foldSelectCCToShiftAnd(const SDLoc &DL, SDValue N0, SDValue N1, +                                   SDValue N2, SDValue N3, ISD::CondCode CC); +    SDValue foldLogicOfSetCCs(bool IsAnd, SDValue N0, SDValue N1, +                              const SDLoc &DL); +    SDValue unfoldMaskedMerge(SDNode *N); +    SDValue unfoldExtremeBitClearingToShifts(SDNode *N); +    SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond, +                          const SDLoc &DL, bool foldBooleans); +    SDValue rebuildSetCC(SDValue N); + +    bool isSetCCEquivalent(SDValue N, SDValue &LHS, SDValue &RHS, +                           SDValue &CC) const; +    bool isOneUseSetCC(SDValue N) const; +    bool isCheaperToUseNegatedFPOps(SDValue X, SDValue Y); + +    SDValue SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp, +                                         unsigned HiOp); +    SDValue CombineConsecutiveLoads(SDNode *N, EVT VT); +    SDValue CombineExtLoad(SDNode *N); +    SDValue CombineZExtLogicopShiftLoad(SDNode *N); +    SDValue combineRepeatedFPDivisors(SDNode *N); +    SDValue combineInsertEltToShuffle(SDNode *N, unsigned InsIndex); +    SDValue ConstantFoldBITCASTofBUILD_VECTOR(SDNode *, EVT); +    SDValue BuildSDIV(SDNode *N); +    SDValue BuildSDIVPow2(SDNode *N); +    SDValue BuildUDIV(SDNode *N); +    SDValue BuildLogBase2(SDValue V, const SDLoc &DL); +    SDValue BuildDivEstimate(SDValue N, SDValue Op, SDNodeFlags Flags); +    SDValue buildRsqrtEstimate(SDValue Op, SDNodeFlags Flags); +    SDValue buildSqrtEstimate(SDValue Op, SDNodeFlags Flags); +    SDValue buildSqrtEstimateImpl(SDValue Op, SDNodeFlags Flags, bool Recip); +    SDValue buildSqrtNROneConst(SDValue Arg, SDValue Est, unsigned Iterations, +                                SDNodeFlags Flags, bool Reciprocal); +    SDValue buildSqrtNRTwoConst(SDValue Arg, SDValue Est, unsigned Iterations, +                                SDNodeFlags Flags, bool Reciprocal); +    SDValue MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1, +                               bool DemandHighBits = true); +    SDValue MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1); +    SDValue MatchRotatePosNeg(SDValue Shifted, SDValue Pos, SDValue Neg, +                              SDValue InnerPos, SDValue InnerNeg, +                              unsigned PosOpcode, unsigned NegOpcode, +                              const SDLoc &DL); +    SDValue MatchRotate(SDValue LHS, SDValue RHS, const SDLoc &DL); +    SDValue MatchLoadCombine(SDNode *N); +    SDValue MatchStoreCombine(StoreSDNode *N); +    SDValue ReduceLoadWidth(SDNode *N); +    SDValue ReduceLoadOpStoreWidth(SDNode *N); +    SDValue splitMergedValStore(StoreSDNode *ST); +    SDValue TransformFPLoadStorePair(SDNode *N); +    SDValue convertBuildVecZextToZext(SDNode *N); +    SDValue reduceBuildVecExtToExtBuildVec(SDNode *N); +    SDValue reduceBuildVecToShuffle(SDNode *N); +    SDValue createBuildVecShuffle(const SDLoc &DL, SDNode *N, +                                  ArrayRef<int> VectorMask, SDValue VecIn1, +                                  SDValue VecIn2, unsigned LeftIdx, +                                  bool DidSplitVec); +    SDValue matchVSelectOpSizesWithSetCC(SDNode *Cast); + +    /// Walk up chain skipping non-aliasing memory nodes, +    /// looking for aliasing nodes and adding them to the Aliases vector. +    void GatherAllAliases(SDNode *N, SDValue OriginalChain, +                          SmallVectorImpl<SDValue> &Aliases); + +    /// Return true if there is any possibility that the two addresses overlap. +    bool isAlias(SDNode *Op0, SDNode *Op1) const; + +    /// Walk up chain skipping non-aliasing memory nodes, looking for a better +    /// chain (aliasing node.) +    SDValue FindBetterChain(SDNode *N, SDValue Chain); + +    /// Try to replace a store and any possibly adjacent stores on +    /// consecutive chains with better chains. Return true only if St is +    /// replaced. +    /// +    /// Notice that other chains may still be replaced even if the function +    /// returns false. +    bool findBetterNeighborChains(StoreSDNode *St); + +    // Helper for findBetterNeighborChains. Walk up store chain add additional +    // chained stores that do not overlap and can be parallelized. +    bool parallelizeChainedStores(StoreSDNode *St); + +    /// Holds a pointer to an LSBaseSDNode as well as information on where it +    /// is located in a sequence of memory operations connected by a chain. +    struct MemOpLink { +      // Ptr to the mem node. +      LSBaseSDNode *MemNode; + +      // Offset from the base ptr. +      int64_t OffsetFromBase; + +      MemOpLink(LSBaseSDNode *N, int64_t Offset) +          : MemNode(N), OffsetFromBase(Offset) {} +    }; + +    /// This is a helper function for visitMUL to check the profitability +    /// of folding (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2). +    /// MulNode is the original multiply, AddNode is (add x, c1), +    /// and ConstNode is c2. +    bool isMulAddWithConstProfitable(SDNode *MulNode, +                                     SDValue &AddNode, +                                     SDValue &ConstNode); + +    /// This is a helper function for visitAND and visitZERO_EXTEND.  Returns +    /// true if the (and (load x) c) pattern matches an extload.  ExtVT returns +    /// the type of the loaded value to be extended. +    bool isAndLoadExtLoad(ConstantSDNode *AndC, LoadSDNode *LoadN, +                          EVT LoadResultTy, EVT &ExtVT); + +    /// Helper function to calculate whether the given Load/Store can have its +    /// width reduced to ExtVT. +    bool isLegalNarrowLdSt(LSBaseSDNode *LDSTN, ISD::LoadExtType ExtType, +                           EVT &MemVT, unsigned ShAmt = 0); + +    /// Used by BackwardsPropagateMask to find suitable loads. +    bool SearchForAndLoads(SDNode *N, SmallVectorImpl<LoadSDNode*> &Loads, +                           SmallPtrSetImpl<SDNode*> &NodesWithConsts, +                           ConstantSDNode *Mask, SDNode *&NodeToMask); +    /// Attempt to propagate a given AND node back to load leaves so that they +    /// can be combined into narrow loads. +    bool BackwardsPropagateMask(SDNode *N, SelectionDAG &DAG); + +    /// Helper function for MergeConsecutiveStores which merges the +    /// component store chains. +    SDValue getMergeStoreChains(SmallVectorImpl<MemOpLink> &StoreNodes, +                                unsigned NumStores); + +    /// This is a helper function for MergeConsecutiveStores. When the +    /// source elements of the consecutive stores are all constants or +    /// all extracted vector elements, try to merge them into one +    /// larger store introducing bitcasts if necessary.  \return True +    /// if a merged store was created. +    bool MergeStoresOfConstantsOrVecElts(SmallVectorImpl<MemOpLink> &StoreNodes, +                                         EVT MemVT, unsigned NumStores, +                                         bool IsConstantSrc, bool UseVector, +                                         bool UseTrunc); + +    /// This is a helper function for MergeConsecutiveStores. Stores +    /// that potentially may be merged with St are placed in +    /// StoreNodes. RootNode is a chain predecessor to all store +    /// candidates. +    void getStoreMergeCandidates(StoreSDNode *St, +                                 SmallVectorImpl<MemOpLink> &StoreNodes, +                                 SDNode *&Root); + +    /// Helper function for MergeConsecutiveStores. Checks if +    /// candidate stores have indirect dependency through their +    /// operands. RootNode is the predecessor to all stores calculated +    /// by getStoreMergeCandidates and is used to prune the dependency check. +    /// \return True if safe to merge. +    bool checkMergeStoreCandidatesForDependencies( +        SmallVectorImpl<MemOpLink> &StoreNodes, unsigned NumStores, +        SDNode *RootNode); + +    /// Merge consecutive store operations into a wide store. +    /// This optimization uses wide integers or vectors when possible. +    /// \return number of stores that were merged into a merged store (the +    /// affected nodes are stored as a prefix in \p StoreNodes). +    bool MergeConsecutiveStores(StoreSDNode *St); + +    /// Try to transform a truncation where C is a constant: +    ///     (trunc (and X, C)) -> (and (trunc X), (trunc C)) +    /// +    /// \p N needs to be a truncation and its first operand an AND. Other +    /// requirements are checked by the function (e.g. that trunc is +    /// single-use) and if missed an empty SDValue is returned. +    SDValue distributeTruncateThroughAnd(SDNode *N); + +    /// Helper function to determine whether the target supports operation +    /// given by \p Opcode for type \p VT, that is, whether the operation +    /// is legal or custom before legalizing operations, and whether is +    /// legal (but not custom) after legalization. +    bool hasOperation(unsigned Opcode, EVT VT) { +      if (LegalOperations) +        return TLI.isOperationLegal(Opcode, VT); +      return TLI.isOperationLegalOrCustom(Opcode, VT); +    } + +  public: +    /// Runs the dag combiner on all nodes in the work list +    void Run(CombineLevel AtLevel); + +    SelectionDAG &getDAG() const { return DAG; } + +    /// Returns a type large enough to hold any valid shift amount - before type +    /// legalization these can be huge. +    EVT getShiftAmountTy(EVT LHSTy) { +      assert(LHSTy.isInteger() && "Shift amount is not an integer type!"); +      return TLI.getShiftAmountTy(LHSTy, DAG.getDataLayout(), LegalTypes); +    } + +    /// This method returns true if we are running before type legalization or +    /// if the specified VT is legal. +    bool isTypeLegal(const EVT &VT) { +      if (!LegalTypes) return true; +      return TLI.isTypeLegal(VT); +    } + +    /// Convenience wrapper around TargetLowering::getSetCCResultType +    EVT getSetCCResultType(EVT VT) const { +      return TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); +    } + +    void ExtendSetCCUses(const SmallVectorImpl<SDNode *> &SetCCs, +                         SDValue OrigLoad, SDValue ExtLoad, +                         ISD::NodeType ExtType); +  }; + +/// This class is a DAGUpdateListener that removes any deleted +/// nodes from the worklist. +class WorklistRemover : public SelectionDAG::DAGUpdateListener { +  DAGCombiner &DC; + +public: +  explicit WorklistRemover(DAGCombiner &dc) +    : SelectionDAG::DAGUpdateListener(dc.getDAG()), DC(dc) {} + +  void NodeDeleted(SDNode *N, SDNode *E) override { +    DC.removeFromWorklist(N); +  } +}; + +class WorklistInserter : public SelectionDAG::DAGUpdateListener { +  DAGCombiner &DC; + +public: +  explicit WorklistInserter(DAGCombiner &dc) +      : SelectionDAG::DAGUpdateListener(dc.getDAG()), DC(dc) {} + +  // FIXME: Ideally we could add N to the worklist, but this causes exponential +  //        compile time costs in large DAGs, e.g. Halide. +  void NodeInserted(SDNode *N) override { DC.ConsiderForPruning(N); } +}; + +} // end anonymous namespace + +//===----------------------------------------------------------------------===// +//  TargetLowering::DAGCombinerInfo implementation +//===----------------------------------------------------------------------===// + +void TargetLowering::DAGCombinerInfo::AddToWorklist(SDNode *N) { +  ((DAGCombiner*)DC)->AddToWorklist(N); +} + +SDValue TargetLowering::DAGCombinerInfo:: +CombineTo(SDNode *N, ArrayRef<SDValue> To, bool AddTo) { +  return ((DAGCombiner*)DC)->CombineTo(N, &To[0], To.size(), AddTo); +} + +SDValue TargetLowering::DAGCombinerInfo:: +CombineTo(SDNode *N, SDValue Res, bool AddTo) { +  return ((DAGCombiner*)DC)->CombineTo(N, Res, AddTo); +} + +SDValue TargetLowering::DAGCombinerInfo:: +CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo) { +  return ((DAGCombiner*)DC)->CombineTo(N, Res0, Res1, AddTo); +} + +bool TargetLowering::DAGCombinerInfo:: +recursivelyDeleteUnusedNodes(SDNode *N) { +  return ((DAGCombiner*)DC)->recursivelyDeleteUnusedNodes(N); +} + +void TargetLowering::DAGCombinerInfo:: +CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) { +  return ((DAGCombiner*)DC)->CommitTargetLoweringOpt(TLO); +} + +//===----------------------------------------------------------------------===// +// Helper Functions +//===----------------------------------------------------------------------===// + +void DAGCombiner::deleteAndRecombine(SDNode *N) { +  removeFromWorklist(N); + +  // If the operands of this node are only used by the node, they will now be +  // dead. Make sure to re-visit them and recursively delete dead nodes. +  for (const SDValue &Op : N->ops()) +    // For an operand generating multiple values, one of the values may +    // become dead allowing further simplification (e.g. split index +    // arithmetic from an indexed load). +    if (Op->hasOneUse() || Op->getNumValues() > 1) +      AddToWorklist(Op.getNode()); + +  DAG.DeleteNode(N); +} + +// APInts must be the same size for most operations, this helper +// function zero extends the shorter of the pair so that they match. +// We provide an Offset so that we can create bitwidths that won't overflow. +static void zeroExtendToMatch(APInt &LHS, APInt &RHS, unsigned Offset = 0) { +  unsigned Bits = Offset + std::max(LHS.getBitWidth(), RHS.getBitWidth()); +  LHS = LHS.zextOrSelf(Bits); +  RHS = RHS.zextOrSelf(Bits); +} + +// Return true if this node is a setcc, or is a select_cc +// that selects between the target values used for true and false, making it +// equivalent to a setcc. Also, set the incoming LHS, RHS, and CC references to +// the appropriate nodes based on the type of node we are checking. This +// simplifies life a bit for the callers. +bool DAGCombiner::isSetCCEquivalent(SDValue N, SDValue &LHS, SDValue &RHS, +                                    SDValue &CC) const { +  if (N.getOpcode() == ISD::SETCC) { +    LHS = N.getOperand(0); +    RHS = N.getOperand(1); +    CC  = N.getOperand(2); +    return true; +  } + +  if (N.getOpcode() != ISD::SELECT_CC || +      !TLI.isConstTrueVal(N.getOperand(2).getNode()) || +      !TLI.isConstFalseVal(N.getOperand(3).getNode())) +    return false; + +  if (TLI.getBooleanContents(N.getValueType()) == +      TargetLowering::UndefinedBooleanContent) +    return false; + +  LHS = N.getOperand(0); +  RHS = N.getOperand(1); +  CC  = N.getOperand(4); +  return true; +} + +/// Return true if this is a SetCC-equivalent operation with only one use. +/// If this is true, it allows the users to invert the operation for free when +/// it is profitable to do so. +bool DAGCombiner::isOneUseSetCC(SDValue N) const { +  SDValue N0, N1, N2; +  if (isSetCCEquivalent(N, N0, N1, N2) && N.getNode()->hasOneUse()) +    return true; +  return false; +} + +// Returns the SDNode if it is a constant float BuildVector +// or constant float. +static SDNode *isConstantFPBuildVectorOrConstantFP(SDValue N) { +  if (isa<ConstantFPSDNode>(N)) +    return N.getNode(); +  if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode())) +    return N.getNode(); +  return nullptr; +} + +// Determines if it is a constant integer or a build vector of constant +// integers (and undefs). +// Do not permit build vector implicit truncation. +static bool isConstantOrConstantVector(SDValue N, bool NoOpaques = false) { +  if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N)) +    return !(Const->isOpaque() && NoOpaques); +  if (N.getOpcode() != ISD::BUILD_VECTOR) +    return false; +  unsigned BitWidth = N.getScalarValueSizeInBits(); +  for (const SDValue &Op : N->op_values()) { +    if (Op.isUndef()) +      continue; +    ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Op); +    if (!Const || Const->getAPIntValue().getBitWidth() != BitWidth || +        (Const->isOpaque() && NoOpaques)) +      return false; +  } +  return true; +} + +// Determines if a BUILD_VECTOR is composed of all-constants possibly mixed with +// undef's. +static bool isAnyConstantBuildVector(SDValue V, bool NoOpaques = false) { +  if (V.getOpcode() != ISD::BUILD_VECTOR) +    return false; +  return isConstantOrConstantVector(V, NoOpaques) || +         ISD::isBuildVectorOfConstantFPSDNodes(V.getNode()); +} + +bool DAGCombiner::reassociationCanBreakAddressingModePattern(unsigned Opc, +                                                             const SDLoc &DL, +                                                             SDValue N0, +                                                             SDValue N1) { +  // Currently this only tries to ensure we don't undo the GEP splits done by +  // CodeGenPrepare when shouldConsiderGEPOffsetSplit is true. To ensure this, +  // we check if the following transformation would be problematic: +  // (load/store (add, (add, x, offset1), offset2)) -> +  // (load/store (add, x, offset1+offset2)). + +  if (Opc != ISD::ADD || N0.getOpcode() != ISD::ADD) +    return false; + +  if (N0.hasOneUse()) +    return false; + +  auto *C1 = dyn_cast<ConstantSDNode>(N0.getOperand(1)); +  auto *C2 = dyn_cast<ConstantSDNode>(N1); +  if (!C1 || !C2) +    return false; + +  const APInt &C1APIntVal = C1->getAPIntValue(); +  const APInt &C2APIntVal = C2->getAPIntValue(); +  if (C1APIntVal.getBitWidth() > 64 || C2APIntVal.getBitWidth() > 64) +    return false; + +  const APInt CombinedValueIntVal = C1APIntVal + C2APIntVal; +  if (CombinedValueIntVal.getBitWidth() > 64) +    return false; +  const int64_t CombinedValue = CombinedValueIntVal.getSExtValue(); + +  for (SDNode *Node : N0->uses()) { +    auto LoadStore = dyn_cast<MemSDNode>(Node); +    if (LoadStore) { +      // Is x[offset2] already not a legal addressing mode? If so then +      // reassociating the constants breaks nothing (we test offset2 because +      // that's the one we hope to fold into the load or store). +      TargetLoweringBase::AddrMode AM; +      AM.HasBaseReg = true; +      AM.BaseOffs = C2APIntVal.getSExtValue(); +      EVT VT = LoadStore->getMemoryVT(); +      unsigned AS = LoadStore->getAddressSpace(); +      Type *AccessTy = VT.getTypeForEVT(*DAG.getContext()); +      if (!TLI.isLegalAddressingMode(DAG.getDataLayout(), AM, AccessTy, AS)) +        continue; + +      // Would x[offset1+offset2] still be a legal addressing mode? +      AM.BaseOffs = CombinedValue; +      if (!TLI.isLegalAddressingMode(DAG.getDataLayout(), AM, AccessTy, AS)) +        return true; +    } +  } + +  return false; +} + +// Helper for DAGCombiner::reassociateOps. Try to reassociate an expression +// such as (Opc N0, N1), if \p N0 is the same kind of operation as \p Opc. +SDValue DAGCombiner::reassociateOpsCommutative(unsigned Opc, const SDLoc &DL, +                                               SDValue N0, SDValue N1) { +  EVT VT = N0.getValueType(); + +  if (N0.getOpcode() != Opc) +    return SDValue(); + +  // Don't reassociate reductions. +  if (N0->getFlags().hasVectorReduction()) +    return SDValue(); + +  if (SDNode *C1 = DAG.isConstantIntBuildVectorOrConstantInt(N0.getOperand(1))) { +    if (SDNode *C2 = DAG.isConstantIntBuildVectorOrConstantInt(N1)) { +      // Reassociate: (op (op x, c1), c2) -> (op x, (op c1, c2)) +      if (SDValue OpNode = DAG.FoldConstantArithmetic(Opc, DL, VT, C1, C2)) +        return DAG.getNode(Opc, DL, VT, N0.getOperand(0), OpNode); +      return SDValue(); +    } +    if (N0.hasOneUse()) { +      // Reassociate: (op (op x, c1), y) -> (op (op x, y), c1) +      //              iff (op x, c1) has one use +      SDValue OpNode = DAG.getNode(Opc, SDLoc(N0), VT, N0.getOperand(0), N1); +      if (!OpNode.getNode()) +        return SDValue(); +      return DAG.getNode(Opc, DL, VT, OpNode, N0.getOperand(1)); +    } +  } +  return SDValue(); +} + +// Try to reassociate commutative binops. +SDValue DAGCombiner::reassociateOps(unsigned Opc, const SDLoc &DL, SDValue N0, +                                    SDValue N1, SDNodeFlags Flags) { +  assert(TLI.isCommutativeBinOp(Opc) && "Operation not commutative."); +  // Don't reassociate reductions. +  if (Flags.hasVectorReduction()) +    return SDValue(); + +  // Floating-point reassociation is not allowed without loose FP math. +  if (N0.getValueType().isFloatingPoint() || +      N1.getValueType().isFloatingPoint()) +    if (!Flags.hasAllowReassociation() || !Flags.hasNoSignedZeros()) +      return SDValue(); + +  if (SDValue Combined = reassociateOpsCommutative(Opc, DL, N0, N1)) +    return Combined; +  if (SDValue Combined = reassociateOpsCommutative(Opc, DL, N1, N0)) +    return Combined; +  return SDValue(); +} + +SDValue DAGCombiner::CombineTo(SDNode *N, const SDValue *To, unsigned NumTo, +                               bool AddTo) { +  assert(N->getNumValues() == NumTo && "Broken CombineTo call!"); +  ++NodesCombined; +  LLVM_DEBUG(dbgs() << "\nReplacing.1 "; N->dump(&DAG); dbgs() << "\nWith: "; +             To[0].getNode()->dump(&DAG); +             dbgs() << " and " << NumTo - 1 << " other values\n"); +  for (unsigned i = 0, e = NumTo; i != e; ++i) +    assert((!To[i].getNode() || +            N->getValueType(i) == To[i].getValueType()) && +           "Cannot combine value to value of different type!"); + +  WorklistRemover DeadNodes(*this); +  DAG.ReplaceAllUsesWith(N, To); +  if (AddTo) { +    // Push the new nodes and any users onto the worklist +    for (unsigned i = 0, e = NumTo; i != e; ++i) { +      if (To[i].getNode()) { +        AddToWorklist(To[i].getNode()); +        AddUsersToWorklist(To[i].getNode()); +      } +    } +  } + +  // Finally, if the node is now dead, remove it from the graph.  The node +  // may not be dead if the replacement process recursively simplified to +  // something else needing this node. +  if (N->use_empty()) +    deleteAndRecombine(N); +  return SDValue(N, 0); +} + +void DAGCombiner:: +CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) { +  // Replace all uses.  If any nodes become isomorphic to other nodes and +  // are deleted, make sure to remove them from our worklist. +  WorklistRemover DeadNodes(*this); +  DAG.ReplaceAllUsesOfValueWith(TLO.Old, TLO.New); + +  // Push the new node and any (possibly new) users onto the worklist. +  AddToWorklist(TLO.New.getNode()); +  AddUsersToWorklist(TLO.New.getNode()); + +  // Finally, if the node is now dead, remove it from the graph.  The node +  // may not be dead if the replacement process recursively simplified to +  // something else needing this node. +  if (TLO.Old.getNode()->use_empty()) +    deleteAndRecombine(TLO.Old.getNode()); +} + +/// Check the specified integer node value to see if it can be simplified or if +/// things it uses can be simplified by bit propagation. If so, return true. +bool DAGCombiner::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, +                                       const APInt &DemandedElts) { +  TargetLowering::TargetLoweringOpt TLO(DAG, LegalTypes, LegalOperations); +  KnownBits Known; +  if (!TLI.SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO)) +    return false; + +  // Revisit the node. +  AddToWorklist(Op.getNode()); + +  // Replace the old value with the new one. +  ++NodesCombined; +  LLVM_DEBUG(dbgs() << "\nReplacing.2 "; TLO.Old.getNode()->dump(&DAG); +             dbgs() << "\nWith: "; TLO.New.getNode()->dump(&DAG); +             dbgs() << '\n'); + +  CommitTargetLoweringOpt(TLO); +  return true; +} + +/// Check the specified vector node value to see if it can be simplified or +/// if things it uses can be simplified as it only uses some of the elements. +/// If so, return true. +bool DAGCombiner::SimplifyDemandedVectorElts(SDValue Op, +                                             const APInt &DemandedElts, +                                             bool AssumeSingleUse) { +  TargetLowering::TargetLoweringOpt TLO(DAG, LegalTypes, LegalOperations); +  APInt KnownUndef, KnownZero; +  if (!TLI.SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, +                                      TLO, 0, AssumeSingleUse)) +    return false; + +  // Revisit the node. +  AddToWorklist(Op.getNode()); + +  // Replace the old value with the new one. +  ++NodesCombined; +  LLVM_DEBUG(dbgs() << "\nReplacing.2 "; TLO.Old.getNode()->dump(&DAG); +             dbgs() << "\nWith: "; TLO.New.getNode()->dump(&DAG); +             dbgs() << '\n'); + +  CommitTargetLoweringOpt(TLO); +  return true; +} + +void DAGCombiner::ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad) { +  SDLoc DL(Load); +  EVT VT = Load->getValueType(0); +  SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, VT, SDValue(ExtLoad, 0)); + +  LLVM_DEBUG(dbgs() << "\nReplacing.9 "; Load->dump(&DAG); dbgs() << "\nWith: "; +             Trunc.getNode()->dump(&DAG); dbgs() << '\n'); +  WorklistRemover DeadNodes(*this); +  DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 0), Trunc); +  DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), SDValue(ExtLoad, 1)); +  deleteAndRecombine(Load); +  AddToWorklist(Trunc.getNode()); +} + +SDValue DAGCombiner::PromoteOperand(SDValue Op, EVT PVT, bool &Replace) { +  Replace = false; +  SDLoc DL(Op); +  if (ISD::isUNINDEXEDLoad(Op.getNode())) { +    LoadSDNode *LD = cast<LoadSDNode>(Op); +    EVT MemVT = LD->getMemoryVT(); +    ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD) ? ISD::EXTLOAD +                                                      : LD->getExtensionType(); +    Replace = true; +    return DAG.getExtLoad(ExtType, DL, PVT, +                          LD->getChain(), LD->getBasePtr(), +                          MemVT, LD->getMemOperand()); +  } + +  unsigned Opc = Op.getOpcode(); +  switch (Opc) { +  default: break; +  case ISD::AssertSext: +    if (SDValue Op0 = SExtPromoteOperand(Op.getOperand(0), PVT)) +      return DAG.getNode(ISD::AssertSext, DL, PVT, Op0, Op.getOperand(1)); +    break; +  case ISD::AssertZext: +    if (SDValue Op0 = ZExtPromoteOperand(Op.getOperand(0), PVT)) +      return DAG.getNode(ISD::AssertZext, DL, PVT, Op0, Op.getOperand(1)); +    break; +  case ISD::Constant: { +    unsigned ExtOpc = +      Op.getValueType().isByteSized() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; +    return DAG.getNode(ExtOpc, DL, PVT, Op); +  } +  } + +  if (!TLI.isOperationLegal(ISD::ANY_EXTEND, PVT)) +    return SDValue(); +  return DAG.getNode(ISD::ANY_EXTEND, DL, PVT, Op); +} + +SDValue DAGCombiner::SExtPromoteOperand(SDValue Op, EVT PVT) { +  if (!TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, PVT)) +    return SDValue(); +  EVT OldVT = Op.getValueType(); +  SDLoc DL(Op); +  bool Replace = false; +  SDValue NewOp = PromoteOperand(Op, PVT, Replace); +  if (!NewOp.getNode()) +    return SDValue(); +  AddToWorklist(NewOp.getNode()); + +  if (Replace) +    ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode()); +  return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, NewOp.getValueType(), NewOp, +                     DAG.getValueType(OldVT)); +} + +SDValue DAGCombiner::ZExtPromoteOperand(SDValue Op, EVT PVT) { +  EVT OldVT = Op.getValueType(); +  SDLoc DL(Op); +  bool Replace = false; +  SDValue NewOp = PromoteOperand(Op, PVT, Replace); +  if (!NewOp.getNode()) +    return SDValue(); +  AddToWorklist(NewOp.getNode()); + +  if (Replace) +    ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode()); +  return DAG.getZeroExtendInReg(NewOp, DL, OldVT); +} + +/// Promote the specified integer binary operation if the target indicates it is +/// beneficial. e.g. On x86, it's usually better to promote i16 operations to +/// i32 since i16 instructions are longer. +SDValue DAGCombiner::PromoteIntBinOp(SDValue Op) { +  if (!LegalOperations) +    return SDValue(); + +  EVT VT = Op.getValueType(); +  if (VT.isVector() || !VT.isInteger()) +    return SDValue(); + +  // If operation type is 'undesirable', e.g. i16 on x86, consider +  // promoting it. +  unsigned Opc = Op.getOpcode(); +  if (TLI.isTypeDesirableForOp(Opc, VT)) +    return SDValue(); + +  EVT PVT = VT; +  // Consult target whether it is a good idea to promote this operation and +  // what's the right type to promote it to. +  if (TLI.IsDesirableToPromoteOp(Op, PVT)) { +    assert(PVT != VT && "Don't know what type to promote to!"); + +    LLVM_DEBUG(dbgs() << "\nPromoting "; Op.getNode()->dump(&DAG)); + +    bool Replace0 = false; +    SDValue N0 = Op.getOperand(0); +    SDValue NN0 = PromoteOperand(N0, PVT, Replace0); + +    bool Replace1 = false; +    SDValue N1 = Op.getOperand(1); +    SDValue NN1 = PromoteOperand(N1, PVT, Replace1); +    SDLoc DL(Op); + +    SDValue RV = +        DAG.getNode(ISD::TRUNCATE, DL, VT, DAG.getNode(Opc, DL, PVT, NN0, NN1)); + +    // We are always replacing N0/N1's use in N and only need +    // additional replacements if there are additional uses. +    Replace0 &= !N0->hasOneUse(); +    Replace1 &= (N0 != N1) && !N1->hasOneUse(); + +    // Combine Op here so it is preserved past replacements. +    CombineTo(Op.getNode(), RV); + +    // If operands have a use ordering, make sure we deal with +    // predecessor first. +    if (Replace0 && Replace1 && N0.getNode()->isPredecessorOf(N1.getNode())) { +      std::swap(N0, N1); +      std::swap(NN0, NN1); +    } + +    if (Replace0) { +      AddToWorklist(NN0.getNode()); +      ReplaceLoadWithPromotedLoad(N0.getNode(), NN0.getNode()); +    } +    if (Replace1) { +      AddToWorklist(NN1.getNode()); +      ReplaceLoadWithPromotedLoad(N1.getNode(), NN1.getNode()); +    } +    return Op; +  } +  return SDValue(); +} + +/// Promote the specified integer shift operation if the target indicates it is +/// beneficial. e.g. On x86, it's usually better to promote i16 operations to +/// i32 since i16 instructions are longer. +SDValue DAGCombiner::PromoteIntShiftOp(SDValue Op) { +  if (!LegalOperations) +    return SDValue(); + +  EVT VT = Op.getValueType(); +  if (VT.isVector() || !VT.isInteger()) +    return SDValue(); + +  // If operation type is 'undesirable', e.g. i16 on x86, consider +  // promoting it. +  unsigned Opc = Op.getOpcode(); +  if (TLI.isTypeDesirableForOp(Opc, VT)) +    return SDValue(); + +  EVT PVT = VT; +  // Consult target whether it is a good idea to promote this operation and +  // what's the right type to promote it to. +  if (TLI.IsDesirableToPromoteOp(Op, PVT)) { +    assert(PVT != VT && "Don't know what type to promote to!"); + +    LLVM_DEBUG(dbgs() << "\nPromoting "; Op.getNode()->dump(&DAG)); + +    bool Replace = false; +    SDValue N0 = Op.getOperand(0); +    SDValue N1 = Op.getOperand(1); +    if (Opc == ISD::SRA) +      N0 = SExtPromoteOperand(N0, PVT); +    else if (Opc == ISD::SRL) +      N0 = ZExtPromoteOperand(N0, PVT); +    else +      N0 = PromoteOperand(N0, PVT, Replace); + +    if (!N0.getNode()) +      return SDValue(); + +    SDLoc DL(Op); +    SDValue RV = +        DAG.getNode(ISD::TRUNCATE, DL, VT, DAG.getNode(Opc, DL, PVT, N0, N1)); + +    if (Replace) +      ReplaceLoadWithPromotedLoad(Op.getOperand(0).getNode(), N0.getNode()); + +    // Deal with Op being deleted. +    if (Op && Op.getOpcode() != ISD::DELETED_NODE) +      return RV; +  } +  return SDValue(); +} + +SDValue DAGCombiner::PromoteExtend(SDValue Op) { +  if (!LegalOperations) +    return SDValue(); + +  EVT VT = Op.getValueType(); +  if (VT.isVector() || !VT.isInteger()) +    return SDValue(); + +  // If operation type is 'undesirable', e.g. i16 on x86, consider +  // promoting it. +  unsigned Opc = Op.getOpcode(); +  if (TLI.isTypeDesirableForOp(Opc, VT)) +    return SDValue(); + +  EVT PVT = VT; +  // Consult target whether it is a good idea to promote this operation and +  // what's the right type to promote it to. +  if (TLI.IsDesirableToPromoteOp(Op, PVT)) { +    assert(PVT != VT && "Don't know what type to promote to!"); +    // fold (aext (aext x)) -> (aext x) +    // fold (aext (zext x)) -> (zext x) +    // fold (aext (sext x)) -> (sext x) +    LLVM_DEBUG(dbgs() << "\nPromoting "; Op.getNode()->dump(&DAG)); +    return DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, Op.getOperand(0)); +  } +  return SDValue(); +} + +bool DAGCombiner::PromoteLoad(SDValue Op) { +  if (!LegalOperations) +    return false; + +  if (!ISD::isUNINDEXEDLoad(Op.getNode())) +    return false; + +  EVT VT = Op.getValueType(); +  if (VT.isVector() || !VT.isInteger()) +    return false; + +  // If operation type is 'undesirable', e.g. i16 on x86, consider +  // promoting it. +  unsigned Opc = Op.getOpcode(); +  if (TLI.isTypeDesirableForOp(Opc, VT)) +    return false; + +  EVT PVT = VT; +  // Consult target whether it is a good idea to promote this operation and +  // what's the right type to promote it to. +  if (TLI.IsDesirableToPromoteOp(Op, PVT)) { +    assert(PVT != VT && "Don't know what type to promote to!"); + +    SDLoc DL(Op); +    SDNode *N = Op.getNode(); +    LoadSDNode *LD = cast<LoadSDNode>(N); +    EVT MemVT = LD->getMemoryVT(); +    ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD) ? ISD::EXTLOAD +                                                      : LD->getExtensionType(); +    SDValue NewLD = DAG.getExtLoad(ExtType, DL, PVT, +                                   LD->getChain(), LD->getBasePtr(), +                                   MemVT, LD->getMemOperand()); +    SDValue Result = DAG.getNode(ISD::TRUNCATE, DL, VT, NewLD); + +    LLVM_DEBUG(dbgs() << "\nPromoting "; N->dump(&DAG); dbgs() << "\nTo: "; +               Result.getNode()->dump(&DAG); dbgs() << '\n'); +    WorklistRemover DeadNodes(*this); +    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result); +    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), NewLD.getValue(1)); +    deleteAndRecombine(N); +    AddToWorklist(Result.getNode()); +    return true; +  } +  return false; +} + +/// Recursively delete a node which has no uses and any operands for +/// which it is the only use. +/// +/// Note that this both deletes the nodes and removes them from the worklist. +/// It also adds any nodes who have had a user deleted to the worklist as they +/// may now have only one use and subject to other combines. +bool DAGCombiner::recursivelyDeleteUnusedNodes(SDNode *N) { +  if (!N->use_empty()) +    return false; + +  SmallSetVector<SDNode *, 16> Nodes; +  Nodes.insert(N); +  do { +    N = Nodes.pop_back_val(); +    if (!N) +      continue; + +    if (N->use_empty()) { +      for (const SDValue &ChildN : N->op_values()) +        Nodes.insert(ChildN.getNode()); + +      removeFromWorklist(N); +      DAG.DeleteNode(N); +    } else { +      AddToWorklist(N); +    } +  } while (!Nodes.empty()); +  return true; +} + +//===----------------------------------------------------------------------===// +//  Main DAG Combiner implementation +//===----------------------------------------------------------------------===// + +void DAGCombiner::Run(CombineLevel AtLevel) { +  // set the instance variables, so that the various visit routines may use it. +  Level = AtLevel; +  LegalOperations = Level >= AfterLegalizeVectorOps; +  LegalTypes = Level >= AfterLegalizeTypes; + +  WorklistInserter AddNodes(*this); + +  // Add all the dag nodes to the worklist. +  for (SDNode &Node : DAG.allnodes()) +    AddToWorklist(&Node); + +  // Create a dummy node (which is not added to allnodes), that adds a reference +  // to the root node, preventing it from being deleted, and tracking any +  // changes of the root. +  HandleSDNode Dummy(DAG.getRoot()); + +  // While we have a valid worklist entry node, try to combine it. +  while (SDNode *N = getNextWorklistEntry()) { +    // If N has no uses, it is dead.  Make sure to revisit all N's operands once +    // N is deleted from the DAG, since they too may now be dead or may have a +    // reduced number of uses, allowing other xforms. +    if (recursivelyDeleteUnusedNodes(N)) +      continue; + +    WorklistRemover DeadNodes(*this); + +    // If this combine is running after legalizing the DAG, re-legalize any +    // nodes pulled off the worklist. +    if (Level == AfterLegalizeDAG) { +      SmallSetVector<SDNode *, 16> UpdatedNodes; +      bool NIsValid = DAG.LegalizeOp(N, UpdatedNodes); + +      for (SDNode *LN : UpdatedNodes) { +        AddUsersToWorklist(LN); +        AddToWorklist(LN); +      } +      if (!NIsValid) +        continue; +    } + +    LLVM_DEBUG(dbgs() << "\nCombining: "; N->dump(&DAG)); + +    // Add any operands of the new node which have not yet been combined to the +    // worklist as well. Because the worklist uniques things already, this +    // won't repeatedly process the same operand. +    CombinedNodes.insert(N); +    for (const SDValue &ChildN : N->op_values()) +      if (!CombinedNodes.count(ChildN.getNode())) +        AddToWorklist(ChildN.getNode()); + +    SDValue RV = combine(N); + +    if (!RV.getNode()) +      continue; + +    ++NodesCombined; + +    // If we get back the same node we passed in, rather than a new node or +    // zero, we know that the node must have defined multiple values and +    // CombineTo was used.  Since CombineTo takes care of the worklist +    // mechanics for us, we have no work to do in this case. +    if (RV.getNode() == N) +      continue; + +    assert(N->getOpcode() != ISD::DELETED_NODE && +           RV.getOpcode() != ISD::DELETED_NODE && +           "Node was deleted but visit returned new node!"); + +    LLVM_DEBUG(dbgs() << " ... into: "; RV.getNode()->dump(&DAG)); + +    if (N->getNumValues() == RV.getNode()->getNumValues()) +      DAG.ReplaceAllUsesWith(N, RV.getNode()); +    else { +      assert(N->getValueType(0) == RV.getValueType() && +             N->getNumValues() == 1 && "Type mismatch"); +      DAG.ReplaceAllUsesWith(N, &RV); +    } + +    // Push the new node and any users onto the worklist +    AddToWorklist(RV.getNode()); +    AddUsersToWorklist(RV.getNode()); + +    // Finally, if the node is now dead, remove it from the graph.  The node +    // may not be dead if the replacement process recursively simplified to +    // something else needing this node. This will also take care of adding any +    // operands which have lost a user to the worklist. +    recursivelyDeleteUnusedNodes(N); +  } + +  // If the root changed (e.g. it was a dead load, update the root). +  DAG.setRoot(Dummy.getValue()); +  DAG.RemoveDeadNodes(); +} + +SDValue DAGCombiner::visit(SDNode *N) { +  switch (N->getOpcode()) { +  default: break; +  case ISD::TokenFactor:        return visitTokenFactor(N); +  case ISD::MERGE_VALUES:       return visitMERGE_VALUES(N); +  case ISD::ADD:                return visitADD(N); +  case ISD::SUB:                return visitSUB(N); +  case ISD::SADDSAT: +  case ISD::UADDSAT:            return visitADDSAT(N); +  case ISD::SSUBSAT: +  case ISD::USUBSAT:            return visitSUBSAT(N); +  case ISD::ADDC:               return visitADDC(N); +  case ISD::SADDO: +  case ISD::UADDO:              return visitADDO(N); +  case ISD::SUBC:               return visitSUBC(N); +  case ISD::SSUBO: +  case ISD::USUBO:              return visitSUBO(N); +  case ISD::ADDE:               return visitADDE(N); +  case ISD::ADDCARRY:           return visitADDCARRY(N); +  case ISD::SUBE:               return visitSUBE(N); +  case ISD::SUBCARRY:           return visitSUBCARRY(N); +  case ISD::SMULFIX: +  case ISD::SMULFIXSAT: +  case ISD::UMULFIX: +  case ISD::UMULFIXSAT:         return visitMULFIX(N); +  case ISD::MUL:                return visitMUL(N); +  case ISD::SDIV:               return visitSDIV(N); +  case ISD::UDIV:               return visitUDIV(N); +  case ISD::SREM: +  case ISD::UREM:               return visitREM(N); +  case ISD::MULHU:              return visitMULHU(N); +  case ISD::MULHS:              return visitMULHS(N); +  case ISD::SMUL_LOHI:          return visitSMUL_LOHI(N); +  case ISD::UMUL_LOHI:          return visitUMUL_LOHI(N); +  case ISD::SMULO: +  case ISD::UMULO:              return visitMULO(N); +  case ISD::SMIN: +  case ISD::SMAX: +  case ISD::UMIN: +  case ISD::UMAX:               return visitIMINMAX(N); +  case ISD::AND:                return visitAND(N); +  case ISD::OR:                 return visitOR(N); +  case ISD::XOR:                return visitXOR(N); +  case ISD::SHL:                return visitSHL(N); +  case ISD::SRA:                return visitSRA(N); +  case ISD::SRL:                return visitSRL(N); +  case ISD::ROTR: +  case ISD::ROTL:               return visitRotate(N); +  case ISD::FSHL: +  case ISD::FSHR:               return visitFunnelShift(N); +  case ISD::ABS:                return visitABS(N); +  case ISD::BSWAP:              return visitBSWAP(N); +  case ISD::BITREVERSE:         return visitBITREVERSE(N); +  case ISD::CTLZ:               return visitCTLZ(N); +  case ISD::CTLZ_ZERO_UNDEF:    return visitCTLZ_ZERO_UNDEF(N); +  case ISD::CTTZ:               return visitCTTZ(N); +  case ISD::CTTZ_ZERO_UNDEF:    return visitCTTZ_ZERO_UNDEF(N); +  case ISD::CTPOP:              return visitCTPOP(N); +  case ISD::SELECT:             return visitSELECT(N); +  case ISD::VSELECT:            return visitVSELECT(N); +  case ISD::SELECT_CC:          return visitSELECT_CC(N); +  case ISD::SETCC:              return visitSETCC(N); +  case ISD::SETCCCARRY:         return visitSETCCCARRY(N); +  case ISD::SIGN_EXTEND:        return visitSIGN_EXTEND(N); +  case ISD::ZERO_EXTEND:        return visitZERO_EXTEND(N); +  case ISD::ANY_EXTEND:         return visitANY_EXTEND(N); +  case ISD::AssertSext: +  case ISD::AssertZext:         return visitAssertExt(N); +  case ISD::SIGN_EXTEND_INREG:  return visitSIGN_EXTEND_INREG(N); +  case ISD::SIGN_EXTEND_VECTOR_INREG: return visitSIGN_EXTEND_VECTOR_INREG(N); +  case ISD::ZERO_EXTEND_VECTOR_INREG: return visitZERO_EXTEND_VECTOR_INREG(N); +  case ISD::TRUNCATE:           return visitTRUNCATE(N); +  case ISD::BITCAST:            return visitBITCAST(N); +  case ISD::BUILD_PAIR:         return visitBUILD_PAIR(N); +  case ISD::FADD:               return visitFADD(N); +  case ISD::FSUB:               return visitFSUB(N); +  case ISD::FMUL:               return visitFMUL(N); +  case ISD::FMA:                return visitFMA(N); +  case ISD::FDIV:               return visitFDIV(N); +  case ISD::FREM:               return visitFREM(N); +  case ISD::FSQRT:              return visitFSQRT(N); +  case ISD::FCOPYSIGN:          return visitFCOPYSIGN(N); +  case ISD::FPOW:               return visitFPOW(N); +  case ISD::SINT_TO_FP:         return visitSINT_TO_FP(N); +  case ISD::UINT_TO_FP:         return visitUINT_TO_FP(N); +  case ISD::FP_TO_SINT:         return visitFP_TO_SINT(N); +  case ISD::FP_TO_UINT:         return visitFP_TO_UINT(N); +  case ISD::FP_ROUND:           return visitFP_ROUND(N); +  case ISD::FP_EXTEND:          return visitFP_EXTEND(N); +  case ISD::FNEG:               return visitFNEG(N); +  case ISD::FABS:               return visitFABS(N); +  case ISD::FFLOOR:             return visitFFLOOR(N); +  case ISD::FMINNUM:            return visitFMINNUM(N); +  case ISD::FMAXNUM:            return visitFMAXNUM(N); +  case ISD::FMINIMUM:           return visitFMINIMUM(N); +  case ISD::FMAXIMUM:           return visitFMAXIMUM(N); +  case ISD::FCEIL:              return visitFCEIL(N); +  case ISD::FTRUNC:             return visitFTRUNC(N); +  case ISD::BRCOND:             return visitBRCOND(N); +  case ISD::BR_CC:              return visitBR_CC(N); +  case ISD::LOAD:               return visitLOAD(N); +  case ISD::STORE:              return visitSTORE(N); +  case ISD::INSERT_VECTOR_ELT:  return visitINSERT_VECTOR_ELT(N); +  case ISD::EXTRACT_VECTOR_ELT: return visitEXTRACT_VECTOR_ELT(N); +  case ISD::BUILD_VECTOR:       return visitBUILD_VECTOR(N); +  case ISD::CONCAT_VECTORS:     return visitCONCAT_VECTORS(N); +  case ISD::EXTRACT_SUBVECTOR:  return visitEXTRACT_SUBVECTOR(N); +  case ISD::VECTOR_SHUFFLE:     return visitVECTOR_SHUFFLE(N); +  case ISD::SCALAR_TO_VECTOR:   return visitSCALAR_TO_VECTOR(N); +  case ISD::INSERT_SUBVECTOR:   return visitINSERT_SUBVECTOR(N); +  case ISD::MGATHER:            return visitMGATHER(N); +  case ISD::MLOAD:              return visitMLOAD(N); +  case ISD::MSCATTER:           return visitMSCATTER(N); +  case ISD::MSTORE:             return visitMSTORE(N); +  case ISD::LIFETIME_END:       return visitLIFETIME_END(N); +  case ISD::FP_TO_FP16:         return visitFP_TO_FP16(N); +  case ISD::FP16_TO_FP:         return visitFP16_TO_FP(N); +  case ISD::VECREDUCE_FADD: +  case ISD::VECREDUCE_FMUL: +  case ISD::VECREDUCE_ADD: +  case ISD::VECREDUCE_MUL: +  case ISD::VECREDUCE_AND: +  case ISD::VECREDUCE_OR: +  case ISD::VECREDUCE_XOR: +  case ISD::VECREDUCE_SMAX: +  case ISD::VECREDUCE_SMIN: +  case ISD::VECREDUCE_UMAX: +  case ISD::VECREDUCE_UMIN: +  case ISD::VECREDUCE_FMAX: +  case ISD::VECREDUCE_FMIN:     return visitVECREDUCE(N); +  } +  return SDValue(); +} + +SDValue DAGCombiner::combine(SDNode *N) { +  SDValue RV = visit(N); + +  // If nothing happened, try a target-specific DAG combine. +  if (!RV.getNode()) { +    assert(N->getOpcode() != ISD::DELETED_NODE && +           "Node was deleted but visit returned NULL!"); + +    if (N->getOpcode() >= ISD::BUILTIN_OP_END || +        TLI.hasTargetDAGCombine((ISD::NodeType)N->getOpcode())) { + +      // Expose the DAG combiner to the target combiner impls. +      TargetLowering::DAGCombinerInfo +        DagCombineInfo(DAG, Level, false, this); + +      RV = TLI.PerformDAGCombine(N, DagCombineInfo); +    } +  } + +  // If nothing happened still, try promoting the operation. +  if (!RV.getNode()) { +    switch (N->getOpcode()) { +    default: break; +    case ISD::ADD: +    case ISD::SUB: +    case ISD::MUL: +    case ISD::AND: +    case ISD::OR: +    case ISD::XOR: +      RV = PromoteIntBinOp(SDValue(N, 0)); +      break; +    case ISD::SHL: +    case ISD::SRA: +    case ISD::SRL: +      RV = PromoteIntShiftOp(SDValue(N, 0)); +      break; +    case ISD::SIGN_EXTEND: +    case ISD::ZERO_EXTEND: +    case ISD::ANY_EXTEND: +      RV = PromoteExtend(SDValue(N, 0)); +      break; +    case ISD::LOAD: +      if (PromoteLoad(SDValue(N, 0))) +        RV = SDValue(N, 0); +      break; +    } +  } + +  // If N is a commutative binary node, try to eliminate it if the commuted +  // version is already present in the DAG. +  if (!RV.getNode() && TLI.isCommutativeBinOp(N->getOpcode()) && +      N->getNumValues() == 1) { +    SDValue N0 = N->getOperand(0); +    SDValue N1 = N->getOperand(1); + +    // Constant operands are canonicalized to RHS. +    if (N0 != N1 && (isa<ConstantSDNode>(N0) || !isa<ConstantSDNode>(N1))) { +      SDValue Ops[] = {N1, N0}; +      SDNode *CSENode = DAG.getNodeIfExists(N->getOpcode(), N->getVTList(), Ops, +                                            N->getFlags()); +      if (CSENode) +        return SDValue(CSENode, 0); +    } +  } + +  return RV; +} + +/// Given a node, return its input chain if it has one, otherwise return a null +/// sd operand. +static SDValue getInputChainForNode(SDNode *N) { +  if (unsigned NumOps = N->getNumOperands()) { +    if (N->getOperand(0).getValueType() == MVT::Other) +      return N->getOperand(0); +    if (N->getOperand(NumOps-1).getValueType() == MVT::Other) +      return N->getOperand(NumOps-1); +    for (unsigned i = 1; i < NumOps-1; ++i) +      if (N->getOperand(i).getValueType() == MVT::Other) +        return N->getOperand(i); +  } +  return SDValue(); +} + +SDValue DAGCombiner::visitTokenFactor(SDNode *N) { +  // If N has two operands, where one has an input chain equal to the other, +  // the 'other' chain is redundant. +  if (N->getNumOperands() == 2) { +    if (getInputChainForNode(N->getOperand(0).getNode()) == N->getOperand(1)) +      return N->getOperand(0); +    if (getInputChainForNode(N->getOperand(1).getNode()) == N->getOperand(0)) +      return N->getOperand(1); +  } + +  // Don't simplify token factors if optnone. +  if (OptLevel == CodeGenOpt::None) +    return SDValue(); + +  // If the sole user is a token factor, we should make sure we have a +  // chance to merge them together. This prevents TF chains from inhibiting +  // optimizations. +  if (N->hasOneUse() && N->use_begin()->getOpcode() == ISD::TokenFactor) +    AddToWorklist(*(N->use_begin())); + +  SmallVector<SDNode *, 8> TFs;     // List of token factors to visit. +  SmallVector<SDValue, 8> Ops;      // Ops for replacing token factor. +  SmallPtrSet<SDNode*, 16> SeenOps; +  bool Changed = false;             // If we should replace this token factor. + +  // Start out with this token factor. +  TFs.push_back(N); + +  // Iterate through token factors.  The TFs grows when new token factors are +  // encountered. +  for (unsigned i = 0; i < TFs.size(); ++i) { +    // Limit number of nodes to inline, to avoid quadratic compile times. +    // We have to add the outstanding Token Factors to Ops, otherwise we might +    // drop Ops from the resulting Token Factors. +    if (Ops.size() > TokenFactorInlineLimit) { +      for (unsigned j = i; j < TFs.size(); j++) +        Ops.emplace_back(TFs[j], 0); +      // Drop unprocessed Token Factors from TFs, so we do not add them to the +      // combiner worklist later. +      TFs.resize(i); +      break; +    } + +    SDNode *TF = TFs[i]; +    // Check each of the operands. +    for (const SDValue &Op : TF->op_values()) { +      switch (Op.getOpcode()) { +      case ISD::EntryToken: +        // Entry tokens don't need to be added to the list. They are +        // redundant. +        Changed = true; +        break; + +      case ISD::TokenFactor: +        if (Op.hasOneUse() && !is_contained(TFs, Op.getNode())) { +          // Queue up for processing. +          TFs.push_back(Op.getNode()); +          Changed = true; +          break; +        } +        LLVM_FALLTHROUGH; + +      default: +        // Only add if it isn't already in the list. +        if (SeenOps.insert(Op.getNode()).second) +          Ops.push_back(Op); +        else +          Changed = true; +        break; +      } +    } +  } + +  // Re-visit inlined Token Factors, to clean them up in case they have been +  // removed. Skip the first Token Factor, as this is the current node. +  for (unsigned i = 1, e = TFs.size(); i < e; i++) +    AddToWorklist(TFs[i]); + +  // Remove Nodes that are chained to another node in the list. Do so +  // by walking up chains breath-first stopping when we've seen +  // another operand. In general we must climb to the EntryNode, but we can exit +  // early if we find all remaining work is associated with just one operand as +  // no further pruning is possible. + +  // List of nodes to search through and original Ops from which they originate. +  SmallVector<std::pair<SDNode *, unsigned>, 8> Worklist; +  SmallVector<unsigned, 8> OpWorkCount; // Count of work for each Op. +  SmallPtrSet<SDNode *, 16> SeenChains; +  bool DidPruneOps = false; + +  unsigned NumLeftToConsider = 0; +  for (const SDValue &Op : Ops) { +    Worklist.push_back(std::make_pair(Op.getNode(), NumLeftToConsider++)); +    OpWorkCount.push_back(1); +  } + +  auto AddToWorklist = [&](unsigned CurIdx, SDNode *Op, unsigned OpNumber) { +    // If this is an Op, we can remove the op from the list. Remark any +    // search associated with it as from the current OpNumber. +    if (SeenOps.count(Op) != 0) { +      Changed = true; +      DidPruneOps = true; +      unsigned OrigOpNumber = 0; +      while (OrigOpNumber < Ops.size() && Ops[OrigOpNumber].getNode() != Op) +        OrigOpNumber++; +      assert((OrigOpNumber != Ops.size()) && +             "expected to find TokenFactor Operand"); +      // Re-mark worklist from OrigOpNumber to OpNumber +      for (unsigned i = CurIdx + 1; i < Worklist.size(); ++i) { +        if (Worklist[i].second == OrigOpNumber) { +          Worklist[i].second = OpNumber; +        } +      } +      OpWorkCount[OpNumber] += OpWorkCount[OrigOpNumber]; +      OpWorkCount[OrigOpNumber] = 0; +      NumLeftToConsider--; +    } +    // Add if it's a new chain +    if (SeenChains.insert(Op).second) { +      OpWorkCount[OpNumber]++; +      Worklist.push_back(std::make_pair(Op, OpNumber)); +    } +  }; + +  for (unsigned i = 0; i < Worklist.size() && i < 1024; ++i) { +    // We need at least be consider at least 2 Ops to prune. +    if (NumLeftToConsider <= 1) +      break; +    auto CurNode = Worklist[i].first; +    auto CurOpNumber = Worklist[i].second; +    assert((OpWorkCount[CurOpNumber] > 0) && +           "Node should not appear in worklist"); +    switch (CurNode->getOpcode()) { +    case ISD::EntryToken: +      // Hitting EntryToken is the only way for the search to terminate without +      // hitting +      // another operand's search. Prevent us from marking this operand +      // considered. +      NumLeftToConsider++; +      break; +    case ISD::TokenFactor: +      for (const SDValue &Op : CurNode->op_values()) +        AddToWorklist(i, Op.getNode(), CurOpNumber); +      break; +    case ISD::LIFETIME_START: +    case ISD::LIFETIME_END: +    case ISD::CopyFromReg: +    case ISD::CopyToReg: +      AddToWorklist(i, CurNode->getOperand(0).getNode(), CurOpNumber); +      break; +    default: +      if (auto *MemNode = dyn_cast<MemSDNode>(CurNode)) +        AddToWorklist(i, MemNode->getChain().getNode(), CurOpNumber); +      break; +    } +    OpWorkCount[CurOpNumber]--; +    if (OpWorkCount[CurOpNumber] == 0) +      NumLeftToConsider--; +  } + +  // If we've changed things around then replace token factor. +  if (Changed) { +    SDValue Result; +    if (Ops.empty()) { +      // The entry token is the only possible outcome. +      Result = DAG.getEntryNode(); +    } else { +      if (DidPruneOps) { +        SmallVector<SDValue, 8> PrunedOps; +        // +        for (const SDValue &Op : Ops) { +          if (SeenChains.count(Op.getNode()) == 0) +            PrunedOps.push_back(Op); +        } +        Result = DAG.getTokenFactor(SDLoc(N), PrunedOps); +      } else { +        Result = DAG.getTokenFactor(SDLoc(N), Ops); +      } +    } +    return Result; +  } +  return SDValue(); +} + +/// MERGE_VALUES can always be eliminated. +SDValue DAGCombiner::visitMERGE_VALUES(SDNode *N) { +  WorklistRemover DeadNodes(*this); +  // Replacing results may cause a different MERGE_VALUES to suddenly +  // be CSE'd with N, and carry its uses with it. Iterate until no +  // uses remain, to ensure that the node can be safely deleted. +  // First add the users of this node to the work list so that they +  // can be tried again once they have new operands. +  AddUsersToWorklist(N); +  do { +    // Do as a single replacement to avoid rewalking use lists. +    SmallVector<SDValue, 8> Ops; +    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) +      Ops.push_back(N->getOperand(i)); +    DAG.ReplaceAllUsesWith(N, Ops.data()); +  } while (!N->use_empty()); +  deleteAndRecombine(N); +  return SDValue(N, 0);   // Return N so it doesn't get rechecked! +} + +/// If \p N is a ConstantSDNode with isOpaque() == false return it casted to a +/// ConstantSDNode pointer else nullptr. +static ConstantSDNode *getAsNonOpaqueConstant(SDValue N) { +  ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N); +  return Const != nullptr && !Const->isOpaque() ? Const : nullptr; +} + +SDValue DAGCombiner::foldBinOpIntoSelect(SDNode *BO) { +  assert(TLI.isBinOp(BO->getOpcode()) && BO->getNumValues() == 1 && +         "Unexpected binary operator"); + +  // Don't do this unless the old select is going away. We want to eliminate the +  // binary operator, not replace a binop with a select. +  // TODO: Handle ISD::SELECT_CC. +  unsigned SelOpNo = 0; +  SDValue Sel = BO->getOperand(0); +  if (Sel.getOpcode() != ISD::SELECT || !Sel.hasOneUse()) { +    SelOpNo = 1; +    Sel = BO->getOperand(1); +  } + +  if (Sel.getOpcode() != ISD::SELECT || !Sel.hasOneUse()) +    return SDValue(); + +  SDValue CT = Sel.getOperand(1); +  if (!isConstantOrConstantVector(CT, true) && +      !isConstantFPBuildVectorOrConstantFP(CT)) +    return SDValue(); + +  SDValue CF = Sel.getOperand(2); +  if (!isConstantOrConstantVector(CF, true) && +      !isConstantFPBuildVectorOrConstantFP(CF)) +    return SDValue(); + +  // Bail out if any constants are opaque because we can't constant fold those. +  // The exception is "and" and "or" with either 0 or -1 in which case we can +  // propagate non constant operands into select. I.e.: +  // and (select Cond, 0, -1), X --> select Cond, 0, X +  // or X, (select Cond, -1, 0) --> select Cond, -1, X +  auto BinOpcode = BO->getOpcode(); +  bool CanFoldNonConst = +      (BinOpcode == ISD::AND || BinOpcode == ISD::OR) && +      (isNullOrNullSplat(CT) || isAllOnesOrAllOnesSplat(CT)) && +      (isNullOrNullSplat(CF) || isAllOnesOrAllOnesSplat(CF)); + +  SDValue CBO = BO->getOperand(SelOpNo ^ 1); +  if (!CanFoldNonConst && +      !isConstantOrConstantVector(CBO, true) && +      !isConstantFPBuildVectorOrConstantFP(CBO)) +    return SDValue(); + +  EVT VT = Sel.getValueType(); + +  // In case of shift value and shift amount may have different VT. For instance +  // on x86 shift amount is i8 regardles of LHS type. Bail out if we have +  // swapped operands and value types do not match. NB: x86 is fine if operands +  // are not swapped with shift amount VT being not bigger than shifted value. +  // TODO: that is possible to check for a shift operation, correct VTs and +  // still perform optimization on x86 if needed. +  if (SelOpNo && VT != CBO.getValueType()) +    return SDValue(); + +  // We have a select-of-constants followed by a binary operator with a +  // constant. Eliminate the binop by pulling the constant math into the select. +  // Example: add (select Cond, CT, CF), CBO --> select Cond, CT + CBO, CF + CBO +  SDLoc DL(Sel); +  SDValue NewCT = SelOpNo ? DAG.getNode(BinOpcode, DL, VT, CBO, CT) +                          : DAG.getNode(BinOpcode, DL, VT, CT, CBO); +  if (!CanFoldNonConst && !NewCT.isUndef() && +      !isConstantOrConstantVector(NewCT, true) && +      !isConstantFPBuildVectorOrConstantFP(NewCT)) +    return SDValue(); + +  SDValue NewCF = SelOpNo ? DAG.getNode(BinOpcode, DL, VT, CBO, CF) +                          : DAG.getNode(BinOpcode, DL, VT, CF, CBO); +  if (!CanFoldNonConst && !NewCF.isUndef() && +      !isConstantOrConstantVector(NewCF, true) && +      !isConstantFPBuildVectorOrConstantFP(NewCF)) +    return SDValue(); + +  SDValue SelectOp = DAG.getSelect(DL, VT, Sel.getOperand(0), NewCT, NewCF); +  SelectOp->setFlags(BO->getFlags()); +  return SelectOp; +} + +static SDValue foldAddSubBoolOfMaskedVal(SDNode *N, SelectionDAG &DAG) { +  assert((N->getOpcode() == ISD::ADD || N->getOpcode() == ISD::SUB) && +         "Expecting add or sub"); + +  // Match a constant operand and a zext operand for the math instruction: +  // add Z, C +  // sub C, Z +  bool IsAdd = N->getOpcode() == ISD::ADD; +  SDValue C = IsAdd ? N->getOperand(1) : N->getOperand(0); +  SDValue Z = IsAdd ? N->getOperand(0) : N->getOperand(1); +  auto *CN = dyn_cast<ConstantSDNode>(C); +  if (!CN || Z.getOpcode() != ISD::ZERO_EXTEND) +    return SDValue(); + +  // Match the zext operand as a setcc of a boolean. +  if (Z.getOperand(0).getOpcode() != ISD::SETCC || +      Z.getOperand(0).getValueType() != MVT::i1) +    return SDValue(); + +  // Match the compare as: setcc (X & 1), 0, eq. +  SDValue SetCC = Z.getOperand(0); +  ISD::CondCode CC = cast<CondCodeSDNode>(SetCC->getOperand(2))->get(); +  if (CC != ISD::SETEQ || !isNullConstant(SetCC.getOperand(1)) || +      SetCC.getOperand(0).getOpcode() != ISD::AND || +      !isOneConstant(SetCC.getOperand(0).getOperand(1))) +    return SDValue(); + +  // We are adding/subtracting a constant and an inverted low bit. Turn that +  // into a subtract/add of the low bit with incremented/decremented constant: +  // add (zext i1 (seteq (X & 1), 0)), C --> sub C+1, (zext (X & 1)) +  // sub C, (zext i1 (seteq (X & 1), 0)) --> add C-1, (zext (X & 1)) +  EVT VT = C.getValueType(); +  SDLoc DL(N); +  SDValue LowBit = DAG.getZExtOrTrunc(SetCC.getOperand(0), DL, VT); +  SDValue C1 = IsAdd ? DAG.getConstant(CN->getAPIntValue() + 1, DL, VT) : +                       DAG.getConstant(CN->getAPIntValue() - 1, DL, VT); +  return DAG.getNode(IsAdd ? ISD::SUB : ISD::ADD, DL, VT, C1, LowBit); +} + +/// Try to fold a 'not' shifted sign-bit with add/sub with constant operand into +/// a shift and add with a different constant. +static SDValue foldAddSubOfSignBit(SDNode *N, SelectionDAG &DAG) { +  assert((N->getOpcode() == ISD::ADD || N->getOpcode() == ISD::SUB) && +         "Expecting add or sub"); + +  // We need a constant operand for the add/sub, and the other operand is a +  // logical shift right: add (srl), C or sub C, (srl). +  // TODO - support non-uniform vector amounts. +  bool IsAdd = N->getOpcode() == ISD::ADD; +  SDValue ConstantOp = IsAdd ? N->getOperand(1) : N->getOperand(0); +  SDValue ShiftOp = IsAdd ? N->getOperand(0) : N->getOperand(1); +  ConstantSDNode *C = isConstOrConstSplat(ConstantOp); +  if (!C || ShiftOp.getOpcode() != ISD::SRL) +    return SDValue(); + +  // The shift must be of a 'not' value. +  SDValue Not = ShiftOp.getOperand(0); +  if (!Not.hasOneUse() || !isBitwiseNot(Not)) +    return SDValue(); + +  // The shift must be moving the sign bit to the least-significant-bit. +  EVT VT = ShiftOp.getValueType(); +  SDValue ShAmt = ShiftOp.getOperand(1); +  ConstantSDNode *ShAmtC = isConstOrConstSplat(ShAmt); +  if (!ShAmtC || ShAmtC->getAPIntValue() != (VT.getScalarSizeInBits() - 1)) +    return SDValue(); + +  // Eliminate the 'not' by adjusting the shift and add/sub constant: +  // add (srl (not X), 31), C --> add (sra X, 31), (C + 1) +  // sub C, (srl (not X), 31) --> add (srl X, 31), (C - 1) +  SDLoc DL(N); +  auto ShOpcode = IsAdd ? ISD::SRA : ISD::SRL; +  SDValue NewShift = DAG.getNode(ShOpcode, DL, VT, Not.getOperand(0), ShAmt); +  APInt NewC = IsAdd ? C->getAPIntValue() + 1 : C->getAPIntValue() - 1; +  return DAG.getNode(ISD::ADD, DL, VT, NewShift, DAG.getConstant(NewC, DL, VT)); +} + +/// Try to fold a node that behaves like an ADD (note that N isn't necessarily +/// an ISD::ADD here, it could for example be an ISD::OR if we know that there +/// are no common bits set in the operands). +SDValue DAGCombiner::visitADDLike(SDNode *N) { +  SDValue N0 = N->getOperand(0); +  SDValue N1 = N->getOperand(1); +  EVT VT = N0.getValueType(); +  SDLoc DL(N); + +  // fold vector ops +  if (VT.isVector()) { +    if (SDValue FoldedVOp = SimplifyVBinOp(N)) +      return FoldedVOp; + +    // fold (add x, 0) -> x, vector edition +    if (ISD::isBuildVectorAllZeros(N1.getNode())) +      return N0; +    if (ISD::isBuildVectorAllZeros(N0.getNode())) +      return N1; +  } + +  // fold (add x, undef) -> undef +  if (N0.isUndef()) +    return N0; + +  if (N1.isUndef()) +    return N1; + +  if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) { +    // canonicalize constant to RHS +    if (!DAG.isConstantIntBuildVectorOrConstantInt(N1)) +      return DAG.getNode(ISD::ADD, DL, VT, N1, N0); +    // fold (add c1, c2) -> c1+c2 +    return DAG.FoldConstantArithmetic(ISD::ADD, DL, VT, N0.getNode(), +                                      N1.getNode()); +  } + +  // fold (add x, 0) -> x +  if (isNullConstant(N1)) +    return N0; + +  if (isConstantOrConstantVector(N1, /* NoOpaque */ true)) { +    // fold ((A-c1)+c2) -> (A+(c2-c1)) +    if (N0.getOpcode() == ISD::SUB && +        isConstantOrConstantVector(N0.getOperand(1), /* NoOpaque */ true)) { +      SDValue Sub = DAG.FoldConstantArithmetic(ISD::SUB, DL, VT, N1.getNode(), +                                               N0.getOperand(1).getNode()); +      assert(Sub && "Constant folding failed"); +      return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), Sub); +    } + +    // fold ((c1-A)+c2) -> (c1+c2)-A +    if (N0.getOpcode() == ISD::SUB && +        isConstantOrConstantVector(N0.getOperand(0), /* NoOpaque */ true)) { +      SDValue Add = DAG.FoldConstantArithmetic(ISD::ADD, DL, VT, N1.getNode(), +                                               N0.getOperand(0).getNode()); +      assert(Add && "Constant folding failed"); +      return DAG.getNode(ISD::SUB, DL, VT, Add, N0.getOperand(1)); +    } + +    // add (sext i1 X), 1 -> zext (not i1 X) +    // We don't transform this pattern: +    //   add (zext i1 X), -1 -> sext (not i1 X) +    // because most (?) targets generate better code for the zext form. +    if (N0.getOpcode() == ISD::SIGN_EXTEND && N0.hasOneUse() && +        isOneOrOneSplat(N1)) { +      SDValue X = N0.getOperand(0); +      if ((!LegalOperations || +           (TLI.isOperationLegal(ISD::XOR, X.getValueType()) && +            TLI.isOperationLegal(ISD::ZERO_EXTEND, VT))) && +          X.getScalarValueSizeInBits() == 1) { +        SDValue Not = DAG.getNOT(DL, X, X.getValueType()); +        return DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Not); +      } +    } + +    // Undo the add -> or combine to merge constant offsets from a frame index. +    if (N0.getOpcode() == ISD::OR && +        isa<FrameIndexSDNode>(N0.getOperand(0)) && +        isa<ConstantSDNode>(N0.getOperand(1)) && +        DAG.haveNoCommonBitsSet(N0.getOperand(0), N0.getOperand(1))) { +      SDValue Add0 = DAG.getNode(ISD::ADD, DL, VT, N1, N0.getOperand(1)); +      return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), Add0); +    } +  } + +  if (SDValue NewSel = foldBinOpIntoSelect(N)) +    return NewSel; + +  // reassociate add +  if (!reassociationCanBreakAddressingModePattern(ISD::ADD, DL, N0, N1)) { +    if (SDValue RADD = reassociateOps(ISD::ADD, DL, N0, N1, N->getFlags())) +      return RADD; +  } +  // fold ((0-A) + B) -> B-A +  if (N0.getOpcode() == ISD::SUB && isNullOrNullSplat(N0.getOperand(0))) +    return DAG.getNode(ISD::SUB, DL, VT, N1, N0.getOperand(1)); + +  // fold (A + (0-B)) -> A-B +  if (N1.getOpcode() == ISD::SUB && isNullOrNullSplat(N1.getOperand(0))) +    return DAG.getNode(ISD::SUB, DL, VT, N0, N1.getOperand(1)); + +  // fold (A+(B-A)) -> B +  if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(1)) +    return N1.getOperand(0); + +  // fold ((B-A)+A) -> B +  if (N0.getOpcode() == ISD::SUB && N1 == N0.getOperand(1)) +    return N0.getOperand(0); + +  // fold ((A-B)+(C-A)) -> (C-B) +  if (N0.getOpcode() == ISD::SUB && N1.getOpcode() == ISD::SUB && +      N0.getOperand(0) == N1.getOperand(1)) +    return DAG.getNode(ISD::SUB, DL, VT, N1.getOperand(0), +                       N0.getOperand(1)); + +  // fold ((A-B)+(B-C)) -> (A-C) +  if (N0.getOpcode() == ISD::SUB && N1.getOpcode() == ISD::SUB && +      N0.getOperand(1) == N1.getOperand(0)) +    return DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), +                       N1.getOperand(1)); + +  // fold (A+(B-(A+C))) to (B-C) +  if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD && +      N0 == N1.getOperand(1).getOperand(0)) +    return DAG.getNode(ISD::SUB, DL, VT, N1.getOperand(0), +                       N1.getOperand(1).getOperand(1)); + +  // fold (A+(B-(C+A))) to (B-C) +  if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD && +      N0 == N1.getOperand(1).getOperand(1)) +    return DAG.getNode(ISD::SUB, DL, VT, N1.getOperand(0), +                       N1.getOperand(1).getOperand(0)); + +  // fold (A+((B-A)+or-C)) to (B+or-C) +  if ((N1.getOpcode() == ISD::SUB || N1.getOpcode() == ISD::ADD) && +      N1.getOperand(0).getOpcode() == ISD::SUB && +      N0 == N1.getOperand(0).getOperand(1)) +    return DAG.getNode(N1.getOpcode(), DL, VT, N1.getOperand(0).getOperand(0), +                       N1.getOperand(1)); + +  // fold (A-B)+(C-D) to (A+C)-(B+D) when A or C is constant +  if (N0.getOpcode() == ISD::SUB && N1.getOpcode() == ISD::SUB) { +    SDValue N00 = N0.getOperand(0); +    SDValue N01 = N0.getOperand(1); +    SDValue N10 = N1.getOperand(0); +    SDValue N11 = N1.getOperand(1); + +    if (isConstantOrConstantVector(N00) || isConstantOrConstantVector(N10)) +      return DAG.getNode(ISD::SUB, DL, VT, +                         DAG.getNode(ISD::ADD, SDLoc(N0), VT, N00, N10), +                         DAG.getNode(ISD::ADD, SDLoc(N1), VT, N01, N11)); +  } + +  // fold (add (umax X, C), -C) --> (usubsat X, C) +  if (N0.getOpcode() == ISD::UMAX && hasOperation(ISD::USUBSAT, VT)) { +    auto MatchUSUBSAT = [](ConstantSDNode *Max, ConstantSDNode *Op) { +      return (!Max && !Op) || +             (Max && Op && Max->getAPIntValue() == (-Op->getAPIntValue())); +    }; +    if (ISD::matchBinaryPredicate(N0.getOperand(1), N1, MatchUSUBSAT, +                                  /*AllowUndefs*/ true)) +      return DAG.getNode(ISD::USUBSAT, DL, VT, N0.getOperand(0), +                         N0.getOperand(1)); +  } + +  if (SimplifyDemandedBits(SDValue(N, 0))) +    return SDValue(N, 0); + +  if (isOneOrOneSplat(N1)) { +    // fold (add (xor a, -1), 1) -> (sub 0, a) +    if (isBitwiseNot(N0)) +      return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), +                         N0.getOperand(0)); + +    // fold (add (add (xor a, -1), b), 1) -> (sub b, a) +    if (N0.getOpcode() == ISD::ADD || +        N0.getOpcode() == ISD::UADDO || +        N0.getOpcode() == ISD::SADDO) { +      SDValue A, Xor; + +      if (isBitwiseNot(N0.getOperand(0))) { +        A = N0.getOperand(1); +        Xor = N0.getOperand(0); +      } else if (isBitwiseNot(N0.getOperand(1))) { +        A = N0.getOperand(0); +        Xor = N0.getOperand(1); +      } + +      if (Xor) +        return DAG.getNode(ISD::SUB, DL, VT, A, Xor.getOperand(0)); +    } + +    // Look for: +    //   add (add x, y), 1 +    // And if the target does not like this form then turn into: +    //   sub y, (xor x, -1) +    if (!TLI.preferIncOfAddToSubOfNot(VT) && N0.hasOneUse() && +        N0.getOpcode() == ISD::ADD) { +      SDValue Not = DAG.getNode(ISD::XOR, DL, VT, N0.getOperand(0), +                                DAG.getAllOnesConstant(DL, VT)); +      return DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(1), Not); +    } +  } + +  // (x - y) + -1  ->  add (xor y, -1), x +  if (N0.hasOneUse() && N0.getOpcode() == ISD::SUB && +      isAllOnesOrAllOnesSplat(N1)) { +    SDValue Xor = DAG.getNode(ISD::XOR, DL, VT, N0.getOperand(1), N1); +    return DAG.getNode(ISD::ADD, DL, VT, Xor, N0.getOperand(0)); +  } + +  if (SDValue Combined = visitADDLikeCommutative(N0, N1, N)) +    return Combined; + +  if (SDValue Combined = visitADDLikeCommutative(N1, N0, N)) +    return Combined; + +  return SDValue(); +} + +SDValue DAGCombiner::visitADD(SDNode *N) { +  SDValue N0 = N->getOperand(0); +  SDValue N1 = N->getOperand(1); +  EVT VT = N0.getValueType(); +  SDLoc DL(N); + +  if (SDValue Combined = visitADDLike(N)) +    return Combined; + +  if (SDValue V = foldAddSubBoolOfMaskedVal(N, DAG)) +    return V; + +  if (SDValue V = foldAddSubOfSignBit(N, DAG)) +    return V; + +  // fold (a+b) -> (a|b) iff a and b share no bits. +  if ((!LegalOperations || TLI.isOperationLegal(ISD::OR, VT)) && +      DAG.haveNoCommonBitsSet(N0, N1)) +    return DAG.getNode(ISD::OR, DL, VT, N0, N1); + +  return SDValue(); +} + +SDValue DAGCombiner::visitADDSAT(SDNode *N) { +  unsigned Opcode = N->getOpcode(); +  SDValue N0 = N->getOperand(0); +  SDValue N1 = N->getOperand(1); +  EVT VT = N0.getValueType(); +  SDLoc DL(N); + +  // fold vector ops +  if (VT.isVector()) { +    // TODO SimplifyVBinOp + +    // fold (add_sat x, 0) -> x, vector edition +    if (ISD::isBuildVectorAllZeros(N1.getNode())) +      return N0; +    if (ISD::isBuildVectorAllZeros(N0.getNode())) +      return N1; +  } + +  // fold (add_sat x, undef) -> -1 +  if (N0.isUndef() || N1.isUndef()) +    return DAG.getAllOnesConstant(DL, VT); + +  if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) { +    // canonicalize constant to RHS +    if (!DAG.isConstantIntBuildVectorOrConstantInt(N1)) +      return DAG.getNode(Opcode, DL, VT, N1, N0); +    // fold (add_sat c1, c2) -> c3 +    return DAG.FoldConstantArithmetic(Opcode, DL, VT, N0.getNode(), +                                      N1.getNode()); +  } + +  // fold (add_sat x, 0) -> x +  if (isNullConstant(N1)) +    return N0; + +  // If it cannot overflow, transform into an add. +  if (Opcode == ISD::UADDSAT) +    if (DAG.computeOverflowKind(N0, N1) == SelectionDAG::OFK_Never) +      return DAG.getNode(ISD::ADD, DL, VT, N0, N1); + +  return SDValue(); +} + +static SDValue getAsCarry(const TargetLowering &TLI, SDValue V) { +  bool Masked = false; + +  // First, peel away TRUNCATE/ZERO_EXTEND/AND nodes due to legalization. +  while (true) { +    if (V.getOpcode() == ISD::TRUNCATE || V.getOpcode() == ISD::ZERO_EXTEND) { +      V = V.getOperand(0); +      continue; +    } + +    if (V.getOpcode() == ISD::AND && isOneConstant(V.getOperand(1))) { +      Masked = true; +      V = V.getOperand(0); +      continue; +    } + +    break; +  } + +  // If this is not a carry, return. +  if (V.getResNo() != 1) +    return SDValue(); + +  if (V.getOpcode() != ISD::ADDCARRY && V.getOpcode() != ISD::SUBCARRY && +      V.getOpcode() != ISD::UADDO && V.getOpcode() != ISD::USUBO) +    return SDValue(); + +  EVT VT = V.getNode()->getValueType(0); +  if (!TLI.isOperationLegalOrCustom(V.getOpcode(), VT)) +    return SDValue(); + +  // If the result is masked, then no matter what kind of bool it is we can +  // return. If it isn't, then we need to make sure the bool type is either 0 or +  // 1 and not other values. +  if (Masked || +      TLI.getBooleanContents(V.getValueType()) == +          TargetLoweringBase::ZeroOrOneBooleanContent) +    return V; + +  return SDValue(); +} + +/// Given the operands of an add/sub operation, see if the 2nd operand is a +/// masked 0/1 whose source operand is actually known to be 0/-1. If so, invert +/// the opcode and bypass the mask operation. +static SDValue foldAddSubMasked1(bool IsAdd, SDValue N0, SDValue N1, +                                 SelectionDAG &DAG, const SDLoc &DL) { +  if (N1.getOpcode() != ISD::AND || !isOneOrOneSplat(N1->getOperand(1))) +    return SDValue(); + +  EVT VT = N0.getValueType(); +  if (DAG.ComputeNumSignBits(N1.getOperand(0)) != VT.getScalarSizeInBits()) +    return SDValue(); + +  // add N0, (and (AssertSext X, i1), 1) --> sub N0, X +  // sub N0, (and (AssertSext X, i1), 1) --> add N0, X +  return DAG.getNode(IsAdd ? ISD::SUB : ISD::ADD, DL, VT, N0, N1.getOperand(0)); +} + +/// Helper for doing combines based on N0 and N1 being added to each other. +SDValue DAGCombiner::visitADDLikeCommutative(SDValue N0, SDValue N1, +                                          SDNode *LocReference) { +  EVT VT = N0.getValueType(); +  SDLoc DL(LocReference); + +  // fold (add x, shl(0 - y, n)) -> sub(x, shl(y, n)) +  if (N1.getOpcode() == ISD::SHL && N1.getOperand(0).getOpcode() == ISD::SUB && +      isNullOrNullSplat(N1.getOperand(0).getOperand(0))) +    return DAG.getNode(ISD::SUB, DL, VT, N0, +                       DAG.getNode(ISD::SHL, DL, VT, +                                   N1.getOperand(0).getOperand(1), +                                   N1.getOperand(1))); + +  if (SDValue V = foldAddSubMasked1(true, N0, N1, DAG, DL)) +    return V; + +  // Look for: +  //   add (add x, 1), y +  // And if the target does not like this form then turn into: +  //   sub y, (xor x, -1) +  if (!TLI.preferIncOfAddToSubOfNot(VT) && N0.hasOneUse() && +      N0.getOpcode() == ISD::ADD && isOneOrOneSplat(N0.getOperand(1))) { +    SDValue Not = DAG.getNode(ISD::XOR, DL, VT, N0.getOperand(0), +                              DAG.getAllOnesConstant(DL, VT)); +    return DAG.getNode(ISD::SUB, DL, VT, N1, Not); +  } + +  // Hoist one-use subtraction by non-opaque constant: +  //   (x - C) + y  ->  (x + y) - C +  // This is necessary because SUB(X,C) -> ADD(X,-C) doesn't work for vectors. +  if (N0.hasOneUse() && N0.getOpcode() == ISD::SUB && +      isConstantOrConstantVector(N0.getOperand(1), /*NoOpaques=*/true)) { +    SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), N1); +    return DAG.getNode(ISD::SUB, DL, VT, Add, N0.getOperand(1)); +  } +  // Hoist one-use subtraction from non-opaque constant: +  //   (C - x) + y  ->  (y - x) + C +  if (N0.hasOneUse() && N0.getOpcode() == ISD::SUB && +      isConstantOrConstantVector(N0.getOperand(0), /*NoOpaques=*/true)) { +    SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N1, N0.getOperand(1)); +    return DAG.getNode(ISD::ADD, DL, VT, Sub, N0.getOperand(0)); +  } + +  // If the target's bool is represented as 0/1, prefer to make this 'sub 0/1' +  // rather than 'add 0/-1' (the zext should get folded). +  // add (sext i1 Y), X --> sub X, (zext i1 Y) +  if (N0.getOpcode() == ISD::SIGN_EXTEND && +      N0.getOperand(0).getScalarValueSizeInBits() == 1 && +      TLI.getBooleanContents(VT) == TargetLowering::ZeroOrOneBooleanContent) { +    SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0)); +    return DAG.getNode(ISD::SUB, DL, VT, N1, ZExt); +  } + +  // add X, (sextinreg Y i1) -> sub X, (and Y 1) +  if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG) { +    VTSDNode *TN = cast<VTSDNode>(N1.getOperand(1)); +    if (TN->getVT() == MVT::i1) { +      SDValue ZExt = DAG.getNode(ISD::AND, DL, VT, N1.getOperand(0), +                                 DAG.getConstant(1, DL, VT)); +      return DAG.getNode(ISD::SUB, DL, VT, N0, ZExt); +    } +  } + +  // (add X, (addcarry Y, 0, Carry)) -> (addcarry X, Y, Carry) +  if (N1.getOpcode() == ISD::ADDCARRY && isNullConstant(N1.getOperand(1)) && +      N1.getResNo() == 0) +    return DAG.getNode(ISD::ADDCARRY, DL, N1->getVTList(), +                       N0, N1.getOperand(0), N1.getOperand(2)); + +  // (add X, Carry) -> (addcarry X, 0, Carry) +  if (TLI.isOperationLegalOrCustom(ISD::ADDCARRY, VT)) +    if (SDValue Carry = getAsCarry(TLI, N1)) +      return DAG.getNode(ISD::ADDCARRY, DL, +                         DAG.getVTList(VT, Carry.getValueType()), N0, +                         DAG.getConstant(0, DL, VT), Carry); + +  return SDValue(); +} + +SDValue DAGCombiner::visitADDC(SDNode *N) { +  SDValue N0 = N->getOperand(0); +  SDValue N1 = N->getOperand(1); +  EVT VT = N0.getValueType(); +  SDLoc DL(N); + +  // If the flag result is dead, turn this into an ADD. +  if (!N->hasAnyUseOfValue(1)) +    return CombineTo(N, DAG.getNode(ISD::ADD, DL, VT, N0, N1), +                     DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); + +  // canonicalize constant to RHS. +  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); +  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); +  if (N0C && !N1C) +    return DAG.getNode(ISD::ADDC, DL, N->getVTList(), N1, N0); + +  // fold (addc x, 0) -> x + no carry out +  if (isNullConstant(N1)) +    return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE, +                                        DL, MVT::Glue)); + +  // If it cannot overflow, transform into an add. +  if (DAG.computeOverflowKind(N0, N1) == SelectionDAG::OFK_Never) +    return CombineTo(N, DAG.getNode(ISD::ADD, DL, VT, N0, N1), +                     DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); + +  return SDValue(); +} + +static SDValue flipBoolean(SDValue V, const SDLoc &DL, +                           SelectionDAG &DAG, const TargetLowering &TLI) { +  EVT VT = V.getValueType(); + +  SDValue Cst; +  switch (TLI.getBooleanContents(VT)) { +  case TargetLowering::ZeroOrOneBooleanContent: +  case TargetLowering::UndefinedBooleanContent: +    Cst = DAG.getConstant(1, DL, VT); +    break; +  case TargetLowering::ZeroOrNegativeOneBooleanContent: +    Cst = DAG.getAllOnesConstant(DL, VT); +    break; +  } + +  return DAG.getNode(ISD::XOR, DL, VT, V, Cst); +} + +/** + * Flips a boolean if it is cheaper to compute. If the Force parameters is set, + * then the flip also occurs if computing the inverse is the same cost. + * This function returns an empty SDValue in case it cannot flip the boolean + * without increasing the cost of the computation. If you want to flip a boolean + * no matter what, use flipBoolean. + */ +static SDValue extractBooleanFlip(SDValue V, SelectionDAG &DAG, +                                  const TargetLowering &TLI, +                                  bool Force) { +  if (Force && isa<ConstantSDNode>(V)) +    return flipBoolean(V, SDLoc(V), DAG, TLI); + +  if (V.getOpcode() != ISD::XOR) +    return SDValue(); + +  ConstantSDNode *Const = isConstOrConstSplat(V.getOperand(1), false); +  if (!Const) +    return SDValue(); + +  EVT VT = V.getValueType(); + +  bool IsFlip = false; +  switch(TLI.getBooleanContents(VT)) { +    case TargetLowering::ZeroOrOneBooleanContent: +      IsFlip = Const->isOne(); +      break; +    case TargetLowering::ZeroOrNegativeOneBooleanContent: +      IsFlip = Const->isAllOnesValue(); +      break; +    case TargetLowering::UndefinedBooleanContent: +      IsFlip = (Const->getAPIntValue() & 0x01) == 1; +      break; +  } + +  if (IsFlip) +    return V.getOperand(0); +  if (Force) +    return flipBoolean(V, SDLoc(V), DAG, TLI); +  return SDValue(); +} + +SDValue DAGCombiner::visitADDO(SDNode *N) { +  SDValue N0 = N->getOperand(0); +  SDValue N1 = N->getOperand(1); +  EVT VT = N0.getValueType(); +  bool IsSigned = (ISD::SADDO == N->getOpcode()); + +  EVT CarryVT = N->getValueType(1); +  SDLoc DL(N); + +  // If the flag result is dead, turn this into an ADD. +  if (!N->hasAnyUseOfValue(1)) +    return CombineTo(N, DAG.getNode(ISD::ADD, DL, VT, N0, N1), +                     DAG.getUNDEF(CarryVT)); + +  // canonicalize constant to RHS. +  if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && +      !DAG.isConstantIntBuildVectorOrConstantInt(N1)) +    return DAG.getNode(N->getOpcode(), DL, N->getVTList(), N1, N0); + +  // fold (addo x, 0) -> x + no carry out +  if (isNullOrNullSplat(N1)) +    return CombineTo(N, N0, DAG.getConstant(0, DL, CarryVT)); + +  if (!IsSigned) { +    // If it cannot overflow, transform into an add. +    if (DAG.computeOverflowKind(N0, N1) == SelectionDAG::OFK_Never) +      return CombineTo(N, DAG.getNode(ISD::ADD, DL, VT, N0, N1), +                       DAG.getConstant(0, DL, CarryVT)); + +    // fold (uaddo (xor a, -1), 1) -> (usub 0, a) and flip carry. +    if (isBitwiseNot(N0) && isOneOrOneSplat(N1)) { +      SDValue Sub = DAG.getNode(ISD::USUBO, DL, N->getVTList(), +                                DAG.getConstant(0, DL, VT), N0.getOperand(0)); +      return CombineTo(N, Sub, +                       flipBoolean(Sub.getValue(1), DL, DAG, TLI)); +    } + +    if (SDValue Combined = visitUADDOLike(N0, N1, N)) +      return Combined; + +    if (SDValue Combined = visitUADDOLike(N1, N0, N)) +      return Combined; +  } + +  return SDValue(); +} + +SDValue DAGCombiner::visitUADDOLike(SDValue N0, SDValue N1, SDNode *N) { +  EVT VT = N0.getValueType(); +  if (VT.isVector()) +    return SDValue(); + +  // (uaddo X, (addcarry Y, 0, Carry)) -> (addcarry X, Y, Carry) +  // If Y + 1 cannot overflow. +  if (N1.getOpcode() == ISD::ADDCARRY && isNullConstant(N1.getOperand(1))) { +    SDValue Y = N1.getOperand(0); +    SDValue One = DAG.getConstant(1, SDLoc(N), Y.getValueType()); +    if (DAG.computeOverflowKind(Y, One) == SelectionDAG::OFK_Never) +      return DAG.getNode(ISD::ADDCARRY, SDLoc(N), N->getVTList(), N0, Y, +                         N1.getOperand(2)); +  } + +  // (uaddo X, Carry) -> (addcarry X, 0, Carry) +  if (TLI.isOperationLegalOrCustom(ISD::ADDCARRY, VT)) +    if (SDValue Carry = getAsCarry(TLI, N1)) +      return DAG.getNode(ISD::ADDCARRY, SDLoc(N), N->getVTList(), N0, +                         DAG.getConstant(0, SDLoc(N), VT), Carry); + +  return SDValue(); +} + +SDValue DAGCombiner::visitADDE(SDNode *N) { +  SDValue N0 = N->getOperand(0); +  SDValue N1 = N->getOperand(1); +  SDValue CarryIn = N->getOperand(2); + +  // canonicalize constant to RHS +  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); +  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); +  if (N0C && !N1C) +    return DAG.getNode(ISD::ADDE, SDLoc(N), N->getVTList(), +                       N1, N0, CarryIn); + +  // fold (adde x, y, false) -> (addc x, y) +  if (CarryIn.getOpcode() == ISD::CARRY_FALSE) +    return DAG.getNode(ISD::ADDC, SDLoc(N), N->getVTList(), N0, N1); + +  return SDValue(); +} + +SDValue DAGCombiner::visitADDCARRY(SDNode *N) { +  SDValue N0 = N->getOperand(0); +  SDValue N1 = N->getOperand(1); +  SDValue CarryIn = N->getOperand(2); +  SDLoc DL(N); + +  // canonicalize constant to RHS +  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); +  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); +  if (N0C && !N1C) +    return DAG.getNode(ISD::ADDCARRY, DL, N->getVTList(), N1, N0, CarryIn); + +  // fold (addcarry x, y, false) -> (uaddo x, y) +  if (isNullConstant(CarryIn)) { +    if (!LegalOperations || +        TLI.isOperationLegalOrCustom(ISD::UADDO, N->getValueType(0))) +      return DAG.getNode(ISD::UADDO, DL, N->getVTList(), N0, N1); +  } + +  // fold (addcarry 0, 0, X) -> (and (ext/trunc X), 1) and no carry. +  if (isNullConstant(N0) && isNullConstant(N1)) { +    EVT VT = N0.getValueType(); +    EVT CarryVT = CarryIn.getValueType(); +    SDValue CarryExt = DAG.getBoolExtOrTrunc(CarryIn, DL, VT, CarryVT); +    AddToWorklist(CarryExt.getNode()); +    return CombineTo(N, DAG.getNode(ISD::AND, DL, VT, CarryExt, +                                    DAG.getConstant(1, DL, VT)), +                     DAG.getConstant(0, DL, CarryVT)); +  } + +  if (SDValue Combined = visitADDCARRYLike(N0, N1, CarryIn, N)) +    return Combined; + +  if (SDValue Combined = visitADDCARRYLike(N1, N0, CarryIn, N)) +    return Combined; + +  return SDValue(); +} + +/** + * If we are facing some sort of diamond carry propapagtion pattern try to + * break it up to generate something like: + *   (addcarry X, 0, (addcarry A, B, Z):Carry) + * + * The end result is usually an increase in operation required, but because the + * carry is now linearized, other tranforms can kick in and optimize the DAG. + * + * Patterns typically look something like + *            (uaddo A, B) + *             /       \ + *          Carry      Sum + *            |          \ + *            | (addcarry *, 0, Z) + *            |       / + *             \   Carry + *              |   / + * (addcarry X, *, *) + * + * But numerous variation exist. Our goal is to identify A, B, X and Z and + * produce a combine with a single path for carry propagation. + */ +static SDValue combineADDCARRYDiamond(DAGCombiner &Combiner, SelectionDAG &DAG, +                                      SDValue X, SDValue Carry0, SDValue Carry1, +                                      SDNode *N) { +  if (Carry1.getResNo() != 1 || Carry0.getResNo() != 1) +    return SDValue(); +  if (Carry1.getOpcode() != ISD::UADDO) +    return SDValue(); + +  SDValue Z; + +  /** +   * First look for a suitable Z. It will present itself in the form of +   * (addcarry Y, 0, Z) or its equivalent (uaddo Y, 1) for Z=true +   */ +  if (Carry0.getOpcode() == ISD::ADDCARRY && +      isNullConstant(Carry0.getOperand(1))) { +    Z = Carry0.getOperand(2); +  } else if (Carry0.getOpcode() == ISD::UADDO && +             isOneConstant(Carry0.getOperand(1))) { +    EVT VT = Combiner.getSetCCResultType(Carry0.getValueType()); +    Z = DAG.getConstant(1, SDLoc(Carry0.getOperand(1)), VT); +  } else { +    // We couldn't find a suitable Z. +    return SDValue(); +  } + + +  auto cancelDiamond = [&](SDValue A,SDValue B) { +    SDLoc DL(N); +    SDValue NewY = DAG.getNode(ISD::ADDCARRY, DL, Carry0->getVTList(), A, B, Z); +    Combiner.AddToWorklist(NewY.getNode()); +    return DAG.getNode(ISD::ADDCARRY, DL, N->getVTList(), X, +                       DAG.getConstant(0, DL, X.getValueType()), +                       NewY.getValue(1)); +  }; + +  /** +   *      (uaddo A, B) +   *           | +   *          Sum +   *           | +   * (addcarry *, 0, Z) +   */ +  if (Carry0.getOperand(0) == Carry1.getValue(0)) { +    return cancelDiamond(Carry1.getOperand(0), Carry1.getOperand(1)); +  } + +  /** +   * (addcarry A, 0, Z) +   *         | +   *        Sum +   *         | +   *  (uaddo *, B) +   */ +  if (Carry1.getOperand(0) == Carry0.getValue(0)) { +    return cancelDiamond(Carry0.getOperand(0), Carry1.getOperand(1)); +  } + +  if (Carry1.getOperand(1) == Carry0.getValue(0)) { +    return cancelDiamond(Carry1.getOperand(0), Carry0.getOperand(0)); +  } + +  return SDValue(); +} + +SDValue DAGCombiner::visitADDCARRYLike(SDValue N0, SDValue N1, SDValue CarryIn, +                                       SDNode *N) { +  // fold (addcarry (xor a, -1), b, c) -> (subcarry b, a, !c) and flip carry. +  if (isBitwiseNot(N0)) +    if (SDValue NotC = extractBooleanFlip(CarryIn, DAG, TLI, true)) { +      SDLoc DL(N); +      SDValue Sub = DAG.getNode(ISD::SUBCARRY, DL, N->getVTList(), N1, +                                N0.getOperand(0), NotC); +      return CombineTo(N, Sub, +                       flipBoolean(Sub.getValue(1), DL, DAG, TLI)); +    } + +  // Iff the flag result is dead: +  // (addcarry (add|uaddo X, Y), 0, Carry) -> (addcarry X, Y, Carry) +  // Don't do this if the Carry comes from the uaddo. It won't remove the uaddo +  // or the dependency between the instructions. +  if ((N0.getOpcode() == ISD::ADD || +       (N0.getOpcode() == ISD::UADDO && N0.getResNo() == 0 && +        N0.getValue(1) != CarryIn)) && +      isNullConstant(N1) && !N->hasAnyUseOfValue(1)) +    return DAG.getNode(ISD::ADDCARRY, SDLoc(N), N->getVTList(), +                       N0.getOperand(0), N0.getOperand(1), CarryIn); + +  /** +   * When one of the addcarry argument is itself a carry, we may be facing +   * a diamond carry propagation. In which case we try to transform the DAG +   * to ensure linear carry propagation if that is possible. +   */ +  if (auto Y = getAsCarry(TLI, N1)) { +    // Because both are carries, Y and Z can be swapped. +    if (auto R = combineADDCARRYDiamond(*this, DAG, N0, Y, CarryIn, N)) +      return R; +    if (auto R = combineADDCARRYDiamond(*this, DAG, N0, CarryIn, Y, N)) +      return R; +  } + +  return SDValue(); +} + +// Since it may not be valid to emit a fold to zero for vector initializers +// check if we can before folding. +static SDValue tryFoldToZero(const SDLoc &DL, const TargetLowering &TLI, EVT VT, +                             SelectionDAG &DAG, bool LegalOperations) { +  if (!VT.isVector()) +    return DAG.getConstant(0, DL, VT); +  if (!LegalOperations || TLI.isOperationLegal(ISD::BUILD_VECTOR, VT)) +    return DAG.getConstant(0, DL, VT); +  return SDValue(); +} + +SDValue DAGCombiner::visitSUB(SDNode *N) { +  SDValue N0 = N->getOperand(0); +  SDValue N1 = N->getOperand(1); +  EVT VT = N0.getValueType(); +  SDLoc DL(N); + +  // fold vector ops +  if (VT.isVector()) { +    if (SDValue FoldedVOp = SimplifyVBinOp(N)) +      return FoldedVOp; + +    // fold (sub x, 0) -> x, vector edition +    if (ISD::isBuildVectorAllZeros(N1.getNode())) +      return N0; +  } + +  // fold (sub x, x) -> 0 +  // FIXME: Refactor this and xor and other similar operations together. +  if (N0 == N1) +    return tryFoldToZero(DL, TLI, VT, DAG, LegalOperations); +  if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && +      DAG.isConstantIntBuildVectorOrConstantInt(N1)) { +    // fold (sub c1, c2) -> c1-c2 +    return DAG.FoldConstantArithmetic(ISD::SUB, DL, VT, N0.getNode(), +                                      N1.getNode()); +  } + +  if (SDValue NewSel = foldBinOpIntoSelect(N)) +    return NewSel; + +  ConstantSDNode *N1C = getAsNonOpaqueConstant(N1); + +  // fold (sub x, c) -> (add x, -c) +  if (N1C) { +    return DAG.getNode(ISD::ADD, DL, VT, N0, +                       DAG.getConstant(-N1C->getAPIntValue(), DL, VT)); +  } + +  if (isNullOrNullSplat(N0)) { +    unsigned BitWidth = VT.getScalarSizeInBits(); +    // Right-shifting everything out but the sign bit followed by negation is +    // the same as flipping arithmetic/logical shift type without the negation: +    // -(X >>u 31) -> (X >>s 31) +    // -(X >>s 31) -> (X >>u 31) +    if (N1->getOpcode() == ISD::SRA || N1->getOpcode() == ISD::SRL) { +      ConstantSDNode *ShiftAmt = isConstOrConstSplat(N1.getOperand(1)); +      if (ShiftAmt && ShiftAmt->getAPIntValue() == (BitWidth - 1)) { +        auto NewSh = N1->getOpcode() == ISD::SRA ? ISD::SRL : ISD::SRA; +        if (!LegalOperations || TLI.isOperationLegal(NewSh, VT)) +          return DAG.getNode(NewSh, DL, VT, N1.getOperand(0), N1.getOperand(1)); +      } +    } + +    // 0 - X --> 0 if the sub is NUW. +    if (N->getFlags().hasNoUnsignedWrap()) +      return N0; + +    if (DAG.MaskedValueIsZero(N1, ~APInt::getSignMask(BitWidth))) { +      // N1 is either 0 or the minimum signed value. If the sub is NSW, then +      // N1 must be 0 because negating the minimum signed value is undefined. +      if (N->getFlags().hasNoSignedWrap()) +        return N0; + +      // 0 - X --> X if X is 0 or the minimum signed value. +      return N1; +    } +  } + +  // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1) +  if (isAllOnesOrAllOnesSplat(N0)) +    return DAG.getNode(ISD::XOR, DL, VT, N1, N0); + +  // fold (A - (0-B)) -> A+B +  if (N1.getOpcode() == ISD::SUB && isNullOrNullSplat(N1.getOperand(0))) +    return DAG.getNode(ISD::ADD, DL, VT, N0, N1.getOperand(1)); + +  // fold A-(A-B) -> B +  if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(0)) +    return N1.getOperand(1); + +  // fold (A+B)-A -> B +  if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1) +    return N0.getOperand(1); + +  // fold (A+B)-B -> A +  if (N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1) +    return N0.getOperand(0); + +  // fold (A+C1)-C2 -> A+(C1-C2) +  if (N0.getOpcode() == ISD::ADD && +      isConstantOrConstantVector(N1, /* NoOpaques */ true) && +      isConstantOrConstantVector(N0.getOperand(1), /* NoOpaques */ true)) { +    SDValue NewC = DAG.FoldConstantArithmetic( +        ISD::SUB, DL, VT, N0.getOperand(1).getNode(), N1.getNode()); +    assert(NewC && "Constant folding failed"); +    return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), NewC); +  } + +  // fold C2-(A+C1) -> (C2-C1)-A +  if (N1.getOpcode() == ISD::ADD) { +    SDValue N11 = N1.getOperand(1); +    if (isConstantOrConstantVector(N0, /* NoOpaques */ true) && +        isConstantOrConstantVector(N11, /* NoOpaques */ true)) { +      SDValue NewC = DAG.FoldConstantArithmetic(ISD::SUB, DL, VT, N0.getNode(), +                                                N11.getNode()); +      assert(NewC && "Constant folding failed"); +      return DAG.getNode(ISD::SUB, DL, VT, NewC, N1.getOperand(0)); +    } +  } + +  // fold (A-C1)-C2 -> A-(C1+C2) +  if (N0.getOpcode() == ISD::SUB && +      isConstantOrConstantVector(N1, /* NoOpaques */ true) && +      isConstantOrConstantVector(N0.getOperand(1), /* NoOpaques */ true)) { +    SDValue NewC = DAG.FoldConstantArithmetic( +        ISD::ADD, DL, VT, N0.getOperand(1).getNode(), N1.getNode()); +    assert(NewC && "Constant folding failed"); +    return DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), NewC); +  } + +  // fold (c1-A)-c2 -> (c1-c2)-A +  if (N0.getOpcode() == ISD::SUB && +      isConstantOrConstantVector(N1, /* NoOpaques */ true) && +      isConstantOrConstantVector(N0.getOperand(0), /* NoOpaques */ true)) { +    SDValue NewC = DAG.FoldConstantArithmetic( +        ISD::SUB, DL, VT, N0.getOperand(0).getNode(), N1.getNode()); +    assert(NewC && "Constant folding failed"); +    return DAG.getNode(ISD::SUB, DL, VT, NewC, N0.getOperand(1)); +  } + +  // fold ((A+(B+or-C))-B) -> A+or-C +  if (N0.getOpcode() == ISD::ADD && +      (N0.getOperand(1).getOpcode() == ISD::SUB || +       N0.getOperand(1).getOpcode() == ISD::ADD) && +      N0.getOperand(1).getOperand(0) == N1) +    return DAG.getNode(N0.getOperand(1).getOpcode(), DL, VT, N0.getOperand(0), +                       N0.getOperand(1).getOperand(1)); + +  // fold ((A+(C+B))-B) -> A+C +  if (N0.getOpcode() == ISD::ADD && N0.getOperand(1).getOpcode() == ISD::ADD && +      N0.getOperand(1).getOperand(1) == N1) +    return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), +                       N0.getOperand(1).getOperand(0)); + +  // fold ((A-(B-C))-C) -> A-B +  if (N0.getOpcode() == ISD::SUB && N0.getOperand(1).getOpcode() == ISD::SUB && +      N0.getOperand(1).getOperand(1) == N1) +    return DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), +                       N0.getOperand(1).getOperand(0)); + +  // fold (A-(B-C)) -> A+(C-B) +  if (N1.getOpcode() == ISD::SUB && N1.hasOneUse()) +    return DAG.getNode(ISD::ADD, DL, VT, N0, +                       DAG.getNode(ISD::SUB, DL, VT, N1.getOperand(1), +                                   N1.getOperand(0))); + +  // fold (X - (-Y * Z)) -> (X + (Y * Z)) +  if (N1.getOpcode() == ISD::MUL && N1.hasOneUse()) { +    if (N1.getOperand(0).getOpcode() == ISD::SUB && +        isNullOrNullSplat(N1.getOperand(0).getOperand(0))) { +      SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, +                                N1.getOperand(0).getOperand(1), +                                N1.getOperand(1)); +      return DAG.getNode(ISD::ADD, DL, VT, N0, Mul); +    } +    if (N1.getOperand(1).getOpcode() == ISD::SUB && +        isNullOrNullSplat(N1.getOperand(1).getOperand(0))) { +      SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, +                                N1.getOperand(0), +                                N1.getOperand(1).getOperand(1)); +      return DAG.getNode(ISD::ADD, DL, VT, N0, Mul); +    } +  } + +  // If either operand of a sub is undef, the result is undef +  if (N0.isUndef()) +    return N0; +  if (N1.isUndef()) +    return N1; + +  if (SDValue V = foldAddSubBoolOfMaskedVal(N, DAG)) +    return V; + +  if (SDValue V = foldAddSubOfSignBit(N, DAG)) +    return V; + +  if (SDValue V = foldAddSubMasked1(false, N0, N1, DAG, SDLoc(N))) +    return V; + +  // (x - y) - 1  ->  add (xor y, -1), x +  if (N0.hasOneUse() && N0.getOpcode() == ISD::SUB && isOneOrOneSplat(N1)) { +    SDValue Xor = DAG.getNode(ISD::XOR, DL, VT, N0.getOperand(1), +                              DAG.getAllOnesConstant(DL, VT)); +    return DAG.getNode(ISD::ADD, DL, VT, Xor, N0.getOperand(0)); +  } + +  // Look for: +  //   sub y, (xor x, -1) +  // And if the target does not like this form then turn into: +  //   add (add x, y), 1 +  if (TLI.preferIncOfAddToSubOfNot(VT) && N1.hasOneUse() && isBitwiseNot(N1)) { +    SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, N1.getOperand(0)); +    return DAG.getNode(ISD::ADD, DL, VT, Add, DAG.getConstant(1, DL, VT)); +  } + +  // Hoist one-use addition by non-opaque constant: +  //   (x + C) - y  ->  (x - y) + C +  if (N0.hasOneUse() && N0.getOpcode() == ISD::ADD && +      isConstantOrConstantVector(N0.getOperand(1), /*NoOpaques=*/true)) { +    SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), N1); +    return DAG.getNode(ISD::ADD, DL, VT, Sub, N0.getOperand(1)); +  } +  // y - (x + C)  ->  (y - x) - C +  if (N1.hasOneUse() && N1.getOpcode() == ISD::ADD && +      isConstantOrConstantVector(N1.getOperand(1), /*NoOpaques=*/true)) { +    SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0, N1.getOperand(0)); +    return DAG.getNode(ISD::SUB, DL, VT, Sub, N1.getOperand(1)); +  } +  // (x - C) - y  ->  (x - y) - C +  // This is necessary because SUB(X,C) -> ADD(X,-C) doesn't work for vectors. +  if (N0.hasOneUse() && N0.getOpcode() == ISD::SUB && +      isConstantOrConstantVector(N0.getOperand(1), /*NoOpaques=*/true)) { +    SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), N1); +    return DAG.getNode(ISD::SUB, DL, VT, Sub, N0.getOperand(1)); +  } +  // (C - x) - y  ->  C - (x + y) +  if (N0.hasOneUse() && N0.getOpcode() == ISD::SUB && +      isConstantOrConstantVector(N0.getOperand(0), /*NoOpaques=*/true)) { +    SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(1), N1); +    return DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), Add); +  } + +  // If the target's bool is represented as 0/-1, prefer to make this 'add 0/-1' +  // rather than 'sub 0/1' (the sext should get folded). +  // sub X, (zext i1 Y) --> add X, (sext i1 Y) +  if (N1.getOpcode() == ISD::ZERO_EXTEND && +      N1.getOperand(0).getScalarValueSizeInBits() == 1 && +      TLI.getBooleanContents(VT) == +          TargetLowering::ZeroOrNegativeOneBooleanContent) { +    SDValue SExt = DAG.getNode(ISD::SIGN_EXTEND, DL, VT, N1.getOperand(0)); +    return DAG.getNode(ISD::ADD, DL, VT, N0, SExt); +  } + +  // fold Y = sra (X, size(X)-1); sub (xor (X, Y), Y) -> (abs X) +  if (TLI.isOperationLegalOrCustom(ISD::ABS, VT)) { +    if (N0.getOpcode() == ISD::XOR && N1.getOpcode() == ISD::SRA) { +      SDValue X0 = N0.getOperand(0), X1 = N0.getOperand(1); +      SDValue S0 = N1.getOperand(0); +      if ((X0 == S0 && X1 == N1) || (X0 == N1 && X1 == S0)) { +        unsigned OpSizeInBits = VT.getScalarSizeInBits(); +        if (ConstantSDNode *C = isConstOrConstSplat(N1.getOperand(1))) +          if (C->getAPIntValue() == (OpSizeInBits - 1)) +            return DAG.getNode(ISD::ABS, SDLoc(N), VT, S0); +      } +    } +  } + +  // If the relocation model supports it, consider symbol offsets. +  if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N0)) +    if (!LegalOperations && TLI.isOffsetFoldingLegal(GA)) { +      // fold (sub Sym, c) -> Sym-c +      if (N1C && GA->getOpcode() == ISD::GlobalAddress) +        return DAG.getGlobalAddress(GA->getGlobal(), SDLoc(N1C), VT, +                                    GA->getOffset() - +                                        (uint64_t)N1C->getSExtValue()); +      // fold (sub Sym+c1, Sym+c2) -> c1-c2 +      if (GlobalAddressSDNode *GB = dyn_cast<GlobalAddressSDNode>(N1)) +        if (GA->getGlobal() == GB->getGlobal()) +          return DAG.getConstant((uint64_t)GA->getOffset() - GB->getOffset(), +                                 DL, VT); +    } + +  // sub X, (sextinreg Y i1) -> add X, (and Y 1) +  if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG) { +    VTSDNode *TN = cast<VTSDNode>(N1.getOperand(1)); +    if (TN->getVT() == MVT::i1) { +      SDValue ZExt = DAG.getNode(ISD::AND, DL, VT, N1.getOperand(0), +                                 DAG.getConstant(1, DL, VT)); +      return DAG.getNode(ISD::ADD, DL, VT, N0, ZExt); +    } +  } + +  // Prefer an add for more folding potential and possibly better codegen: +  // sub N0, (lshr N10, width-1) --> add N0, (ashr N10, width-1) +  if (!LegalOperations && N1.getOpcode() == ISD::SRL && N1.hasOneUse()) { +    SDValue ShAmt = N1.getOperand(1); +    ConstantSDNode *ShAmtC = isConstOrConstSplat(ShAmt); +    if (ShAmtC && +        ShAmtC->getAPIntValue() == (N1.getScalarValueSizeInBits() - 1)) { +      SDValue SRA = DAG.getNode(ISD::SRA, DL, VT, N1.getOperand(0), ShAmt); +      return DAG.getNode(ISD::ADD, DL, VT, N0, SRA); +    } +  } + +  if (TLI.isOperationLegalOrCustom(ISD::ADDCARRY, VT)) { +    // (sub Carry, X)  ->  (addcarry (sub 0, X), 0, Carry) +    if (SDValue Carry = getAsCarry(TLI, N0)) { +      SDValue X = N1; +      SDValue Zero = DAG.getConstant(0, DL, VT); +      SDValue NegX = DAG.getNode(ISD::SUB, DL, VT, Zero, X); +      return DAG.getNode(ISD::ADDCARRY, DL, +                         DAG.getVTList(VT, Carry.getValueType()), NegX, Zero, +                         Carry); +    } +  } + +  return SDValue(); +} + +SDValue DAGCombiner::visitSUBSAT(SDNode *N) { +  SDValue N0 = N->getOperand(0); +  SDValue N1 = N->getOperand(1); +  EVT VT = N0.getValueType(); +  SDLoc DL(N); + +  // fold vector ops +  if (VT.isVector()) { +    // TODO SimplifyVBinOp + +    // fold (sub_sat x, 0) -> x, vector edition +    if (ISD::isBuildVectorAllZeros(N1.getNode())) +      return N0; +  } + +  // fold (sub_sat x, undef) -> 0 +  if (N0.isUndef() || N1.isUndef()) +    return DAG.getConstant(0, DL, VT); + +  // fold (sub_sat x, x) -> 0 +  if (N0 == N1) +    return DAG.getConstant(0, DL, VT); + +  if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && +      DAG.isConstantIntBuildVectorOrConstantInt(N1)) { +    // fold (sub_sat c1, c2) -> c3 +    return DAG.FoldConstantArithmetic(N->getOpcode(), DL, VT, N0.getNode(), +                                      N1.getNode()); +  } + +  // fold (sub_sat x, 0) -> x +  if (isNullConstant(N1)) +    return N0; + +  return SDValue(); +} + +SDValue DAGCombiner::visitSUBC(SDNode *N) { +  SDValue N0 = N->getOperand(0); +  SDValue N1 = N->getOperand(1); +  EVT VT = N0.getValueType(); +  SDLoc DL(N); + +  // If the flag result is dead, turn this into an SUB. +  if (!N->hasAnyUseOfValue(1)) +    return CombineTo(N, DAG.getNode(ISD::SUB, DL, VT, N0, N1), +                     DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); + +  // fold (subc x, x) -> 0 + no borrow +  if (N0 == N1) +    return CombineTo(N, DAG.getConstant(0, DL, VT), +                     DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); + +  // fold (subc x, 0) -> x + no borrow +  if (isNullConstant(N1)) +    return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); + +  // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1) + no borrow +  if (isAllOnesConstant(N0)) +    return CombineTo(N, DAG.getNode(ISD::XOR, DL, VT, N1, N0), +                     DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); + +  return SDValue(); +} + +SDValue DAGCombiner::visitSUBO(SDNode *N) { +  SDValue N0 = N->getOperand(0); +  SDValue N1 = N->getOperand(1); +  EVT VT = N0.getValueType(); +  bool IsSigned = (ISD::SSUBO == N->getOpcode()); + +  EVT CarryVT = N->getValueType(1); +  SDLoc DL(N); + +  // If the flag result is dead, turn this into an SUB. +  if (!N->hasAnyUseOfValue(1)) +    return CombineTo(N, DAG.getNode(ISD::SUB, DL, VT, N0, N1), +                     DAG.getUNDEF(CarryVT)); + +  // fold (subo x, x) -> 0 + no borrow +  if (N0 == N1) +    return CombineTo(N, DAG.getConstant(0, DL, VT), +                     DAG.getConstant(0, DL, CarryVT)); + +  ConstantSDNode *N1C = getAsNonOpaqueConstant(N1); + +  // fold (subox, c) -> (addo x, -c) +  if (IsSigned && N1C && !N1C->getAPIntValue().isMinSignedValue()) { +    return DAG.getNode(ISD::SADDO, DL, N->getVTList(), N0, +                       DAG.getConstant(-N1C->getAPIntValue(), DL, VT)); +  } + +  // fold (subo x, 0) -> x + no borrow +  if (isNullOrNullSplat(N1)) +    return CombineTo(N, N0, DAG.getConstant(0, DL, CarryVT)); + +  // Canonicalize (usubo -1, x) -> ~x, i.e. (xor x, -1) + no borrow +  if (!IsSigned && isAllOnesOrAllOnesSplat(N0)) +    return CombineTo(N, DAG.getNode(ISD::XOR, DL, VT, N1, N0), +                     DAG.getConstant(0, DL, CarryVT)); + +  return SDValue(); +} + +SDValue DAGCombiner::visitSUBE(SDNode *N) { +  SDValue N0 = N->getOperand(0); +  SDValue N1 = N->getOperand(1); +  SDValue CarryIn = N->getOperand(2); + +  // fold (sube x, y, false) -> (subc x, y) +  if (CarryIn.getOpcode() == ISD::CARRY_FALSE) +    return DAG.getNode(ISD::SUBC, SDLoc(N), N->getVTList(), N0, N1); + +  return SDValue(); +} + +SDValue DAGCombiner::visitSUBCARRY(SDNode *N) { +  SDValue N0 = N->getOperand(0); +  SDValue N1 = N->getOperand(1); +  SDValue CarryIn = N->getOperand(2); + +  // fold (subcarry x, y, false) -> (usubo x, y) +  if (isNullConstant(CarryIn)) { +    if (!LegalOperations || +        TLI.isOperationLegalOrCustom(ISD::USUBO, N->getValueType(0))) +      return DAG.getNode(ISD::USUBO, SDLoc(N), N->getVTList(), N0, N1); +  } + +  return SDValue(); +} + +// Notice that "mulfix" can be any of SMULFIX, SMULFIXSAT, UMULFIX and +// UMULFIXSAT here. +SDValue DAGCombiner::visitMULFIX(SDNode *N) { +  SDValue N0 = N->getOperand(0); +  SDValue N1 = N->getOperand(1); +  SDValue Scale = N->getOperand(2); +  EVT VT = N0.getValueType(); + +  // fold (mulfix x, undef, scale) -> 0 +  if (N0.isUndef() || N1.isUndef()) +    return DAG.getConstant(0, SDLoc(N), VT); + +  // Canonicalize constant to RHS (vector doesn't have to splat) +  if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && +     !DAG.isConstantIntBuildVectorOrConstantInt(N1)) +    return DAG.getNode(N->getOpcode(), SDLoc(N), VT, N1, N0, Scale); + +  // fold (mulfix x, 0, scale) -> 0 +  if (isNullConstant(N1)) +    return DAG.getConstant(0, SDLoc(N), VT); + +  return SDValue(); +} + +SDValue DAGCombiner::visitMUL(SDNode *N) { +  SDValue N0 = N->getOperand(0); +  SDValue N1 = N->getOperand(1); +  EVT VT = N0.getValueType(); + +  // fold (mul x, undef) -> 0 +  if (N0.isUndef() || N1.isUndef()) +    return DAG.getConstant(0, SDLoc(N), VT); + +  bool N0IsConst = false; +  bool N1IsConst = false; +  bool N1IsOpaqueConst = false; +  bool N0IsOpaqueConst = false; +  APInt ConstValue0, ConstValue1; +  // fold vector ops +  if (VT.isVector()) { +    if (SDValue FoldedVOp = SimplifyVBinOp(N)) +      return FoldedVOp; + +    N0IsConst = ISD::isConstantSplatVector(N0.getNode(), ConstValue0); +    N1IsConst = ISD::isConstantSplatVector(N1.getNode(), ConstValue1); +    assert((!N0IsConst || +            ConstValue0.getBitWidth() == VT.getScalarSizeInBits()) && +           "Splat APInt should be element width"); +    assert((!N1IsConst || +            ConstValue1.getBitWidth() == VT.getScalarSizeInBits()) && +           "Splat APInt should be element width"); +  } else { +    N0IsConst = isa<ConstantSDNode>(N0); +    if (N0IsConst) { +      ConstValue0 = cast<ConstantSDNode>(N0)->getAPIntValue(); +      N0IsOpaqueConst = cast<ConstantSDNode>(N0)->isOpaque(); +    } +    N1IsConst = isa<ConstantSDNode>(N1); +    if (N1IsConst) { +      ConstValue1 = cast<ConstantSDNode>(N1)->getAPIntValue(); +      N1IsOpaqueConst = cast<ConstantSDNode>(N1)->isOpaque(); +    } +  } + +  // fold (mul c1, c2) -> c1*c2 +  if (N0IsConst && N1IsConst && !N0IsOpaqueConst && !N1IsOpaqueConst) +    return DAG.FoldConstantArithmetic(ISD::MUL, SDLoc(N), VT, +                                      N0.getNode(), N1.getNode()); + +  // canonicalize constant to RHS (vector doesn't have to splat) +  if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && +     !DAG.isConstantIntBuildVectorOrConstantInt(N1)) +    return DAG.getNode(ISD::MUL, SDLoc(N), VT, N1, N0); +  // fold (mul x, 0) -> 0 +  if (N1IsConst && ConstValue1.isNullValue()) +    return N1; +  // fold (mul x, 1) -> x +  if (N1IsConst && ConstValue1.isOneValue()) +    return N0; + +  if (SDValue NewSel = foldBinOpIntoSelect(N)) +    return NewSel; + +  // fold (mul x, -1) -> 0-x +  if (N1IsConst && ConstValue1.isAllOnesValue()) { +    SDLoc DL(N); +    return DAG.getNode(ISD::SUB, DL, VT, +                       DAG.getConstant(0, DL, VT), N0); +  } +  // fold (mul x, (1 << c)) -> x << c +  if (isConstantOrConstantVector(N1, /*NoOpaques*/ true) && +      DAG.isKnownToBeAPowerOfTwo(N1) && +      (!VT.isVector() || Level <= AfterLegalizeVectorOps)) { +    SDLoc DL(N); +    SDValue LogBase2 = BuildLogBase2(N1, DL); +    EVT ShiftVT = getShiftAmountTy(N0.getValueType()); +    SDValue Trunc = DAG.getZExtOrTrunc(LogBase2, DL, ShiftVT); +    return DAG.getNode(ISD::SHL, DL, VT, N0, Trunc); +  } +  // fold (mul x, -(1 << c)) -> -(x << c) or (-x) << c +  if (N1IsConst && !N1IsOpaqueConst && (-ConstValue1).isPowerOf2()) { +    unsigned Log2Val = (-ConstValue1).logBase2(); +    SDLoc DL(N); +    // FIXME: If the input is something that is easily negated (e.g. a +    // single-use add), we should put the negate there. +    return DAG.getNode(ISD::SUB, DL, VT, +                       DAG.getConstant(0, DL, VT), +                       DAG.getNode(ISD::SHL, DL, VT, N0, +                            DAG.getConstant(Log2Val, DL, +                                      getShiftAmountTy(N0.getValueType())))); +  } + +  // Try to transform multiply-by-(power-of-2 +/- 1) into shift and add/sub. +  // mul x, (2^N + 1) --> add (shl x, N), x +  // mul x, (2^N - 1) --> sub (shl x, N), x +  // Examples: x * 33 --> (x << 5) + x +  //           x * 15 --> (x << 4) - x +  //           x * -33 --> -((x << 5) + x) +  //           x * -15 --> -((x << 4) - x) ; this reduces --> x - (x << 4) +  if (N1IsConst && TLI.decomposeMulByConstant(*DAG.getContext(), VT, N1)) { +    // TODO: We could handle more general decomposition of any constant by +    //       having the target set a limit on number of ops and making a +    //       callback to determine that sequence (similar to sqrt expansion). +    unsigned MathOp = ISD::DELETED_NODE; +    APInt MulC = ConstValue1.abs(); +    if ((MulC - 1).isPowerOf2()) +      MathOp = ISD::ADD; +    else if ((MulC + 1).isPowerOf2()) +      MathOp = ISD::SUB; + +    if (MathOp != ISD::DELETED_NODE) { +      unsigned ShAmt = +          MathOp == ISD::ADD ? (MulC - 1).logBase2() : (MulC + 1).logBase2(); +      assert(ShAmt < VT.getScalarSizeInBits() && +             "multiply-by-constant generated out of bounds shift"); +      SDLoc DL(N); +      SDValue Shl = +          DAG.getNode(ISD::SHL, DL, VT, N0, DAG.getConstant(ShAmt, DL, VT)); +      SDValue R = DAG.getNode(MathOp, DL, VT, Shl, N0); +      if (ConstValue1.isNegative()) +        R = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), R); +      return R; +    } +  } + +  // (mul (shl X, c1), c2) -> (mul X, c2 << c1) +  if (N0.getOpcode() == ISD::SHL && +      isConstantOrConstantVector(N1, /* NoOpaques */ true) && +      isConstantOrConstantVector(N0.getOperand(1), /* NoOpaques */ true)) { +    SDValue C3 = DAG.getNode(ISD::SHL, SDLoc(N), VT, N1, N0.getOperand(1)); +    if (isConstantOrConstantVector(C3)) +      return DAG.getNode(ISD::MUL, SDLoc(N), VT, N0.getOperand(0), C3); +  } + +  // Change (mul (shl X, C), Y) -> (shl (mul X, Y), C) when the shift has one +  // use. +  { +    SDValue Sh(nullptr, 0), Y(nullptr, 0); + +    // Check for both (mul (shl X, C), Y)  and  (mul Y, (shl X, C)). +    if (N0.getOpcode() == ISD::SHL && +        isConstantOrConstantVector(N0.getOperand(1)) && +        N0.getNode()->hasOneUse()) { +      Sh = N0; Y = N1; +    } else if (N1.getOpcode() == ISD::SHL && +               isConstantOrConstantVector(N1.getOperand(1)) && +               N1.getNode()->hasOneUse()) { +      Sh = N1; Y = N0; +    } + +    if (Sh.getNode()) { +      SDValue Mul = DAG.getNode(ISD::MUL, SDLoc(N), VT, Sh.getOperand(0), Y); +      return DAG.getNode(ISD::SHL, SDLoc(N), VT, Mul, Sh.getOperand(1)); +    } +  } + +  // fold (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2) +  if (DAG.isConstantIntBuildVectorOrConstantInt(N1) && +      N0.getOpcode() == ISD::ADD && +      DAG.isConstantIntBuildVectorOrConstantInt(N0.getOperand(1)) && +      isMulAddWithConstProfitable(N, N0, N1)) +      return DAG.getNode(ISD::ADD, SDLoc(N), VT, +                         DAG.getNode(ISD::MUL, SDLoc(N0), VT, +                                     N0.getOperand(0), N1), +                         DAG.getNode(ISD::MUL, SDLoc(N1), VT, +                                     N0.getOperand(1), N1)); + +  // reassociate mul +  if (SDValue RMUL = reassociateOps(ISD::MUL, SDLoc(N), N0, N1, N->getFlags())) +    return RMUL; + +  return SDValue(); +} + +/// Return true if divmod libcall is available. +static bool isDivRemLibcallAvailable(SDNode *Node, bool isSigned, +                                     const TargetLowering &TLI) { +  RTLIB::Libcall LC; +  EVT NodeType = Node->getValueType(0); +  if (!NodeType.isSimple()) +    return false; +  switch (NodeType.getSimpleVT().SimpleTy) { +  default: return false; // No libcall for vector types. +  case MVT::i8:   LC= isSigned ? RTLIB::SDIVREM_I8  : RTLIB::UDIVREM_I8;  break; +  case MVT::i16:  LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break; +  case MVT::i32:  LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break; +  case MVT::i64:  LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break; +  case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break; +  } + +  return TLI.getLibcallName(LC) != nullptr; +} + +/// Issue divrem if both quotient and remainder are needed. +SDValue DAGCombiner::useDivRem(SDNode *Node) { +  if (Node->use_empty()) +    return SDValue(); // This is a dead node, leave it alone. + +  unsigned Opcode = Node->getOpcode(); +  bool isSigned = (Opcode == ISD::SDIV) || (Opcode == ISD::SREM); +  unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; + +  // DivMod lib calls can still work on non-legal types if using lib-calls. +  EVT VT = Node->getValueType(0); +  if (VT.isVector() || !VT.isInteger()) +    return SDValue(); + +  if (!TLI.isTypeLegal(VT) && !TLI.isOperationCustom(DivRemOpc, VT)) +    return SDValue(); + +  // If DIVREM is going to get expanded into a libcall, +  // but there is no libcall available, then don't combine. +  if (!TLI.isOperationLegalOrCustom(DivRemOpc, VT) && +      !isDivRemLibcallAvailable(Node, isSigned, TLI)) +    return SDValue(); + +  // If div is legal, it's better to do the normal expansion +  unsigned OtherOpcode = 0; +  if ((Opcode == ISD::SDIV) || (Opcode == ISD::UDIV)) { +    OtherOpcode = isSigned ? ISD::SREM : ISD::UREM; +    if (TLI.isOperationLegalOrCustom(Opcode, VT)) +      return SDValue(); +  } else { +    OtherOpcode = isSigned ? ISD::SDIV : ISD::UDIV; +    if (TLI.isOperationLegalOrCustom(OtherOpcode, VT)) +      return SDValue(); +  } + +  SDValue Op0 = Node->getOperand(0); +  SDValue Op1 = Node->getOperand(1); +  SDValue combined; +  for (SDNode::use_iterator UI = Op0.getNode()->use_begin(), +         UE = Op0.getNode()->use_end(); UI != UE; ++UI) { +    SDNode *User = *UI; +    if (User == Node || User->getOpcode() == ISD::DELETED_NODE || +        User->use_empty()) +      continue; +    // Convert the other matching node(s), too; +    // otherwise, the DIVREM may get target-legalized into something +    // target-specific that we won't be able to recognize. +    unsigned UserOpc = User->getOpcode(); +    if ((UserOpc == Opcode || UserOpc == OtherOpcode || UserOpc == DivRemOpc) && +        User->getOperand(0) == Op0 && +        User->getOperand(1) == Op1) { +      if (!combined) { +        if (UserOpc == OtherOpcode) { +          SDVTList VTs = DAG.getVTList(VT, VT); +          combined = DAG.getNode(DivRemOpc, SDLoc(Node), VTs, Op0, Op1); +        } else if (UserOpc == DivRemOpc) { +          combined = SDValue(User, 0); +        } else { +          assert(UserOpc == Opcode); +          continue; +        } +      } +      if (UserOpc == ISD::SDIV || UserOpc == ISD::UDIV) +        CombineTo(User, combined); +      else if (UserOpc == ISD::SREM || UserOpc == ISD::UREM) +        CombineTo(User, combined.getValue(1)); +    } +  } +  return combined; +} + +static SDValue simplifyDivRem(SDNode *N, SelectionDAG &DAG) { +  SDValue N0 = N->getOperand(0); +  SDValue N1 = N->getOperand(1); +  EVT VT = N->getValueType(0); +  SDLoc DL(N); + +  unsigned Opc = N->getOpcode(); +  bool IsDiv = (ISD::SDIV == Opc) || (ISD::UDIV == Opc); +  ConstantSDNode *N1C = isConstOrConstSplat(N1); + +  // X / undef -> undef +  // X % undef -> undef +  // X / 0 -> undef +  // X % 0 -> undef +  // NOTE: This includes vectors where any divisor element is zero/undef. +  if (DAG.isUndef(Opc, {N0, N1})) +    return DAG.getUNDEF(VT); + +  // undef / X -> 0 +  // undef % X -> 0 +  if (N0.isUndef()) +    return DAG.getConstant(0, DL, VT); + +  // 0 / X -> 0 +  // 0 % X -> 0 +  ConstantSDNode *N0C = isConstOrConstSplat(N0); +  if (N0C && N0C->isNullValue()) +    return N0; + +  // X / X -> 1 +  // X % X -> 0 +  if (N0 == N1) +    return DAG.getConstant(IsDiv ? 1 : 0, DL, VT); + +  // X / 1 -> X +  // X % 1 -> 0 +  // If this is a boolean op (single-bit element type), we can't have +  // division-by-zero or remainder-by-zero, so assume the divisor is 1. +  // TODO: Similarly, if we're zero-extending a boolean divisor, then assume +  // it's a 1. +  if ((N1C && N1C->isOne()) || (VT.getScalarType() == MVT::i1)) +    return IsDiv ? N0 : DAG.getConstant(0, DL, VT); + +  return SDValue(); +} + +SDValue DAGCombiner::visitSDIV(SDNode *N) { +  SDValue N0 = N->getOperand(0); +  SDValue N1 = N->getOperand(1); +  EVT VT = N->getValueType(0); +  EVT CCVT = getSetCCResultType(VT); + +  // fold vector ops +  if (VT.isVector()) +    if (SDValue FoldedVOp = SimplifyVBinOp(N)) +      return FoldedVOp; + +  SDLoc DL(N); + +  // fold (sdiv c1, c2) -> c1/c2 +  ConstantSDNode *N0C = isConstOrConstSplat(N0); +  ConstantSDNode *N1C = isConstOrConstSplat(N1); +  if (N0C && N1C && !N0C->isOpaque() && !N1C->isOpaque()) +    return DAG.FoldConstantArithmetic(ISD::SDIV, DL, VT, N0C, N1C); +  // fold (sdiv X, -1) -> 0-X +  if (N1C && N1C->isAllOnesValue()) +    return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), N0); +  // fold (sdiv X, MIN_SIGNED) -> select(X == MIN_SIGNED, 1, 0) +  if (N1C && N1C->getAPIntValue().isMinSignedValue()) +    return DAG.getSelect(DL, VT, DAG.getSetCC(DL, CCVT, N0, N1, ISD::SETEQ), +                         DAG.getConstant(1, DL, VT), +                         DAG.getConstant(0, DL, VT)); + +  if (SDValue V = simplifyDivRem(N, DAG)) +    return V; + +  if (SDValue NewSel = foldBinOpIntoSelect(N)) +    return NewSel; + +  // If we know the sign bits of both operands are zero, strength reduce to a +  // udiv instead.  Handles (X&15) /s 4 -> X&15 >> 2 +  if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0)) +    return DAG.getNode(ISD::UDIV, DL, N1.getValueType(), N0, N1); + +  if (SDValue V = visitSDIVLike(N0, N1, N)) { +    // If the corresponding remainder node exists, update its users with +    // (Dividend - (Quotient * Divisor). +    if (SDNode *RemNode = DAG.getNodeIfExists(ISD::SREM, N->getVTList(), +                                              { N0, N1 })) { +      SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, V, N1); +      SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0, Mul); +      AddToWorklist(Mul.getNode()); +      AddToWorklist(Sub.getNode()); +      CombineTo(RemNode, Sub); +    } +    return V; +  } + +  // sdiv, srem -> sdivrem +  // If the divisor is constant, then return DIVREM only if isIntDivCheap() is +  // true.  Otherwise, we break the simplification logic in visitREM(). +  AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); +  if (!N1C || TLI.isIntDivCheap(N->getValueType(0), Attr)) +    if (SDValue DivRem = useDivRem(N)) +        return DivRem; + +  return SDValue(); +} + +SDValue DAGCombiner::visitSDIVLike(SDValue N0, SDValue N1, SDNode *N) { +  SDLoc DL(N); +  EVT VT = N->getValueType(0); +  EVT CCVT = getSetCCResultType(VT); +  unsigned BitWidth = VT.getScalarSizeInBits(); + +  // Helper for determining whether a value is a power-2 constant scalar or a +  // vector of such elements. +  auto IsPowerOfTwo = [](ConstantSDNode *C) { +    if (C->isNullValue() || C->isOpaque()) +      return false; +    if (C->getAPIntValue().isPowerOf2()) +      return true; +    if ((-C->getAPIntValue()).isPowerOf2()) +      return true; +    return false; +  }; + +  // fold (sdiv X, pow2) -> simple ops after legalize +  // FIXME: We check for the exact bit here because the generic lowering gives +  // better results in that case. The target-specific lowering should learn how +  // to handle exact sdivs efficiently. +  if (!N->getFlags().hasExact() && ISD::matchUnaryPredicate(N1, IsPowerOfTwo)) { +    // Target-specific implementation of sdiv x, pow2. +    if (SDValue Res = BuildSDIVPow2(N)) +      return Res; + +    // Create constants that are functions of the shift amount value. +    EVT ShiftAmtTy = getShiftAmountTy(N0.getValueType()); +    SDValue Bits = DAG.getConstant(BitWidth, DL, ShiftAmtTy); +    SDValue C1 = DAG.getNode(ISD::CTTZ, DL, VT, N1); +    C1 = DAG.getZExtOrTrunc(C1, DL, ShiftAmtTy); +    SDValue Inexact = DAG.getNode(ISD::SUB, DL, ShiftAmtTy, Bits, C1); +    if (!isConstantOrConstantVector(Inexact)) +      return SDValue(); + +    // Splat the sign bit into the register +    SDValue Sign = DAG.getNode(ISD::SRA, DL, VT, N0, +                               DAG.getConstant(BitWidth - 1, DL, ShiftAmtTy)); +    AddToWorklist(Sign.getNode()); + +    // Add (N0 < 0) ? abs2 - 1 : 0; +    SDValue Srl = DAG.getNode(ISD::SRL, DL, VT, Sign, Inexact); +    AddToWorklist(Srl.getNode()); +    SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Srl); +    AddToWorklist(Add.getNode()); +    SDValue Sra = DAG.getNode(ISD::SRA, DL, VT, Add, C1); +    AddToWorklist(Sra.getNode()); + +    // Special case: (sdiv X, 1) -> X +    // Special Case: (sdiv X, -1) -> 0-X +    SDValue One = DAG.getConstant(1, DL, VT); +    SDValue AllOnes = DAG.getAllOnesConstant(DL, VT); +    SDValue IsOne = DAG.getSetCC(DL, CCVT, N1, One, ISD::SETEQ); +    SDValue IsAllOnes = DAG.getSetCC(DL, CCVT, N1, AllOnes, ISD::SETEQ); +    SDValue IsOneOrAllOnes = DAG.getNode(ISD::OR, DL, CCVT, IsOne, IsAllOnes); +    Sra = DAG.getSelect(DL, VT, IsOneOrAllOnes, N0, Sra); + +    // If dividing by a positive value, we're done. Otherwise, the result must +    // be negated. +    SDValue Zero = DAG.getConstant(0, DL, VT); +    SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, Zero, Sra); + +    // FIXME: Use SELECT_CC once we improve SELECT_CC constant-folding. +    SDValue IsNeg = DAG.getSetCC(DL, CCVT, N1, Zero, ISD::SETLT); +    SDValue Res = DAG.getSelect(DL, VT, IsNeg, Sub, Sra); +    return Res; +  } + +  // If integer divide is expensive and we satisfy the requirements, emit an +  // alternate sequence.  Targets may check function attributes for size/speed +  // trade-offs. +  AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); +  if (isConstantOrConstantVector(N1) && +      !TLI.isIntDivCheap(N->getValueType(0), Attr)) +    if (SDValue Op = BuildSDIV(N)) +      return Op; + +  return SDValue(); +} + +SDValue DAGCombiner::visitUDIV(SDNode *N) { +  SDValue N0 = N->getOperand(0); +  SDValue N1 = N->getOperand(1); +  EVT VT = N->getValueType(0); +  EVT CCVT = getSetCCResultType(VT); + +  // fold vector ops +  if (VT.isVector()) +    if (SDValue FoldedVOp = SimplifyVBinOp(N)) +      return FoldedVOp; + +  SDLoc DL(N); + +  // fold (udiv c1, c2) -> c1/c2 +  ConstantSDNode *N0C = isConstOrConstSplat(N0); +  ConstantSDNode *N1C = isConstOrConstSplat(N1); +  if (N0C && N1C) +    if (SDValue Folded = DAG.FoldConstantArithmetic(ISD::UDIV, DL, VT, +                                                    N0C, N1C)) +      return Folded; +  // fold (udiv X, -1) -> select(X == -1, 1, 0) +  if (N1C && N1C->getAPIntValue().isAllOnesValue()) +    return DAG.getSelect(DL, VT, DAG.getSetCC(DL, CCVT, N0, N1, ISD::SETEQ), +                         DAG.getConstant(1, DL, VT), +                         DAG.getConstant(0, DL, VT)); + +  if (SDValue V = simplifyDivRem(N, DAG)) +    return V; + +  if (SDValue NewSel = foldBinOpIntoSelect(N)) +    return NewSel; + +  if (SDValue V = visitUDIVLike(N0, N1, N)) { +    // If the corresponding remainder node exists, update its users with +    // (Dividend - (Quotient * Divisor). +    if (SDNode *RemNode = DAG.getNodeIfExists(ISD::UREM, N->getVTList(), +                                              { N0, N1 })) { +      SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, V, N1); +      SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0, Mul); +      AddToWorklist(Mul.getNode()); +      AddToWorklist(Sub.getNode()); +      CombineTo(RemNode, Sub); +    } +    return V; +  } + +  // sdiv, srem -> sdivrem +  // If the divisor is constant, then return DIVREM only if isIntDivCheap() is +  // true.  Otherwise, we break the simplification logic in visitREM(). +  AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); +  if (!N1C || TLI.isIntDivCheap(N->getValueType(0), Attr)) +    if (SDValue DivRem = useDivRem(N)) +        return DivRem; + +  return SDValue(); +} + +SDValue DAGCombiner::visitUDIVLike(SDValue N0, SDValue N1, SDNode *N) { +  SDLoc DL(N); +  EVT VT = N->getValueType(0); + +  // fold (udiv x, (1 << c)) -> x >>u c +  if (isConstantOrConstantVector(N1, /*NoOpaques*/ true) && +      DAG.isKnownToBeAPowerOfTwo(N1)) { +    SDValue LogBase2 = BuildLogBase2(N1, DL); +    AddToWorklist(LogBase2.getNode()); + +    EVT ShiftVT = getShiftAmountTy(N0.getValueType()); +    SDValue Trunc = DAG.getZExtOrTrunc(LogBase2, DL, ShiftVT); +    AddToWorklist(Trunc.getNode()); +    return DAG.getNode(ISD::SRL, DL, VT, N0, Trunc); +  } + +  // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2 +  if (N1.getOpcode() == ISD::SHL) { +    SDValue N10 = N1.getOperand(0); +    if (isConstantOrConstantVector(N10, /*NoOpaques*/ true) && +        DAG.isKnownToBeAPowerOfTwo(N10)) { +      SDValue LogBase2 = BuildLogBase2(N10, DL); +      AddToWorklist(LogBase2.getNode()); + +      EVT ADDVT = N1.getOperand(1).getValueType(); +      SDValue Trunc = DAG.getZExtOrTrunc(LogBase2, DL, ADDVT); +      AddToWorklist(Trunc.getNode()); +      SDValue Add = DAG.getNode(ISD::ADD, DL, ADDVT, N1.getOperand(1), Trunc); +      AddToWorklist(Add.getNode()); +      return DAG.getNode(ISD::SRL, DL, VT, N0, Add); +    } +  } + +  // fold (udiv x, c) -> alternate +  AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); +  if (isConstantOrConstantVector(N1) && +      !TLI.isIntDivCheap(N->getValueType(0), Attr)) +    if (SDValue Op = BuildUDIV(N)) +      return Op; + +  return SDValue(); +} + +// handles ISD::SREM and ISD::UREM +SDValue DAGCombiner::visitREM(SDNode *N) { +  unsigned Opcode = N->getOpcode(); +  SDValue N0 = N->getOperand(0); +  SDValue N1 = N->getOperand(1); +  EVT VT = N->getValueType(0); +  EVT CCVT = getSetCCResultType(VT); + +  bool isSigned = (Opcode == ISD::SREM); +  SDLoc DL(N); + +  // fold (rem c1, c2) -> c1%c2 +  ConstantSDNode *N0C = isConstOrConstSplat(N0); +  ConstantSDNode *N1C = isConstOrConstSplat(N1); +  if (N0C && N1C) +    if (SDValue Folded = DAG.FoldConstantArithmetic(Opcode, DL, VT, N0C, N1C)) +      return Folded; +  // fold (urem X, -1) -> select(X == -1, 0, x) +  if (!isSigned && N1C && N1C->getAPIntValue().isAllOnesValue()) +    return DAG.getSelect(DL, VT, DAG.getSetCC(DL, CCVT, N0, N1, ISD::SETEQ), +                         DAG.getConstant(0, DL, VT), N0); + +  if (SDValue V = simplifyDivRem(N, DAG)) +    return V; + +  if (SDValue NewSel = foldBinOpIntoSelect(N)) +    return NewSel; + +  if (isSigned) { +    // If we know the sign bits of both operands are zero, strength reduce to a +    // urem instead.  Handles (X & 0x0FFFFFFF) %s 16 -> X&15 +    if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0)) +      return DAG.getNode(ISD::UREM, DL, VT, N0, N1); +  } else { +    SDValue NegOne = DAG.getAllOnesConstant(DL, VT); +    if (DAG.isKnownToBeAPowerOfTwo(N1)) { +      // fold (urem x, pow2) -> (and x, pow2-1) +      SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N1, NegOne); +      AddToWorklist(Add.getNode()); +      return DAG.getNode(ISD::AND, DL, VT, N0, Add); +    } +    if (N1.getOpcode() == ISD::SHL && +        DAG.isKnownToBeAPowerOfTwo(N1.getOperand(0))) { +      // fold (urem x, (shl pow2, y)) -> (and x, (add (shl pow2, y), -1)) +      SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N1, NegOne); +      AddToWorklist(Add.getNode()); +      return DAG.getNode(ISD::AND, DL, VT, N0, Add); +    } +  } + +  AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); + +  // If X/C can be simplified by the division-by-constant logic, lower +  // X%C to the equivalent of X-X/C*C. +  // Reuse the SDIVLike/UDIVLike combines - to avoid mangling nodes, the +  // speculative DIV must not cause a DIVREM conversion.  We guard against this +  // by skipping the simplification if isIntDivCheap().  When div is not cheap, +  // combine will not return a DIVREM.  Regardless, checking cheapness here +  // makes sense since the simplification results in fatter code. +  if (DAG.isKnownNeverZero(N1) && !TLI.isIntDivCheap(VT, Attr)) { +    SDValue OptimizedDiv = +        isSigned ? visitSDIVLike(N0, N1, N) : visitUDIVLike(N0, N1, N); +    if (OptimizedDiv.getNode()) { +      // If the equivalent Div node also exists, update its users. +      unsigned DivOpcode = isSigned ? ISD::SDIV : ISD::UDIV; +      if (SDNode *DivNode = DAG.getNodeIfExists(DivOpcode, N->getVTList(), +                                                { N0, N1 })) +        CombineTo(DivNode, OptimizedDiv); +      SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, OptimizedDiv, N1); +      SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0, Mul); +      AddToWorklist(OptimizedDiv.getNode()); +      AddToWorklist(Mul.getNode()); +      return Sub; +    } +  } + +  // sdiv, srem -> sdivrem +  if (SDValue DivRem = useDivRem(N)) +    return DivRem.getValue(1); + +  return SDValue(); +} + +SDValue DAGCombiner::visitMULHS(SDNode *N) { +  SDValue N0 = N->getOperand(0); +  SDValue N1 = N->getOperand(1); +  EVT VT = N->getValueType(0); +  SDLoc DL(N); + +  if (VT.isVector()) { +    // fold (mulhs x, 0) -> 0 +    // do not return N0/N1, because undef node may exist. +    if (ISD::isBuildVectorAllZeros(N0.getNode()) || +        ISD::isBuildVectorAllZeros(N1.getNode())) +      return DAG.getConstant(0, DL, VT); +  } + +  // fold (mulhs x, 0) -> 0 +  if (isNullConstant(N1)) +    return N1; +  // fold (mulhs x, 1) -> (sra x, size(x)-1) +  if (isOneConstant(N1)) +    return DAG.getNode(ISD::SRA, DL, N0.getValueType(), N0, +                       DAG.getConstant(N0.getScalarValueSizeInBits() - 1, DL, +                                       getShiftAmountTy(N0.getValueType()))); + +  // fold (mulhs x, undef) -> 0 +  if (N0.isUndef() || N1.isUndef()) +    return DAG.getConstant(0, DL, VT); + +  // If the type twice as wide is legal, transform the mulhs to a wider multiply +  // plus a shift. +  if (VT.isSimple() && !VT.isVector()) { +    MVT Simple = VT.getSimpleVT(); +    unsigned SimpleSize = Simple.getSizeInBits(); +    EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2); +    if (TLI.isOperationLegal(ISD::MUL, NewVT)) { +      N0 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N0); +      N1 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N1); +      N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1); +      N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1, +            DAG.getConstant(SimpleSize, DL, +                            getShiftAmountTy(N1.getValueType()))); +      return DAG.getNode(ISD::TRUNCATE, DL, VT, N1); +    } +  } + +  return SDValue(); +} + +SDValue DAGCombiner::visitMULHU(SDNode *N) { +  SDValue N0 = N->getOperand(0); +  SDValue N1 = N->getOperand(1); +  EVT VT = N->getValueType(0); +  SDLoc DL(N); + +  if (VT.isVector()) { +    // fold (mulhu x, 0) -> 0 +    // do not return N0/N1, because undef node may exist. +    if (ISD::isBuildVectorAllZeros(N0.getNode()) || +        ISD::isBuildVectorAllZeros(N1.getNode())) +      return DAG.getConstant(0, DL, VT); +  } + +  // fold (mulhu x, 0) -> 0 +  if (isNullConstant(N1)) +    return N1; +  // fold (mulhu x, 1) -> 0 +  if (isOneConstant(N1)) +    return DAG.getConstant(0, DL, N0.getValueType()); +  // fold (mulhu x, undef) -> 0 +  if (N0.isUndef() || N1.isUndef()) +    return DAG.getConstant(0, DL, VT); + +  // fold (mulhu x, (1 << c)) -> x >> (bitwidth - c) +  if (isConstantOrConstantVector(N1, /*NoOpaques*/ true) && +      DAG.isKnownToBeAPowerOfTwo(N1) && hasOperation(ISD::SRL, VT)) { +    unsigned NumEltBits = VT.getScalarSizeInBits(); +    SDValue LogBase2 = BuildLogBase2(N1, DL); +    SDValue SRLAmt = DAG.getNode( +        ISD::SUB, DL, VT, DAG.getConstant(NumEltBits, DL, VT), LogBase2); +    EVT ShiftVT = getShiftAmountTy(N0.getValueType()); +    SDValue Trunc = DAG.getZExtOrTrunc(SRLAmt, DL, ShiftVT); +    return DAG.getNode(ISD::SRL, DL, VT, N0, Trunc); +  } + +  // If the type twice as wide is legal, transform the mulhu to a wider multiply +  // plus a shift. +  if (VT.isSimple() && !VT.isVector()) { +    MVT Simple = VT.getSimpleVT(); +    unsigned SimpleSize = Simple.getSizeInBits(); +    EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2); +    if (TLI.isOperationLegal(ISD::MUL, NewVT)) { +      N0 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N0); +      N1 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N1); +      N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1); +      N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1, +            DAG.getConstant(SimpleSize, DL, +                            getShiftAmountTy(N1.getValueType()))); +      return DAG.getNode(ISD::TRUNCATE, DL, VT, N1); +    } +  } + +  return SDValue(); +} + +/// Perform optimizations common to nodes that compute two values. LoOp and HiOp +/// give the opcodes for the two computations that are being performed. Return +/// true if a simplification was made. +SDValue DAGCombiner::SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp, +                                                unsigned HiOp) { +  // If the high half is not needed, just compute the low half. +  bool HiExists = N->hasAnyUseOfValue(1); +  if (!HiExists && (!LegalOperations || +                    TLI.isOperationLegalOrCustom(LoOp, N->getValueType(0)))) { +    SDValue Res = DAG.getNode(LoOp, SDLoc(N), N->getValueType(0), N->ops()); +    return CombineTo(N, Res, Res); +  } + +  // If the low half is not needed, just compute the high half. +  bool LoExists = N->hasAnyUseOfValue(0); +  if (!LoExists && (!LegalOperations || +                    TLI.isOperationLegalOrCustom(HiOp, N->getValueType(1)))) { +    SDValue Res = DAG.getNode(HiOp, SDLoc(N), N->getValueType(1), N->ops()); +    return CombineTo(N, Res, Res); +  } + +  // If both halves are used, return as it is. +  if (LoExists && HiExists) +    return SDValue(); + +  // If the two computed results can be simplified separately, separate them. +  if (LoExists) { +    SDValue Lo = DAG.getNode(LoOp, SDLoc(N), N->getValueType(0), N->ops()); +    AddToWorklist(Lo.getNode()); +    SDValue LoOpt = combine(Lo.getNode()); +    if (LoOpt.getNode() && LoOpt.getNode() != Lo.getNode() && +        (!LegalOperations || +         TLI.isOperationLegalOrCustom(LoOpt.getOpcode(), LoOpt.getValueType()))) +      return CombineTo(N, LoOpt, LoOpt); +  } + +  if (HiExists) { +    SDValue Hi = DAG.getNode(HiOp, SDLoc(N), N->getValueType(1), N->ops()); +    AddToWorklist(Hi.getNode()); +    SDValue HiOpt = combine(Hi.getNode()); +    if (HiOpt.getNode() && HiOpt != Hi && +        (!LegalOperations || +         TLI.isOperationLegalOrCustom(HiOpt.getOpcode(), HiOpt.getValueType()))) +      return CombineTo(N, HiOpt, HiOpt); +  } + +  return SDValue(); +} + +SDValue DAGCombiner::visitSMUL_LOHI(SDNode *N) { +  if (SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHS)) +    return Res; + +  EVT VT = N->getValueType(0); +  SDLoc DL(N); + +  // If the type is twice as wide is legal, transform the mulhu to a wider +  // multiply plus a shift. +  if (VT.isSimple() && !VT.isVector()) { +    MVT Simple = VT.getSimpleVT(); +    unsigned SimpleSize = Simple.getSizeInBits(); +    EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2); +    if (TLI.isOperationLegal(ISD::MUL, NewVT)) { +      SDValue Lo = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N->getOperand(0)); +      SDValue Hi = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N->getOperand(1)); +      Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi); +      // Compute the high part as N1. +      Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo, +            DAG.getConstant(SimpleSize, DL, +                            getShiftAmountTy(Lo.getValueType()))); +      Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi); +      // Compute the low part as N0. +      Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo); +      return CombineTo(N, Lo, Hi); +    } +  } + +  return SDValue(); +} + +SDValue DAGCombiner::visitUMUL_LOHI(SDNode *N) { +  if (SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHU)) +    return Res; + +  EVT VT = N->getValueType(0); +  SDLoc DL(N); + +  // (umul_lohi N0, 0) -> (0, 0) +  if (isNullConstant(N->getOperand(1))) { +    SDValue Zero = DAG.getConstant(0, DL, VT); +    return CombineTo(N, Zero, Zero); +  } + +  // (umul_lohi N0, 1) -> (N0, 0) +  if (isOneConstant(N->getOperand(1))) { +    SDValue Zero = DAG.getConstant(0, DL, VT); +    return CombineTo(N, N->getOperand(0), Zero); +  } + +  // If the type is twice as wide is legal, transform the mulhu to a wider +  // multiply plus a shift. +  if (VT.isSimple() && !VT.isVector()) { +    MVT Simple = VT.getSimpleVT(); +    unsigned SimpleSize = Simple.getSizeInBits(); +    EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2); +    if (TLI.isOperationLegal(ISD::MUL, NewVT)) { +      SDValue Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N->getOperand(0)); +      SDValue Hi = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N->getOperand(1)); +      Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi); +      // Compute the high part as N1. +      Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo, +            DAG.getConstant(SimpleSize, DL, +                            getShiftAmountTy(Lo.getValueType()))); +      Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi); +      // Compute the low part as N0. +      Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo); +      return CombineTo(N, Lo, Hi); +    } +  } + +  return SDValue(); +} + +SDValue DAGCombiner::visitMULO(SDNode *N) { +  SDValue N0 = N->getOperand(0); +  SDValue N1 = N->getOperand(1); +  EVT VT = N0.getValueType(); +  bool IsSigned = (ISD::SMULO == N->getOpcode()); + +  EVT CarryVT = N->getValueType(1); +  SDLoc DL(N); + +  // canonicalize constant to RHS. +  if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && +      !DAG.isConstantIntBuildVectorOrConstantInt(N1)) +    return DAG.getNode(N->getOpcode(), DL, N->getVTList(), N1, N0); + +  // fold (mulo x, 0) -> 0 + no carry out +  if (isNullOrNullSplat(N1)) +    return CombineTo(N, DAG.getConstant(0, DL, VT), +                     DAG.getConstant(0, DL, CarryVT)); + +  // (mulo x, 2) -> (addo x, x) +  if (ConstantSDNode *C2 = isConstOrConstSplat(N1)) +    if (C2->getAPIntValue() == 2) +      return DAG.getNode(IsSigned ? ISD::SADDO : ISD::UADDO, DL, +                         N->getVTList(), N0, N0); + +  return SDValue(); +} + +SDValue DAGCombiner::visitIMINMAX(SDNode *N) { +  SDValue N0 = N->getOperand(0); +  SDValue N1 = N->getOperand(1); +  EVT VT = N0.getValueType(); + +  // fold vector ops +  if (VT.isVector()) +    if (SDValue FoldedVOp = SimplifyVBinOp(N)) +      return FoldedVOp; + +  // fold operation with constant operands. +  ConstantSDNode *N0C = getAsNonOpaqueConstant(N0); +  ConstantSDNode *N1C = getAsNonOpaqueConstant(N1); +  if (N0C && N1C) +    return DAG.FoldConstantArithmetic(N->getOpcode(), SDLoc(N), VT, N0C, N1C); + +  // canonicalize constant to RHS +  if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && +     !DAG.isConstantIntBuildVectorOrConstantInt(N1)) +    return DAG.getNode(N->getOpcode(), SDLoc(N), VT, N1, N0); + +  // Is sign bits are zero, flip between UMIN/UMAX and SMIN/SMAX. +  // Only do this if the current op isn't legal and the flipped is. +  unsigned Opcode = N->getOpcode(); +  const TargetLowering &TLI = DAG.getTargetLoweringInfo(); +  if (!TLI.isOperationLegal(Opcode, VT) && +      (N0.isUndef() || DAG.SignBitIsZero(N0)) && +      (N1.isUndef() || DAG.SignBitIsZero(N1))) { +    unsigned AltOpcode; +    switch (Opcode) { +    case ISD::SMIN: AltOpcode = ISD::UMIN; break; +    case ISD::SMAX: AltOpcode = ISD::UMAX; break; +    case ISD::UMIN: AltOpcode = ISD::SMIN; break; +    case ISD::UMAX: AltOpcode = ISD::SMAX; break; +    default: llvm_unreachable("Unknown MINMAX opcode"); +    } +    if (TLI.isOperationLegal(AltOpcode, VT)) +      return DAG.getNode(AltOpcode, SDLoc(N), VT, N0, N1); +  } + +  return SDValue(); +} + +/// If this is a bitwise logic instruction and both operands have the same +/// opcode, try to sink the other opcode after the logic instruction. +SDValue DAGCombiner::hoistLogicOpWithSameOpcodeHands(SDNode *N) { +  SDValue N0 = N->getOperand(0), N1 = N->getOperand(1); +  EVT VT = N0.getValueType(); +  unsigned LogicOpcode = N->getOpcode(); +  unsigned HandOpcode = N0.getOpcode(); +  assert((LogicOpcode == ISD::AND || LogicOpcode == ISD::OR || +          LogicOpcode == ISD::XOR) && "Expected logic opcode"); +  assert(HandOpcode == N1.getOpcode() && "Bad input!"); + +  // Bail early if none of these transforms apply. +  if (N0.getNumOperands() == 0) +    return SDValue(); + +  // FIXME: We should check number of uses of the operands to not increase +  //        the instruction count for all transforms. + +  // Handle size-changing casts. +  SDValue X = N0.getOperand(0); +  SDValue Y = N1.getOperand(0); +  EVT XVT = X.getValueType(); +  SDLoc DL(N); +  if (HandOpcode == ISD::ANY_EXTEND || HandOpcode == ISD::ZERO_EXTEND || +      HandOpcode == ISD::SIGN_EXTEND) { +    // If both operands have other uses, this transform would create extra +    // instructions without eliminating anything. +    if (!N0.hasOneUse() && !N1.hasOneUse()) +      return SDValue(); +    // We need matching integer source types. +    if (XVT != Y.getValueType()) +      return SDValue(); +    // Don't create an illegal op during or after legalization. Don't ever +    // create an unsupported vector op. +    if ((VT.isVector() || LegalOperations) && +        !TLI.isOperationLegalOrCustom(LogicOpcode, XVT)) +      return SDValue(); +    // Avoid infinite looping with PromoteIntBinOp. +    // TODO: Should we apply desirable/legal constraints to all opcodes? +    if (HandOpcode == ISD::ANY_EXTEND && LegalTypes && +        !TLI.isTypeDesirableForOp(LogicOpcode, XVT)) +      return SDValue(); +    // logic_op (hand_op X), (hand_op Y) --> hand_op (logic_op X, Y) +    SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y); +    return DAG.getNode(HandOpcode, DL, VT, Logic); +  } + +  // logic_op (truncate x), (truncate y) --> truncate (logic_op x, y) +  if (HandOpcode == ISD::TRUNCATE) { +    // If both operands have other uses, this transform would create extra +    // instructions without eliminating anything. +    if (!N0.hasOneUse() && !N1.hasOneUse()) +      return SDValue(); +    // We need matching source types. +    if (XVT != Y.getValueType()) +      return SDValue(); +    // Don't create an illegal op during or after legalization. +    if (LegalOperations && !TLI.isOperationLegal(LogicOpcode, XVT)) +      return SDValue(); +    // Be extra careful sinking truncate. If it's free, there's no benefit in +    // widening a binop. Also, don't create a logic op on an illegal type. +    if (TLI.isZExtFree(VT, XVT) && TLI.isTruncateFree(XVT, VT)) +      return SDValue(); +    if (!TLI.isTypeLegal(XVT)) +      return SDValue(); +    SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y); +    return DAG.getNode(HandOpcode, DL, VT, Logic); +  } + +  // For binops SHL/SRL/SRA/AND: +  //   logic_op (OP x, z), (OP y, z) --> OP (logic_op x, y), z +  if ((HandOpcode == ISD::SHL || HandOpcode == ISD::SRL || +       HandOpcode == ISD::SRA || HandOpcode == ISD::AND) && +      N0.getOperand(1) == N1.getOperand(1)) { +    // If either operand has other uses, this transform is not an improvement. +    if (!N0.hasOneUse() || !N1.hasOneUse()) +      return SDValue(); +    SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y); +    return DAG.getNode(HandOpcode, DL, VT, Logic, N0.getOperand(1)); +  } + +  // Unary ops: logic_op (bswap x), (bswap y) --> bswap (logic_op x, y) +  if (HandOpcode == ISD::BSWAP) { +    // If either operand has other uses, this transform is not an improvement. +    if (!N0.hasOneUse() || !N1.hasOneUse()) +      return SDValue(); +    SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y); +    return DAG.getNode(HandOpcode, DL, VT, Logic); +  } + +  // Simplify xor/and/or (bitcast(A), bitcast(B)) -> bitcast(op (A,B)) +  // Only perform this optimization up until type legalization, before +  // LegalizeVectorOprs. LegalizeVectorOprs promotes vector operations by +  // adding bitcasts. For example (xor v4i32) is promoted to (v2i64), and +  // we don't want to undo this promotion. +  // We also handle SCALAR_TO_VECTOR because xor/or/and operations are cheaper +  // on scalars. +  if ((HandOpcode == ISD::BITCAST || HandOpcode == ISD::SCALAR_TO_VECTOR) && +       Level <= AfterLegalizeTypes) { +    // Input types must be integer and the same. +    if (XVT.isInteger() && XVT == Y.getValueType() && +        !(VT.isVector() && TLI.isTypeLegal(VT) && +          !XVT.isVector() && !TLI.isTypeLegal(XVT))) { +      SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y); +      return DAG.getNode(HandOpcode, DL, VT, Logic); +    } +  } + +  // Xor/and/or are indifferent to the swizzle operation (shuffle of one value). +  // Simplify xor/and/or (shuff(A), shuff(B)) -> shuff(op (A,B)) +  // If both shuffles use the same mask, and both shuffle within a single +  // vector, then it is worthwhile to move the swizzle after the operation. +  // The type-legalizer generates this pattern when loading illegal +  // vector types from memory. In many cases this allows additional shuffle +  // optimizations. +  // There are other cases where moving the shuffle after the xor/and/or +  // is profitable even if shuffles don't perform a swizzle. +  // If both shuffles use the same mask, and both shuffles have the same first +  // or second operand, then it might still be profitable to move the shuffle +  // after the xor/and/or operation. +  if (HandOpcode == ISD::VECTOR_SHUFFLE && Level < AfterLegalizeDAG) { +    auto *SVN0 = cast<ShuffleVectorSDNode>(N0); +    auto *SVN1 = cast<ShuffleVectorSDNode>(N1); +    assert(X.getValueType() == Y.getValueType() && +           "Inputs to shuffles are not the same type"); + +    // Check that both shuffles use the same mask. The masks are known to be of +    // the same length because the result vector type is the same. +    // Check also that shuffles have only one use to avoid introducing extra +    // instructions. +    if (!SVN0->hasOneUse() || !SVN1->hasOneUse() || +        !SVN0->getMask().equals(SVN1->getMask())) +      return SDValue(); + +    // Don't try to fold this node if it requires introducing a +    // build vector of all zeros that might be illegal at this stage. +    SDValue ShOp = N0.getOperand(1); +    if (LogicOpcode == ISD::XOR && !ShOp.isUndef()) +      ShOp = tryFoldToZero(DL, TLI, VT, DAG, LegalOperations); + +    // (logic_op (shuf (A, C), shuf (B, C))) --> shuf (logic_op (A, B), C) +    if (N0.getOperand(1) == N1.getOperand(1) && ShOp.getNode()) { +      SDValue Logic = DAG.getNode(LogicOpcode, DL, VT, +                                  N0.getOperand(0), N1.getOperand(0)); +      return DAG.getVectorShuffle(VT, DL, Logic, ShOp, SVN0->getMask()); +    } + +    // Don't try to fold this node if it requires introducing a +    // build vector of all zeros that might be illegal at this stage. +    ShOp = N0.getOperand(0); +    if (LogicOpcode == ISD::XOR && !ShOp.isUndef()) +      ShOp = tryFoldToZero(DL, TLI, VT, DAG, LegalOperations); + +    // (logic_op (shuf (C, A), shuf (C, B))) --> shuf (C, logic_op (A, B)) +    if (N0.getOperand(0) == N1.getOperand(0) && ShOp.getNode()) { +      SDValue Logic = DAG.getNode(LogicOpcode, DL, VT, N0.getOperand(1), +                                  N1.getOperand(1)); +      return DAG.getVectorShuffle(VT, DL, ShOp, Logic, SVN0->getMask()); +    } +  } + +  return SDValue(); +} + +/// Try to make (and/or setcc (LL, LR), setcc (RL, RR)) more efficient. +SDValue DAGCombiner::foldLogicOfSetCCs(bool IsAnd, SDValue N0, SDValue N1, +                                       const SDLoc &DL) { +  SDValue LL, LR, RL, RR, N0CC, N1CC; +  if (!isSetCCEquivalent(N0, LL, LR, N0CC) || +      !isSetCCEquivalent(N1, RL, RR, N1CC)) +    return SDValue(); + +  assert(N0.getValueType() == N1.getValueType() && +         "Unexpected operand types for bitwise logic op"); +  assert(LL.getValueType() == LR.getValueType() && +         RL.getValueType() == RR.getValueType() && +         "Unexpected operand types for setcc"); + +  // If we're here post-legalization or the logic op type is not i1, the logic +  // op type must match a setcc result type. Also, all folds require new +  // operations on the left and right operands, so those types must match. +  EVT VT = N0.getValueType(); +  EVT OpVT = LL.getValueType(); +  if (LegalOperations || VT.getScalarType() != MVT::i1) +    if (VT != getSetCCResultType(OpVT)) +      return SDValue(); +  if (OpVT != RL.getValueType()) +    return SDValue(); + +  ISD::CondCode CC0 = cast<CondCodeSDNode>(N0CC)->get(); +  ISD::CondCode CC1 = cast<CondCodeSDNode>(N1CC)->get(); +  bool IsInteger = OpVT.isInteger(); +  if (LR == RR && CC0 == CC1 && IsInteger) { +    bool IsZero = isNullOrNullSplat(LR); +    bool IsNeg1 = isAllOnesOrAllOnesSplat(LR); + +    // All bits clear? +    bool AndEqZero = IsAnd && CC1 == ISD::SETEQ && IsZero; +    // All sign bits clear? +    bool AndGtNeg1 = IsAnd && CC1 == ISD::SETGT && IsNeg1; +    // Any bits set? +    bool OrNeZero = !IsAnd && CC1 == ISD::SETNE && IsZero; +    // Any sign bits set? +    bool OrLtZero = !IsAnd && CC1 == ISD::SETLT && IsZero; + +    // (and (seteq X,  0), (seteq Y,  0)) --> (seteq (or X, Y),  0) +    // (and (setgt X, -1), (setgt Y, -1)) --> (setgt (or X, Y), -1) +    // (or  (setne X,  0), (setne Y,  0)) --> (setne (or X, Y),  0) +    // (or  (setlt X,  0), (setlt Y,  0)) --> (setlt (or X, Y),  0) +    if (AndEqZero || AndGtNeg1 || OrNeZero || OrLtZero) { +      SDValue Or = DAG.getNode(ISD::OR, SDLoc(N0), OpVT, LL, RL); +      AddToWorklist(Or.getNode()); +      return DAG.getSetCC(DL, VT, Or, LR, CC1); +    } + +    // All bits set? +    bool AndEqNeg1 = IsAnd && CC1 == ISD::SETEQ && IsNeg1; +    // All sign bits set? +    bool AndLtZero = IsAnd && CC1 == ISD::SETLT && IsZero; +    // Any bits clear? +    bool OrNeNeg1 = !IsAnd && CC1 == ISD::SETNE && IsNeg1; +    // Any sign bits clear? +    bool OrGtNeg1 = !IsAnd && CC1 == ISD::SETGT && IsNeg1; + +    // (and (seteq X, -1), (seteq Y, -1)) --> (seteq (and X, Y), -1) +    // (and (setlt X,  0), (setlt Y,  0)) --> (setlt (and X, Y),  0) +    // (or  (setne X, -1), (setne Y, -1)) --> (setne (and X, Y), -1) +    // (or  (setgt X, -1), (setgt Y  -1)) --> (setgt (and X, Y), -1) +    if (AndEqNeg1 || AndLtZero || OrNeNeg1 || OrGtNeg1) { +      SDValue And = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, LL, RL); +      AddToWorklist(And.getNode()); +      return DAG.getSetCC(DL, VT, And, LR, CC1); +    } +  } + +  // TODO: What is the 'or' equivalent of this fold? +  // (and (setne X, 0), (setne X, -1)) --> (setuge (add X, 1), 2) +  if (IsAnd && LL == RL && CC0 == CC1 && OpVT.getScalarSizeInBits() > 1 && +      IsInteger && CC0 == ISD::SETNE && +      ((isNullConstant(LR) && isAllOnesConstant(RR)) || +       (isAllOnesConstant(LR) && isNullConstant(RR)))) { +    SDValue One = DAG.getConstant(1, DL, OpVT); +    SDValue Two = DAG.getConstant(2, DL, OpVT); +    SDValue Add = DAG.getNode(ISD::ADD, SDLoc(N0), OpVT, LL, One); +    AddToWorklist(Add.getNode()); +    return DAG.getSetCC(DL, VT, Add, Two, ISD::SETUGE); +  } + +  // Try more general transforms if the predicates match and the only user of +  // the compares is the 'and' or 'or'. +  if (IsInteger && TLI.convertSetCCLogicToBitwiseLogic(OpVT) && CC0 == CC1 && +      N0.hasOneUse() && N1.hasOneUse()) { +    // and (seteq A, B), (seteq C, D) --> seteq (or (xor A, B), (xor C, D)), 0 +    // or  (setne A, B), (setne C, D) --> setne (or (xor A, B), (xor C, D)), 0 +    if ((IsAnd && CC1 == ISD::SETEQ) || (!IsAnd && CC1 == ISD::SETNE)) { +      SDValue XorL = DAG.getNode(ISD::XOR, SDLoc(N0), OpVT, LL, LR); +      SDValue XorR = DAG.getNode(ISD::XOR, SDLoc(N1), OpVT, RL, RR); +      SDValue Or = DAG.getNode(ISD::OR, DL, OpVT, XorL, XorR); +      SDValue Zero = DAG.getConstant(0, DL, OpVT); +      return DAG.getSetCC(DL, VT, Or, Zero, CC1); +    } + +    // Turn compare of constants whose difference is 1 bit into add+and+setcc. +    // TODO - support non-uniform vector amounts. +    if ((IsAnd && CC1 == ISD::SETNE) || (!IsAnd && CC1 == ISD::SETEQ)) { +      // Match a shared variable operand and 2 non-opaque constant operands. +      ConstantSDNode *C0 = isConstOrConstSplat(LR); +      ConstantSDNode *C1 = isConstOrConstSplat(RR); +      if (LL == RL && C0 && C1 && !C0->isOpaque() && !C1->isOpaque()) { +        // Canonicalize larger constant as C0. +        if (C1->getAPIntValue().ugt(C0->getAPIntValue())) +          std::swap(C0, C1); + +        // The difference of the constants must be a single bit. +        const APInt &C0Val = C0->getAPIntValue(); +        const APInt &C1Val = C1->getAPIntValue(); +        if ((C0Val - C1Val).isPowerOf2()) { +          // and/or (setcc X, C0, ne), (setcc X, C1, ne/eq) --> +          // setcc ((add X, -C1), ~(C0 - C1)), 0, ne/eq +          SDValue OffsetC = DAG.getConstant(-C1Val, DL, OpVT); +          SDValue Add = DAG.getNode(ISD::ADD, DL, OpVT, LL, OffsetC); +          SDValue MaskC = DAG.getConstant(~(C0Val - C1Val), DL, OpVT); +          SDValue And = DAG.getNode(ISD::AND, DL, OpVT, Add, MaskC); +          SDValue Zero = DAG.getConstant(0, DL, OpVT); +          return DAG.getSetCC(DL, VT, And, Zero, CC0); +        } +      } +    } +  } + +  // Canonicalize equivalent operands to LL == RL. +  if (LL == RR && LR == RL) { +    CC1 = ISD::getSetCCSwappedOperands(CC1); +    std::swap(RL, RR); +  } + +  // (and (setcc X, Y, CC0), (setcc X, Y, CC1)) --> (setcc X, Y, NewCC) +  // (or  (setcc X, Y, CC0), (setcc X, Y, CC1)) --> (setcc X, Y, NewCC) +  if (LL == RL && LR == RR) { +    ISD::CondCode NewCC = IsAnd ? ISD::getSetCCAndOperation(CC0, CC1, IsInteger) +                                : ISD::getSetCCOrOperation(CC0, CC1, IsInteger); +    if (NewCC != ISD::SETCC_INVALID && +        (!LegalOperations || +         (TLI.isCondCodeLegal(NewCC, LL.getSimpleValueType()) && +          TLI.isOperationLegal(ISD::SETCC, OpVT)))) +      return DAG.getSetCC(DL, VT, LL, LR, NewCC); +  } + +  return SDValue(); +} + +/// This contains all DAGCombine rules which reduce two values combined by +/// an And operation to a single value. This makes them reusable in the context +/// of visitSELECT(). Rules involving constants are not included as +/// visitSELECT() already handles those cases. +SDValue DAGCombiner::visitANDLike(SDValue N0, SDValue N1, SDNode *N) { +  EVT VT = N1.getValueType(); +  SDLoc DL(N); + +  // fold (and x, undef) -> 0 +  if (N0.isUndef() || N1.isUndef()) +    return DAG.getConstant(0, DL, VT); + +  if (SDValue V = foldLogicOfSetCCs(true, N0, N1, DL)) +    return V; + +  if (N0.getOpcode() == ISD::ADD && N1.getOpcode() == ISD::SRL && +      VT.getSizeInBits() <= 64) { +    if (ConstantSDNode *ADDI = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { +      if (ConstantSDNode *SRLI = dyn_cast<ConstantSDNode>(N1.getOperand(1))) { +        // Look for (and (add x, c1), (lshr y, c2)). If C1 wasn't a legal +        // immediate for an add, but it is legal if its top c2 bits are set, +        // transform the ADD so the immediate doesn't need to be materialized +        // in a register. +        APInt ADDC = ADDI->getAPIntValue(); +        APInt SRLC = SRLI->getAPIntValue(); +        if (ADDC.getMinSignedBits() <= 64 && +            SRLC.ult(VT.getSizeInBits()) && +            !TLI.isLegalAddImmediate(ADDC.getSExtValue())) { +          APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(), +                                             SRLC.getZExtValue()); +          if (DAG.MaskedValueIsZero(N0.getOperand(1), Mask)) { +            ADDC |= Mask; +            if (TLI.isLegalAddImmediate(ADDC.getSExtValue())) { +              SDLoc DL0(N0); +              SDValue NewAdd = +                DAG.getNode(ISD::ADD, DL0, VT, +                            N0.getOperand(0), DAG.getConstant(ADDC, DL, VT)); +              CombineTo(N0.getNode(), NewAdd); +              // Return N so it doesn't get rechecked! +              return SDValue(N, 0); +            } +          } +        } +      } +    } +  } + +  // Reduce bit extract of low half of an integer to the narrower type. +  // (and (srl i64:x, K), KMask) -> +  //   (i64 zero_extend (and (srl (i32 (trunc i64:x)), K)), KMask) +  if (N0.getOpcode() == ISD::SRL && N0.hasOneUse()) { +    if (ConstantSDNode *CAnd = dyn_cast<ConstantSDNode>(N1)) { +      if (ConstantSDNode *CShift = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { +        unsigned Size = VT.getSizeInBits(); +        const APInt &AndMask = CAnd->getAPIntValue(); +        unsigned ShiftBits = CShift->getZExtValue(); + +        // Bail out, this node will probably disappear anyway. +        if (ShiftBits == 0) +          return SDValue(); + +        unsigned MaskBits = AndMask.countTrailingOnes(); +        EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), Size / 2); + +        if (AndMask.isMask() && +            // Required bits must not span the two halves of the integer and +            // must fit in the half size type. +            (ShiftBits + MaskBits <= Size / 2) && +            TLI.isNarrowingProfitable(VT, HalfVT) && +            TLI.isTypeDesirableForOp(ISD::AND, HalfVT) && +            TLI.isTypeDesirableForOp(ISD::SRL, HalfVT) && +            TLI.isTruncateFree(VT, HalfVT) && +            TLI.isZExtFree(HalfVT, VT)) { +          // The isNarrowingProfitable is to avoid regressions on PPC and +          // AArch64 which match a few 64-bit bit insert / bit extract patterns +          // on downstream users of this. Those patterns could probably be +          // extended to handle extensions mixed in. + +          SDValue SL(N0); +          assert(MaskBits <= Size); + +          // Extracting the highest bit of the low half. +          EVT ShiftVT = TLI.getShiftAmountTy(HalfVT, DAG.getDataLayout()); +          SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, HalfVT, +                                      N0.getOperand(0)); + +          SDValue NewMask = DAG.getConstant(AndMask.trunc(Size / 2), SL, HalfVT); +          SDValue ShiftK = DAG.getConstant(ShiftBits, SL, ShiftVT); +          SDValue Shift = DAG.getNode(ISD::SRL, SL, HalfVT, Trunc, ShiftK); +          SDValue And = DAG.getNode(ISD::AND, SL, HalfVT, Shift, NewMask); +          return DAG.getNode(ISD::ZERO_EXTEND, SL, VT, And); +        } +      } +    } +  } + +  return SDValue(); +} + +bool DAGCombiner::isAndLoadExtLoad(ConstantSDNode *AndC, LoadSDNode *LoadN, +                                   EVT LoadResultTy, EVT &ExtVT) { +  if (!AndC->getAPIntValue().isMask()) +    return false; + +  unsigned ActiveBits = AndC->getAPIntValue().countTrailingOnes(); + +  ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits); +  EVT LoadedVT = LoadN->getMemoryVT(); + +  if (ExtVT == LoadedVT && +      (!LegalOperations || +       TLI.isLoadExtLegal(ISD::ZEXTLOAD, LoadResultTy, ExtVT))) { +    // ZEXTLOAD will match without needing to change the size of the value being +    // loaded. +    return true; +  } + +  // Do not change the width of a volatile or atomic loads. +  if (!LoadN->isSimple()) +    return false; + +  // Do not generate loads of non-round integer types since these can +  // be expensive (and would be wrong if the type is not byte sized). +  if (!LoadedVT.bitsGT(ExtVT) || !ExtVT.isRound()) +    return false; + +  if (LegalOperations && +      !TLI.isLoadExtLegal(ISD::ZEXTLOAD, LoadResultTy, ExtVT)) +    return false; + +  if (!TLI.shouldReduceLoadWidth(LoadN, ISD::ZEXTLOAD, ExtVT)) +    return false; + +  return true; +} + +bool DAGCombiner::isLegalNarrowLdSt(LSBaseSDNode *LDST, +                                    ISD::LoadExtType ExtType, EVT &MemVT, +                                    unsigned ShAmt) { +  if (!LDST) +    return false; +  // Only allow byte offsets. +  if (ShAmt % 8) +    return false; + +  // Do not generate loads of non-round integer types since these can +  // be expensive (and would be wrong if the type is not byte sized). +  if (!MemVT.isRound()) +    return false; + +  // Don't change the width of a volatile or atomic loads. +  if (!LDST->isSimple()) +    return false; + +  // Verify that we are actually reducing a load width here. +  if (LDST->getMemoryVT().getSizeInBits() < MemVT.getSizeInBits()) +    return false; + +  // Ensure that this isn't going to produce an unsupported memory access. +  if (ShAmt && +      !TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), MemVT, +                              LDST->getAddressSpace(), ShAmt / 8, +                              LDST->getMemOperand()->getFlags())) +    return false; + +  // It's not possible to generate a constant of extended or untyped type. +  EVT PtrType = LDST->getBasePtr().getValueType(); +  if (PtrType == MVT::Untyped || PtrType.isExtended()) +    return false; + +  if (isa<LoadSDNode>(LDST)) { +    LoadSDNode *Load = cast<LoadSDNode>(LDST); +    // Don't transform one with multiple uses, this would require adding a new +    // load. +    if (!SDValue(Load, 0).hasOneUse()) +      return false; + +    if (LegalOperations && +        !TLI.isLoadExtLegal(ExtType, Load->getValueType(0), MemVT)) +      return false; + +    // For the transform to be legal, the load must produce only two values +    // (the value loaded and the chain).  Don't transform a pre-increment +    // load, for example, which produces an extra value.  Otherwise the +    // transformation is not equivalent, and the downstream logic to replace +    // uses gets things wrong. +    if (Load->getNumValues() > 2) +      return false; + +    // If the load that we're shrinking is an extload and we're not just +    // discarding the extension we can't simply shrink the load. Bail. +    // TODO: It would be possible to merge the extensions in some cases. +    if (Load->getExtensionType() != ISD::NON_EXTLOAD && +        Load->getMemoryVT().getSizeInBits() < MemVT.getSizeInBits() + ShAmt) +      return false; + +    if (!TLI.shouldReduceLoadWidth(Load, ExtType, MemVT)) +      return false; +  } else { +    assert(isa<StoreSDNode>(LDST) && "It is not a Load nor a Store SDNode"); +    StoreSDNode *Store = cast<StoreSDNode>(LDST); +    // Can't write outside the original store +    if (Store->getMemoryVT().getSizeInBits() < MemVT.getSizeInBits() + ShAmt) +      return false; + +    if (LegalOperations && +        !TLI.isTruncStoreLegal(Store->getValue().getValueType(), MemVT)) +      return false; +  } +  return true; +} + +bool DAGCombiner::SearchForAndLoads(SDNode *N, +                                    SmallVectorImpl<LoadSDNode*> &Loads, +                                    SmallPtrSetImpl<SDNode*> &NodesWithConsts, +                                    ConstantSDNode *Mask, +                                    SDNode *&NodeToMask) { +  // Recursively search for the operands, looking for loads which can be +  // narrowed. +  for (SDValue Op : N->op_values()) { +    if (Op.getValueType().isVector()) +      return false; + +    // Some constants may need fixing up later if they are too large. +    if (auto *C = dyn_cast<ConstantSDNode>(Op)) { +      if ((N->getOpcode() == ISD::OR || N->getOpcode() == ISD::XOR) && +          (Mask->getAPIntValue() & C->getAPIntValue()) != C->getAPIntValue()) +        NodesWithConsts.insert(N); +      continue; +    } + +    if (!Op.hasOneUse()) +      return false; + +    switch(Op.getOpcode()) { +    case ISD::LOAD: { +      auto *Load = cast<LoadSDNode>(Op); +      EVT ExtVT; +      if (isAndLoadExtLoad(Mask, Load, Load->getValueType(0), ExtVT) && +          isLegalNarrowLdSt(Load, ISD::ZEXTLOAD, ExtVT)) { + +        // ZEXTLOAD is already small enough. +        if (Load->getExtensionType() == ISD::ZEXTLOAD && +            ExtVT.bitsGE(Load->getMemoryVT())) +          continue; + +        // Use LE to convert equal sized loads to zext. +        if (ExtVT.bitsLE(Load->getMemoryVT())) +          Loads.push_back(Load); + +        continue; +      } +      return false; +    } +    case ISD::ZERO_EXTEND: +    case ISD::AssertZext: { +      unsigned ActiveBits = Mask->getAPIntValue().countTrailingOnes(); +      EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits); +      EVT VT = Op.getOpcode() == ISD::AssertZext ? +        cast<VTSDNode>(Op.getOperand(1))->getVT() : +        Op.getOperand(0).getValueType(); + +      // We can accept extending nodes if the mask is wider or an equal +      // width to the original type. +      if (ExtVT.bitsGE(VT)) +        continue; +      break; +    } +    case ISD::OR: +    case ISD::XOR: +    case ISD::AND: +      if (!SearchForAndLoads(Op.getNode(), Loads, NodesWithConsts, Mask, +                             NodeToMask)) +        return false; +      continue; +    } + +    // Allow one node which will masked along with any loads found. +    if (NodeToMask) +      return false; + +    // Also ensure that the node to be masked only produces one data result. +    NodeToMask = Op.getNode(); +    if (NodeToMask->getNumValues() > 1) { +      bool HasValue = false; +      for (unsigned i = 0, e = NodeToMask->getNumValues(); i < e; ++i) { +        MVT VT = SDValue(NodeToMask, i).getSimpleValueType(); +        if (VT != MVT::Glue && VT != MVT::Other) { +          if (HasValue) { +            NodeToMask = nullptr; +            return false; +          } +          HasValue = true; +        } +      } +      assert(HasValue && "Node to be masked has no data result?"); +    } +  } +  return true; +} + +bool DAGCombiner::BackwardsPropagateMask(SDNode *N, SelectionDAG &DAG) { +  auto *Mask = dyn_cast<ConstantSDNode>(N->getOperand(1)); +  if (!Mask) +    return false; + +  if (!Mask->getAPIntValue().isMask()) +    return false; + +  // No need to do anything if the and directly uses a load. +  if (isa<LoadSDNode>(N->getOperand(0))) +    return false; + +  SmallVector<LoadSDNode*, 8> Loads; +  SmallPtrSet<SDNode*, 2> NodesWithConsts; +  SDNode *FixupNode = nullptr; +  if (SearchForAndLoads(N, Loads, NodesWithConsts, Mask, FixupNode)) { +    if (Loads.size() == 0) +      return false; + +    LLVM_DEBUG(dbgs() << "Backwards propagate AND: "; N->dump()); +    SDValue MaskOp = N->getOperand(1); + +    // If it exists, fixup the single node we allow in the tree that needs +    // masking. +    if (FixupNode) { +      LLVM_DEBUG(dbgs() << "First, need to fix up: "; FixupNode->dump()); +      SDValue And = DAG.getNode(ISD::AND, SDLoc(FixupNode), +                                FixupNode->getValueType(0), +                                SDValue(FixupNode, 0), MaskOp); +      DAG.ReplaceAllUsesOfValueWith(SDValue(FixupNode, 0), And); +      if (And.getOpcode() == ISD ::AND) +        DAG.UpdateNodeOperands(And.getNode(), SDValue(FixupNode, 0), MaskOp); +    } + +    // Narrow any constants that need it. +    for (auto *LogicN : NodesWithConsts) { +      SDValue Op0 = LogicN->getOperand(0); +      SDValue Op1 = LogicN->getOperand(1); + +      if (isa<ConstantSDNode>(Op0)) +          std::swap(Op0, Op1); + +      SDValue And = DAG.getNode(ISD::AND, SDLoc(Op1), Op1.getValueType(), +                                Op1, MaskOp); + +      DAG.UpdateNodeOperands(LogicN, Op0, And); +    } + +    // Create narrow loads. +    for (auto *Load : Loads) { +      LLVM_DEBUG(dbgs() << "Propagate AND back to: "; Load->dump()); +      SDValue And = DAG.getNode(ISD::AND, SDLoc(Load), Load->getValueType(0), +                                SDValue(Load, 0), MaskOp); +      DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 0), And); +      if (And.getOpcode() == ISD ::AND) +        And = SDValue( +            DAG.UpdateNodeOperands(And.getNode(), SDValue(Load, 0), MaskOp), 0); +      SDValue NewLoad = ReduceLoadWidth(And.getNode()); +      assert(NewLoad && +             "Shouldn't be masking the load if it can't be narrowed"); +      CombineTo(Load, NewLoad, NewLoad.getValue(1)); +    } +    DAG.ReplaceAllUsesWith(N, N->getOperand(0).getNode()); +    return true; +  } +  return false; +} + +// Unfold +//    x &  (-1 'logical shift' y) +// To +//    (x 'opposite logical shift' y) 'logical shift' y +// if it is better for performance. +SDValue DAGCombiner::unfoldExtremeBitClearingToShifts(SDNode *N) { +  assert(N->getOpcode() == ISD::AND); + +  SDValue N0 = N->getOperand(0); +  SDValue N1 = N->getOperand(1); + +  // Do we actually prefer shifts over mask? +  if (!TLI.shouldFoldMaskToVariableShiftPair(N0)) +    return SDValue(); + +  // Try to match  (-1 '[outer] logical shift' y) +  unsigned OuterShift; +  unsigned InnerShift; // The opposite direction to the OuterShift. +  SDValue Y;           // Shift amount. +  auto matchMask = [&OuterShift, &InnerShift, &Y](SDValue M) -> bool { +    if (!M.hasOneUse()) +      return false; +    OuterShift = M->getOpcode(); +    if (OuterShift == ISD::SHL) +      InnerShift = ISD::SRL; +    else if (OuterShift == ISD::SRL) +      InnerShift = ISD::SHL; +    else +      return false; +    if (!isAllOnesConstant(M->getOperand(0))) +      return false; +    Y = M->getOperand(1); +    return true; +  }; + +  SDValue X; +  if (matchMask(N1)) +    X = N0; +  else if (matchMask(N0)) +    X = N1; +  else +    return SDValue(); + +  SDLoc DL(N); +  EVT VT = N->getValueType(0); + +  //     tmp = x   'opposite logical shift' y +  SDValue T0 = DAG.getNode(InnerShift, DL, VT, X, Y); +  //     ret = tmp 'logical shift' y +  SDValue T1 = DAG.getNode(OuterShift, DL, VT, T0, Y); + +  return T1; +} + +/// Try to replace shift/logic that tests if a bit is clear with mask + setcc. +/// For a target with a bit test, this is expected to become test + set and save +/// at least 1 instruction. +static SDValue combineShiftAnd1ToBitTest(SDNode *And, SelectionDAG &DAG) { +  assert(And->getOpcode() == ISD::AND && "Expected an 'and' op"); + +  // This is probably not worthwhile without a supported type. +  EVT VT = And->getValueType(0); +  const TargetLowering &TLI = DAG.getTargetLoweringInfo(); +  if (!TLI.isTypeLegal(VT)) +    return SDValue(); + +  // Look through an optional extension and find a 'not'. +  // TODO: Should we favor test+set even without the 'not' op? +  SDValue Not = And->getOperand(0), And1 = And->getOperand(1); +  if (Not.getOpcode() == ISD::ANY_EXTEND) +    Not = Not.getOperand(0); +  if (!isBitwiseNot(Not) || !Not.hasOneUse() || !isOneConstant(And1)) +    return SDValue(); + +  // Look though an optional truncation. The source operand may not be the same +  // type as the original 'and', but that is ok because we are masking off +  // everything but the low bit. +  SDValue Srl = Not.getOperand(0); +  if (Srl.getOpcode() == ISD::TRUNCATE) +    Srl = Srl.getOperand(0); + +  // Match a shift-right by constant. +  if (Srl.getOpcode() != ISD::SRL || !Srl.hasOneUse() || +      !isa<ConstantSDNode>(Srl.getOperand(1))) +    return SDValue(); + +  // We might have looked through casts that make this transform invalid. +  // TODO: If the source type is wider than the result type, do the mask and +  //       compare in the source type. +  const APInt &ShiftAmt = Srl.getConstantOperandAPInt(1); +  unsigned VTBitWidth = VT.getSizeInBits(); +  if (ShiftAmt.uge(VTBitWidth)) +    return SDValue(); + +  // Turn this into a bit-test pattern using mask op + setcc: +  // and (not (srl X, C)), 1 --> (and X, 1<<C) == 0 +  SDLoc DL(And); +  SDValue X = DAG.getZExtOrTrunc(Srl.getOperand(0), DL, VT); +  EVT CCVT = TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); +  SDValue Mask = DAG.getConstant( +      APInt::getOneBitSet(VTBitWidth, ShiftAmt.getZExtValue()), DL, VT); +  SDValue NewAnd = DAG.getNode(ISD::AND, DL, VT, X, Mask); +  SDValue Zero = DAG.getConstant(0, DL, VT); +  SDValue Setcc = DAG.getSetCC(DL, CCVT, NewAnd, Zero, ISD::SETEQ); +  return DAG.getZExtOrTrunc(Setcc, DL, VT); +} + +SDValue DAGCombiner::visitAND(SDNode *N) { +  SDValue N0 = N->getOperand(0); +  SDValue N1 = N->getOperand(1); +  EVT VT = N1.getValueType(); + +  // x & x --> x +  if (N0 == N1) +    return N0; + +  // fold vector ops +  if (VT.isVector()) { +    if (SDValue FoldedVOp = SimplifyVBinOp(N)) +      return FoldedVOp; + +    // fold (and x, 0) -> 0, vector edition +    if (ISD::isBuildVectorAllZeros(N0.getNode())) +      // do not return N0, because undef node may exist in N0 +      return DAG.getConstant(APInt::getNullValue(N0.getScalarValueSizeInBits()), +                             SDLoc(N), N0.getValueType()); +    if (ISD::isBuildVectorAllZeros(N1.getNode())) +      // do not return N1, because undef node may exist in N1 +      return DAG.getConstant(APInt::getNullValue(N1.getScalarValueSizeInBits()), +                             SDLoc(N), N1.getValueType()); + +    // fold (and x, -1) -> x, vector edition +    if (ISD::isBuildVectorAllOnes(N0.getNode())) +      return N1; +    if (ISD::isBuildVectorAllOnes(N1.getNode())) +      return N0; +  } + +  // fold (and c1, c2) -> c1&c2 +  ConstantSDNode *N0C = getAsNonOpaqueConstant(N0); +  ConstantSDNode *N1C = isConstOrConstSplat(N1); +  if (N0C && N1C && !N1C->isOpaque()) +    return DAG.FoldConstantArithmetic(ISD::AND, SDLoc(N), VT, N0C, N1C); +  // canonicalize constant to RHS +  if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && +      !DAG.isConstantIntBuildVectorOrConstantInt(N1)) +    return DAG.getNode(ISD::AND, SDLoc(N), VT, N1, N0); +  // fold (and x, -1) -> x +  if (isAllOnesConstant(N1)) +    return N0; +  // if (and x, c) is known to be zero, return 0 +  unsigned BitWidth = VT.getScalarSizeInBits(); +  if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0), +                                   APInt::getAllOnesValue(BitWidth))) +    return DAG.getConstant(0, SDLoc(N), VT); + +  if (SDValue NewSel = foldBinOpIntoSelect(N)) +    return NewSel; + +  // reassociate and +  if (SDValue RAND = reassociateOps(ISD::AND, SDLoc(N), N0, N1, N->getFlags())) +    return RAND; + +  // Try to convert a constant mask AND into a shuffle clear mask. +  if (VT.isVector()) +    if (SDValue Shuffle = XformToShuffleWithZero(N)) +      return Shuffle; + +  // fold (and (or x, C), D) -> D if (C & D) == D +  auto MatchSubset = [](ConstantSDNode *LHS, ConstantSDNode *RHS) { +    return RHS->getAPIntValue().isSubsetOf(LHS->getAPIntValue()); +  }; +  if (N0.getOpcode() == ISD::OR && +      ISD::matchBinaryPredicate(N0.getOperand(1), N1, MatchSubset)) +    return N1; +  // fold (and (any_ext V), c) -> (zero_ext V) if 'and' only clears top bits. +  if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) { +    SDValue N0Op0 = N0.getOperand(0); +    APInt Mask = ~N1C->getAPIntValue(); +    Mask = Mask.trunc(N0Op0.getScalarValueSizeInBits()); +    if (DAG.MaskedValueIsZero(N0Op0, Mask)) { +      SDValue Zext = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), +                                 N0.getValueType(), N0Op0); + +      // Replace uses of the AND with uses of the Zero extend node. +      CombineTo(N, Zext); + +      // We actually want to replace all uses of the any_extend with the +      // zero_extend, to avoid duplicating things.  This will later cause this +      // AND to be folded. +      CombineTo(N0.getNode(), Zext); +      return SDValue(N, 0);   // Return N so it doesn't get rechecked! +    } +  } + +  // similarly fold (and (X (load ([non_ext|any_ext|zero_ext] V))), c) -> +  // (X (load ([non_ext|zero_ext] V))) if 'and' only clears top bits which must +  // already be zero by virtue of the width of the base type of the load. +  // +  // the 'X' node here can either be nothing or an extract_vector_elt to catch +  // more cases. +  if ((N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && +       N0.getValueSizeInBits() == N0.getOperand(0).getScalarValueSizeInBits() && +       N0.getOperand(0).getOpcode() == ISD::LOAD && +       N0.getOperand(0).getResNo() == 0) || +      (N0.getOpcode() == ISD::LOAD && N0.getResNo() == 0)) { +    LoadSDNode *Load = cast<LoadSDNode>( (N0.getOpcode() == ISD::LOAD) ? +                                         N0 : N0.getOperand(0) ); + +    // Get the constant (if applicable) the zero'th operand is being ANDed with. +    // This can be a pure constant or a vector splat, in which case we treat the +    // vector as a scalar and use the splat value. +    APInt Constant = APInt::getNullValue(1); +    if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) { +      Constant = C->getAPIntValue(); +    } else if (BuildVectorSDNode *Vector = dyn_cast<BuildVectorSDNode>(N1)) { +      APInt SplatValue, SplatUndef; +      unsigned SplatBitSize; +      bool HasAnyUndefs; +      bool IsSplat = Vector->isConstantSplat(SplatValue, SplatUndef, +                                             SplatBitSize, HasAnyUndefs); +      if (IsSplat) { +        // Undef bits can contribute to a possible optimisation if set, so +        // set them. +        SplatValue |= SplatUndef; + +        // The splat value may be something like "0x00FFFFFF", which means 0 for +        // the first vector value and FF for the rest, repeating. We need a mask +        // that will apply equally to all members of the vector, so AND all the +        // lanes of the constant together. +        unsigned EltBitWidth = Vector->getValueType(0).getScalarSizeInBits(); + +        // If the splat value has been compressed to a bitlength lower +        // than the size of the vector lane, we need to re-expand it to +        // the lane size. +        if (EltBitWidth > SplatBitSize) +          for (SplatValue = SplatValue.zextOrTrunc(EltBitWidth); +               SplatBitSize < EltBitWidth; SplatBitSize = SplatBitSize * 2) +            SplatValue |= SplatValue.shl(SplatBitSize); + +        // Make sure that variable 'Constant' is only set if 'SplatBitSize' is a +        // multiple of 'BitWidth'. Otherwise, we could propagate a wrong value. +        if ((SplatBitSize % EltBitWidth) == 0) { +          Constant = APInt::getAllOnesValue(EltBitWidth); +          for (unsigned i = 0, n = (SplatBitSize / EltBitWidth); i < n; ++i) +            Constant &= SplatValue.extractBits(EltBitWidth, i * EltBitWidth); +        } +      } +    } + +    // If we want to change an EXTLOAD to a ZEXTLOAD, ensure a ZEXTLOAD is +    // actually legal and isn't going to get expanded, else this is a false +    // optimisation. +    bool CanZextLoadProfitably = TLI.isLoadExtLegal(ISD::ZEXTLOAD, +                                                    Load->getValueType(0), +                                                    Load->getMemoryVT()); + +    // Resize the constant to the same size as the original memory access before +    // extension. If it is still the AllOnesValue then this AND is completely +    // unneeded. +    Constant = Constant.zextOrTrunc(Load->getMemoryVT().getScalarSizeInBits()); + +    bool B; +    switch (Load->getExtensionType()) { +    default: B = false; break; +    case ISD::EXTLOAD: B = CanZextLoadProfitably; break; +    case ISD::ZEXTLOAD: +    case ISD::NON_EXTLOAD: B = true; break; +    } + +    if (B && Constant.isAllOnesValue()) { +      // If the load type was an EXTLOAD, convert to ZEXTLOAD in order to +      // preserve semantics once we get rid of the AND. +      SDValue NewLoad(Load, 0); + +      // Fold the AND away. NewLoad may get replaced immediately. +      CombineTo(N, (N0.getNode() == Load) ? NewLoad : N0); + +      if (Load->getExtensionType() == ISD::EXTLOAD) { +        NewLoad = DAG.getLoad(Load->getAddressingMode(), ISD::ZEXTLOAD, +                              Load->getValueType(0), SDLoc(Load), +                              Load->getChain(), Load->getBasePtr(), +                              Load->getOffset(), Load->getMemoryVT(), +                              Load->getMemOperand()); +        // Replace uses of the EXTLOAD with the new ZEXTLOAD. +        if (Load->getNumValues() == 3) { +          // PRE/POST_INC loads have 3 values. +          SDValue To[] = { NewLoad.getValue(0), NewLoad.getValue(1), +                           NewLoad.getValue(2) }; +          CombineTo(Load, To, 3, true); +        } else { +          CombineTo(Load, NewLoad.getValue(0), NewLoad.getValue(1)); +        } +      } + +      return SDValue(N, 0); // Return N so it doesn't get rechecked! +    } +  } + +  // fold (and (load x), 255) -> (zextload x, i8) +  // fold (and (extload x, i16), 255) -> (zextload x, i8) +  // fold (and (any_ext (extload x, i16)), 255) -> (zextload x, i8) +  if (!VT.isVector() && N1C && (N0.getOpcode() == ISD::LOAD || +                                (N0.getOpcode() == ISD::ANY_EXTEND && +                                 N0.getOperand(0).getOpcode() == ISD::LOAD))) { +    if (SDValue Res = ReduceLoadWidth(N)) { +      LoadSDNode *LN0 = N0->getOpcode() == ISD::ANY_EXTEND +        ? cast<LoadSDNode>(N0.getOperand(0)) : cast<LoadSDNode>(N0); +      AddToWorklist(N); +      DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 0), Res); +      return SDValue(N, 0); +    } +  } + +  if (Level >= AfterLegalizeTypes) { +    // Attempt to propagate the AND back up to the leaves which, if they're +    // loads, can be combined to narrow loads and the AND node can be removed. +    // Perform after legalization so that extend nodes will already be +    // combined into the loads. +    if (BackwardsPropagateMask(N, DAG)) { +      return SDValue(N, 0); +    } +  } + +  if (SDValue Combined = visitANDLike(N0, N1, N)) +    return Combined; + +  // Simplify: (and (op x...), (op y...))  -> (op (and x, y)) +  if (N0.getOpcode() == N1.getOpcode()) +    if (SDValue V = hoistLogicOpWithSameOpcodeHands(N)) +      return V; + +  // Masking the negated extension of a boolean is just the zero-extended +  // boolean: +  // and (sub 0, zext(bool X)), 1 --> zext(bool X) +  // and (sub 0, sext(bool X)), 1 --> zext(bool X) +  // +  // Note: the SimplifyDemandedBits fold below can make an information-losing +  // transform, and then we have no way to find this better fold. +  if (N1C && N1C->isOne() && N0.getOpcode() == ISD::SUB) { +    if (isNullOrNullSplat(N0.getOperand(0))) { +      SDValue SubRHS = N0.getOperand(1); +      if (SubRHS.getOpcode() == ISD::ZERO_EXTEND && +          SubRHS.getOperand(0).getScalarValueSizeInBits() == 1) +        return SubRHS; +      if (SubRHS.getOpcode() == ISD::SIGN_EXTEND && +          SubRHS.getOperand(0).getScalarValueSizeInBits() == 1) +        return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, SubRHS.getOperand(0)); +    } +  } + +  // fold (and (sign_extend_inreg x, i16 to i32), 1) -> (and x, 1) +  // fold (and (sra)) -> (and (srl)) when possible. +  if (SimplifyDemandedBits(SDValue(N, 0))) +    return SDValue(N, 0); + +  // fold (zext_inreg (extload x)) -> (zextload x) +  // fold (zext_inreg (sextload x)) -> (zextload x) iff load has one use +  if (ISD::isUNINDEXEDLoad(N0.getNode()) && +      (ISD::isEXTLoad(N0.getNode()) || +       (ISD::isSEXTLoad(N0.getNode()) && N0.hasOneUse()))) { +    LoadSDNode *LN0 = cast<LoadSDNode>(N0); +    EVT MemVT = LN0->getMemoryVT(); +    // If we zero all the possible extended bits, then we can turn this into +    // a zextload if we are running before legalize or the operation is legal. +    unsigned ExtBitSize = N1.getScalarValueSizeInBits(); +    unsigned MemBitSize = MemVT.getScalarSizeInBits(); +    APInt ExtBits = APInt::getHighBitsSet(ExtBitSize, ExtBitSize - MemBitSize); +    if (DAG.MaskedValueIsZero(N1, ExtBits) && +        ((!LegalOperations && LN0->isSimple()) || +         TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT))) { +      SDValue ExtLoad = +          DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N0), VT, LN0->getChain(), +                         LN0->getBasePtr(), MemVT, LN0->getMemOperand()); +      AddToWorklist(N); +      CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1)); +      return SDValue(N, 0); // Return N so it doesn't get rechecked! +    } +  } + +  // fold (and (or (srl N, 8), (shl N, 8)), 0xffff) -> (srl (bswap N), const) +  if (N1C && N1C->getAPIntValue() == 0xffff && N0.getOpcode() == ISD::OR) { +    if (SDValue BSwap = MatchBSwapHWordLow(N0.getNode(), N0.getOperand(0), +                                           N0.getOperand(1), false)) +      return BSwap; +  } + +  if (SDValue Shifts = unfoldExtremeBitClearingToShifts(N)) +    return Shifts; + +  if (TLI.hasBitTest(N0, N1)) +    if (SDValue V = combineShiftAnd1ToBitTest(N, DAG)) +      return V; + +  return SDValue(); +} + +/// Match (a >> 8) | (a << 8) as (bswap a) >> 16. +SDValue DAGCombiner::MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1, +                                        bool DemandHighBits) { +  if (!LegalOperations) +    return SDValue(); + +  EVT VT = N->getValueType(0); +  if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16) +    return SDValue(); +  if (!TLI.isOperationLegalOrCustom(ISD::BSWAP, VT)) +    return SDValue(); + +  // Recognize (and (shl a, 8), 0xff00), (and (srl a, 8), 0xff) +  bool LookPassAnd0 = false; +  bool LookPassAnd1 = false; +  if (N0.getOpcode() == ISD::AND && N0.getOperand(0).getOpcode() == ISD::SRL) +      std::swap(N0, N1); +  if (N1.getOpcode() == ISD::AND && N1.getOperand(0).getOpcode() == ISD::SHL) +      std::swap(N0, N1); +  if (N0.getOpcode() == ISD::AND) { +    if (!N0.getNode()->hasOneUse()) +      return SDValue(); +    ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); +    // Also handle 0xffff since the LHS is guaranteed to have zeros there. +    // This is needed for X86. +    if (!N01C || (N01C->getZExtValue() != 0xFF00 && +                  N01C->getZExtValue() != 0xFFFF)) +      return SDValue(); +    N0 = N0.getOperand(0); +    LookPassAnd0 = true; +  } + +  if (N1.getOpcode() == ISD::AND) { +    if (!N1.getNode()->hasOneUse()) +      return SDValue(); +    ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1)); +    if (!N11C || N11C->getZExtValue() != 0xFF) +      return SDValue(); +    N1 = N1.getOperand(0); +    LookPassAnd1 = true; +  } + +  if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL) +    std::swap(N0, N1); +  if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL) +    return SDValue(); +  if (!N0.getNode()->hasOneUse() || !N1.getNode()->hasOneUse()) +    return SDValue(); + +  ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); +  ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1)); +  if (!N01C || !N11C) +    return SDValue(); +  if (N01C->getZExtValue() != 8 || N11C->getZExtValue() != 8) +    return SDValue(); + +  // Look for (shl (and a, 0xff), 8), (srl (and a, 0xff00), 8) +  SDValue N00 = N0->getOperand(0); +  if (!LookPassAnd0 && N00.getOpcode() == ISD::AND) { +    if (!N00.getNode()->hasOneUse()) +      return SDValue(); +    ConstantSDNode *N001C = dyn_cast<ConstantSDNode>(N00.getOperand(1)); +    if (!N001C || N001C->getZExtValue() != 0xFF) +      return SDValue(); +    N00 = N00.getOperand(0); +    LookPassAnd0 = true; +  } + +  SDValue N10 = N1->getOperand(0); +  if (!LookPassAnd1 && N10.getOpcode() == ISD::AND) { +    if (!N10.getNode()->hasOneUse()) +      return SDValue(); +    ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N10.getOperand(1)); +    // Also allow 0xFFFF since the bits will be shifted out. This is needed +    // for X86. +    if (!N101C || (N101C->getZExtValue() != 0xFF00 && +                   N101C->getZExtValue() != 0xFFFF)) +      return SDValue(); +    N10 = N10.getOperand(0); +    LookPassAnd1 = true; +  } + +  if (N00 != N10) +    return SDValue(); + +  // Make sure everything beyond the low halfword gets set to zero since the SRL +  // 16 will clear the top bits. +  unsigned OpSizeInBits = VT.getSizeInBits(); +  if (DemandHighBits && OpSizeInBits > 16) { +    // If the left-shift isn't masked out then the only way this is a bswap is +    // if all bits beyond the low 8 are 0. In that case the entire pattern +    // reduces to a left shift anyway: leave it for other parts of the combiner. +    if (!LookPassAnd0) +      return SDValue(); + +    // However, if the right shift isn't masked out then it might be because +    // it's not needed. See if we can spot that too. +    if (!LookPassAnd1 && +        !DAG.MaskedValueIsZero( +            N10, APInt::getHighBitsSet(OpSizeInBits, OpSizeInBits - 16))) +      return SDValue(); +  } + +  SDValue Res = DAG.getNode(ISD::BSWAP, SDLoc(N), VT, N00); +  if (OpSizeInBits > 16) { +    SDLoc DL(N); +    Res = DAG.getNode(ISD::SRL, DL, VT, Res, +                      DAG.getConstant(OpSizeInBits - 16, DL, +                                      getShiftAmountTy(VT))); +  } +  return Res; +} + +/// Return true if the specified node is an element that makes up a 32-bit +/// packed halfword byteswap. +/// ((x & 0x000000ff) << 8) | +/// ((x & 0x0000ff00) >> 8) | +/// ((x & 0x00ff0000) << 8) | +/// ((x & 0xff000000) >> 8) +static bool isBSwapHWordElement(SDValue N, MutableArrayRef<SDNode *> Parts) { +  if (!N.getNode()->hasOneUse()) +    return false; + +  unsigned Opc = N.getOpcode(); +  if (Opc != ISD::AND && Opc != ISD::SHL && Opc != ISD::SRL) +    return false; + +  SDValue N0 = N.getOperand(0); +  unsigned Opc0 = N0.getOpcode(); +  if (Opc0 != ISD::AND && Opc0 != ISD::SHL && Opc0 != ISD::SRL) +    return false; + +  ConstantSDNode *N1C = nullptr; +  // SHL or SRL: look upstream for AND mask operand +  if (Opc == ISD::AND) +    N1C = dyn_cast<ConstantSDNode>(N.getOperand(1)); +  else if (Opc0 == ISD::AND) +    N1C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); +  if (!N1C) +    return false; + +  unsigned MaskByteOffset; +  switch (N1C->getZExtValue()) { +  default: +    return false; +  case 0xFF:       MaskByteOffset = 0; break; +  case 0xFF00:     MaskByteOffset = 1; break; +  case 0xFFFF: +    // In case demanded bits didn't clear the bits that will be shifted out. +    // This is needed for X86. +    if (Opc == ISD::SRL || (Opc == ISD::AND && Opc0 == ISD::SHL)) { +      MaskByteOffset = 1; +      break; +    } +    return false; +  case 0xFF0000:   MaskByteOffset = 2; break; +  case 0xFF000000: MaskByteOffset = 3; break; +  } + +  // Look for (x & 0xff) << 8 as well as ((x << 8) & 0xff00). +  if (Opc == ISD::AND) { +    if (MaskByteOffset == 0 || MaskByteOffset == 2) { +      // (x >> 8) & 0xff +      // (x >> 8) & 0xff0000 +      if (Opc0 != ISD::SRL) +        return false; +      ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); +      if (!C || C->getZExtValue() != 8) +        return false; +    } else { +      // (x << 8) & 0xff00 +      // (x << 8) & 0xff000000 +      if (Opc0 != ISD::SHL) +        return false; +      ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); +      if (!C || C->getZExtValue() != 8) +        return false; +    } +  } else if (Opc == ISD::SHL) { +    // (x & 0xff) << 8 +    // (x & 0xff0000) << 8 +    if (MaskByteOffset != 0 && MaskByteOffset != 2) +      return false; +    ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1)); +    if (!C || C->getZExtValue() != 8) +      return false; +  } else { // Opc == ISD::SRL +    // (x & 0xff00) >> 8 +    // (x & 0xff000000) >> 8 +    if (MaskByteOffset != 1 && MaskByteOffset != 3) +      return false; +    ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1)); +    if (!C || C->getZExtValue() != 8) +      return false; +  } + +  if (Parts[MaskByteOffset]) +    return false; + +  Parts[MaskByteOffset] = N0.getOperand(0).getNode(); +  return true; +} + +// Match 2 elements of a packed halfword bswap. +static bool isBSwapHWordPair(SDValue N, MutableArrayRef<SDNode *> Parts) { +  if (N.getOpcode() == ISD::OR) +    return isBSwapHWordElement(N.getOperand(0), Parts) && +           isBSwapHWordElement(N.getOperand(1), Parts); + +  if (N.getOpcode() == ISD::SRL && N.getOperand(0).getOpcode() == ISD::BSWAP) { +    ConstantSDNode *C = isConstOrConstSplat(N.getOperand(1)); +    if (!C || C->getAPIntValue() != 16) +      return false; +    Parts[0] = Parts[1] = N.getOperand(0).getOperand(0).getNode(); +    return true; +  } + +  return false; +} + +/// Match a 32-bit packed halfword bswap. That is +/// ((x & 0x000000ff) << 8) | +/// ((x & 0x0000ff00) >> 8) | +/// ((x & 0x00ff0000) << 8) | +/// ((x & 0xff000000) >> 8) +/// => (rotl (bswap x), 16) +SDValue DAGCombiner::MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1) { +  if (!LegalOperations) +    return SDValue(); + +  EVT VT = N->getValueType(0); +  if (VT != MVT::i32) +    return SDValue(); +  if (!TLI.isOperationLegalOrCustom(ISD::BSWAP, VT)) +    return SDValue(); + +  // Look for either +  // (or (bswaphpair), (bswaphpair)) +  // (or (or (bswaphpair), (and)), (and)) +  // (or (or (and), (bswaphpair)), (and)) +  SDNode *Parts[4] = {}; + +  if (isBSwapHWordPair(N0, Parts)) { +    // (or (or (and), (and)), (or (and), (and))) +    if (!isBSwapHWordPair(N1, Parts)) +      return SDValue(); +  } else if (N0.getOpcode() == ISD::OR) { +    // (or (or (or (and), (and)), (and)), (and)) +    if (!isBSwapHWordElement(N1, Parts)) +      return SDValue(); +    SDValue N00 = N0.getOperand(0); +    SDValue N01 = N0.getOperand(1); +    if (!(isBSwapHWordElement(N01, Parts) && isBSwapHWordPair(N00, Parts)) && +        !(isBSwapHWordElement(N00, Parts) && isBSwapHWordPair(N01, Parts))) +      return SDValue(); +  } else +    return SDValue(); + +  // Make sure the parts are all coming from the same node. +  if (Parts[0] != Parts[1] || Parts[0] != Parts[2] || Parts[0] != Parts[3]) +    return SDValue(); + +  SDLoc DL(N); +  SDValue BSwap = DAG.getNode(ISD::BSWAP, DL, VT, +                              SDValue(Parts[0], 0)); + +  // Result of the bswap should be rotated by 16. If it's not legal, then +  // do  (x << 16) | (x >> 16). +  SDValue ShAmt = DAG.getConstant(16, DL, getShiftAmountTy(VT)); +  if (TLI.isOperationLegalOrCustom(ISD::ROTL, VT)) +    return DAG.getNode(ISD::ROTL, DL, VT, BSwap, ShAmt); +  if (TLI.isOperationLegalOrCustom(ISD::ROTR, VT)) +    return DAG.getNode(ISD::ROTR, DL, VT, BSwap, ShAmt); +  return DAG.getNode(ISD::OR, DL, VT, +                     DAG.getNode(ISD::SHL, DL, VT, BSwap, ShAmt), +                     DAG.getNode(ISD::SRL, DL, VT, BSwap, ShAmt)); +} + +/// This contains all DAGCombine rules which reduce two values combined by +/// an Or operation to a single value \see visitANDLike(). +SDValue DAGCombiner::visitORLike(SDValue N0, SDValue N1, SDNode *N) { +  EVT VT = N1.getValueType(); +  SDLoc DL(N); + +  // fold (or x, undef) -> -1 +  if (!LegalOperations && (N0.isUndef() || N1.isUndef())) +    return DAG.getAllOnesConstant(DL, VT); + +  if (SDValue V = foldLogicOfSetCCs(false, N0, N1, DL)) +    return V; + +  // (or (and X, C1), (and Y, C2))  -> (and (or X, Y), C3) if possible. +  if (N0.getOpcode() == ISD::AND && N1.getOpcode() == ISD::AND && +      // Don't increase # computations. +      (N0.getNode()->hasOneUse() || N1.getNode()->hasOneUse())) { +    // We can only do this xform if we know that bits from X that are set in C2 +    // but not in C1 are already zero.  Likewise for Y. +    if (const ConstantSDNode *N0O1C = +        getAsNonOpaqueConstant(N0.getOperand(1))) { +      if (const ConstantSDNode *N1O1C = +          getAsNonOpaqueConstant(N1.getOperand(1))) { +        // We can only do this xform if we know that bits from X that are set in +        // C2 but not in C1 are already zero.  Likewise for Y. +        const APInt &LHSMask = N0O1C->getAPIntValue(); +        const APInt &RHSMask = N1O1C->getAPIntValue(); + +        if (DAG.MaskedValueIsZero(N0.getOperand(0), RHSMask&~LHSMask) && +            DAG.MaskedValueIsZero(N1.getOperand(0), LHSMask&~RHSMask)) { +          SDValue X = DAG.getNode(ISD::OR, SDLoc(N0), VT, +                                  N0.getOperand(0), N1.getOperand(0)); +          return DAG.getNode(ISD::AND, DL, VT, X, +                             DAG.getConstant(LHSMask | RHSMask, DL, VT)); +        } +      } +    } +  } + +  // (or (and X, M), (and X, N)) -> (and X, (or M, N)) +  if (N0.getOpcode() == ISD::AND && +      N1.getOpcode() == ISD::AND && +      N0.getOperand(0) == N1.getOperand(0) && +      // Don't increase # computations. +      (N0.getNode()->hasOneUse() || N1.getNode()->hasOneUse())) { +    SDValue X = DAG.getNode(ISD::OR, SDLoc(N0), VT, +                            N0.getOperand(1), N1.getOperand(1)); +    return DAG.getNode(ISD::AND, DL, VT, N0.getOperand(0), X); +  } + +  return SDValue(); +} + +/// OR combines for which the commuted variant will be tried as well. +static SDValue visitORCommutative( +    SelectionDAG &DAG, SDValue N0, SDValue N1, SDNode *N) { +  EVT VT = N0.getValueType(); +  if (N0.getOpcode() == ISD::AND) { +    // fold (or (and X, (xor Y, -1)), Y) -> (or X, Y) +    if (isBitwiseNot(N0.getOperand(1)) && N0.getOperand(1).getOperand(0) == N1) +      return DAG.getNode(ISD::OR, SDLoc(N), VT, N0.getOperand(0), N1); + +    // fold (or (and (xor Y, -1), X), Y) -> (or X, Y) +    if (isBitwiseNot(N0.getOperand(0)) && N0.getOperand(0).getOperand(0) == N1) +      return DAG.getNode(ISD::OR, SDLoc(N), VT, N0.getOperand(1), N1); +  } + +  return SDValue(); +} + +SDValue DAGCombiner::visitOR(SDNode *N) { +  SDValue N0 = N->getOperand(0); +  SDValue N1 = N->getOperand(1); +  EVT VT = N1.getValueType(); + +  // x | x --> x +  if (N0 == N1) +    return N0; + +  // fold vector ops +  if (VT.isVector()) { +    if (SDValue FoldedVOp = SimplifyVBinOp(N)) +      return FoldedVOp; + +    // fold (or x, 0) -> x, vector edition +    if (ISD::isBuildVectorAllZeros(N0.getNode())) +      return N1; +    if (ISD::isBuildVectorAllZeros(N1.getNode())) +      return N0; + +    // fold (or x, -1) -> -1, vector edition +    if (ISD::isBuildVectorAllOnes(N0.getNode())) +      // do not return N0, because undef node may exist in N0 +      return DAG.getAllOnesConstant(SDLoc(N), N0.getValueType()); +    if (ISD::isBuildVectorAllOnes(N1.getNode())) +      // do not return N1, because undef node may exist in N1 +      return DAG.getAllOnesConstant(SDLoc(N), N1.getValueType()); + +    // fold (or (shuf A, V_0, MA), (shuf B, V_0, MB)) -> (shuf A, B, Mask) +    // Do this only if the resulting shuffle is legal. +    if (isa<ShuffleVectorSDNode>(N0) && +        isa<ShuffleVectorSDNode>(N1) && +        // Avoid folding a node with illegal type. +        TLI.isTypeLegal(VT)) { +      bool ZeroN00 = ISD::isBuildVectorAllZeros(N0.getOperand(0).getNode()); +      bool ZeroN01 = ISD::isBuildVectorAllZeros(N0.getOperand(1).getNode()); +      bool ZeroN10 = ISD::isBuildVectorAllZeros(N1.getOperand(0).getNode()); +      bool ZeroN11 = ISD::isBuildVectorAllZeros(N1.getOperand(1).getNode()); +      // Ensure both shuffles have a zero input. +      if ((ZeroN00 != ZeroN01) && (ZeroN10 != ZeroN11)) { +        assert((!ZeroN00 || !ZeroN01) && "Both inputs zero!"); +        assert((!ZeroN10 || !ZeroN11) && "Both inputs zero!"); +        const ShuffleVectorSDNode *SV0 = cast<ShuffleVectorSDNode>(N0); +        const ShuffleVectorSDNode *SV1 = cast<ShuffleVectorSDNode>(N1); +        bool CanFold = true; +        int NumElts = VT.getVectorNumElements(); +        SmallVector<int, 4> Mask(NumElts); + +        for (int i = 0; i != NumElts; ++i) { +          int M0 = SV0->getMaskElt(i); +          int M1 = SV1->getMaskElt(i); + +          // Determine if either index is pointing to a zero vector. +          bool M0Zero = M0 < 0 || (ZeroN00 == (M0 < NumElts)); +          bool M1Zero = M1 < 0 || (ZeroN10 == (M1 < NumElts)); + +          // If one element is zero and the otherside is undef, keep undef. +          // This also handles the case that both are undef. +          if ((M0Zero && M1 < 0) || (M1Zero && M0 < 0)) { +            Mask[i] = -1; +            continue; +          } + +          // Make sure only one of the elements is zero. +          if (M0Zero == M1Zero) { +            CanFold = false; +            break; +          } + +          assert((M0 >= 0 || M1 >= 0) && "Undef index!"); + +          // We have a zero and non-zero element. If the non-zero came from +          // SV0 make the index a LHS index. If it came from SV1, make it +          // a RHS index. We need to mod by NumElts because we don't care +          // which operand it came from in the original shuffles. +          Mask[i] = M1Zero ? M0 % NumElts : (M1 % NumElts) + NumElts; +        } + +        if (CanFold) { +          SDValue NewLHS = ZeroN00 ? N0.getOperand(1) : N0.getOperand(0); +          SDValue NewRHS = ZeroN10 ? N1.getOperand(1) : N1.getOperand(0); + +          SDValue LegalShuffle = +              TLI.buildLegalVectorShuffle(VT, SDLoc(N), NewLHS, NewRHS, +                                          Mask, DAG); +          if (LegalShuffle) +            return LegalShuffle; +        } +      } +    } +  } + +  // fold (or c1, c2) -> c1|c2 +  ConstantSDNode *N0C = getAsNonOpaqueConstant(N0); +  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); +  if (N0C && N1C && !N1C->isOpaque()) +    return DAG.FoldConstantArithmetic(ISD::OR, SDLoc(N), VT, N0C, N1C); +  // canonicalize constant to RHS +  if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && +     !DAG.isConstantIntBuildVectorOrConstantInt(N1)) +    return DAG.getNode(ISD::OR, SDLoc(N), VT, N1, N0); +  // fold (or x, 0) -> x +  if (isNullConstant(N1)) +    return N0; +  // fold (or x, -1) -> -1 +  if (isAllOnesConstant(N1)) +    return N1; + +  if (SDValue NewSel = foldBinOpIntoSelect(N)) +    return NewSel; + +  // fold (or x, c) -> c iff (x & ~c) == 0 +  if (N1C && DAG.MaskedValueIsZero(N0, ~N1C->getAPIntValue())) +    return N1; + +  if (SDValue Combined = visitORLike(N0, N1, N)) +    return Combined; + +  // Recognize halfword bswaps as (bswap + rotl 16) or (bswap + shl 16) +  if (SDValue BSwap = MatchBSwapHWord(N, N0, N1)) +    return BSwap; +  if (SDValue BSwap = MatchBSwapHWordLow(N, N0, N1)) +    return BSwap; + +  // reassociate or +  if (SDValue ROR = reassociateOps(ISD::OR, SDLoc(N), N0, N1, N->getFlags())) +    return ROR; + +  // Canonicalize (or (and X, c1), c2) -> (and (or X, c2), c1|c2) +  // iff (c1 & c2) != 0 or c1/c2 are undef. +  auto MatchIntersect = [](ConstantSDNode *C1, ConstantSDNode *C2) { +    return !C1 || !C2 || C1->getAPIntValue().intersects(C2->getAPIntValue()); +  }; +  if (N0.getOpcode() == ISD::AND && N0.getNode()->hasOneUse() && +      ISD::matchBinaryPredicate(N0.getOperand(1), N1, MatchIntersect, true)) { +    if (SDValue COR = DAG.FoldConstantArithmetic( +            ISD::OR, SDLoc(N1), VT, N1.getNode(), N0.getOperand(1).getNode())) { +      SDValue IOR = DAG.getNode(ISD::OR, SDLoc(N0), VT, N0.getOperand(0), N1); +      AddToWorklist(IOR.getNode()); +      return DAG.getNode(ISD::AND, SDLoc(N), VT, COR, IOR); +    } +  } + +  if (SDValue Combined = visitORCommutative(DAG, N0, N1, N)) +    return Combined; +  if (SDValue Combined = visitORCommutative(DAG, N1, N0, N)) +    return Combined; + +  // Simplify: (or (op x...), (op y...))  -> (op (or x, y)) +  if (N0.getOpcode() == N1.getOpcode()) +    if (SDValue V = hoistLogicOpWithSameOpcodeHands(N)) +      return V; + +  // See if this is some rotate idiom. +  if (SDValue Rot = MatchRotate(N0, N1, SDLoc(N))) +    return Rot; + +  if (SDValue Load = MatchLoadCombine(N)) +    return Load; + +  // Simplify the operands using demanded-bits information. +  if (SimplifyDemandedBits(SDValue(N, 0))) +    return SDValue(N, 0); + +  // If OR can be rewritten into ADD, try combines based on ADD. +  if ((!LegalOperations || TLI.isOperationLegal(ISD::ADD, VT)) && +      DAG.haveNoCommonBitsSet(N0, N1)) +    if (SDValue Combined = visitADDLike(N)) +      return Combined; + +  return SDValue(); +} + +static SDValue stripConstantMask(SelectionDAG &DAG, SDValue Op, SDValue &Mask) { +  if (Op.getOpcode() == ISD::AND && +      DAG.isConstantIntBuildVectorOrConstantInt(Op.getOperand(1))) { +    Mask = Op.getOperand(1); +    return Op.getOperand(0); +  } +  return Op; +} + +/// Match "(X shl/srl V1) & V2" where V2 may not be present. +static bool matchRotateHalf(SelectionDAG &DAG, SDValue Op, SDValue &Shift, +                            SDValue &Mask) { +  Op = stripConstantMask(DAG, Op, Mask); +  if (Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SHL) { +    Shift = Op; +    return true; +  } +  return false; +} + +/// Helper function for visitOR to extract the needed side of a rotate idiom +/// from a shl/srl/mul/udiv.  This is meant to handle cases where +/// InstCombine merged some outside op with one of the shifts from +/// the rotate pattern. +/// \returns An empty \c SDValue if the needed shift couldn't be extracted. +/// Otherwise, returns an expansion of \p ExtractFrom based on the following +/// patterns: +/// +///   (or (add v v) (shrl v bitwidth-1)): +///     expands (add v v) -> (shl v 1) +/// +///   (or (mul v c0) (shrl (mul v c1) c2)): +///     expands (mul v c0) -> (shl (mul v c1) c3) +/// +///   (or (udiv v c0) (shl (udiv v c1) c2)): +///     expands (udiv v c0) -> (shrl (udiv v c1) c3) +/// +///   (or (shl v c0) (shrl (shl v c1) c2)): +///     expands (shl v c0) -> (shl (shl v c1) c3) +/// +///   (or (shrl v c0) (shl (shrl v c1) c2)): +///     expands (shrl v c0) -> (shrl (shrl v c1) c3) +/// +/// Such that in all cases, c3+c2==bitwidth(op v c1). +static SDValue extractShiftForRotate(SelectionDAG &DAG, SDValue OppShift, +                                     SDValue ExtractFrom, SDValue &Mask, +                                     const SDLoc &DL) { +  assert(OppShift && ExtractFrom && "Empty SDValue"); +  assert( +      (OppShift.getOpcode() == ISD::SHL || OppShift.getOpcode() == ISD::SRL) && +      "Existing shift must be valid as a rotate half"); + +  ExtractFrom = stripConstantMask(DAG, ExtractFrom, Mask); + +  // Value and Type of the shift. +  SDValue OppShiftLHS = OppShift.getOperand(0); +  EVT ShiftedVT = OppShiftLHS.getValueType(); + +  // Amount of the existing shift. +  ConstantSDNode *OppShiftCst = isConstOrConstSplat(OppShift.getOperand(1)); + +  // (add v v) -> (shl v 1) +  if (OppShift.getOpcode() == ISD::SRL && OppShiftCst && +      ExtractFrom.getOpcode() == ISD::ADD && +      ExtractFrom.getOperand(0) == ExtractFrom.getOperand(1) && +      ExtractFrom.getOperand(0) == OppShiftLHS && +      OppShiftCst->getAPIntValue() == ShiftedVT.getScalarSizeInBits() - 1) +    return DAG.getNode(ISD::SHL, DL, ShiftedVT, OppShiftLHS, +                       DAG.getShiftAmountConstant(1, ShiftedVT, DL)); + +  // Preconditions: +  //    (or (op0 v c0) (shiftl/r (op0 v c1) c2)) +  // +  // Find opcode of the needed shift to be extracted from (op0 v c0). +  unsigned Opcode = ISD::DELETED_NODE; +  bool IsMulOrDiv = false; +  // Set Opcode and IsMulOrDiv if the extract opcode matches the needed shift +  // opcode or its arithmetic (mul or udiv) variant. +  auto SelectOpcode = [&](unsigned NeededShift, unsigned MulOrDivVariant) { +    IsMulOrDiv = ExtractFrom.getOpcode() == MulOrDivVariant; +    if (!IsMulOrDiv && ExtractFrom.getOpcode() != NeededShift) +      return false; +    Opcode = NeededShift; +    return true; +  }; +  // op0 must be either the needed shift opcode or the mul/udiv equivalent +  // that the needed shift can be extracted from. +  if ((OppShift.getOpcode() != ISD::SRL || !SelectOpcode(ISD::SHL, ISD::MUL)) && +      (OppShift.getOpcode() != ISD::SHL || !SelectOpcode(ISD::SRL, ISD::UDIV))) +    return SDValue(); + +  // op0 must be the same opcode on both sides, have the same LHS argument, +  // and produce the same value type. +  if (OppShiftLHS.getOpcode() != ExtractFrom.getOpcode() || +      OppShiftLHS.getOperand(0) != ExtractFrom.getOperand(0) || +      ShiftedVT != ExtractFrom.getValueType()) +    return SDValue(); + +  // Constant mul/udiv/shift amount from the RHS of the shift's LHS op. +  ConstantSDNode *OppLHSCst = isConstOrConstSplat(OppShiftLHS.getOperand(1)); +  // Constant mul/udiv/shift amount from the RHS of the ExtractFrom op. +  ConstantSDNode *ExtractFromCst = +      isConstOrConstSplat(ExtractFrom.getOperand(1)); +  // TODO: We should be able to handle non-uniform constant vectors for these values +  // Check that we have constant values. +  if (!OppShiftCst || !OppShiftCst->getAPIntValue() || +      !OppLHSCst || !OppLHSCst->getAPIntValue() || +      !ExtractFromCst || !ExtractFromCst->getAPIntValue()) +    return SDValue(); + +  // Compute the shift amount we need to extract to complete the rotate. +  const unsigned VTWidth = ShiftedVT.getScalarSizeInBits(); +  if (OppShiftCst->getAPIntValue().ugt(VTWidth)) +    return SDValue(); +  APInt NeededShiftAmt = VTWidth - OppShiftCst->getAPIntValue(); +  // Normalize the bitwidth of the two mul/udiv/shift constant operands. +  APInt ExtractFromAmt = ExtractFromCst->getAPIntValue(); +  APInt OppLHSAmt = OppLHSCst->getAPIntValue(); +  zeroExtendToMatch(ExtractFromAmt, OppLHSAmt); + +  // Now try extract the needed shift from the ExtractFrom op and see if the +  // result matches up with the existing shift's LHS op. +  if (IsMulOrDiv) { +    // Op to extract from is a mul or udiv by a constant. +    // Check: +    //     c2 / (1 << (bitwidth(op0 v c0) - c1)) == c0 +    //     c2 % (1 << (bitwidth(op0 v c0) - c1)) == 0 +    const APInt ExtractDiv = APInt::getOneBitSet(ExtractFromAmt.getBitWidth(), +                                                 NeededShiftAmt.getZExtValue()); +    APInt ResultAmt; +    APInt Rem; +    APInt::udivrem(ExtractFromAmt, ExtractDiv, ResultAmt, Rem); +    if (Rem != 0 || ResultAmt != OppLHSAmt) +      return SDValue(); +  } else { +    // Op to extract from is a shift by a constant. +    // Check: +    //      c2 - (bitwidth(op0 v c0) - c1) == c0 +    if (OppLHSAmt != ExtractFromAmt - NeededShiftAmt.zextOrTrunc( +                                          ExtractFromAmt.getBitWidth())) +      return SDValue(); +  } + +  // Return the expanded shift op that should allow a rotate to be formed. +  EVT ShiftVT = OppShift.getOperand(1).getValueType(); +  EVT ResVT = ExtractFrom.getValueType(); +  SDValue NewShiftNode = DAG.getConstant(NeededShiftAmt, DL, ShiftVT); +  return DAG.getNode(Opcode, DL, ResVT, OppShiftLHS, NewShiftNode); +} + +// Return true if we can prove that, whenever Neg and Pos are both in the +// range [0, EltSize), Neg == (Pos == 0 ? 0 : EltSize - Pos).  This means that +// for two opposing shifts shift1 and shift2 and a value X with OpBits bits: +// +//     (or (shift1 X, Neg), (shift2 X, Pos)) +// +// reduces to a rotate in direction shift2 by Pos or (equivalently) a rotate +// in direction shift1 by Neg.  The range [0, EltSize) means that we only need +// to consider shift amounts with defined behavior. +static bool matchRotateSub(SDValue Pos, SDValue Neg, unsigned EltSize, +                           SelectionDAG &DAG) { +  // If EltSize is a power of 2 then: +  // +  //  (a) (Pos == 0 ? 0 : EltSize - Pos) == (EltSize - Pos) & (EltSize - 1) +  //  (b) Neg == Neg & (EltSize - 1) whenever Neg is in [0, EltSize). +  // +  // So if EltSize is a power of 2 and Neg is (and Neg', EltSize-1), we check +  // for the stronger condition: +  // +  //     Neg & (EltSize - 1) == (EltSize - Pos) & (EltSize - 1)    [A] +  // +  // for all Neg and Pos.  Since Neg & (EltSize - 1) == Neg' & (EltSize - 1) +  // we can just replace Neg with Neg' for the rest of the function. +  // +  // In other cases we check for the even stronger condition: +  // +  //     Neg == EltSize - Pos                                    [B] +  // +  // for all Neg and Pos.  Note that the (or ...) then invokes undefined +  // behavior if Pos == 0 (and consequently Neg == EltSize). +  // +  // We could actually use [A] whenever EltSize is a power of 2, but the +  // only extra cases that it would match are those uninteresting ones +  // where Neg and Pos are never in range at the same time.  E.g. for +  // EltSize == 32, using [A] would allow a Neg of the form (sub 64, Pos) +  // as well as (sub 32, Pos), but: +  // +  //     (or (shift1 X, (sub 64, Pos)), (shift2 X, Pos)) +  // +  // always invokes undefined behavior for 32-bit X. +  // +  // Below, Mask == EltSize - 1 when using [A] and is all-ones otherwise. +  unsigned MaskLoBits = 0; +  if (Neg.getOpcode() == ISD::AND && isPowerOf2_64(EltSize)) { +    if (ConstantSDNode *NegC = isConstOrConstSplat(Neg.getOperand(1))) { +      KnownBits Known = DAG.computeKnownBits(Neg.getOperand(0)); +      unsigned Bits = Log2_64(EltSize); +      if (NegC->getAPIntValue().getActiveBits() <= Bits && +          ((NegC->getAPIntValue() | Known.Zero).countTrailingOnes() >= Bits)) { +        Neg = Neg.getOperand(0); +        MaskLoBits = Bits; +      } +    } +  } + +  // Check whether Neg has the form (sub NegC, NegOp1) for some NegC and NegOp1. +  if (Neg.getOpcode() != ISD::SUB) +    return false; +  ConstantSDNode *NegC = isConstOrConstSplat(Neg.getOperand(0)); +  if (!NegC) +    return false; +  SDValue NegOp1 = Neg.getOperand(1); + +  // On the RHS of [A], if Pos is Pos' & (EltSize - 1), just replace Pos with +  // Pos'.  The truncation is redundant for the purpose of the equality. +  if (MaskLoBits && Pos.getOpcode() == ISD::AND) { +    if (ConstantSDNode *PosC = isConstOrConstSplat(Pos.getOperand(1))) { +      KnownBits Known = DAG.computeKnownBits(Pos.getOperand(0)); +      if (PosC->getAPIntValue().getActiveBits() <= MaskLoBits && +          ((PosC->getAPIntValue() | Known.Zero).countTrailingOnes() >= +           MaskLoBits)) +        Pos = Pos.getOperand(0); +    } +  } + +  // The condition we need is now: +  // +  //     (NegC - NegOp1) & Mask == (EltSize - Pos) & Mask +  // +  // If NegOp1 == Pos then we need: +  // +  //              EltSize & Mask == NegC & Mask +  // +  // (because "x & Mask" is a truncation and distributes through subtraction). +  APInt Width; +  if (Pos == NegOp1) +    Width = NegC->getAPIntValue(); + +  // Check for cases where Pos has the form (add NegOp1, PosC) for some PosC. +  // Then the condition we want to prove becomes: +  // +  //     (NegC - NegOp1) & Mask == (EltSize - (NegOp1 + PosC)) & Mask +  // +  // which, again because "x & Mask" is a truncation, becomes: +  // +  //                NegC & Mask == (EltSize - PosC) & Mask +  //             EltSize & Mask == (NegC + PosC) & Mask +  else if (Pos.getOpcode() == ISD::ADD && Pos.getOperand(0) == NegOp1) { +    if (ConstantSDNode *PosC = isConstOrConstSplat(Pos.getOperand(1))) +      Width = PosC->getAPIntValue() + NegC->getAPIntValue(); +    else +      return false; +  } else +    return false; + +  // Now we just need to check that EltSize & Mask == Width & Mask. +  if (MaskLoBits) +    // EltSize & Mask is 0 since Mask is EltSize - 1. +    return Width.getLoBits(MaskLoBits) == 0; +  return Width == EltSize; +} + +// A subroutine of MatchRotate used once we have found an OR of two opposite +// shifts of Shifted.  If Neg == <operand size> - Pos then the OR reduces +// to both (PosOpcode Shifted, Pos) and (NegOpcode Shifted, Neg), with the +// former being preferred if supported.  InnerPos and InnerNeg are Pos and +// Neg with outer conversions stripped away. +SDValue DAGCombiner::MatchRotatePosNeg(SDValue Shifted, SDValue Pos, +                                       SDValue Neg, SDValue InnerPos, +                                       SDValue InnerNeg, unsigned PosOpcode, +                                       unsigned NegOpcode, const SDLoc &DL) { +  // fold (or (shl x, (*ext y)), +  //          (srl x, (*ext (sub 32, y)))) -> +  //   (rotl x, y) or (rotr x, (sub 32, y)) +  // +  // fold (or (shl x, (*ext (sub 32, y))), +  //          (srl x, (*ext y))) -> +  //   (rotr x, y) or (rotl x, (sub 32, y)) +  EVT VT = Shifted.getValueType(); +  if (matchRotateSub(InnerPos, InnerNeg, VT.getScalarSizeInBits(), DAG)) { +    bool HasPos = TLI.isOperationLegalOrCustom(PosOpcode, VT); +    return DAG.getNode(HasPos ? PosOpcode : NegOpcode, DL, VT, Shifted, +                       HasPos ? Pos : Neg); +  } + +  return SDValue(); +} + +// MatchRotate - Handle an 'or' of two operands.  If this is one of the many +// idioms for rotate, and if the target supports rotation instructions, generate +// a rot[lr]. +SDValue DAGCombiner::MatchRotate(SDValue LHS, SDValue RHS, const SDLoc &DL) { +  // Must be a legal type.  Expanded 'n promoted things won't work with rotates. +  EVT VT = LHS.getValueType(); +  if (!TLI.isTypeLegal(VT)) +    return SDValue(); + +  // The target must have at least one rotate flavor. +  bool HasROTL = hasOperation(ISD::ROTL, VT); +  bool HasROTR = hasOperation(ISD::ROTR, VT); +  if (!HasROTL && !HasROTR) +    return SDValue(); + +  // Check for truncated rotate. +  if (LHS.getOpcode() == ISD::TRUNCATE && RHS.getOpcode() == ISD::TRUNCATE && +      LHS.getOperand(0).getValueType() == RHS.getOperand(0).getValueType()) { +    assert(LHS.getValueType() == RHS.getValueType()); +    if (SDValue Rot = MatchRotate(LHS.getOperand(0), RHS.getOperand(0), DL)) { +      return DAG.getNode(ISD::TRUNCATE, SDLoc(LHS), LHS.getValueType(), Rot); +    } +  } + +  // Match "(X shl/srl V1) & V2" where V2 may not be present. +  SDValue LHSShift;   // The shift. +  SDValue LHSMask;    // AND value if any. +  matchRotateHalf(DAG, LHS, LHSShift, LHSMask); + +  SDValue RHSShift;   // The shift. +  SDValue RHSMask;    // AND value if any. +  matchRotateHalf(DAG, RHS, RHSShift, RHSMask); + +  // If neither side matched a rotate half, bail +  if (!LHSShift && !RHSShift) +    return SDValue(); + +  // InstCombine may have combined a constant shl, srl, mul, or udiv with one +  // side of the rotate, so try to handle that here. In all cases we need to +  // pass the matched shift from the opposite side to compute the opcode and +  // needed shift amount to extract.  We still want to do this if both sides +  // matched a rotate half because one half may be a potential overshift that +  // can be broken down (ie if InstCombine merged two shl or srl ops into a +  // single one). + +  // Have LHS side of the rotate, try to extract the needed shift from the RHS. +  if (LHSShift) +    if (SDValue NewRHSShift = +            extractShiftForRotate(DAG, LHSShift, RHS, RHSMask, DL)) +      RHSShift = NewRHSShift; +  // Have RHS side of the rotate, try to extract the needed shift from the LHS. +  if (RHSShift) +    if (SDValue NewLHSShift = +            extractShiftForRotate(DAG, RHSShift, LHS, LHSMask, DL)) +      LHSShift = NewLHSShift; + +  // If a side is still missing, nothing else we can do. +  if (!RHSShift || !LHSShift) +    return SDValue(); + +  // At this point we've matched or extracted a shift op on each side. + +  if (LHSShift.getOperand(0) != RHSShift.getOperand(0)) +    return SDValue(); // Not shifting the same value. + +  if (LHSShift.getOpcode() == RHSShift.getOpcode()) +    return SDValue(); // Shifts must disagree. + +  // Canonicalize shl to left side in a shl/srl pair. +  if (RHSShift.getOpcode() == ISD::SHL) { +    std::swap(LHS, RHS); +    std::swap(LHSShift, RHSShift); +    std::swap(LHSMask, RHSMask); +  } + +  unsigned EltSizeInBits = VT.getScalarSizeInBits(); +  SDValue LHSShiftArg = LHSShift.getOperand(0); +  SDValue LHSShiftAmt = LHSShift.getOperand(1); +  SDValue RHSShiftArg = RHSShift.getOperand(0); +  SDValue RHSShiftAmt = RHSShift.getOperand(1); + +  // fold (or (shl x, C1), (srl x, C2)) -> (rotl x, C1) +  // fold (or (shl x, C1), (srl x, C2)) -> (rotr x, C2) +  auto MatchRotateSum = [EltSizeInBits](ConstantSDNode *LHS, +                                        ConstantSDNode *RHS) { +    return (LHS->getAPIntValue() + RHS->getAPIntValue()) == EltSizeInBits; +  }; +  if (ISD::matchBinaryPredicate(LHSShiftAmt, RHSShiftAmt, MatchRotateSum)) { +    SDValue Rot = DAG.getNode(HasROTL ? ISD::ROTL : ISD::ROTR, DL, VT, +                              LHSShiftArg, HasROTL ? LHSShiftAmt : RHSShiftAmt); + +    // If there is an AND of either shifted operand, apply it to the result. +    if (LHSMask.getNode() || RHSMask.getNode()) { +      SDValue AllOnes = DAG.getAllOnesConstant(DL, VT); +      SDValue Mask = AllOnes; + +      if (LHSMask.getNode()) { +        SDValue RHSBits = DAG.getNode(ISD::SRL, DL, VT, AllOnes, RHSShiftAmt); +        Mask = DAG.getNode(ISD::AND, DL, VT, Mask, +                           DAG.getNode(ISD::OR, DL, VT, LHSMask, RHSBits)); +      } +      if (RHSMask.getNode()) { +        SDValue LHSBits = DAG.getNode(ISD::SHL, DL, VT, AllOnes, LHSShiftAmt); +        Mask = DAG.getNode(ISD::AND, DL, VT, Mask, +                           DAG.getNode(ISD::OR, DL, VT, RHSMask, LHSBits)); +      } + +      Rot = DAG.getNode(ISD::AND, DL, VT, Rot, Mask); +    } + +    return Rot; +  } + +  // If there is a mask here, and we have a variable shift, we can't be sure +  // that we're masking out the right stuff. +  if (LHSMask.getNode() || RHSMask.getNode()) +    return SDValue(); + +  // If the shift amount is sign/zext/any-extended just peel it off. +  SDValue LExtOp0 = LHSShiftAmt; +  SDValue RExtOp0 = RHSShiftAmt; +  if ((LHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND || +       LHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND || +       LHSShiftAmt.getOpcode() == ISD::ANY_EXTEND || +       LHSShiftAmt.getOpcode() == ISD::TRUNCATE) && +      (RHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND || +       RHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND || +       RHSShiftAmt.getOpcode() == ISD::ANY_EXTEND || +       RHSShiftAmt.getOpcode() == ISD::TRUNCATE)) { +    LExtOp0 = LHSShiftAmt.getOperand(0); +    RExtOp0 = RHSShiftAmt.getOperand(0); +  } + +  SDValue TryL = MatchRotatePosNeg(LHSShiftArg, LHSShiftAmt, RHSShiftAmt, +                                   LExtOp0, RExtOp0, ISD::ROTL, ISD::ROTR, DL); +  if (TryL) +    return TryL; + +  SDValue TryR = MatchRotatePosNeg(RHSShiftArg, RHSShiftAmt, LHSShiftAmt, +                                   RExtOp0, LExtOp0, ISD::ROTR, ISD::ROTL, DL); +  if (TryR) +    return TryR; + +  return SDValue(); +} + +namespace { + +/// Represents known origin of an individual byte in load combine pattern. The +/// value of the byte is either constant zero or comes from memory. +struct ByteProvider { +  // For constant zero providers Load is set to nullptr. For memory providers +  // Load represents the node which loads the byte from memory. +  // ByteOffset is the offset of the byte in the value produced by the load. +  LoadSDNode *Load = nullptr; +  unsigned ByteOffset = 0; + +  ByteProvider() = default; + +  static ByteProvider getMemory(LoadSDNode *Load, unsigned ByteOffset) { +    return ByteProvider(Load, ByteOffset); +  } + +  static ByteProvider getConstantZero() { return ByteProvider(nullptr, 0); } + +  bool isConstantZero() const { return !Load; } +  bool isMemory() const { return Load; } + +  bool operator==(const ByteProvider &Other) const { +    return Other.Load == Load && Other.ByteOffset == ByteOffset; +  } + +private: +  ByteProvider(LoadSDNode *Load, unsigned ByteOffset) +      : Load(Load), ByteOffset(ByteOffset) {} +}; + +} // end anonymous namespace + +/// Recursively traverses the expression calculating the origin of the requested +/// byte of the given value. Returns None if the provider can't be calculated. +/// +/// For all the values except the root of the expression verifies that the value +/// has exactly one use and if it's not true return None. This way if the origin +/// of the byte is returned it's guaranteed that the values which contribute to +/// the byte are not used outside of this expression. +/// +/// Because the parts of the expression are not allowed to have more than one +/// use this function iterates over trees, not DAGs. So it never visits the same +/// node more than once. +static const Optional<ByteProvider> +calculateByteProvider(SDValue Op, unsigned Index, unsigned Depth, +                      bool Root = false) { +  // Typical i64 by i8 pattern requires recursion up to 8 calls depth +  if (Depth == 10) +    return None; + +  if (!Root && !Op.hasOneUse()) +    return None; + +  assert(Op.getValueType().isScalarInteger() && "can't handle other types"); +  unsigned BitWidth = Op.getValueSizeInBits(); +  if (BitWidth % 8 != 0) +    return None; +  unsigned ByteWidth = BitWidth / 8; +  assert(Index < ByteWidth && "invalid index requested"); +  (void) ByteWidth; + +  switch (Op.getOpcode()) { +  case ISD::OR: { +    auto LHS = calculateByteProvider(Op->getOperand(0), Index, Depth + 1); +    if (!LHS) +      return None; +    auto RHS = calculateByteProvider(Op->getOperand(1), Index, Depth + 1); +    if (!RHS) +      return None; + +    if (LHS->isConstantZero()) +      return RHS; +    if (RHS->isConstantZero()) +      return LHS; +    return None; +  } +  case ISD::SHL: { +    auto ShiftOp = dyn_cast<ConstantSDNode>(Op->getOperand(1)); +    if (!ShiftOp) +      return None; + +    uint64_t BitShift = ShiftOp->getZExtValue(); +    if (BitShift % 8 != 0) +      return None; +    uint64_t ByteShift = BitShift / 8; + +    return Index < ByteShift +               ? ByteProvider::getConstantZero() +               : calculateByteProvider(Op->getOperand(0), Index - ByteShift, +                                       Depth + 1); +  } +  case ISD::ANY_EXTEND: +  case ISD::SIGN_EXTEND: +  case ISD::ZERO_EXTEND: { +    SDValue NarrowOp = Op->getOperand(0); +    unsigned NarrowBitWidth = NarrowOp.getScalarValueSizeInBits(); +    if (NarrowBitWidth % 8 != 0) +      return None; +    uint64_t NarrowByteWidth = NarrowBitWidth / 8; + +    if (Index >= NarrowByteWidth) +      return Op.getOpcode() == ISD::ZERO_EXTEND +                 ? Optional<ByteProvider>(ByteProvider::getConstantZero()) +                 : None; +    return calculateByteProvider(NarrowOp, Index, Depth + 1); +  } +  case ISD::BSWAP: +    return calculateByteProvider(Op->getOperand(0), ByteWidth - Index - 1, +                                 Depth + 1); +  case ISD::LOAD: { +    auto L = cast<LoadSDNode>(Op.getNode()); +    if (!L->isSimple() || L->isIndexed()) +      return None; + +    unsigned NarrowBitWidth = L->getMemoryVT().getSizeInBits(); +    if (NarrowBitWidth % 8 != 0) +      return None; +    uint64_t NarrowByteWidth = NarrowBitWidth / 8; + +    if (Index >= NarrowByteWidth) +      return L->getExtensionType() == ISD::ZEXTLOAD +                 ? Optional<ByteProvider>(ByteProvider::getConstantZero()) +                 : None; +    return ByteProvider::getMemory(L, Index); +  } +  } + +  return None; +} + +static unsigned LittleEndianByteAt(unsigned BW, unsigned i) { +  return i; +} + +static unsigned BigEndianByteAt(unsigned BW, unsigned i) { +  return BW - i - 1; +} + +// Check if the bytes offsets we are looking at match with either big or +// little endian value loaded. Return true for big endian, false for little +// endian, and None if match failed. +static Optional<bool> isBigEndian(const SmallVector<int64_t, 4> &ByteOffsets, +                                  int64_t FirstOffset) { +  // The endian can be decided only when it is 2 bytes at least. +  unsigned Width = ByteOffsets.size(); +  if (Width < 2) +    return None; + +  bool BigEndian = true, LittleEndian = true; +  for (unsigned i = 0; i < Width; i++) { +    int64_t CurrentByteOffset = ByteOffsets[i] - FirstOffset; +    LittleEndian &= CurrentByteOffset == LittleEndianByteAt(Width, i); +    BigEndian &= CurrentByteOffset == BigEndianByteAt(Width, i); +    if (!BigEndian && !LittleEndian) +      return None; +  } + +  assert((BigEndian != LittleEndian) && "It should be either big endian or" +                                        "little endian"); +  return BigEndian; +} + +static SDValue stripTruncAndExt(SDValue Value) { +  switch (Value.getOpcode()) { +  case ISD::TRUNCATE: +  case ISD::ZERO_EXTEND: +  case ISD::SIGN_EXTEND: +  case ISD::ANY_EXTEND: +    return stripTruncAndExt(Value.getOperand(0)); +  } +  return Value; +} + +/// Match a pattern where a wide type scalar value is stored by several narrow +/// stores. Fold it into a single store or a BSWAP and a store if the targets +/// supports it. +/// +/// Assuming little endian target: +///  i8 *p = ... +///  i32 val = ... +///  p[0] = (val >> 0) & 0xFF; +///  p[1] = (val >> 8) & 0xFF; +///  p[2] = (val >> 16) & 0xFF; +///  p[3] = (val >> 24) & 0xFF; +/// => +///  *((i32)p) = val; +/// +///  i8 *p = ... +///  i32 val = ... +///  p[0] = (val >> 24) & 0xFF; +///  p[1] = (val >> 16) & 0xFF; +///  p[2] = (val >> 8) & 0xFF; +///  p[3] = (val >> 0) & 0xFF; +/// => +///  *((i32)p) = BSWAP(val); +SDValue DAGCombiner::MatchStoreCombine(StoreSDNode *N) { +  // Collect all the stores in the chain. +  SDValue Chain; +  SmallVector<StoreSDNode *, 8> Stores; +  for (StoreSDNode *Store = N; Store; Store = dyn_cast<StoreSDNode>(Chain)) { +    // TODO: Allow unordered atomics when wider type is legal (see D66309) +    if (Store->getMemoryVT() != MVT::i8 || +        !Store->isSimple() || Store->isIndexed()) +      return SDValue(); +    Stores.push_back(Store); +    Chain = Store->getChain(); +  } +  // Handle the simple type only. +  unsigned Width = Stores.size(); +  EVT VT = EVT::getIntegerVT( +    *DAG.getContext(), Width * N->getMemoryVT().getSizeInBits()); +  if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64) +    return SDValue(); + +  const TargetLowering &TLI = DAG.getTargetLoweringInfo(); +  if (LegalOperations && !TLI.isOperationLegal(ISD::STORE, VT)) +    return SDValue(); + +  // Check if all the bytes of the combined value we are looking at are stored  +  // to the same base address. Collect bytes offsets from Base address into  +  // ByteOffsets.  +  SDValue CombinedValue; +  SmallVector<int64_t, 4> ByteOffsets(Width, INT64_MAX); +  int64_t FirstOffset = INT64_MAX; +  StoreSDNode *FirstStore = nullptr; +  Optional<BaseIndexOffset> Base; +  for (auto Store : Stores) { +    // All the stores store different byte of the CombinedValue. A truncate is +    // required to get that byte value. +    SDValue Trunc = Store->getValue(); +    if (Trunc.getOpcode() != ISD::TRUNCATE) +      return SDValue(); +    // A shift operation is required to get the right byte offset, except the +    // first byte. +    int64_t Offset = 0; +    SDValue Value = Trunc.getOperand(0); +    if (Value.getOpcode() == ISD::SRL || +        Value.getOpcode() == ISD::SRA) { +      ConstantSDNode *ShiftOffset = +        dyn_cast<ConstantSDNode>(Value.getOperand(1)); +      // Trying to match the following pattern. The shift offset must be  +      // a constant and a multiple of 8. It is the byte offset in "y". +      //  +      // x = srl y, offset +      // i8 z = trunc x  +      // store z, ... +      if (!ShiftOffset || (ShiftOffset->getSExtValue() % 8)) +        return SDValue(); +   +     Offset = ShiftOffset->getSExtValue()/8; +     Value = Value.getOperand(0); +    } + +    // Stores must share the same combined value with different offsets. +    if (!CombinedValue) +      CombinedValue = Value; +    else if (stripTruncAndExt(CombinedValue) != stripTruncAndExt(Value)) +      return SDValue(); + +    // The trunc and all the extend operation should be stripped to get the +    // real value we are stored. +    else if (CombinedValue.getValueType() != VT) { +      if (Value.getValueType() == VT || +          Value.getValueSizeInBits() > CombinedValue.getValueSizeInBits()) +        CombinedValue = Value; +      // Give up if the combined value type is smaller than the store size. +      if (CombinedValue.getValueSizeInBits() < VT.getSizeInBits()) +        return SDValue(); +    } + +    // Stores must share the same base address +    BaseIndexOffset Ptr = BaseIndexOffset::match(Store, DAG); +    int64_t ByteOffsetFromBase = 0; +    if (!Base) +      Base = Ptr; +    else if (!Base->equalBaseIndex(Ptr, DAG, ByteOffsetFromBase)) +      return SDValue(); + +    // Remember the first byte store +    if (ByteOffsetFromBase < FirstOffset) { +      FirstStore = Store; +      FirstOffset = ByteOffsetFromBase; +    } +    // Map the offset in the store and the offset in the combined value, and +    // early return if it has been set before. +    if (Offset < 0 || Offset >= Width || ByteOffsets[Offset] != INT64_MAX) +      return SDValue(); +    ByteOffsets[Offset] = ByteOffsetFromBase; +  } + +  assert(FirstOffset != INT64_MAX && "First byte offset must be set"); +  assert(FirstStore && "First store must be set"); + +  // Check if the bytes of the combined value we are looking at match with  +  // either big or little endian value store. +  Optional<bool> IsBigEndian = isBigEndian(ByteOffsets, FirstOffset); +  if (!IsBigEndian.hasValue()) +    return SDValue(); + +  // The node we are looking at matches with the pattern, check if we can +  // replace it with a single bswap if needed and store. + +  // If the store needs byte swap check if the target supports it +  bool NeedsBswap = DAG.getDataLayout().isBigEndian() != *IsBigEndian; + +  // Before legalize we can introduce illegal bswaps which will be later +  // converted to an explicit bswap sequence. This way we end up with a single +  // store and byte shuffling instead of several stores and byte shuffling. +  if (NeedsBswap && LegalOperations && !TLI.isOperationLegal(ISD::BSWAP, VT)) +    return SDValue(); + +  // Check that a store of the wide type is both allowed and fast on the target +  bool Fast = false; +  bool Allowed = +      TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), VT, +                             *FirstStore->getMemOperand(), &Fast); +  if (!Allowed || !Fast) +    return SDValue(); + +  if (VT != CombinedValue.getValueType()) { +    assert(CombinedValue.getValueType().getSizeInBits() > VT.getSizeInBits() && +           "Get unexpected store value to combine"); +    CombinedValue = DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, +                             CombinedValue); +  } + +  if (NeedsBswap) +    CombinedValue = DAG.getNode(ISD::BSWAP, SDLoc(N), VT, CombinedValue); + +  SDValue NewStore = +    DAG.getStore(Chain, SDLoc(N),  CombinedValue, FirstStore->getBasePtr(), +                 FirstStore->getPointerInfo(), FirstStore->getAlignment()); + +  // Rely on other DAG combine rules to remove the other individual stores. +  DAG.ReplaceAllUsesWith(N, NewStore.getNode()); +  return NewStore; +} + +/// Match a pattern where a wide type scalar value is loaded by several narrow +/// loads and combined by shifts and ors. Fold it into a single load or a load +/// and a BSWAP if the targets supports it. +/// +/// Assuming little endian target: +///  i8 *a = ... +///  i32 val = a[0] | (a[1] << 8) | (a[2] << 16) | (a[3] << 24) +/// => +///  i32 val = *((i32)a) +/// +///  i8 *a = ... +///  i32 val = (a[0] << 24) | (a[1] << 16) | (a[2] << 8) | a[3] +/// => +///  i32 val = BSWAP(*((i32)a)) +/// +/// TODO: This rule matches complex patterns with OR node roots and doesn't +/// interact well with the worklist mechanism. When a part of the pattern is +/// updated (e.g. one of the loads) its direct users are put into the worklist, +/// but the root node of the pattern which triggers the load combine is not +/// necessarily a direct user of the changed node. For example, once the address +/// of t28 load is reassociated load combine won't be triggered: +///             t25: i32 = add t4, Constant:i32<2> +///           t26: i64 = sign_extend t25 +///        t27: i64 = add t2, t26 +///       t28: i8,ch = load<LD1[%tmp9]> t0, t27, undef:i64 +///     t29: i32 = zero_extend t28 +///   t32: i32 = shl t29, Constant:i8<8> +/// t33: i32 = or t23, t32 +/// As a possible fix visitLoad can check if the load can be a part of a load +/// combine pattern and add corresponding OR roots to the worklist. +SDValue DAGCombiner::MatchLoadCombine(SDNode *N) { +  assert(N->getOpcode() == ISD::OR && +         "Can only match load combining against OR nodes"); + +  // Handles simple types only +  EVT VT = N->getValueType(0); +  if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64) +    return SDValue(); +  unsigned ByteWidth = VT.getSizeInBits() / 8; + +  const TargetLowering &TLI = DAG.getTargetLoweringInfo(); +  // Before legalize we can introduce too wide illegal loads which will be later +  // split into legal sized loads. This enables us to combine i64 load by i8 +  // patterns to a couple of i32 loads on 32 bit targets. +  if (LegalOperations && !TLI.isOperationLegal(ISD::LOAD, VT)) +    return SDValue(); + +  bool IsBigEndianTarget = DAG.getDataLayout().isBigEndian(); +  auto MemoryByteOffset = [&] (ByteProvider P) { +    assert(P.isMemory() && "Must be a memory byte provider"); +    unsigned LoadBitWidth = P.Load->getMemoryVT().getSizeInBits(); +    assert(LoadBitWidth % 8 == 0 && +           "can only analyze providers for individual bytes not bit"); +    unsigned LoadByteWidth = LoadBitWidth / 8; +    return IsBigEndianTarget +            ? BigEndianByteAt(LoadByteWidth, P.ByteOffset) +            : LittleEndianByteAt(LoadByteWidth, P.ByteOffset); +  }; + +  Optional<BaseIndexOffset> Base; +  SDValue Chain; + +  SmallPtrSet<LoadSDNode *, 8> Loads; +  Optional<ByteProvider> FirstByteProvider; +  int64_t FirstOffset = INT64_MAX; + +  // Check if all the bytes of the OR we are looking at are loaded from the same +  // base address. Collect bytes offsets from Base address in ByteOffsets. +  SmallVector<int64_t, 4> ByteOffsets(ByteWidth); +  for (unsigned i = 0; i < ByteWidth; i++) { +    auto P = calculateByteProvider(SDValue(N, 0), i, 0, /*Root=*/true); +    if (!P || !P->isMemory()) // All the bytes must be loaded from memory +      return SDValue(); + +    LoadSDNode *L = P->Load; +    assert(L->hasNUsesOfValue(1, 0) && L->isSimple() && +           !L->isIndexed() && +           "Must be enforced by calculateByteProvider"); +    assert(L->getOffset().isUndef() && "Unindexed load must have undef offset"); + +    // All loads must share the same chain +    SDValue LChain = L->getChain(); +    if (!Chain) +      Chain = LChain; +    else if (Chain != LChain) +      return SDValue(); + +    // Loads must share the same base address +    BaseIndexOffset Ptr = BaseIndexOffset::match(L, DAG); +    int64_t ByteOffsetFromBase = 0; +    if (!Base) +      Base = Ptr; +    else if (!Base->equalBaseIndex(Ptr, DAG, ByteOffsetFromBase)) +      return SDValue(); + +    // Calculate the offset of the current byte from the base address +    ByteOffsetFromBase += MemoryByteOffset(*P); +    ByteOffsets[i] = ByteOffsetFromBase; + +    // Remember the first byte load +    if (ByteOffsetFromBase < FirstOffset) { +      FirstByteProvider = P; +      FirstOffset = ByteOffsetFromBase; +    } + +    Loads.insert(L); +  } +  assert(!Loads.empty() && "All the bytes of the value must be loaded from " +         "memory, so there must be at least one load which produces the value"); +  assert(Base && "Base address of the accessed memory location must be set"); +  assert(FirstOffset != INT64_MAX && "First byte offset must be set"); + +  // Check if the bytes of the OR we are looking at match with either big or +  // little endian value load +  Optional<bool> IsBigEndian = isBigEndian(ByteOffsets, FirstOffset); +  if (!IsBigEndian.hasValue()) +    return SDValue(); + +  assert(FirstByteProvider && "must be set"); + +  // Ensure that the first byte is loaded from zero offset of the first load. +  // So the combined value can be loaded from the first load address. +  if (MemoryByteOffset(*FirstByteProvider) != 0) +    return SDValue(); +  LoadSDNode *FirstLoad = FirstByteProvider->Load; + +  // The node we are looking at matches with the pattern, check if we can +  // replace it with a single load and bswap if needed. + +  // If the load needs byte swap check if the target supports it +  bool NeedsBswap = IsBigEndianTarget != *IsBigEndian; + +  // Before legalize we can introduce illegal bswaps which will be later +  // converted to an explicit bswap sequence. This way we end up with a single +  // load and byte shuffling instead of several loads and byte shuffling. +  if (NeedsBswap && LegalOperations && !TLI.isOperationLegal(ISD::BSWAP, VT)) +    return SDValue(); + +  // Check that a load of the wide type is both allowed and fast on the target +  bool Fast = false; +  bool Allowed = TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), +                                        VT, *FirstLoad->getMemOperand(), &Fast); +  if (!Allowed || !Fast) +    return SDValue(); + +  SDValue NewLoad = +      DAG.getLoad(VT, SDLoc(N), Chain, FirstLoad->getBasePtr(), +                  FirstLoad->getPointerInfo(), FirstLoad->getAlignment()); + +  // Transfer chain users from old loads to the new load. +  for (LoadSDNode *L : Loads) +    DAG.ReplaceAllUsesOfValueWith(SDValue(L, 1), SDValue(NewLoad.getNode(), 1)); + +  return NeedsBswap ? DAG.getNode(ISD::BSWAP, SDLoc(N), VT, NewLoad) : NewLoad; +} + +// If the target has andn, bsl, or a similar bit-select instruction, +// we want to unfold masked merge, with canonical pattern of: +//   |        A  |  |B| +//   ((x ^ y) & m) ^ y +//    |  D  | +// Into: +//   (x & m) | (y & ~m) +// If y is a constant, and the 'andn' does not work with immediates, +// we unfold into a different pattern: +//   ~(~x & m) & (m | y) +// NOTE: we don't unfold the pattern if 'xor' is actually a 'not', because at +//       the very least that breaks andnpd / andnps patterns, and because those +//       patterns are simplified in IR and shouldn't be created in the DAG +SDValue DAGCombiner::unfoldMaskedMerge(SDNode *N) { +  assert(N->getOpcode() == ISD::XOR); + +  // Don't touch 'not' (i.e. where y = -1). +  if (isAllOnesOrAllOnesSplat(N->getOperand(1))) +    return SDValue(); + +  EVT VT = N->getValueType(0); + +  // There are 3 commutable operators in the pattern, +  // so we have to deal with 8 possible variants of the basic pattern. +  SDValue X, Y, M; +  auto matchAndXor = [&X, &Y, &M](SDValue And, unsigned XorIdx, SDValue Other) { +    if (And.getOpcode() != ISD::AND || !And.hasOneUse()) +      return false; +    SDValue Xor = And.getOperand(XorIdx); +    if (Xor.getOpcode() != ISD::XOR || !Xor.hasOneUse()) +      return false; +    SDValue Xor0 = Xor.getOperand(0); +    SDValue Xor1 = Xor.getOperand(1); +    // Don't touch 'not' (i.e. where y = -1). +    if (isAllOnesOrAllOnesSplat(Xor1)) +      return false; +    if (Other == Xor0) +      std::swap(Xor0, Xor1); +    if (Other != Xor1) +      return false; +    X = Xor0; +    Y = Xor1; +    M = And.getOperand(XorIdx ? 0 : 1); +    return true; +  }; + +  SDValue N0 = N->getOperand(0); +  SDValue N1 = N->getOperand(1); +  if (!matchAndXor(N0, 0, N1) && !matchAndXor(N0, 1, N1) && +      !matchAndXor(N1, 0, N0) && !matchAndXor(N1, 1, N0)) +    return SDValue(); + +  // Don't do anything if the mask is constant. This should not be reachable. +  // InstCombine should have already unfolded this pattern, and DAGCombiner +  // probably shouldn't produce it, too. +  if (isa<ConstantSDNode>(M.getNode())) +    return SDValue(); + +  // We can transform if the target has AndNot +  if (!TLI.hasAndNot(M)) +    return SDValue(); + +  SDLoc DL(N); + +  // If Y is a constant, check that 'andn' works with immediates. +  if (!TLI.hasAndNot(Y)) { +    assert(TLI.hasAndNot(X) && "Only mask is a variable? Unreachable."); +    // If not, we need to do a bit more work to make sure andn is still used. +    SDValue NotX = DAG.getNOT(DL, X, VT); +    SDValue LHS = DAG.getNode(ISD::AND, DL, VT, NotX, M); +    SDValue NotLHS = DAG.getNOT(DL, LHS, VT); +    SDValue RHS = DAG.getNode(ISD::OR, DL, VT, M, Y); +    return DAG.getNode(ISD::AND, DL, VT, NotLHS, RHS); +  } + +  SDValue LHS = DAG.getNode(ISD::AND, DL, VT, X, M); +  SDValue NotM = DAG.getNOT(DL, M, VT); +  SDValue RHS = DAG.getNode(ISD::AND, DL, VT, Y, NotM); + +  return DAG.getNode(ISD::OR, DL, VT, LHS, RHS); +} + +SDValue DAGCombiner::visitXOR(SDNode *N) { +  SDValue N0 = N->getOperand(0); +  SDValue N1 = N->getOperand(1); +  EVT VT = N0.getValueType(); + +  // fold vector ops +  if (VT.isVector()) { +    if (SDValue FoldedVOp = SimplifyVBinOp(N)) +      return FoldedVOp; + +    // fold (xor x, 0) -> x, vector edition +    if (ISD::isBuildVectorAllZeros(N0.getNode())) +      return N1; +    if (ISD::isBuildVectorAllZeros(N1.getNode())) +      return N0; +  } + +  // fold (xor undef, undef) -> 0. This is a common idiom (misuse). +  SDLoc DL(N); +  if (N0.isUndef() && N1.isUndef()) +    return DAG.getConstant(0, DL, VT); +  // fold (xor x, undef) -> undef +  if (N0.isUndef()) +    return N0; +  if (N1.isUndef()) +    return N1; +  // fold (xor c1, c2) -> c1^c2 +  ConstantSDNode *N0C = getAsNonOpaqueConstant(N0); +  ConstantSDNode *N1C = getAsNonOpaqueConstant(N1); +  if (N0C && N1C) +    return DAG.FoldConstantArithmetic(ISD::XOR, DL, VT, N0C, N1C); +  // canonicalize constant to RHS +  if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && +     !DAG.isConstantIntBuildVectorOrConstantInt(N1)) +    return DAG.getNode(ISD::XOR, DL, VT, N1, N0); +  // fold (xor x, 0) -> x +  if (isNullConstant(N1)) +    return N0; + +  if (SDValue NewSel = foldBinOpIntoSelect(N)) +    return NewSel; + +  // reassociate xor +  if (SDValue RXOR = reassociateOps(ISD::XOR, DL, N0, N1, N->getFlags())) +    return RXOR; + +  // fold !(x cc y) -> (x !cc y) +  unsigned N0Opcode = N0.getOpcode(); +  SDValue LHS, RHS, CC; +  if (TLI.isConstTrueVal(N1.getNode()) && isSetCCEquivalent(N0, LHS, RHS, CC)) { +    ISD::CondCode NotCC = ISD::getSetCCInverse(cast<CondCodeSDNode>(CC)->get(), +                                               LHS.getValueType().isInteger()); +    if (!LegalOperations || +        TLI.isCondCodeLegal(NotCC, LHS.getSimpleValueType())) { +      switch (N0Opcode) { +      default: +        llvm_unreachable("Unhandled SetCC Equivalent!"); +      case ISD::SETCC: +        return DAG.getSetCC(SDLoc(N0), VT, LHS, RHS, NotCC); +      case ISD::SELECT_CC: +        return DAG.getSelectCC(SDLoc(N0), LHS, RHS, N0.getOperand(2), +                               N0.getOperand(3), NotCC); +      } +    } +  } + +  // fold (not (zext (setcc x, y))) -> (zext (not (setcc x, y))) +  if (isOneConstant(N1) && N0Opcode == ISD::ZERO_EXTEND && N0.hasOneUse() && +      isSetCCEquivalent(N0.getOperand(0), LHS, RHS, CC)){ +    SDValue V = N0.getOperand(0); +    SDLoc DL0(N0); +    V = DAG.getNode(ISD::XOR, DL0, V.getValueType(), V, +                    DAG.getConstant(1, DL0, V.getValueType())); +    AddToWorklist(V.getNode()); +    return DAG.getNode(ISD::ZERO_EXTEND, DL, VT, V); +  } + +  // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are setcc +  if (isOneConstant(N1) && VT == MVT::i1 && N0.hasOneUse() && +      (N0Opcode == ISD::OR || N0Opcode == ISD::AND)) { +    SDValue N00 = N0.getOperand(0), N01 = N0.getOperand(1); +    if (isOneUseSetCC(N01) || isOneUseSetCC(N00)) { +      unsigned NewOpcode = N0Opcode == ISD::AND ? ISD::OR : ISD::AND; +      N00 = DAG.getNode(ISD::XOR, SDLoc(N00), VT, N00, N1); // N00 = ~N00 +      N01 = DAG.getNode(ISD::XOR, SDLoc(N01), VT, N01, N1); // N01 = ~N01 +      AddToWorklist(N00.getNode()); AddToWorklist(N01.getNode()); +      return DAG.getNode(NewOpcode, DL, VT, N00, N01); +    } +  } +  // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are constants +  if (isAllOnesConstant(N1) && N0.hasOneUse() && +      (N0Opcode == ISD::OR || N0Opcode == ISD::AND)) { +    SDValue N00 = N0.getOperand(0), N01 = N0.getOperand(1); +    if (isa<ConstantSDNode>(N01) || isa<ConstantSDNode>(N00)) { +      unsigned NewOpcode = N0Opcode == ISD::AND ? ISD::OR : ISD::AND; +      N00 = DAG.getNode(ISD::XOR, SDLoc(N00), VT, N00, N1); // N00 = ~N00 +      N01 = DAG.getNode(ISD::XOR, SDLoc(N01), VT, N01, N1); // N01 = ~N01 +      AddToWorklist(N00.getNode()); AddToWorklist(N01.getNode()); +      return DAG.getNode(NewOpcode, DL, VT, N00, N01); +    } +  } + +  // fold (not (neg x)) -> (add X, -1) +  // FIXME: This can be generalized to (not (sub Y, X)) -> (add X, ~Y) if +  // Y is a constant or the subtract has a single use. +  if (isAllOnesConstant(N1) && N0.getOpcode() == ISD::SUB && +      isNullConstant(N0.getOperand(0))) { +    return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(1), +                       DAG.getAllOnesConstant(DL, VT)); +  } + +  // fold (xor (and x, y), y) -> (and (not x), y) +  if (N0Opcode == ISD::AND && N0.hasOneUse() && N0->getOperand(1) == N1) { +    SDValue X = N0.getOperand(0); +    SDValue NotX = DAG.getNOT(SDLoc(X), X, VT); +    AddToWorklist(NotX.getNode()); +    return DAG.getNode(ISD::AND, DL, VT, NotX, N1); +  } + +  if ((N0Opcode == ISD::SRL || N0Opcode == ISD::SHL) && N0.hasOneUse()) { +    ConstantSDNode *XorC = isConstOrConstSplat(N1); +    ConstantSDNode *ShiftC = isConstOrConstSplat(N0.getOperand(1)); +    unsigned BitWidth = VT.getScalarSizeInBits(); +    if (XorC && ShiftC) { +      // Don't crash on an oversized shift. We can not guarantee that a bogus +      // shift has been simplified to undef. +      uint64_t ShiftAmt = ShiftC->getLimitedValue(); +      if (ShiftAmt < BitWidth) { +        APInt Ones = APInt::getAllOnesValue(BitWidth); +        Ones = N0Opcode == ISD::SHL ? Ones.shl(ShiftAmt) : Ones.lshr(ShiftAmt); +        if (XorC->getAPIntValue() == Ones) { +          // If the xor constant is a shifted -1, do a 'not' before the shift: +          // xor (X << ShiftC), XorC --> (not X) << ShiftC +          // xor (X >> ShiftC), XorC --> (not X) >> ShiftC +          SDValue Not = DAG.getNOT(DL, N0.getOperand(0), VT); +          return DAG.getNode(N0Opcode, DL, VT, Not, N0.getOperand(1)); +        } +      } +    } +  } + +  // fold Y = sra (X, size(X)-1); xor (add (X, Y), Y) -> (abs X) +  if (TLI.isOperationLegalOrCustom(ISD::ABS, VT)) { +    SDValue A = N0Opcode == ISD::ADD ? N0 : N1; +    SDValue S = N0Opcode == ISD::SRA ? N0 : N1; +    if (A.getOpcode() == ISD::ADD && S.getOpcode() == ISD::SRA) { +      SDValue A0 = A.getOperand(0), A1 = A.getOperand(1); +      SDValue S0 = S.getOperand(0); +      if ((A0 == S && A1 == S0) || (A1 == S && A0 == S0)) { +        unsigned OpSizeInBits = VT.getScalarSizeInBits(); +        if (ConstantSDNode *C = isConstOrConstSplat(S.getOperand(1))) +          if (C->getAPIntValue() == (OpSizeInBits - 1)) +            return DAG.getNode(ISD::ABS, DL, VT, S0); +      } +    } +  } + +  // fold (xor x, x) -> 0 +  if (N0 == N1) +    return tryFoldToZero(DL, TLI, VT, DAG, LegalOperations); + +  // fold (xor (shl 1, x), -1) -> (rotl ~1, x) +  // Here is a concrete example of this equivalence: +  // i16   x ==  14 +  // i16 shl ==   1 << 14  == 16384 == 0b0100000000000000 +  // i16 xor == ~(1 << 14) == 49151 == 0b1011111111111111 +  // +  // => +  // +  // i16     ~1      == 0b1111111111111110 +  // i16 rol(~1, 14) == 0b1011111111111111 +  // +  // Some additional tips to help conceptualize this transform: +  // - Try to see the operation as placing a single zero in a value of all ones. +  // - There exists no value for x which would allow the result to contain zero. +  // - Values of x larger than the bitwidth are undefined and do not require a +  //   consistent result. +  // - Pushing the zero left requires shifting one bits in from the right. +  // A rotate left of ~1 is a nice way of achieving the desired result. +  if (TLI.isOperationLegalOrCustom(ISD::ROTL, VT) && N0Opcode == ISD::SHL && +      isAllOnesConstant(N1) && isOneConstant(N0.getOperand(0))) { +    return DAG.getNode(ISD::ROTL, DL, VT, DAG.getConstant(~1, DL, VT), +                       N0.getOperand(1)); +  } + +  // Simplify: xor (op x...), (op y...)  -> (op (xor x, y)) +  if (N0Opcode == N1.getOpcode()) +    if (SDValue V = hoistLogicOpWithSameOpcodeHands(N)) +      return V; + +  // Unfold  ((x ^ y) & m) ^ y  into  (x & m) | (y & ~m)  if profitable +  if (SDValue MM = unfoldMaskedMerge(N)) +    return MM; + +  // Simplify the expression using non-local knowledge. +  if (SimplifyDemandedBits(SDValue(N, 0))) +    return SDValue(N, 0); + +  return SDValue(); +} + +/// If we have a shift-by-constant of a bitwise logic op that itself has a +/// shift-by-constant operand with identical opcode, we may be able to convert +/// that into 2 independent shifts followed by the logic op. This is a +/// throughput improvement. +static SDValue combineShiftOfShiftedLogic(SDNode *Shift, SelectionDAG &DAG) { +  // Match a one-use bitwise logic op. +  SDValue LogicOp = Shift->getOperand(0); +  if (!LogicOp.hasOneUse()) +    return SDValue(); + +  unsigned LogicOpcode = LogicOp.getOpcode(); +  if (LogicOpcode != ISD::AND && LogicOpcode != ISD::OR && +      LogicOpcode != ISD::XOR) +    return SDValue(); + +  // Find a matching one-use shift by constant. +  unsigned ShiftOpcode = Shift->getOpcode(); +  SDValue C1 = Shift->getOperand(1); +  ConstantSDNode *C1Node = isConstOrConstSplat(C1); +  assert(C1Node && "Expected a shift with constant operand"); +  const APInt &C1Val = C1Node->getAPIntValue(); +  auto matchFirstShift = [&](SDValue V, SDValue &ShiftOp, +                             const APInt *&ShiftAmtVal) { +    if (V.getOpcode() != ShiftOpcode || !V.hasOneUse()) +      return false; + +    ConstantSDNode *ShiftCNode = isConstOrConstSplat(V.getOperand(1)); +    if (!ShiftCNode) +      return false; + +    // Capture the shifted operand and shift amount value. +    ShiftOp = V.getOperand(0); +    ShiftAmtVal = &ShiftCNode->getAPIntValue(); + +    // Shift amount types do not have to match their operand type, so check that +    // the constants are the same width. +    if (ShiftAmtVal->getBitWidth() != C1Val.getBitWidth()) +      return false; + +    // The fold is not valid if the sum of the shift values exceeds bitwidth. +    if ((*ShiftAmtVal + C1Val).uge(V.getScalarValueSizeInBits())) +      return false; + +    return true; +  }; + +  // Logic ops are commutative, so check each operand for a match. +  SDValue X, Y; +  const APInt *C0Val; +  if (matchFirstShift(LogicOp.getOperand(0), X, C0Val)) +    Y = LogicOp.getOperand(1); +  else if (matchFirstShift(LogicOp.getOperand(1), X, C0Val)) +    Y = LogicOp.getOperand(0); +  else +    return SDValue(); + +  // shift (logic (shift X, C0), Y), C1 -> logic (shift X, C0+C1), (shift Y, C1) +  SDLoc DL(Shift); +  EVT VT = Shift->getValueType(0); +  EVT ShiftAmtVT = Shift->getOperand(1).getValueType(); +  SDValue ShiftSumC = DAG.getConstant(*C0Val + C1Val, DL, ShiftAmtVT); +  SDValue NewShift1 = DAG.getNode(ShiftOpcode, DL, VT, X, ShiftSumC); +  SDValue NewShift2 = DAG.getNode(ShiftOpcode, DL, VT, Y, C1); +  return DAG.getNode(LogicOpcode, DL, VT, NewShift1, NewShift2); +} + +/// Handle transforms common to the three shifts, when the shift amount is a +/// constant. +/// We are looking for: (shift being one of shl/sra/srl) +///   shift (binop X, C0), C1 +/// And want to transform into: +///   binop (shift X, C1), (shift C0, C1) +SDValue DAGCombiner::visitShiftByConstant(SDNode *N) { +  assert(isConstOrConstSplat(N->getOperand(1)) && "Expected constant operand"); + +  // Do not turn a 'not' into a regular xor. +  if (isBitwiseNot(N->getOperand(0))) +    return SDValue(); + +  // The inner binop must be one-use, since we want to replace it. +  SDValue LHS = N->getOperand(0); +  if (!LHS.hasOneUse() || !TLI.isDesirableToCommuteWithShift(N, Level)) +    return SDValue(); + +  // TODO: This is limited to early combining because it may reveal regressions +  //       otherwise. But since we just checked a target hook to see if this is +  //       desirable, that should have filtered out cases where this interferes +  //       with some other pattern matching. +  if (!LegalTypes) +    if (SDValue R = combineShiftOfShiftedLogic(N, DAG)) +      return R; + +  // We want to pull some binops through shifts, so that we have (and (shift)) +  // instead of (shift (and)), likewise for add, or, xor, etc.  This sort of +  // thing happens with address calculations, so it's important to canonicalize +  // it. +  switch (LHS.getOpcode()) { +  default: +    return SDValue(); +  case ISD::OR: +  case ISD::XOR: +  case ISD::AND: +    break; +  case ISD::ADD: +    if (N->getOpcode() != ISD::SHL) +      return SDValue(); // only shl(add) not sr[al](add). +    break; +  } + +  // We require the RHS of the binop to be a constant and not opaque as well. +  ConstantSDNode *BinOpCst = getAsNonOpaqueConstant(LHS.getOperand(1)); +  if (!BinOpCst) +    return SDValue(); + +  // FIXME: disable this unless the input to the binop is a shift by a constant +  // or is copy/select. Enable this in other cases when figure out it's exactly +  // profitable. +  SDValue BinOpLHSVal = LHS.getOperand(0); +  bool IsShiftByConstant = (BinOpLHSVal.getOpcode() == ISD::SHL || +                            BinOpLHSVal.getOpcode() == ISD::SRA || +                            BinOpLHSVal.getOpcode() == ISD::SRL) && +                           isa<ConstantSDNode>(BinOpLHSVal.getOperand(1)); +  bool IsCopyOrSelect = BinOpLHSVal.getOpcode() == ISD::CopyFromReg || +                        BinOpLHSVal.getOpcode() == ISD::SELECT; + +  if (!IsShiftByConstant && !IsCopyOrSelect) +    return SDValue(); + +  if (IsCopyOrSelect && N->hasOneUse()) +    return SDValue(); + +  // Fold the constants, shifting the binop RHS by the shift amount. +  SDLoc DL(N); +  EVT VT = N->getValueType(0); +  SDValue NewRHS = DAG.getNode(N->getOpcode(), DL, VT, LHS.getOperand(1), +                               N->getOperand(1)); +  assert(isa<ConstantSDNode>(NewRHS) && "Folding was not successful!"); + +  SDValue NewShift = DAG.getNode(N->getOpcode(), DL, VT, LHS.getOperand(0), +                                 N->getOperand(1)); +  return DAG.getNode(LHS.getOpcode(), DL, VT, NewShift, NewRHS); +} + +SDValue DAGCombiner::distributeTruncateThroughAnd(SDNode *N) { +  assert(N->getOpcode() == ISD::TRUNCATE); +  assert(N->getOperand(0).getOpcode() == ISD::AND); + +  // (truncate:TruncVT (and N00, N01C)) -> (and (truncate:TruncVT N00), TruncC) +  EVT TruncVT = N->getValueType(0); +  if (N->hasOneUse() && N->getOperand(0).hasOneUse() && +      TLI.isTypeDesirableForOp(ISD::AND, TruncVT)) { +    SDValue N01 = N->getOperand(0).getOperand(1); +    if (isConstantOrConstantVector(N01, /* NoOpaques */ true)) { +      SDLoc DL(N); +      SDValue N00 = N->getOperand(0).getOperand(0); +      SDValue Trunc00 = DAG.getNode(ISD::TRUNCATE, DL, TruncVT, N00); +      SDValue Trunc01 = DAG.getNode(ISD::TRUNCATE, DL, TruncVT, N01); +      AddToWorklist(Trunc00.getNode()); +      AddToWorklist(Trunc01.getNode()); +      return DAG.getNode(ISD::AND, DL, TruncVT, Trunc00, Trunc01); +    } +  } + +  return SDValue(); +} + +SDValue DAGCombiner::visitRotate(SDNode *N) { +  SDLoc dl(N); +  SDValue N0 = N->getOperand(0); +  SDValue N1 = N->getOperand(1); +  EVT VT = N->getValueType(0); +  unsigned Bitsize = VT.getScalarSizeInBits(); + +  // fold (rot x, 0) -> x +  if (isNullOrNullSplat(N1)) +    return N0; + +  // fold (rot x, c) -> x iff (c % BitSize) == 0 +  if (isPowerOf2_32(Bitsize) && Bitsize > 1) { +    APInt ModuloMask(N1.getScalarValueSizeInBits(), Bitsize - 1); +    if (DAG.MaskedValueIsZero(N1, ModuloMask)) +      return N0; +  } + +  // fold (rot x, c) -> (rot x, c % BitSize) +  // TODO - support non-uniform vector amounts. +  if (ConstantSDNode *Cst = isConstOrConstSplat(N1)) { +    if (Cst->getAPIntValue().uge(Bitsize)) { +      uint64_t RotAmt = Cst->getAPIntValue().urem(Bitsize); +      return DAG.getNode(N->getOpcode(), dl, VT, N0, +                         DAG.getConstant(RotAmt, dl, N1.getValueType())); +    } +  } + +  // fold (rot* x, (trunc (and y, c))) -> (rot* x, (and (trunc y), (trunc c))). +  if (N1.getOpcode() == ISD::TRUNCATE && +      N1.getOperand(0).getOpcode() == ISD::AND) { +    if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode())) +      return DAG.getNode(N->getOpcode(), dl, VT, N0, NewOp1); +  } + +  unsigned NextOp = N0.getOpcode(); +  // fold (rot* (rot* x, c2), c1) -> (rot* x, c1 +- c2 % bitsize) +  if (NextOp == ISD::ROTL || NextOp == ISD::ROTR) { +    SDNode *C1 = DAG.isConstantIntBuildVectorOrConstantInt(N1); +    SDNode *C2 = DAG.isConstantIntBuildVectorOrConstantInt(N0.getOperand(1)); +    if (C1 && C2 && C1->getValueType(0) == C2->getValueType(0)) { +      EVT ShiftVT = C1->getValueType(0); +      bool SameSide = (N->getOpcode() == NextOp); +      unsigned CombineOp = SameSide ? ISD::ADD : ISD::SUB; +      if (SDValue CombinedShift = +              DAG.FoldConstantArithmetic(CombineOp, dl, ShiftVT, C1, C2)) { +        SDValue BitsizeC = DAG.getConstant(Bitsize, dl, ShiftVT); +        SDValue CombinedShiftNorm = DAG.FoldConstantArithmetic( +            ISD::SREM, dl, ShiftVT, CombinedShift.getNode(), +            BitsizeC.getNode()); +        return DAG.getNode(N->getOpcode(), dl, VT, N0->getOperand(0), +                           CombinedShiftNorm); +      } +    } +  } +  return SDValue(); +} + +SDValue DAGCombiner::visitSHL(SDNode *N) { +  SDValue N0 = N->getOperand(0); +  SDValue N1 = N->getOperand(1); +  if (SDValue V = DAG.simplifyShift(N0, N1)) +    return V; + +  EVT VT = N0.getValueType(); +  EVT ShiftVT = N1.getValueType(); +  unsigned OpSizeInBits = VT.getScalarSizeInBits(); + +  // fold vector ops +  if (VT.isVector()) { +    if (SDValue FoldedVOp = SimplifyVBinOp(N)) +      return FoldedVOp; + +    BuildVectorSDNode *N1CV = dyn_cast<BuildVectorSDNode>(N1); +    // If setcc produces all-one true value then: +    // (shl (and (setcc) N01CV) N1CV) -> (and (setcc) N01CV<<N1CV) +    if (N1CV && N1CV->isConstant()) { +      if (N0.getOpcode() == ISD::AND) { +        SDValue N00 = N0->getOperand(0); +        SDValue N01 = N0->getOperand(1); +        BuildVectorSDNode *N01CV = dyn_cast<BuildVectorSDNode>(N01); + +        if (N01CV && N01CV->isConstant() && N00.getOpcode() == ISD::SETCC && +            TLI.getBooleanContents(N00.getOperand(0).getValueType()) == +                TargetLowering::ZeroOrNegativeOneBooleanContent) { +          if (SDValue C = DAG.FoldConstantArithmetic(ISD::SHL, SDLoc(N), VT, +                                                     N01CV, N1CV)) +            return DAG.getNode(ISD::AND, SDLoc(N), VT, N00, C); +        } +      } +    } +  } + +  ConstantSDNode *N1C = isConstOrConstSplat(N1); + +  // fold (shl c1, c2) -> c1<<c2 +  // TODO - support non-uniform vector shift amounts. +  ConstantSDNode *N0C = getAsNonOpaqueConstant(N0); +  if (N0C && N1C && !N1C->isOpaque()) +    return DAG.FoldConstantArithmetic(ISD::SHL, SDLoc(N), VT, N0C, N1C); + +  if (SDValue NewSel = foldBinOpIntoSelect(N)) +    return NewSel; + +  // if (shl x, c) is known to be zero, return 0 +  if (DAG.MaskedValueIsZero(SDValue(N, 0), +                            APInt::getAllOnesValue(OpSizeInBits))) +    return DAG.getConstant(0, SDLoc(N), VT); + +  // fold (shl x, (trunc (and y, c))) -> (shl x, (and (trunc y), (trunc c))). +  if (N1.getOpcode() == ISD::TRUNCATE && +      N1.getOperand(0).getOpcode() == ISD::AND) { +    if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode())) +      return DAG.getNode(ISD::SHL, SDLoc(N), VT, N0, NewOp1); +  } + +  // TODO - support non-uniform vector shift amounts. +  if (N1C && SimplifyDemandedBits(SDValue(N, 0))) +    return SDValue(N, 0); + +  // fold (shl (shl x, c1), c2) -> 0 or (shl x, (add c1, c2)) +  if (N0.getOpcode() == ISD::SHL) { +    auto MatchOutOfRange = [OpSizeInBits](ConstantSDNode *LHS, +                                          ConstantSDNode *RHS) { +      APInt c1 = LHS->getAPIntValue(); +      APInt c2 = RHS->getAPIntValue(); +      zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */); +      return (c1 + c2).uge(OpSizeInBits); +    }; +    if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchOutOfRange)) +      return DAG.getConstant(0, SDLoc(N), VT); + +    auto MatchInRange = [OpSizeInBits](ConstantSDNode *LHS, +                                       ConstantSDNode *RHS) { +      APInt c1 = LHS->getAPIntValue(); +      APInt c2 = RHS->getAPIntValue(); +      zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */); +      return (c1 + c2).ult(OpSizeInBits); +    }; +    if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchInRange)) { +      SDLoc DL(N); +      SDValue Sum = DAG.getNode(ISD::ADD, DL, ShiftVT, N1, N0.getOperand(1)); +      return DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0), Sum); +    } +  } + +  // fold (shl (ext (shl x, c1)), c2) -> (shl (ext x), (add c1, c2)) +  // For this to be valid, the second form must not preserve any of the bits +  // that are shifted out by the inner shift in the first form.  This means +  // the outer shift size must be >= the number of bits added by the ext. +  // As a corollary, we don't care what kind of ext it is. +  if ((N0.getOpcode() == ISD::ZERO_EXTEND || +       N0.getOpcode() == ISD::ANY_EXTEND || +       N0.getOpcode() == ISD::SIGN_EXTEND) && +      N0.getOperand(0).getOpcode() == ISD::SHL) { +    SDValue N0Op0 = N0.getOperand(0); +    SDValue InnerShiftAmt = N0Op0.getOperand(1); +    EVT InnerVT = N0Op0.getValueType(); +    uint64_t InnerBitwidth = InnerVT.getScalarSizeInBits(); + +    auto MatchOutOfRange = [OpSizeInBits, InnerBitwidth](ConstantSDNode *LHS, +                                                         ConstantSDNode *RHS) { +      APInt c1 = LHS->getAPIntValue(); +      APInt c2 = RHS->getAPIntValue(); +      zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */); +      return c2.uge(OpSizeInBits - InnerBitwidth) && +             (c1 + c2).uge(OpSizeInBits); +    }; +    if (ISD::matchBinaryPredicate(InnerShiftAmt, N1, MatchOutOfRange, +                                  /*AllowUndefs*/ false, +                                  /*AllowTypeMismatch*/ true)) +      return DAG.getConstant(0, SDLoc(N), VT); + +    auto MatchInRange = [OpSizeInBits, InnerBitwidth](ConstantSDNode *LHS, +                                                      ConstantSDNode *RHS) { +      APInt c1 = LHS->getAPIntValue(); +      APInt c2 = RHS->getAPIntValue(); +      zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */); +      return c2.uge(OpSizeInBits - InnerBitwidth) && +             (c1 + c2).ult(OpSizeInBits); +    }; +    if (ISD::matchBinaryPredicate(InnerShiftAmt, N1, MatchInRange, +                                  /*AllowUndefs*/ false, +                                  /*AllowTypeMismatch*/ true)) { +      SDLoc DL(N); +      SDValue Ext = DAG.getNode(N0.getOpcode(), DL, VT, N0Op0.getOperand(0)); +      SDValue Sum = DAG.getZExtOrTrunc(InnerShiftAmt, DL, ShiftVT); +      Sum = DAG.getNode(ISD::ADD, DL, ShiftVT, Sum, N1); +      return DAG.getNode(ISD::SHL, DL, VT, Ext, Sum); +    } +  } + +  // fold (shl (zext (srl x, C)), C) -> (zext (shl (srl x, C), C)) +  // Only fold this if the inner zext has no other uses to avoid increasing +  // the total number of instructions. +  if (N0.getOpcode() == ISD::ZERO_EXTEND && N0.hasOneUse() && +      N0.getOperand(0).getOpcode() == ISD::SRL) { +    SDValue N0Op0 = N0.getOperand(0); +    SDValue InnerShiftAmt = N0Op0.getOperand(1); + +    auto MatchEqual = [VT](ConstantSDNode *LHS, ConstantSDNode *RHS) { +      APInt c1 = LHS->getAPIntValue(); +      APInt c2 = RHS->getAPIntValue(); +      zeroExtendToMatch(c1, c2); +      return c1.ult(VT.getScalarSizeInBits()) && (c1 == c2); +    }; +    if (ISD::matchBinaryPredicate(InnerShiftAmt, N1, MatchEqual, +                                  /*AllowUndefs*/ false, +                                  /*AllowTypeMismatch*/ true)) { +      SDLoc DL(N); +      EVT InnerShiftAmtVT = N0Op0.getOperand(1).getValueType(); +      SDValue NewSHL = DAG.getZExtOrTrunc(N1, DL, InnerShiftAmtVT); +      NewSHL = DAG.getNode(ISD::SHL, DL, N0Op0.getValueType(), N0Op0, NewSHL); +      AddToWorklist(NewSHL.getNode()); +      return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N0), VT, NewSHL); +    } +  } + +  // fold (shl (sr[la] exact X,  C1), C2) -> (shl    X, (C2-C1)) if C1 <= C2 +  // fold (shl (sr[la] exact X,  C1), C2) -> (sr[la] X, (C2-C1)) if C1  > C2 +  // TODO - support non-uniform vector shift amounts. +  if (N1C && (N0.getOpcode() == ISD::SRL || N0.getOpcode() == ISD::SRA) && +      N0->getFlags().hasExact()) { +    if (ConstantSDNode *N0C1 = isConstOrConstSplat(N0.getOperand(1))) { +      uint64_t C1 = N0C1->getZExtValue(); +      uint64_t C2 = N1C->getZExtValue(); +      SDLoc DL(N); +      if (C1 <= C2) +        return DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0), +                           DAG.getConstant(C2 - C1, DL, ShiftVT)); +      return DAG.getNode(N0.getOpcode(), DL, VT, N0.getOperand(0), +                         DAG.getConstant(C1 - C2, DL, ShiftVT)); +    } +  } + +  // fold (shl (srl x, c1), c2) -> (and (shl x, (sub c2, c1), MASK) or +  //                               (and (srl x, (sub c1, c2), MASK) +  // Only fold this if the inner shift has no other uses -- if it does, folding +  // this will increase the total number of instructions. +  // TODO - drop hasOneUse requirement if c1 == c2? +  // TODO - support non-uniform vector shift amounts. +  if (N1C && N0.getOpcode() == ISD::SRL && N0.hasOneUse() && +      TLI.shouldFoldConstantShiftPairToMask(N, Level)) { +    if (ConstantSDNode *N0C1 = isConstOrConstSplat(N0.getOperand(1))) { +      if (N0C1->getAPIntValue().ult(OpSizeInBits)) { +        uint64_t c1 = N0C1->getZExtValue(); +        uint64_t c2 = N1C->getZExtValue(); +        APInt Mask = APInt::getHighBitsSet(OpSizeInBits, OpSizeInBits - c1); +        SDValue Shift; +        if (c2 > c1) { +          Mask <<= c2 - c1; +          SDLoc DL(N); +          Shift = DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0), +                              DAG.getConstant(c2 - c1, DL, ShiftVT)); +        } else { +          Mask.lshrInPlace(c1 - c2); +          SDLoc DL(N); +          Shift = DAG.getNode(ISD::SRL, DL, VT, N0.getOperand(0), +                              DAG.getConstant(c1 - c2, DL, ShiftVT)); +        } +        SDLoc DL(N0); +        return DAG.getNode(ISD::AND, DL, VT, Shift, +                           DAG.getConstant(Mask, DL, VT)); +      } +    } +  } + +  // fold (shl (sra x, c1), c1) -> (and x, (shl -1, c1)) +  if (N0.getOpcode() == ISD::SRA && N1 == N0.getOperand(1) && +      isConstantOrConstantVector(N1, /* No Opaques */ true)) { +    SDLoc DL(N); +    SDValue AllBits = DAG.getAllOnesConstant(DL, VT); +    SDValue HiBitsMask = DAG.getNode(ISD::SHL, DL, VT, AllBits, N1); +    return DAG.getNode(ISD::AND, DL, VT, N0.getOperand(0), HiBitsMask); +  } + +  // fold (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2) +  // fold (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2) +  // Variant of version done on multiply, except mul by a power of 2 is turned +  // into a shift. +  if ((N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR) && +      N0.getNode()->hasOneUse() && +      isConstantOrConstantVector(N1, /* No Opaques */ true) && +      isConstantOrConstantVector(N0.getOperand(1), /* No Opaques */ true) && +      TLI.isDesirableToCommuteWithShift(N, Level)) { +    SDValue Shl0 = DAG.getNode(ISD::SHL, SDLoc(N0), VT, N0.getOperand(0), N1); +    SDValue Shl1 = DAG.getNode(ISD::SHL, SDLoc(N1), VT, N0.getOperand(1), N1); +    AddToWorklist(Shl0.getNode()); +    AddToWorklist(Shl1.getNode()); +    return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, Shl0, Shl1); +  } + +  // fold (shl (mul x, c1), c2) -> (mul x, c1 << c2) +  if (N0.getOpcode() == ISD::MUL && N0.getNode()->hasOneUse() && +      isConstantOrConstantVector(N1, /* No Opaques */ true) && +      isConstantOrConstantVector(N0.getOperand(1), /* No Opaques */ true)) { +    SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(N1), VT, N0.getOperand(1), N1); +    if (isConstantOrConstantVector(Shl)) +      return DAG.getNode(ISD::MUL, SDLoc(N), VT, N0.getOperand(0), Shl); +  } + +  if (N1C && !N1C->isOpaque()) +    if (SDValue NewSHL = visitShiftByConstant(N)) +      return NewSHL; + +  return SDValue(); +} + +SDValue DAGCombiner::visitSRA(SDNode *N) { +  SDValue N0 = N->getOperand(0); +  SDValue N1 = N->getOperand(1); +  if (SDValue V = DAG.simplifyShift(N0, N1)) +    return V; + +  EVT VT = N0.getValueType(); +  unsigned OpSizeInBits = VT.getScalarSizeInBits(); + +  // Arithmetic shifting an all-sign-bit value is a no-op. +  // fold (sra 0, x) -> 0 +  // fold (sra -1, x) -> -1 +  if (DAG.ComputeNumSignBits(N0) == OpSizeInBits) +    return N0; + +  // fold vector ops +  if (VT.isVector()) +    if (SDValue FoldedVOp = SimplifyVBinOp(N)) +      return FoldedVOp; + +  ConstantSDNode *N1C = isConstOrConstSplat(N1); + +  // fold (sra c1, c2) -> (sra c1, c2) +  // TODO - support non-uniform vector shift amounts. +  ConstantSDNode *N0C = getAsNonOpaqueConstant(N0); +  if (N0C && N1C && !N1C->isOpaque()) +    return DAG.FoldConstantArithmetic(ISD::SRA, SDLoc(N), VT, N0C, N1C); + +  if (SDValue NewSel = foldBinOpIntoSelect(N)) +    return NewSel; + +  // fold (sra (shl x, c1), c1) -> sext_inreg for some c1 and target supports +  // sext_inreg. +  if (N1C && N0.getOpcode() == ISD::SHL && N1 == N0.getOperand(1)) { +    unsigned LowBits = OpSizeInBits - (unsigned)N1C->getZExtValue(); +    EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), LowBits); +    if (VT.isVector()) +      ExtVT = EVT::getVectorVT(*DAG.getContext(), +                               ExtVT, VT.getVectorNumElements()); +    if ((!LegalOperations || +         TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, ExtVT))) +      return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, +                         N0.getOperand(0), DAG.getValueType(ExtVT)); +  } + +  // fold (sra (sra x, c1), c2) -> (sra x, (add c1, c2)) +  // clamp (add c1, c2) to max shift. +  if (N0.getOpcode() == ISD::SRA) { +    SDLoc DL(N); +    EVT ShiftVT = N1.getValueType(); +    EVT ShiftSVT = ShiftVT.getScalarType(); +    SmallVector<SDValue, 16> ShiftValues; + +    auto SumOfShifts = [&](ConstantSDNode *LHS, ConstantSDNode *RHS) { +      APInt c1 = LHS->getAPIntValue(); +      APInt c2 = RHS->getAPIntValue(); +      zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */); +      APInt Sum = c1 + c2; +      unsigned ShiftSum = +          Sum.uge(OpSizeInBits) ? (OpSizeInBits - 1) : Sum.getZExtValue(); +      ShiftValues.push_back(DAG.getConstant(ShiftSum, DL, ShiftSVT)); +      return true; +    }; +    if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), SumOfShifts)) { +      SDValue ShiftValue; +      if (VT.isVector()) +        ShiftValue = DAG.getBuildVector(ShiftVT, DL, ShiftValues); +      else +        ShiftValue = ShiftValues[0]; +      return DAG.getNode(ISD::SRA, DL, VT, N0.getOperand(0), ShiftValue); +    } +  } + +  // fold (sra (shl X, m), (sub result_size, n)) +  // -> (sign_extend (trunc (shl X, (sub (sub result_size, n), m)))) for +  // result_size - n != m. +  // If truncate is free for the target sext(shl) is likely to result in better +  // code. +  if (N0.getOpcode() == ISD::SHL && N1C) { +    // Get the two constanst of the shifts, CN0 = m, CN = n. +    const ConstantSDNode *N01C = isConstOrConstSplat(N0.getOperand(1)); +    if (N01C) { +      LLVMContext &Ctx = *DAG.getContext(); +      // Determine what the truncate's result bitsize and type would be. +      EVT TruncVT = EVT::getIntegerVT(Ctx, OpSizeInBits - N1C->getZExtValue()); + +      if (VT.isVector()) +        TruncVT = EVT::getVectorVT(Ctx, TruncVT, VT.getVectorNumElements()); + +      // Determine the residual right-shift amount. +      int ShiftAmt = N1C->getZExtValue() - N01C->getZExtValue(); + +      // If the shift is not a no-op (in which case this should be just a sign +      // extend already), the truncated to type is legal, sign_extend is legal +      // on that type, and the truncate to that type is both legal and free, +      // perform the transform. +      if ((ShiftAmt > 0) && +          TLI.isOperationLegalOrCustom(ISD::SIGN_EXTEND, TruncVT) && +          TLI.isOperationLegalOrCustom(ISD::TRUNCATE, VT) && +          TLI.isTruncateFree(VT, TruncVT)) { +        SDLoc DL(N); +        SDValue Amt = DAG.getConstant(ShiftAmt, DL, +            getShiftAmountTy(N0.getOperand(0).getValueType())); +        SDValue Shift = DAG.getNode(ISD::SRL, DL, VT, +                                    N0.getOperand(0), Amt); +        SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, TruncVT, +                                    Shift); +        return DAG.getNode(ISD::SIGN_EXTEND, DL, +                           N->getValueType(0), Trunc); +      } +    } +  } + +  // We convert trunc/ext to opposing shifts in IR, but casts may be cheaper. +  //   sra (add (shl X, N1C), AddC), N1C --> +  //   sext (add (trunc X to (width - N1C)), AddC') +  if (!LegalTypes && N0.getOpcode() == ISD::ADD && N0.hasOneUse() && N1C && +      N0.getOperand(0).getOpcode() == ISD::SHL && +      N0.getOperand(0).getOperand(1) == N1 && N0.getOperand(0).hasOneUse()) { +    if (ConstantSDNode *AddC = isConstOrConstSplat(N0.getOperand(1))) { +      SDValue Shl = N0.getOperand(0); +      // Determine what the truncate's type would be and ask the target if that +      // is a free operation. +      LLVMContext &Ctx = *DAG.getContext(); +      unsigned ShiftAmt = N1C->getZExtValue(); +      EVT TruncVT = EVT::getIntegerVT(Ctx, OpSizeInBits - ShiftAmt); +      if (VT.isVector()) +        TruncVT = EVT::getVectorVT(Ctx, TruncVT, VT.getVectorNumElements()); + +      // TODO: The simple type check probably belongs in the default hook +      //       implementation and/or target-specific overrides (because +      //       non-simple types likely require masking when legalized), but that +      //       restriction may conflict with other transforms. +      if (TruncVT.isSimple() && TLI.isTruncateFree(VT, TruncVT)) { +        SDLoc DL(N); +        SDValue Trunc = DAG.getZExtOrTrunc(Shl.getOperand(0), DL, TruncVT); +        SDValue ShiftC = DAG.getConstant(AddC->getAPIntValue().lshr(ShiftAmt). +                             trunc(TruncVT.getScalarSizeInBits()), DL, TruncVT); +        SDValue Add = DAG.getNode(ISD::ADD, DL, TruncVT, Trunc, ShiftC); +        return DAG.getSExtOrTrunc(Add, DL, VT); +      } +    } +  } + +  // fold (sra x, (trunc (and y, c))) -> (sra x, (and (trunc y), (trunc c))). +  if (N1.getOpcode() == ISD::TRUNCATE && +      N1.getOperand(0).getOpcode() == ISD::AND) { +    if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode())) +      return DAG.getNode(ISD::SRA, SDLoc(N), VT, N0, NewOp1); +  } + +  // fold (sra (trunc (sra x, c1)), c2) -> (trunc (sra x, c1 + c2)) +  // fold (sra (trunc (srl x, c1)), c2) -> (trunc (sra x, c1 + c2)) +  //      if c1 is equal to the number of bits the trunc removes +  // TODO - support non-uniform vector shift amounts. +  if (N0.getOpcode() == ISD::TRUNCATE && +      (N0.getOperand(0).getOpcode() == ISD::SRL || +       N0.getOperand(0).getOpcode() == ISD::SRA) && +      N0.getOperand(0).hasOneUse() && +      N0.getOperand(0).getOperand(1).hasOneUse() && N1C) { +    SDValue N0Op0 = N0.getOperand(0); +    if (ConstantSDNode *LargeShift = isConstOrConstSplat(N0Op0.getOperand(1))) { +      EVT LargeVT = N0Op0.getValueType(); +      unsigned TruncBits = LargeVT.getScalarSizeInBits() - OpSizeInBits; +      if (LargeShift->getAPIntValue() == TruncBits) { +        SDLoc DL(N); +        SDValue Amt = DAG.getConstant(N1C->getZExtValue() + TruncBits, DL, +                                      getShiftAmountTy(LargeVT)); +        SDValue SRA = +            DAG.getNode(ISD::SRA, DL, LargeVT, N0Op0.getOperand(0), Amt); +        return DAG.getNode(ISD::TRUNCATE, DL, VT, SRA); +      } +    } +  } + +  // Simplify, based on bits shifted out of the LHS. +  // TODO - support non-uniform vector shift amounts. +  if (N1C && SimplifyDemandedBits(SDValue(N, 0))) +    return SDValue(N, 0); + +  // If the sign bit is known to be zero, switch this to a SRL. +  if (DAG.SignBitIsZero(N0)) +    return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0, N1); + +  if (N1C && !N1C->isOpaque()) +    if (SDValue NewSRA = visitShiftByConstant(N)) +      return NewSRA; + +  return SDValue(); +} + +SDValue DAGCombiner::visitSRL(SDNode *N) { +  SDValue N0 = N->getOperand(0); +  SDValue N1 = N->getOperand(1); +  if (SDValue V = DAG.simplifyShift(N0, N1)) +    return V; + +  EVT VT = N0.getValueType(); +  unsigned OpSizeInBits = VT.getScalarSizeInBits(); + +  // fold vector ops +  if (VT.isVector()) +    if (SDValue FoldedVOp = SimplifyVBinOp(N)) +      return FoldedVOp; + +  ConstantSDNode *N1C = isConstOrConstSplat(N1); + +  // fold (srl c1, c2) -> c1 >>u c2 +  // TODO - support non-uniform vector shift amounts. +  ConstantSDNode *N0C = getAsNonOpaqueConstant(N0); +  if (N0C && N1C && !N1C->isOpaque()) +    return DAG.FoldConstantArithmetic(ISD::SRL, SDLoc(N), VT, N0C, N1C); + +  if (SDValue NewSel = foldBinOpIntoSelect(N)) +    return NewSel; + +  // if (srl x, c) is known to be zero, return 0 +  if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0), +                                   APInt::getAllOnesValue(OpSizeInBits))) +    return DAG.getConstant(0, SDLoc(N), VT); + +  // fold (srl (srl x, c1), c2) -> 0 or (srl x, (add c1, c2)) +  if (N0.getOpcode() == ISD::SRL) { +    auto MatchOutOfRange = [OpSizeInBits](ConstantSDNode *LHS, +                                          ConstantSDNode *RHS) { +      APInt c1 = LHS->getAPIntValue(); +      APInt c2 = RHS->getAPIntValue(); +      zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */); +      return (c1 + c2).uge(OpSizeInBits); +    }; +    if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchOutOfRange)) +      return DAG.getConstant(0, SDLoc(N), VT); + +    auto MatchInRange = [OpSizeInBits](ConstantSDNode *LHS, +                                       ConstantSDNode *RHS) { +      APInt c1 = LHS->getAPIntValue(); +      APInt c2 = RHS->getAPIntValue(); +      zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */); +      return (c1 + c2).ult(OpSizeInBits); +    }; +    if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchInRange)) { +      SDLoc DL(N); +      EVT ShiftVT = N1.getValueType(); +      SDValue Sum = DAG.getNode(ISD::ADD, DL, ShiftVT, N1, N0.getOperand(1)); +      return DAG.getNode(ISD::SRL, DL, VT, N0.getOperand(0), Sum); +    } +  } + +  // fold (srl (trunc (srl x, c1)), c2) -> 0 or (trunc (srl x, (add c1, c2))) +  // TODO - support non-uniform vector shift amounts. +  if (N1C && N0.getOpcode() == ISD::TRUNCATE && +      N0.getOperand(0).getOpcode() == ISD::SRL) { +    if (auto N001C = isConstOrConstSplat(N0.getOperand(0).getOperand(1))) { +      uint64_t c1 = N001C->getZExtValue(); +      uint64_t c2 = N1C->getZExtValue(); +      EVT InnerShiftVT = N0.getOperand(0).getValueType(); +      EVT ShiftCountVT = N0.getOperand(0).getOperand(1).getValueType(); +      uint64_t InnerShiftSize = InnerShiftVT.getScalarSizeInBits(); +      // This is only valid if the OpSizeInBits + c1 = size of inner shift. +      if (c1 + OpSizeInBits == InnerShiftSize) { +        SDLoc DL(N0); +        if (c1 + c2 >= InnerShiftSize) +          return DAG.getConstant(0, DL, VT); +        return DAG.getNode(ISD::TRUNCATE, DL, VT, +                           DAG.getNode(ISD::SRL, DL, InnerShiftVT, +                                       N0.getOperand(0).getOperand(0), +                                       DAG.getConstant(c1 + c2, DL, +                                                       ShiftCountVT))); +      } +    } +  } + +  // fold (srl (shl x, c), c) -> (and x, cst2) +  // TODO - (srl (shl x, c1), c2). +  if (N0.getOpcode() == ISD::SHL && N0.getOperand(1) == N1 && +      isConstantOrConstantVector(N1, /* NoOpaques */ true)) { +    SDLoc DL(N); +    SDValue Mask = +        DAG.getNode(ISD::SRL, DL, VT, DAG.getAllOnesConstant(DL, VT), N1); +    AddToWorklist(Mask.getNode()); +    return DAG.getNode(ISD::AND, DL, VT, N0.getOperand(0), Mask); +  } + +  // fold (srl (anyextend x), c) -> (and (anyextend (srl x, c)), mask) +  // TODO - support non-uniform vector shift amounts. +  if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) { +    // Shifting in all undef bits? +    EVT SmallVT = N0.getOperand(0).getValueType(); +    unsigned BitSize = SmallVT.getScalarSizeInBits(); +    if (N1C->getAPIntValue().uge(BitSize)) +      return DAG.getUNDEF(VT); + +    if (!LegalTypes || TLI.isTypeDesirableForOp(ISD::SRL, SmallVT)) { +      uint64_t ShiftAmt = N1C->getZExtValue(); +      SDLoc DL0(N0); +      SDValue SmallShift = DAG.getNode(ISD::SRL, DL0, SmallVT, +                                       N0.getOperand(0), +                          DAG.getConstant(ShiftAmt, DL0, +                                          getShiftAmountTy(SmallVT))); +      AddToWorklist(SmallShift.getNode()); +      APInt Mask = APInt::getLowBitsSet(OpSizeInBits, OpSizeInBits - ShiftAmt); +      SDLoc DL(N); +      return DAG.getNode(ISD::AND, DL, VT, +                         DAG.getNode(ISD::ANY_EXTEND, DL, VT, SmallShift), +                         DAG.getConstant(Mask, DL, VT)); +    } +  } + +  // fold (srl (sra X, Y), 31) -> (srl X, 31).  This srl only looks at the sign +  // bit, which is unmodified by sra. +  if (N1C && N1C->getAPIntValue() == (OpSizeInBits - 1)) { +    if (N0.getOpcode() == ISD::SRA) +      return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0.getOperand(0), N1); +  } + +  // fold (srl (ctlz x), "5") -> x  iff x has one bit set (the low bit). +  if (N1C && N0.getOpcode() == ISD::CTLZ && +      N1C->getAPIntValue() == Log2_32(OpSizeInBits)) { +    KnownBits Known = DAG.computeKnownBits(N0.getOperand(0)); + +    // If any of the input bits are KnownOne, then the input couldn't be all +    // zeros, thus the result of the srl will always be zero. +    if (Known.One.getBoolValue()) return DAG.getConstant(0, SDLoc(N0), VT); + +    // If all of the bits input the to ctlz node are known to be zero, then +    // the result of the ctlz is "32" and the result of the shift is one. +    APInt UnknownBits = ~Known.Zero; +    if (UnknownBits == 0) return DAG.getConstant(1, SDLoc(N0), VT); + +    // Otherwise, check to see if there is exactly one bit input to the ctlz. +    if (UnknownBits.isPowerOf2()) { +      // Okay, we know that only that the single bit specified by UnknownBits +      // could be set on input to the CTLZ node. If this bit is set, the SRL +      // will return 0, if it is clear, it returns 1. Change the CTLZ/SRL pair +      // to an SRL/XOR pair, which is likely to simplify more. +      unsigned ShAmt = UnknownBits.countTrailingZeros(); +      SDValue Op = N0.getOperand(0); + +      if (ShAmt) { +        SDLoc DL(N0); +        Op = DAG.getNode(ISD::SRL, DL, VT, Op, +                  DAG.getConstant(ShAmt, DL, +                                  getShiftAmountTy(Op.getValueType()))); +        AddToWorklist(Op.getNode()); +      } + +      SDLoc DL(N); +      return DAG.getNode(ISD::XOR, DL, VT, +                         Op, DAG.getConstant(1, DL, VT)); +    } +  } + +  // fold (srl x, (trunc (and y, c))) -> (srl x, (and (trunc y), (trunc c))). +  if (N1.getOpcode() == ISD::TRUNCATE && +      N1.getOperand(0).getOpcode() == ISD::AND) { +    if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode())) +      return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0, NewOp1); +  } + +  // fold operands of srl based on knowledge that the low bits are not +  // demanded. +  // TODO - support non-uniform vector shift amounts. +  if (N1C && SimplifyDemandedBits(SDValue(N, 0))) +    return SDValue(N, 0); + +  if (N1C && !N1C->isOpaque()) +    if (SDValue NewSRL = visitShiftByConstant(N)) +      return NewSRL; + +  // Attempt to convert a srl of a load into a narrower zero-extending load. +  if (SDValue NarrowLoad = ReduceLoadWidth(N)) +    return NarrowLoad; + +  // Here is a common situation. We want to optimize: +  // +  //   %a = ... +  //   %b = and i32 %a, 2 +  //   %c = srl i32 %b, 1 +  //   brcond i32 %c ... +  // +  // into +  // +  //   %a = ... +  //   %b = and %a, 2 +  //   %c = setcc eq %b, 0 +  //   brcond %c ... +  // +  // However when after the source operand of SRL is optimized into AND, the SRL +  // itself may not be optimized further. Look for it and add the BRCOND into +  // the worklist. +  if (N->hasOneUse()) { +    SDNode *Use = *N->use_begin(); +    if (Use->getOpcode() == ISD::BRCOND) +      AddToWorklist(Use); +    else if (Use->getOpcode() == ISD::TRUNCATE && Use->hasOneUse()) { +      // Also look pass the truncate. +      Use = *Use->use_begin(); +      if (Use->getOpcode() == ISD::BRCOND) +        AddToWorklist(Use); +    } +  } + +  return SDValue(); +} + +SDValue DAGCombiner::visitFunnelShift(SDNode *N) { +  EVT VT = N->getValueType(0); +  SDValue N0 = N->getOperand(0); +  SDValue N1 = N->getOperand(1); +  SDValue N2 = N->getOperand(2); +  bool IsFSHL = N->getOpcode() == ISD::FSHL; +  unsigned BitWidth = VT.getScalarSizeInBits(); + +  // fold (fshl N0, N1, 0) -> N0 +  // fold (fshr N0, N1, 0) -> N1 +  if (isPowerOf2_32(BitWidth)) +    if (DAG.MaskedValueIsZero( +            N2, APInt(N2.getScalarValueSizeInBits(), BitWidth - 1))) +      return IsFSHL ? N0 : N1; + +  auto IsUndefOrZero = [](SDValue V) { +    return V.isUndef() || isNullOrNullSplat(V, /*AllowUndefs*/ true); +  }; + +  // TODO - support non-uniform vector shift amounts. +  if (ConstantSDNode *Cst = isConstOrConstSplat(N2)) { +    EVT ShAmtTy = N2.getValueType(); + +    // fold (fsh* N0, N1, c) -> (fsh* N0, N1, c % BitWidth) +    if (Cst->getAPIntValue().uge(BitWidth)) { +      uint64_t RotAmt = Cst->getAPIntValue().urem(BitWidth); +      return DAG.getNode(N->getOpcode(), SDLoc(N), VT, N0, N1, +                         DAG.getConstant(RotAmt, SDLoc(N), ShAmtTy)); +    } + +    unsigned ShAmt = Cst->getZExtValue(); +    if (ShAmt == 0) +      return IsFSHL ? N0 : N1; + +    // fold fshl(undef_or_zero, N1, C) -> lshr(N1, BW-C) +    // fold fshr(undef_or_zero, N1, C) -> lshr(N1, C) +    // fold fshl(N0, undef_or_zero, C) -> shl(N0, C) +    // fold fshr(N0, undef_or_zero, C) -> shl(N0, BW-C) +    if (IsUndefOrZero(N0)) +      return DAG.getNode(ISD::SRL, SDLoc(N), VT, N1, +                         DAG.getConstant(IsFSHL ? BitWidth - ShAmt : ShAmt, +                                         SDLoc(N), ShAmtTy)); +    if (IsUndefOrZero(N1)) +      return DAG.getNode(ISD::SHL, SDLoc(N), VT, N0, +                         DAG.getConstant(IsFSHL ? ShAmt : BitWidth - ShAmt, +                                         SDLoc(N), ShAmtTy)); +  } + +  // fold fshr(undef_or_zero, N1, N2) -> lshr(N1, N2) +  // fold fshl(N0, undef_or_zero, N2) -> shl(N0, N2) +  // iff We know the shift amount is in range. +  // TODO: when is it worth doing SUB(BW, N2) as well? +  if (isPowerOf2_32(BitWidth)) { +    APInt ModuloBits(N2.getScalarValueSizeInBits(), BitWidth - 1); +    if (IsUndefOrZero(N0) && !IsFSHL && DAG.MaskedValueIsZero(N2, ~ModuloBits)) +      return DAG.getNode(ISD::SRL, SDLoc(N), VT, N1, N2); +    if (IsUndefOrZero(N1) && IsFSHL && DAG.MaskedValueIsZero(N2, ~ModuloBits)) +      return DAG.getNode(ISD::SHL, SDLoc(N), VT, N0, N2); +  } + +  // fold (fshl N0, N0, N2) -> (rotl N0, N2) +  // fold (fshr N0, N0, N2) -> (rotr N0, N2) +  // TODO: Investigate flipping this rotate if only one is legal, if funnel shift +  // is legal as well we might be better off avoiding non-constant (BW - N2). +  unsigned RotOpc = IsFSHL ? ISD::ROTL : ISD::ROTR; +  if (N0 == N1 && hasOperation(RotOpc, VT)) +    return DAG.getNode(RotOpc, SDLoc(N), VT, N0, N2); + +  // Simplify, based on bits shifted out of N0/N1. +  if (SimplifyDemandedBits(SDValue(N, 0))) +    return SDValue(N, 0); + +  return SDValue(); +} + +SDValue DAGCombiner::visitABS(SDNode *N) { +  SDValue N0 = N->getOperand(0); +  EVT VT = N->getValueType(0); + +  // fold (abs c1) -> c2 +  if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) +    return DAG.getNode(ISD::ABS, SDLoc(N), VT, N0); +  // fold (abs (abs x)) -> (abs x) +  if (N0.getOpcode() == ISD::ABS) +    return N0; +  // fold (abs x) -> x iff not-negative +  if (DAG.SignBitIsZero(N0)) +    return N0; +  return SDValue(); +} + +SDValue DAGCombiner::visitBSWAP(SDNode *N) { +  SDValue N0 = N->getOperand(0); +  EVT VT = N->getValueType(0); + +  // fold (bswap c1) -> c2 +  if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) +    return DAG.getNode(ISD::BSWAP, SDLoc(N), VT, N0); +  // fold (bswap (bswap x)) -> x +  if (N0.getOpcode() == ISD::BSWAP) +    return N0->getOperand(0); +  return SDValue(); +} + +SDValue DAGCombiner::visitBITREVERSE(SDNode *N) { +  SDValue N0 = N->getOperand(0); +  EVT VT = N->getValueType(0); + +  // fold (bitreverse c1) -> c2 +  if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) +    return DAG.getNode(ISD::BITREVERSE, SDLoc(N), VT, N0); +  // fold (bitreverse (bitreverse x)) -> x +  if (N0.getOpcode() == ISD::BITREVERSE) +    return N0.getOperand(0); +  return SDValue(); +} + +SDValue DAGCombiner::visitCTLZ(SDNode *N) { +  SDValue N0 = N->getOperand(0); +  EVT VT = N->getValueType(0); + +  // fold (ctlz c1) -> c2 +  if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) +    return DAG.getNode(ISD::CTLZ, SDLoc(N), VT, N0); + +  // If the value is known never to be zero, switch to the undef version. +  if (!LegalOperations || TLI.isOperationLegal(ISD::CTLZ_ZERO_UNDEF, VT)) { +    if (DAG.isKnownNeverZero(N0)) +      return DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SDLoc(N), VT, N0); +  } + +  return SDValue(); +} + +SDValue DAGCombiner::visitCTLZ_ZERO_UNDEF(SDNode *N) { +  SDValue N0 = N->getOperand(0); +  EVT VT = N->getValueType(0); + +  // fold (ctlz_zero_undef c1) -> c2 +  if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) +    return DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SDLoc(N), VT, N0); +  return SDValue(); +} + +SDValue DAGCombiner::visitCTTZ(SDNode *N) { +  SDValue N0 = N->getOperand(0); +  EVT VT = N->getValueType(0); + +  // fold (cttz c1) -> c2 +  if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) +    return DAG.getNode(ISD::CTTZ, SDLoc(N), VT, N0); + +  // If the value is known never to be zero, switch to the undef version. +  if (!LegalOperations || TLI.isOperationLegal(ISD::CTTZ_ZERO_UNDEF, VT)) { +    if (DAG.isKnownNeverZero(N0)) +      return DAG.getNode(ISD::CTTZ_ZERO_UNDEF, SDLoc(N), VT, N0); +  } + +  return SDValue(); +} + +SDValue DAGCombiner::visitCTTZ_ZERO_UNDEF(SDNode *N) { +  SDValue N0 = N->getOperand(0); +  EVT VT = N->getValueType(0); + +  // fold (cttz_zero_undef c1) -> c2 +  if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) +    return DAG.getNode(ISD::CTTZ_ZERO_UNDEF, SDLoc(N), VT, N0); +  return SDValue(); +} + +SDValue DAGCombiner::visitCTPOP(SDNode *N) { +  SDValue N0 = N->getOperand(0); +  EVT VT = N->getValueType(0); + +  // fold (ctpop c1) -> c2 +  if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) +    return DAG.getNode(ISD::CTPOP, SDLoc(N), VT, N0); +  return SDValue(); +} + +// FIXME: This should be checking for no signed zeros on individual operands, as +// well as no nans. +static bool isLegalToCombineMinNumMaxNum(SelectionDAG &DAG, SDValue LHS, +                                         SDValue RHS, +                                         const TargetLowering &TLI) { +  const TargetOptions &Options = DAG.getTarget().Options; +  EVT VT = LHS.getValueType(); + +  return Options.NoSignedZerosFPMath && VT.isFloatingPoint() && +         TLI.isProfitableToCombineMinNumMaxNum(VT) && +         DAG.isKnownNeverNaN(LHS) && DAG.isKnownNeverNaN(RHS); +} + +/// Generate Min/Max node +static SDValue combineMinNumMaxNum(const SDLoc &DL, EVT VT, SDValue LHS, +                                   SDValue RHS, SDValue True, SDValue False, +                                   ISD::CondCode CC, const TargetLowering &TLI, +                                   SelectionDAG &DAG) { +  if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True)) +    return SDValue(); + +  EVT TransformVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT); +  switch (CC) { +  case ISD::SETOLT: +  case ISD::SETOLE: +  case ISD::SETLT: +  case ISD::SETLE: +  case ISD::SETULT: +  case ISD::SETULE: { +    // Since it's known never nan to get here already, either fminnum or +    // fminnum_ieee are OK. Try the ieee version first, since it's fminnum is +    // expanded in terms of it. +    unsigned IEEEOpcode = (LHS == True) ? ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE; +    if (TLI.isOperationLegalOrCustom(IEEEOpcode, VT)) +      return DAG.getNode(IEEEOpcode, DL, VT, LHS, RHS); + +    unsigned Opcode = (LHS == True) ? ISD::FMINNUM : ISD::FMAXNUM; +    if (TLI.isOperationLegalOrCustom(Opcode, TransformVT)) +      return DAG.getNode(Opcode, DL, VT, LHS, RHS); +    return SDValue(); +  } +  case ISD::SETOGT: +  case ISD::SETOGE: +  case ISD::SETGT: +  case ISD::SETGE: +  case ISD::SETUGT: +  case ISD::SETUGE: { +    unsigned IEEEOpcode = (LHS == True) ? ISD::FMAXNUM_IEEE : ISD::FMINNUM_IEEE; +    if (TLI.isOperationLegalOrCustom(IEEEOpcode, VT)) +      return DAG.getNode(IEEEOpcode, DL, VT, LHS, RHS); + +    unsigned Opcode = (LHS == True) ? ISD::FMAXNUM : ISD::FMINNUM; +    if (TLI.isOperationLegalOrCustom(Opcode, TransformVT)) +      return DAG.getNode(Opcode, DL, VT, LHS, RHS); +    return SDValue(); +  } +  default: +    return SDValue(); +  } +} + +/// If a (v)select has a condition value that is a sign-bit test, try to smear +/// the condition operand sign-bit across the value width and use it as a mask. +static SDValue foldSelectOfConstantsUsingSra(SDNode *N, SelectionDAG &DAG) { +  SDValue Cond = N->getOperand(0); +  SDValue C1 = N->getOperand(1); +  SDValue C2 = N->getOperand(2); +  assert(isConstantOrConstantVector(C1) && isConstantOrConstantVector(C2) && +         "Expected select-of-constants"); + +  EVT VT = N->getValueType(0); +  if (Cond.getOpcode() != ISD::SETCC || !Cond.hasOneUse() || +      VT != Cond.getOperand(0).getValueType()) +    return SDValue(); + +  // The inverted-condition + commuted-select variants of these patterns are +  // canonicalized to these forms in IR. +  SDValue X = Cond.getOperand(0); +  SDValue CondC = Cond.getOperand(1); +  ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); +  if (CC == ISD::SETGT && isAllOnesOrAllOnesSplat(CondC) && +      isAllOnesOrAllOnesSplat(C2)) { +    // i32 X > -1 ? C1 : -1 --> (X >>s 31) | C1 +    SDLoc DL(N); +    SDValue ShAmtC = DAG.getConstant(X.getScalarValueSizeInBits() - 1, DL, VT); +    SDValue Sra = DAG.getNode(ISD::SRA, DL, VT, X, ShAmtC); +    return DAG.getNode(ISD::OR, DL, VT, Sra, C1); +  } +  if (CC == ISD::SETLT && isNullOrNullSplat(CondC) && isNullOrNullSplat(C2)) { +    // i8 X < 0 ? C1 : 0 --> (X >>s 7) & C1 +    SDLoc DL(N); +    SDValue ShAmtC = DAG.getConstant(X.getScalarValueSizeInBits() - 1, DL, VT); +    SDValue Sra = DAG.getNode(ISD::SRA, DL, VT, X, ShAmtC); +    return DAG.getNode(ISD::AND, DL, VT, Sra, C1); +  } +  return SDValue(); +} + +SDValue DAGCombiner::foldSelectOfConstants(SDNode *N) { +  SDValue Cond = N->getOperand(0); +  SDValue N1 = N->getOperand(1); +  SDValue N2 = N->getOperand(2); +  EVT VT = N->getValueType(0); +  EVT CondVT = Cond.getValueType(); +  SDLoc DL(N); + +  if (!VT.isInteger()) +    return SDValue(); + +  auto *C1 = dyn_cast<ConstantSDNode>(N1); +  auto *C2 = dyn_cast<ConstantSDNode>(N2); +  if (!C1 || !C2) +    return SDValue(); + +  // Only do this before legalization to avoid conflicting with target-specific +  // transforms in the other direction (create a select from a zext/sext). There +  // is also a target-independent combine here in DAGCombiner in the other +  // direction for (select Cond, -1, 0) when the condition is not i1. +  if (CondVT == MVT::i1 && !LegalOperations) { +    if (C1->isNullValue() && C2->isOne()) { +      // select Cond, 0, 1 --> zext (!Cond) +      SDValue NotCond = DAG.getNOT(DL, Cond, MVT::i1); +      if (VT != MVT::i1) +        NotCond = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, NotCond); +      return NotCond; +    } +    if (C1->isNullValue() && C2->isAllOnesValue()) { +      // select Cond, 0, -1 --> sext (!Cond) +      SDValue NotCond = DAG.getNOT(DL, Cond, MVT::i1); +      if (VT != MVT::i1) +        NotCond = DAG.getNode(ISD::SIGN_EXTEND, DL, VT, NotCond); +      return NotCond; +    } +    if (C1->isOne() && C2->isNullValue()) { +      // select Cond, 1, 0 --> zext (Cond) +      if (VT != MVT::i1) +        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Cond); +      return Cond; +    } +    if (C1->isAllOnesValue() && C2->isNullValue()) { +      // select Cond, -1, 0 --> sext (Cond) +      if (VT != MVT::i1) +        Cond = DAG.getNode(ISD::SIGN_EXTEND, DL, VT, Cond); +      return Cond; +    } + +    // Use a target hook because some targets may prefer to transform in the +    // other direction. +    if (TLI.convertSelectOfConstantsToMath(VT)) { +      // For any constants that differ by 1, we can transform the select into an +      // extend and add. +      const APInt &C1Val = C1->getAPIntValue(); +      const APInt &C2Val = C2->getAPIntValue(); +      if (C1Val - 1 == C2Val) { +        // select Cond, C1, C1-1 --> add (zext Cond), C1-1 +        if (VT != MVT::i1) +          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Cond); +        return DAG.getNode(ISD::ADD, DL, VT, Cond, N2); +      } +      if (C1Val + 1 == C2Val) { +        // select Cond, C1, C1+1 --> add (sext Cond), C1+1 +        if (VT != MVT::i1) +          Cond = DAG.getNode(ISD::SIGN_EXTEND, DL, VT, Cond); +        return DAG.getNode(ISD::ADD, DL, VT, Cond, N2); +      } + +      // select Cond, Pow2, 0 --> (zext Cond) << log2(Pow2) +      if (C1Val.isPowerOf2() && C2Val.isNullValue()) { +        if (VT != MVT::i1) +          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Cond); +        SDValue ShAmtC = DAG.getConstant(C1Val.exactLogBase2(), DL, VT); +        return DAG.getNode(ISD::SHL, DL, VT, Cond, ShAmtC); +      } + +      if (SDValue V = foldSelectOfConstantsUsingSra(N, DAG)) +        return V; +    } + +    return SDValue(); +  } + +  // fold (select Cond, 0, 1) -> (xor Cond, 1) +  // We can't do this reliably if integer based booleans have different contents +  // to floating point based booleans. This is because we can't tell whether we +  // have an integer-based boolean or a floating-point-based boolean unless we +  // can find the SETCC that produced it and inspect its operands. This is +  // fairly easy if C is the SETCC node, but it can potentially be +  // undiscoverable (or not reasonably discoverable). For example, it could be +  // in another basic block or it could require searching a complicated +  // expression. +  if (CondVT.isInteger() && +      TLI.getBooleanContents(/*isVec*/false, /*isFloat*/true) == +          TargetLowering::ZeroOrOneBooleanContent && +      TLI.getBooleanContents(/*isVec*/false, /*isFloat*/false) == +          TargetLowering::ZeroOrOneBooleanContent && +      C1->isNullValue() && C2->isOne()) { +    SDValue NotCond = +        DAG.getNode(ISD::XOR, DL, CondVT, Cond, DAG.getConstant(1, DL, CondVT)); +    if (VT.bitsEq(CondVT)) +      return NotCond; +    return DAG.getZExtOrTrunc(NotCond, DL, VT); +  } + +  return SDValue(); +} + +SDValue DAGCombiner::visitSELECT(SDNode *N) { +  SDValue N0 = N->getOperand(0); +  SDValue N1 = N->getOperand(1); +  SDValue N2 = N->getOperand(2); +  EVT VT = N->getValueType(0); +  EVT VT0 = N0.getValueType(); +  SDLoc DL(N); +  SDNodeFlags Flags = N->getFlags(); + +  if (SDValue V = DAG.simplifySelect(N0, N1, N2)) +    return V; + +  // fold (select X, X, Y) -> (or X, Y) +  // fold (select X, 1, Y) -> (or C, Y) +  if (VT == VT0 && VT == MVT::i1 && (N0 == N1 || isOneConstant(N1))) +    return DAG.getNode(ISD::OR, DL, VT, N0, N2); + +  if (SDValue V = foldSelectOfConstants(N)) +    return V; + +  // fold (select C, 0, X) -> (and (not C), X) +  if (VT == VT0 && VT == MVT::i1 && isNullConstant(N1)) { +    SDValue NOTNode = DAG.getNOT(SDLoc(N0), N0, VT); +    AddToWorklist(NOTNode.getNode()); +    return DAG.getNode(ISD::AND, DL, VT, NOTNode, N2); +  } +  // fold (select C, X, 1) -> (or (not C), X) +  if (VT == VT0 && VT == MVT::i1 && isOneConstant(N2)) { +    SDValue NOTNode = DAG.getNOT(SDLoc(N0), N0, VT); +    AddToWorklist(NOTNode.getNode()); +    return DAG.getNode(ISD::OR, DL, VT, NOTNode, N1); +  } +  // fold (select X, Y, X) -> (and X, Y) +  // fold (select X, Y, 0) -> (and X, Y) +  if (VT == VT0 && VT == MVT::i1 && (N0 == N2 || isNullConstant(N2))) +    return DAG.getNode(ISD::AND, DL, VT, N0, N1); + +  // If we can fold this based on the true/false value, do so. +  if (SimplifySelectOps(N, N1, N2)) +    return SDValue(N, 0); // Don't revisit N. + +  if (VT0 == MVT::i1) { +    // The code in this block deals with the following 2 equivalences: +    //    select(C0|C1, x, y) <=> select(C0, x, select(C1, x, y)) +    //    select(C0&C1, x, y) <=> select(C0, select(C1, x, y), y) +    // The target can specify its preferred form with the +    // shouldNormalizeToSelectSequence() callback. However we always transform +    // to the right anyway if we find the inner select exists in the DAG anyway +    // and we always transform to the left side if we know that we can further +    // optimize the combination of the conditions. +    bool normalizeToSequence = +        TLI.shouldNormalizeToSelectSequence(*DAG.getContext(), VT); +    // select (and Cond0, Cond1), X, Y +    //   -> select Cond0, (select Cond1, X, Y), Y +    if (N0->getOpcode() == ISD::AND && N0->hasOneUse()) { +      SDValue Cond0 = N0->getOperand(0); +      SDValue Cond1 = N0->getOperand(1); +      SDValue InnerSelect = +          DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Cond1, N1, N2, Flags); +      if (normalizeToSequence || !InnerSelect.use_empty()) +        return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Cond0, +                           InnerSelect, N2, Flags); +      // Cleanup on failure. +      if (InnerSelect.use_empty()) +        recursivelyDeleteUnusedNodes(InnerSelect.getNode()); +    } +    // select (or Cond0, Cond1), X, Y -> select Cond0, X, (select Cond1, X, Y) +    if (N0->getOpcode() == ISD::OR && N0->hasOneUse()) { +      SDValue Cond0 = N0->getOperand(0); +      SDValue Cond1 = N0->getOperand(1); +      SDValue InnerSelect = DAG.getNode(ISD::SELECT, DL, N1.getValueType(), +                                        Cond1, N1, N2, Flags); +      if (normalizeToSequence || !InnerSelect.use_empty()) +        return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Cond0, N1, +                           InnerSelect, Flags); +      // Cleanup on failure. +      if (InnerSelect.use_empty()) +        recursivelyDeleteUnusedNodes(InnerSelect.getNode()); +    } + +    // select Cond0, (select Cond1, X, Y), Y -> select (and Cond0, Cond1), X, Y +    if (N1->getOpcode() == ISD::SELECT && N1->hasOneUse()) { +      SDValue N1_0 = N1->getOperand(0); +      SDValue N1_1 = N1->getOperand(1); +      SDValue N1_2 = N1->getOperand(2); +      if (N1_2 == N2 && N0.getValueType() == N1_0.getValueType()) { +        // Create the actual and node if we can generate good code for it. +        if (!normalizeToSequence) { +          SDValue And = DAG.getNode(ISD::AND, DL, N0.getValueType(), N0, N1_0); +          return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), And, N1_1, +                             N2, Flags); +        } +        // Otherwise see if we can optimize the "and" to a better pattern. +        if (SDValue Combined = visitANDLike(N0, N1_0, N)) { +          return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Combined, N1_1, +                             N2, Flags); +        } +      } +    } +    // select Cond0, X, (select Cond1, X, Y) -> select (or Cond0, Cond1), X, Y +    if (N2->getOpcode() == ISD::SELECT && N2->hasOneUse()) { +      SDValue N2_0 = N2->getOperand(0); +      SDValue N2_1 = N2->getOperand(1); +      SDValue N2_2 = N2->getOperand(2); +      if (N2_1 == N1 && N0.getValueType() == N2_0.getValueType()) { +        // Create the actual or node if we can generate good code for it. +        if (!normalizeToSequence) { +          SDValue Or = DAG.getNode(ISD::OR, DL, N0.getValueType(), N0, N2_0); +          return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Or, N1,  +                             N2_2, Flags); +        } +        // Otherwise see if we can optimize to a better pattern. +        if (SDValue Combined = visitORLike(N0, N2_0, N)) +          return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Combined, N1, +                             N2_2, Flags); +      } +    } +  } + +  // select (not Cond), N1, N2 -> select Cond, N2, N1 +  if (SDValue F = extractBooleanFlip(N0, DAG, TLI, false)) { +    SDValue SelectOp = DAG.getSelect(DL, VT, F, N2, N1); +    SelectOp->setFlags(Flags); +    return SelectOp; +  } + +  // Fold selects based on a setcc into other things, such as min/max/abs. +  if (N0.getOpcode() == ISD::SETCC) { +    SDValue Cond0 = N0.getOperand(0), Cond1 = N0.getOperand(1); +    ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); + +    // select (fcmp lt x, y), x, y -> fminnum x, y +    // select (fcmp gt x, y), x, y -> fmaxnum x, y +    // +    // This is OK if we don't care what happens if either operand is a NaN. +    if (N0.hasOneUse() && isLegalToCombineMinNumMaxNum(DAG, N1, N2, TLI)) +      if (SDValue FMinMax = combineMinNumMaxNum(DL, VT, Cond0, Cond1, N1, N2, +                                                CC, TLI, DAG)) +        return FMinMax; + +    // Use 'unsigned add with overflow' to optimize an unsigned saturating add. +    // This is conservatively limited to pre-legal-operations to give targets +    // a chance to reverse the transform if they want to do that. Also, it is +    // unlikely that the pattern would be formed late, so it's probably not +    // worth going through the other checks. +    if (!LegalOperations && TLI.isOperationLegalOrCustom(ISD::UADDO, VT) && +        CC == ISD::SETUGT && N0.hasOneUse() && isAllOnesConstant(N1) && +        N2.getOpcode() == ISD::ADD && Cond0 == N2.getOperand(0)) { +      auto *C = dyn_cast<ConstantSDNode>(N2.getOperand(1)); +      auto *NotC = dyn_cast<ConstantSDNode>(Cond1); +      if (C && NotC && C->getAPIntValue() == ~NotC->getAPIntValue()) { +        // select (setcc Cond0, ~C, ugt), -1, (add Cond0, C) --> +        // uaddo Cond0, C; select uaddo.1, -1, uaddo.0 +        // +        // The IR equivalent of this transform would have this form: +        //   %a = add %x, C +        //   %c = icmp ugt %x, ~C +        //   %r = select %c, -1, %a +        //   => +        //   %u = call {iN,i1} llvm.uadd.with.overflow(%x, C) +        //   %u0 = extractvalue %u, 0 +        //   %u1 = extractvalue %u, 1 +        //   %r = select %u1, -1, %u0 +        SDVTList VTs = DAG.getVTList(VT, VT0); +        SDValue UAO = DAG.getNode(ISD::UADDO, DL, VTs, Cond0, N2.getOperand(1)); +        return DAG.getSelect(DL, VT, UAO.getValue(1), N1, UAO.getValue(0)); +      } +    } + +    if (TLI.isOperationLegal(ISD::SELECT_CC, VT) || +        (!LegalOperations && +         TLI.isOperationLegalOrCustom(ISD::SELECT_CC, VT))) { +      // Any flags available in a select/setcc fold will be on the setcc as they +      // migrated from fcmp +      Flags = N0.getNode()->getFlags(); +      SDValue SelectNode = DAG.getNode(ISD::SELECT_CC, DL, VT, Cond0, Cond1, N1, +                                       N2, N0.getOperand(2)); +      SelectNode->setFlags(Flags); +      return SelectNode; +    } + +    return SimplifySelect(DL, N0, N1, N2); +  } + +  return SDValue(); +} + +// This function assumes all the vselect's arguments are CONCAT_VECTOR +// nodes and that the condition is a BV of ConstantSDNodes (or undefs). +static SDValue ConvertSelectToConcatVector(SDNode *N, SelectionDAG &DAG) { +  SDLoc DL(N); +  SDValue Cond = N->getOperand(0); +  SDValue LHS = N->getOperand(1); +  SDValue RHS = N->getOperand(2); +  EVT VT = N->getValueType(0); +  int NumElems = VT.getVectorNumElements(); +  assert(LHS.getOpcode() == ISD::CONCAT_VECTORS && +         RHS.getOpcode() == ISD::CONCAT_VECTORS && +         Cond.getOpcode() == ISD::BUILD_VECTOR); + +  // CONCAT_VECTOR can take an arbitrary number of arguments. We only care about +  // binary ones here. +  if (LHS->getNumOperands() != 2 || RHS->getNumOperands() != 2) +    return SDValue(); + +  // We're sure we have an even number of elements due to the +  // concat_vectors we have as arguments to vselect. +  // Skip BV elements until we find one that's not an UNDEF +  // After we find an UNDEF element, keep looping until we get to half the +  // length of the BV and see if all the non-undef nodes are the same. +  ConstantSDNode *BottomHalf = nullptr; +  for (int i = 0; i < NumElems / 2; ++i) { +    if (Cond->getOperand(i)->isUndef()) +      continue; + +    if (BottomHalf == nullptr) +      BottomHalf = cast<ConstantSDNode>(Cond.getOperand(i)); +    else if (Cond->getOperand(i).getNode() != BottomHalf) +      return SDValue(); +  } + +  // Do the same for the second half of the BuildVector +  ConstantSDNode *TopHalf = nullptr; +  for (int i = NumElems / 2; i < NumElems; ++i) { +    if (Cond->getOperand(i)->isUndef()) +      continue; + +    if (TopHalf == nullptr) +      TopHalf = cast<ConstantSDNode>(Cond.getOperand(i)); +    else if (Cond->getOperand(i).getNode() != TopHalf) +      return SDValue(); +  } + +  assert(TopHalf && BottomHalf && +         "One half of the selector was all UNDEFs and the other was all the " +         "same value. This should have been addressed before this function."); +  return DAG.getNode( +      ISD::CONCAT_VECTORS, DL, VT, +      BottomHalf->isNullValue() ? RHS->getOperand(0) : LHS->getOperand(0), +      TopHalf->isNullValue() ? RHS->getOperand(1) : LHS->getOperand(1)); +} + +SDValue DAGCombiner::visitMSCATTER(SDNode *N) { +  MaskedScatterSDNode *MSC = cast<MaskedScatterSDNode>(N); +  SDValue Mask = MSC->getMask(); +  SDValue Chain = MSC->getChain(); +  SDLoc DL(N); + +  // Zap scatters with a zero mask. +  if (ISD::isBuildVectorAllZeros(Mask.getNode())) +    return Chain; + +  return SDValue(); +} + +SDValue DAGCombiner::visitMSTORE(SDNode *N) { +  MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N); +  SDValue Mask = MST->getMask(); +  SDValue Chain = MST->getChain(); +  SDLoc DL(N); + +  // Zap masked stores with a zero mask. +  if (ISD::isBuildVectorAllZeros(Mask.getNode())) +    return Chain; + +  return SDValue(); +} + +SDValue DAGCombiner::visitMGATHER(SDNode *N) { +  MaskedGatherSDNode *MGT = cast<MaskedGatherSDNode>(N); +  SDValue Mask = MGT->getMask(); +  SDLoc DL(N); + +  // Zap gathers with a zero mask. +  if (ISD::isBuildVectorAllZeros(Mask.getNode())) +    return CombineTo(N, MGT->getPassThru(), MGT->getChain()); + +  return SDValue(); +} + +SDValue DAGCombiner::visitMLOAD(SDNode *N) { +  MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N); +  SDValue Mask = MLD->getMask(); +  SDLoc DL(N); + +  // Zap masked loads with a zero mask. +  if (ISD::isBuildVectorAllZeros(Mask.getNode())) +    return CombineTo(N, MLD->getPassThru(), MLD->getChain()); + +  return SDValue(); +} + +/// A vector select of 2 constant vectors can be simplified to math/logic to +/// avoid a variable select instruction and possibly avoid constant loads. +SDValue DAGCombiner::foldVSelectOfConstants(SDNode *N) { +  SDValue Cond = N->getOperand(0); +  SDValue N1 = N->getOperand(1); +  SDValue N2 = N->getOperand(2); +  EVT VT = N->getValueType(0); +  if (!Cond.hasOneUse() || Cond.getScalarValueSizeInBits() != 1 || +      !TLI.convertSelectOfConstantsToMath(VT) || +      !ISD::isBuildVectorOfConstantSDNodes(N1.getNode()) || +      !ISD::isBuildVectorOfConstantSDNodes(N2.getNode())) +    return SDValue(); + +  // Check if we can use the condition value to increment/decrement a single +  // constant value. This simplifies a select to an add and removes a constant +  // load/materialization from the general case. +  bool AllAddOne = true; +  bool AllSubOne = true; +  unsigned Elts = VT.getVectorNumElements(); +  for (unsigned i = 0; i != Elts; ++i) { +    SDValue N1Elt = N1.getOperand(i); +    SDValue N2Elt = N2.getOperand(i); +    if (N1Elt.isUndef() || N2Elt.isUndef()) +      continue; + +    const APInt &C1 = cast<ConstantSDNode>(N1Elt)->getAPIntValue(); +    const APInt &C2 = cast<ConstantSDNode>(N2Elt)->getAPIntValue(); +    if (C1 != C2 + 1) +      AllAddOne = false; +    if (C1 != C2 - 1) +      AllSubOne = false; +  } + +  // Further simplifications for the extra-special cases where the constants are +  // all 0 or all -1 should be implemented as folds of these patterns. +  SDLoc DL(N); +  if (AllAddOne || AllSubOne) { +    // vselect <N x i1> Cond, C+1, C --> add (zext Cond), C +    // vselect <N x i1> Cond, C-1, C --> add (sext Cond), C +    auto ExtendOpcode = AllAddOne ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND; +    SDValue ExtendedCond = DAG.getNode(ExtendOpcode, DL, VT, Cond); +    return DAG.getNode(ISD::ADD, DL, VT, ExtendedCond, N2); +  } + +  // select Cond, Pow2C, 0 --> (zext Cond) << log2(Pow2C) +  APInt Pow2C; +  if (ISD::isConstantSplatVector(N1.getNode(), Pow2C) && Pow2C.isPowerOf2() && +      isNullOrNullSplat(N2)) { +    SDValue ZextCond = DAG.getZExtOrTrunc(Cond, DL, VT); +    SDValue ShAmtC = DAG.getConstant(Pow2C.exactLogBase2(), DL, VT); +    return DAG.getNode(ISD::SHL, DL, VT, ZextCond, ShAmtC); +  } + +  if (SDValue V = foldSelectOfConstantsUsingSra(N, DAG)) +    return V; + +  // The general case for select-of-constants: +  // vselect <N x i1> Cond, C1, C2 --> xor (and (sext Cond), (C1^C2)), C2 +  // ...but that only makes sense if a vselect is slower than 2 logic ops, so +  // leave that to a machine-specific pass. +  return SDValue(); +} + +SDValue DAGCombiner::visitVSELECT(SDNode *N) { +  SDValue N0 = N->getOperand(0); +  SDValue N1 = N->getOperand(1); +  SDValue N2 = N->getOperand(2); +  EVT VT = N->getValueType(0); +  SDLoc DL(N); + +  if (SDValue V = DAG.simplifySelect(N0, N1, N2)) +    return V; + +  // vselect (not Cond), N1, N2 -> vselect Cond, N2, N1 +  if (SDValue F = extractBooleanFlip(N0, DAG, TLI, false)) +    return DAG.getSelect(DL, VT, F, N2, N1); + +  // Canonicalize integer abs. +  // vselect (setg[te] X,  0),  X, -X -> +  // vselect (setgt    X, -1),  X, -X -> +  // vselect (setl[te] X,  0), -X,  X -> +  // Y = sra (X, size(X)-1); xor (add (X, Y), Y) +  if (N0.getOpcode() == ISD::SETCC) { +    SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1); +    ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); +    bool isAbs = false; +    bool RHSIsAllZeros = ISD::isBuildVectorAllZeros(RHS.getNode()); + +    if (((RHSIsAllZeros && (CC == ISD::SETGT || CC == ISD::SETGE)) || +         (ISD::isBuildVectorAllOnes(RHS.getNode()) && CC == ISD::SETGT)) && +        N1 == LHS && N2.getOpcode() == ISD::SUB && N1 == N2.getOperand(1)) +      isAbs = ISD::isBuildVectorAllZeros(N2.getOperand(0).getNode()); +    else if ((RHSIsAllZeros && (CC == ISD::SETLT || CC == ISD::SETLE)) && +             N2 == LHS && N1.getOpcode() == ISD::SUB && N2 == N1.getOperand(1)) +      isAbs = ISD::isBuildVectorAllZeros(N1.getOperand(0).getNode()); + +    if (isAbs) { +      if (TLI.isOperationLegalOrCustom(ISD::ABS, VT)) +        return DAG.getNode(ISD::ABS, DL, VT, LHS); + +      SDValue Shift = DAG.getNode(ISD::SRA, DL, VT, LHS, +                                  DAG.getConstant(VT.getScalarSizeInBits() - 1, +                                                  DL, getShiftAmountTy(VT))); +      SDValue Add = DAG.getNode(ISD::ADD, DL, VT, LHS, Shift); +      AddToWorklist(Shift.getNode()); +      AddToWorklist(Add.getNode()); +      return DAG.getNode(ISD::XOR, DL, VT, Add, Shift); +    } + +    // vselect x, y (fcmp lt x, y) -> fminnum x, y +    // vselect x, y (fcmp gt x, y) -> fmaxnum x, y +    // +    // This is OK if we don't care about what happens if either operand is a +    // NaN. +    // +    if (N0.hasOneUse() && isLegalToCombineMinNumMaxNum(DAG, LHS, RHS, TLI)) { +      if (SDValue FMinMax = +              combineMinNumMaxNum(DL, VT, LHS, RHS, N1, N2, CC, TLI, DAG)) +        return FMinMax; +    } + +    // If this select has a condition (setcc) with narrower operands than the +    // select, try to widen the compare to match the select width. +    // TODO: This should be extended to handle any constant. +    // TODO: This could be extended to handle non-loading patterns, but that +    //       requires thorough testing to avoid regressions. +    if (isNullOrNullSplat(RHS)) { +      EVT NarrowVT = LHS.getValueType(); +      EVT WideVT = N1.getValueType().changeVectorElementTypeToInteger(); +      EVT SetCCVT = getSetCCResultType(LHS.getValueType()); +      unsigned SetCCWidth = SetCCVT.getScalarSizeInBits(); +      unsigned WideWidth = WideVT.getScalarSizeInBits(); +      bool IsSigned = isSignedIntSetCC(CC); +      auto LoadExtOpcode = IsSigned ? ISD::SEXTLOAD : ISD::ZEXTLOAD; +      if (LHS.getOpcode() == ISD::LOAD && LHS.hasOneUse() && +          SetCCWidth != 1 && SetCCWidth < WideWidth && +          TLI.isLoadExtLegalOrCustom(LoadExtOpcode, WideVT, NarrowVT) && +          TLI.isOperationLegalOrCustom(ISD::SETCC, WideVT)) { +        // Both compare operands can be widened for free. The LHS can use an +        // extended load, and the RHS is a constant: +        //   vselect (ext (setcc load(X), C)), N1, N2 --> +        //   vselect (setcc extload(X), C'), N1, N2 +        auto ExtOpcode = IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; +        SDValue WideLHS = DAG.getNode(ExtOpcode, DL, WideVT, LHS); +        SDValue WideRHS = DAG.getNode(ExtOpcode, DL, WideVT, RHS); +        EVT WideSetCCVT = getSetCCResultType(WideVT); +        SDValue WideSetCC = DAG.getSetCC(DL, WideSetCCVT, WideLHS, WideRHS, CC); +        return DAG.getSelect(DL, N1.getValueType(), WideSetCC, N1, N2); +      } +    } +  } + +  if (SimplifySelectOps(N, N1, N2)) +    return SDValue(N, 0);  // Don't revisit N. + +  // Fold (vselect (build_vector all_ones), N1, N2) -> N1 +  if (ISD::isBuildVectorAllOnes(N0.getNode())) +    return N1; +  // Fold (vselect (build_vector all_zeros), N1, N2) -> N2 +  if (ISD::isBuildVectorAllZeros(N0.getNode())) +    return N2; + +  // The ConvertSelectToConcatVector function is assuming both the above +  // checks for (vselect (build_vector all{ones,zeros) ...) have been made +  // and addressed. +  if (N1.getOpcode() == ISD::CONCAT_VECTORS && +      N2.getOpcode() == ISD::CONCAT_VECTORS && +      ISD::isBuildVectorOfConstantSDNodes(N0.getNode())) { +    if (SDValue CV = ConvertSelectToConcatVector(N, DAG)) +      return CV; +  } + +  if (SDValue V = foldVSelectOfConstants(N)) +    return V; + +  return SDValue(); +} + +SDValue DAGCombiner::visitSELECT_CC(SDNode *N) { +  SDValue N0 = N->getOperand(0); +  SDValue N1 = N->getOperand(1); +  SDValue N2 = N->getOperand(2); +  SDValue N3 = N->getOperand(3); +  SDValue N4 = N->getOperand(4); +  ISD::CondCode CC = cast<CondCodeSDNode>(N4)->get(); + +  // fold select_cc lhs, rhs, x, x, cc -> x +  if (N2 == N3) +    return N2; + +  // Determine if the condition we're dealing with is constant +  if (SDValue SCC = SimplifySetCC(getSetCCResultType(N0.getValueType()), N0, N1, +                                  CC, SDLoc(N), false)) { +    AddToWorklist(SCC.getNode()); + +    if (ConstantSDNode *SCCC = dyn_cast<ConstantSDNode>(SCC.getNode())) { +      if (!SCCC->isNullValue()) +        return N2;    // cond always true -> true val +      else +        return N3;    // cond always false -> false val +    } else if (SCC->isUndef()) { +      // When the condition is UNDEF, just return the first operand. This is +      // coherent the DAG creation, no setcc node is created in this case +      return N2; +    } else if (SCC.getOpcode() == ISD::SETCC) { +      // Fold to a simpler select_cc +      SDValue SelectOp = DAG.getNode( +          ISD::SELECT_CC, SDLoc(N), N2.getValueType(), SCC.getOperand(0), +          SCC.getOperand(1), N2, N3, SCC.getOperand(2)); +      SelectOp->setFlags(SCC->getFlags()); +      return SelectOp; +    } +  } + +  // If we can fold this based on the true/false value, do so. +  if (SimplifySelectOps(N, N2, N3)) +    return SDValue(N, 0);  // Don't revisit N. + +  // fold select_cc into other things, such as min/max/abs +  return SimplifySelectCC(SDLoc(N), N0, N1, N2, N3, CC); +} + +SDValue DAGCombiner::visitSETCC(SDNode *N) { +  // setcc is very commonly used as an argument to brcond. This pattern +  // also lend itself to numerous combines and, as a result, it is desired +  // we keep the argument to a brcond as a setcc as much as possible. +  bool PreferSetCC = +      N->hasOneUse() && N->use_begin()->getOpcode() == ISD::BRCOND; + +  SDValue Combined = SimplifySetCC( +      N->getValueType(0), N->getOperand(0), N->getOperand(1), +      cast<CondCodeSDNode>(N->getOperand(2))->get(), SDLoc(N), !PreferSetCC); + +  if (!Combined) +    return SDValue(); + +  // If we prefer to have a setcc, and we don't, we'll try our best to +  // recreate one using rebuildSetCC. +  if (PreferSetCC && Combined.getOpcode() != ISD::SETCC) { +    SDValue NewSetCC = rebuildSetCC(Combined); + +    // We don't have anything interesting to combine to. +    if (NewSetCC.getNode() == N) +      return SDValue(); + +    if (NewSetCC) +      return NewSetCC; +  } + +  return Combined; +} + +SDValue DAGCombiner::visitSETCCCARRY(SDNode *N) { +  SDValue LHS = N->getOperand(0); +  SDValue RHS = N->getOperand(1); +  SDValue Carry = N->getOperand(2); +  SDValue Cond = N->getOperand(3); + +  // If Carry is false, fold to a regular SETCC. +  if (isNullConstant(Carry)) +    return DAG.getNode(ISD::SETCC, SDLoc(N), N->getVTList(), LHS, RHS, Cond); + +  return SDValue(); +} + +/// Try to fold a sext/zext/aext dag node into a ConstantSDNode or +/// a build_vector of constants. +/// This function is called by the DAGCombiner when visiting sext/zext/aext +/// dag nodes (see for example method DAGCombiner::visitSIGN_EXTEND). +/// Vector extends are not folded if operations are legal; this is to +/// avoid introducing illegal build_vector dag nodes. +static SDValue tryToFoldExtendOfConstant(SDNode *N, const TargetLowering &TLI, +                                         SelectionDAG &DAG, bool LegalTypes) { +  unsigned Opcode = N->getOpcode(); +  SDValue N0 = N->getOperand(0); +  EVT VT = N->getValueType(0); +  SDLoc DL(N); + +  assert((Opcode == ISD::SIGN_EXTEND || Opcode == ISD::ZERO_EXTEND || +         Opcode == ISD::ANY_EXTEND || Opcode == ISD::SIGN_EXTEND_VECTOR_INREG || +         Opcode == ISD::ZERO_EXTEND_VECTOR_INREG) +         && "Expected EXTEND dag node in input!"); + +  // fold (sext c1) -> c1 +  // fold (zext c1) -> c1 +  // fold (aext c1) -> c1 +  if (isa<ConstantSDNode>(N0)) +    return DAG.getNode(Opcode, DL, VT, N0); + +  // fold (sext (select cond, c1, c2)) -> (select cond, sext c1, sext c2) +  // fold (zext (select cond, c1, c2)) -> (select cond, zext c1, zext c2) +  // fold (aext (select cond, c1, c2)) -> (select cond, sext c1, sext c2) +  if (N0->getOpcode() == ISD::SELECT) { +    SDValue Op1 = N0->getOperand(1); +    SDValue Op2 = N0->getOperand(2); +    if (isa<ConstantSDNode>(Op1) && isa<ConstantSDNode>(Op2) && +        (Opcode != ISD::ZERO_EXTEND || !TLI.isZExtFree(N0.getValueType(), VT))) { +      // For any_extend, choose sign extension of the constants to allow a +      // possible further transform to sign_extend_inreg.i.e. +      // +      // t1: i8 = select t0, Constant:i8<-1>, Constant:i8<0> +      // t2: i64 = any_extend t1 +      // --> +      // t3: i64 = select t0, Constant:i64<-1>, Constant:i64<0> +      // --> +      // t4: i64 = sign_extend_inreg t3 +      unsigned FoldOpc = Opcode; +      if (FoldOpc == ISD::ANY_EXTEND) +        FoldOpc = ISD::SIGN_EXTEND; +      return DAG.getSelect(DL, VT, N0->getOperand(0), +                           DAG.getNode(FoldOpc, DL, VT, Op1), +                           DAG.getNode(FoldOpc, DL, VT, Op2)); +    } +  } + +  // fold (sext (build_vector AllConstants) -> (build_vector AllConstants) +  // fold (zext (build_vector AllConstants) -> (build_vector AllConstants) +  // fold (aext (build_vector AllConstants) -> (build_vector AllConstants) +  EVT SVT = VT.getScalarType(); +  if (!(VT.isVector() && (!LegalTypes || TLI.isTypeLegal(SVT)) && +      ISD::isBuildVectorOfConstantSDNodes(N0.getNode()))) +    return SDValue(); + +  // We can fold this node into a build_vector. +  unsigned VTBits = SVT.getSizeInBits(); +  unsigned EVTBits = N0->getValueType(0).getScalarSizeInBits(); +  SmallVector<SDValue, 8> Elts; +  unsigned NumElts = VT.getVectorNumElements(); + +  // For zero-extensions, UNDEF elements still guarantee to have the upper +  // bits set to zero. +  bool IsZext = +      Opcode == ISD::ZERO_EXTEND || Opcode == ISD::ZERO_EXTEND_VECTOR_INREG; + +  for (unsigned i = 0; i != NumElts; ++i) { +    SDValue Op = N0.getOperand(i); +    if (Op.isUndef()) { +      Elts.push_back(IsZext ? DAG.getConstant(0, DL, SVT) : DAG.getUNDEF(SVT)); +      continue; +    } + +    SDLoc DL(Op); +    // Get the constant value and if needed trunc it to the size of the type. +    // Nodes like build_vector might have constants wider than the scalar type. +    APInt C = cast<ConstantSDNode>(Op)->getAPIntValue().zextOrTrunc(EVTBits); +    if (Opcode == ISD::SIGN_EXTEND || Opcode == ISD::SIGN_EXTEND_VECTOR_INREG) +      Elts.push_back(DAG.getConstant(C.sext(VTBits), DL, SVT)); +    else +      Elts.push_back(DAG.getConstant(C.zext(VTBits), DL, SVT)); +  } + +  return DAG.getBuildVector(VT, DL, Elts); +} + +// ExtendUsesToFormExtLoad - Trying to extend uses of a load to enable this: +// "fold ({s|z|a}ext (load x)) -> ({s|z|a}ext (truncate ({s|z|a}extload x)))" +// transformation. Returns true if extension are possible and the above +// mentioned transformation is profitable. +static bool ExtendUsesToFormExtLoad(EVT VT, SDNode *N, SDValue N0, +                                    unsigned ExtOpc, +                                    SmallVectorImpl<SDNode *> &ExtendNodes, +                                    const TargetLowering &TLI) { +  bool HasCopyToRegUses = false; +  bool isTruncFree = TLI.isTruncateFree(VT, N0.getValueType()); +  for (SDNode::use_iterator UI = N0.getNode()->use_begin(), +                            UE = N0.getNode()->use_end(); +       UI != UE; ++UI) { +    SDNode *User = *UI; +    if (User == N) +      continue; +    if (UI.getUse().getResNo() != N0.getResNo()) +      continue; +    // FIXME: Only extend SETCC N, N and SETCC N, c for now. +    if (ExtOpc != ISD::ANY_EXTEND && User->getOpcode() == ISD::SETCC) { +      ISD::CondCode CC = cast<CondCodeSDNode>(User->getOperand(2))->get(); +      if (ExtOpc == ISD::ZERO_EXTEND && ISD::isSignedIntSetCC(CC)) +        // Sign bits will be lost after a zext. +        return false; +      bool Add = false; +      for (unsigned i = 0; i != 2; ++i) { +        SDValue UseOp = User->getOperand(i); +        if (UseOp == N0) +          continue; +        if (!isa<ConstantSDNode>(UseOp)) +          return false; +        Add = true; +      } +      if (Add) +        ExtendNodes.push_back(User); +      continue; +    } +    // If truncates aren't free and there are users we can't +    // extend, it isn't worthwhile. +    if (!isTruncFree) +      return false; +    // Remember if this value is live-out. +    if (User->getOpcode() == ISD::CopyToReg) +      HasCopyToRegUses = true; +  } + +  if (HasCopyToRegUses) { +    bool BothLiveOut = false; +    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); +         UI != UE; ++UI) { +      SDUse &Use = UI.getUse(); +      if (Use.getResNo() == 0 && Use.getUser()->getOpcode() == ISD::CopyToReg) { +        BothLiveOut = true; +        break; +      } +    } +    if (BothLiveOut) +      // Both unextended and extended values are live out. There had better be +      // a good reason for the transformation. +      return ExtendNodes.size(); +  } +  return true; +} + +void DAGCombiner::ExtendSetCCUses(const SmallVectorImpl<SDNode *> &SetCCs, +                                  SDValue OrigLoad, SDValue ExtLoad, +                                  ISD::NodeType ExtType) { +  // Extend SetCC uses if necessary. +  SDLoc DL(ExtLoad); +  for (SDNode *SetCC : SetCCs) { +    SmallVector<SDValue, 4> Ops; + +    for (unsigned j = 0; j != 2; ++j) { +      SDValue SOp = SetCC->getOperand(j); +      if (SOp == OrigLoad) +        Ops.push_back(ExtLoad); +      else +        Ops.push_back(DAG.getNode(ExtType, DL, ExtLoad->getValueType(0), SOp)); +    } + +    Ops.push_back(SetCC->getOperand(2)); +    CombineTo(SetCC, DAG.getNode(ISD::SETCC, DL, SetCC->getValueType(0), Ops)); +  } +} + +// FIXME: Bring more similar combines here, common to sext/zext (maybe aext?). +SDValue DAGCombiner::CombineExtLoad(SDNode *N) { +  SDValue N0 = N->getOperand(0); +  EVT DstVT = N->getValueType(0); +  EVT SrcVT = N0.getValueType(); + +  assert((N->getOpcode() == ISD::SIGN_EXTEND || +          N->getOpcode() == ISD::ZERO_EXTEND) && +         "Unexpected node type (not an extend)!"); + +  // fold (sext (load x)) to multiple smaller sextloads; same for zext. +  // For example, on a target with legal v4i32, but illegal v8i32, turn: +  //   (v8i32 (sext (v8i16 (load x)))) +  // into: +  //   (v8i32 (concat_vectors (v4i32 (sextload x)), +  //                          (v4i32 (sextload (x + 16))))) +  // Where uses of the original load, i.e.: +  //   (v8i16 (load x)) +  // are replaced with: +  //   (v8i16 (truncate +  //     (v8i32 (concat_vectors (v4i32 (sextload x)), +  //                            (v4i32 (sextload (x + 16))))))) +  // +  // This combine is only applicable to illegal, but splittable, vectors. +  // All legal types, and illegal non-vector types, are handled elsewhere. +  // This combine is controlled by TargetLowering::isVectorLoadExtDesirable. +  // +  if (N0->getOpcode() != ISD::LOAD) +    return SDValue(); + +  LoadSDNode *LN0 = cast<LoadSDNode>(N0); + +  if (!ISD::isNON_EXTLoad(LN0) || !ISD::isUNINDEXEDLoad(LN0) || +      !N0.hasOneUse() || !LN0->isSimple() || +      !DstVT.isVector() || !DstVT.isPow2VectorType() || +      !TLI.isVectorLoadExtDesirable(SDValue(N, 0))) +    return SDValue(); + +  SmallVector<SDNode *, 4> SetCCs; +  if (!ExtendUsesToFormExtLoad(DstVT, N, N0, N->getOpcode(), SetCCs, TLI)) +    return SDValue(); + +  ISD::LoadExtType ExtType = +      N->getOpcode() == ISD::SIGN_EXTEND ? ISD::SEXTLOAD : ISD::ZEXTLOAD; + +  // Try to split the vector types to get down to legal types. +  EVT SplitSrcVT = SrcVT; +  EVT SplitDstVT = DstVT; +  while (!TLI.isLoadExtLegalOrCustom(ExtType, SplitDstVT, SplitSrcVT) && +         SplitSrcVT.getVectorNumElements() > 1) { +    SplitDstVT = DAG.GetSplitDestVTs(SplitDstVT).first; +    SplitSrcVT = DAG.GetSplitDestVTs(SplitSrcVT).first; +  } + +  if (!TLI.isLoadExtLegalOrCustom(ExtType, SplitDstVT, SplitSrcVT)) +    return SDValue(); + +  SDLoc DL(N); +  const unsigned NumSplits = +      DstVT.getVectorNumElements() / SplitDstVT.getVectorNumElements(); +  const unsigned Stride = SplitSrcVT.getStoreSize(); +  SmallVector<SDValue, 4> Loads; +  SmallVector<SDValue, 4> Chains; + +  SDValue BasePtr = LN0->getBasePtr(); +  for (unsigned Idx = 0; Idx < NumSplits; Idx++) { +    const unsigned Offset = Idx * Stride; +    const unsigned Align = MinAlign(LN0->getAlignment(), Offset); + +    SDValue SplitLoad = DAG.getExtLoad( +        ExtType, SDLoc(LN0), SplitDstVT, LN0->getChain(), BasePtr, +        LN0->getPointerInfo().getWithOffset(Offset), SplitSrcVT, Align, +        LN0->getMemOperand()->getFlags(), LN0->getAAInfo()); + +    BasePtr = DAG.getNode(ISD::ADD, DL, BasePtr.getValueType(), BasePtr, +                          DAG.getConstant(Stride, DL, BasePtr.getValueType())); + +    Loads.push_back(SplitLoad.getValue(0)); +    Chains.push_back(SplitLoad.getValue(1)); +  } + +  SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); +  SDValue NewValue = DAG.getNode(ISD::CONCAT_VECTORS, DL, DstVT, Loads); + +  // Simplify TF. +  AddToWorklist(NewChain.getNode()); + +  CombineTo(N, NewValue); + +  // Replace uses of the original load (before extension) +  // with a truncate of the concatenated sextloaded vectors. +  SDValue Trunc = +      DAG.getNode(ISD::TRUNCATE, SDLoc(N0), N0.getValueType(), NewValue); +  ExtendSetCCUses(SetCCs, N0, NewValue, (ISD::NodeType)N->getOpcode()); +  CombineTo(N0.getNode(), Trunc, NewChain); +  return SDValue(N, 0); // Return N so it doesn't get rechecked! +} + +// fold (zext (and/or/xor (shl/shr (load x), cst), cst)) -> +//      (and/or/xor (shl/shr (zextload x), (zext cst)), (zext cst)) +SDValue DAGCombiner::CombineZExtLogicopShiftLoad(SDNode *N) { +  assert(N->getOpcode() == ISD::ZERO_EXTEND); +  EVT VT = N->getValueType(0); +  EVT OrigVT = N->getOperand(0).getValueType(); +  if (TLI.isZExtFree(OrigVT, VT)) +    return SDValue(); + +  // and/or/xor +  SDValue N0 = N->getOperand(0); +  if (!(N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR || +        N0.getOpcode() == ISD::XOR) || +      N0.getOperand(1).getOpcode() != ISD::Constant || +      (LegalOperations && !TLI.isOperationLegal(N0.getOpcode(), VT))) +    return SDValue(); + +  // shl/shr +  SDValue N1 = N0->getOperand(0); +  if (!(N1.getOpcode() == ISD::SHL || N1.getOpcode() == ISD::SRL) || +      N1.getOperand(1).getOpcode() != ISD::Constant || +      (LegalOperations && !TLI.isOperationLegal(N1.getOpcode(), VT))) +    return SDValue(); + +  // load +  if (!isa<LoadSDNode>(N1.getOperand(0))) +    return SDValue(); +  LoadSDNode *Load = cast<LoadSDNode>(N1.getOperand(0)); +  EVT MemVT = Load->getMemoryVT(); +  if (!TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT) || +      Load->getExtensionType() == ISD::SEXTLOAD || Load->isIndexed()) +    return SDValue(); + + +  // If the shift op is SHL, the logic op must be AND, otherwise the result +  // will be wrong. +  if (N1.getOpcode() == ISD::SHL && N0.getOpcode() != ISD::AND) +    return SDValue(); + +  if (!N0.hasOneUse() || !N1.hasOneUse()) +    return SDValue(); + +  SmallVector<SDNode*, 4> SetCCs; +  if (!ExtendUsesToFormExtLoad(VT, N1.getNode(), N1.getOperand(0), +                               ISD::ZERO_EXTEND, SetCCs, TLI)) +    return SDValue(); + +  // Actually do the transformation. +  SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(Load), VT, +                                   Load->getChain(), Load->getBasePtr(), +                                   Load->getMemoryVT(), Load->getMemOperand()); + +  SDLoc DL1(N1); +  SDValue Shift = DAG.getNode(N1.getOpcode(), DL1, VT, ExtLoad, +                              N1.getOperand(1)); + +  APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); +  Mask = Mask.zext(VT.getSizeInBits()); +  SDLoc DL0(N0); +  SDValue And = DAG.getNode(N0.getOpcode(), DL0, VT, Shift, +                            DAG.getConstant(Mask, DL0, VT)); + +  ExtendSetCCUses(SetCCs, N1.getOperand(0), ExtLoad, ISD::ZERO_EXTEND); +  CombineTo(N, And); +  if (SDValue(Load, 0).hasOneUse()) { +    DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), ExtLoad.getValue(1)); +  } else { +    SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(Load), +                                Load->getValueType(0), ExtLoad); +    CombineTo(Load, Trunc, ExtLoad.getValue(1)); +  } + +  // N0 is dead at this point. +  recursivelyDeleteUnusedNodes(N0.getNode()); + +  return SDValue(N,0); // Return N so it doesn't get rechecked! +} + +/// If we're narrowing or widening the result of a vector select and the final +/// size is the same size as a setcc (compare) feeding the select, then try to +/// apply the cast operation to the select's operands because matching vector +/// sizes for a select condition and other operands should be more efficient. +SDValue DAGCombiner::matchVSelectOpSizesWithSetCC(SDNode *Cast) { +  unsigned CastOpcode = Cast->getOpcode(); +  assert((CastOpcode == ISD::SIGN_EXTEND || CastOpcode == ISD::ZERO_EXTEND || +          CastOpcode == ISD::TRUNCATE || CastOpcode == ISD::FP_EXTEND || +          CastOpcode == ISD::FP_ROUND) && +         "Unexpected opcode for vector select narrowing/widening"); + +  // We only do this transform before legal ops because the pattern may be +  // obfuscated by target-specific operations after legalization. Do not create +  // an illegal select op, however, because that may be difficult to lower. +  EVT VT = Cast->getValueType(0); +  if (LegalOperations || !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT)) +    return SDValue(); + +  SDValue VSel = Cast->getOperand(0); +  if (VSel.getOpcode() != ISD::VSELECT || !VSel.hasOneUse() || +      VSel.getOperand(0).getOpcode() != ISD::SETCC) +    return SDValue(); + +  // Does the setcc have the same vector size as the casted select? +  SDValue SetCC = VSel.getOperand(0); +  EVT SetCCVT = getSetCCResultType(SetCC.getOperand(0).getValueType()); +  if (SetCCVT.getSizeInBits() != VT.getSizeInBits()) +    return SDValue(); + +  // cast (vsel (setcc X), A, B) --> vsel (setcc X), (cast A), (cast B) +  SDValue A = VSel.getOperand(1); +  SDValue B = VSel.getOperand(2); +  SDValue CastA, CastB; +  SDLoc DL(Cast); +  if (CastOpcode == ISD::FP_ROUND) { +    // FP_ROUND (fptrunc) has an extra flag operand to pass along. +    CastA = DAG.getNode(CastOpcode, DL, VT, A, Cast->getOperand(1)); +    CastB = DAG.getNode(CastOpcode, DL, VT, B, Cast->getOperand(1)); +  } else { +    CastA = DAG.getNode(CastOpcode, DL, VT, A); +    CastB = DAG.getNode(CastOpcode, DL, VT, B); +  } +  return DAG.getNode(ISD::VSELECT, DL, VT, SetCC, CastA, CastB); +} + +// fold ([s|z]ext ([s|z]extload x)) -> ([s|z]ext (truncate ([s|z]extload x))) +// fold ([s|z]ext (     extload x)) -> ([s|z]ext (truncate ([s|z]extload x))) +static SDValue tryToFoldExtOfExtload(SelectionDAG &DAG, DAGCombiner &Combiner, +                                     const TargetLowering &TLI, EVT VT, +                                     bool LegalOperations, SDNode *N, +                                     SDValue N0, ISD::LoadExtType ExtLoadType) { +  SDNode *N0Node = N0.getNode(); +  bool isAExtLoad = (ExtLoadType == ISD::SEXTLOAD) ? ISD::isSEXTLoad(N0Node) +                                                   : ISD::isZEXTLoad(N0Node); +  if ((!isAExtLoad && !ISD::isEXTLoad(N0Node)) || +      !ISD::isUNINDEXEDLoad(N0Node) || !N0.hasOneUse()) +    return SDValue(); + +  LoadSDNode *LN0 = cast<LoadSDNode>(N0); +  EVT MemVT = LN0->getMemoryVT(); +  if ((LegalOperations || !LN0->isSimple() || +       VT.isVector()) && +      !TLI.isLoadExtLegal(ExtLoadType, VT, MemVT)) +    return SDValue(); + +  SDValue ExtLoad = +      DAG.getExtLoad(ExtLoadType, SDLoc(LN0), VT, LN0->getChain(), +                     LN0->getBasePtr(), MemVT, LN0->getMemOperand()); +  Combiner.CombineTo(N, ExtLoad); +  DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), ExtLoad.getValue(1)); +  if (LN0->use_empty()) +    Combiner.recursivelyDeleteUnusedNodes(LN0); +  return SDValue(N, 0); // Return N so it doesn't get rechecked! +} + +// fold ([s|z]ext (load x)) -> ([s|z]ext (truncate ([s|z]extload x))) +// Only generate vector extloads when 1) they're legal, and 2) they are +// deemed desirable by the target. +static SDValue tryToFoldExtOfLoad(SelectionDAG &DAG, DAGCombiner &Combiner, +                                  const TargetLowering &TLI, EVT VT, +                                  bool LegalOperations, SDNode *N, SDValue N0, +                                  ISD::LoadExtType ExtLoadType, +                                  ISD::NodeType ExtOpc) { +  if (!ISD::isNON_EXTLoad(N0.getNode()) || +      !ISD::isUNINDEXEDLoad(N0.getNode()) || +      ((LegalOperations || VT.isVector() || +        !cast<LoadSDNode>(N0)->isSimple()) && +       !TLI.isLoadExtLegal(ExtLoadType, VT, N0.getValueType()))) +    return {}; + +  bool DoXform = true; +  SmallVector<SDNode *, 4> SetCCs; +  if (!N0.hasOneUse()) +    DoXform = ExtendUsesToFormExtLoad(VT, N, N0, ExtOpc, SetCCs, TLI); +  if (VT.isVector()) +    DoXform &= TLI.isVectorLoadExtDesirable(SDValue(N, 0)); +  if (!DoXform) +    return {}; + +  LoadSDNode *LN0 = cast<LoadSDNode>(N0); +  SDValue ExtLoad = DAG.getExtLoad(ExtLoadType, SDLoc(LN0), VT, LN0->getChain(), +                                   LN0->getBasePtr(), N0.getValueType(), +                                   LN0->getMemOperand()); +  Combiner.ExtendSetCCUses(SetCCs, N0, ExtLoad, ExtOpc); +  // If the load value is used only by N, replace it via CombineTo N. +  bool NoReplaceTrunc = SDValue(LN0, 0).hasOneUse(); +  Combiner.CombineTo(N, ExtLoad); +  if (NoReplaceTrunc) { +    DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), ExtLoad.getValue(1)); +    Combiner.recursivelyDeleteUnusedNodes(LN0); +  } else { +    SDValue Trunc = +        DAG.getNode(ISD::TRUNCATE, SDLoc(N0), N0.getValueType(), ExtLoad); +    Combiner.CombineTo(LN0, Trunc, ExtLoad.getValue(1)); +  } +  return SDValue(N, 0); // Return N so it doesn't get rechecked! +} + +static SDValue tryToFoldExtOfMaskedLoad(SelectionDAG &DAG, +                                        const TargetLowering &TLI, EVT VT, +                                        SDNode *N, SDValue N0, +                                        ISD::LoadExtType ExtLoadType, +                                        ISD::NodeType ExtOpc) { +  if (!N0.hasOneUse()) +    return SDValue(); + +  MaskedLoadSDNode *Ld = dyn_cast<MaskedLoadSDNode>(N0); +  if (!Ld || Ld->getExtensionType() != ISD::NON_EXTLOAD) +    return SDValue(); + +  if (!TLI.isLoadExtLegal(ExtLoadType, VT, Ld->getValueType(0))) +    return SDValue(); + +  if (!TLI.isVectorLoadExtDesirable(SDValue(N, 0))) +    return SDValue(); + +  SDLoc dl(Ld); +  SDValue PassThru = DAG.getNode(ExtOpc, dl, VT, Ld->getPassThru()); +  SDValue NewLoad = DAG.getMaskedLoad(VT, dl, Ld->getChain(), +                                      Ld->getBasePtr(), Ld->getMask(), +                                      PassThru, Ld->getMemoryVT(), +                                      Ld->getMemOperand(), ExtLoadType, +                                      Ld->isExpandingLoad()); +  DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), SDValue(NewLoad.getNode(), 1)); +  return NewLoad; +} + +static SDValue foldExtendedSignBitTest(SDNode *N, SelectionDAG &DAG, +                                       bool LegalOperations) { +  assert((N->getOpcode() == ISD::SIGN_EXTEND || +          N->getOpcode() == ISD::ZERO_EXTEND) && "Expected sext or zext"); + +  SDValue SetCC = N->getOperand(0); +  if (LegalOperations || SetCC.getOpcode() != ISD::SETCC || +      !SetCC.hasOneUse() || SetCC.getValueType() != MVT::i1) +    return SDValue(); + +  SDValue X = SetCC.getOperand(0); +  SDValue Ones = SetCC.getOperand(1); +  ISD::CondCode CC = cast<CondCodeSDNode>(SetCC.getOperand(2))->get(); +  EVT VT = N->getValueType(0); +  EVT XVT = X.getValueType(); +  // setge X, C is canonicalized to setgt, so we do not need to match that +  // pattern. The setlt sibling is folded in SimplifySelectCC() because it does +  // not require the 'not' op. +  if (CC == ISD::SETGT && isAllOnesConstant(Ones) && VT == XVT) { +    // Invert and smear/shift the sign bit: +    // sext i1 (setgt iN X, -1) --> sra (not X), (N - 1) +    // zext i1 (setgt iN X, -1) --> srl (not X), (N - 1) +    SDLoc DL(N); +    SDValue NotX = DAG.getNOT(DL, X, VT); +    SDValue ShiftAmount = DAG.getConstant(VT.getSizeInBits() - 1, DL, VT); +    auto ShiftOpcode = N->getOpcode() == ISD::SIGN_EXTEND ? ISD::SRA : ISD::SRL; +    return DAG.getNode(ShiftOpcode, DL, VT, NotX, ShiftAmount); +  } +  return SDValue(); +} + +SDValue DAGCombiner::visitSIGN_EXTEND(SDNode *N) { +  SDValue N0 = N->getOperand(0); +  EVT VT = N->getValueType(0); +  SDLoc DL(N); + +  if (SDValue Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes)) +    return Res; + +  // fold (sext (sext x)) -> (sext x) +  // fold (sext (aext x)) -> (sext x) +  if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) +    return DAG.getNode(ISD::SIGN_EXTEND, DL, VT, N0.getOperand(0)); + +  if (N0.getOpcode() == ISD::TRUNCATE) { +    // fold (sext (truncate (load x))) -> (sext (smaller load x)) +    // fold (sext (truncate (srl (load x), c))) -> (sext (smaller load (x+c/n))) +    if (SDValue NarrowLoad = ReduceLoadWidth(N0.getNode())) { +      SDNode *oye = N0.getOperand(0).getNode(); +      if (NarrowLoad.getNode() != N0.getNode()) { +        CombineTo(N0.getNode(), NarrowLoad); +        // CombineTo deleted the truncate, if needed, but not what's under it. +        AddToWorklist(oye); +      } +      return SDValue(N, 0);   // Return N so it doesn't get rechecked! +    } + +    // See if the value being truncated is already sign extended.  If so, just +    // eliminate the trunc/sext pair. +    SDValue Op = N0.getOperand(0); +    unsigned OpBits   = Op.getScalarValueSizeInBits(); +    unsigned MidBits  = N0.getScalarValueSizeInBits(); +    unsigned DestBits = VT.getScalarSizeInBits(); +    unsigned NumSignBits = DAG.ComputeNumSignBits(Op); + +    if (OpBits == DestBits) { +      // Op is i32, Mid is i8, and Dest is i32.  If Op has more than 24 sign +      // bits, it is already ready. +      if (NumSignBits > DestBits-MidBits) +        return Op; +    } else if (OpBits < DestBits) { +      // Op is i32, Mid is i8, and Dest is i64.  If Op has more than 24 sign +      // bits, just sext from i32. +      if (NumSignBits > OpBits-MidBits) +        return DAG.getNode(ISD::SIGN_EXTEND, DL, VT, Op); +    } else { +      // Op is i64, Mid is i8, and Dest is i32.  If Op has more than 56 sign +      // bits, just truncate to i32. +      if (NumSignBits > OpBits-MidBits) +        return DAG.getNode(ISD::TRUNCATE, DL, VT, Op); +    } + +    // fold (sext (truncate x)) -> (sextinreg x). +    if (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, +                                                 N0.getValueType())) { +      if (OpBits < DestBits) +        Op = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N0), VT, Op); +      else if (OpBits > DestBits) +        Op = DAG.getNode(ISD::TRUNCATE, SDLoc(N0), VT, Op); +      return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Op, +                         DAG.getValueType(N0.getValueType())); +    } +  } + +  // Try to simplify (sext (load x)). +  if (SDValue foldedExt = +          tryToFoldExtOfLoad(DAG, *this, TLI, VT, LegalOperations, N, N0, +                             ISD::SEXTLOAD, ISD::SIGN_EXTEND)) +    return foldedExt; + +  if (SDValue foldedExt = +      tryToFoldExtOfMaskedLoad(DAG, TLI, VT, N, N0, ISD::SEXTLOAD, +                               ISD::SIGN_EXTEND)) +    return foldedExt; + +  // fold (sext (load x)) to multiple smaller sextloads. +  // Only on illegal but splittable vectors. +  if (SDValue ExtLoad = CombineExtLoad(N)) +    return ExtLoad; + +  // Try to simplify (sext (sextload x)). +  if (SDValue foldedExt = tryToFoldExtOfExtload( +          DAG, *this, TLI, VT, LegalOperations, N, N0, ISD::SEXTLOAD)) +    return foldedExt; + +  // fold (sext (and/or/xor (load x), cst)) -> +  //      (and/or/xor (sextload x), (sext cst)) +  if ((N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR || +       N0.getOpcode() == ISD::XOR) && +      isa<LoadSDNode>(N0.getOperand(0)) && +      N0.getOperand(1).getOpcode() == ISD::Constant && +      (!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) { +    LoadSDNode *LN00 = cast<LoadSDNode>(N0.getOperand(0)); +    EVT MemVT = LN00->getMemoryVT(); +    if (TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, MemVT) && +      LN00->getExtensionType() != ISD::ZEXTLOAD && LN00->isUnindexed()) { +      SmallVector<SDNode*, 4> SetCCs; +      bool DoXform = ExtendUsesToFormExtLoad(VT, N0.getNode(), N0.getOperand(0), +                                             ISD::SIGN_EXTEND, SetCCs, TLI); +      if (DoXform) { +        SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(LN00), VT, +                                         LN00->getChain(), LN00->getBasePtr(), +                                         LN00->getMemoryVT(), +                                         LN00->getMemOperand()); +        APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); +        Mask = Mask.sext(VT.getSizeInBits()); +        SDValue And = DAG.getNode(N0.getOpcode(), DL, VT, +                                  ExtLoad, DAG.getConstant(Mask, DL, VT)); +        ExtendSetCCUses(SetCCs, N0.getOperand(0), ExtLoad, ISD::SIGN_EXTEND); +        bool NoReplaceTruncAnd = !N0.hasOneUse(); +        bool NoReplaceTrunc = SDValue(LN00, 0).hasOneUse(); +        CombineTo(N, And); +        // If N0 has multiple uses, change other uses as well. +        if (NoReplaceTruncAnd) { +          SDValue TruncAnd = +              DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), And); +          CombineTo(N0.getNode(), TruncAnd); +        } +        if (NoReplaceTrunc) { +          DAG.ReplaceAllUsesOfValueWith(SDValue(LN00, 1), ExtLoad.getValue(1)); +        } else { +          SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(LN00), +                                      LN00->getValueType(0), ExtLoad); +          CombineTo(LN00, Trunc, ExtLoad.getValue(1)); +        } +        return SDValue(N,0); // Return N so it doesn't get rechecked! +      } +    } +  } + +  if (SDValue V = foldExtendedSignBitTest(N, DAG, LegalOperations)) +    return V; + +  if (N0.getOpcode() == ISD::SETCC) { +    SDValue N00 = N0.getOperand(0); +    SDValue N01 = N0.getOperand(1); +    ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); +    EVT N00VT = N0.getOperand(0).getValueType(); + +    // sext(setcc) -> sext_in_reg(vsetcc) for vectors. +    // Only do this before legalize for now. +    if (VT.isVector() && !LegalOperations && +        TLI.getBooleanContents(N00VT) == +            TargetLowering::ZeroOrNegativeOneBooleanContent) { +      // On some architectures (such as SSE/NEON/etc) the SETCC result type is +      // of the same size as the compared operands. Only optimize sext(setcc()) +      // if this is the case. +      EVT SVT = getSetCCResultType(N00VT); + +      // If we already have the desired type, don't change it. +      if (SVT != N0.getValueType()) { +        // We know that the # elements of the results is the same as the +        // # elements of the compare (and the # elements of the compare result +        // for that matter).  Check to see that they are the same size.  If so, +        // we know that the element size of the sext'd result matches the +        // element size of the compare operands. +        if (VT.getSizeInBits() == SVT.getSizeInBits()) +          return DAG.getSetCC(DL, VT, N00, N01, CC); + +        // If the desired elements are smaller or larger than the source +        // elements, we can use a matching integer vector type and then +        // truncate/sign extend. +        EVT MatchingVecType = N00VT.changeVectorElementTypeToInteger(); +        if (SVT == MatchingVecType) { +          SDValue VsetCC = DAG.getSetCC(DL, MatchingVecType, N00, N01, CC); +          return DAG.getSExtOrTrunc(VsetCC, DL, VT); +        } +      } +    } + +    // sext(setcc x, y, cc) -> (select (setcc x, y, cc), T, 0) +    // Here, T can be 1 or -1, depending on the type of the setcc and +    // getBooleanContents(). +    unsigned SetCCWidth = N0.getScalarValueSizeInBits(); + +    // To determine the "true" side of the select, we need to know the high bit +    // of the value returned by the setcc if it evaluates to true. +    // If the type of the setcc is i1, then the true case of the select is just +    // sext(i1 1), that is, -1. +    // If the type of the setcc is larger (say, i8) then the value of the high +    // bit depends on getBooleanContents(), so ask TLI for a real "true" value +    // of the appropriate width. +    SDValue ExtTrueVal = (SetCCWidth == 1) +                             ? DAG.getAllOnesConstant(DL, VT) +                             : DAG.getBoolConstant(true, DL, VT, N00VT); +    SDValue Zero = DAG.getConstant(0, DL, VT); +    if (SDValue SCC = +            SimplifySelectCC(DL, N00, N01, ExtTrueVal, Zero, CC, true)) +      return SCC; + +    if (!VT.isVector() && !TLI.convertSelectOfConstantsToMath(VT)) { +      EVT SetCCVT = getSetCCResultType(N00VT); +      // Don't do this transform for i1 because there's a select transform +      // that would reverse it. +      // TODO: We should not do this transform at all without a target hook +      // because a sext is likely cheaper than a select? +      if (SetCCVT.getScalarSizeInBits() != 1 && +          (!LegalOperations || TLI.isOperationLegal(ISD::SETCC, N00VT))) { +        SDValue SetCC = DAG.getSetCC(DL, SetCCVT, N00, N01, CC); +        return DAG.getSelect(DL, VT, SetCC, ExtTrueVal, Zero); +      } +    } +  } + +  // fold (sext x) -> (zext x) if the sign bit is known zero. +  if ((!LegalOperations || TLI.isOperationLegal(ISD::ZERO_EXTEND, VT)) && +      DAG.SignBitIsZero(N0)) +    return DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0); + +  if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N)) +    return NewVSel; + +  // Eliminate this sign extend by doing a negation in the destination type: +  // sext i32 (0 - (zext i8 X to i32)) to i64 --> 0 - (zext i8 X to i64) +  if (N0.getOpcode() == ISD::SUB && N0.hasOneUse() && +      isNullOrNullSplat(N0.getOperand(0)) && +      N0.getOperand(1).getOpcode() == ISD::ZERO_EXTEND && +      TLI.isOperationLegalOrCustom(ISD::SUB, VT)) { +    SDValue Zext = DAG.getZExtOrTrunc(N0.getOperand(1).getOperand(0), DL, VT); +    return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Zext); +  } +  // Eliminate this sign extend by doing a decrement in the destination type: +  // sext i32 ((zext i8 X to i32) + (-1)) to i64 --> (zext i8 X to i64) + (-1) +  if (N0.getOpcode() == ISD::ADD && N0.hasOneUse() && +      isAllOnesOrAllOnesSplat(N0.getOperand(1)) && +      N0.getOperand(0).getOpcode() == ISD::ZERO_EXTEND && +      TLI.isOperationLegalOrCustom(ISD::ADD, VT)) { +    SDValue Zext = DAG.getZExtOrTrunc(N0.getOperand(0).getOperand(0), DL, VT); +    return DAG.getNode(ISD::ADD, DL, VT, Zext, DAG.getAllOnesConstant(DL, VT)); +  } + +  return SDValue(); +} + +// isTruncateOf - If N is a truncate of some other value, return true, record +// the value being truncated in Op and which of Op's bits are zero/one in Known. +// This function computes KnownBits to avoid a duplicated call to +// computeKnownBits in the caller. +static bool isTruncateOf(SelectionDAG &DAG, SDValue N, SDValue &Op, +                         KnownBits &Known) { +  if (N->getOpcode() == ISD::TRUNCATE) { +    Op = N->getOperand(0); +    Known = DAG.computeKnownBits(Op); +    return true; +  } + +  if (N.getOpcode() != ISD::SETCC || +      N.getValueType().getScalarType() != MVT::i1 || +      cast<CondCodeSDNode>(N.getOperand(2))->get() != ISD::SETNE) +    return false; + +  SDValue Op0 = N->getOperand(0); +  SDValue Op1 = N->getOperand(1); +  assert(Op0.getValueType() == Op1.getValueType()); + +  if (isNullOrNullSplat(Op0)) +    Op = Op1; +  else if (isNullOrNullSplat(Op1)) +    Op = Op0; +  else +    return false; + +  Known = DAG.computeKnownBits(Op); + +  return (Known.Zero | 1).isAllOnesValue(); +} + +SDValue DAGCombiner::visitZERO_EXTEND(SDNode *N) { +  SDValue N0 = N->getOperand(0); +  EVT VT = N->getValueType(0); + +  if (SDValue Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes)) +    return Res; + +  // fold (zext (zext x)) -> (zext x) +  // fold (zext (aext x)) -> (zext x) +  if (N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) +    return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, +                       N0.getOperand(0)); + +  // fold (zext (truncate x)) -> (zext x) or +  //      (zext (truncate x)) -> (truncate x) +  // This is valid when the truncated bits of x are already zero. +  SDValue Op; +  KnownBits Known; +  if (isTruncateOf(DAG, N0, Op, Known)) { +    APInt TruncatedBits = +      (Op.getScalarValueSizeInBits() == N0.getScalarValueSizeInBits()) ? +      APInt(Op.getScalarValueSizeInBits(), 0) : +      APInt::getBitsSet(Op.getScalarValueSizeInBits(), +                        N0.getScalarValueSizeInBits(), +                        std::min(Op.getScalarValueSizeInBits(), +                                 VT.getScalarSizeInBits())); +    if (TruncatedBits.isSubsetOf(Known.Zero)) +      return DAG.getZExtOrTrunc(Op, SDLoc(N), VT); +  } + +  // fold (zext (truncate x)) -> (and x, mask) +  if (N0.getOpcode() == ISD::TRUNCATE) { +    // fold (zext (truncate (load x))) -> (zext (smaller load x)) +    // fold (zext (truncate (srl (load x), c))) -> (zext (smaller load (x+c/n))) +    if (SDValue NarrowLoad = ReduceLoadWidth(N0.getNode())) { +      SDNode *oye = N0.getOperand(0).getNode(); +      if (NarrowLoad.getNode() != N0.getNode()) { +        CombineTo(N0.getNode(), NarrowLoad); +        // CombineTo deleted the truncate, if needed, but not what's under it. +        AddToWorklist(oye); +      } +      return SDValue(N, 0); // Return N so it doesn't get rechecked! +    } + +    EVT SrcVT = N0.getOperand(0).getValueType(); +    EVT MinVT = N0.getValueType(); + +    // Try to mask before the extension to avoid having to generate a larger mask, +    // possibly over several sub-vectors. +    if (SrcVT.bitsLT(VT) && VT.isVector()) { +      if (!LegalOperations || (TLI.isOperationLegal(ISD::AND, SrcVT) && +                               TLI.isOperationLegal(ISD::ZERO_EXTEND, VT))) { +        SDValue Op = N0.getOperand(0); +        Op = DAG.getZeroExtendInReg(Op, SDLoc(N), MinVT.getScalarType()); +        AddToWorklist(Op.getNode()); +        SDValue ZExtOrTrunc = DAG.getZExtOrTrunc(Op, SDLoc(N), VT); +        // Transfer the debug info; the new node is equivalent to N0. +        DAG.transferDbgValues(N0, ZExtOrTrunc); +        return ZExtOrTrunc; +      } +    } + +    if (!LegalOperations || TLI.isOperationLegal(ISD::AND, VT)) { +      SDValue Op = DAG.getAnyExtOrTrunc(N0.getOperand(0), SDLoc(N), VT); +      AddToWorklist(Op.getNode()); +      SDValue And = DAG.getZeroExtendInReg(Op, SDLoc(N), MinVT.getScalarType()); +      // We may safely transfer the debug info describing the truncate node over +      // to the equivalent and operation. +      DAG.transferDbgValues(N0, And); +      return And; +    } +  } + +  // Fold (zext (and (trunc x), cst)) -> (and x, cst), +  // if either of the casts is not free. +  if (N0.getOpcode() == ISD::AND && +      N0.getOperand(0).getOpcode() == ISD::TRUNCATE && +      N0.getOperand(1).getOpcode() == ISD::Constant && +      (!TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(), +                           N0.getValueType()) || +       !TLI.isZExtFree(N0.getValueType(), VT))) { +    SDValue X = N0.getOperand(0).getOperand(0); +    X = DAG.getAnyExtOrTrunc(X, SDLoc(X), VT); +    APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); +    Mask = Mask.zext(VT.getSizeInBits()); +    SDLoc DL(N); +    return DAG.getNode(ISD::AND, DL, VT, +                       X, DAG.getConstant(Mask, DL, VT)); +  } + +  // Try to simplify (zext (load x)). +  if (SDValue foldedExt = +          tryToFoldExtOfLoad(DAG, *this, TLI, VT, LegalOperations, N, N0, +                             ISD::ZEXTLOAD, ISD::ZERO_EXTEND)) +    return foldedExt; + +  if (SDValue foldedExt = +      tryToFoldExtOfMaskedLoad(DAG, TLI, VT, N, N0, ISD::ZEXTLOAD, +                               ISD::ZERO_EXTEND)) +    return foldedExt; + +  // fold (zext (load x)) to multiple smaller zextloads. +  // Only on illegal but splittable vectors. +  if (SDValue ExtLoad = CombineExtLoad(N)) +    return ExtLoad; + +  // fold (zext (and/or/xor (load x), cst)) -> +  //      (and/or/xor (zextload x), (zext cst)) +  // Unless (and (load x) cst) will match as a zextload already and has +  // additional users. +  if ((N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR || +       N0.getOpcode() == ISD::XOR) && +      isa<LoadSDNode>(N0.getOperand(0)) && +      N0.getOperand(1).getOpcode() == ISD::Constant && +      (!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) { +    LoadSDNode *LN00 = cast<LoadSDNode>(N0.getOperand(0)); +    EVT MemVT = LN00->getMemoryVT(); +    if (TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT) && +        LN00->getExtensionType() != ISD::SEXTLOAD && LN00->isUnindexed()) { +      bool DoXform = true; +      SmallVector<SDNode*, 4> SetCCs; +      if (!N0.hasOneUse()) { +        if (N0.getOpcode() == ISD::AND) { +          auto *AndC = cast<ConstantSDNode>(N0.getOperand(1)); +          EVT LoadResultTy = AndC->getValueType(0); +          EVT ExtVT; +          if (isAndLoadExtLoad(AndC, LN00, LoadResultTy, ExtVT)) +            DoXform = false; +        } +      } +      if (DoXform) +        DoXform = ExtendUsesToFormExtLoad(VT, N0.getNode(), N0.getOperand(0), +                                          ISD::ZERO_EXTEND, SetCCs, TLI); +      if (DoXform) { +        SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(LN00), VT, +                                         LN00->getChain(), LN00->getBasePtr(), +                                         LN00->getMemoryVT(), +                                         LN00->getMemOperand()); +        APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); +        Mask = Mask.zext(VT.getSizeInBits()); +        SDLoc DL(N); +        SDValue And = DAG.getNode(N0.getOpcode(), DL, VT, +                                  ExtLoad, DAG.getConstant(Mask, DL, VT)); +        ExtendSetCCUses(SetCCs, N0.getOperand(0), ExtLoad, ISD::ZERO_EXTEND); +        bool NoReplaceTruncAnd = !N0.hasOneUse(); +        bool NoReplaceTrunc = SDValue(LN00, 0).hasOneUse(); +        CombineTo(N, And); +        // If N0 has multiple uses, change other uses as well. +        if (NoReplaceTruncAnd) { +          SDValue TruncAnd = +              DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), And); +          CombineTo(N0.getNode(), TruncAnd); +        } +        if (NoReplaceTrunc) { +          DAG.ReplaceAllUsesOfValueWith(SDValue(LN00, 1), ExtLoad.getValue(1)); +        } else { +          SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(LN00), +                                      LN00->getValueType(0), ExtLoad); +          CombineTo(LN00, Trunc, ExtLoad.getValue(1)); +        } +        return SDValue(N,0); // Return N so it doesn't get rechecked! +      } +    } +  } + +  // fold (zext (and/or/xor (shl/shr (load x), cst), cst)) -> +  //      (and/or/xor (shl/shr (zextload x), (zext cst)), (zext cst)) +  if (SDValue ZExtLoad = CombineZExtLogicopShiftLoad(N)) +    return ZExtLoad; + +  // Try to simplify (zext (zextload x)). +  if (SDValue foldedExt = tryToFoldExtOfExtload( +          DAG, *this, TLI, VT, LegalOperations, N, N0, ISD::ZEXTLOAD)) +    return foldedExt; + +  if (SDValue V = foldExtendedSignBitTest(N, DAG, LegalOperations)) +    return V; + +  if (N0.getOpcode() == ISD::SETCC) { +    // Only do this before legalize for now. +    if (!LegalOperations && VT.isVector() && +        N0.getValueType().getVectorElementType() == MVT::i1) { +      EVT N00VT = N0.getOperand(0).getValueType(); +      if (getSetCCResultType(N00VT) == N0.getValueType()) +        return SDValue(); + +      // We know that the # elements of the results is the same as the # +      // elements of the compare (and the # elements of the compare result for +      // that matter). Check to see that they are the same size. If so, we know +      // that the element size of the sext'd result matches the element size of +      // the compare operands. +      SDLoc DL(N); +      SDValue VecOnes = DAG.getConstant(1, DL, VT); +      if (VT.getSizeInBits() == N00VT.getSizeInBits()) { +        // zext(setcc) -> (and (vsetcc), (1, 1, ...) for vectors. +        SDValue VSetCC = DAG.getNode(ISD::SETCC, DL, VT, N0.getOperand(0), +                                     N0.getOperand(1), N0.getOperand(2)); +        return DAG.getNode(ISD::AND, DL, VT, VSetCC, VecOnes); +      } + +      // If the desired elements are smaller or larger than the source +      // elements we can use a matching integer vector type and then +      // truncate/sign extend. +      EVT MatchingVectorType = N00VT.changeVectorElementTypeToInteger(); +      SDValue VsetCC = +          DAG.getNode(ISD::SETCC, DL, MatchingVectorType, N0.getOperand(0), +                      N0.getOperand(1), N0.getOperand(2)); +      return DAG.getNode(ISD::AND, DL, VT, DAG.getSExtOrTrunc(VsetCC, DL, VT), +                         VecOnes); +    } + +    // zext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc +    SDLoc DL(N); +    if (SDValue SCC = SimplifySelectCC( +            DL, N0.getOperand(0), N0.getOperand(1), DAG.getConstant(1, DL, VT), +            DAG.getConstant(0, DL, VT), +            cast<CondCodeSDNode>(N0.getOperand(2))->get(), true)) +      return SCC; +  } + +  // (zext (shl (zext x), cst)) -> (shl (zext x), cst) +  if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL) && +      isa<ConstantSDNode>(N0.getOperand(1)) && +      N0.getOperand(0).getOpcode() == ISD::ZERO_EXTEND && +      N0.hasOneUse()) { +    SDValue ShAmt = N0.getOperand(1); +    if (N0.getOpcode() == ISD::SHL) { +      SDValue InnerZExt = N0.getOperand(0); +      // If the original shl may be shifting out bits, do not perform this +      // transformation. +      unsigned KnownZeroBits = InnerZExt.getValueSizeInBits() - +        InnerZExt.getOperand(0).getValueSizeInBits(); +      if (cast<ConstantSDNode>(ShAmt)->getAPIntValue().ugt(KnownZeroBits)) +        return SDValue(); +    } + +    SDLoc DL(N); + +    // Ensure that the shift amount is wide enough for the shifted value. +    if (VT.getSizeInBits() >= 256) +      ShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, ShAmt); + +    return DAG.getNode(N0.getOpcode(), DL, VT, +                       DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0)), +                       ShAmt); +  } + +  if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N)) +    return NewVSel; + +  return SDValue(); +} + +SDValue DAGCombiner::visitANY_EXTEND(SDNode *N) { +  SDValue N0 = N->getOperand(0); +  EVT VT = N->getValueType(0); + +  if (SDValue Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes)) +    return Res; + +  // fold (aext (aext x)) -> (aext x) +  // fold (aext (zext x)) -> (zext x) +  // fold (aext (sext x)) -> (sext x) +  if (N0.getOpcode() == ISD::ANY_EXTEND  || +      N0.getOpcode() == ISD::ZERO_EXTEND || +      N0.getOpcode() == ISD::SIGN_EXTEND) +    return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, N0.getOperand(0)); + +  // fold (aext (truncate (load x))) -> (aext (smaller load x)) +  // fold (aext (truncate (srl (load x), c))) -> (aext (small load (x+c/n))) +  if (N0.getOpcode() == ISD::TRUNCATE) { +    if (SDValue NarrowLoad = ReduceLoadWidth(N0.getNode())) { +      SDNode *oye = N0.getOperand(0).getNode(); +      if (NarrowLoad.getNode() != N0.getNode()) { +        CombineTo(N0.getNode(), NarrowLoad); +        // CombineTo deleted the truncate, if needed, but not what's under it. +        AddToWorklist(oye); +      } +      return SDValue(N, 0);   // Return N so it doesn't get rechecked! +    } +  } + +  // fold (aext (truncate x)) +  if (N0.getOpcode() == ISD::TRUNCATE) +    return DAG.getAnyExtOrTrunc(N0.getOperand(0), SDLoc(N), VT); + +  // Fold (aext (and (trunc x), cst)) -> (and x, cst) +  // if the trunc is not free. +  if (N0.getOpcode() == ISD::AND && +      N0.getOperand(0).getOpcode() == ISD::TRUNCATE && +      N0.getOperand(1).getOpcode() == ISD::Constant && +      !TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(), +                          N0.getValueType())) { +    SDLoc DL(N); +    SDValue X = N0.getOperand(0).getOperand(0); +    X = DAG.getAnyExtOrTrunc(X, DL, VT); +    APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); +    Mask = Mask.zext(VT.getSizeInBits()); +    return DAG.getNode(ISD::AND, DL, VT, +                       X, DAG.getConstant(Mask, DL, VT)); +  } + +  // fold (aext (load x)) -> (aext (truncate (extload x))) +  // None of the supported targets knows how to perform load and any_ext +  // on vectors in one instruction.  We only perform this transformation on +  // scalars. +  if (ISD::isNON_EXTLoad(N0.getNode()) && !VT.isVector() && +      ISD::isUNINDEXEDLoad(N0.getNode()) && +      TLI.isLoadExtLegal(ISD::EXTLOAD, VT, N0.getValueType())) { +    bool DoXform = true; +    SmallVector<SDNode*, 4> SetCCs; +    if (!N0.hasOneUse()) +      DoXform = ExtendUsesToFormExtLoad(VT, N, N0, ISD::ANY_EXTEND, SetCCs, +                                        TLI); +    if (DoXform) { +      LoadSDNode *LN0 = cast<LoadSDNode>(N0); +      SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, SDLoc(N), VT, +                                       LN0->getChain(), +                                       LN0->getBasePtr(), N0.getValueType(), +                                       LN0->getMemOperand()); +      ExtendSetCCUses(SetCCs, N0, ExtLoad, ISD::ANY_EXTEND); +      // If the load value is used only by N, replace it via CombineTo N. +      bool NoReplaceTrunc = N0.hasOneUse(); +      CombineTo(N, ExtLoad); +      if (NoReplaceTrunc) { +        DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), ExtLoad.getValue(1)); +        recursivelyDeleteUnusedNodes(LN0); +      } else { +        SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(N0), +                                    N0.getValueType(), ExtLoad); +        CombineTo(LN0, Trunc, ExtLoad.getValue(1)); +      } +      return SDValue(N, 0); // Return N so it doesn't get rechecked! +    } +  } + +  // fold (aext (zextload x)) -> (aext (truncate (zextload x))) +  // fold (aext (sextload x)) -> (aext (truncate (sextload x))) +  // fold (aext ( extload x)) -> (aext (truncate (extload  x))) +  if (N0.getOpcode() == ISD::LOAD && !ISD::isNON_EXTLoad(N0.getNode()) && +      ISD::isUNINDEXEDLoad(N0.getNode()) && N0.hasOneUse()) { +    LoadSDNode *LN0 = cast<LoadSDNode>(N0); +    ISD::LoadExtType ExtType = LN0->getExtensionType(); +    EVT MemVT = LN0->getMemoryVT(); +    if (!LegalOperations || TLI.isLoadExtLegal(ExtType, VT, MemVT)) { +      SDValue ExtLoad = DAG.getExtLoad(ExtType, SDLoc(N), +                                       VT, LN0->getChain(), LN0->getBasePtr(), +                                       MemVT, LN0->getMemOperand()); +      CombineTo(N, ExtLoad); +      DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), ExtLoad.getValue(1)); +      recursivelyDeleteUnusedNodes(LN0); +      return SDValue(N, 0);   // Return N so it doesn't get rechecked! +    } +  } + +  if (N0.getOpcode() == ISD::SETCC) { +    // For vectors: +    // aext(setcc) -> vsetcc +    // aext(setcc) -> truncate(vsetcc) +    // aext(setcc) -> aext(vsetcc) +    // Only do this before legalize for now. +    if (VT.isVector() && !LegalOperations) { +      EVT N00VT = N0.getOperand(0).getValueType(); +      if (getSetCCResultType(N00VT) == N0.getValueType()) +        return SDValue(); + +      // We know that the # elements of the results is the same as the +      // # elements of the compare (and the # elements of the compare result +      // for that matter).  Check to see that they are the same size.  If so, +      // we know that the element size of the sext'd result matches the +      // element size of the compare operands. +      if (VT.getSizeInBits() == N00VT.getSizeInBits()) +        return DAG.getSetCC(SDLoc(N), VT, N0.getOperand(0), +                             N0.getOperand(1), +                             cast<CondCodeSDNode>(N0.getOperand(2))->get()); + +      // If the desired elements are smaller or larger than the source +      // elements we can use a matching integer vector type and then +      // truncate/any extend +      EVT MatchingVectorType = N00VT.changeVectorElementTypeToInteger(); +      SDValue VsetCC = +        DAG.getSetCC(SDLoc(N), MatchingVectorType, N0.getOperand(0), +                      N0.getOperand(1), +                      cast<CondCodeSDNode>(N0.getOperand(2))->get()); +      return DAG.getAnyExtOrTrunc(VsetCC, SDLoc(N), VT); +    } + +    // aext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc +    SDLoc DL(N); +    if (SDValue SCC = SimplifySelectCC( +            DL, N0.getOperand(0), N0.getOperand(1), DAG.getConstant(1, DL, VT), +            DAG.getConstant(0, DL, VT), +            cast<CondCodeSDNode>(N0.getOperand(2))->get(), true)) +      return SCC; +  } + +  return SDValue(); +} + +SDValue DAGCombiner::visitAssertExt(SDNode *N) { +  unsigned Opcode = N->getOpcode(); +  SDValue N0 = N->getOperand(0); +  SDValue N1 = N->getOperand(1); +  EVT AssertVT = cast<VTSDNode>(N1)->getVT(); + +  // fold (assert?ext (assert?ext x, vt), vt) -> (assert?ext x, vt) +  if (N0.getOpcode() == Opcode && +      AssertVT == cast<VTSDNode>(N0.getOperand(1))->getVT()) +    return N0; + +  if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && +      N0.getOperand(0).getOpcode() == Opcode) { +    // We have an assert, truncate, assert sandwich. Make one stronger assert +    // by asserting on the smallest asserted type to the larger source type. +    // This eliminates the later assert: +    // assert (trunc (assert X, i8) to iN), i1 --> trunc (assert X, i1) to iN +    // assert (trunc (assert X, i1) to iN), i8 --> trunc (assert X, i1) to iN +    SDValue BigA = N0.getOperand(0); +    EVT BigA_AssertVT = cast<VTSDNode>(BigA.getOperand(1))->getVT(); +    assert(BigA_AssertVT.bitsLE(N0.getValueType()) && +           "Asserting zero/sign-extended bits to a type larger than the " +           "truncated destination does not provide information"); + +    SDLoc DL(N); +    EVT MinAssertVT = AssertVT.bitsLT(BigA_AssertVT) ? AssertVT : BigA_AssertVT; +    SDValue MinAssertVTVal = DAG.getValueType(MinAssertVT); +    SDValue NewAssert = DAG.getNode(Opcode, DL, BigA.getValueType(), +                                    BigA.getOperand(0), MinAssertVTVal); +    return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewAssert); +  } + +  // If we have (AssertZext (truncate (AssertSext X, iX)), iY) and Y is smaller +  // than X. Just move the AssertZext in front of the truncate and drop the +  // AssertSExt. +  if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && +      N0.getOperand(0).getOpcode() == ISD::AssertSext && +      Opcode == ISD::AssertZext) { +    SDValue BigA = N0.getOperand(0); +    EVT BigA_AssertVT = cast<VTSDNode>(BigA.getOperand(1))->getVT(); +    assert(BigA_AssertVT.bitsLE(N0.getValueType()) && +           "Asserting zero/sign-extended bits to a type larger than the " +           "truncated destination does not provide information"); + +    if (AssertVT.bitsLT(BigA_AssertVT)) { +      SDLoc DL(N); +      SDValue NewAssert = DAG.getNode(Opcode, DL, BigA.getValueType(), +                                      BigA.getOperand(0), N1); +      return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewAssert); +    } +  } + +  return SDValue(); +} + +/// If the result of a wider load is shifted to right of N  bits and then +/// truncated to a narrower type and where N is a multiple of number of bits of +/// the narrower type, transform it to a narrower load from address + N / num of +/// bits of new type. Also narrow the load if the result is masked with an AND +/// to effectively produce a smaller type. If the result is to be extended, also +/// fold the extension to form a extending load. +SDValue DAGCombiner::ReduceLoadWidth(SDNode *N) { +  unsigned Opc = N->getOpcode(); + +  ISD::LoadExtType ExtType = ISD::NON_EXTLOAD; +  SDValue N0 = N->getOperand(0); +  EVT VT = N->getValueType(0); +  EVT ExtVT = VT; + +  // This transformation isn't valid for vector loads. +  if (VT.isVector()) +    return SDValue(); + +  unsigned ShAmt = 0; +  bool HasShiftedOffset = false; +  // Special case: SIGN_EXTEND_INREG is basically truncating to ExtVT then +  // extended to VT. +  if (Opc == ISD::SIGN_EXTEND_INREG) { +    ExtType = ISD::SEXTLOAD; +    ExtVT = cast<VTSDNode>(N->getOperand(1))->getVT(); +  } else if (Opc == ISD::SRL) { +    // Another special-case: SRL is basically zero-extending a narrower value, +    // or it maybe shifting a higher subword, half or byte into the lowest +    // bits. +    ExtType = ISD::ZEXTLOAD; +    N0 = SDValue(N, 0); + +    auto *LN0 = dyn_cast<LoadSDNode>(N0.getOperand(0)); +    auto *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1)); +    if (!N01 || !LN0) +      return SDValue(); + +    uint64_t ShiftAmt = N01->getZExtValue(); +    uint64_t MemoryWidth = LN0->getMemoryVT().getSizeInBits(); +    if (LN0->getExtensionType() != ISD::SEXTLOAD && MemoryWidth > ShiftAmt) +      ExtVT = EVT::getIntegerVT(*DAG.getContext(), MemoryWidth - ShiftAmt); +    else +      ExtVT = EVT::getIntegerVT(*DAG.getContext(), +                                VT.getSizeInBits() - ShiftAmt); +  } else if (Opc == ISD::AND) { +    // An AND with a constant mask is the same as a truncate + zero-extend. +    auto AndC = dyn_cast<ConstantSDNode>(N->getOperand(1)); +    if (!AndC) +      return SDValue(); + +    const APInt &Mask = AndC->getAPIntValue(); +    unsigned ActiveBits = 0; +    if (Mask.isMask()) { +      ActiveBits = Mask.countTrailingOnes(); +    } else if (Mask.isShiftedMask()) { +      ShAmt = Mask.countTrailingZeros(); +      APInt ShiftedMask = Mask.lshr(ShAmt); +      ActiveBits = ShiftedMask.countTrailingOnes(); +      HasShiftedOffset = true; +    } else +      return SDValue(); + +    ExtType = ISD::ZEXTLOAD; +    ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits); +  } + +  if (N0.getOpcode() == ISD::SRL && N0.hasOneUse()) { +    SDValue SRL = N0; +    if (auto *ConstShift = dyn_cast<ConstantSDNode>(SRL.getOperand(1))) { +      ShAmt = ConstShift->getZExtValue(); +      unsigned EVTBits = ExtVT.getSizeInBits(); +      // Is the shift amount a multiple of size of VT? +      if ((ShAmt & (EVTBits-1)) == 0) { +        N0 = N0.getOperand(0); +        // Is the load width a multiple of size of VT? +        if ((N0.getValueSizeInBits() & (EVTBits-1)) != 0) +          return SDValue(); +      } + +      // At this point, we must have a load or else we can't do the transform. +      if (!isa<LoadSDNode>(N0)) return SDValue(); + +      auto *LN0 = cast<LoadSDNode>(N0); + +      // Because a SRL must be assumed to *need* to zero-extend the high bits +      // (as opposed to anyext the high bits), we can't combine the zextload +      // lowering of SRL and an sextload. +      if (LN0->getExtensionType() == ISD::SEXTLOAD) +        return SDValue(); + +      // If the shift amount is larger than the input type then we're not +      // accessing any of the loaded bytes.  If the load was a zextload/extload +      // then the result of the shift+trunc is zero/undef (handled elsewhere). +      if (ShAmt >= LN0->getMemoryVT().getSizeInBits()) +        return SDValue(); + +      // If the SRL is only used by a masking AND, we may be able to adjust +      // the ExtVT to make the AND redundant. +      SDNode *Mask = *(SRL->use_begin()); +      if (Mask->getOpcode() == ISD::AND && +          isa<ConstantSDNode>(Mask->getOperand(1))) { +        const APInt &ShiftMask = +          cast<ConstantSDNode>(Mask->getOperand(1))->getAPIntValue(); +        if (ShiftMask.isMask()) { +          EVT MaskedVT = EVT::getIntegerVT(*DAG.getContext(), +                                           ShiftMask.countTrailingOnes()); +          // If the mask is smaller, recompute the type. +          if ((ExtVT.getSizeInBits() > MaskedVT.getSizeInBits()) && +              TLI.isLoadExtLegal(ExtType, N0.getValueType(), MaskedVT)) +            ExtVT = MaskedVT; +        } +      } +    } +  } + +  // If the load is shifted left (and the result isn't shifted back right), +  // we can fold the truncate through the shift. +  unsigned ShLeftAmt = 0; +  if (ShAmt == 0 && N0.getOpcode() == ISD::SHL && N0.hasOneUse() && +      ExtVT == VT && TLI.isNarrowingProfitable(N0.getValueType(), VT)) { +    if (ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { +      ShLeftAmt = N01->getZExtValue(); +      N0 = N0.getOperand(0); +    } +  } + +  // If we haven't found a load, we can't narrow it. +  if (!isa<LoadSDNode>(N0)) +    return SDValue(); + +  LoadSDNode *LN0 = cast<LoadSDNode>(N0); +  // Reducing the width of a volatile load is illegal.  For atomics, we may be +  // able to reduce the width provided we never widen again. (see D66309)   +  if (!LN0->isSimple() || +      !isLegalNarrowLdSt(LN0, ExtType, ExtVT, ShAmt)) +    return SDValue(); + +  auto AdjustBigEndianShift = [&](unsigned ShAmt) { +    unsigned LVTStoreBits = LN0->getMemoryVT().getStoreSizeInBits(); +    unsigned EVTStoreBits = ExtVT.getStoreSizeInBits(); +    return LVTStoreBits - EVTStoreBits - ShAmt; +  }; + +  // For big endian targets, we need to adjust the offset to the pointer to +  // load the correct bytes. +  if (DAG.getDataLayout().isBigEndian()) +    ShAmt = AdjustBigEndianShift(ShAmt); + +  EVT PtrType = N0.getOperand(1).getValueType(); +  uint64_t PtrOff = ShAmt / 8; +  unsigned NewAlign = MinAlign(LN0->getAlignment(), PtrOff); +  SDLoc DL(LN0); +  // The original load itself didn't wrap, so an offset within it doesn't. +  SDNodeFlags Flags; +  Flags.setNoUnsignedWrap(true); +  SDValue NewPtr = DAG.getNode(ISD::ADD, DL, +                               PtrType, LN0->getBasePtr(), +                               DAG.getConstant(PtrOff, DL, PtrType), +                               Flags); +  AddToWorklist(NewPtr.getNode()); + +  SDValue Load; +  if (ExtType == ISD::NON_EXTLOAD) +    Load = DAG.getLoad(VT, DL, LN0->getChain(), NewPtr, +                       LN0->getPointerInfo().getWithOffset(PtrOff), NewAlign, +                       LN0->getMemOperand()->getFlags(), LN0->getAAInfo()); +  else +    Load = DAG.getExtLoad(ExtType, DL, VT, LN0->getChain(), NewPtr, +                          LN0->getPointerInfo().getWithOffset(PtrOff), ExtVT, +                          NewAlign, LN0->getMemOperand()->getFlags(), +                          LN0->getAAInfo()); + +  // Replace the old load's chain with the new load's chain. +  WorklistRemover DeadNodes(*this); +  DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1)); + +  // Shift the result left, if we've swallowed a left shift. +  SDValue Result = Load; +  if (ShLeftAmt != 0) { +    EVT ShImmTy = getShiftAmountTy(Result.getValueType()); +    if (!isUIntN(ShImmTy.getSizeInBits(), ShLeftAmt)) +      ShImmTy = VT; +    // If the shift amount is as large as the result size (but, presumably, +    // no larger than the source) then the useful bits of the result are +    // zero; we can't simply return the shortened shift, because the result +    // of that operation is undefined. +    if (ShLeftAmt >= VT.getSizeInBits()) +      Result = DAG.getConstant(0, DL, VT); +    else +      Result = DAG.getNode(ISD::SHL, DL, VT, +                          Result, DAG.getConstant(ShLeftAmt, DL, ShImmTy)); +  } + +  if (HasShiftedOffset) { +    // Recalculate the shift amount after it has been altered to calculate +    // the offset. +    if (DAG.getDataLayout().isBigEndian()) +      ShAmt = AdjustBigEndianShift(ShAmt); + +    // We're using a shifted mask, so the load now has an offset. This means +    // that data has been loaded into the lower bytes than it would have been +    // before, so we need to shl the loaded data into the correct position in the +    // register. +    SDValue ShiftC = DAG.getConstant(ShAmt, DL, VT); +    Result = DAG.getNode(ISD::SHL, DL, VT, Result, ShiftC); +    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result); +  } + +  // Return the new loaded value. +  return Result; +} + +SDValue DAGCombiner::visitSIGN_EXTEND_INREG(SDNode *N) { +  SDValue N0 = N->getOperand(0); +  SDValue N1 = N->getOperand(1); +  EVT VT = N->getValueType(0); +  EVT EVT = cast<VTSDNode>(N1)->getVT(); +  unsigned VTBits = VT.getScalarSizeInBits(); +  unsigned EVTBits = EVT.getScalarSizeInBits(); + +  if (N0.isUndef()) +    return DAG.getUNDEF(VT); + +  // fold (sext_in_reg c1) -> c1 +  if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) +    return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, N0, N1); + +  // If the input is already sign extended, just drop the extension. +  if (DAG.ComputeNumSignBits(N0) >= VTBits-EVTBits+1) +    return N0; + +  // fold (sext_in_reg (sext_in_reg x, VT2), VT1) -> (sext_in_reg x, minVT) pt2 +  if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && +      EVT.bitsLT(cast<VTSDNode>(N0.getOperand(1))->getVT())) +    return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, +                       N0.getOperand(0), N1); + +  // fold (sext_in_reg (sext x)) -> (sext x) +  // fold (sext_in_reg (aext x)) -> (sext x) +  // if x is small enough or if we know that x has more than 1 sign bit and the +  // sign_extend_inreg is extending from one of them. +  if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) { +    SDValue N00 = N0.getOperand(0); +    unsigned N00Bits = N00.getScalarValueSizeInBits(); +    if ((N00Bits <= EVTBits || +         (N00Bits - DAG.ComputeNumSignBits(N00)) < EVTBits) && +        (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND, VT))) +      return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, N00); +  } + +  // fold (sext_in_reg (*_extend_vector_inreg x)) -> (sext_vector_inreg x) +  if ((N0.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG || +       N0.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG || +       N0.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) && +      N0.getOperand(0).getScalarValueSizeInBits() == EVTBits) { +    if (!LegalOperations || +        TLI.isOperationLegal(ISD::SIGN_EXTEND_VECTOR_INREG, VT)) +      return DAG.getNode(ISD::SIGN_EXTEND_VECTOR_INREG, SDLoc(N), VT, +                         N0.getOperand(0)); +  } + +  // fold (sext_in_reg (zext x)) -> (sext x) +  // iff we are extending the source sign bit. +  if (N0.getOpcode() == ISD::ZERO_EXTEND) { +    SDValue N00 = N0.getOperand(0); +    if (N00.getScalarValueSizeInBits() == EVTBits && +        (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND, VT))) +      return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, N00, N1); +  } + +  // fold (sext_in_reg x) -> (zext_in_reg x) if the sign bit is known zero. +  if (DAG.MaskedValueIsZero(N0, APInt::getOneBitSet(VTBits, EVTBits - 1))) +    return DAG.getZeroExtendInReg(N0, SDLoc(N), EVT.getScalarType()); + +  // fold operands of sext_in_reg based on knowledge that the top bits are not +  // demanded. +  if (SimplifyDemandedBits(SDValue(N, 0))) +    return SDValue(N, 0); + +  // fold (sext_in_reg (load x)) -> (smaller sextload x) +  // fold (sext_in_reg (srl (load x), c)) -> (smaller sextload (x+c/evtbits)) +  if (SDValue NarrowLoad = ReduceLoadWidth(N)) +    return NarrowLoad; + +  // fold (sext_in_reg (srl X, 24), i8) -> (sra X, 24) +  // fold (sext_in_reg (srl X, 23), i8) -> (sra X, 23) iff possible. +  // We already fold "(sext_in_reg (srl X, 25), i8) -> srl X, 25" above. +  if (N0.getOpcode() == ISD::SRL) { +    if (auto *ShAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1))) +      if (ShAmt->getAPIntValue().ule(VTBits - EVTBits)) { +        // We can turn this into an SRA iff the input to the SRL is already sign +        // extended enough. +        unsigned InSignBits = DAG.ComputeNumSignBits(N0.getOperand(0)); +        if (((VTBits - EVTBits) - ShAmt->getZExtValue()) < InSignBits) +          return DAG.getNode(ISD::SRA, SDLoc(N), VT, N0.getOperand(0), +                             N0.getOperand(1)); +      } +  } + +  // fold (sext_inreg (extload x)) -> (sextload x) +  // If sextload is not supported by target, we can only do the combine when +  // load has one use. Doing otherwise can block folding the extload with other +  // extends that the target does support. +  if (ISD::isEXTLoad(N0.getNode()) && +      ISD::isUNINDEXEDLoad(N0.getNode()) && +      EVT == cast<LoadSDNode>(N0)->getMemoryVT() && +      ((!LegalOperations && cast<LoadSDNode>(N0)->isSimple() && +        N0.hasOneUse()) || +       TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, EVT))) { +    LoadSDNode *LN0 = cast<LoadSDNode>(N0); +    SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT, +                                     LN0->getChain(), +                                     LN0->getBasePtr(), EVT, +                                     LN0->getMemOperand()); +    CombineTo(N, ExtLoad); +    CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1)); +    AddToWorklist(ExtLoad.getNode()); +    return SDValue(N, 0);   // Return N so it doesn't get rechecked! +  } +  // fold (sext_inreg (zextload x)) -> (sextload x) iff load has one use +  if (ISD::isZEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) && +      N0.hasOneUse() && +      EVT == cast<LoadSDNode>(N0)->getMemoryVT() && +      ((!LegalOperations && cast<LoadSDNode>(N0)->isSimple()) && +       TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, EVT))) { +    LoadSDNode *LN0 = cast<LoadSDNode>(N0); +    SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT, +                                     LN0->getChain(), +                                     LN0->getBasePtr(), EVT, +                                     LN0->getMemOperand()); +    CombineTo(N, ExtLoad); +    CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1)); +    return SDValue(N, 0);   // Return N so it doesn't get rechecked! +  } + +  // Form (sext_inreg (bswap >> 16)) or (sext_inreg (rotl (bswap) 16)) +  if (EVTBits <= 16 && N0.getOpcode() == ISD::OR) { +    if (SDValue BSwap = MatchBSwapHWordLow(N0.getNode(), N0.getOperand(0), +                                           N0.getOperand(1), false)) +      return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, +                         BSwap, N1); +  } + +  return SDValue(); +} + +SDValue DAGCombiner::visitSIGN_EXTEND_VECTOR_INREG(SDNode *N) { +  SDValue N0 = N->getOperand(0); +  EVT VT = N->getValueType(0); + +  if (N0.isUndef()) +    return DAG.getUNDEF(VT); + +  if (SDValue Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes)) +    return Res; + +  if (SimplifyDemandedVectorElts(SDValue(N, 0))) +    return SDValue(N, 0); + +  return SDValue(); +} + +SDValue DAGCombiner::visitZERO_EXTEND_VECTOR_INREG(SDNode *N) { +  SDValue N0 = N->getOperand(0); +  EVT VT = N->getValueType(0); + +  if (N0.isUndef()) +    return DAG.getUNDEF(VT); + +  if (SDValue Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes)) +    return Res; + +  if (SimplifyDemandedVectorElts(SDValue(N, 0))) +    return SDValue(N, 0); + +  return SDValue(); +} + +SDValue DAGCombiner::visitTRUNCATE(SDNode *N) { +  SDValue N0 = N->getOperand(0); +  EVT VT = N->getValueType(0); +  EVT SrcVT = N0.getValueType(); +  bool isLE = DAG.getDataLayout().isLittleEndian(); + +  // noop truncate +  if (SrcVT == VT) +    return N0; + +  // fold (truncate (truncate x)) -> (truncate x) +  if (N0.getOpcode() == ISD::TRUNCATE) +    return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0.getOperand(0)); + +  // fold (truncate c1) -> c1 +  if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) { +    SDValue C = DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0); +    if (C.getNode() != N) +      return C; +  } + +  // fold (truncate (ext x)) -> (ext x) or (truncate x) or x +  if (N0.getOpcode() == ISD::ZERO_EXTEND || +      N0.getOpcode() == ISD::SIGN_EXTEND || +      N0.getOpcode() == ISD::ANY_EXTEND) { +    // if the source is smaller than the dest, we still need an extend. +    if (N0.getOperand(0).getValueType().bitsLT(VT)) +      return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, N0.getOperand(0)); +    // if the source is larger than the dest, than we just need the truncate. +    if (N0.getOperand(0).getValueType().bitsGT(VT)) +      return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0.getOperand(0)); +    // if the source and dest are the same type, we can drop both the extend +    // and the truncate. +    return N0.getOperand(0); +  } + +  // If this is anyext(trunc), don't fold it, allow ourselves to be folded. +  if (N->hasOneUse() && (N->use_begin()->getOpcode() == ISD::ANY_EXTEND)) +    return SDValue(); + +  // Fold extract-and-trunc into a narrow extract. For example: +  //   i64 x = EXTRACT_VECTOR_ELT(v2i64 val, i32 1) +  //   i32 y = TRUNCATE(i64 x) +  //        -- becomes -- +  //   v16i8 b = BITCAST (v2i64 val) +  //   i8 x = EXTRACT_VECTOR_ELT(v16i8 b, i32 8) +  // +  // Note: We only run this optimization after type legalization (which often +  // creates this pattern) and before operation legalization after which +  // we need to be more careful about the vector instructions that we generate. +  if (N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && +      LegalTypes && !LegalOperations && N0->hasOneUse() && VT != MVT::i1) { +    EVT VecTy = N0.getOperand(0).getValueType(); +    EVT ExTy = N0.getValueType(); +    EVT TrTy = N->getValueType(0); + +    unsigned NumElem = VecTy.getVectorNumElements(); +    unsigned SizeRatio = ExTy.getSizeInBits()/TrTy.getSizeInBits(); + +    EVT NVT = EVT::getVectorVT(*DAG.getContext(), TrTy, SizeRatio * NumElem); +    assert(NVT.getSizeInBits() == VecTy.getSizeInBits() && "Invalid Size"); + +    SDValue EltNo = N0->getOperand(1); +    if (isa<ConstantSDNode>(EltNo) && isTypeLegal(NVT)) { +      int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue(); +      EVT IndexTy = TLI.getVectorIdxTy(DAG.getDataLayout()); +      int Index = isLE ? (Elt*SizeRatio) : (Elt*SizeRatio + (SizeRatio-1)); + +      SDLoc DL(N); +      return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, TrTy, +                         DAG.getBitcast(NVT, N0.getOperand(0)), +                         DAG.getConstant(Index, DL, IndexTy)); +    } +  } + +  // trunc (select c, a, b) -> select c, (trunc a), (trunc b) +  if (N0.getOpcode() == ISD::SELECT && N0.hasOneUse()) { +    if ((!LegalOperations || TLI.isOperationLegal(ISD::SELECT, SrcVT)) && +        TLI.isTruncateFree(SrcVT, VT)) { +      SDLoc SL(N0); +      SDValue Cond = N0.getOperand(0); +      SDValue TruncOp0 = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(1)); +      SDValue TruncOp1 = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(2)); +      return DAG.getNode(ISD::SELECT, SDLoc(N), VT, Cond, TruncOp0, TruncOp1); +    } +  } + +  // trunc (shl x, K) -> shl (trunc x), K => K < VT.getScalarSizeInBits() +  if (N0.getOpcode() == ISD::SHL && N0.hasOneUse() && +      (!LegalOperations || TLI.isOperationLegal(ISD::SHL, VT)) && +      TLI.isTypeDesirableForOp(ISD::SHL, VT)) { +    SDValue Amt = N0.getOperand(1); +    KnownBits Known = DAG.computeKnownBits(Amt); +    unsigned Size = VT.getScalarSizeInBits(); +    if (Known.getBitWidth() - Known.countMinLeadingZeros() <= Log2_32(Size)) { +      SDLoc SL(N); +      EVT AmtVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); + +      SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(0)); +      if (AmtVT != Amt.getValueType()) { +        Amt = DAG.getZExtOrTrunc(Amt, SL, AmtVT); +        AddToWorklist(Amt.getNode()); +      } +      return DAG.getNode(ISD::SHL, SL, VT, Trunc, Amt); +    } +  } + +  // Attempt to pre-truncate BUILD_VECTOR sources. +  if (N0.getOpcode() == ISD::BUILD_VECTOR && !LegalOperations && +      TLI.isTruncateFree(SrcVT.getScalarType(), VT.getScalarType())) { +    SDLoc DL(N); +    EVT SVT = VT.getScalarType(); +    SmallVector<SDValue, 8> TruncOps; +    for (const SDValue &Op : N0->op_values()) { +      SDValue TruncOp = DAG.getNode(ISD::TRUNCATE, DL, SVT, Op); +      TruncOps.push_back(TruncOp); +    } +    return DAG.getBuildVector(VT, DL, TruncOps); +  } + +  // Fold a series of buildvector, bitcast, and truncate if possible. +  // For example fold +  //   (2xi32 trunc (bitcast ((4xi32)buildvector x, x, y, y) 2xi64)) to +  //   (2xi32 (buildvector x, y)). +  if (Level == AfterLegalizeVectorOps && VT.isVector() && +      N0.getOpcode() == ISD::BITCAST && N0.hasOneUse() && +      N0.getOperand(0).getOpcode() == ISD::BUILD_VECTOR && +      N0.getOperand(0).hasOneUse()) { +    SDValue BuildVect = N0.getOperand(0); +    EVT BuildVectEltTy = BuildVect.getValueType().getVectorElementType(); +    EVT TruncVecEltTy = VT.getVectorElementType(); + +    // Check that the element types match. +    if (BuildVectEltTy == TruncVecEltTy) { +      // Now we only need to compute the offset of the truncated elements. +      unsigned BuildVecNumElts =  BuildVect.getNumOperands(); +      unsigned TruncVecNumElts = VT.getVectorNumElements(); +      unsigned TruncEltOffset = BuildVecNumElts / TruncVecNumElts; + +      assert((BuildVecNumElts % TruncVecNumElts) == 0 && +             "Invalid number of elements"); + +      SmallVector<SDValue, 8> Opnds; +      for (unsigned i = 0, e = BuildVecNumElts; i != e; i += TruncEltOffset) +        Opnds.push_back(BuildVect.getOperand(i)); + +      return DAG.getBuildVector(VT, SDLoc(N), Opnds); +    } +  } + +  // See if we can simplify the input to this truncate through knowledge that +  // only the low bits are being used. +  // For example "trunc (or (shl x, 8), y)" // -> trunc y +  // Currently we only perform this optimization on scalars because vectors +  // may have different active low bits. +  if (!VT.isVector()) { +    APInt Mask = +        APInt::getLowBitsSet(N0.getValueSizeInBits(), VT.getSizeInBits()); +    if (SDValue Shorter = DAG.GetDemandedBits(N0, Mask)) +      return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Shorter); +  } + +  // fold (truncate (load x)) -> (smaller load x) +  // fold (truncate (srl (load x), c)) -> (smaller load (x+c/evtbits)) +  if (!LegalTypes || TLI.isTypeDesirableForOp(N0.getOpcode(), VT)) { +    if (SDValue Reduced = ReduceLoadWidth(N)) +      return Reduced; + +    // Handle the case where the load remains an extending load even +    // after truncation. +    if (N0.hasOneUse() && ISD::isUNINDEXEDLoad(N0.getNode())) { +      LoadSDNode *LN0 = cast<LoadSDNode>(N0); +      if (LN0->isSimple() && +          LN0->getMemoryVT().getStoreSizeInBits() < VT.getSizeInBits()) { +        SDValue NewLoad = DAG.getExtLoad(LN0->getExtensionType(), SDLoc(LN0), +                                         VT, LN0->getChain(), LN0->getBasePtr(), +                                         LN0->getMemoryVT(), +                                         LN0->getMemOperand()); +        DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), NewLoad.getValue(1)); +        return NewLoad; +      } +    } +  } + +  // fold (trunc (concat ... x ...)) -> (concat ..., (trunc x), ...)), +  // where ... are all 'undef'. +  if (N0.getOpcode() == ISD::CONCAT_VECTORS && !LegalTypes) { +    SmallVector<EVT, 8> VTs; +    SDValue V; +    unsigned Idx = 0; +    unsigned NumDefs = 0; + +    for (unsigned i = 0, e = N0.getNumOperands(); i != e; ++i) { +      SDValue X = N0.getOperand(i); +      if (!X.isUndef()) { +        V = X; +        Idx = i; +        NumDefs++; +      } +      // Stop if more than one members are non-undef. +      if (NumDefs > 1) +        break; +      VTs.push_back(EVT::getVectorVT(*DAG.getContext(), +                                     VT.getVectorElementType(), +                                     X.getValueType().getVectorNumElements())); +    } + +    if (NumDefs == 0) +      return DAG.getUNDEF(VT); + +    if (NumDefs == 1) { +      assert(V.getNode() && "The single defined operand is empty!"); +      SmallVector<SDValue, 8> Opnds; +      for (unsigned i = 0, e = VTs.size(); i != e; ++i) { +        if (i != Idx) { +          Opnds.push_back(DAG.getUNDEF(VTs[i])); +          continue; +        } +        SDValue NV = DAG.getNode(ISD::TRUNCATE, SDLoc(V), VTs[i], V); +        AddToWorklist(NV.getNode()); +        Opnds.push_back(NV); +      } +      return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Opnds); +    } +  } + +  // Fold truncate of a bitcast of a vector to an extract of the low vector +  // element. +  // +  // e.g. trunc (i64 (bitcast v2i32:x)) -> extract_vector_elt v2i32:x, idx +  if (N0.getOpcode() == ISD::BITCAST && !VT.isVector()) { +    SDValue VecSrc = N0.getOperand(0); +    EVT SrcVT = VecSrc.getValueType(); +    if (SrcVT.isVector() && SrcVT.getScalarType() == VT && +        (!LegalOperations || +         TLI.isOperationLegal(ISD::EXTRACT_VECTOR_ELT, SrcVT))) { +      SDLoc SL(N); + +      EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); +      unsigned Idx = isLE ? 0 : SrcVT.getVectorNumElements() - 1; +      return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, VT, +                         VecSrc, DAG.getConstant(Idx, SL, IdxVT)); +    } +  } + +  // Simplify the operands using demanded-bits information. +  if (!VT.isVector() && +      SimplifyDemandedBits(SDValue(N, 0))) +    return SDValue(N, 0); + +  // (trunc adde(X, Y, Carry)) -> (adde trunc(X), trunc(Y), Carry) +  // (trunc addcarry(X, Y, Carry)) -> (addcarry trunc(X), trunc(Y), Carry) +  // When the adde's carry is not used. +  if ((N0.getOpcode() == ISD::ADDE || N0.getOpcode() == ISD::ADDCARRY) && +      N0.hasOneUse() && !N0.getNode()->hasAnyUseOfValue(1) && +      // We only do for addcarry before legalize operation +      ((!LegalOperations && N0.getOpcode() == ISD::ADDCARRY) || +       TLI.isOperationLegal(N0.getOpcode(), VT))) { +    SDLoc SL(N); +    auto X = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(0)); +    auto Y = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(1)); +    auto VTs = DAG.getVTList(VT, N0->getValueType(1)); +    return DAG.getNode(N0.getOpcode(), SL, VTs, X, Y, N0.getOperand(2)); +  } + +  // fold (truncate (extract_subvector(ext x))) -> +  //      (extract_subvector x) +  // TODO: This can be generalized to cover cases where the truncate and extract +  // do not fully cancel each other out. +  if (!LegalTypes && N0.getOpcode() == ISD::EXTRACT_SUBVECTOR) { +    SDValue N00 = N0.getOperand(0); +    if (N00.getOpcode() == ISD::SIGN_EXTEND || +        N00.getOpcode() == ISD::ZERO_EXTEND || +        N00.getOpcode() == ISD::ANY_EXTEND) { +      if (N00.getOperand(0)->getValueType(0).getVectorElementType() == +          VT.getVectorElementType()) +        return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N0->getOperand(0)), VT, +                           N00.getOperand(0), N0.getOperand(1)); +    } +  } + +  if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N)) +    return NewVSel; + +  // Narrow a suitable binary operation with a non-opaque constant operand by +  // moving it ahead of the truncate. This is limited to pre-legalization +  // because targets may prefer a wider type during later combines and invert +  // this transform. +  switch (N0.getOpcode()) { +  case ISD::ADD: +  case ISD::SUB: +  case ISD::MUL: +  case ISD::AND: +  case ISD::OR: +  case ISD::XOR: +    if (!LegalOperations && N0.hasOneUse() && +        (isConstantOrConstantVector(N0.getOperand(0), true) || +         isConstantOrConstantVector(N0.getOperand(1), true))) { +      // TODO: We already restricted this to pre-legalization, but for vectors +      // we are extra cautious to not create an unsupported operation. +      // Target-specific changes are likely needed to avoid regressions here. +      if (VT.isScalarInteger() || TLI.isOperationLegal(N0.getOpcode(), VT)) { +        SDLoc DL(N); +        SDValue NarrowL = DAG.getNode(ISD::TRUNCATE, DL, VT, N0.getOperand(0)); +        SDValue NarrowR = DAG.getNode(ISD::TRUNCATE, DL, VT, N0.getOperand(1)); +        return DAG.getNode(N0.getOpcode(), DL, VT, NarrowL, NarrowR); +      } +    } +  } + +  return SDValue(); +} + +static SDNode *getBuildPairElt(SDNode *N, unsigned i) { +  SDValue Elt = N->getOperand(i); +  if (Elt.getOpcode() != ISD::MERGE_VALUES) +    return Elt.getNode(); +  return Elt.getOperand(Elt.getResNo()).getNode(); +} + +/// build_pair (load, load) -> load +/// if load locations are consecutive. +SDValue DAGCombiner::CombineConsecutiveLoads(SDNode *N, EVT VT) { +  assert(N->getOpcode() == ISD::BUILD_PAIR); + +  LoadSDNode *LD1 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 0)); +  LoadSDNode *LD2 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 1)); + +  // A BUILD_PAIR is always having the least significant part in elt 0 and the +  // most significant part in elt 1. So when combining into one large load, we +  // need to consider the endianness. +  if (DAG.getDataLayout().isBigEndian()) +    std::swap(LD1, LD2); + +  if (!LD1 || !LD2 || !ISD::isNON_EXTLoad(LD1) || !LD1->hasOneUse() || +      LD1->getAddressSpace() != LD2->getAddressSpace()) +    return SDValue(); +  EVT LD1VT = LD1->getValueType(0); +  unsigned LD1Bytes = LD1VT.getStoreSize(); +  if (ISD::isNON_EXTLoad(LD2) && LD2->hasOneUse() && +      DAG.areNonVolatileConsecutiveLoads(LD2, LD1, LD1Bytes, 1)) { +    unsigned Align = LD1->getAlignment(); +    unsigned NewAlign = DAG.getDataLayout().getABITypeAlignment( +        VT.getTypeForEVT(*DAG.getContext())); + +    if (NewAlign <= Align && +        (!LegalOperations || TLI.isOperationLegal(ISD::LOAD, VT))) +      return DAG.getLoad(VT, SDLoc(N), LD1->getChain(), LD1->getBasePtr(), +                         LD1->getPointerInfo(), Align); +  } + +  return SDValue(); +} + +static unsigned getPPCf128HiElementSelector(const SelectionDAG &DAG) { +  // On little-endian machines, bitcasting from ppcf128 to i128 does swap the Hi +  // and Lo parts; on big-endian machines it doesn't. +  return DAG.getDataLayout().isBigEndian() ? 1 : 0; +} + +static SDValue foldBitcastedFPLogic(SDNode *N, SelectionDAG &DAG, +                                    const TargetLowering &TLI) { +  // If this is not a bitcast to an FP type or if the target doesn't have +  // IEEE754-compliant FP logic, we're done. +  EVT VT = N->getValueType(0); +  if (!VT.isFloatingPoint() || !TLI.hasBitPreservingFPLogic(VT)) +    return SDValue(); + +  // TODO: Handle cases where the integer constant is a different scalar +  // bitwidth to the FP. +  SDValue N0 = N->getOperand(0); +  EVT SourceVT = N0.getValueType(); +  if (VT.getScalarSizeInBits() != SourceVT.getScalarSizeInBits()) +    return SDValue(); + +  unsigned FPOpcode; +  APInt SignMask; +  switch (N0.getOpcode()) { +  case ISD::AND: +    FPOpcode = ISD::FABS; +    SignMask = ~APInt::getSignMask(SourceVT.getScalarSizeInBits()); +    break; +  case ISD::XOR: +    FPOpcode = ISD::FNEG; +    SignMask = APInt::getSignMask(SourceVT.getScalarSizeInBits()); +    break; +  case ISD::OR: +    FPOpcode = ISD::FABS; +    SignMask = APInt::getSignMask(SourceVT.getScalarSizeInBits()); +    break; +  default: +    return SDValue(); +  } + +  // Fold (bitcast int (and (bitcast fp X to int), 0x7fff...) to fp) -> fabs X +  // Fold (bitcast int (xor (bitcast fp X to int), 0x8000...) to fp) -> fneg X +  // Fold (bitcast int (or (bitcast fp X to int), 0x8000...) to fp) -> +  //   fneg (fabs X) +  SDValue LogicOp0 = N0.getOperand(0); +  ConstantSDNode *LogicOp1 = isConstOrConstSplat(N0.getOperand(1), true); +  if (LogicOp1 && LogicOp1->getAPIntValue() == SignMask && +      LogicOp0.getOpcode() == ISD::BITCAST && +      LogicOp0.getOperand(0).getValueType() == VT) { +    SDValue FPOp = DAG.getNode(FPOpcode, SDLoc(N), VT, LogicOp0.getOperand(0)); +    NumFPLogicOpsConv++; +    if (N0.getOpcode() == ISD::OR) +      return DAG.getNode(ISD::FNEG, SDLoc(N), VT, FPOp); +    return FPOp; +  } + +  return SDValue(); +} + +SDValue DAGCombiner::visitBITCAST(SDNode *N) { +  SDValue N0 = N->getOperand(0); +  EVT VT = N->getValueType(0); + +  if (N0.isUndef()) +    return DAG.getUNDEF(VT); + +  // If the input is a BUILD_VECTOR with all constant elements, fold this now. +  // Only do this before legalize types, unless both types are integer and the +  // scalar type is legal. Only do this before legalize ops, since the target +  // maybe depending on the bitcast. +  // First check to see if this is all constant. +  // TODO: Support FP bitcasts after legalize types. +  if (VT.isVector() && +      (!LegalTypes || +       (!LegalOperations && VT.isInteger() && N0.getValueType().isInteger() && +        TLI.isTypeLegal(VT.getVectorElementType()))) && +      N0.getOpcode() == ISD::BUILD_VECTOR && N0.getNode()->hasOneUse() && +      cast<BuildVectorSDNode>(N0)->isConstant()) +    return ConstantFoldBITCASTofBUILD_VECTOR(N0.getNode(), +                                             VT.getVectorElementType()); + +  // If the input is a constant, let getNode fold it. +  if (isa<ConstantSDNode>(N0) || isa<ConstantFPSDNode>(N0)) { +    // If we can't allow illegal operations, we need to check that this is just +    // a fp -> int or int -> conversion and that the resulting operation will +    // be legal. +    if (!LegalOperations || +        (isa<ConstantSDNode>(N0) && VT.isFloatingPoint() && !VT.isVector() && +         TLI.isOperationLegal(ISD::ConstantFP, VT)) || +        (isa<ConstantFPSDNode>(N0) && VT.isInteger() && !VT.isVector() && +         TLI.isOperationLegal(ISD::Constant, VT))) { +      SDValue C = DAG.getBitcast(VT, N0); +      if (C.getNode() != N) +        return C; +    } +  } + +  // (conv (conv x, t1), t2) -> (conv x, t2) +  if (N0.getOpcode() == ISD::BITCAST) +    return DAG.getBitcast(VT, N0.getOperand(0)); + +  // fold (conv (load x)) -> (load (conv*)x) +  // If the resultant load doesn't need a higher alignment than the original! +  if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() && +      // Do not remove the cast if the types differ in endian layout. +      TLI.hasBigEndianPartOrdering(N0.getValueType(), DAG.getDataLayout()) == +          TLI.hasBigEndianPartOrdering(VT, DAG.getDataLayout()) && +      // If the load is volatile, we only want to change the load type if the +      // resulting load is legal. Otherwise we might increase the number of +      // memory accesses. We don't care if the original type was legal or not +      // as we assume software couldn't rely on the number of accesses of an +      // illegal type. +      ((!LegalOperations && cast<LoadSDNode>(N0)->isSimple()) || +       TLI.isOperationLegal(ISD::LOAD, VT))) { +    LoadSDNode *LN0 = cast<LoadSDNode>(N0); + +    if (TLI.isLoadBitCastBeneficial(N0.getValueType(), VT, DAG, +                                    *LN0->getMemOperand())) { +      SDValue Load = +          DAG.getLoad(VT, SDLoc(N), LN0->getChain(), LN0->getBasePtr(), +                      LN0->getPointerInfo(), LN0->getAlignment(), +                      LN0->getMemOperand()->getFlags(), LN0->getAAInfo()); +      DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1)); +      return Load; +    } +  } + +  if (SDValue V = foldBitcastedFPLogic(N, DAG, TLI)) +    return V; + +  // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) +  // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) +  // +  // For ppc_fp128: +  // fold (bitcast (fneg x)) -> +  //     flipbit = signbit +  //     (xor (bitcast x) (build_pair flipbit, flipbit)) +  // +  // fold (bitcast (fabs x)) -> +  //     flipbit = (and (extract_element (bitcast x), 0), signbit) +  //     (xor (bitcast x) (build_pair flipbit, flipbit)) +  // This often reduces constant pool loads. +  if (((N0.getOpcode() == ISD::FNEG && !TLI.isFNegFree(N0.getValueType())) || +       (N0.getOpcode() == ISD::FABS && !TLI.isFAbsFree(N0.getValueType()))) && +      N0.getNode()->hasOneUse() && VT.isInteger() && +      !VT.isVector() && !N0.getValueType().isVector()) { +    SDValue NewConv = DAG.getBitcast(VT, N0.getOperand(0)); +    AddToWorklist(NewConv.getNode()); + +    SDLoc DL(N); +    if (N0.getValueType() == MVT::ppcf128 && !LegalTypes) { +      assert(VT.getSizeInBits() == 128); +      SDValue SignBit = DAG.getConstant( +          APInt::getSignMask(VT.getSizeInBits() / 2), SDLoc(N0), MVT::i64); +      SDValue FlipBit; +      if (N0.getOpcode() == ISD::FNEG) { +        FlipBit = SignBit; +        AddToWorklist(FlipBit.getNode()); +      } else { +        assert(N0.getOpcode() == ISD::FABS); +        SDValue Hi = +            DAG.getNode(ISD::EXTRACT_ELEMENT, SDLoc(NewConv), MVT::i64, NewConv, +                        DAG.getIntPtrConstant(getPPCf128HiElementSelector(DAG), +                                              SDLoc(NewConv))); +        AddToWorklist(Hi.getNode()); +        FlipBit = DAG.getNode(ISD::AND, SDLoc(N0), MVT::i64, Hi, SignBit); +        AddToWorklist(FlipBit.getNode()); +      } +      SDValue FlipBits = +          DAG.getNode(ISD::BUILD_PAIR, SDLoc(N0), VT, FlipBit, FlipBit); +      AddToWorklist(FlipBits.getNode()); +      return DAG.getNode(ISD::XOR, DL, VT, NewConv, FlipBits); +    } +    APInt SignBit = APInt::getSignMask(VT.getSizeInBits()); +    if (N0.getOpcode() == ISD::FNEG) +      return DAG.getNode(ISD::XOR, DL, VT, +                         NewConv, DAG.getConstant(SignBit, DL, VT)); +    assert(N0.getOpcode() == ISD::FABS); +    return DAG.getNode(ISD::AND, DL, VT, +                       NewConv, DAG.getConstant(~SignBit, DL, VT)); +  } + +  // fold (bitconvert (fcopysign cst, x)) -> +  //         (or (and (bitconvert x), sign), (and cst, (not sign))) +  // Note that we don't handle (copysign x, cst) because this can always be +  // folded to an fneg or fabs. +  // +  // For ppc_fp128: +  // fold (bitcast (fcopysign cst, x)) -> +  //     flipbit = (and (extract_element +  //                     (xor (bitcast cst), (bitcast x)), 0), +  //                    signbit) +  //     (xor (bitcast cst) (build_pair flipbit, flipbit)) +  if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse() && +      isa<ConstantFPSDNode>(N0.getOperand(0)) && +      VT.isInteger() && !VT.isVector()) { +    unsigned OrigXWidth = N0.getOperand(1).getValueSizeInBits(); +    EVT IntXVT = EVT::getIntegerVT(*DAG.getContext(), OrigXWidth); +    if (isTypeLegal(IntXVT)) { +      SDValue X = DAG.getBitcast(IntXVT, N0.getOperand(1)); +      AddToWorklist(X.getNode()); + +      // If X has a different width than the result/lhs, sext it or truncate it. +      unsigned VTWidth = VT.getSizeInBits(); +      if (OrigXWidth < VTWidth) { +        X = DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, X); +        AddToWorklist(X.getNode()); +      } else if (OrigXWidth > VTWidth) { +        // To get the sign bit in the right place, we have to shift it right +        // before truncating. +        SDLoc DL(X); +        X = DAG.getNode(ISD::SRL, DL, +                        X.getValueType(), X, +                        DAG.getConstant(OrigXWidth-VTWidth, DL, +                                        X.getValueType())); +        AddToWorklist(X.getNode()); +        X = DAG.getNode(ISD::TRUNCATE, SDLoc(X), VT, X); +        AddToWorklist(X.getNode()); +      } + +      if (N0.getValueType() == MVT::ppcf128 && !LegalTypes) { +        APInt SignBit = APInt::getSignMask(VT.getSizeInBits() / 2); +        SDValue Cst = DAG.getBitcast(VT, N0.getOperand(0)); +        AddToWorklist(Cst.getNode()); +        SDValue X = DAG.getBitcast(VT, N0.getOperand(1)); +        AddToWorklist(X.getNode()); +        SDValue XorResult = DAG.getNode(ISD::XOR, SDLoc(N0), VT, Cst, X); +        AddToWorklist(XorResult.getNode()); +        SDValue XorResult64 = DAG.getNode( +            ISD::EXTRACT_ELEMENT, SDLoc(XorResult), MVT::i64, XorResult, +            DAG.getIntPtrConstant(getPPCf128HiElementSelector(DAG), +                                  SDLoc(XorResult))); +        AddToWorklist(XorResult64.getNode()); +        SDValue FlipBit = +            DAG.getNode(ISD::AND, SDLoc(XorResult64), MVT::i64, XorResult64, +                        DAG.getConstant(SignBit, SDLoc(XorResult64), MVT::i64)); +        AddToWorklist(FlipBit.getNode()); +        SDValue FlipBits = +            DAG.getNode(ISD::BUILD_PAIR, SDLoc(N0), VT, FlipBit, FlipBit); +        AddToWorklist(FlipBits.getNode()); +        return DAG.getNode(ISD::XOR, SDLoc(N), VT, Cst, FlipBits); +      } +      APInt SignBit = APInt::getSignMask(VT.getSizeInBits()); +      X = DAG.getNode(ISD::AND, SDLoc(X), VT, +                      X, DAG.getConstant(SignBit, SDLoc(X), VT)); +      AddToWorklist(X.getNode()); + +      SDValue Cst = DAG.getBitcast(VT, N0.getOperand(0)); +      Cst = DAG.getNode(ISD::AND, SDLoc(Cst), VT, +                        Cst, DAG.getConstant(~SignBit, SDLoc(Cst), VT)); +      AddToWorklist(Cst.getNode()); + +      return DAG.getNode(ISD::OR, SDLoc(N), VT, X, Cst); +    } +  } + +  // bitconvert(build_pair(ld, ld)) -> ld iff load locations are consecutive. +  if (N0.getOpcode() == ISD::BUILD_PAIR) +    if (SDValue CombineLD = CombineConsecutiveLoads(N0.getNode(), VT)) +      return CombineLD; + +  // Remove double bitcasts from shuffles - this is often a legacy of +  // XformToShuffleWithZero being used to combine bitmaskings (of +  // float vectors bitcast to integer vectors) into shuffles. +  // bitcast(shuffle(bitcast(s0),bitcast(s1))) -> shuffle(s0,s1) +  if (Level < AfterLegalizeDAG && TLI.isTypeLegal(VT) && VT.isVector() && +      N0->getOpcode() == ISD::VECTOR_SHUFFLE && N0.hasOneUse() && +      VT.getVectorNumElements() >= N0.getValueType().getVectorNumElements() && +      !(VT.getVectorNumElements() % N0.getValueType().getVectorNumElements())) { +    ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N0); + +    // If operands are a bitcast, peek through if it casts the original VT. +    // If operands are a constant, just bitcast back to original VT. +    auto PeekThroughBitcast = [&](SDValue Op) { +      if (Op.getOpcode() == ISD::BITCAST && +          Op.getOperand(0).getValueType() == VT) +        return SDValue(Op.getOperand(0)); +      if (Op.isUndef() || ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) || +          ISD::isBuildVectorOfConstantFPSDNodes(Op.getNode())) +        return DAG.getBitcast(VT, Op); +      return SDValue(); +    }; + +    // FIXME: If either input vector is bitcast, try to convert the shuffle to +    // the result type of this bitcast. This would eliminate at least one +    // bitcast. See the transform in InstCombine. +    SDValue SV0 = PeekThroughBitcast(N0->getOperand(0)); +    SDValue SV1 = PeekThroughBitcast(N0->getOperand(1)); +    if (!(SV0 && SV1)) +      return SDValue(); + +    int MaskScale = +        VT.getVectorNumElements() / N0.getValueType().getVectorNumElements(); +    SmallVector<int, 8> NewMask; +    for (int M : SVN->getMask()) +      for (int i = 0; i != MaskScale; ++i) +        NewMask.push_back(M < 0 ? -1 : M * MaskScale + i); + +    SDValue LegalShuffle = +        TLI.buildLegalVectorShuffle(VT, SDLoc(N), SV0, SV1, NewMask, DAG); +    if (LegalShuffle) +      return LegalShuffle; +  } + +  return SDValue(); +} + +SDValue DAGCombiner::visitBUILD_PAIR(SDNode *N) { +  EVT VT = N->getValueType(0); +  return CombineConsecutiveLoads(N, VT); +} + +/// We know that BV is a build_vector node with Constant, ConstantFP or Undef +/// operands. DstEltVT indicates the destination element value type. +SDValue DAGCombiner:: +ConstantFoldBITCASTofBUILD_VECTOR(SDNode *BV, EVT DstEltVT) { +  EVT SrcEltVT = BV->getValueType(0).getVectorElementType(); + +  // If this is already the right type, we're done. +  if (SrcEltVT == DstEltVT) return SDValue(BV, 0); + +  unsigned SrcBitSize = SrcEltVT.getSizeInBits(); +  unsigned DstBitSize = DstEltVT.getSizeInBits(); + +  // If this is a conversion of N elements of one type to N elements of another +  // type, convert each element.  This handles FP<->INT cases. +  if (SrcBitSize == DstBitSize) { +    SmallVector<SDValue, 8> Ops; +    for (SDValue Op : BV->op_values()) { +      // If the vector element type is not legal, the BUILD_VECTOR operands +      // are promoted and implicitly truncated.  Make that explicit here. +      if (Op.getValueType() != SrcEltVT) +        Op = DAG.getNode(ISD::TRUNCATE, SDLoc(BV), SrcEltVT, Op); +      Ops.push_back(DAG.getBitcast(DstEltVT, Op)); +      AddToWorklist(Ops.back().getNode()); +    } +    EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT, +                              BV->getValueType(0).getVectorNumElements()); +    return DAG.getBuildVector(VT, SDLoc(BV), Ops); +  } + +  // Otherwise, we're growing or shrinking the elements.  To avoid having to +  // handle annoying details of growing/shrinking FP values, we convert them to +  // int first. +  if (SrcEltVT.isFloatingPoint()) { +    // Convert the input float vector to a int vector where the elements are the +    // same sizes. +    EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), SrcEltVT.getSizeInBits()); +    BV = ConstantFoldBITCASTofBUILD_VECTOR(BV, IntVT).getNode(); +    SrcEltVT = IntVT; +  } + +  // Now we know the input is an integer vector.  If the output is a FP type, +  // convert to integer first, then to FP of the right size. +  if (DstEltVT.isFloatingPoint()) { +    EVT TmpVT = EVT::getIntegerVT(*DAG.getContext(), DstEltVT.getSizeInBits()); +    SDNode *Tmp = ConstantFoldBITCASTofBUILD_VECTOR(BV, TmpVT).getNode(); + +    // Next, convert to FP elements of the same size. +    return ConstantFoldBITCASTofBUILD_VECTOR(Tmp, DstEltVT); +  } + +  SDLoc DL(BV); + +  // Okay, we know the src/dst types are both integers of differing types. +  // Handling growing first. +  assert(SrcEltVT.isInteger() && DstEltVT.isInteger()); +  if (SrcBitSize < DstBitSize) { +    unsigned NumInputsPerOutput = DstBitSize/SrcBitSize; + +    SmallVector<SDValue, 8> Ops; +    for (unsigned i = 0, e = BV->getNumOperands(); i != e; +         i += NumInputsPerOutput) { +      bool isLE = DAG.getDataLayout().isLittleEndian(); +      APInt NewBits = APInt(DstBitSize, 0); +      bool EltIsUndef = true; +      for (unsigned j = 0; j != NumInputsPerOutput; ++j) { +        // Shift the previously computed bits over. +        NewBits <<= SrcBitSize; +        SDValue Op = BV->getOperand(i+ (isLE ? (NumInputsPerOutput-j-1) : j)); +        if (Op.isUndef()) continue; +        EltIsUndef = false; + +        NewBits |= cast<ConstantSDNode>(Op)->getAPIntValue(). +                   zextOrTrunc(SrcBitSize).zext(DstBitSize); +      } + +      if (EltIsUndef) +        Ops.push_back(DAG.getUNDEF(DstEltVT)); +      else +        Ops.push_back(DAG.getConstant(NewBits, DL, DstEltVT)); +    } + +    EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT, Ops.size()); +    return DAG.getBuildVector(VT, DL, Ops); +  } + +  // Finally, this must be the case where we are shrinking elements: each input +  // turns into multiple outputs. +  unsigned NumOutputsPerInput = SrcBitSize/DstBitSize; +  EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT, +                            NumOutputsPerInput*BV->getNumOperands()); +  SmallVector<SDValue, 8> Ops; + +  for (const SDValue &Op : BV->op_values()) { +    if (Op.isUndef()) { +      Ops.append(NumOutputsPerInput, DAG.getUNDEF(DstEltVT)); +      continue; +    } + +    APInt OpVal = cast<ConstantSDNode>(Op)-> +                  getAPIntValue().zextOrTrunc(SrcBitSize); + +    for (unsigned j = 0; j != NumOutputsPerInput; ++j) { +      APInt ThisVal = OpVal.trunc(DstBitSize); +      Ops.push_back(DAG.getConstant(ThisVal, DL, DstEltVT)); +      OpVal.lshrInPlace(DstBitSize); +    } + +    // For big endian targets, swap the order of the pieces of each element. +    if (DAG.getDataLayout().isBigEndian()) +      std::reverse(Ops.end()-NumOutputsPerInput, Ops.end()); +  } + +  return DAG.getBuildVector(VT, DL, Ops); +} + +static bool isContractable(SDNode *N) { +  SDNodeFlags F = N->getFlags(); +  return F.hasAllowContract() || F.hasAllowReassociation(); +} + +/// Try to perform FMA combining on a given FADD node. +SDValue DAGCombiner::visitFADDForFMACombine(SDNode *N) { +  SDValue N0 = N->getOperand(0); +  SDValue N1 = N->getOperand(1); +  EVT VT = N->getValueType(0); +  SDLoc SL(N); + +  const TargetOptions &Options = DAG.getTarget().Options; + +  // Floating-point multiply-add with intermediate rounding. +  bool HasFMAD = (LegalOperations && TLI.isOperationLegal(ISD::FMAD, VT)); + +  // Floating-point multiply-add without intermediate rounding. +  bool HasFMA = +      TLI.isFMAFasterThanFMulAndFAdd(VT) && +      (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT)); + +  // No valid opcode, do not combine. +  if (!HasFMAD && !HasFMA) +    return SDValue(); + +  SDNodeFlags Flags = N->getFlags(); +  bool CanFuse = Options.UnsafeFPMath || isContractable(N); +  bool AllowFusionGlobally = (Options.AllowFPOpFusion == FPOpFusion::Fast || +                              CanFuse || HasFMAD); +  // If the addition is not contractable, do not combine. +  if (!AllowFusionGlobally && !isContractable(N)) +    return SDValue(); + +  const SelectionDAGTargetInfo *STI = DAG.getSubtarget().getSelectionDAGInfo(); +  if (STI && STI->generateFMAsInMachineCombiner(OptLevel)) +    return SDValue(); + +  // Always prefer FMAD to FMA for precision. +  unsigned PreferredFusedOpcode = HasFMAD ? ISD::FMAD : ISD::FMA; +  bool Aggressive = TLI.enableAggressiveFMAFusion(VT); + +  // Is the node an FMUL and contractable either due to global flags or +  // SDNodeFlags. +  auto isContractableFMUL = [AllowFusionGlobally](SDValue N) { +    if (N.getOpcode() != ISD::FMUL) +      return false; +    return AllowFusionGlobally || isContractable(N.getNode()); +  }; +  // If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)), +  // prefer to fold the multiply with fewer uses. +  if (Aggressive && isContractableFMUL(N0) && isContractableFMUL(N1)) { +    if (N0.getNode()->use_size() > N1.getNode()->use_size()) +      std::swap(N0, N1); +  } + +  // fold (fadd (fmul x, y), z) -> (fma x, y, z) +  if (isContractableFMUL(N0) && (Aggressive || N0->hasOneUse())) { +    return DAG.getNode(PreferredFusedOpcode, SL, VT, +                       N0.getOperand(0), N0.getOperand(1), N1, Flags); +  } + +  // fold (fadd x, (fmul y, z)) -> (fma y, z, x) +  // Note: Commutes FADD operands. +  if (isContractableFMUL(N1) && (Aggressive || N1->hasOneUse())) { +    return DAG.getNode(PreferredFusedOpcode, SL, VT, +                       N1.getOperand(0), N1.getOperand(1), N0, Flags); +  } + +  // Look through FP_EXTEND nodes to do more combining. + +  // fold (fadd (fpext (fmul x, y)), z) -> (fma (fpext x), (fpext y), z) +  if (N0.getOpcode() == ISD::FP_EXTEND) { +    SDValue N00 = N0.getOperand(0); +    if (isContractableFMUL(N00) && +        TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N00.getValueType())) { +      return DAG.getNode(PreferredFusedOpcode, SL, VT, +                         DAG.getNode(ISD::FP_EXTEND, SL, VT, +                                     N00.getOperand(0)), +                         DAG.getNode(ISD::FP_EXTEND, SL, VT, +                                     N00.getOperand(1)), N1, Flags); +    } +  } + +  // fold (fadd x, (fpext (fmul y, z))) -> (fma (fpext y), (fpext z), x) +  // Note: Commutes FADD operands. +  if (N1.getOpcode() == ISD::FP_EXTEND) { +    SDValue N10 = N1.getOperand(0); +    if (isContractableFMUL(N10) && +        TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N10.getValueType())) { +      return DAG.getNode(PreferredFusedOpcode, SL, VT, +                         DAG.getNode(ISD::FP_EXTEND, SL, VT, +                                     N10.getOperand(0)), +                         DAG.getNode(ISD::FP_EXTEND, SL, VT, +                                     N10.getOperand(1)), N0, Flags); +    } +  } + +  // More folding opportunities when target permits. +  if (Aggressive) { +    // fold (fadd (fma x, y, (fmul u, v)), z) -> (fma x, y (fma u, v, z)) +    if (CanFuse && +        N0.getOpcode() == PreferredFusedOpcode && +        N0.getOperand(2).getOpcode() == ISD::FMUL && +        N0->hasOneUse() && N0.getOperand(2)->hasOneUse()) { +      return DAG.getNode(PreferredFusedOpcode, SL, VT, +                         N0.getOperand(0), N0.getOperand(1), +                         DAG.getNode(PreferredFusedOpcode, SL, VT, +                                     N0.getOperand(2).getOperand(0), +                                     N0.getOperand(2).getOperand(1), +                                     N1, Flags), Flags); +    } + +    // fold (fadd x, (fma y, z, (fmul u, v)) -> (fma y, z (fma u, v, x)) +    if (CanFuse && +        N1->getOpcode() == PreferredFusedOpcode && +        N1.getOperand(2).getOpcode() == ISD::FMUL && +        N1->hasOneUse() && N1.getOperand(2)->hasOneUse()) { +      return DAG.getNode(PreferredFusedOpcode, SL, VT, +                         N1.getOperand(0), N1.getOperand(1), +                         DAG.getNode(PreferredFusedOpcode, SL, VT, +                                     N1.getOperand(2).getOperand(0), +                                     N1.getOperand(2).getOperand(1), +                                     N0, Flags), Flags); +    } + + +    // fold (fadd (fma x, y, (fpext (fmul u, v))), z) +    //   -> (fma x, y, (fma (fpext u), (fpext v), z)) +    auto FoldFAddFMAFPExtFMul = [&] ( +      SDValue X, SDValue Y, SDValue U, SDValue V, SDValue Z, +      SDNodeFlags Flags) { +      return DAG.getNode(PreferredFusedOpcode, SL, VT, X, Y, +                         DAG.getNode(PreferredFusedOpcode, SL, VT, +                                     DAG.getNode(ISD::FP_EXTEND, SL, VT, U), +                                     DAG.getNode(ISD::FP_EXTEND, SL, VT, V), +                                     Z, Flags), Flags); +    }; +    if (N0.getOpcode() == PreferredFusedOpcode) { +      SDValue N02 = N0.getOperand(2); +      if (N02.getOpcode() == ISD::FP_EXTEND) { +        SDValue N020 = N02.getOperand(0); +        if (isContractableFMUL(N020) && +            TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N020.getValueType())) { +          return FoldFAddFMAFPExtFMul(N0.getOperand(0), N0.getOperand(1), +                                      N020.getOperand(0), N020.getOperand(1), +                                      N1, Flags); +        } +      } +    } + +    // fold (fadd (fpext (fma x, y, (fmul u, v))), z) +    //   -> (fma (fpext x), (fpext y), (fma (fpext u), (fpext v), z)) +    // FIXME: This turns two single-precision and one double-precision +    // operation into two double-precision operations, which might not be +    // interesting for all targets, especially GPUs. +    auto FoldFAddFPExtFMAFMul = [&] ( +      SDValue X, SDValue Y, SDValue U, SDValue V, SDValue Z, +      SDNodeFlags Flags) { +      return DAG.getNode(PreferredFusedOpcode, SL, VT, +                         DAG.getNode(ISD::FP_EXTEND, SL, VT, X), +                         DAG.getNode(ISD::FP_EXTEND, SL, VT, Y), +                         DAG.getNode(PreferredFusedOpcode, SL, VT, +                                     DAG.getNode(ISD::FP_EXTEND, SL, VT, U), +                                     DAG.getNode(ISD::FP_EXTEND, SL, VT, V), +                                     Z, Flags), Flags); +    }; +    if (N0.getOpcode() == ISD::FP_EXTEND) { +      SDValue N00 = N0.getOperand(0); +      if (N00.getOpcode() == PreferredFusedOpcode) { +        SDValue N002 = N00.getOperand(2); +        if (isContractableFMUL(N002) && +            TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N00.getValueType())) { +          return FoldFAddFPExtFMAFMul(N00.getOperand(0), N00.getOperand(1), +                                      N002.getOperand(0), N002.getOperand(1), +                                      N1, Flags); +        } +      } +    } + +    // fold (fadd x, (fma y, z, (fpext (fmul u, v))) +    //   -> (fma y, z, (fma (fpext u), (fpext v), x)) +    if (N1.getOpcode() == PreferredFusedOpcode) { +      SDValue N12 = N1.getOperand(2); +      if (N12.getOpcode() == ISD::FP_EXTEND) { +        SDValue N120 = N12.getOperand(0); +        if (isContractableFMUL(N120) && +            TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N120.getValueType())) { +          return FoldFAddFMAFPExtFMul(N1.getOperand(0), N1.getOperand(1), +                                      N120.getOperand(0), N120.getOperand(1), +                                      N0, Flags); +        } +      } +    } + +    // fold (fadd x, (fpext (fma y, z, (fmul u, v))) +    //   -> (fma (fpext y), (fpext z), (fma (fpext u), (fpext v), x)) +    // FIXME: This turns two single-precision and one double-precision +    // operation into two double-precision operations, which might not be +    // interesting for all targets, especially GPUs. +    if (N1.getOpcode() == ISD::FP_EXTEND) { +      SDValue N10 = N1.getOperand(0); +      if (N10.getOpcode() == PreferredFusedOpcode) { +        SDValue N102 = N10.getOperand(2); +        if (isContractableFMUL(N102) && +            TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N10.getValueType())) { +          return FoldFAddFPExtFMAFMul(N10.getOperand(0), N10.getOperand(1), +                                      N102.getOperand(0), N102.getOperand(1), +                                      N0, Flags); +        } +      } +    } +  } + +  return SDValue(); +} + +/// Try to perform FMA combining on a given FSUB node. +SDValue DAGCombiner::visitFSUBForFMACombine(SDNode *N) { +  SDValue N0 = N->getOperand(0); +  SDValue N1 = N->getOperand(1); +  EVT VT = N->getValueType(0); +  SDLoc SL(N); + +  const TargetOptions &Options = DAG.getTarget().Options; +  // Floating-point multiply-add with intermediate rounding. +  bool HasFMAD = (LegalOperations && TLI.isOperationLegal(ISD::FMAD, VT)); + +  // Floating-point multiply-add without intermediate rounding. +  bool HasFMA = +      TLI.isFMAFasterThanFMulAndFAdd(VT) && +      (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT)); + +  // No valid opcode, do not combine. +  if (!HasFMAD && !HasFMA) +    return SDValue(); + +  const SDNodeFlags Flags = N->getFlags(); +  bool CanFuse = Options.UnsafeFPMath || isContractable(N); +  bool AllowFusionGlobally = (Options.AllowFPOpFusion == FPOpFusion::Fast || +                              CanFuse || HasFMAD); + +  // If the subtraction is not contractable, do not combine. +  if (!AllowFusionGlobally && !isContractable(N)) +    return SDValue(); + +  const SelectionDAGTargetInfo *STI = DAG.getSubtarget().getSelectionDAGInfo(); +  if (STI && STI->generateFMAsInMachineCombiner(OptLevel)) +    return SDValue(); + +  // Always prefer FMAD to FMA for precision. +  unsigned PreferredFusedOpcode = HasFMAD ? ISD::FMAD : ISD::FMA; +  bool Aggressive = TLI.enableAggressiveFMAFusion(VT); + +  // Is the node an FMUL and contractable either due to global flags or +  // SDNodeFlags. +  auto isContractableFMUL = [AllowFusionGlobally](SDValue N) { +    if (N.getOpcode() != ISD::FMUL) +      return false; +    return AllowFusionGlobally || isContractable(N.getNode()); +  }; + +  // fold (fsub (fmul x, y), z) -> (fma x, y, (fneg z)) +  if (isContractableFMUL(N0) && (Aggressive || N0->hasOneUse())) { +    return DAG.getNode(PreferredFusedOpcode, SL, VT, +                       N0.getOperand(0), N0.getOperand(1), +                       DAG.getNode(ISD::FNEG, SL, VT, N1), Flags); +  } + +  // fold (fsub x, (fmul y, z)) -> (fma (fneg y), z, x) +  // Note: Commutes FSUB operands. +  if (isContractableFMUL(N1) && (Aggressive || N1->hasOneUse())) { +    return DAG.getNode(PreferredFusedOpcode, SL, VT, +                       DAG.getNode(ISD::FNEG, SL, VT, +                                   N1.getOperand(0)), +                       N1.getOperand(1), N0, Flags); +  } + +  // fold (fsub (fneg (fmul, x, y)), z) -> (fma (fneg x), y, (fneg z)) +  if (N0.getOpcode() == ISD::FNEG && isContractableFMUL(N0.getOperand(0)) && +      (Aggressive || (N0->hasOneUse() && N0.getOperand(0).hasOneUse()))) { +    SDValue N00 = N0.getOperand(0).getOperand(0); +    SDValue N01 = N0.getOperand(0).getOperand(1); +    return DAG.getNode(PreferredFusedOpcode, SL, VT, +                       DAG.getNode(ISD::FNEG, SL, VT, N00), N01, +                       DAG.getNode(ISD::FNEG, SL, VT, N1), Flags); +  } + +  // Look through FP_EXTEND nodes to do more combining. + +  // fold (fsub (fpext (fmul x, y)), z) +  //   -> (fma (fpext x), (fpext y), (fneg z)) +  if (N0.getOpcode() == ISD::FP_EXTEND) { +    SDValue N00 = N0.getOperand(0); +    if (isContractableFMUL(N00) && +        TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N00.getValueType())) { +      return DAG.getNode(PreferredFusedOpcode, SL, VT, +                         DAG.getNode(ISD::FP_EXTEND, SL, VT, +                                     N00.getOperand(0)), +                         DAG.getNode(ISD::FP_EXTEND, SL, VT, +                                     N00.getOperand(1)), +                         DAG.getNode(ISD::FNEG, SL, VT, N1), Flags); +    } +  } + +  // fold (fsub x, (fpext (fmul y, z))) +  //   -> (fma (fneg (fpext y)), (fpext z), x) +  // Note: Commutes FSUB operands. +  if (N1.getOpcode() == ISD::FP_EXTEND) { +    SDValue N10 = N1.getOperand(0); +    if (isContractableFMUL(N10) && +        TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N10.getValueType())) { +      return DAG.getNode(PreferredFusedOpcode, SL, VT, +                         DAG.getNode(ISD::FNEG, SL, VT, +                                     DAG.getNode(ISD::FP_EXTEND, SL, VT, +                                                 N10.getOperand(0))), +                         DAG.getNode(ISD::FP_EXTEND, SL, VT, +                                     N10.getOperand(1)), +                         N0, Flags); +    } +  } + +  // fold (fsub (fpext (fneg (fmul, x, y))), z) +  //   -> (fneg (fma (fpext x), (fpext y), z)) +  // Note: This could be removed with appropriate canonicalization of the +  // input expression into (fneg (fadd (fpext (fmul, x, y)), z). However, the +  // orthogonal flags -fp-contract=fast and -enable-unsafe-fp-math prevent +  // from implementing the canonicalization in visitFSUB. +  if (N0.getOpcode() == ISD::FP_EXTEND) { +    SDValue N00 = N0.getOperand(0); +    if (N00.getOpcode() == ISD::FNEG) { +      SDValue N000 = N00.getOperand(0); +      if (isContractableFMUL(N000) && +          TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N00.getValueType())) { +        return DAG.getNode(ISD::FNEG, SL, VT, +                           DAG.getNode(PreferredFusedOpcode, SL, VT, +                                       DAG.getNode(ISD::FP_EXTEND, SL, VT, +                                                   N000.getOperand(0)), +                                       DAG.getNode(ISD::FP_EXTEND, SL, VT, +                                                   N000.getOperand(1)), +                                       N1, Flags)); +      } +    } +  } + +  // fold (fsub (fneg (fpext (fmul, x, y))), z) +  //   -> (fneg (fma (fpext x)), (fpext y), z) +  // Note: This could be removed with appropriate canonicalization of the +  // input expression into (fneg (fadd (fpext (fmul, x, y)), z). However, the +  // orthogonal flags -fp-contract=fast and -enable-unsafe-fp-math prevent +  // from implementing the canonicalization in visitFSUB. +  if (N0.getOpcode() == ISD::FNEG) { +    SDValue N00 = N0.getOperand(0); +    if (N00.getOpcode() == ISD::FP_EXTEND) { +      SDValue N000 = N00.getOperand(0); +      if (isContractableFMUL(N000) && +          TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N000.getValueType())) { +        return DAG.getNode(ISD::FNEG, SL, VT, +                           DAG.getNode(PreferredFusedOpcode, SL, VT, +                                       DAG.getNode(ISD::FP_EXTEND, SL, VT, +                                                   N000.getOperand(0)), +                                       DAG.getNode(ISD::FP_EXTEND, SL, VT, +                                                   N000.getOperand(1)), +                                       N1, Flags)); +      } +    } +  } + +  // More folding opportunities when target permits. +  if (Aggressive) { +    // fold (fsub (fma x, y, (fmul u, v)), z) +    //   -> (fma x, y (fma u, v, (fneg z))) +    if (CanFuse && N0.getOpcode() == PreferredFusedOpcode && +        isContractableFMUL(N0.getOperand(2)) && N0->hasOneUse() && +        N0.getOperand(2)->hasOneUse()) { +      return DAG.getNode(PreferredFusedOpcode, SL, VT, +                         N0.getOperand(0), N0.getOperand(1), +                         DAG.getNode(PreferredFusedOpcode, SL, VT, +                                     N0.getOperand(2).getOperand(0), +                                     N0.getOperand(2).getOperand(1), +                                     DAG.getNode(ISD::FNEG, SL, VT, +                                                 N1), Flags), Flags); +    } + +    // fold (fsub x, (fma y, z, (fmul u, v))) +    //   -> (fma (fneg y), z, (fma (fneg u), v, x)) +    if (CanFuse && N1.getOpcode() == PreferredFusedOpcode && +        isContractableFMUL(N1.getOperand(2))) { +      SDValue N20 = N1.getOperand(2).getOperand(0); +      SDValue N21 = N1.getOperand(2).getOperand(1); +      return DAG.getNode(PreferredFusedOpcode, SL, VT, +                         DAG.getNode(ISD::FNEG, SL, VT, +                                     N1.getOperand(0)), +                         N1.getOperand(1), +                         DAG.getNode(PreferredFusedOpcode, SL, VT, +                                     DAG.getNode(ISD::FNEG, SL, VT, N20), +                                     N21, N0, Flags), Flags); +    } + + +    // fold (fsub (fma x, y, (fpext (fmul u, v))), z) +    //   -> (fma x, y (fma (fpext u), (fpext v), (fneg z))) +    if (N0.getOpcode() == PreferredFusedOpcode) { +      SDValue N02 = N0.getOperand(2); +      if (N02.getOpcode() == ISD::FP_EXTEND) { +        SDValue N020 = N02.getOperand(0); +        if (isContractableFMUL(N020) && +            TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N020.getValueType())) { +          return DAG.getNode(PreferredFusedOpcode, SL, VT, +                             N0.getOperand(0), N0.getOperand(1), +                             DAG.getNode(PreferredFusedOpcode, SL, VT, +                                         DAG.getNode(ISD::FP_EXTEND, SL, VT, +                                                     N020.getOperand(0)), +                                         DAG.getNode(ISD::FP_EXTEND, SL, VT, +                                                     N020.getOperand(1)), +                                         DAG.getNode(ISD::FNEG, SL, VT, +                                                     N1), Flags), Flags); +        } +      } +    } + +    // fold (fsub (fpext (fma x, y, (fmul u, v))), z) +    //   -> (fma (fpext x), (fpext y), +    //           (fma (fpext u), (fpext v), (fneg z))) +    // FIXME: This turns two single-precision and one double-precision +    // operation into two double-precision operations, which might not be +    // interesting for all targets, especially GPUs. +    if (N0.getOpcode() == ISD::FP_EXTEND) { +      SDValue N00 = N0.getOperand(0); +      if (N00.getOpcode() == PreferredFusedOpcode) { +        SDValue N002 = N00.getOperand(2); +        if (isContractableFMUL(N002) && +            TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N00.getValueType())) { +          return DAG.getNode(PreferredFusedOpcode, SL, VT, +                             DAG.getNode(ISD::FP_EXTEND, SL, VT, +                                         N00.getOperand(0)), +                             DAG.getNode(ISD::FP_EXTEND, SL, VT, +                                         N00.getOperand(1)), +                             DAG.getNode(PreferredFusedOpcode, SL, VT, +                                         DAG.getNode(ISD::FP_EXTEND, SL, VT, +                                                     N002.getOperand(0)), +                                         DAG.getNode(ISD::FP_EXTEND, SL, VT, +                                                     N002.getOperand(1)), +                                         DAG.getNode(ISD::FNEG, SL, VT, +                                                     N1), Flags), Flags); +        } +      } +    } + +    // fold (fsub x, (fma y, z, (fpext (fmul u, v)))) +    //   -> (fma (fneg y), z, (fma (fneg (fpext u)), (fpext v), x)) +    if (N1.getOpcode() == PreferredFusedOpcode && +        N1.getOperand(2).getOpcode() == ISD::FP_EXTEND) { +      SDValue N120 = N1.getOperand(2).getOperand(0); +      if (isContractableFMUL(N120) && +          TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N120.getValueType())) { +        SDValue N1200 = N120.getOperand(0); +        SDValue N1201 = N120.getOperand(1); +        return DAG.getNode(PreferredFusedOpcode, SL, VT, +                           DAG.getNode(ISD::FNEG, SL, VT, N1.getOperand(0)), +                           N1.getOperand(1), +                           DAG.getNode(PreferredFusedOpcode, SL, VT, +                                       DAG.getNode(ISD::FNEG, SL, VT, +                                                   DAG.getNode(ISD::FP_EXTEND, SL, +                                                               VT, N1200)), +                                       DAG.getNode(ISD::FP_EXTEND, SL, VT, +                                                   N1201), +                                       N0, Flags), Flags); +      } +    } + +    // fold (fsub x, (fpext (fma y, z, (fmul u, v)))) +    //   -> (fma (fneg (fpext y)), (fpext z), +    //           (fma (fneg (fpext u)), (fpext v), x)) +    // FIXME: This turns two single-precision and one double-precision +    // operation into two double-precision operations, which might not be +    // interesting for all targets, especially GPUs. +    if (N1.getOpcode() == ISD::FP_EXTEND && +        N1.getOperand(0).getOpcode() == PreferredFusedOpcode) { +      SDValue CvtSrc = N1.getOperand(0); +      SDValue N100 = CvtSrc.getOperand(0); +      SDValue N101 = CvtSrc.getOperand(1); +      SDValue N102 = CvtSrc.getOperand(2); +      if (isContractableFMUL(N102) && +          TLI.isFPExtFoldable(PreferredFusedOpcode, VT, CvtSrc.getValueType())) { +        SDValue N1020 = N102.getOperand(0); +        SDValue N1021 = N102.getOperand(1); +        return DAG.getNode(PreferredFusedOpcode, SL, VT, +                           DAG.getNode(ISD::FNEG, SL, VT, +                                       DAG.getNode(ISD::FP_EXTEND, SL, VT, +                                                   N100)), +                           DAG.getNode(ISD::FP_EXTEND, SL, VT, N101), +                           DAG.getNode(PreferredFusedOpcode, SL, VT, +                                       DAG.getNode(ISD::FNEG, SL, VT, +                                                   DAG.getNode(ISD::FP_EXTEND, SL, +                                                               VT, N1020)), +                                       DAG.getNode(ISD::FP_EXTEND, SL, VT, +                                                   N1021), +                                       N0, Flags), Flags); +      } +    } +  } + +  return SDValue(); +} + +/// Try to perform FMA combining on a given FMUL node based on the distributive +/// law x * (y + 1) = x * y + x and variants thereof (commuted versions, +/// subtraction instead of addition). +SDValue DAGCombiner::visitFMULForFMADistributiveCombine(SDNode *N) { +  SDValue N0 = N->getOperand(0); +  SDValue N1 = N->getOperand(1); +  EVT VT = N->getValueType(0); +  SDLoc SL(N); +  const SDNodeFlags Flags = N->getFlags(); + +  assert(N->getOpcode() == ISD::FMUL && "Expected FMUL Operation"); + +  const TargetOptions &Options = DAG.getTarget().Options; + +  // The transforms below are incorrect when x == 0 and y == inf, because the +  // intermediate multiplication produces a nan. +  if (!Options.NoInfsFPMath) +    return SDValue(); + +  // Floating-point multiply-add without intermediate rounding. +  bool HasFMA = +      (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath) && +      TLI.isFMAFasterThanFMulAndFAdd(VT) && +      (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT)); + +  // Floating-point multiply-add with intermediate rounding. This can result +  // in a less precise result due to the changed rounding order. +  bool HasFMAD = Options.UnsafeFPMath && +                 (LegalOperations && TLI.isOperationLegal(ISD::FMAD, VT)); + +  // No valid opcode, do not combine. +  if (!HasFMAD && !HasFMA) +    return SDValue(); + +  // Always prefer FMAD to FMA for precision. +  unsigned PreferredFusedOpcode = HasFMAD ? ISD::FMAD : ISD::FMA; +  bool Aggressive = TLI.enableAggressiveFMAFusion(VT); + +  // fold (fmul (fadd x0, +1.0), y) -> (fma x0, y, y) +  // fold (fmul (fadd x0, -1.0), y) -> (fma x0, y, (fneg y)) +  auto FuseFADD = [&](SDValue X, SDValue Y, const SDNodeFlags Flags) { +    if (X.getOpcode() == ISD::FADD && (Aggressive || X->hasOneUse())) { +      if (auto *C = isConstOrConstSplatFP(X.getOperand(1), true)) { +        if (C->isExactlyValue(+1.0)) +          return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y, +                             Y, Flags); +        if (C->isExactlyValue(-1.0)) +          return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y, +                             DAG.getNode(ISD::FNEG, SL, VT, Y), Flags); +      } +    } +    return SDValue(); +  }; + +  if (SDValue FMA = FuseFADD(N0, N1, Flags)) +    return FMA; +  if (SDValue FMA = FuseFADD(N1, N0, Flags)) +    return FMA; + +  // fold (fmul (fsub +1.0, x1), y) -> (fma (fneg x1), y, y) +  // fold (fmul (fsub -1.0, x1), y) -> (fma (fneg x1), y, (fneg y)) +  // fold (fmul (fsub x0, +1.0), y) -> (fma x0, y, (fneg y)) +  // fold (fmul (fsub x0, -1.0), y) -> (fma x0, y, y) +  auto FuseFSUB = [&](SDValue X, SDValue Y, const SDNodeFlags Flags) { +    if (X.getOpcode() == ISD::FSUB && (Aggressive || X->hasOneUse())) { +      if (auto *C0 = isConstOrConstSplatFP(X.getOperand(0), true)) { +        if (C0->isExactlyValue(+1.0)) +          return DAG.getNode(PreferredFusedOpcode, SL, VT, +                             DAG.getNode(ISD::FNEG, SL, VT, X.getOperand(1)), Y, +                             Y, Flags); +        if (C0->isExactlyValue(-1.0)) +          return DAG.getNode(PreferredFusedOpcode, SL, VT, +                             DAG.getNode(ISD::FNEG, SL, VT, X.getOperand(1)), Y, +                             DAG.getNode(ISD::FNEG, SL, VT, Y), Flags); +      } +      if (auto *C1 = isConstOrConstSplatFP(X.getOperand(1), true)) { +        if (C1->isExactlyValue(+1.0)) +          return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y, +                             DAG.getNode(ISD::FNEG, SL, VT, Y), Flags); +        if (C1->isExactlyValue(-1.0)) +          return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y, +                             Y, Flags); +      } +    } +    return SDValue(); +  }; + +  if (SDValue FMA = FuseFSUB(N0, N1, Flags)) +    return FMA; +  if (SDValue FMA = FuseFSUB(N1, N0, Flags)) +    return FMA; + +  return SDValue(); +} + +SDValue DAGCombiner::visitFADD(SDNode *N) { +  SDValue N0 = N->getOperand(0); +  SDValue N1 = N->getOperand(1); +  bool N0CFP = isConstantFPBuildVectorOrConstantFP(N0); +  bool N1CFP = isConstantFPBuildVectorOrConstantFP(N1); +  EVT VT = N->getValueType(0); +  SDLoc DL(N); +  const TargetOptions &Options = DAG.getTarget().Options; +  const SDNodeFlags Flags = N->getFlags(); + +  // fold vector ops +  if (VT.isVector()) +    if (SDValue FoldedVOp = SimplifyVBinOp(N)) +      return FoldedVOp; + +  // fold (fadd c1, c2) -> c1 + c2 +  if (N0CFP && N1CFP) +    return DAG.getNode(ISD::FADD, DL, VT, N0, N1, Flags); + +  // canonicalize constant to RHS +  if (N0CFP && !N1CFP) +    return DAG.getNode(ISD::FADD, DL, VT, N1, N0, Flags); + +  // N0 + -0.0 --> N0 (also allowed with +0.0 and fast-math) +  ConstantFPSDNode *N1C = isConstOrConstSplatFP(N1, true); +  if (N1C && N1C->isZero()) +    if (N1C->isNegative() || Options.NoSignedZerosFPMath || Flags.hasNoSignedZeros()) +      return N0; + +  if (SDValue NewSel = foldBinOpIntoSelect(N)) +    return NewSel; + +  // fold (fadd A, (fneg B)) -> (fsub A, B) +  if ((!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FSUB, VT)) && +      TLI.isNegatibleForFree(N1, DAG, LegalOperations, ForCodeSize) == 2) +    return DAG.getNode( +        ISD::FSUB, DL, VT, N0, +        TLI.getNegatedExpression(N1, DAG, LegalOperations, ForCodeSize), Flags); + +  // fold (fadd (fneg A), B) -> (fsub B, A) +  if ((!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FSUB, VT)) && +      TLI.isNegatibleForFree(N0, DAG, LegalOperations, ForCodeSize) == 2) +    return DAG.getNode( +        ISD::FSUB, DL, VT, N1, +        TLI.getNegatedExpression(N0, DAG, LegalOperations, ForCodeSize), Flags); + +  auto isFMulNegTwo = [](SDValue FMul) { +    if (!FMul.hasOneUse() || FMul.getOpcode() != ISD::FMUL) +      return false; +    auto *C = isConstOrConstSplatFP(FMul.getOperand(1), true); +    return C && C->isExactlyValue(-2.0); +  }; + +  // fadd (fmul B, -2.0), A --> fsub A, (fadd B, B) +  if (isFMulNegTwo(N0)) { +    SDValue B = N0.getOperand(0); +    SDValue Add = DAG.getNode(ISD::FADD, DL, VT, B, B, Flags); +    return DAG.getNode(ISD::FSUB, DL, VT, N1, Add, Flags); +  } +  // fadd A, (fmul B, -2.0) --> fsub A, (fadd B, B) +  if (isFMulNegTwo(N1)) { +    SDValue B = N1.getOperand(0); +    SDValue Add = DAG.getNode(ISD::FADD, DL, VT, B, B, Flags); +    return DAG.getNode(ISD::FSUB, DL, VT, N0, Add, Flags); +  } + +  // No FP constant should be created after legalization as Instruction +  // Selection pass has a hard time dealing with FP constants. +  bool AllowNewConst = (Level < AfterLegalizeDAG); + +  // If nnan is enabled, fold lots of things. +  if ((Options.NoNaNsFPMath || Flags.hasNoNaNs()) && AllowNewConst) { +    // If allowed, fold (fadd (fneg x), x) -> 0.0 +    if (N0.getOpcode() == ISD::FNEG && N0.getOperand(0) == N1) +      return DAG.getConstantFP(0.0, DL, VT); + +    // If allowed, fold (fadd x, (fneg x)) -> 0.0 +    if (N1.getOpcode() == ISD::FNEG && N1.getOperand(0) == N0) +      return DAG.getConstantFP(0.0, DL, VT); +  } + +  // If 'unsafe math' or reassoc and nsz, fold lots of things. +  // TODO: break out portions of the transformations below for which Unsafe is +  //       considered and which do not require both nsz and reassoc +  if (((Options.UnsafeFPMath && Options.NoSignedZerosFPMath) || +       (Flags.hasAllowReassociation() && Flags.hasNoSignedZeros())) && +      AllowNewConst) { +    // fadd (fadd x, c1), c2 -> fadd x, c1 + c2 +    if (N1CFP && N0.getOpcode() == ISD::FADD && +        isConstantFPBuildVectorOrConstantFP(N0.getOperand(1))) { +      SDValue NewC = DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(1), N1, Flags); +      return DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(0), NewC, Flags); +    } + +    // We can fold chains of FADD's of the same value into multiplications. +    // This transform is not safe in general because we are reducing the number +    // of rounding steps. +    if (TLI.isOperationLegalOrCustom(ISD::FMUL, VT) && !N0CFP && !N1CFP) { +      if (N0.getOpcode() == ISD::FMUL) { +        bool CFP00 = isConstantFPBuildVectorOrConstantFP(N0.getOperand(0)); +        bool CFP01 = isConstantFPBuildVectorOrConstantFP(N0.getOperand(1)); + +        // (fadd (fmul x, c), x) -> (fmul x, c+1) +        if (CFP01 && !CFP00 && N0.getOperand(0) == N1) { +          SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(1), +                                       DAG.getConstantFP(1.0, DL, VT), Flags); +          return DAG.getNode(ISD::FMUL, DL, VT, N1, NewCFP, Flags); +        } + +        // (fadd (fmul x, c), (fadd x, x)) -> (fmul x, c+2) +        if (CFP01 && !CFP00 && N1.getOpcode() == ISD::FADD && +            N1.getOperand(0) == N1.getOperand(1) && +            N0.getOperand(0) == N1.getOperand(0)) { +          SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(1), +                                       DAG.getConstantFP(2.0, DL, VT), Flags); +          return DAG.getNode(ISD::FMUL, DL, VT, N0.getOperand(0), NewCFP, Flags); +        } +      } + +      if (N1.getOpcode() == ISD::FMUL) { +        bool CFP10 = isConstantFPBuildVectorOrConstantFP(N1.getOperand(0)); +        bool CFP11 = isConstantFPBuildVectorOrConstantFP(N1.getOperand(1)); + +        // (fadd x, (fmul x, c)) -> (fmul x, c+1) +        if (CFP11 && !CFP10 && N1.getOperand(0) == N0) { +          SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N1.getOperand(1), +                                       DAG.getConstantFP(1.0, DL, VT), Flags); +          return DAG.getNode(ISD::FMUL, DL, VT, N0, NewCFP, Flags); +        } + +        // (fadd (fadd x, x), (fmul x, c)) -> (fmul x, c+2) +        if (CFP11 && !CFP10 && N0.getOpcode() == ISD::FADD && +            N0.getOperand(0) == N0.getOperand(1) && +            N1.getOperand(0) == N0.getOperand(0)) { +          SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N1.getOperand(1), +                                       DAG.getConstantFP(2.0, DL, VT), Flags); +          return DAG.getNode(ISD::FMUL, DL, VT, N1.getOperand(0), NewCFP, Flags); +        } +      } + +      if (N0.getOpcode() == ISD::FADD) { +        bool CFP00 = isConstantFPBuildVectorOrConstantFP(N0.getOperand(0)); +        // (fadd (fadd x, x), x) -> (fmul x, 3.0) +        if (!CFP00 && N0.getOperand(0) == N0.getOperand(1) && +            (N0.getOperand(0) == N1)) { +          return DAG.getNode(ISD::FMUL, DL, VT, +                             N1, DAG.getConstantFP(3.0, DL, VT), Flags); +        } +      } + +      if (N1.getOpcode() == ISD::FADD) { +        bool CFP10 = isConstantFPBuildVectorOrConstantFP(N1.getOperand(0)); +        // (fadd x, (fadd x, x)) -> (fmul x, 3.0) +        if (!CFP10 && N1.getOperand(0) == N1.getOperand(1) && +            N1.getOperand(0) == N0) { +          return DAG.getNode(ISD::FMUL, DL, VT, +                             N0, DAG.getConstantFP(3.0, DL, VT), Flags); +        } +      } + +      // (fadd (fadd x, x), (fadd x, x)) -> (fmul x, 4.0) +      if (N0.getOpcode() == ISD::FADD && N1.getOpcode() == ISD::FADD && +          N0.getOperand(0) == N0.getOperand(1) && +          N1.getOperand(0) == N1.getOperand(1) && +          N0.getOperand(0) == N1.getOperand(0)) { +        return DAG.getNode(ISD::FMUL, DL, VT, N0.getOperand(0), +                           DAG.getConstantFP(4.0, DL, VT), Flags); +      } +    } +  } // enable-unsafe-fp-math + +  // FADD -> FMA combines: +  if (SDValue Fused = visitFADDForFMACombine(N)) { +    AddToWorklist(Fused.getNode()); +    return Fused; +  } +  return SDValue(); +} + +SDValue DAGCombiner::visitFSUB(SDNode *N) { +  SDValue N0 = N->getOperand(0); +  SDValue N1 = N->getOperand(1); +  ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0, true); +  ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1, true); +  EVT VT = N->getValueType(0); +  SDLoc DL(N); +  const TargetOptions &Options = DAG.getTarget().Options; +  const SDNodeFlags Flags = N->getFlags(); + +  // fold vector ops +  if (VT.isVector()) +    if (SDValue FoldedVOp = SimplifyVBinOp(N)) +      return FoldedVOp; + +  // fold (fsub c1, c2) -> c1-c2 +  if (N0CFP && N1CFP) +    return DAG.getNode(ISD::FSUB, DL, VT, N0, N1, Flags); + +  if (SDValue NewSel = foldBinOpIntoSelect(N)) +    return NewSel; + +  // (fsub A, 0) -> A +  if (N1CFP && N1CFP->isZero()) { +    if (!N1CFP->isNegative() || Options.NoSignedZerosFPMath || +        Flags.hasNoSignedZeros()) { +      return N0; +    } +  } + +  if (N0 == N1) { +    // (fsub x, x) -> 0.0 +    if (Options.NoNaNsFPMath || Flags.hasNoNaNs()) +      return DAG.getConstantFP(0.0f, DL, VT); +  } + +  // (fsub -0.0, N1) -> -N1 +  // NOTE: It is safe to transform an FSUB(-0.0,X) into an FNEG(X), since the +  //       FSUB does not specify the sign bit of a NaN. Also note that for +  //       the same reason, the inverse transform is not safe, unless fast math +  //       flags are in play. +  if (N0CFP && N0CFP->isZero()) { +    if (N0CFP->isNegative() || +        (Options.NoSignedZerosFPMath || Flags.hasNoSignedZeros())) { +      if (TLI.isNegatibleForFree(N1, DAG, LegalOperations, ForCodeSize)) +        return TLI.getNegatedExpression(N1, DAG, LegalOperations, ForCodeSize); +      if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT)) +        return DAG.getNode(ISD::FNEG, DL, VT, N1, Flags); +    } +  } + +  if (((Options.UnsafeFPMath && Options.NoSignedZerosFPMath) || +       (Flags.hasAllowReassociation() && Flags.hasNoSignedZeros())) && +      N1.getOpcode() == ISD::FADD) { +    // X - (X + Y) -> -Y +    if (N0 == N1->getOperand(0)) +      return DAG.getNode(ISD::FNEG, DL, VT, N1->getOperand(1), Flags); +    // X - (Y + X) -> -Y +    if (N0 == N1->getOperand(1)) +      return DAG.getNode(ISD::FNEG, DL, VT, N1->getOperand(0), Flags); +  } + +  // fold (fsub A, (fneg B)) -> (fadd A, B) +  if (TLI.isNegatibleForFree(N1, DAG, LegalOperations, ForCodeSize)) +    return DAG.getNode( +        ISD::FADD, DL, VT, N0, +        TLI.getNegatedExpression(N1, DAG, LegalOperations, ForCodeSize), Flags); + +  // FSUB -> FMA combines: +  if (SDValue Fused = visitFSUBForFMACombine(N)) { +    AddToWorklist(Fused.getNode()); +    return Fused; +  } + +  return SDValue(); +} + +/// Return true if both inputs are at least as cheap in negated form and at +/// least one input is strictly cheaper in negated form. +bool DAGCombiner::isCheaperToUseNegatedFPOps(SDValue X, SDValue Y) { +  if (char LHSNeg = +          TLI.isNegatibleForFree(X, DAG, LegalOperations, ForCodeSize)) +    if (char RHSNeg = +            TLI.isNegatibleForFree(Y, DAG, LegalOperations, ForCodeSize)) +      // Both negated operands are at least as cheap as their counterparts. +      // Check to see if at least one is cheaper negated. +      if (LHSNeg == 2 || RHSNeg == 2) +        return true; + +  return false; +} + +SDValue DAGCombiner::visitFMUL(SDNode *N) { +  SDValue N0 = N->getOperand(0); +  SDValue N1 = N->getOperand(1); +  ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0, true); +  ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1, true); +  EVT VT = N->getValueType(0); +  SDLoc DL(N); +  const TargetOptions &Options = DAG.getTarget().Options; +  const SDNodeFlags Flags = N->getFlags(); + +  // fold vector ops +  if (VT.isVector()) { +    // This just handles C1 * C2 for vectors. Other vector folds are below. +    if (SDValue FoldedVOp = SimplifyVBinOp(N)) +      return FoldedVOp; +  } + +  // fold (fmul c1, c2) -> c1*c2 +  if (N0CFP && N1CFP) +    return DAG.getNode(ISD::FMUL, DL, VT, N0, N1, Flags); + +  // canonicalize constant to RHS +  if (isConstantFPBuildVectorOrConstantFP(N0) && +     !isConstantFPBuildVectorOrConstantFP(N1)) +    return DAG.getNode(ISD::FMUL, DL, VT, N1, N0, Flags); + +  if (SDValue NewSel = foldBinOpIntoSelect(N)) +    return NewSel; + +  if ((Options.NoNaNsFPMath && Options.NoSignedZerosFPMath) || +      (Flags.hasNoNaNs() && Flags.hasNoSignedZeros())) { +    // fold (fmul A, 0) -> 0 +    if (N1CFP && N1CFP->isZero()) +      return N1; +  } + +  if (Options.UnsafeFPMath || Flags.hasAllowReassociation()) { +    // fmul (fmul X, C1), C2 -> fmul X, C1 * C2 +    if (isConstantFPBuildVectorOrConstantFP(N1) && +        N0.getOpcode() == ISD::FMUL) { +      SDValue N00 = N0.getOperand(0); +      SDValue N01 = N0.getOperand(1); +      // Avoid an infinite loop by making sure that N00 is not a constant +      // (the inner multiply has not been constant folded yet). +      if (isConstantFPBuildVectorOrConstantFP(N01) && +          !isConstantFPBuildVectorOrConstantFP(N00)) { +        SDValue MulConsts = DAG.getNode(ISD::FMUL, DL, VT, N01, N1, Flags); +        return DAG.getNode(ISD::FMUL, DL, VT, N00, MulConsts, Flags); +      } +    } + +    // Match a special-case: we convert X * 2.0 into fadd. +    // fmul (fadd X, X), C -> fmul X, 2.0 * C +    if (N0.getOpcode() == ISD::FADD && N0.hasOneUse() && +        N0.getOperand(0) == N0.getOperand(1)) { +      const SDValue Two = DAG.getConstantFP(2.0, DL, VT); +      SDValue MulConsts = DAG.getNode(ISD::FMUL, DL, VT, Two, N1, Flags); +      return DAG.getNode(ISD::FMUL, DL, VT, N0.getOperand(0), MulConsts, Flags); +    } +  } + +  // fold (fmul X, 2.0) -> (fadd X, X) +  if (N1CFP && N1CFP->isExactlyValue(+2.0)) +    return DAG.getNode(ISD::FADD, DL, VT, N0, N0, Flags); + +  // fold (fmul X, -1.0) -> (fneg X) +  if (N1CFP && N1CFP->isExactlyValue(-1.0)) +    if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT)) +      return DAG.getNode(ISD::FNEG, DL, VT, N0); + +  // -N0 * -N1 --> N0 * N1 +  if (isCheaperToUseNegatedFPOps(N0, N1)) { +    SDValue NegN0 = +        TLI.getNegatedExpression(N0, DAG, LegalOperations, ForCodeSize); +    SDValue NegN1 = +        TLI.getNegatedExpression(N1, DAG, LegalOperations, ForCodeSize); +    return DAG.getNode(ISD::FMUL, DL, VT, NegN0, NegN1, Flags); +  } + +  // fold (fmul X, (select (fcmp X > 0.0), -1.0, 1.0)) -> (fneg (fabs X)) +  // fold (fmul X, (select (fcmp X > 0.0), 1.0, -1.0)) -> (fabs X) +  if (Flags.hasNoNaNs() && Flags.hasNoSignedZeros() && +      (N0.getOpcode() == ISD::SELECT || N1.getOpcode() == ISD::SELECT) && +      TLI.isOperationLegal(ISD::FABS, VT)) { +    SDValue Select = N0, X = N1; +    if (Select.getOpcode() != ISD::SELECT) +      std::swap(Select, X); + +    SDValue Cond = Select.getOperand(0); +    auto TrueOpnd  = dyn_cast<ConstantFPSDNode>(Select.getOperand(1)); +    auto FalseOpnd = dyn_cast<ConstantFPSDNode>(Select.getOperand(2)); + +    if (TrueOpnd && FalseOpnd && +        Cond.getOpcode() == ISD::SETCC && Cond.getOperand(0) == X && +        isa<ConstantFPSDNode>(Cond.getOperand(1)) && +        cast<ConstantFPSDNode>(Cond.getOperand(1))->isExactlyValue(0.0)) { +      ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); +      switch (CC) { +      default: break; +      case ISD::SETOLT: +      case ISD::SETULT: +      case ISD::SETOLE: +      case ISD::SETULE: +      case ISD::SETLT: +      case ISD::SETLE: +        std::swap(TrueOpnd, FalseOpnd); +        LLVM_FALLTHROUGH; +      case ISD::SETOGT: +      case ISD::SETUGT: +      case ISD::SETOGE: +      case ISD::SETUGE: +      case ISD::SETGT: +      case ISD::SETGE: +        if (TrueOpnd->isExactlyValue(-1.0) && FalseOpnd->isExactlyValue(1.0) && +            TLI.isOperationLegal(ISD::FNEG, VT)) +          return DAG.getNode(ISD::FNEG, DL, VT, +                   DAG.getNode(ISD::FABS, DL, VT, X)); +        if (TrueOpnd->isExactlyValue(1.0) && FalseOpnd->isExactlyValue(-1.0)) +          return DAG.getNode(ISD::FABS, DL, VT, X); + +        break; +      } +    } +  } + +  // FMUL -> FMA combines: +  if (SDValue Fused = visitFMULForFMADistributiveCombine(N)) { +    AddToWorklist(Fused.getNode()); +    return Fused; +  } + +  return SDValue(); +} + +SDValue DAGCombiner::visitFMA(SDNode *N) { +  SDValue N0 = N->getOperand(0); +  SDValue N1 = N->getOperand(1); +  SDValue N2 = N->getOperand(2); +  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); +  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); +  EVT VT = N->getValueType(0); +  SDLoc DL(N); +  const TargetOptions &Options = DAG.getTarget().Options; + +  // FMA nodes have flags that propagate to the created nodes. +  const SDNodeFlags Flags = N->getFlags(); +  bool UnsafeFPMath = Options.UnsafeFPMath || isContractable(N); + +  // Constant fold FMA. +  if (isa<ConstantFPSDNode>(N0) && +      isa<ConstantFPSDNode>(N1) && +      isa<ConstantFPSDNode>(N2)) { +    return DAG.getNode(ISD::FMA, DL, VT, N0, N1, N2); +  } + +  // (-N0 * -N1) + N2 --> (N0 * N1) + N2 +  if (isCheaperToUseNegatedFPOps(N0, N1)) { +    SDValue NegN0 = +        TLI.getNegatedExpression(N0, DAG, LegalOperations, ForCodeSize); +    SDValue NegN1 = +        TLI.getNegatedExpression(N1, DAG, LegalOperations, ForCodeSize); +    return DAG.getNode(ISD::FMA, DL, VT, NegN0, NegN1, N2, Flags); +  } + +  if (UnsafeFPMath) { +    if (N0CFP && N0CFP->isZero()) +      return N2; +    if (N1CFP && N1CFP->isZero()) +      return N2; +  } +  // TODO: The FMA node should have flags that propagate to these nodes. +  if (N0CFP && N0CFP->isExactlyValue(1.0)) +    return DAG.getNode(ISD::FADD, SDLoc(N), VT, N1, N2); +  if (N1CFP && N1CFP->isExactlyValue(1.0)) +    return DAG.getNode(ISD::FADD, SDLoc(N), VT, N0, N2); + +  // Canonicalize (fma c, x, y) -> (fma x, c, y) +  if (isConstantFPBuildVectorOrConstantFP(N0) && +     !isConstantFPBuildVectorOrConstantFP(N1)) +    return DAG.getNode(ISD::FMA, SDLoc(N), VT, N1, N0, N2); + +  if (UnsafeFPMath) { +    // (fma x, c1, (fmul x, c2)) -> (fmul x, c1+c2) +    if (N2.getOpcode() == ISD::FMUL && N0 == N2.getOperand(0) && +        isConstantFPBuildVectorOrConstantFP(N1) && +        isConstantFPBuildVectorOrConstantFP(N2.getOperand(1))) { +      return DAG.getNode(ISD::FMUL, DL, VT, N0, +                         DAG.getNode(ISD::FADD, DL, VT, N1, N2.getOperand(1), +                                     Flags), Flags); +    } + +    // (fma (fmul x, c1), c2, y) -> (fma x, c1*c2, y) +    if (N0.getOpcode() == ISD::FMUL && +        isConstantFPBuildVectorOrConstantFP(N1) && +        isConstantFPBuildVectorOrConstantFP(N0.getOperand(1))) { +      return DAG.getNode(ISD::FMA, DL, VT, +                         N0.getOperand(0), +                         DAG.getNode(ISD::FMUL, DL, VT, N1, N0.getOperand(1), +                                     Flags), +                         N2); +    } +  } + +  // (fma x, 1, y) -> (fadd x, y) +  // (fma x, -1, y) -> (fadd (fneg x), y) +  if (N1CFP) { +    if (N1CFP->isExactlyValue(1.0)) +      // TODO: The FMA node should have flags that propagate to this node. +      return DAG.getNode(ISD::FADD, DL, VT, N0, N2); + +    if (N1CFP->isExactlyValue(-1.0) && +        (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))) { +      SDValue RHSNeg = DAG.getNode(ISD::FNEG, DL, VT, N0); +      AddToWorklist(RHSNeg.getNode()); +      // TODO: The FMA node should have flags that propagate to this node. +      return DAG.getNode(ISD::FADD, DL, VT, N2, RHSNeg); +    } + +    // fma (fneg x), K, y -> fma x -K, y +    if (N0.getOpcode() == ISD::FNEG && +        (TLI.isOperationLegal(ISD::ConstantFP, VT) || +         (N1.hasOneUse() && !TLI.isFPImmLegal(N1CFP->getValueAPF(), VT, +                                              ForCodeSize)))) { +      return DAG.getNode(ISD::FMA, DL, VT, N0.getOperand(0), +                         DAG.getNode(ISD::FNEG, DL, VT, N1, Flags), N2); +    } +  } + +  if (UnsafeFPMath) { +    // (fma x, c, x) -> (fmul x, (c+1)) +    if (N1CFP && N0 == N2) { +      return DAG.getNode(ISD::FMUL, DL, VT, N0, +                         DAG.getNode(ISD::FADD, DL, VT, N1, +                                     DAG.getConstantFP(1.0, DL, VT), Flags), +                         Flags); +    } + +    // (fma x, c, (fneg x)) -> (fmul x, (c-1)) +    if (N1CFP && N2.getOpcode() == ISD::FNEG && N2.getOperand(0) == N0) { +      return DAG.getNode(ISD::FMUL, DL, VT, N0, +                         DAG.getNode(ISD::FADD, DL, VT, N1, +                                     DAG.getConstantFP(-1.0, DL, VT), Flags), +                         Flags); +    } +  } + +  return SDValue(); +} + +// Combine multiple FDIVs with the same divisor into multiple FMULs by the +// reciprocal. +// E.g., (a / D; b / D;) -> (recip = 1.0 / D; a * recip; b * recip) +// Notice that this is not always beneficial. One reason is different targets +// may have different costs for FDIV and FMUL, so sometimes the cost of two +// FDIVs may be lower than the cost of one FDIV and two FMULs. Another reason +// is the critical path is increased from "one FDIV" to "one FDIV + one FMUL". +SDValue DAGCombiner::combineRepeatedFPDivisors(SDNode *N) { +  // TODO: Limit this transform based on optsize/minsize - it always creates at +  //       least 1 extra instruction. But the perf win may be substantial enough +  //       that only minsize should restrict this. +  bool UnsafeMath = DAG.getTarget().Options.UnsafeFPMath; +  const SDNodeFlags Flags = N->getFlags(); +  if (!UnsafeMath && !Flags.hasAllowReciprocal()) +    return SDValue(); + +  // Skip if current node is a reciprocal/fneg-reciprocal. +  SDValue N0 = N->getOperand(0); +  ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0, /* AllowUndefs */ true); +  if (N0CFP && (N0CFP->isExactlyValue(1.0) || N0CFP->isExactlyValue(-1.0))) +    return SDValue(); + +  // Exit early if the target does not want this transform or if there can't +  // possibly be enough uses of the divisor to make the transform worthwhile. +  SDValue N1 = N->getOperand(1); +  unsigned MinUses = TLI.combineRepeatedFPDivisors(); + +  // For splat vectors, scale the number of uses by the splat factor. If we can +  // convert the division into a scalar op, that will likely be much faster. +  unsigned NumElts = 1; +  EVT VT = N->getValueType(0); +  if (VT.isVector() && DAG.isSplatValue(N1)) +    NumElts = VT.getVectorNumElements(); + +  if (!MinUses || (N1->use_size() * NumElts) < MinUses) +    return SDValue(); + +  // Find all FDIV users of the same divisor. +  // Use a set because duplicates may be present in the user list. +  SetVector<SDNode *> Users; +  for (auto *U : N1->uses()) { +    if (U->getOpcode() == ISD::FDIV && U->getOperand(1) == N1) { +      // This division is eligible for optimization only if global unsafe math +      // is enabled or if this division allows reciprocal formation. +      if (UnsafeMath || U->getFlags().hasAllowReciprocal()) +        Users.insert(U); +    } +  } + +  // Now that we have the actual number of divisor uses, make sure it meets +  // the minimum threshold specified by the target. +  if ((Users.size() * NumElts) < MinUses) +    return SDValue(); + +  SDLoc DL(N); +  SDValue FPOne = DAG.getConstantFP(1.0, DL, VT); +  SDValue Reciprocal = DAG.getNode(ISD::FDIV, DL, VT, FPOne, N1, Flags); + +  // Dividend / Divisor -> Dividend * Reciprocal +  for (auto *U : Users) { +    SDValue Dividend = U->getOperand(0); +    if (Dividend != FPOne) { +      SDValue NewNode = DAG.getNode(ISD::FMUL, SDLoc(U), VT, Dividend, +                                    Reciprocal, Flags); +      CombineTo(U, NewNode); +    } else if (U != Reciprocal.getNode()) { +      // In the absence of fast-math-flags, this user node is always the +      // same node as Reciprocal, but with FMF they may be different nodes. +      CombineTo(U, Reciprocal); +    } +  } +  return SDValue(N, 0);  // N was replaced. +} + +SDValue DAGCombiner::visitFDIV(SDNode *N) { +  SDValue N0 = N->getOperand(0); +  SDValue N1 = N->getOperand(1); +  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); +  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); +  EVT VT = N->getValueType(0); +  SDLoc DL(N); +  const TargetOptions &Options = DAG.getTarget().Options; +  SDNodeFlags Flags = N->getFlags(); + +  // fold vector ops +  if (VT.isVector()) +    if (SDValue FoldedVOp = SimplifyVBinOp(N)) +      return FoldedVOp; + +  // fold (fdiv c1, c2) -> c1/c2 +  if (N0CFP && N1CFP) +    return DAG.getNode(ISD::FDIV, SDLoc(N), VT, N0, N1, Flags); + +  if (SDValue NewSel = foldBinOpIntoSelect(N)) +    return NewSel; + +  if (SDValue V = combineRepeatedFPDivisors(N)) +    return V; + +  if (Options.UnsafeFPMath || Flags.hasAllowReciprocal()) { +    // fold (fdiv X, c2) -> fmul X, 1/c2 if losing precision is acceptable. +    if (N1CFP) { +      // Compute the reciprocal 1.0 / c2. +      const APFloat &N1APF = N1CFP->getValueAPF(); +      APFloat Recip(N1APF.getSemantics(), 1); // 1.0 +      APFloat::opStatus st = Recip.divide(N1APF, APFloat::rmNearestTiesToEven); +      // Only do the transform if the reciprocal is a legal fp immediate that +      // isn't too nasty (eg NaN, denormal, ...). +      if ((st == APFloat::opOK || st == APFloat::opInexact) && // Not too nasty +          (!LegalOperations || +           // FIXME: custom lowering of ConstantFP might fail (see e.g. ARM +           // backend)... we should handle this gracefully after Legalize. +           // TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT) || +           TLI.isOperationLegal(ISD::ConstantFP, VT) || +           TLI.isFPImmLegal(Recip, VT, ForCodeSize))) +        return DAG.getNode(ISD::FMUL, DL, VT, N0, +                           DAG.getConstantFP(Recip, DL, VT), Flags); +    } + +    // If this FDIV is part of a reciprocal square root, it may be folded +    // into a target-specific square root estimate instruction. +    if (N1.getOpcode() == ISD::FSQRT) { +      if (SDValue RV = buildRsqrtEstimate(N1.getOperand(0), Flags)) +        return DAG.getNode(ISD::FMUL, DL, VT, N0, RV, Flags); +    } else if (N1.getOpcode() == ISD::FP_EXTEND && +               N1.getOperand(0).getOpcode() == ISD::FSQRT) { +      if (SDValue RV = buildRsqrtEstimate(N1.getOperand(0).getOperand(0), +                                          Flags)) { +        RV = DAG.getNode(ISD::FP_EXTEND, SDLoc(N1), VT, RV); +        AddToWorklist(RV.getNode()); +        return DAG.getNode(ISD::FMUL, DL, VT, N0, RV, Flags); +      } +    } else if (N1.getOpcode() == ISD::FP_ROUND && +               N1.getOperand(0).getOpcode() == ISD::FSQRT) { +      if (SDValue RV = buildRsqrtEstimate(N1.getOperand(0).getOperand(0), +                                          Flags)) { +        RV = DAG.getNode(ISD::FP_ROUND, SDLoc(N1), VT, RV, N1.getOperand(1)); +        AddToWorklist(RV.getNode()); +        return DAG.getNode(ISD::FMUL, DL, VT, N0, RV, Flags); +      } +    } else if (N1.getOpcode() == ISD::FMUL) { +      // Look through an FMUL. Even though this won't remove the FDIV directly, +      // it's still worthwhile to get rid of the FSQRT if possible. +      SDValue SqrtOp; +      SDValue OtherOp; +      if (N1.getOperand(0).getOpcode() == ISD::FSQRT) { +        SqrtOp = N1.getOperand(0); +        OtherOp = N1.getOperand(1); +      } else if (N1.getOperand(1).getOpcode() == ISD::FSQRT) { +        SqrtOp = N1.getOperand(1); +        OtherOp = N1.getOperand(0); +      } +      if (SqrtOp.getNode()) { +        // We found a FSQRT, so try to make this fold: +        // x / (y * sqrt(z)) -> x * (rsqrt(z) / y) +        if (SDValue RV = buildRsqrtEstimate(SqrtOp.getOperand(0), Flags)) { +          RV = DAG.getNode(ISD::FDIV, SDLoc(N1), VT, RV, OtherOp, Flags); +          AddToWorklist(RV.getNode()); +          return DAG.getNode(ISD::FMUL, DL, VT, N0, RV, Flags); +        } +      } +    } + +    // Fold into a reciprocal estimate and multiply instead of a real divide. +    if (SDValue RV = BuildDivEstimate(N0, N1, Flags)) +      return RV; +  } + +  // (fdiv (fneg X), (fneg Y)) -> (fdiv X, Y) +  if (isCheaperToUseNegatedFPOps(N0, N1)) +    return DAG.getNode( +        ISD::FDIV, SDLoc(N), VT, +        TLI.getNegatedExpression(N0, DAG, LegalOperations, ForCodeSize), +        TLI.getNegatedExpression(N1, DAG, LegalOperations, ForCodeSize), Flags); + +  return SDValue(); +} + +SDValue DAGCombiner::visitFREM(SDNode *N) { +  SDValue N0 = N->getOperand(0); +  SDValue N1 = N->getOperand(1); +  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); +  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); +  EVT VT = N->getValueType(0); + +  // fold (frem c1, c2) -> fmod(c1,c2) +  if (N0CFP && N1CFP) +    return DAG.getNode(ISD::FREM, SDLoc(N), VT, N0, N1, N->getFlags()); + +  if (SDValue NewSel = foldBinOpIntoSelect(N)) +    return NewSel; + +  return SDValue(); +} + +SDValue DAGCombiner::visitFSQRT(SDNode *N) { +  SDNodeFlags Flags = N->getFlags(); +  if (!DAG.getTarget().Options.UnsafeFPMath && +      !Flags.hasApproximateFuncs()) +    return SDValue(); + +  SDValue N0 = N->getOperand(0); +  if (TLI.isFsqrtCheap(N0, DAG)) +    return SDValue(); + +  // FSQRT nodes have flags that propagate to the created nodes. +  return buildSqrtEstimate(N0, Flags); +} + +/// copysign(x, fp_extend(y)) -> copysign(x, y) +/// copysign(x, fp_round(y)) -> copysign(x, y) +static inline bool CanCombineFCOPYSIGN_EXTEND_ROUND(SDNode *N) { +  SDValue N1 = N->getOperand(1); +  if ((N1.getOpcode() == ISD::FP_EXTEND || +       N1.getOpcode() == ISD::FP_ROUND)) { +    // Do not optimize out type conversion of f128 type yet. +    // For some targets like x86_64, configuration is changed to keep one f128 +    // value in one SSE register, but instruction selection cannot handle +    // FCOPYSIGN on SSE registers yet. +    EVT N1VT = N1->getValueType(0); +    EVT N1Op0VT = N1->getOperand(0).getValueType(); +    return (N1VT == N1Op0VT || N1Op0VT != MVT::f128); +  } +  return false; +} + +SDValue DAGCombiner::visitFCOPYSIGN(SDNode *N) { +  SDValue N0 = N->getOperand(0); +  SDValue N1 = N->getOperand(1); +  bool N0CFP = isConstantFPBuildVectorOrConstantFP(N0); +  bool N1CFP = isConstantFPBuildVectorOrConstantFP(N1); +  EVT VT = N->getValueType(0); + +  if (N0CFP && N1CFP) // Constant fold +    return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0, N1); + +  if (ConstantFPSDNode *N1C = isConstOrConstSplatFP(N->getOperand(1))) { +    const APFloat &V = N1C->getValueAPF(); +    // copysign(x, c1) -> fabs(x)       iff ispos(c1) +    // copysign(x, c1) -> fneg(fabs(x)) iff isneg(c1) +    if (!V.isNegative()) { +      if (!LegalOperations || TLI.isOperationLegal(ISD::FABS, VT)) +        return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0); +    } else { +      if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT)) +        return DAG.getNode(ISD::FNEG, SDLoc(N), VT, +                           DAG.getNode(ISD::FABS, SDLoc(N0), VT, N0)); +    } +  } + +  // copysign(fabs(x), y) -> copysign(x, y) +  // copysign(fneg(x), y) -> copysign(x, y) +  // copysign(copysign(x,z), y) -> copysign(x, y) +  if (N0.getOpcode() == ISD::FABS || N0.getOpcode() == ISD::FNEG || +      N0.getOpcode() == ISD::FCOPYSIGN) +    return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0.getOperand(0), N1); + +  // copysign(x, abs(y)) -> abs(x) +  if (N1.getOpcode() == ISD::FABS) +    return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0); + +  // copysign(x, copysign(y,z)) -> copysign(x, z) +  if (N1.getOpcode() == ISD::FCOPYSIGN) +    return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0, N1.getOperand(1)); + +  // copysign(x, fp_extend(y)) -> copysign(x, y) +  // copysign(x, fp_round(y)) -> copysign(x, y) +  if (CanCombineFCOPYSIGN_EXTEND_ROUND(N)) +    return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0, N1.getOperand(0)); + +  return SDValue(); +} + +SDValue DAGCombiner::visitFPOW(SDNode *N) { +  ConstantFPSDNode *ExponentC = isConstOrConstSplatFP(N->getOperand(1)); +  if (!ExponentC) +    return SDValue(); + +  // Try to convert x ** (1/3) into cube root. +  // TODO: Handle the various flavors of long double. +  // TODO: Since we're approximating, we don't need an exact 1/3 exponent. +  //       Some range near 1/3 should be fine. +  EVT VT = N->getValueType(0); +  if ((VT == MVT::f32 && ExponentC->getValueAPF().isExactlyValue(1.0f/3.0f)) || +      (VT == MVT::f64 && ExponentC->getValueAPF().isExactlyValue(1.0/3.0))) { +    // pow(-0.0, 1/3) = +0.0; cbrt(-0.0) = -0.0. +    // pow(-inf, 1/3) = +inf; cbrt(-inf) = -inf. +    // pow(-val, 1/3) =  nan; cbrt(-val) = -num. +    // For regular numbers, rounding may cause the results to differ. +    // Therefore, we require { nsz ninf nnan afn } for this transform. +    // TODO: We could select out the special cases if we don't have nsz/ninf. +    SDNodeFlags Flags = N->getFlags(); +    if (!Flags.hasNoSignedZeros() || !Flags.hasNoInfs() || !Flags.hasNoNaNs() || +        !Flags.hasApproximateFuncs()) +      return SDValue(); + +    // Do not create a cbrt() libcall if the target does not have it, and do not +    // turn a pow that has lowering support into a cbrt() libcall. +    if (!DAG.getLibInfo().has(LibFunc_cbrt) || +        (!DAG.getTargetLoweringInfo().isOperationExpand(ISD::FPOW, VT) && +         DAG.getTargetLoweringInfo().isOperationExpand(ISD::FCBRT, VT))) +      return SDValue(); + +    return DAG.getNode(ISD::FCBRT, SDLoc(N), VT, N->getOperand(0), Flags); +  } + +  // Try to convert x ** (1/4) and x ** (3/4) into square roots. +  // x ** (1/2) is canonicalized to sqrt, so we do not bother with that case. +  // TODO: This could be extended (using a target hook) to handle smaller +  // power-of-2 fractional exponents. +  bool ExponentIs025 = ExponentC->getValueAPF().isExactlyValue(0.25); +  bool ExponentIs075 = ExponentC->getValueAPF().isExactlyValue(0.75); +  if (ExponentIs025 || ExponentIs075) { +    // pow(-0.0, 0.25) = +0.0; sqrt(sqrt(-0.0)) = -0.0. +    // pow(-inf, 0.25) = +inf; sqrt(sqrt(-inf)) =  NaN. +    // pow(-0.0, 0.75) = +0.0; sqrt(-0.0) * sqrt(sqrt(-0.0)) = +0.0. +    // pow(-inf, 0.75) = +inf; sqrt(-inf) * sqrt(sqrt(-inf)) =  NaN. +    // For regular numbers, rounding may cause the results to differ. +    // Therefore, we require { nsz ninf afn } for this transform. +    // TODO: We could select out the special cases if we don't have nsz/ninf. +    SDNodeFlags Flags = N->getFlags(); + +    // We only need no signed zeros for the 0.25 case. +    if ((!Flags.hasNoSignedZeros() && ExponentIs025) || !Flags.hasNoInfs() || +        !Flags.hasApproximateFuncs()) +      return SDValue(); + +    // Don't double the number of libcalls. We are trying to inline fast code. +    if (!DAG.getTargetLoweringInfo().isOperationLegalOrCustom(ISD::FSQRT, VT)) +      return SDValue(); + +    // Assume that libcalls are the smallest code. +    // TODO: This restriction should probably be lifted for vectors. +    if (DAG.getMachineFunction().getFunction().hasOptSize()) +      return SDValue(); + +    // pow(X, 0.25) --> sqrt(sqrt(X)) +    SDLoc DL(N); +    SDValue Sqrt = DAG.getNode(ISD::FSQRT, DL, VT, N->getOperand(0), Flags); +    SDValue SqrtSqrt = DAG.getNode(ISD::FSQRT, DL, VT, Sqrt, Flags); +    if (ExponentIs025) +      return SqrtSqrt; +    // pow(X, 0.75) --> sqrt(X) * sqrt(sqrt(X)) +    return DAG.getNode(ISD::FMUL, DL, VT, Sqrt, SqrtSqrt, Flags); +  } + +  return SDValue(); +} + +static SDValue foldFPToIntToFP(SDNode *N, SelectionDAG &DAG, +                               const TargetLowering &TLI) { +  // This optimization is guarded by a function attribute because it may produce +  // unexpected results. Ie, programs may be relying on the platform-specific +  // undefined behavior when the float-to-int conversion overflows. +  const Function &F = DAG.getMachineFunction().getFunction(); +  Attribute StrictOverflow = F.getFnAttribute("strict-float-cast-overflow"); +  if (StrictOverflow.getValueAsString().equals("false")) +    return SDValue(); + +  // We only do this if the target has legal ftrunc. Otherwise, we'd likely be +  // replacing casts with a libcall. We also must be allowed to ignore -0.0 +  // because FTRUNC will return -0.0 for (-1.0, -0.0), but using integer +  // conversions would return +0.0. +  // FIXME: We should be able to use node-level FMF here. +  // TODO: If strict math, should we use FABS (+ range check for signed cast)? +  EVT VT = N->getValueType(0); +  if (!TLI.isOperationLegal(ISD::FTRUNC, VT) || +      !DAG.getTarget().Options.NoSignedZerosFPMath) +    return SDValue(); + +  // fptosi/fptoui round towards zero, so converting from FP to integer and +  // back is the same as an 'ftrunc': [us]itofp (fpto[us]i X) --> ftrunc X +  SDValue N0 = N->getOperand(0); +  if (N->getOpcode() == ISD::SINT_TO_FP && N0.getOpcode() == ISD::FP_TO_SINT && +      N0.getOperand(0).getValueType() == VT) +    return DAG.getNode(ISD::FTRUNC, SDLoc(N), VT, N0.getOperand(0)); + +  if (N->getOpcode() == ISD::UINT_TO_FP && N0.getOpcode() == ISD::FP_TO_UINT && +      N0.getOperand(0).getValueType() == VT) +    return DAG.getNode(ISD::FTRUNC, SDLoc(N), VT, N0.getOperand(0)); + +  return SDValue(); +} + +SDValue DAGCombiner::visitSINT_TO_FP(SDNode *N) { +  SDValue N0 = N->getOperand(0); +  EVT VT = N->getValueType(0); +  EVT OpVT = N0.getValueType(); + +  // [us]itofp(undef) = 0, because the result value is bounded. +  if (N0.isUndef()) +    return DAG.getConstantFP(0.0, SDLoc(N), VT); + +  // fold (sint_to_fp c1) -> c1fp +  if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && +      // ...but only if the target supports immediate floating-point values +      (!LegalOperations || +       TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT))) +    return DAG.getNode(ISD::SINT_TO_FP, SDLoc(N), VT, N0); + +  // If the input is a legal type, and SINT_TO_FP is not legal on this target, +  // but UINT_TO_FP is legal on this target, try to convert. +  if (!hasOperation(ISD::SINT_TO_FP, OpVT) && +      hasOperation(ISD::UINT_TO_FP, OpVT)) { +    // If the sign bit is known to be zero, we can change this to UINT_TO_FP. +    if (DAG.SignBitIsZero(N0)) +      return DAG.getNode(ISD::UINT_TO_FP, SDLoc(N), VT, N0); +  } + +  // The next optimizations are desirable only if SELECT_CC can be lowered. +  if (TLI.isOperationLegalOrCustom(ISD::SELECT_CC, VT) || !LegalOperations) { +    // fold (sint_to_fp (setcc x, y, cc)) -> (select_cc x, y, -1.0, 0.0,, cc) +    if (N0.getOpcode() == ISD::SETCC && N0.getValueType() == MVT::i1 && +        !VT.isVector() && +        (!LegalOperations || +         TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT))) { +      SDLoc DL(N); +      SDValue Ops[] = +        { N0.getOperand(0), N0.getOperand(1), +          DAG.getConstantFP(-1.0, DL, VT), DAG.getConstantFP(0.0, DL, VT), +          N0.getOperand(2) }; +      return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops); +    } + +    // fold (sint_to_fp (zext (setcc x, y, cc))) -> +    //      (select_cc x, y, 1.0, 0.0,, cc) +    if (N0.getOpcode() == ISD::ZERO_EXTEND && +        N0.getOperand(0).getOpcode() == ISD::SETCC &&!VT.isVector() && +        (!LegalOperations || +         TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT))) { +      SDLoc DL(N); +      SDValue Ops[] = +        { N0.getOperand(0).getOperand(0), N0.getOperand(0).getOperand(1), +          DAG.getConstantFP(1.0, DL, VT), DAG.getConstantFP(0.0, DL, VT), +          N0.getOperand(0).getOperand(2) }; +      return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops); +    } +  } + +  if (SDValue FTrunc = foldFPToIntToFP(N, DAG, TLI)) +    return FTrunc; + +  return SDValue(); +} + +SDValue DAGCombiner::visitUINT_TO_FP(SDNode *N) { +  SDValue N0 = N->getOperand(0); +  EVT VT = N->getValueType(0); +  EVT OpVT = N0.getValueType(); + +  // [us]itofp(undef) = 0, because the result value is bounded. +  if (N0.isUndef()) +    return DAG.getConstantFP(0.0, SDLoc(N), VT); + +  // fold (uint_to_fp c1) -> c1fp +  if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && +      // ...but only if the target supports immediate floating-point values +      (!LegalOperations || +       TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT))) +    return DAG.getNode(ISD::UINT_TO_FP, SDLoc(N), VT, N0); + +  // If the input is a legal type, and UINT_TO_FP is not legal on this target, +  // but SINT_TO_FP is legal on this target, try to convert. +  if (!hasOperation(ISD::UINT_TO_FP, OpVT) && +      hasOperation(ISD::SINT_TO_FP, OpVT)) { +    // If the sign bit is known to be zero, we can change this to SINT_TO_FP. +    if (DAG.SignBitIsZero(N0)) +      return DAG.getNode(ISD::SINT_TO_FP, SDLoc(N), VT, N0); +  } + +  // The next optimizations are desirable only if SELECT_CC can be lowered. +  if (TLI.isOperationLegalOrCustom(ISD::SELECT_CC, VT) || !LegalOperations) { +    // fold (uint_to_fp (setcc x, y, cc)) -> (select_cc x, y, -1.0, 0.0,, cc) +    if (N0.getOpcode() == ISD::SETCC && !VT.isVector() && +        (!LegalOperations || +         TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT))) { +      SDLoc DL(N); +      SDValue Ops[] = +        { N0.getOperand(0), N0.getOperand(1), +          DAG.getConstantFP(1.0, DL, VT), DAG.getConstantFP(0.0, DL, VT), +          N0.getOperand(2) }; +      return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops); +    } +  } + +  if (SDValue FTrunc = foldFPToIntToFP(N, DAG, TLI)) +    return FTrunc; + +  return SDValue(); +} + +// Fold (fp_to_{s/u}int ({s/u}int_to_fpx)) -> zext x, sext x, trunc x, or x +static SDValue FoldIntToFPToInt(SDNode *N, SelectionDAG &DAG) { +  SDValue N0 = N->getOperand(0); +  EVT VT = N->getValueType(0); + +  if (N0.getOpcode() != ISD::UINT_TO_FP && N0.getOpcode() != ISD::SINT_TO_FP) +    return SDValue(); + +  SDValue Src = N0.getOperand(0); +  EVT SrcVT = Src.getValueType(); +  bool IsInputSigned = N0.getOpcode() == ISD::SINT_TO_FP; +  bool IsOutputSigned = N->getOpcode() == ISD::FP_TO_SINT; + +  // We can safely assume the conversion won't overflow the output range, +  // because (for example) (uint8_t)18293.f is undefined behavior. + +  // Since we can assume the conversion won't overflow, our decision as to +  // whether the input will fit in the float should depend on the minimum +  // of the input range and output range. + +  // This means this is also safe for a signed input and unsigned output, since +  // a negative input would lead to undefined behavior. +  unsigned InputSize = (int)SrcVT.getScalarSizeInBits() - IsInputSigned; +  unsigned OutputSize = (int)VT.getScalarSizeInBits() - IsOutputSigned; +  unsigned ActualSize = std::min(InputSize, OutputSize); +  const fltSemantics &sem = DAG.EVTToAPFloatSemantics(N0.getValueType()); + +  // We can only fold away the float conversion if the input range can be +  // represented exactly in the float range. +  if (APFloat::semanticsPrecision(sem) >= ActualSize) { +    if (VT.getScalarSizeInBits() > SrcVT.getScalarSizeInBits()) { +      unsigned ExtOp = IsInputSigned && IsOutputSigned ? ISD::SIGN_EXTEND +                                                       : ISD::ZERO_EXTEND; +      return DAG.getNode(ExtOp, SDLoc(N), VT, Src); +    } +    if (VT.getScalarSizeInBits() < SrcVT.getScalarSizeInBits()) +      return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Src); +    return DAG.getBitcast(VT, Src); +  } +  return SDValue(); +} + +SDValue DAGCombiner::visitFP_TO_SINT(SDNode *N) { +  SDValue N0 = N->getOperand(0); +  EVT VT = N->getValueType(0); + +  // fold (fp_to_sint undef) -> undef +  if (N0.isUndef()) +    return DAG.getUNDEF(VT); + +  // fold (fp_to_sint c1fp) -> c1 +  if (isConstantFPBuildVectorOrConstantFP(N0)) +    return DAG.getNode(ISD::FP_TO_SINT, SDLoc(N), VT, N0); + +  return FoldIntToFPToInt(N, DAG); +} + +SDValue DAGCombiner::visitFP_TO_UINT(SDNode *N) { +  SDValue N0 = N->getOperand(0); +  EVT VT = N->getValueType(0); + +  // fold (fp_to_uint undef) -> undef +  if (N0.isUndef()) +    return DAG.getUNDEF(VT); + +  // fold (fp_to_uint c1fp) -> c1 +  if (isConstantFPBuildVectorOrConstantFP(N0)) +    return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), VT, N0); + +  return FoldIntToFPToInt(N, DAG); +} + +SDValue DAGCombiner::visitFP_ROUND(SDNode *N) { +  SDValue N0 = N->getOperand(0); +  SDValue N1 = N->getOperand(1); +  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); +  EVT VT = N->getValueType(0); + +  // fold (fp_round c1fp) -> c1fp +  if (N0CFP) +    return DAG.getNode(ISD::FP_ROUND, SDLoc(N), VT, N0, N1); + +  // fold (fp_round (fp_extend x)) -> x +  if (N0.getOpcode() == ISD::FP_EXTEND && VT == N0.getOperand(0).getValueType()) +    return N0.getOperand(0); + +  // fold (fp_round (fp_round x)) -> (fp_round x) +  if (N0.getOpcode() == ISD::FP_ROUND) { +    const bool NIsTrunc = N->getConstantOperandVal(1) == 1; +    const bool N0IsTrunc = N0.getConstantOperandVal(1) == 1; + +    // Skip this folding if it results in an fp_round from f80 to f16. +    // +    // f80 to f16 always generates an expensive (and as yet, unimplemented) +    // libcall to __truncxfhf2 instead of selecting native f16 conversion +    // instructions from f32 or f64.  Moreover, the first (value-preserving) +    // fp_round from f80 to either f32 or f64 may become a NOP in platforms like +    // x86. +    if (N0.getOperand(0).getValueType() == MVT::f80 && VT == MVT::f16) +      return SDValue(); + +    // If the first fp_round isn't a value preserving truncation, it might +    // introduce a tie in the second fp_round, that wouldn't occur in the +    // single-step fp_round we want to fold to. +    // In other words, double rounding isn't the same as rounding. +    // Also, this is a value preserving truncation iff both fp_round's are. +    if (DAG.getTarget().Options.UnsafeFPMath || N0IsTrunc) { +      SDLoc DL(N); +      return DAG.getNode(ISD::FP_ROUND, DL, VT, N0.getOperand(0), +                         DAG.getIntPtrConstant(NIsTrunc && N0IsTrunc, DL)); +    } +  } + +  // fold (fp_round (copysign X, Y)) -> (copysign (fp_round X), Y) +  if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse()) { +    SDValue Tmp = DAG.getNode(ISD::FP_ROUND, SDLoc(N0), VT, +                              N0.getOperand(0), N1); +    AddToWorklist(Tmp.getNode()); +    return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, +                       Tmp, N0.getOperand(1)); +  } + +  if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N)) +    return NewVSel; + +  return SDValue(); +} + +SDValue DAGCombiner::visitFP_EXTEND(SDNode *N) { +  SDValue N0 = N->getOperand(0); +  EVT VT = N->getValueType(0); + +  // If this is fp_round(fpextend), don't fold it, allow ourselves to be folded. +  if (N->hasOneUse() && +      N->use_begin()->getOpcode() == ISD::FP_ROUND) +    return SDValue(); + +  // fold (fp_extend c1fp) -> c1fp +  if (isConstantFPBuildVectorOrConstantFP(N0)) +    return DAG.getNode(ISD::FP_EXTEND, SDLoc(N), VT, N0); + +  // fold (fp_extend (fp16_to_fp op)) -> (fp16_to_fp op) +  if (N0.getOpcode() == ISD::FP16_TO_FP && +      TLI.getOperationAction(ISD::FP16_TO_FP, VT) == TargetLowering::Legal) +    return DAG.getNode(ISD::FP16_TO_FP, SDLoc(N), VT, N0.getOperand(0)); + +  // Turn fp_extend(fp_round(X, 1)) -> x since the fp_round doesn't affect the +  // value of X. +  if (N0.getOpcode() == ISD::FP_ROUND +      && N0.getConstantOperandVal(1) == 1) { +    SDValue In = N0.getOperand(0); +    if (In.getValueType() == VT) return In; +    if (VT.bitsLT(In.getValueType())) +      return DAG.getNode(ISD::FP_ROUND, SDLoc(N), VT, +                         In, N0.getOperand(1)); +    return DAG.getNode(ISD::FP_EXTEND, SDLoc(N), VT, In); +  } + +  // fold (fpext (load x)) -> (fpext (fptrunc (extload x))) +  if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() && +       TLI.isLoadExtLegal(ISD::EXTLOAD, VT, N0.getValueType())) { +    LoadSDNode *LN0 = cast<LoadSDNode>(N0); +    SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, SDLoc(N), VT, +                                     LN0->getChain(), +                                     LN0->getBasePtr(), N0.getValueType(), +                                     LN0->getMemOperand()); +    CombineTo(N, ExtLoad); +    CombineTo(N0.getNode(), +              DAG.getNode(ISD::FP_ROUND, SDLoc(N0), +                          N0.getValueType(), ExtLoad, +                          DAG.getIntPtrConstant(1, SDLoc(N0))), +              ExtLoad.getValue(1)); +    return SDValue(N, 0);   // Return N so it doesn't get rechecked! +  } + +  if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N)) +    return NewVSel; + +  return SDValue(); +} + +SDValue DAGCombiner::visitFCEIL(SDNode *N) { +  SDValue N0 = N->getOperand(0); +  EVT VT = N->getValueType(0); + +  // fold (fceil c1) -> fceil(c1) +  if (isConstantFPBuildVectorOrConstantFP(N0)) +    return DAG.getNode(ISD::FCEIL, SDLoc(N), VT, N0); + +  return SDValue(); +} + +SDValue DAGCombiner::visitFTRUNC(SDNode *N) { +  SDValue N0 = N->getOperand(0); +  EVT VT = N->getValueType(0); + +  // fold (ftrunc c1) -> ftrunc(c1) +  if (isConstantFPBuildVectorOrConstantFP(N0)) +    return DAG.getNode(ISD::FTRUNC, SDLoc(N), VT, N0); + +  // fold ftrunc (known rounded int x) -> x +  // ftrunc is a part of fptosi/fptoui expansion on some targets, so this is +  // likely to be generated to extract integer from a rounded floating value. +  switch (N0.getOpcode()) { +  default: break; +  case ISD::FRINT: +  case ISD::FTRUNC: +  case ISD::FNEARBYINT: +  case ISD::FFLOOR: +  case ISD::FCEIL: +    return N0; +  } + +  return SDValue(); +} + +SDValue DAGCombiner::visitFFLOOR(SDNode *N) { +  SDValue N0 = N->getOperand(0); +  EVT VT = N->getValueType(0); + +  // fold (ffloor c1) -> ffloor(c1) +  if (isConstantFPBuildVectorOrConstantFP(N0)) +    return DAG.getNode(ISD::FFLOOR, SDLoc(N), VT, N0); + +  return SDValue(); +} + +// FIXME: FNEG and FABS have a lot in common; refactor. +SDValue DAGCombiner::visitFNEG(SDNode *N) { +  SDValue N0 = N->getOperand(0); +  EVT VT = N->getValueType(0); + +  // Constant fold FNEG. +  if (isConstantFPBuildVectorOrConstantFP(N0)) +    return DAG.getNode(ISD::FNEG, SDLoc(N), VT, N0); + +  if (TLI.isNegatibleForFree(N0, DAG, LegalOperations, ForCodeSize)) +    return TLI.getNegatedExpression(N0, DAG, LegalOperations, ForCodeSize); + +  // Transform fneg(bitconvert(x)) -> bitconvert(x ^ sign) to avoid loading +  // constant pool values. +  if (!TLI.isFNegFree(VT) && +      N0.getOpcode() == ISD::BITCAST && +      N0.getNode()->hasOneUse()) { +    SDValue Int = N0.getOperand(0); +    EVT IntVT = Int.getValueType(); +    if (IntVT.isInteger() && !IntVT.isVector()) { +      APInt SignMask; +      if (N0.getValueType().isVector()) { +        // For a vector, get a mask such as 0x80... per scalar element +        // and splat it. +        SignMask = APInt::getSignMask(N0.getScalarValueSizeInBits()); +        SignMask = APInt::getSplat(IntVT.getSizeInBits(), SignMask); +      } else { +        // For a scalar, just generate 0x80... +        SignMask = APInt::getSignMask(IntVT.getSizeInBits()); +      } +      SDLoc DL0(N0); +      Int = DAG.getNode(ISD::XOR, DL0, IntVT, Int, +                        DAG.getConstant(SignMask, DL0, IntVT)); +      AddToWorklist(Int.getNode()); +      return DAG.getBitcast(VT, Int); +    } +  } + +  // (fneg (fmul c, x)) -> (fmul -c, x) +  if (N0.getOpcode() == ISD::FMUL && +      (N0.getNode()->hasOneUse() || !TLI.isFNegFree(VT))) { +    ConstantFPSDNode *CFP1 = dyn_cast<ConstantFPSDNode>(N0.getOperand(1)); +    if (CFP1) { +      APFloat CVal = CFP1->getValueAPF(); +      CVal.changeSign(); +      if (Level >= AfterLegalizeDAG && +          (TLI.isFPImmLegal(CVal, VT, ForCodeSize) || +           TLI.isOperationLegal(ISD::ConstantFP, VT))) +        return DAG.getNode( +            ISD::FMUL, SDLoc(N), VT, N0.getOperand(0), +            DAG.getNode(ISD::FNEG, SDLoc(N), VT, N0.getOperand(1)), +            N0->getFlags()); +    } +  } + +  return SDValue(); +} + +static SDValue visitFMinMax(SelectionDAG &DAG, SDNode *N, +                            APFloat (*Op)(const APFloat &, const APFloat &)) { +  SDValue N0 = N->getOperand(0); +  SDValue N1 = N->getOperand(1); +  EVT VT = N->getValueType(0); +  const ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0); +  const ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1); + +  if (N0CFP && N1CFP) { +    const APFloat &C0 = N0CFP->getValueAPF(); +    const APFloat &C1 = N1CFP->getValueAPF(); +    return DAG.getConstantFP(Op(C0, C1), SDLoc(N), VT); +  } + +  // Canonicalize to constant on RHS. +  if (isConstantFPBuildVectorOrConstantFP(N0) && +      !isConstantFPBuildVectorOrConstantFP(N1)) +    return DAG.getNode(N->getOpcode(), SDLoc(N), VT, N1, N0); + +  return SDValue(); +} + +SDValue DAGCombiner::visitFMINNUM(SDNode *N) { +  return visitFMinMax(DAG, N, minnum); +} + +SDValue DAGCombiner::visitFMAXNUM(SDNode *N) { +  return visitFMinMax(DAG, N, maxnum); +} + +SDValue DAGCombiner::visitFMINIMUM(SDNode *N) { +  return visitFMinMax(DAG, N, minimum); +} + +SDValue DAGCombiner::visitFMAXIMUM(SDNode *N) { +  return visitFMinMax(DAG, N, maximum); +} + +SDValue DAGCombiner::visitFABS(SDNode *N) { +  SDValue N0 = N->getOperand(0); +  EVT VT = N->getValueType(0); + +  // fold (fabs c1) -> fabs(c1) +  if (isConstantFPBuildVectorOrConstantFP(N0)) +    return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0); + +  // fold (fabs (fabs x)) -> (fabs x) +  if (N0.getOpcode() == ISD::FABS) +    return N->getOperand(0); + +  // fold (fabs (fneg x)) -> (fabs x) +  // fold (fabs (fcopysign x, y)) -> (fabs x) +  if (N0.getOpcode() == ISD::FNEG || N0.getOpcode() == ISD::FCOPYSIGN) +    return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0.getOperand(0)); + +  // fabs(bitcast(x)) -> bitcast(x & ~sign) to avoid constant pool loads. +  if (!TLI.isFAbsFree(VT) && N0.getOpcode() == ISD::BITCAST && N0.hasOneUse()) { +    SDValue Int = N0.getOperand(0); +    EVT IntVT = Int.getValueType(); +    if (IntVT.isInteger() && !IntVT.isVector()) { +      APInt SignMask; +      if (N0.getValueType().isVector()) { +        // For a vector, get a mask such as 0x7f... per scalar element +        // and splat it. +        SignMask = ~APInt::getSignMask(N0.getScalarValueSizeInBits()); +        SignMask = APInt::getSplat(IntVT.getSizeInBits(), SignMask); +      } else { +        // For a scalar, just generate 0x7f... +        SignMask = ~APInt::getSignMask(IntVT.getSizeInBits()); +      } +      SDLoc DL(N0); +      Int = DAG.getNode(ISD::AND, DL, IntVT, Int, +                        DAG.getConstant(SignMask, DL, IntVT)); +      AddToWorklist(Int.getNode()); +      return DAG.getBitcast(N->getValueType(0), Int); +    } +  } + +  return SDValue(); +} + +SDValue DAGCombiner::visitBRCOND(SDNode *N) { +  SDValue Chain = N->getOperand(0); +  SDValue N1 = N->getOperand(1); +  SDValue N2 = N->getOperand(2); + +  // If N is a constant we could fold this into a fallthrough or unconditional +  // branch. However that doesn't happen very often in normal code, because +  // Instcombine/SimplifyCFG should have handled the available opportunities. +  // If we did this folding here, it would be necessary to update the +  // MachineBasicBlock CFG, which is awkward. + +  // fold a brcond with a setcc condition into a BR_CC node if BR_CC is legal +  // on the target. +  if (N1.getOpcode() == ISD::SETCC && +      TLI.isOperationLegalOrCustom(ISD::BR_CC, +                                   N1.getOperand(0).getValueType())) { +    return DAG.getNode(ISD::BR_CC, SDLoc(N), MVT::Other, +                       Chain, N1.getOperand(2), +                       N1.getOperand(0), N1.getOperand(1), N2); +  } + +  if (N1.hasOneUse()) { +    if (SDValue NewN1 = rebuildSetCC(N1)) +      return DAG.getNode(ISD::BRCOND, SDLoc(N), MVT::Other, Chain, NewN1, N2); +  } + +  return SDValue(); +} + +SDValue DAGCombiner::rebuildSetCC(SDValue N) { +  if (N.getOpcode() == ISD::SRL || +      (N.getOpcode() == ISD::TRUNCATE && +       (N.getOperand(0).hasOneUse() && +        N.getOperand(0).getOpcode() == ISD::SRL))) { +    // Look pass the truncate. +    if (N.getOpcode() == ISD::TRUNCATE) +      N = N.getOperand(0); + +    // Match this pattern so that we can generate simpler code: +    // +    //   %a = ... +    //   %b = and i32 %a, 2 +    //   %c = srl i32 %b, 1 +    //   brcond i32 %c ... +    // +    // into +    // +    //   %a = ... +    //   %b = and i32 %a, 2 +    //   %c = setcc eq %b, 0 +    //   brcond %c ... +    // +    // This applies only when the AND constant value has one bit set and the +    // SRL constant is equal to the log2 of the AND constant. The back-end is +    // smart enough to convert the result into a TEST/JMP sequence. +    SDValue Op0 = N.getOperand(0); +    SDValue Op1 = N.getOperand(1); + +    if (Op0.getOpcode() == ISD::AND && Op1.getOpcode() == ISD::Constant) { +      SDValue AndOp1 = Op0.getOperand(1); + +      if (AndOp1.getOpcode() == ISD::Constant) { +        const APInt &AndConst = cast<ConstantSDNode>(AndOp1)->getAPIntValue(); + +        if (AndConst.isPowerOf2() && +            cast<ConstantSDNode>(Op1)->getAPIntValue() == AndConst.logBase2()) { +          SDLoc DL(N); +          return DAG.getSetCC(DL, getSetCCResultType(Op0.getValueType()), +                              Op0, DAG.getConstant(0, DL, Op0.getValueType()), +                              ISD::SETNE); +        } +      } +    } +  } + +  // Transform br(xor(x, y)) -> br(x != y) +  // Transform br(xor(xor(x,y), 1)) -> br (x == y) +  if (N.getOpcode() == ISD::XOR) { +    // Because we may call this on a speculatively constructed +    // SimplifiedSetCC Node, we need to simplify this node first. +    // Ideally this should be folded into SimplifySetCC and not +    // here. For now, grab a handle to N so we don't lose it from +    // replacements interal to the visit. +    HandleSDNode XORHandle(N); +    while (N.getOpcode() == ISD::XOR) { +      SDValue Tmp = visitXOR(N.getNode()); +      // No simplification done. +      if (!Tmp.getNode()) +        break; +      // Returning N is form in-visit replacement that may invalidated +      // N. Grab value from Handle. +      if (Tmp.getNode() == N.getNode()) +        N = XORHandle.getValue(); +      else // Node simplified. Try simplifying again. +        N = Tmp; +    } + +    if (N.getOpcode() != ISD::XOR) +      return N; + +    SDNode *TheXor = N.getNode(); + +    SDValue Op0 = TheXor->getOperand(0); +    SDValue Op1 = TheXor->getOperand(1); + +    if (Op0.getOpcode() != ISD::SETCC && Op1.getOpcode() != ISD::SETCC) { +      bool Equal = false; +      if (isOneConstant(Op0) && Op0.hasOneUse() && +          Op0.getOpcode() == ISD::XOR) { +        TheXor = Op0.getNode(); +        Equal = true; +      } + +      EVT SetCCVT = N.getValueType(); +      if (LegalTypes) +        SetCCVT = getSetCCResultType(SetCCVT); +      // Replace the uses of XOR with SETCC +      return DAG.getSetCC(SDLoc(TheXor), SetCCVT, Op0, Op1, +                          Equal ? ISD::SETEQ : ISD::SETNE); +    } +  } + +  return SDValue(); +} + +// Operand List for BR_CC: Chain, CondCC, CondLHS, CondRHS, DestBB. +// +SDValue DAGCombiner::visitBR_CC(SDNode *N) { +  CondCodeSDNode *CC = cast<CondCodeSDNode>(N->getOperand(1)); +  SDValue CondLHS = N->getOperand(2), CondRHS = N->getOperand(3); + +  // If N is a constant we could fold this into a fallthrough or unconditional +  // branch. However that doesn't happen very often in normal code, because +  // Instcombine/SimplifyCFG should have handled the available opportunities. +  // If we did this folding here, it would be necessary to update the +  // MachineBasicBlock CFG, which is awkward. + +  // Use SimplifySetCC to simplify SETCC's. +  SDValue Simp = SimplifySetCC(getSetCCResultType(CondLHS.getValueType()), +                               CondLHS, CondRHS, CC->get(), SDLoc(N), +                               false); +  if (Simp.getNode()) AddToWorklist(Simp.getNode()); + +  // fold to a simpler setcc +  if (Simp.getNode() && Simp.getOpcode() == ISD::SETCC) +    return DAG.getNode(ISD::BR_CC, SDLoc(N), MVT::Other, +                       N->getOperand(0), Simp.getOperand(2), +                       Simp.getOperand(0), Simp.getOperand(1), +                       N->getOperand(4)); + +  return SDValue(); +} + +/// Return true if 'Use' is a load or a store that uses N as its base pointer +/// and that N may be folded in the load / store addressing mode. +static bool canFoldInAddressingMode(SDNode *N, SDNode *Use, +                                    SelectionDAG &DAG, +                                    const TargetLowering &TLI) { +  EVT VT; +  unsigned AS; + +  if (LoadSDNode *LD  = dyn_cast<LoadSDNode>(Use)) { +    if (LD->isIndexed() || LD->getBasePtr().getNode() != N) +      return false; +    VT = LD->getMemoryVT(); +    AS = LD->getAddressSpace(); +  } else if (StoreSDNode *ST  = dyn_cast<StoreSDNode>(Use)) { +    if (ST->isIndexed() || ST->getBasePtr().getNode() != N) +      return false; +    VT = ST->getMemoryVT(); +    AS = ST->getAddressSpace(); +  } else +    return false; + +  TargetLowering::AddrMode AM; +  if (N->getOpcode() == ISD::ADD) { +    AM.HasBaseReg = true; +    ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); +    if (Offset) +      // [reg +/- imm] +      AM.BaseOffs = Offset->getSExtValue(); +    else +      // [reg +/- reg] +      AM.Scale = 1; +  } else if (N->getOpcode() == ISD::SUB) { +    AM.HasBaseReg = true; +    ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); +    if (Offset) +      // [reg +/- imm] +      AM.BaseOffs = -Offset->getSExtValue(); +    else +      // [reg +/- reg] +      AM.Scale = 1; +  } else +    return false; + +  return TLI.isLegalAddressingMode(DAG.getDataLayout(), AM, +                                   VT.getTypeForEVT(*DAG.getContext()), AS); +} + +/// Try turning a load/store into a pre-indexed load/store when the base +/// pointer is an add or subtract and it has other uses besides the load/store. +/// After the transformation, the new indexed load/store has effectively folded +/// the add/subtract in and all of its other uses are redirected to the +/// new load/store. +bool DAGCombiner::CombineToPreIndexedLoadStore(SDNode *N) { +  if (Level < AfterLegalizeDAG) +    return false; + +  bool isLoad = true; +  SDValue Ptr; +  EVT VT; +  if (LoadSDNode *LD  = dyn_cast<LoadSDNode>(N)) { +    if (LD->isIndexed()) +      return false; +    VT = LD->getMemoryVT(); +    if (!TLI.isIndexedLoadLegal(ISD::PRE_INC, VT) && +        !TLI.isIndexedLoadLegal(ISD::PRE_DEC, VT)) +      return false; +    Ptr = LD->getBasePtr(); +  } else if (StoreSDNode *ST  = dyn_cast<StoreSDNode>(N)) { +    if (ST->isIndexed()) +      return false; +    VT = ST->getMemoryVT(); +    if (!TLI.isIndexedStoreLegal(ISD::PRE_INC, VT) && +        !TLI.isIndexedStoreLegal(ISD::PRE_DEC, VT)) +      return false; +    Ptr = ST->getBasePtr(); +    isLoad = false; +  } else { +    return false; +  } + +  // If the pointer is not an add/sub, or if it doesn't have multiple uses, bail +  // out.  There is no reason to make this a preinc/predec. +  if ((Ptr.getOpcode() != ISD::ADD && Ptr.getOpcode() != ISD::SUB) || +      Ptr.getNode()->hasOneUse()) +    return false; + +  // Ask the target to do addressing mode selection. +  SDValue BasePtr; +  SDValue Offset; +  ISD::MemIndexedMode AM = ISD::UNINDEXED; +  if (!TLI.getPreIndexedAddressParts(N, BasePtr, Offset, AM, DAG)) +    return false; + +  // Backends without true r+i pre-indexed forms may need to pass a +  // constant base with a variable offset so that constant coercion +  // will work with the patterns in canonical form. +  bool Swapped = false; +  if (isa<ConstantSDNode>(BasePtr)) { +    std::swap(BasePtr, Offset); +    Swapped = true; +  } + +  // Don't create a indexed load / store with zero offset. +  if (isNullConstant(Offset)) +    return false; + +  // Try turning it into a pre-indexed load / store except when: +  // 1) The new base ptr is a frame index. +  // 2) If N is a store and the new base ptr is either the same as or is a +  //    predecessor of the value being stored. +  // 3) Another use of old base ptr is a predecessor of N. If ptr is folded +  //    that would create a cycle. +  // 4) All uses are load / store ops that use it as old base ptr. + +  // Check #1.  Preinc'ing a frame index would require copying the stack pointer +  // (plus the implicit offset) to a register to preinc anyway. +  if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr)) +    return false; + +  // Check #2. +  if (!isLoad) { +    SDValue Val = cast<StoreSDNode>(N)->getValue(); + +    // Would require a copy. +    if (Val == BasePtr) +      return false; + +    // Would create a cycle. +    if (Val == Ptr || Ptr->isPredecessorOf(Val.getNode())) +      return false; +  } + +  // Caches for hasPredecessorHelper. +  SmallPtrSet<const SDNode *, 32> Visited; +  SmallVector<const SDNode *, 16> Worklist; +  Worklist.push_back(N); + +  // If the offset is a constant, there may be other adds of constants that +  // can be folded with this one. We should do this to avoid having to keep +  // a copy of the original base pointer. +  SmallVector<SDNode *, 16> OtherUses; +  if (isa<ConstantSDNode>(Offset)) +    for (SDNode::use_iterator UI = BasePtr.getNode()->use_begin(), +                              UE = BasePtr.getNode()->use_end(); +         UI != UE; ++UI) { +      SDUse &Use = UI.getUse(); +      // Skip the use that is Ptr and uses of other results from BasePtr's +      // node (important for nodes that return multiple results). +      if (Use.getUser() == Ptr.getNode() || Use != BasePtr) +        continue; + +      if (SDNode::hasPredecessorHelper(Use.getUser(), Visited, Worklist)) +        continue; + +      if (Use.getUser()->getOpcode() != ISD::ADD && +          Use.getUser()->getOpcode() != ISD::SUB) { +        OtherUses.clear(); +        break; +      } + +      SDValue Op1 = Use.getUser()->getOperand((UI.getOperandNo() + 1) & 1); +      if (!isa<ConstantSDNode>(Op1)) { +        OtherUses.clear(); +        break; +      } + +      // FIXME: In some cases, we can be smarter about this. +      if (Op1.getValueType() != Offset.getValueType()) { +        OtherUses.clear(); +        break; +      } + +      OtherUses.push_back(Use.getUser()); +    } + +  if (Swapped) +    std::swap(BasePtr, Offset); + +  // Now check for #3 and #4. +  bool RealUse = false; + +  for (SDNode *Use : Ptr.getNode()->uses()) { +    if (Use == N) +      continue; +    if (SDNode::hasPredecessorHelper(Use, Visited, Worklist)) +      return false; + +    // If Ptr may be folded in addressing mode of other use, then it's +    // not profitable to do this transformation. +    if (!canFoldInAddressingMode(Ptr.getNode(), Use, DAG, TLI)) +      RealUse = true; +  } + +  if (!RealUse) +    return false; + +  SDValue Result; +  if (isLoad) +    Result = DAG.getIndexedLoad(SDValue(N,0), SDLoc(N), +                                BasePtr, Offset, AM); +  else +    Result = DAG.getIndexedStore(SDValue(N,0), SDLoc(N), +                                 BasePtr, Offset, AM); +  ++PreIndexedNodes; +  ++NodesCombined; +  LLVM_DEBUG(dbgs() << "\nReplacing.4 "; N->dump(&DAG); dbgs() << "\nWith: "; +             Result.getNode()->dump(&DAG); dbgs() << '\n'); +  WorklistRemover DeadNodes(*this); +  if (isLoad) { +    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0)); +    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2)); +  } else { +    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1)); +  } + +  // Finally, since the node is now dead, remove it from the graph. +  deleteAndRecombine(N); + +  if (Swapped) +    std::swap(BasePtr, Offset); + +  // Replace other uses of BasePtr that can be updated to use Ptr +  for (unsigned i = 0, e = OtherUses.size(); i != e; ++i) { +    unsigned OffsetIdx = 1; +    if (OtherUses[i]->getOperand(OffsetIdx).getNode() == BasePtr.getNode()) +      OffsetIdx = 0; +    assert(OtherUses[i]->getOperand(!OffsetIdx).getNode() == +           BasePtr.getNode() && "Expected BasePtr operand"); + +    // We need to replace ptr0 in the following expression: +    //   x0 * offset0 + y0 * ptr0 = t0 +    // knowing that +    //   x1 * offset1 + y1 * ptr0 = t1 (the indexed load/store) +    // +    // where x0, x1, y0 and y1 in {-1, 1} are given by the types of the +    // indexed load/store and the expression that needs to be re-written. +    // +    // Therefore, we have: +    //   t0 = (x0 * offset0 - x1 * y0 * y1 *offset1) + (y0 * y1) * t1 + +    ConstantSDNode *CN = +      cast<ConstantSDNode>(OtherUses[i]->getOperand(OffsetIdx)); +    int X0, X1, Y0, Y1; +    const APInt &Offset0 = CN->getAPIntValue(); +    APInt Offset1 = cast<ConstantSDNode>(Offset)->getAPIntValue(); + +    X0 = (OtherUses[i]->getOpcode() == ISD::SUB && OffsetIdx == 1) ? -1 : 1; +    Y0 = (OtherUses[i]->getOpcode() == ISD::SUB && OffsetIdx == 0) ? -1 : 1; +    X1 = (AM == ISD::PRE_DEC && !Swapped) ? -1 : 1; +    Y1 = (AM == ISD::PRE_DEC && Swapped) ? -1 : 1; + +    unsigned Opcode = (Y0 * Y1 < 0) ? ISD::SUB : ISD::ADD; + +    APInt CNV = Offset0; +    if (X0 < 0) CNV = -CNV; +    if (X1 * Y0 * Y1 < 0) CNV = CNV + Offset1; +    else CNV = CNV - Offset1; + +    SDLoc DL(OtherUses[i]); + +    // We can now generate the new expression. +    SDValue NewOp1 = DAG.getConstant(CNV, DL, CN->getValueType(0)); +    SDValue NewOp2 = Result.getValue(isLoad ? 1 : 0); + +    SDValue NewUse = DAG.getNode(Opcode, +                                 DL, +                                 OtherUses[i]->getValueType(0), NewOp1, NewOp2); +    DAG.ReplaceAllUsesOfValueWith(SDValue(OtherUses[i], 0), NewUse); +    deleteAndRecombine(OtherUses[i]); +  } + +  // Replace the uses of Ptr with uses of the updated base value. +  DAG.ReplaceAllUsesOfValueWith(Ptr, Result.getValue(isLoad ? 1 : 0)); +  deleteAndRecombine(Ptr.getNode()); +  AddToWorklist(Result.getNode()); + +  return true; +} + +/// Try to combine a load/store with a add/sub of the base pointer node into a +/// post-indexed load/store. The transformation folded the add/subtract into the +/// new indexed load/store effectively and all of its uses are redirected to the +/// new load/store. +bool DAGCombiner::CombineToPostIndexedLoadStore(SDNode *N) { +  if (Level < AfterLegalizeDAG) +    return false; + +  bool isLoad = true; +  SDValue Ptr; +  EVT VT; +  if (LoadSDNode *LD  = dyn_cast<LoadSDNode>(N)) { +    if (LD->isIndexed()) +      return false; +    VT = LD->getMemoryVT(); +    if (!TLI.isIndexedLoadLegal(ISD::POST_INC, VT) && +        !TLI.isIndexedLoadLegal(ISD::POST_DEC, VT)) +      return false; +    Ptr = LD->getBasePtr(); +  } else if (StoreSDNode *ST  = dyn_cast<StoreSDNode>(N)) { +    if (ST->isIndexed()) +      return false; +    VT = ST->getMemoryVT(); +    if (!TLI.isIndexedStoreLegal(ISD::POST_INC, VT) && +        !TLI.isIndexedStoreLegal(ISD::POST_DEC, VT)) +      return false; +    Ptr = ST->getBasePtr(); +    isLoad = false; +  } else { +    return false; +  } + +  if (Ptr.getNode()->hasOneUse()) +    return false; + +  for (SDNode *Op : Ptr.getNode()->uses()) { +    if (Op == N || +        (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB)) +      continue; + +    SDValue BasePtr; +    SDValue Offset; +    ISD::MemIndexedMode AM = ISD::UNINDEXED; +    if (TLI.getPostIndexedAddressParts(N, Op, BasePtr, Offset, AM, DAG)) { +      // Don't create a indexed load / store with zero offset. +      if (isNullConstant(Offset)) +        continue; + +      // Try turning it into a post-indexed load / store except when +      // 1) All uses are load / store ops that use it as base ptr (and +      //    it may be folded as addressing mmode). +      // 2) Op must be independent of N, i.e. Op is neither a predecessor +      //    nor a successor of N. Otherwise, if Op is folded that would +      //    create a cycle. + +      if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr)) +        continue; + +      // Check for #1. +      bool TryNext = false; +      for (SDNode *Use : BasePtr.getNode()->uses()) { +        if (Use == Ptr.getNode()) +          continue; + +        // If all the uses are load / store addresses, then don't do the +        // transformation. +        if (Use->getOpcode() == ISD::ADD || Use->getOpcode() == ISD::SUB){ +          bool RealUse = false; +          for (SDNode *UseUse : Use->uses()) { +            if (!canFoldInAddressingMode(Use, UseUse, DAG, TLI)) +              RealUse = true; +          } + +          if (!RealUse) { +            TryNext = true; +            break; +          } +        } +      } + +      if (TryNext) +        continue; + +      // Check for #2. +      SmallPtrSet<const SDNode *, 32> Visited; +      SmallVector<const SDNode *, 8> Worklist; +      // Ptr is predecessor to both N and Op. +      Visited.insert(Ptr.getNode()); +      Worklist.push_back(N); +      Worklist.push_back(Op); +      if (!SDNode::hasPredecessorHelper(N, Visited, Worklist) && +          !SDNode::hasPredecessorHelper(Op, Visited, Worklist)) { +        SDValue Result = isLoad +          ? DAG.getIndexedLoad(SDValue(N,0), SDLoc(N), +                               BasePtr, Offset, AM) +          : DAG.getIndexedStore(SDValue(N,0), SDLoc(N), +                                BasePtr, Offset, AM); +        ++PostIndexedNodes; +        ++NodesCombined; +        LLVM_DEBUG(dbgs() << "\nReplacing.5 "; N->dump(&DAG); +                   dbgs() << "\nWith: "; Result.getNode()->dump(&DAG); +                   dbgs() << '\n'); +        WorklistRemover DeadNodes(*this); +        if (isLoad) { +          DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0)); +          DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2)); +        } else { +          DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1)); +        } + +        // Finally, since the node is now dead, remove it from the graph. +        deleteAndRecombine(N); + +        // Replace the uses of Use with uses of the updated base value. +        DAG.ReplaceAllUsesOfValueWith(SDValue(Op, 0), +                                      Result.getValue(isLoad ? 1 : 0)); +        deleteAndRecombine(Op); +        return true; +      } +    } +  } + +  return false; +} + +/// Return the base-pointer arithmetic from an indexed \p LD. +SDValue DAGCombiner::SplitIndexingFromLoad(LoadSDNode *LD) { +  ISD::MemIndexedMode AM = LD->getAddressingMode(); +  assert(AM != ISD::UNINDEXED); +  SDValue BP = LD->getOperand(1); +  SDValue Inc = LD->getOperand(2); + +  // Some backends use TargetConstants for load offsets, but don't expect +  // TargetConstants in general ADD nodes. We can convert these constants into +  // regular Constants (if the constant is not opaque). +  assert((Inc.getOpcode() != ISD::TargetConstant || +          !cast<ConstantSDNode>(Inc)->isOpaque()) && +         "Cannot split out indexing using opaque target constants"); +  if (Inc.getOpcode() == ISD::TargetConstant) { +    ConstantSDNode *ConstInc = cast<ConstantSDNode>(Inc); +    Inc = DAG.getConstant(*ConstInc->getConstantIntValue(), SDLoc(Inc), +                          ConstInc->getValueType(0)); +  } + +  unsigned Opc = +      (AM == ISD::PRE_INC || AM == ISD::POST_INC ? ISD::ADD : ISD::SUB); +  return DAG.getNode(Opc, SDLoc(LD), BP.getSimpleValueType(), BP, Inc); +} + +static inline int numVectorEltsOrZero(EVT T) { +  return T.isVector() ? T.getVectorNumElements() : 0; +} + +bool DAGCombiner::getTruncatedStoreValue(StoreSDNode *ST, SDValue &Val) { +  Val = ST->getValue(); +  EVT STType = Val.getValueType(); +  EVT STMemType = ST->getMemoryVT(); +  if (STType == STMemType) +    return true; +  if (isTypeLegal(STMemType)) +    return false; // fail. +  if (STType.isFloatingPoint() && STMemType.isFloatingPoint() && +      TLI.isOperationLegal(ISD::FTRUNC, STMemType)) { +    Val = DAG.getNode(ISD::FTRUNC, SDLoc(ST), STMemType, Val); +    return true; +  } +  if (numVectorEltsOrZero(STType) == numVectorEltsOrZero(STMemType) && +      STType.isInteger() && STMemType.isInteger()) { +    Val = DAG.getNode(ISD::TRUNCATE, SDLoc(ST), STMemType, Val); +    return true; +  } +  if (STType.getSizeInBits() == STMemType.getSizeInBits()) { +    Val = DAG.getBitcast(STMemType, Val); +    return true; +  } +  return false; // fail. +} + +bool DAGCombiner::extendLoadedValueToExtension(LoadSDNode *LD, SDValue &Val) { +  EVT LDMemType = LD->getMemoryVT(); +  EVT LDType = LD->getValueType(0); +  assert(Val.getValueType() == LDMemType && +         "Attempting to extend value of non-matching type"); +  if (LDType == LDMemType) +    return true; +  if (LDMemType.isInteger() && LDType.isInteger()) { +    switch (LD->getExtensionType()) { +    case ISD::NON_EXTLOAD: +      Val = DAG.getBitcast(LDType, Val); +      return true; +    case ISD::EXTLOAD: +      Val = DAG.getNode(ISD::ANY_EXTEND, SDLoc(LD), LDType, Val); +      return true; +    case ISD::SEXTLOAD: +      Val = DAG.getNode(ISD::SIGN_EXTEND, SDLoc(LD), LDType, Val); +      return true; +    case ISD::ZEXTLOAD: +      Val = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(LD), LDType, Val); +      return true; +    } +  } +  return false; +} + +SDValue DAGCombiner::ForwardStoreValueToDirectLoad(LoadSDNode *LD) { +  if (OptLevel == CodeGenOpt::None || !LD->isSimple()) +    return SDValue(); +  SDValue Chain = LD->getOperand(0); +  StoreSDNode *ST = dyn_cast<StoreSDNode>(Chain.getNode()); +  // TODO: Relax this restriction for unordered atomics (see D66309) +  if (!ST || !ST->isSimple()) +    return SDValue(); + +  EVT LDType = LD->getValueType(0); +  EVT LDMemType = LD->getMemoryVT(); +  EVT STMemType = ST->getMemoryVT(); +  EVT STType = ST->getValue().getValueType(); + +  BaseIndexOffset BasePtrLD = BaseIndexOffset::match(LD, DAG); +  BaseIndexOffset BasePtrST = BaseIndexOffset::match(ST, DAG); +  int64_t Offset; +  if (!BasePtrST.equalBaseIndex(BasePtrLD, DAG, Offset)) +    return SDValue(); + +  // Normalize for Endianness. After this Offset=0 will denote that the least +  // significant bit in the loaded value maps to the least significant bit in +  // the stored value). With Offset=n (for n > 0) the loaded value starts at the +  // n:th least significant byte of the stored value. +  if (DAG.getDataLayout().isBigEndian()) +    Offset = (STMemType.getStoreSizeInBits() - +              LDMemType.getStoreSizeInBits()) / 8 - Offset; + +  // Check that the stored value cover all bits that are loaded. +  bool STCoversLD = +      (Offset >= 0) && +      (Offset * 8 + LDMemType.getSizeInBits() <= STMemType.getSizeInBits()); + +  auto ReplaceLd = [&](LoadSDNode *LD, SDValue Val, SDValue Chain) -> SDValue { +    if (LD->isIndexed()) { +      bool IsSub = (LD->getAddressingMode() == ISD::PRE_DEC || +                    LD->getAddressingMode() == ISD::POST_DEC); +      unsigned Opc = IsSub ? ISD::SUB : ISD::ADD; +      SDValue Idx = DAG.getNode(Opc, SDLoc(LD), LD->getOperand(1).getValueType(), +                             LD->getOperand(1), LD->getOperand(2)); +      SDValue Ops[] = {Val, Idx, Chain}; +      return CombineTo(LD, Ops, 3); +    } +    return CombineTo(LD, Val, Chain); +  }; + +  if (!STCoversLD) +    return SDValue(); + +  // Memory as copy space (potentially masked). +  if (Offset == 0 && LDType == STType && STMemType == LDMemType) { +    // Simple case: Direct non-truncating forwarding +    if (LDType.getSizeInBits() == LDMemType.getSizeInBits()) +      return ReplaceLd(LD, ST->getValue(), Chain); +    // Can we model the truncate and extension with an and mask? +    if (STType.isInteger() && LDMemType.isInteger() && !STType.isVector() && +        !LDMemType.isVector() && LD->getExtensionType() != ISD::SEXTLOAD) { +      // Mask to size of LDMemType +      auto Mask = +          DAG.getConstant(APInt::getLowBitsSet(STType.getSizeInBits(), +                                               STMemType.getSizeInBits()), +                          SDLoc(ST), STType); +      auto Val = DAG.getNode(ISD::AND, SDLoc(LD), LDType, ST->getValue(), Mask); +      return ReplaceLd(LD, Val, Chain); +    } +  } + +  // TODO: Deal with nonzero offset. +  if (LD->getBasePtr().isUndef() || Offset != 0) +    return SDValue(); +  // Model necessary truncations / extenstions. +  SDValue Val; +  // Truncate Value To Stored Memory Size. +  do { +    if (!getTruncatedStoreValue(ST, Val)) +      continue; +    if (!isTypeLegal(LDMemType)) +      continue; +    if (STMemType != LDMemType) { +      // TODO: Support vectors? This requires extract_subvector/bitcast. +      if (!STMemType.isVector() && !LDMemType.isVector() && +          STMemType.isInteger() && LDMemType.isInteger()) +        Val = DAG.getNode(ISD::TRUNCATE, SDLoc(LD), LDMemType, Val); +      else +        continue; +    } +    if (!extendLoadedValueToExtension(LD, Val)) +      continue; +    return ReplaceLd(LD, Val, Chain); +  } while (false); + +  // On failure, cleanup dead nodes we may have created. +  if (Val->use_empty()) +    deleteAndRecombine(Val.getNode()); +  return SDValue(); +} + +SDValue DAGCombiner::visitLOAD(SDNode *N) { +  LoadSDNode *LD  = cast<LoadSDNode>(N); +  SDValue Chain = LD->getChain(); +  SDValue Ptr   = LD->getBasePtr(); + +  // If load is not volatile and there are no uses of the loaded value (and +  // the updated indexed value in case of indexed loads), change uses of the +  // chain value into uses of the chain input (i.e. delete the dead load). +  // TODO: Allow this for unordered atomics (see D66309) +  if (LD->isSimple()) { +    if (N->getValueType(1) == MVT::Other) { +      // Unindexed loads. +      if (!N->hasAnyUseOfValue(0)) { +        // It's not safe to use the two value CombineTo variant here. e.g. +        // v1, chain2 = load chain1, loc +        // v2, chain3 = load chain2, loc +        // v3         = add v2, c +        // Now we replace use of chain2 with chain1.  This makes the second load +        // isomorphic to the one we are deleting, and thus makes this load live. +        LLVM_DEBUG(dbgs() << "\nReplacing.6 "; N->dump(&DAG); +                   dbgs() << "\nWith chain: "; Chain.getNode()->dump(&DAG); +                   dbgs() << "\n"); +        WorklistRemover DeadNodes(*this); +        DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain); +        AddUsersToWorklist(Chain.getNode()); +        if (N->use_empty()) +          deleteAndRecombine(N); + +        return SDValue(N, 0);   // Return N so it doesn't get rechecked! +      } +    } else { +      // Indexed loads. +      assert(N->getValueType(2) == MVT::Other && "Malformed indexed loads?"); + +      // If this load has an opaque TargetConstant offset, then we cannot split +      // the indexing into an add/sub directly (that TargetConstant may not be +      // valid for a different type of node, and we cannot convert an opaque +      // target constant into a regular constant). +      bool HasOTCInc = LD->getOperand(2).getOpcode() == ISD::TargetConstant && +                       cast<ConstantSDNode>(LD->getOperand(2))->isOpaque(); + +      if (!N->hasAnyUseOfValue(0) && +          ((MaySplitLoadIndex && !HasOTCInc) || !N->hasAnyUseOfValue(1))) { +        SDValue Undef = DAG.getUNDEF(N->getValueType(0)); +        SDValue Index; +        if (N->hasAnyUseOfValue(1) && MaySplitLoadIndex && !HasOTCInc) { +          Index = SplitIndexingFromLoad(LD); +          // Try to fold the base pointer arithmetic into subsequent loads and +          // stores. +          AddUsersToWorklist(N); +        } else +          Index = DAG.getUNDEF(N->getValueType(1)); +        LLVM_DEBUG(dbgs() << "\nReplacing.7 "; N->dump(&DAG); +                   dbgs() << "\nWith: "; Undef.getNode()->dump(&DAG); +                   dbgs() << " and 2 other values\n"); +        WorklistRemover DeadNodes(*this); +        DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Undef); +        DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Index); +        DAG.ReplaceAllUsesOfValueWith(SDValue(N, 2), Chain); +        deleteAndRecombine(N); +        return SDValue(N, 0);   // Return N so it doesn't get rechecked! +      } +    } +  } + +  // If this load is directly stored, replace the load value with the stored +  // value. +  if (auto V = ForwardStoreValueToDirectLoad(LD)) +    return V; + +  // Try to infer better alignment information than the load already has. +  if (OptLevel != CodeGenOpt::None && LD->isUnindexed()) { +    if (unsigned Align = DAG.InferPtrAlignment(Ptr)) { +      if (Align > LD->getAlignment() && LD->getSrcValueOffset() % Align == 0) { +        SDValue NewLoad = DAG.getExtLoad( +            LD->getExtensionType(), SDLoc(N), LD->getValueType(0), Chain, Ptr, +            LD->getPointerInfo(), LD->getMemoryVT(), Align, +            LD->getMemOperand()->getFlags(), LD->getAAInfo()); +        // NewLoad will always be N as we are only refining the alignment +        assert(NewLoad.getNode() == N); +        (void)NewLoad; +      } +    } +  } + +  if (LD->isUnindexed()) { +    // Walk up chain skipping non-aliasing memory nodes. +    SDValue BetterChain = FindBetterChain(LD, Chain); + +    // If there is a better chain. +    if (Chain != BetterChain) { +      SDValue ReplLoad; + +      // Replace the chain to void dependency. +      if (LD->getExtensionType() == ISD::NON_EXTLOAD) { +        ReplLoad = DAG.getLoad(N->getValueType(0), SDLoc(LD), +                               BetterChain, Ptr, LD->getMemOperand()); +      } else { +        ReplLoad = DAG.getExtLoad(LD->getExtensionType(), SDLoc(LD), +                                  LD->getValueType(0), +                                  BetterChain, Ptr, LD->getMemoryVT(), +                                  LD->getMemOperand()); +      } + +      // Create token factor to keep old chain connected. +      SDValue Token = DAG.getNode(ISD::TokenFactor, SDLoc(N), +                                  MVT::Other, Chain, ReplLoad.getValue(1)); + +      // Replace uses with load result and token factor +      return CombineTo(N, ReplLoad.getValue(0), Token); +    } +  } + +  // Try transforming N to an indexed load. +  if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N)) +    return SDValue(N, 0); + +  // Try to slice up N to more direct loads if the slices are mapped to +  // different register banks or pairing can take place. +  if (SliceUpLoad(N)) +    return SDValue(N, 0); + +  return SDValue(); +} + +namespace { + +/// Helper structure used to slice a load in smaller loads. +/// Basically a slice is obtained from the following sequence: +/// Origin = load Ty1, Base +/// Shift = srl Ty1 Origin, CstTy Amount +/// Inst = trunc Shift to Ty2 +/// +/// Then, it will be rewritten into: +/// Slice = load SliceTy, Base + SliceOffset +/// [Inst = zext Slice to Ty2], only if SliceTy <> Ty2 +/// +/// SliceTy is deduced from the number of bits that are actually used to +/// build Inst. +struct LoadedSlice { +  /// Helper structure used to compute the cost of a slice. +  struct Cost { +    /// Are we optimizing for code size. +    bool ForCodeSize = false; + +    /// Various cost. +    unsigned Loads = 0; +    unsigned Truncates = 0; +    unsigned CrossRegisterBanksCopies = 0; +    unsigned ZExts = 0; +    unsigned Shift = 0; + +    explicit Cost(bool ForCodeSize) : ForCodeSize(ForCodeSize) {} + +    /// Get the cost of one isolated slice. +    Cost(const LoadedSlice &LS, bool ForCodeSize) +        : ForCodeSize(ForCodeSize), Loads(1) { +      EVT TruncType = LS.Inst->getValueType(0); +      EVT LoadedType = LS.getLoadedType(); +      if (TruncType != LoadedType && +          !LS.DAG->getTargetLoweringInfo().isZExtFree(LoadedType, TruncType)) +        ZExts = 1; +    } + +    /// Account for slicing gain in the current cost. +    /// Slicing provide a few gains like removing a shift or a +    /// truncate. This method allows to grow the cost of the original +    /// load with the gain from this slice. +    void addSliceGain(const LoadedSlice &LS) { +      // Each slice saves a truncate. +      const TargetLowering &TLI = LS.DAG->getTargetLoweringInfo(); +      if (!TLI.isTruncateFree(LS.Inst->getOperand(0).getValueType(), +                              LS.Inst->getValueType(0))) +        ++Truncates; +      // If there is a shift amount, this slice gets rid of it. +      if (LS.Shift) +        ++Shift; +      // If this slice can merge a cross register bank copy, account for it. +      if (LS.canMergeExpensiveCrossRegisterBankCopy()) +        ++CrossRegisterBanksCopies; +    } + +    Cost &operator+=(const Cost &RHS) { +      Loads += RHS.Loads; +      Truncates += RHS.Truncates; +      CrossRegisterBanksCopies += RHS.CrossRegisterBanksCopies; +      ZExts += RHS.ZExts; +      Shift += RHS.Shift; +      return *this; +    } + +    bool operator==(const Cost &RHS) const { +      return Loads == RHS.Loads && Truncates == RHS.Truncates && +             CrossRegisterBanksCopies == RHS.CrossRegisterBanksCopies && +             ZExts == RHS.ZExts && Shift == RHS.Shift; +    } + +    bool operator!=(const Cost &RHS) const { return !(*this == RHS); } + +    bool operator<(const Cost &RHS) const { +      // Assume cross register banks copies are as expensive as loads. +      // FIXME: Do we want some more target hooks? +      unsigned ExpensiveOpsLHS = Loads + CrossRegisterBanksCopies; +      unsigned ExpensiveOpsRHS = RHS.Loads + RHS.CrossRegisterBanksCopies; +      // Unless we are optimizing for code size, consider the +      // expensive operation first. +      if (!ForCodeSize && ExpensiveOpsLHS != ExpensiveOpsRHS) +        return ExpensiveOpsLHS < ExpensiveOpsRHS; +      return (Truncates + ZExts + Shift + ExpensiveOpsLHS) < +             (RHS.Truncates + RHS.ZExts + RHS.Shift + ExpensiveOpsRHS); +    } + +    bool operator>(const Cost &RHS) const { return RHS < *this; } + +    bool operator<=(const Cost &RHS) const { return !(RHS < *this); } + +    bool operator>=(const Cost &RHS) const { return !(*this < RHS); } +  }; + +  // The last instruction that represent the slice. This should be a +  // truncate instruction. +  SDNode *Inst; + +  // The original load instruction. +  LoadSDNode *Origin; + +  // The right shift amount in bits from the original load. +  unsigned Shift; + +  // The DAG from which Origin came from. +  // This is used to get some contextual information about legal types, etc. +  SelectionDAG *DAG; + +  LoadedSlice(SDNode *Inst = nullptr, LoadSDNode *Origin = nullptr, +              unsigned Shift = 0, SelectionDAG *DAG = nullptr) +      : Inst(Inst), Origin(Origin), Shift(Shift), DAG(DAG) {} + +  /// Get the bits used in a chunk of bits \p BitWidth large. +  /// \return Result is \p BitWidth and has used bits set to 1 and +  ///         not used bits set to 0. +  APInt getUsedBits() const { +    // Reproduce the trunc(lshr) sequence: +    // - Start from the truncated value. +    // - Zero extend to the desired bit width. +    // - Shift left. +    assert(Origin && "No original load to compare against."); +    unsigned BitWidth = Origin->getValueSizeInBits(0); +    assert(Inst && "This slice is not bound to an instruction"); +    assert(Inst->getValueSizeInBits(0) <= BitWidth && +           "Extracted slice is bigger than the whole type!"); +    APInt UsedBits(Inst->getValueSizeInBits(0), 0); +    UsedBits.setAllBits(); +    UsedBits = UsedBits.zext(BitWidth); +    UsedBits <<= Shift; +    return UsedBits; +  } + +  /// Get the size of the slice to be loaded in bytes. +  unsigned getLoadedSize() const { +    unsigned SliceSize = getUsedBits().countPopulation(); +    assert(!(SliceSize & 0x7) && "Size is not a multiple of a byte."); +    return SliceSize / 8; +  } + +  /// Get the type that will be loaded for this slice. +  /// Note: This may not be the final type for the slice. +  EVT getLoadedType() const { +    assert(DAG && "Missing context"); +    LLVMContext &Ctxt = *DAG->getContext(); +    return EVT::getIntegerVT(Ctxt, getLoadedSize() * 8); +  } + +  /// Get the alignment of the load used for this slice. +  unsigned getAlignment() const { +    unsigned Alignment = Origin->getAlignment(); +    uint64_t Offset = getOffsetFromBase(); +    if (Offset != 0) +      Alignment = MinAlign(Alignment, Alignment + Offset); +    return Alignment; +  } + +  /// Check if this slice can be rewritten with legal operations. +  bool isLegal() const { +    // An invalid slice is not legal. +    if (!Origin || !Inst || !DAG) +      return false; + +    // Offsets are for indexed load only, we do not handle that. +    if (!Origin->getOffset().isUndef()) +      return false; + +    const TargetLowering &TLI = DAG->getTargetLoweringInfo(); + +    // Check that the type is legal. +    EVT SliceType = getLoadedType(); +    if (!TLI.isTypeLegal(SliceType)) +      return false; + +    // Check that the load is legal for this type. +    if (!TLI.isOperationLegal(ISD::LOAD, SliceType)) +      return false; + +    // Check that the offset can be computed. +    // 1. Check its type. +    EVT PtrType = Origin->getBasePtr().getValueType(); +    if (PtrType == MVT::Untyped || PtrType.isExtended()) +      return false; + +    // 2. Check that it fits in the immediate. +    if (!TLI.isLegalAddImmediate(getOffsetFromBase())) +      return false; + +    // 3. Check that the computation is legal. +    if (!TLI.isOperationLegal(ISD::ADD, PtrType)) +      return false; + +    // Check that the zext is legal if it needs one. +    EVT TruncateType = Inst->getValueType(0); +    if (TruncateType != SliceType && +        !TLI.isOperationLegal(ISD::ZERO_EXTEND, TruncateType)) +      return false; + +    return true; +  } + +  /// Get the offset in bytes of this slice in the original chunk of +  /// bits. +  /// \pre DAG != nullptr. +  uint64_t getOffsetFromBase() const { +    assert(DAG && "Missing context."); +    bool IsBigEndian = DAG->getDataLayout().isBigEndian(); +    assert(!(Shift & 0x7) && "Shifts not aligned on Bytes are not supported."); +    uint64_t Offset = Shift / 8; +    unsigned TySizeInBytes = Origin->getValueSizeInBits(0) / 8; +    assert(!(Origin->getValueSizeInBits(0) & 0x7) && +           "The size of the original loaded type is not a multiple of a" +           " byte."); +    // If Offset is bigger than TySizeInBytes, it means we are loading all +    // zeros. This should have been optimized before in the process. +    assert(TySizeInBytes > Offset && +           "Invalid shift amount for given loaded size"); +    if (IsBigEndian) +      Offset = TySizeInBytes - Offset - getLoadedSize(); +    return Offset; +  } + +  /// Generate the sequence of instructions to load the slice +  /// represented by this object and redirect the uses of this slice to +  /// this new sequence of instructions. +  /// \pre this->Inst && this->Origin are valid Instructions and this +  /// object passed the legal check: LoadedSlice::isLegal returned true. +  /// \return The last instruction of the sequence used to load the slice. +  SDValue loadSlice() const { +    assert(Inst && Origin && "Unable to replace a non-existing slice."); +    const SDValue &OldBaseAddr = Origin->getBasePtr(); +    SDValue BaseAddr = OldBaseAddr; +    // Get the offset in that chunk of bytes w.r.t. the endianness. +    int64_t Offset = static_cast<int64_t>(getOffsetFromBase()); +    assert(Offset >= 0 && "Offset too big to fit in int64_t!"); +    if (Offset) { +      // BaseAddr = BaseAddr + Offset. +      EVT ArithType = BaseAddr.getValueType(); +      SDLoc DL(Origin); +      BaseAddr = DAG->getNode(ISD::ADD, DL, ArithType, BaseAddr, +                              DAG->getConstant(Offset, DL, ArithType)); +    } + +    // Create the type of the loaded slice according to its size. +    EVT SliceType = getLoadedType(); + +    // Create the load for the slice. +    SDValue LastInst = +        DAG->getLoad(SliceType, SDLoc(Origin), Origin->getChain(), BaseAddr, +                     Origin->getPointerInfo().getWithOffset(Offset), +                     getAlignment(), Origin->getMemOperand()->getFlags()); +    // If the final type is not the same as the loaded type, this means that +    // we have to pad with zero. Create a zero extend for that. +    EVT FinalType = Inst->getValueType(0); +    if (SliceType != FinalType) +      LastInst = +          DAG->getNode(ISD::ZERO_EXTEND, SDLoc(LastInst), FinalType, LastInst); +    return LastInst; +  } + +  /// Check if this slice can be merged with an expensive cross register +  /// bank copy. E.g., +  /// i = load i32 +  /// f = bitcast i32 i to float +  bool canMergeExpensiveCrossRegisterBankCopy() const { +    if (!Inst || !Inst->hasOneUse()) +      return false; +    SDNode *Use = *Inst->use_begin(); +    if (Use->getOpcode() != ISD::BITCAST) +      return false; +    assert(DAG && "Missing context"); +    const TargetLowering &TLI = DAG->getTargetLoweringInfo(); +    EVT ResVT = Use->getValueType(0); +    const TargetRegisterClass *ResRC = +        TLI.getRegClassFor(ResVT.getSimpleVT(), Use->isDivergent()); +    const TargetRegisterClass *ArgRC = +        TLI.getRegClassFor(Use->getOperand(0).getValueType().getSimpleVT(), +                           Use->getOperand(0)->isDivergent()); +    if (ArgRC == ResRC || !TLI.isOperationLegal(ISD::LOAD, ResVT)) +      return false; + +    // At this point, we know that we perform a cross-register-bank copy. +    // Check if it is expensive. +    const TargetRegisterInfo *TRI = DAG->getSubtarget().getRegisterInfo(); +    // Assume bitcasts are cheap, unless both register classes do not +    // explicitly share a common sub class. +    if (!TRI || TRI->getCommonSubClass(ArgRC, ResRC)) +      return false; + +    // Check if it will be merged with the load. +    // 1. Check the alignment constraint. +    unsigned RequiredAlignment = DAG->getDataLayout().getABITypeAlignment( +        ResVT.getTypeForEVT(*DAG->getContext())); + +    if (RequiredAlignment > getAlignment()) +      return false; + +    // 2. Check that the load is a legal operation for that type. +    if (!TLI.isOperationLegal(ISD::LOAD, ResVT)) +      return false; + +    // 3. Check that we do not have a zext in the way. +    if (Inst->getValueType(0) != getLoadedType()) +      return false; + +    return true; +  } +}; + +} // end anonymous namespace + +/// Check that all bits set in \p UsedBits form a dense region, i.e., +/// \p UsedBits looks like 0..0 1..1 0..0. +static bool areUsedBitsDense(const APInt &UsedBits) { +  // If all the bits are one, this is dense! +  if (UsedBits.isAllOnesValue()) +    return true; + +  // Get rid of the unused bits on the right. +  APInt NarrowedUsedBits = UsedBits.lshr(UsedBits.countTrailingZeros()); +  // Get rid of the unused bits on the left. +  if (NarrowedUsedBits.countLeadingZeros()) +    NarrowedUsedBits = NarrowedUsedBits.trunc(NarrowedUsedBits.getActiveBits()); +  // Check that the chunk of bits is completely used. +  return NarrowedUsedBits.isAllOnesValue(); +} + +/// Check whether or not \p First and \p Second are next to each other +/// in memory. This means that there is no hole between the bits loaded +/// by \p First and the bits loaded by \p Second. +static bool areSlicesNextToEachOther(const LoadedSlice &First, +                                     const LoadedSlice &Second) { +  assert(First.Origin == Second.Origin && First.Origin && +         "Unable to match different memory origins."); +  APInt UsedBits = First.getUsedBits(); +  assert((UsedBits & Second.getUsedBits()) == 0 && +         "Slices are not supposed to overlap."); +  UsedBits |= Second.getUsedBits(); +  return areUsedBitsDense(UsedBits); +} + +/// Adjust the \p GlobalLSCost according to the target +/// paring capabilities and the layout of the slices. +/// \pre \p GlobalLSCost should account for at least as many loads as +/// there is in the slices in \p LoadedSlices. +static void adjustCostForPairing(SmallVectorImpl<LoadedSlice> &LoadedSlices, +                                 LoadedSlice::Cost &GlobalLSCost) { +  unsigned NumberOfSlices = LoadedSlices.size(); +  // If there is less than 2 elements, no pairing is possible. +  if (NumberOfSlices < 2) +    return; + +  // Sort the slices so that elements that are likely to be next to each +  // other in memory are next to each other in the list. +  llvm::sort(LoadedSlices, [](const LoadedSlice &LHS, const LoadedSlice &RHS) { +    assert(LHS.Origin == RHS.Origin && "Different bases not implemented."); +    return LHS.getOffsetFromBase() < RHS.getOffsetFromBase(); +  }); +  const TargetLowering &TLI = LoadedSlices[0].DAG->getTargetLoweringInfo(); +  // First (resp. Second) is the first (resp. Second) potentially candidate +  // to be placed in a paired load. +  const LoadedSlice *First = nullptr; +  const LoadedSlice *Second = nullptr; +  for (unsigned CurrSlice = 0; CurrSlice < NumberOfSlices; ++CurrSlice, +                // Set the beginning of the pair. +                                                           First = Second) { +    Second = &LoadedSlices[CurrSlice]; + +    // If First is NULL, it means we start a new pair. +    // Get to the next slice. +    if (!First) +      continue; + +    EVT LoadedType = First->getLoadedType(); + +    // If the types of the slices are different, we cannot pair them. +    if (LoadedType != Second->getLoadedType()) +      continue; + +    // Check if the target supplies paired loads for this type. +    unsigned RequiredAlignment = 0; +    if (!TLI.hasPairedLoad(LoadedType, RequiredAlignment)) { +      // move to the next pair, this type is hopeless. +      Second = nullptr; +      continue; +    } +    // Check if we meet the alignment requirement. +    if (RequiredAlignment > First->getAlignment()) +      continue; + +    // Check that both loads are next to each other in memory. +    if (!areSlicesNextToEachOther(*First, *Second)) +      continue; + +    assert(GlobalLSCost.Loads > 0 && "We save more loads than we created!"); +    --GlobalLSCost.Loads; +    // Move to the next pair. +    Second = nullptr; +  } +} + +/// Check the profitability of all involved LoadedSlice. +/// Currently, it is considered profitable if there is exactly two +/// involved slices (1) which are (2) next to each other in memory, and +/// whose cost (\see LoadedSlice::Cost) is smaller than the original load (3). +/// +/// Note: The order of the elements in \p LoadedSlices may be modified, but not +/// the elements themselves. +/// +/// FIXME: When the cost model will be mature enough, we can relax +/// constraints (1) and (2). +static bool isSlicingProfitable(SmallVectorImpl<LoadedSlice> &LoadedSlices, +                                const APInt &UsedBits, bool ForCodeSize) { +  unsigned NumberOfSlices = LoadedSlices.size(); +  if (StressLoadSlicing) +    return NumberOfSlices > 1; + +  // Check (1). +  if (NumberOfSlices != 2) +    return false; + +  // Check (2). +  if (!areUsedBitsDense(UsedBits)) +    return false; + +  // Check (3). +  LoadedSlice::Cost OrigCost(ForCodeSize), GlobalSlicingCost(ForCodeSize); +  // The original code has one big load. +  OrigCost.Loads = 1; +  for (unsigned CurrSlice = 0; CurrSlice < NumberOfSlices; ++CurrSlice) { +    const LoadedSlice &LS = LoadedSlices[CurrSlice]; +    // Accumulate the cost of all the slices. +    LoadedSlice::Cost SliceCost(LS, ForCodeSize); +    GlobalSlicingCost += SliceCost; + +    // Account as cost in the original configuration the gain obtained +    // with the current slices. +    OrigCost.addSliceGain(LS); +  } + +  // If the target supports paired load, adjust the cost accordingly. +  adjustCostForPairing(LoadedSlices, GlobalSlicingCost); +  return OrigCost > GlobalSlicingCost; +} + +/// If the given load, \p LI, is used only by trunc or trunc(lshr) +/// operations, split it in the various pieces being extracted. +/// +/// This sort of thing is introduced by SROA. +/// This slicing takes care not to insert overlapping loads. +/// \pre LI is a simple load (i.e., not an atomic or volatile load). +bool DAGCombiner::SliceUpLoad(SDNode *N) { +  if (Level < AfterLegalizeDAG) +    return false; + +  LoadSDNode *LD = cast<LoadSDNode>(N); +  if (!LD->isSimple() || !ISD::isNormalLoad(LD) || +      !LD->getValueType(0).isInteger()) +    return false; + +  // Keep track of already used bits to detect overlapping values. +  // In that case, we will just abort the transformation. +  APInt UsedBits(LD->getValueSizeInBits(0), 0); + +  SmallVector<LoadedSlice, 4> LoadedSlices; + +  // Check if this load is used as several smaller chunks of bits. +  // Basically, look for uses in trunc or trunc(lshr) and record a new chain +  // of computation for each trunc. +  for (SDNode::use_iterator UI = LD->use_begin(), UIEnd = LD->use_end(); +       UI != UIEnd; ++UI) { +    // Skip the uses of the chain. +    if (UI.getUse().getResNo() != 0) +      continue; + +    SDNode *User = *UI; +    unsigned Shift = 0; + +    // Check if this is a trunc(lshr). +    if (User->getOpcode() == ISD::SRL && User->hasOneUse() && +        isa<ConstantSDNode>(User->getOperand(1))) { +      Shift = User->getConstantOperandVal(1); +      User = *User->use_begin(); +    } + +    // At this point, User is a Truncate, iff we encountered, trunc or +    // trunc(lshr). +    if (User->getOpcode() != ISD::TRUNCATE) +      return false; + +    // The width of the type must be a power of 2 and greater than 8-bits. +    // Otherwise the load cannot be represented in LLVM IR. +    // Moreover, if we shifted with a non-8-bits multiple, the slice +    // will be across several bytes. We do not support that. +    unsigned Width = User->getValueSizeInBits(0); +    if (Width < 8 || !isPowerOf2_32(Width) || (Shift & 0x7)) +      return false; + +    // Build the slice for this chain of computations. +    LoadedSlice LS(User, LD, Shift, &DAG); +    APInt CurrentUsedBits = LS.getUsedBits(); + +    // Check if this slice overlaps with another. +    if ((CurrentUsedBits & UsedBits) != 0) +      return false; +    // Update the bits used globally. +    UsedBits |= CurrentUsedBits; + +    // Check if the new slice would be legal. +    if (!LS.isLegal()) +      return false; + +    // Record the slice. +    LoadedSlices.push_back(LS); +  } + +  // Abort slicing if it does not seem to be profitable. +  if (!isSlicingProfitable(LoadedSlices, UsedBits, ForCodeSize)) +    return false; + +  ++SlicedLoads; + +  // Rewrite each chain to use an independent load. +  // By construction, each chain can be represented by a unique load. + +  // Prepare the argument for the new token factor for all the slices. +  SmallVector<SDValue, 8> ArgChains; +  for (SmallVectorImpl<LoadedSlice>::const_iterator +           LSIt = LoadedSlices.begin(), +           LSItEnd = LoadedSlices.end(); +       LSIt != LSItEnd; ++LSIt) { +    SDValue SliceInst = LSIt->loadSlice(); +    CombineTo(LSIt->Inst, SliceInst, true); +    if (SliceInst.getOpcode() != ISD::LOAD) +      SliceInst = SliceInst.getOperand(0); +    assert(SliceInst->getOpcode() == ISD::LOAD && +           "It takes more than a zext to get to the loaded slice!!"); +    ArgChains.push_back(SliceInst.getValue(1)); +  } + +  SDValue Chain = DAG.getNode(ISD::TokenFactor, SDLoc(LD), MVT::Other, +                              ArgChains); +  DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain); +  AddToWorklist(Chain.getNode()); +  return true; +} + +/// Check to see if V is (and load (ptr), imm), where the load is having +/// specific bytes cleared out.  If so, return the byte size being masked out +/// and the shift amount. +static std::pair<unsigned, unsigned> +CheckForMaskedLoad(SDValue V, SDValue Ptr, SDValue Chain) { +  std::pair<unsigned, unsigned> Result(0, 0); + +  // Check for the structure we're looking for. +  if (V->getOpcode() != ISD::AND || +      !isa<ConstantSDNode>(V->getOperand(1)) || +      !ISD::isNormalLoad(V->getOperand(0).getNode())) +    return Result; + +  // Check the chain and pointer. +  LoadSDNode *LD = cast<LoadSDNode>(V->getOperand(0)); +  if (LD->getBasePtr() != Ptr) return Result;  // Not from same pointer. + +  // This only handles simple types. +  if (V.getValueType() != MVT::i16 && +      V.getValueType() != MVT::i32 && +      V.getValueType() != MVT::i64) +    return Result; + +  // Check the constant mask.  Invert it so that the bits being masked out are +  // 0 and the bits being kept are 1.  Use getSExtValue so that leading bits +  // follow the sign bit for uniformity. +  uint64_t NotMask = ~cast<ConstantSDNode>(V->getOperand(1))->getSExtValue(); +  unsigned NotMaskLZ = countLeadingZeros(NotMask); +  if (NotMaskLZ & 7) return Result;  // Must be multiple of a byte. +  unsigned NotMaskTZ = countTrailingZeros(NotMask); +  if (NotMaskTZ & 7) return Result;  // Must be multiple of a byte. +  if (NotMaskLZ == 64) return Result;  // All zero mask. + +  // See if we have a continuous run of bits.  If so, we have 0*1+0* +  if (countTrailingOnes(NotMask >> NotMaskTZ) + NotMaskTZ + NotMaskLZ != 64) +    return Result; + +  // Adjust NotMaskLZ down to be from the actual size of the int instead of i64. +  if (V.getValueType() != MVT::i64 && NotMaskLZ) +    NotMaskLZ -= 64-V.getValueSizeInBits(); + +  unsigned MaskedBytes = (V.getValueSizeInBits()-NotMaskLZ-NotMaskTZ)/8; +  switch (MaskedBytes) { +  case 1: +  case 2: +  case 4: break; +  default: return Result; // All one mask, or 5-byte mask. +  } + +  // Verify that the first bit starts at a multiple of mask so that the access +  // is aligned the same as the access width. +  if (NotMaskTZ && NotMaskTZ/8 % MaskedBytes) return Result; + +  // For narrowing to be valid, it must be the case that the load the +  // immediately preceding memory operation before the store. +  if (LD == Chain.getNode()) +    ; // ok. +  else if (Chain->getOpcode() == ISD::TokenFactor && +           SDValue(LD, 1).hasOneUse()) { +    // LD has only 1 chain use so they are no indirect dependencies. +    if (!LD->isOperandOf(Chain.getNode())) +      return Result; +  } else +    return Result; // Fail. + +  Result.first = MaskedBytes; +  Result.second = NotMaskTZ/8; +  return Result; +} + +/// Check to see if IVal is something that provides a value as specified by +/// MaskInfo. If so, replace the specified store with a narrower store of +/// truncated IVal. +static SDValue +ShrinkLoadReplaceStoreWithStore(const std::pair<unsigned, unsigned> &MaskInfo, +                                SDValue IVal, StoreSDNode *St, +                                DAGCombiner *DC) { +  unsigned NumBytes = MaskInfo.first; +  unsigned ByteShift = MaskInfo.second; +  SelectionDAG &DAG = DC->getDAG(); + +  // Check to see if IVal is all zeros in the part being masked in by the 'or' +  // that uses this.  If not, this is not a replacement. +  APInt Mask = ~APInt::getBitsSet(IVal.getValueSizeInBits(), +                                  ByteShift*8, (ByteShift+NumBytes)*8); +  if (!DAG.MaskedValueIsZero(IVal, Mask)) return SDValue(); + +  // Check that it is legal on the target to do this.  It is legal if the new +  // VT we're shrinking to (i8/i16/i32) is legal or we're still before type +  // legalization (and the target doesn't explicitly think this is a bad idea). +  MVT VT = MVT::getIntegerVT(NumBytes * 8); +  const TargetLowering &TLI = DAG.getTargetLoweringInfo(); +  if (!DC->isTypeLegal(VT)) +    return SDValue(); +  if (St->getMemOperand() && +      !TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), VT, +                              *St->getMemOperand())) +    return SDValue(); + +  // Okay, we can do this!  Replace the 'St' store with a store of IVal that is +  // shifted by ByteShift and truncated down to NumBytes. +  if (ByteShift) { +    SDLoc DL(IVal); +    IVal = DAG.getNode(ISD::SRL, DL, IVal.getValueType(), IVal, +                       DAG.getConstant(ByteShift*8, DL, +                                    DC->getShiftAmountTy(IVal.getValueType()))); +  } + +  // Figure out the offset for the store and the alignment of the access. +  unsigned StOffset; +  unsigned NewAlign = St->getAlignment(); + +  if (DAG.getDataLayout().isLittleEndian()) +    StOffset = ByteShift; +  else +    StOffset = IVal.getValueType().getStoreSize() - ByteShift - NumBytes; + +  SDValue Ptr = St->getBasePtr(); +  if (StOffset) { +    SDLoc DL(IVal); +    Ptr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), +                      Ptr, DAG.getConstant(StOffset, DL, Ptr.getValueType())); +    NewAlign = MinAlign(NewAlign, StOffset); +  } + +  // Truncate down to the new size. +  IVal = DAG.getNode(ISD::TRUNCATE, SDLoc(IVal), VT, IVal); + +  ++OpsNarrowed; +  return DAG +      .getStore(St->getChain(), SDLoc(St), IVal, Ptr, +                St->getPointerInfo().getWithOffset(StOffset), NewAlign); +} + +/// Look for sequence of load / op / store where op is one of 'or', 'xor', and +/// 'and' of immediates. If 'op' is only touching some of the loaded bits, try +/// narrowing the load and store if it would end up being a win for performance +/// or code size. +SDValue DAGCombiner::ReduceLoadOpStoreWidth(SDNode *N) { +  StoreSDNode *ST  = cast<StoreSDNode>(N); +  if (!ST->isSimple()) +    return SDValue(); + +  SDValue Chain = ST->getChain(); +  SDValue Value = ST->getValue(); +  SDValue Ptr   = ST->getBasePtr(); +  EVT VT = Value.getValueType(); + +  if (ST->isTruncatingStore() || VT.isVector() || !Value.hasOneUse()) +    return SDValue(); + +  unsigned Opc = Value.getOpcode(); + +  // If this is "store (or X, Y), P" and X is "(and (load P), cst)", where cst +  // is a byte mask indicating a consecutive number of bytes, check to see if +  // Y is known to provide just those bytes.  If so, we try to replace the +  // load + replace + store sequence with a single (narrower) store, which makes +  // the load dead. +  if (Opc == ISD::OR) { +    std::pair<unsigned, unsigned> MaskedLoad; +    MaskedLoad = CheckForMaskedLoad(Value.getOperand(0), Ptr, Chain); +    if (MaskedLoad.first) +      if (SDValue NewST = ShrinkLoadReplaceStoreWithStore(MaskedLoad, +                                                  Value.getOperand(1), ST,this)) +        return NewST; + +    // Or is commutative, so try swapping X and Y. +    MaskedLoad = CheckForMaskedLoad(Value.getOperand(1), Ptr, Chain); +    if (MaskedLoad.first) +      if (SDValue NewST = ShrinkLoadReplaceStoreWithStore(MaskedLoad, +                                                  Value.getOperand(0), ST,this)) +        return NewST; +  } + +  if ((Opc != ISD::OR && Opc != ISD::XOR && Opc != ISD::AND) || +      Value.getOperand(1).getOpcode() != ISD::Constant) +    return SDValue(); + +  SDValue N0 = Value.getOperand(0); +  if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() && +      Chain == SDValue(N0.getNode(), 1)) { +    LoadSDNode *LD = cast<LoadSDNode>(N0); +    if (LD->getBasePtr() != Ptr || +        LD->getPointerInfo().getAddrSpace() != +        ST->getPointerInfo().getAddrSpace()) +      return SDValue(); + +    // Find the type to narrow it the load / op / store to. +    SDValue N1 = Value.getOperand(1); +    unsigned BitWidth = N1.getValueSizeInBits(); +    APInt Imm = cast<ConstantSDNode>(N1)->getAPIntValue(); +    if (Opc == ISD::AND) +      Imm ^= APInt::getAllOnesValue(BitWidth); +    if (Imm == 0 || Imm.isAllOnesValue()) +      return SDValue(); +    unsigned ShAmt = Imm.countTrailingZeros(); +    unsigned MSB = BitWidth - Imm.countLeadingZeros() - 1; +    unsigned NewBW = NextPowerOf2(MSB - ShAmt); +    EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW); +    // The narrowing should be profitable, the load/store operation should be +    // legal (or custom) and the store size should be equal to the NewVT width. +    while (NewBW < BitWidth && +           (NewVT.getStoreSizeInBits() != NewBW || +            !TLI.isOperationLegalOrCustom(Opc, NewVT) || +            !TLI.isNarrowingProfitable(VT, NewVT))) { +      NewBW = NextPowerOf2(NewBW); +      NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW); +    } +    if (NewBW >= BitWidth) +      return SDValue(); + +    // If the lsb changed does not start at the type bitwidth boundary, +    // start at the previous one. +    if (ShAmt % NewBW) +      ShAmt = (((ShAmt + NewBW - 1) / NewBW) * NewBW) - NewBW; +    APInt Mask = APInt::getBitsSet(BitWidth, ShAmt, +                                   std::min(BitWidth, ShAmt + NewBW)); +    if ((Imm & Mask) == Imm) { +      APInt NewImm = (Imm & Mask).lshr(ShAmt).trunc(NewBW); +      if (Opc == ISD::AND) +        NewImm ^= APInt::getAllOnesValue(NewBW); +      uint64_t PtrOff = ShAmt / 8; +      // For big endian targets, we need to adjust the offset to the pointer to +      // load the correct bytes. +      if (DAG.getDataLayout().isBigEndian()) +        PtrOff = (BitWidth + 7 - NewBW) / 8 - PtrOff; + +      unsigned NewAlign = MinAlign(LD->getAlignment(), PtrOff); +      Type *NewVTTy = NewVT.getTypeForEVT(*DAG.getContext()); +      if (NewAlign < DAG.getDataLayout().getABITypeAlignment(NewVTTy)) +        return SDValue(); + +      SDValue NewPtr = DAG.getNode(ISD::ADD, SDLoc(LD), +                                   Ptr.getValueType(), Ptr, +                                   DAG.getConstant(PtrOff, SDLoc(LD), +                                                   Ptr.getValueType())); +      SDValue NewLD = +          DAG.getLoad(NewVT, SDLoc(N0), LD->getChain(), NewPtr, +                      LD->getPointerInfo().getWithOffset(PtrOff), NewAlign, +                      LD->getMemOperand()->getFlags(), LD->getAAInfo()); +      SDValue NewVal = DAG.getNode(Opc, SDLoc(Value), NewVT, NewLD, +                                   DAG.getConstant(NewImm, SDLoc(Value), +                                                   NewVT)); +      SDValue NewST = +          DAG.getStore(Chain, SDLoc(N), NewVal, NewPtr, +                       ST->getPointerInfo().getWithOffset(PtrOff), NewAlign); + +      AddToWorklist(NewPtr.getNode()); +      AddToWorklist(NewLD.getNode()); +      AddToWorklist(NewVal.getNode()); +      WorklistRemover DeadNodes(*this); +      DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), NewLD.getValue(1)); +      ++OpsNarrowed; +      return NewST; +    } +  } + +  return SDValue(); +} + +/// For a given floating point load / store pair, if the load value isn't used +/// by any other operations, then consider transforming the pair to integer +/// load / store operations if the target deems the transformation profitable. +SDValue DAGCombiner::TransformFPLoadStorePair(SDNode *N) { +  StoreSDNode *ST  = cast<StoreSDNode>(N); +  SDValue Value = ST->getValue(); +  if (ISD::isNormalStore(ST) && ISD::isNormalLoad(Value.getNode()) && +      Value.hasOneUse()) { +    LoadSDNode *LD = cast<LoadSDNode>(Value); +    EVT VT = LD->getMemoryVT(); +    if (!VT.isFloatingPoint() || +        VT != ST->getMemoryVT() || +        LD->isNonTemporal() || +        ST->isNonTemporal() || +        LD->getPointerInfo().getAddrSpace() != 0 || +        ST->getPointerInfo().getAddrSpace() != 0) +      return SDValue(); + +    EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); +    if (!TLI.isOperationLegal(ISD::LOAD, IntVT) || +        !TLI.isOperationLegal(ISD::STORE, IntVT) || +        !TLI.isDesirableToTransformToIntegerOp(ISD::LOAD, VT) || +        !TLI.isDesirableToTransformToIntegerOp(ISD::STORE, VT)) +      return SDValue(); + +    unsigned LDAlign = LD->getAlignment(); +    unsigned STAlign = ST->getAlignment(); +    Type *IntVTTy = IntVT.getTypeForEVT(*DAG.getContext()); +    unsigned ABIAlign = DAG.getDataLayout().getABITypeAlignment(IntVTTy); +    if (LDAlign < ABIAlign || STAlign < ABIAlign) +      return SDValue(); + +    SDValue NewLD = +        DAG.getLoad(IntVT, SDLoc(Value), LD->getChain(), LD->getBasePtr(), +                    LD->getPointerInfo(), LDAlign); + +    SDValue NewST = +        DAG.getStore(ST->getChain(), SDLoc(N), NewLD, ST->getBasePtr(), +                     ST->getPointerInfo(), STAlign); + +    AddToWorklist(NewLD.getNode()); +    AddToWorklist(NewST.getNode()); +    WorklistRemover DeadNodes(*this); +    DAG.ReplaceAllUsesOfValueWith(Value.getValue(1), NewLD.getValue(1)); +    ++LdStFP2Int; +    return NewST; +  } + +  return SDValue(); +} + +// This is a helper function for visitMUL to check the profitability +// of folding (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2). +// MulNode is the original multiply, AddNode is (add x, c1), +// and ConstNode is c2. +// +// If the (add x, c1) has multiple uses, we could increase +// the number of adds if we make this transformation. +// It would only be worth doing this if we can remove a +// multiply in the process. Check for that here. +// To illustrate: +//     (A + c1) * c3 +//     (A + c2) * c3 +// We're checking for cases where we have common "c3 * A" expressions. +bool DAGCombiner::isMulAddWithConstProfitable(SDNode *MulNode, +                                              SDValue &AddNode, +                                              SDValue &ConstNode) { +  APInt Val; + +  // If the add only has one use, this would be OK to do. +  if (AddNode.getNode()->hasOneUse()) +    return true; + +  // Walk all the users of the constant with which we're multiplying. +  for (SDNode *Use : ConstNode->uses()) { +    if (Use == MulNode) // This use is the one we're on right now. Skip it. +      continue; + +    if (Use->getOpcode() == ISD::MUL) { // We have another multiply use. +      SDNode *OtherOp; +      SDNode *MulVar = AddNode.getOperand(0).getNode(); + +      // OtherOp is what we're multiplying against the constant. +      if (Use->getOperand(0) == ConstNode) +        OtherOp = Use->getOperand(1).getNode(); +      else +        OtherOp = Use->getOperand(0).getNode(); + +      // Check to see if multiply is with the same operand of our "add". +      // +      //     ConstNode  = CONST +      //     Use = ConstNode * A  <-- visiting Use. OtherOp is A. +      //     ... +      //     AddNode  = (A + c1)  <-- MulVar is A. +      //         = AddNode * ConstNode   <-- current visiting instruction. +      // +      // If we make this transformation, we will have a common +      // multiply (ConstNode * A) that we can save. +      if (OtherOp == MulVar) +        return true; + +      // Now check to see if a future expansion will give us a common +      // multiply. +      // +      //     ConstNode  = CONST +      //     AddNode    = (A + c1) +      //     ...   = AddNode * ConstNode <-- current visiting instruction. +      //     ... +      //     OtherOp = (A + c2) +      //     Use     = OtherOp * ConstNode <-- visiting Use. +      // +      // If we make this transformation, we will have a common +      // multiply (CONST * A) after we also do the same transformation +      // to the "t2" instruction. +      if (OtherOp->getOpcode() == ISD::ADD && +          DAG.isConstantIntBuildVectorOrConstantInt(OtherOp->getOperand(1)) && +          OtherOp->getOperand(0).getNode() == MulVar) +        return true; +    } +  } + +  // Didn't find a case where this would be profitable. +  return false; +} + +SDValue DAGCombiner::getMergeStoreChains(SmallVectorImpl<MemOpLink> &StoreNodes, +                                         unsigned NumStores) { +  SmallVector<SDValue, 8> Chains; +  SmallPtrSet<const SDNode *, 8> Visited; +  SDLoc StoreDL(StoreNodes[0].MemNode); + +  for (unsigned i = 0; i < NumStores; ++i) { +    Visited.insert(StoreNodes[i].MemNode); +  } + +  // don't include nodes that are children or repeated nodes. +  for (unsigned i = 0; i < NumStores; ++i) { +    if (Visited.insert(StoreNodes[i].MemNode->getChain().getNode()).second) +      Chains.push_back(StoreNodes[i].MemNode->getChain()); +  } + +  assert(Chains.size() > 0 && "Chain should have generated a chain"); +  return DAG.getTokenFactor(StoreDL, Chains); +} + +bool DAGCombiner::MergeStoresOfConstantsOrVecElts( +    SmallVectorImpl<MemOpLink> &StoreNodes, EVT MemVT, unsigned NumStores, +    bool IsConstantSrc, bool UseVector, bool UseTrunc) { +  // Make sure we have something to merge. +  if (NumStores < 2) +    return false; + +  // The latest Node in the DAG. +  SDLoc DL(StoreNodes[0].MemNode); + +  int64_t ElementSizeBits = MemVT.getStoreSizeInBits(); +  unsigned SizeInBits = NumStores * ElementSizeBits; +  unsigned NumMemElts = MemVT.isVector() ? MemVT.getVectorNumElements() : 1; + +  EVT StoreTy; +  if (UseVector) { +    unsigned Elts = NumStores * NumMemElts; +    // Get the type for the merged vector store. +    StoreTy = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(), Elts); +  } else +    StoreTy = EVT::getIntegerVT(*DAG.getContext(), SizeInBits); + +  SDValue StoredVal; +  if (UseVector) { +    if (IsConstantSrc) { +      SmallVector<SDValue, 8> BuildVector; +      for (unsigned I = 0; I != NumStores; ++I) { +        StoreSDNode *St = cast<StoreSDNode>(StoreNodes[I].MemNode); +        SDValue Val = St->getValue(); +        // If constant is of the wrong type, convert it now. +        if (MemVT != Val.getValueType()) { +          Val = peekThroughBitcasts(Val); +          // Deal with constants of wrong size. +          if (ElementSizeBits != Val.getValueSizeInBits()) { +            EVT IntMemVT = +                EVT::getIntegerVT(*DAG.getContext(), MemVT.getSizeInBits()); +            if (isa<ConstantFPSDNode>(Val)) { +              // Not clear how to truncate FP values. +              return false; +            } else if (auto *C = dyn_cast<ConstantSDNode>(Val)) +              Val = DAG.getConstant(C->getAPIntValue() +                                        .zextOrTrunc(Val.getValueSizeInBits()) +                                        .zextOrTrunc(ElementSizeBits), +                                    SDLoc(C), IntMemVT); +          } +          // Make sure correctly size type is the correct type. +          Val = DAG.getBitcast(MemVT, Val); +        } +        BuildVector.push_back(Val); +      } +      StoredVal = DAG.getNode(MemVT.isVector() ? ISD::CONCAT_VECTORS +                                               : ISD::BUILD_VECTOR, +                              DL, StoreTy, BuildVector); +    } else { +      SmallVector<SDValue, 8> Ops; +      for (unsigned i = 0; i < NumStores; ++i) { +        StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode); +        SDValue Val = peekThroughBitcasts(St->getValue()); +        // All operands of BUILD_VECTOR / CONCAT_VECTOR must be of +        // type MemVT. If the underlying value is not the correct +        // type, but it is an extraction of an appropriate vector we +        // can recast Val to be of the correct type. This may require +        // converting between EXTRACT_VECTOR_ELT and +        // EXTRACT_SUBVECTOR. +        if ((MemVT != Val.getValueType()) && +            (Val.getOpcode() == ISD::EXTRACT_VECTOR_ELT || +             Val.getOpcode() == ISD::EXTRACT_SUBVECTOR)) { +          EVT MemVTScalarTy = MemVT.getScalarType(); +          // We may need to add a bitcast here to get types to line up. +          if (MemVTScalarTy != Val.getValueType().getScalarType()) { +            Val = DAG.getBitcast(MemVT, Val); +          } else { +            unsigned OpC = MemVT.isVector() ? ISD::EXTRACT_SUBVECTOR +                                            : ISD::EXTRACT_VECTOR_ELT; +            SDValue Vec = Val.getOperand(0); +            SDValue Idx = Val.getOperand(1); +            Val = DAG.getNode(OpC, SDLoc(Val), MemVT, Vec, Idx); +          } +        } +        Ops.push_back(Val); +      } + +      // Build the extracted vector elements back into a vector. +      StoredVal = DAG.getNode(MemVT.isVector() ? ISD::CONCAT_VECTORS +                                               : ISD::BUILD_VECTOR, +                              DL, StoreTy, Ops); +    } +  } else { +    // We should always use a vector store when merging extracted vector +    // elements, so this path implies a store of constants. +    assert(IsConstantSrc && "Merged vector elements should use vector store"); + +    APInt StoreInt(SizeInBits, 0); + +    // Construct a single integer constant which is made of the smaller +    // constant inputs. +    bool IsLE = DAG.getDataLayout().isLittleEndian(); +    for (unsigned i = 0; i < NumStores; ++i) { +      unsigned Idx = IsLE ? (NumStores - 1 - i) : i; +      StoreSDNode *St  = cast<StoreSDNode>(StoreNodes[Idx].MemNode); + +      SDValue Val = St->getValue(); +      Val = peekThroughBitcasts(Val); +      StoreInt <<= ElementSizeBits; +      if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val)) { +        StoreInt |= C->getAPIntValue() +                        .zextOrTrunc(ElementSizeBits) +                        .zextOrTrunc(SizeInBits); +      } else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Val)) { +        StoreInt |= C->getValueAPF() +                        .bitcastToAPInt() +                        .zextOrTrunc(ElementSizeBits) +                        .zextOrTrunc(SizeInBits); +        // If fp truncation is necessary give up for now. +        if (MemVT.getSizeInBits() != ElementSizeBits) +          return false; +      } else { +        llvm_unreachable("Invalid constant element type"); +      } +    } + +    // Create the new Load and Store operations. +    StoredVal = DAG.getConstant(StoreInt, DL, StoreTy); +  } + +  LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode; +  SDValue NewChain = getMergeStoreChains(StoreNodes, NumStores); + +  // make sure we use trunc store if it's necessary to be legal. +  SDValue NewStore; +  if (!UseTrunc) { +    NewStore = DAG.getStore(NewChain, DL, StoredVal, FirstInChain->getBasePtr(), +                            FirstInChain->getPointerInfo(), +                            FirstInChain->getAlignment()); +  } else { // Must be realized as a trunc store +    EVT LegalizedStoredValTy = +        TLI.getTypeToTransformTo(*DAG.getContext(), StoredVal.getValueType()); +    unsigned LegalizedStoreSize = LegalizedStoredValTy.getSizeInBits(); +    ConstantSDNode *C = cast<ConstantSDNode>(StoredVal); +    SDValue ExtendedStoreVal = +        DAG.getConstant(C->getAPIntValue().zextOrTrunc(LegalizedStoreSize), DL, +                        LegalizedStoredValTy); +    NewStore = DAG.getTruncStore( +        NewChain, DL, ExtendedStoreVal, FirstInChain->getBasePtr(), +        FirstInChain->getPointerInfo(), StoredVal.getValueType() /*TVT*/, +        FirstInChain->getAlignment(), +        FirstInChain->getMemOperand()->getFlags()); +  } + +  // Replace all merged stores with the new store. +  for (unsigned i = 0; i < NumStores; ++i) +    CombineTo(StoreNodes[i].MemNode, NewStore); + +  AddToWorklist(NewChain.getNode()); +  return true; +} + +void DAGCombiner::getStoreMergeCandidates( +    StoreSDNode *St, SmallVectorImpl<MemOpLink> &StoreNodes, +    SDNode *&RootNode) { +  // This holds the base pointer, index, and the offset in bytes from the base +  // pointer. +  BaseIndexOffset BasePtr = BaseIndexOffset::match(St, DAG); +  EVT MemVT = St->getMemoryVT(); + +  SDValue Val = peekThroughBitcasts(St->getValue()); +  // We must have a base and an offset. +  if (!BasePtr.getBase().getNode()) +    return; + +  // Do not handle stores to undef base pointers. +  if (BasePtr.getBase().isUndef()) +    return; + +  bool IsConstantSrc = isa<ConstantSDNode>(Val) || isa<ConstantFPSDNode>(Val); +  bool IsExtractVecSrc = (Val.getOpcode() == ISD::EXTRACT_VECTOR_ELT || +                          Val.getOpcode() == ISD::EXTRACT_SUBVECTOR); +  bool IsLoadSrc = isa<LoadSDNode>(Val); +  BaseIndexOffset LBasePtr; +  // Match on loadbaseptr if relevant. +  EVT LoadVT; +  if (IsLoadSrc) { +    auto *Ld = cast<LoadSDNode>(Val); +    LBasePtr = BaseIndexOffset::match(Ld, DAG); +    LoadVT = Ld->getMemoryVT(); +    // Load and store should be the same type. +    if (MemVT != LoadVT) +      return; +    // Loads must only have one use. +    if (!Ld->hasNUsesOfValue(1, 0)) +      return; +    // The memory operands must not be volatile/indexed/atomic. +    // TODO: May be able to relax for unordered atomics (see D66309) +    if (!Ld->isSimple() || Ld->isIndexed()) +      return; +  } +  auto CandidateMatch = [&](StoreSDNode *Other, BaseIndexOffset &Ptr, +                            int64_t &Offset) -> bool { +    // The memory operands must not be volatile/indexed/atomic. +    // TODO: May be able to relax for unordered atomics (see D66309) +    if (!Other->isSimple() ||  Other->isIndexed()) +      return false; +    // Don't mix temporal stores with non-temporal stores. +    if (St->isNonTemporal() != Other->isNonTemporal()) +      return false; +    SDValue OtherBC = peekThroughBitcasts(Other->getValue()); +    // Allow merging constants of different types as integers. +    bool NoTypeMatch = (MemVT.isInteger()) ? !MemVT.bitsEq(Other->getMemoryVT()) +                                           : Other->getMemoryVT() != MemVT; +    if (IsLoadSrc) { +      if (NoTypeMatch) +        return false; +      // The Load's Base Ptr must also match +      if (LoadSDNode *OtherLd = dyn_cast<LoadSDNode>(OtherBC)) { +        BaseIndexOffset LPtr = BaseIndexOffset::match(OtherLd, DAG); +        if (LoadVT != OtherLd->getMemoryVT()) +          return false; +        // Loads must only have one use. +        if (!OtherLd->hasNUsesOfValue(1, 0)) +          return false; +        // The memory operands must not be volatile/indexed/atomic. +        // TODO: May be able to relax for unordered atomics (see D66309) +        if (!OtherLd->isSimple() || +            OtherLd->isIndexed()) +          return false; +        // Don't mix temporal loads with non-temporal loads. +        if (cast<LoadSDNode>(Val)->isNonTemporal() != OtherLd->isNonTemporal()) +          return false; +        if (!(LBasePtr.equalBaseIndex(LPtr, DAG))) +          return false; +      } else +        return false; +    } +    if (IsConstantSrc) { +      if (NoTypeMatch) +        return false; +      if (!(isa<ConstantSDNode>(OtherBC) || isa<ConstantFPSDNode>(OtherBC))) +        return false; +    } +    if (IsExtractVecSrc) { +      // Do not merge truncated stores here. +      if (Other->isTruncatingStore()) +        return false; +      if (!MemVT.bitsEq(OtherBC.getValueType())) +        return false; +      if (OtherBC.getOpcode() != ISD::EXTRACT_VECTOR_ELT && +          OtherBC.getOpcode() != ISD::EXTRACT_SUBVECTOR) +        return false; +    } +    Ptr = BaseIndexOffset::match(Other, DAG); +    return (BasePtr.equalBaseIndex(Ptr, DAG, Offset)); +  }; + +  // Check if the pair of StoreNode and the RootNode already bail out many +  // times which is over the limit in dependence check. +  auto OverLimitInDependenceCheck = [&](SDNode *StoreNode, +                                        SDNode *RootNode) -> bool { +    auto RootCount = StoreRootCountMap.find(StoreNode); +    if (RootCount != StoreRootCountMap.end() && +        RootCount->second.first == RootNode && +        RootCount->second.second > StoreMergeDependenceLimit) +      return true; +    return false; +  }; + +  // We looking for a root node which is an ancestor to all mergable +  // stores. We search up through a load, to our root and then down +  // through all children. For instance we will find Store{1,2,3} if +  // St is Store1, Store2. or Store3 where the root is not a load +  // which always true for nonvolatile ops. TODO: Expand +  // the search to find all valid candidates through multiple layers of loads. +  // +  // Root +  // |-------|-------| +  // Load    Load    Store3 +  // |       | +  // Store1   Store2 +  // +  // FIXME: We should be able to climb and +  // descend TokenFactors to find candidates as well. + +  RootNode = St->getChain().getNode(); + +  unsigned NumNodesExplored = 0; +  if (LoadSDNode *Ldn = dyn_cast<LoadSDNode>(RootNode)) { +    RootNode = Ldn->getChain().getNode(); +    for (auto I = RootNode->use_begin(), E = RootNode->use_end(); +         I != E && NumNodesExplored < 1024; ++I, ++NumNodesExplored) +      if (I.getOperandNo() == 0 && isa<LoadSDNode>(*I)) // walk down chain +        for (auto I2 = (*I)->use_begin(), E2 = (*I)->use_end(); I2 != E2; ++I2) +          if (I2.getOperandNo() == 0) +            if (StoreSDNode *OtherST = dyn_cast<StoreSDNode>(*I2)) { +              BaseIndexOffset Ptr; +              int64_t PtrDiff; +              if (CandidateMatch(OtherST, Ptr, PtrDiff) && +                  !OverLimitInDependenceCheck(OtherST, RootNode)) +                StoreNodes.push_back(MemOpLink(OtherST, PtrDiff)); +            } +  } else +    for (auto I = RootNode->use_begin(), E = RootNode->use_end(); +         I != E && NumNodesExplored < 1024; ++I, ++NumNodesExplored) +      if (I.getOperandNo() == 0) +        if (StoreSDNode *OtherST = dyn_cast<StoreSDNode>(*I)) { +          BaseIndexOffset Ptr; +          int64_t PtrDiff; +          if (CandidateMatch(OtherST, Ptr, PtrDiff) && +              !OverLimitInDependenceCheck(OtherST, RootNode)) +            StoreNodes.push_back(MemOpLink(OtherST, PtrDiff)); +        } +} + +// We need to check that merging these stores does not cause a loop in +// the DAG. Any store candidate may depend on another candidate +// indirectly through its operand (we already consider dependencies +// through the chain). Check in parallel by searching up from +// non-chain operands of candidates. +bool DAGCombiner::checkMergeStoreCandidatesForDependencies( +    SmallVectorImpl<MemOpLink> &StoreNodes, unsigned NumStores, +    SDNode *RootNode) { +  // FIXME: We should be able to truncate a full search of +  // predecessors by doing a BFS and keeping tabs the originating +  // stores from which worklist nodes come from in a similar way to +  // TokenFactor simplfication. + +  SmallPtrSet<const SDNode *, 32> Visited; +  SmallVector<const SDNode *, 8> Worklist; + +  // RootNode is a predecessor to all candidates so we need not search +  // past it. Add RootNode (peeking through TokenFactors). Do not count +  // these towards size check. + +  Worklist.push_back(RootNode); +  while (!Worklist.empty()) { +    auto N = Worklist.pop_back_val(); +    if (!Visited.insert(N).second) +      continue; // Already present in Visited. +    if (N->getOpcode() == ISD::TokenFactor) { +      for (SDValue Op : N->ops()) +        Worklist.push_back(Op.getNode()); +    } +  } + +  // Don't count pruning nodes towards max. +  unsigned int Max = 1024 + Visited.size(); +  // Search Ops of store candidates. +  for (unsigned i = 0; i < NumStores; ++i) { +    SDNode *N = StoreNodes[i].MemNode; +    // Of the 4 Store Operands: +    //   * Chain (Op 0) -> We have already considered these +    //                    in candidate selection and can be +    //                    safely ignored +    //   * Value (Op 1) -> Cycles may happen (e.g. through load chains) +    //   * Address (Op 2) -> Merged addresses may only vary by a fixed constant, +    //                       but aren't necessarily fromt the same base node, so +    //                       cycles possible (e.g. via indexed store). +    //   * (Op 3) -> Represents the pre or post-indexing offset (or undef for +    //               non-indexed stores). Not constant on all targets (e.g. ARM) +    //               and so can participate in a cycle. +    for (unsigned j = 1; j < N->getNumOperands(); ++j) +      Worklist.push_back(N->getOperand(j).getNode()); +  } +  // Search through DAG. We can stop early if we find a store node. +  for (unsigned i = 0; i < NumStores; ++i) +    if (SDNode::hasPredecessorHelper(StoreNodes[i].MemNode, Visited, Worklist, +                                     Max)) { +      // If the searching bail out, record the StoreNode and RootNode in the +      // StoreRootCountMap. If we have seen the pair many times over a limit, +      // we won't add the StoreNode into StoreNodes set again. +      if (Visited.size() >= Max) { +        auto &RootCount = StoreRootCountMap[StoreNodes[i].MemNode]; +        if (RootCount.first == RootNode) +          RootCount.second++; +        else +          RootCount = {RootNode, 1}; +      } +      return false; +    } +  return true; +} + +bool DAGCombiner::MergeConsecutiveStores(StoreSDNode *St) { +  if (OptLevel == CodeGenOpt::None || !EnableStoreMerging) +    return false; + +  EVT MemVT = St->getMemoryVT(); +  int64_t ElementSizeBytes = MemVT.getStoreSize(); +  unsigned NumMemElts = MemVT.isVector() ? MemVT.getVectorNumElements() : 1; + +  if (MemVT.getSizeInBits() * 2 > MaximumLegalStoreInBits) +    return false; + +  bool NoVectors = DAG.getMachineFunction().getFunction().hasFnAttribute( +      Attribute::NoImplicitFloat); + +  // This function cannot currently deal with non-byte-sized memory sizes. +  if (ElementSizeBytes * 8 != MemVT.getSizeInBits()) +    return false; + +  if (!MemVT.isSimple()) +    return false; + +  // Perform an early exit check. Do not bother looking at stored values that +  // are not constants, loads, or extracted vector elements. +  SDValue StoredVal = peekThroughBitcasts(St->getValue()); +  bool IsLoadSrc = isa<LoadSDNode>(StoredVal); +  bool IsConstantSrc = isa<ConstantSDNode>(StoredVal) || +                       isa<ConstantFPSDNode>(StoredVal); +  bool IsExtractVecSrc = (StoredVal.getOpcode() == ISD::EXTRACT_VECTOR_ELT || +                          StoredVal.getOpcode() == ISD::EXTRACT_SUBVECTOR); +  bool IsNonTemporalStore = St->isNonTemporal(); +  bool IsNonTemporalLoad = +      IsLoadSrc && cast<LoadSDNode>(StoredVal)->isNonTemporal(); + +  if (!IsConstantSrc && !IsLoadSrc && !IsExtractVecSrc) +    return false; + +  SmallVector<MemOpLink, 8> StoreNodes; +  SDNode *RootNode; +  // Find potential store merge candidates by searching through chain sub-DAG +  getStoreMergeCandidates(St, StoreNodes, RootNode); + +  // Check if there is anything to merge. +  if (StoreNodes.size() < 2) +    return false; + +  // Sort the memory operands according to their distance from the +  // base pointer. +  llvm::sort(StoreNodes, [](MemOpLink LHS, MemOpLink RHS) { +    return LHS.OffsetFromBase < RHS.OffsetFromBase; +  }); + +  // Store Merge attempts to merge the lowest stores. This generally +  // works out as if successful, as the remaining stores are checked +  // after the first collection of stores is merged. However, in the +  // case that a non-mergeable store is found first, e.g., {p[-2], +  // p[0], p[1], p[2], p[3]}, we would fail and miss the subsequent +  // mergeable cases. To prevent this, we prune such stores from the +  // front of StoreNodes here. + +  bool RV = false; +  while (StoreNodes.size() > 1) { +    size_t StartIdx = 0; +    while ((StartIdx + 1 < StoreNodes.size()) && +           StoreNodes[StartIdx].OffsetFromBase + ElementSizeBytes != +               StoreNodes[StartIdx + 1].OffsetFromBase) +      ++StartIdx; + +    // Bail if we don't have enough candidates to merge. +    if (StartIdx + 1 >= StoreNodes.size()) +      return RV; + +    if (StartIdx) +      StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + StartIdx); + +    // Scan the memory operations on the chain and find the first +    // non-consecutive store memory address. +    unsigned NumConsecutiveStores = 1; +    int64_t StartAddress = StoreNodes[0].OffsetFromBase; +    // Check that the addresses are consecutive starting from the second +    // element in the list of stores. +    for (unsigned i = 1, e = StoreNodes.size(); i < e; ++i) { +      int64_t CurrAddress = StoreNodes[i].OffsetFromBase; +      if (CurrAddress - StartAddress != (ElementSizeBytes * i)) +        break; +      NumConsecutiveStores = i + 1; +    } + +    if (NumConsecutiveStores < 2) { +      StoreNodes.erase(StoreNodes.begin(), +                       StoreNodes.begin() + NumConsecutiveStores); +      continue; +    } + +    // The node with the lowest store address. +    LLVMContext &Context = *DAG.getContext(); +    const DataLayout &DL = DAG.getDataLayout(); + +    // Store the constants into memory as one consecutive store. +    if (IsConstantSrc) { +      while (NumConsecutiveStores >= 2) { +        LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode; +        unsigned FirstStoreAS = FirstInChain->getAddressSpace(); +        unsigned FirstStoreAlign = FirstInChain->getAlignment(); +        unsigned LastLegalType = 1; +        unsigned LastLegalVectorType = 1; +        bool LastIntegerTrunc = false; +        bool NonZero = false; +        unsigned FirstZeroAfterNonZero = NumConsecutiveStores; +        for (unsigned i = 0; i < NumConsecutiveStores; ++i) { +          StoreSDNode *ST = cast<StoreSDNode>(StoreNodes[i].MemNode); +          SDValue StoredVal = ST->getValue(); +          bool IsElementZero = false; +          if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(StoredVal)) +            IsElementZero = C->isNullValue(); +          else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(StoredVal)) +            IsElementZero = C->getConstantFPValue()->isNullValue(); +          if (IsElementZero) { +            if (NonZero && FirstZeroAfterNonZero == NumConsecutiveStores) +              FirstZeroAfterNonZero = i; +          } +          NonZero |= !IsElementZero; + +          // Find a legal type for the constant store. +          unsigned SizeInBits = (i + 1) * ElementSizeBytes * 8; +          EVT StoreTy = EVT::getIntegerVT(Context, SizeInBits); +          bool IsFast = false; + +          // Break early when size is too large to be legal. +          if (StoreTy.getSizeInBits() > MaximumLegalStoreInBits) +            break; + +          if (TLI.isTypeLegal(StoreTy) && +              TLI.canMergeStoresTo(FirstStoreAS, StoreTy, DAG) && +              TLI.allowsMemoryAccess(Context, DL, StoreTy, +                                     *FirstInChain->getMemOperand(), &IsFast) && +              IsFast) { +            LastIntegerTrunc = false; +            LastLegalType = i + 1; +            // Or check whether a truncstore is legal. +          } else if (TLI.getTypeAction(Context, StoreTy) == +                     TargetLowering::TypePromoteInteger) { +            EVT LegalizedStoredValTy = +                TLI.getTypeToTransformTo(Context, StoredVal.getValueType()); +            if (TLI.isTruncStoreLegal(LegalizedStoredValTy, StoreTy) && +                TLI.canMergeStoresTo(FirstStoreAS, LegalizedStoredValTy, DAG) && +                TLI.allowsMemoryAccess(Context, DL, StoreTy, +                                       *FirstInChain->getMemOperand(), +                                       &IsFast) && +                IsFast) { +              LastIntegerTrunc = true; +              LastLegalType = i + 1; +            } +          } + +          // We only use vectors if the constant is known to be zero or the +          // target allows it and the function is not marked with the +          // noimplicitfloat attribute. +          if ((!NonZero || +               TLI.storeOfVectorConstantIsCheap(MemVT, i + 1, FirstStoreAS)) && +              !NoVectors) { +            // Find a legal type for the vector store. +            unsigned Elts = (i + 1) * NumMemElts; +            EVT Ty = EVT::getVectorVT(Context, MemVT.getScalarType(), Elts); +            if (TLI.isTypeLegal(Ty) && TLI.isTypeLegal(MemVT) && +                TLI.canMergeStoresTo(FirstStoreAS, Ty, DAG) && +                TLI.allowsMemoryAccess( +                    Context, DL, Ty, *FirstInChain->getMemOperand(), &IsFast) && +                IsFast) +              LastLegalVectorType = i + 1; +          } +        } + +        bool UseVector = (LastLegalVectorType > LastLegalType) && !NoVectors; +        unsigned NumElem = (UseVector) ? LastLegalVectorType : LastLegalType; + +        // Check if we found a legal integer type that creates a meaningful +        // merge. +        if (NumElem < 2) { +          // We know that candidate stores are in order and of correct +          // shape. While there is no mergeable sequence from the +          // beginning one may start later in the sequence. The only +          // reason a merge of size N could have failed where another of +          // the same size would not have, is if the alignment has +          // improved or we've dropped a non-zero value. Drop as many +          // candidates as we can here. +          unsigned NumSkip = 1; +          while ( +              (NumSkip < NumConsecutiveStores) && +              (NumSkip < FirstZeroAfterNonZero) && +              (StoreNodes[NumSkip].MemNode->getAlignment() <= FirstStoreAlign)) +            NumSkip++; + +          StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumSkip); +          NumConsecutiveStores -= NumSkip; +          continue; +        } + +        // Check that we can merge these candidates without causing a cycle. +        if (!checkMergeStoreCandidatesForDependencies(StoreNodes, NumElem, +                                                      RootNode)) { +          StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumElem); +          NumConsecutiveStores -= NumElem; +          continue; +        } + +        RV |= MergeStoresOfConstantsOrVecElts(StoreNodes, MemVT, NumElem, true, +                                              UseVector, LastIntegerTrunc); + +        // Remove merged stores for next iteration. +        StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumElem); +        NumConsecutiveStores -= NumElem; +      } +      continue; +    } + +    // When extracting multiple vector elements, try to store them +    // in one vector store rather than a sequence of scalar stores. +    if (IsExtractVecSrc) { +      // Loop on Consecutive Stores on success. +      while (NumConsecutiveStores >= 2) { +        LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode; +        unsigned FirstStoreAS = FirstInChain->getAddressSpace(); +        unsigned FirstStoreAlign = FirstInChain->getAlignment(); +        unsigned NumStoresToMerge = 1; +        for (unsigned i = 0; i < NumConsecutiveStores; ++i) { +          // Find a legal type for the vector store. +          unsigned Elts = (i + 1) * NumMemElts; +          EVT Ty = +              EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(), Elts); +          bool IsFast; + +          // Break early when size is too large to be legal. +          if (Ty.getSizeInBits() > MaximumLegalStoreInBits) +            break; + +          if (TLI.isTypeLegal(Ty) && +              TLI.canMergeStoresTo(FirstStoreAS, Ty, DAG) && +              TLI.allowsMemoryAccess(Context, DL, Ty, +                                     *FirstInChain->getMemOperand(), &IsFast) && +              IsFast) +            NumStoresToMerge = i + 1; +        } + +        // Check if we found a legal integer type creating a meaningful +        // merge. +        if (NumStoresToMerge < 2) { +          // We know that candidate stores are in order and of correct +          // shape. While there is no mergeable sequence from the +          // beginning one may start later in the sequence. The only +          // reason a merge of size N could have failed where another of +          // the same size would not have, is if the alignment has +          // improved. Drop as many candidates as we can here. +          unsigned NumSkip = 1; +          while ( +              (NumSkip < NumConsecutiveStores) && +              (StoreNodes[NumSkip].MemNode->getAlignment() <= FirstStoreAlign)) +            NumSkip++; + +          StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumSkip); +          NumConsecutiveStores -= NumSkip; +          continue; +        } + +        // Check that we can merge these candidates without causing a cycle. +        if (!checkMergeStoreCandidatesForDependencies( +                StoreNodes, NumStoresToMerge, RootNode)) { +          StoreNodes.erase(StoreNodes.begin(), +                           StoreNodes.begin() + NumStoresToMerge); +          NumConsecutiveStores -= NumStoresToMerge; +          continue; +        } + +        RV |= MergeStoresOfConstantsOrVecElts( +            StoreNodes, MemVT, NumStoresToMerge, false, true, false); + +        StoreNodes.erase(StoreNodes.begin(), +                         StoreNodes.begin() + NumStoresToMerge); +        NumConsecutiveStores -= NumStoresToMerge; +      } +      continue; +    } + +    // Below we handle the case of multiple consecutive stores that +    // come from multiple consecutive loads. We merge them into a single +    // wide load and a single wide store. + +    // Look for load nodes which are used by the stored values. +    SmallVector<MemOpLink, 8> LoadNodes; + +    // Find acceptable loads. Loads need to have the same chain (token factor), +    // must not be zext, volatile, indexed, and they must be consecutive. +    BaseIndexOffset LdBasePtr; + +    for (unsigned i = 0; i < NumConsecutiveStores; ++i) { +      StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode); +      SDValue Val = peekThroughBitcasts(St->getValue()); +      LoadSDNode *Ld = cast<LoadSDNode>(Val); + +      BaseIndexOffset LdPtr = BaseIndexOffset::match(Ld, DAG); +      // If this is not the first ptr that we check. +      int64_t LdOffset = 0; +      if (LdBasePtr.getBase().getNode()) { +        // The base ptr must be the same. +        if (!LdBasePtr.equalBaseIndex(LdPtr, DAG, LdOffset)) +          break; +      } else { +        // Check that all other base pointers are the same as this one. +        LdBasePtr = LdPtr; +      } + +      // We found a potential memory operand to merge. +      LoadNodes.push_back(MemOpLink(Ld, LdOffset)); +    } + +    while (NumConsecutiveStores >= 2 && LoadNodes.size() >= 2) { +      // If we have load/store pair instructions and we only have two values, +      // don't bother merging. +      unsigned RequiredAlignment; +      if (LoadNodes.size() == 2 && +          TLI.hasPairedLoad(MemVT, RequiredAlignment) && +          StoreNodes[0].MemNode->getAlignment() >= RequiredAlignment) { +        StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + 2); +        LoadNodes.erase(LoadNodes.begin(), LoadNodes.begin() + 2); +        break; +      } +      LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode; +      unsigned FirstStoreAS = FirstInChain->getAddressSpace(); +      unsigned FirstStoreAlign = FirstInChain->getAlignment(); +      LoadSDNode *FirstLoad = cast<LoadSDNode>(LoadNodes[0].MemNode); +      unsigned FirstLoadAlign = FirstLoad->getAlignment(); + +      // Scan the memory operations on the chain and find the first +      // non-consecutive load memory address. These variables hold the index in +      // the store node array. + +      unsigned LastConsecutiveLoad = 1; + +      // This variable refers to the size and not index in the array. +      unsigned LastLegalVectorType = 1; +      unsigned LastLegalIntegerType = 1; +      bool isDereferenceable = true; +      bool DoIntegerTruncate = false; +      StartAddress = LoadNodes[0].OffsetFromBase; +      SDValue FirstChain = FirstLoad->getChain(); +      for (unsigned i = 1; i < LoadNodes.size(); ++i) { +        // All loads must share the same chain. +        if (LoadNodes[i].MemNode->getChain() != FirstChain) +          break; + +        int64_t CurrAddress = LoadNodes[i].OffsetFromBase; +        if (CurrAddress - StartAddress != (ElementSizeBytes * i)) +          break; +        LastConsecutiveLoad = i; + +        if (isDereferenceable && !LoadNodes[i].MemNode->isDereferenceable()) +          isDereferenceable = false; + +        // Find a legal type for the vector store. +        unsigned Elts = (i + 1) * NumMemElts; +        EVT StoreTy = EVT::getVectorVT(Context, MemVT.getScalarType(), Elts); + +        // Break early when size is too large to be legal. +        if (StoreTy.getSizeInBits() > MaximumLegalStoreInBits) +          break; + +        bool IsFastSt, IsFastLd; +        if (TLI.isTypeLegal(StoreTy) && +            TLI.canMergeStoresTo(FirstStoreAS, StoreTy, DAG) && +            TLI.allowsMemoryAccess(Context, DL, StoreTy, +                                   *FirstInChain->getMemOperand(), &IsFastSt) && +            IsFastSt && +            TLI.allowsMemoryAccess(Context, DL, StoreTy, +                                   *FirstLoad->getMemOperand(), &IsFastLd) && +            IsFastLd) { +          LastLegalVectorType = i + 1; +        } + +        // Find a legal type for the integer store. +        unsigned SizeInBits = (i + 1) * ElementSizeBytes * 8; +        StoreTy = EVT::getIntegerVT(Context, SizeInBits); +        if (TLI.isTypeLegal(StoreTy) && +            TLI.canMergeStoresTo(FirstStoreAS, StoreTy, DAG) && +            TLI.allowsMemoryAccess(Context, DL, StoreTy, +                                   *FirstInChain->getMemOperand(), &IsFastSt) && +            IsFastSt && +            TLI.allowsMemoryAccess(Context, DL, StoreTy, +                                   *FirstLoad->getMemOperand(), &IsFastLd) && +            IsFastLd) { +          LastLegalIntegerType = i + 1; +          DoIntegerTruncate = false; +          // Or check whether a truncstore and extload is legal. +        } else if (TLI.getTypeAction(Context, StoreTy) == +                   TargetLowering::TypePromoteInteger) { +          EVT LegalizedStoredValTy = TLI.getTypeToTransformTo(Context, StoreTy); +          if (TLI.isTruncStoreLegal(LegalizedStoredValTy, StoreTy) && +              TLI.canMergeStoresTo(FirstStoreAS, LegalizedStoredValTy, DAG) && +              TLI.isLoadExtLegal(ISD::ZEXTLOAD, LegalizedStoredValTy, +                                 StoreTy) && +              TLI.isLoadExtLegal(ISD::SEXTLOAD, LegalizedStoredValTy, +                                 StoreTy) && +              TLI.isLoadExtLegal(ISD::EXTLOAD, LegalizedStoredValTy, StoreTy) && +              TLI.allowsMemoryAccess(Context, DL, StoreTy, +                                     *FirstInChain->getMemOperand(), +                                     &IsFastSt) && +              IsFastSt && +              TLI.allowsMemoryAccess(Context, DL, StoreTy, +                                     *FirstLoad->getMemOperand(), &IsFastLd) && +              IsFastLd) { +            LastLegalIntegerType = i + 1; +            DoIntegerTruncate = true; +          } +        } +      } + +      // Only use vector types if the vector type is larger than the integer +      // type. If they are the same, use integers. +      bool UseVectorTy = +          LastLegalVectorType > LastLegalIntegerType && !NoVectors; +      unsigned LastLegalType = +          std::max(LastLegalVectorType, LastLegalIntegerType); + +      // We add +1 here because the LastXXX variables refer to location while +      // the NumElem refers to array/index size. +      unsigned NumElem = +          std::min(NumConsecutiveStores, LastConsecutiveLoad + 1); +      NumElem = std::min(LastLegalType, NumElem); + +      if (NumElem < 2) { +        // We know that candidate stores are in order and of correct +        // shape. While there is no mergeable sequence from the +        // beginning one may start later in the sequence. The only +        // reason a merge of size N could have failed where another of +        // the same size would not have is if the alignment or either +        // the load or store has improved. Drop as many candidates as we +        // can here. +        unsigned NumSkip = 1; +        while ((NumSkip < LoadNodes.size()) && +               (LoadNodes[NumSkip].MemNode->getAlignment() <= FirstLoadAlign) && +               (StoreNodes[NumSkip].MemNode->getAlignment() <= FirstStoreAlign)) +          NumSkip++; +        StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumSkip); +        LoadNodes.erase(LoadNodes.begin(), LoadNodes.begin() + NumSkip); +        NumConsecutiveStores -= NumSkip; +        continue; +      } + +      // Check that we can merge these candidates without causing a cycle. +      if (!checkMergeStoreCandidatesForDependencies(StoreNodes, NumElem, +                                                    RootNode)) { +        StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumElem); +        LoadNodes.erase(LoadNodes.begin(), LoadNodes.begin() + NumElem); +        NumConsecutiveStores -= NumElem; +        continue; +      } + +      // Find if it is better to use vectors or integers to load and store +      // to memory. +      EVT JointMemOpVT; +      if (UseVectorTy) { +        // Find a legal type for the vector store. +        unsigned Elts = NumElem * NumMemElts; +        JointMemOpVT = EVT::getVectorVT(Context, MemVT.getScalarType(), Elts); +      } else { +        unsigned SizeInBits = NumElem * ElementSizeBytes * 8; +        JointMemOpVT = EVT::getIntegerVT(Context, SizeInBits); +      } + +      SDLoc LoadDL(LoadNodes[0].MemNode); +      SDLoc StoreDL(StoreNodes[0].MemNode); + +      // The merged loads are required to have the same incoming chain, so +      // using the first's chain is acceptable. + +      SDValue NewStoreChain = getMergeStoreChains(StoreNodes, NumElem); +      AddToWorklist(NewStoreChain.getNode()); + +      MachineMemOperand::Flags LdMMOFlags = +          isDereferenceable ? MachineMemOperand::MODereferenceable +                            : MachineMemOperand::MONone; +      if (IsNonTemporalLoad) +        LdMMOFlags |= MachineMemOperand::MONonTemporal; + +      MachineMemOperand::Flags StMMOFlags = +          IsNonTemporalStore ? MachineMemOperand::MONonTemporal +                             : MachineMemOperand::MONone; + +      SDValue NewLoad, NewStore; +      if (UseVectorTy || !DoIntegerTruncate) { +        NewLoad = +            DAG.getLoad(JointMemOpVT, LoadDL, FirstLoad->getChain(), +                        FirstLoad->getBasePtr(), FirstLoad->getPointerInfo(), +                        FirstLoadAlign, LdMMOFlags); +        NewStore = DAG.getStore( +            NewStoreChain, StoreDL, NewLoad, FirstInChain->getBasePtr(), +            FirstInChain->getPointerInfo(), FirstStoreAlign, StMMOFlags); +      } else { // This must be the truncstore/extload case +        EVT ExtendedTy = +            TLI.getTypeToTransformTo(*DAG.getContext(), JointMemOpVT); +        NewLoad = DAG.getExtLoad(ISD::EXTLOAD, LoadDL, ExtendedTy, +                                 FirstLoad->getChain(), FirstLoad->getBasePtr(), +                                 FirstLoad->getPointerInfo(), JointMemOpVT, +                                 FirstLoadAlign, LdMMOFlags); +        NewStore = DAG.getTruncStore(NewStoreChain, StoreDL, NewLoad, +                                     FirstInChain->getBasePtr(), +                                     FirstInChain->getPointerInfo(), +                                     JointMemOpVT, FirstInChain->getAlignment(), +                                     FirstInChain->getMemOperand()->getFlags()); +      } + +      // Transfer chain users from old loads to the new load. +      for (unsigned i = 0; i < NumElem; ++i) { +        LoadSDNode *Ld = cast<LoadSDNode>(LoadNodes[i].MemNode); +        DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), +                                      SDValue(NewLoad.getNode(), 1)); +      } + +      // Replace the all stores with the new store. Recursively remove +      // corresponding value if its no longer used. +      for (unsigned i = 0; i < NumElem; ++i) { +        SDValue Val = StoreNodes[i].MemNode->getOperand(1); +        CombineTo(StoreNodes[i].MemNode, NewStore); +        if (Val.getNode()->use_empty()) +          recursivelyDeleteUnusedNodes(Val.getNode()); +      } + +      RV = true; +      StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumElem); +      LoadNodes.erase(LoadNodes.begin(), LoadNodes.begin() + NumElem); +      NumConsecutiveStores -= NumElem; +    } +  } +  return RV; +} + +SDValue DAGCombiner::replaceStoreChain(StoreSDNode *ST, SDValue BetterChain) { +  SDLoc SL(ST); +  SDValue ReplStore; + +  // Replace the chain to avoid dependency. +  if (ST->isTruncatingStore()) { +    ReplStore = DAG.getTruncStore(BetterChain, SL, ST->getValue(), +                                  ST->getBasePtr(), ST->getMemoryVT(), +                                  ST->getMemOperand()); +  } else { +    ReplStore = DAG.getStore(BetterChain, SL, ST->getValue(), ST->getBasePtr(), +                             ST->getMemOperand()); +  } + +  // Create token to keep both nodes around. +  SDValue Token = DAG.getNode(ISD::TokenFactor, SL, +                              MVT::Other, ST->getChain(), ReplStore); + +  // Make sure the new and old chains are cleaned up. +  AddToWorklist(Token.getNode()); + +  // Don't add users to work list. +  return CombineTo(ST, Token, false); +} + +SDValue DAGCombiner::replaceStoreOfFPConstant(StoreSDNode *ST) { +  SDValue Value = ST->getValue(); +  if (Value.getOpcode() == ISD::TargetConstantFP) +    return SDValue(); + +  SDLoc DL(ST); + +  SDValue Chain = ST->getChain(); +  SDValue Ptr = ST->getBasePtr(); + +  const ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Value); + +  // NOTE: If the original store is volatile, this transform must not increase +  // the number of stores.  For example, on x86-32 an f64 can be stored in one +  // processor operation but an i64 (which is not legal) requires two.  So the +  // transform should not be done in this case. + +  SDValue Tmp; +  switch (CFP->getSimpleValueType(0).SimpleTy) { +  default: +    llvm_unreachable("Unknown FP type"); +  case MVT::f16:    // We don't do this for these yet. +  case MVT::f80: +  case MVT::f128: +  case MVT::ppcf128: +    return SDValue(); +  case MVT::f32: +    if ((isTypeLegal(MVT::i32) && !LegalOperations && ST->isSimple()) || +        TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) { +      ; +      Tmp = DAG.getConstant((uint32_t)CFP->getValueAPF(). +                            bitcastToAPInt().getZExtValue(), SDLoc(CFP), +                            MVT::i32); +      return DAG.getStore(Chain, DL, Tmp, Ptr, ST->getMemOperand()); +    } + +    return SDValue(); +  case MVT::f64: +    if ((TLI.isTypeLegal(MVT::i64) && !LegalOperations && +         ST->isSimple()) || +        TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i64)) { +      ; +      Tmp = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt(). +                            getZExtValue(), SDLoc(CFP), MVT::i64); +      return DAG.getStore(Chain, DL, Tmp, +                          Ptr, ST->getMemOperand()); +    } + +    if (ST->isSimple() && +        TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) { +      // Many FP stores are not made apparent until after legalize, e.g. for +      // argument passing.  Since this is so common, custom legalize the +      // 64-bit integer store into two 32-bit stores. +      uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue(); +      SDValue Lo = DAG.getConstant(Val & 0xFFFFFFFF, SDLoc(CFP), MVT::i32); +      SDValue Hi = DAG.getConstant(Val >> 32, SDLoc(CFP), MVT::i32); +      if (DAG.getDataLayout().isBigEndian()) +        std::swap(Lo, Hi); + +      unsigned Alignment = ST->getAlignment(); +      MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags(); +      AAMDNodes AAInfo = ST->getAAInfo(); + +      SDValue St0 = DAG.getStore(Chain, DL, Lo, Ptr, ST->getPointerInfo(), +                                 ST->getAlignment(), MMOFlags, AAInfo); +      Ptr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr, +                        DAG.getConstant(4, DL, Ptr.getValueType())); +      Alignment = MinAlign(Alignment, 4U); +      SDValue St1 = DAG.getStore(Chain, DL, Hi, Ptr, +                                 ST->getPointerInfo().getWithOffset(4), +                                 Alignment, MMOFlags, AAInfo); +      return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, +                         St0, St1); +    } + +    return SDValue(); +  } +} + +SDValue DAGCombiner::visitSTORE(SDNode *N) { +  StoreSDNode *ST  = cast<StoreSDNode>(N); +  SDValue Chain = ST->getChain(); +  SDValue Value = ST->getValue(); +  SDValue Ptr   = ST->getBasePtr(); + +  // If this is a store of a bit convert, store the input value if the +  // resultant store does not need a higher alignment than the original. +  if (Value.getOpcode() == ISD::BITCAST && !ST->isTruncatingStore() && +      ST->isUnindexed()) { +    EVT SVT = Value.getOperand(0).getValueType(); +    // If the store is volatile, we only want to change the store type if the +    // resulting store is legal. Otherwise we might increase the number of +    // memory accesses. We don't care if the original type was legal or not +    // as we assume software couldn't rely on the number of accesses of an +    // illegal type. +    // TODO: May be able to relax for unordered atomics (see D66309) +    if (((!LegalOperations && ST->isSimple()) || +         TLI.isOperationLegal(ISD::STORE, SVT)) && +        TLI.isStoreBitCastBeneficial(Value.getValueType(), SVT, +                                     DAG, *ST->getMemOperand())) { +      return DAG.getStore(Chain, SDLoc(N), Value.getOperand(0), Ptr, +                          ST->getPointerInfo(), ST->getAlignment(), +                          ST->getMemOperand()->getFlags(), ST->getAAInfo()); +    } +  } + +  // Turn 'store undef, Ptr' -> nothing. +  if (Value.isUndef() && ST->isUnindexed()) +    return Chain; + +  // Try to infer better alignment information than the store already has. +  if (OptLevel != CodeGenOpt::None && ST->isUnindexed()) { +    if (unsigned Align = DAG.InferPtrAlignment(Ptr)) { +      if (Align > ST->getAlignment() && ST->getSrcValueOffset() % Align == 0) { +        SDValue NewStore = +            DAG.getTruncStore(Chain, SDLoc(N), Value, Ptr, ST->getPointerInfo(), +                              ST->getMemoryVT(), Align, +                              ST->getMemOperand()->getFlags(), ST->getAAInfo()); +        // NewStore will always be N as we are only refining the alignment +        assert(NewStore.getNode() == N); +        (void)NewStore; +      } +    } +  } + +  // Try transforming a pair floating point load / store ops to integer +  // load / store ops. +  if (SDValue NewST = TransformFPLoadStorePair(N)) +    return NewST; + +  // Try transforming several stores into STORE (BSWAP). +  if (SDValue Store = MatchStoreCombine(ST)) +    return Store; + +  if (ST->isUnindexed()) { +    // Walk up chain skipping non-aliasing memory nodes, on this store and any +    // adjacent stores. +    if (findBetterNeighborChains(ST)) { +      // replaceStoreChain uses CombineTo, which handled all of the worklist +      // manipulation. Return the original node to not do anything else. +      return SDValue(ST, 0); +    } +    Chain = ST->getChain(); +  } + +  // FIXME: is there such a thing as a truncating indexed store? +  if (ST->isTruncatingStore() && ST->isUnindexed() && +      Value.getValueType().isInteger() && +      (!isa<ConstantSDNode>(Value) || +       !cast<ConstantSDNode>(Value)->isOpaque())) { +    APInt TruncDemandedBits = +        APInt::getLowBitsSet(Value.getScalarValueSizeInBits(), +                             ST->getMemoryVT().getScalarSizeInBits()); + +    // See if we can simplify the input to this truncstore with knowledge that +    // only the low bits are being used.  For example: +    // "truncstore (or (shl x, 8), y), i8"  -> "truncstore y, i8" +    AddToWorklist(Value.getNode()); +    if (SDValue Shorter = DAG.GetDemandedBits(Value, TruncDemandedBits)) +      return DAG.getTruncStore(Chain, SDLoc(N), Shorter, Ptr, ST->getMemoryVT(), +                               ST->getMemOperand()); + +    // Otherwise, see if we can simplify the operation with +    // SimplifyDemandedBits, which only works if the value has a single use. +    if (SimplifyDemandedBits(Value, TruncDemandedBits)) { +      // Re-visit the store if anything changed and the store hasn't been merged +      // with another node (N is deleted) SimplifyDemandedBits will add Value's +      // node back to the worklist if necessary, but we also need to re-visit +      // the Store node itself. +      if (N->getOpcode() != ISD::DELETED_NODE) +        AddToWorklist(N); +      return SDValue(N, 0); +    } +  } + +  // If this is a load followed by a store to the same location, then the store +  // is dead/noop. +  // TODO: Can relax for unordered atomics (see D66309) +  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Value)) { +    if (Ld->getBasePtr() == Ptr && ST->getMemoryVT() == Ld->getMemoryVT() && +        ST->isUnindexed() && ST->isSimple() && +        // There can't be any side effects between the load and store, such as +        // a call or store. +        Chain.reachesChainWithoutSideEffects(SDValue(Ld, 1))) { +      // The store is dead, remove it. +      return Chain; +    } +  } + +  // TODO: Can relax for unordered atomics (see D66309) +  if (StoreSDNode *ST1 = dyn_cast<StoreSDNode>(Chain)) { +    if (ST->isUnindexed() && ST->isSimple() && +        ST1->isUnindexed() && ST1->isSimple()) { +      if (ST1->getBasePtr() == Ptr && ST1->getValue() == Value && +          ST->getMemoryVT() == ST1->getMemoryVT()) { +        // If this is a store followed by a store with the same value to the +        // same location, then the store is dead/noop. +        return Chain; +      } + +      if (OptLevel != CodeGenOpt::None && ST1->hasOneUse() && +          !ST1->getBasePtr().isUndef()) { +        const BaseIndexOffset STBase = BaseIndexOffset::match(ST, DAG); +        const BaseIndexOffset ChainBase = BaseIndexOffset::match(ST1, DAG); +        unsigned STBitSize = ST->getMemoryVT().getSizeInBits(); +        unsigned ChainBitSize = ST1->getMemoryVT().getSizeInBits(); +        // If this is a store who's preceding store to a subset of the current +        // location and no one other node is chained to that store we can +        // effectively drop the store. Do not remove stores to undef as they may +        // be used as data sinks. +        if (STBase.contains(DAG, STBitSize, ChainBase, ChainBitSize)) { +          CombineTo(ST1, ST1->getChain()); +          return SDValue(); +        } + +        // If ST stores to a subset of preceding store's write set, we may be +        // able to fold ST's value into the preceding stored value. As we know +        // the other uses of ST1's chain are unconcerned with ST, this folding +        // will not affect those nodes. +        int64_t BitOffset; +        if (ChainBase.contains(DAG, ChainBitSize, STBase, STBitSize, +                               BitOffset)) { +          SDValue ChainValue = ST1->getValue(); +          if (auto *C1 = dyn_cast<ConstantSDNode>(ChainValue)) { +            if (auto *C = dyn_cast<ConstantSDNode>(Value)) { +              APInt Val = C1->getAPIntValue(); +              APInt InsertVal = C->getAPIntValue().zextOrTrunc(STBitSize); +              // FIXME: Handle Big-endian mode. +              if (!DAG.getDataLayout().isBigEndian()) { +                Val.insertBits(InsertVal, BitOffset); +                SDValue NewSDVal = +                    DAG.getConstant(Val, SDLoc(C), ChainValue.getValueType(), +                                    C1->isTargetOpcode(), C1->isOpaque()); +                SDNode *NewST1 = DAG.UpdateNodeOperands( +                    ST1, ST1->getChain(), NewSDVal, ST1->getOperand(2), +                    ST1->getOperand(3)); +                return CombineTo(ST, SDValue(NewST1, 0)); +              } +            } +          } +        } // End ST subset of ST1 case. +      } +    } +  } + +  // If this is an FP_ROUND or TRUNC followed by a store, fold this into a +  // truncating store.  We can do this even if this is already a truncstore. +  if ((Value.getOpcode() == ISD::FP_ROUND || Value.getOpcode() == ISD::TRUNCATE) +      && Value.getNode()->hasOneUse() && ST->isUnindexed() && +      TLI.isTruncStoreLegal(Value.getOperand(0).getValueType(), +                            ST->getMemoryVT())) { +    return DAG.getTruncStore(Chain, SDLoc(N), Value.getOperand(0), +                             Ptr, ST->getMemoryVT(), ST->getMemOperand()); +  } + +  // Always perform this optimization before types are legal. If the target +  // prefers, also try this after legalization to catch stores that were created +  // by intrinsics or other nodes. +  if (!LegalTypes || (TLI.mergeStoresAfterLegalization(ST->getMemoryVT()))) { +    while (true) { +      // There can be multiple store sequences on the same chain. +      // Keep trying to merge store sequences until we are unable to do so +      // or until we merge the last store on the chain. +      bool Changed = MergeConsecutiveStores(ST); +      if (!Changed) break; +      // Return N as merge only uses CombineTo and no worklist clean +      // up is necessary. +      if (N->getOpcode() == ISD::DELETED_NODE || !isa<StoreSDNode>(N)) +        return SDValue(N, 0); +    } +  } + +  // Try transforming N to an indexed store. +  if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N)) +    return SDValue(N, 0); + +  // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr' +  // +  // Make sure to do this only after attempting to merge stores in order to +  //  avoid changing the types of some subset of stores due to visit order, +  //  preventing their merging. +  if (isa<ConstantFPSDNode>(ST->getValue())) { +    if (SDValue NewSt = replaceStoreOfFPConstant(ST)) +      return NewSt; +  } + +  if (SDValue NewSt = splitMergedValStore(ST)) +    return NewSt; + +  return ReduceLoadOpStoreWidth(N); +} + +SDValue DAGCombiner::visitLIFETIME_END(SDNode *N) { +  const auto *LifetimeEnd = cast<LifetimeSDNode>(N); +  if (!LifetimeEnd->hasOffset()) +    return SDValue(); + +  const BaseIndexOffset LifetimeEndBase(N->getOperand(1), SDValue(), +                                        LifetimeEnd->getOffset(), false); + +  // We walk up the chains to find stores. +  SmallVector<SDValue, 8> Chains = {N->getOperand(0)}; +  while (!Chains.empty()) { +    SDValue Chain = Chains.back(); +    Chains.pop_back(); +    if (!Chain.hasOneUse()) +      continue; +    switch (Chain.getOpcode()) { +    case ISD::TokenFactor: +      for (unsigned Nops = Chain.getNumOperands(); Nops;) +        Chains.push_back(Chain.getOperand(--Nops)); +      break; +    case ISD::LIFETIME_START: +    case ISD::LIFETIME_END: +      // We can forward past any lifetime start/end that can be proven not to +      // alias the node. +      if (!isAlias(Chain.getNode(), N)) +        Chains.push_back(Chain.getOperand(0)); +      break; +    case ISD::STORE: { +      StoreSDNode *ST = dyn_cast<StoreSDNode>(Chain); +      // TODO: Can relax for unordered atomics (see D66309) +      if (!ST->isSimple() || ST->isIndexed()) +        continue; +      const BaseIndexOffset StoreBase = BaseIndexOffset::match(ST, DAG); +      // If we store purely within object bounds just before its lifetime ends, +      // we can remove the store. +      if (LifetimeEndBase.contains(DAG, LifetimeEnd->getSize() * 8, StoreBase, +                                   ST->getMemoryVT().getStoreSizeInBits())) { +        LLVM_DEBUG(dbgs() << "\nRemoving store:"; StoreBase.dump(); +                   dbgs() << "\nwithin LIFETIME_END of : "; +                   LifetimeEndBase.dump(); dbgs() << "\n"); +        CombineTo(ST, ST->getChain()); +        return SDValue(N, 0); +      } +    } +    } +  } +  return SDValue(); +} + +/// For the instruction sequence of store below, F and I values +/// are bundled together as an i64 value before being stored into memory. +/// Sometimes it is more efficent to generate separate stores for F and I, +/// which can remove the bitwise instructions or sink them to colder places. +/// +///   (store (or (zext (bitcast F to i32) to i64), +///              (shl (zext I to i64), 32)), addr)  --> +///   (store F, addr) and (store I, addr+4) +/// +/// Similarly, splitting for other merged store can also be beneficial, like: +/// For pair of {i32, i32}, i64 store --> two i32 stores. +/// For pair of {i32, i16}, i64 store --> two i32 stores. +/// For pair of {i16, i16}, i32 store --> two i16 stores. +/// For pair of {i16, i8},  i32 store --> two i16 stores. +/// For pair of {i8, i8},   i16 store --> two i8 stores. +/// +/// We allow each target to determine specifically which kind of splitting is +/// supported. +/// +/// The store patterns are commonly seen from the simple code snippet below +/// if only std::make_pair(...) is sroa transformed before inlined into hoo. +///   void goo(const std::pair<int, float> &); +///   hoo() { +///     ... +///     goo(std::make_pair(tmp, ftmp)); +///     ... +///   } +/// +SDValue DAGCombiner::splitMergedValStore(StoreSDNode *ST) { +  if (OptLevel == CodeGenOpt::None) +    return SDValue(); + +  // Can't change the number of memory accesses for a volatile store or break +  // atomicity for an atomic one. +  if (!ST->isSimple()) +    return SDValue(); + +  SDValue Val = ST->getValue(); +  SDLoc DL(ST); + +  // Match OR operand. +  if (!Val.getValueType().isScalarInteger() || Val.getOpcode() != ISD::OR) +    return SDValue(); + +  // Match SHL operand and get Lower and Higher parts of Val. +  SDValue Op1 = Val.getOperand(0); +  SDValue Op2 = Val.getOperand(1); +  SDValue Lo, Hi; +  if (Op1.getOpcode() != ISD::SHL) { +    std::swap(Op1, Op2); +    if (Op1.getOpcode() != ISD::SHL) +      return SDValue(); +  } +  Lo = Op2; +  Hi = Op1.getOperand(0); +  if (!Op1.hasOneUse()) +    return SDValue(); + +  // Match shift amount to HalfValBitSize. +  unsigned HalfValBitSize = Val.getValueSizeInBits() / 2; +  ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(Op1.getOperand(1)); +  if (!ShAmt || ShAmt->getAPIntValue() != HalfValBitSize) +    return SDValue(); + +  // Lo and Hi are zero-extended from int with size less equal than 32 +  // to i64. +  if (Lo.getOpcode() != ISD::ZERO_EXTEND || !Lo.hasOneUse() || +      !Lo.getOperand(0).getValueType().isScalarInteger() || +      Lo.getOperand(0).getValueSizeInBits() > HalfValBitSize || +      Hi.getOpcode() != ISD::ZERO_EXTEND || !Hi.hasOneUse() || +      !Hi.getOperand(0).getValueType().isScalarInteger() || +      Hi.getOperand(0).getValueSizeInBits() > HalfValBitSize) +    return SDValue(); + +  // Use the EVT of low and high parts before bitcast as the input +  // of target query. +  EVT LowTy = (Lo.getOperand(0).getOpcode() == ISD::BITCAST) +                  ? Lo.getOperand(0).getValueType() +                  : Lo.getValueType(); +  EVT HighTy = (Hi.getOperand(0).getOpcode() == ISD::BITCAST) +                   ? Hi.getOperand(0).getValueType() +                   : Hi.getValueType(); +  if (!TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy)) +    return SDValue(); + +  // Start to split store. +  unsigned Alignment = ST->getAlignment(); +  MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags(); +  AAMDNodes AAInfo = ST->getAAInfo(); + +  // Change the sizes of Lo and Hi's value types to HalfValBitSize. +  EVT VT = EVT::getIntegerVT(*DAG.getContext(), HalfValBitSize); +  Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Lo.getOperand(0)); +  Hi = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Hi.getOperand(0)); + +  SDValue Chain = ST->getChain(); +  SDValue Ptr = ST->getBasePtr(); +  // Lower value store. +  SDValue St0 = DAG.getStore(Chain, DL, Lo, Ptr, ST->getPointerInfo(), +                             ST->getAlignment(), MMOFlags, AAInfo); +  Ptr = +      DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr, +                  DAG.getConstant(HalfValBitSize / 8, DL, Ptr.getValueType())); +  // Higher value store. +  SDValue St1 = +      DAG.getStore(St0, DL, Hi, Ptr, +                   ST->getPointerInfo().getWithOffset(HalfValBitSize / 8), +                   Alignment / 2, MMOFlags, AAInfo); +  return St1; +} + +/// Convert a disguised subvector insertion into a shuffle: +SDValue DAGCombiner::combineInsertEltToShuffle(SDNode *N, unsigned InsIndex) { +  SDValue InsertVal = N->getOperand(1); +  SDValue Vec = N->getOperand(0); + +  // (insert_vector_elt (vector_shuffle X, Y), (extract_vector_elt X, N), InsIndex) +  //   --> (vector_shuffle X, Y) +  if (Vec.getOpcode() == ISD::VECTOR_SHUFFLE && Vec.hasOneUse() && +      InsertVal.getOpcode() == ISD::EXTRACT_VECTOR_ELT && +      isa<ConstantSDNode>(InsertVal.getOperand(1))) { +    ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Vec.getNode()); +    ArrayRef<int> Mask = SVN->getMask(); + +    SDValue X = Vec.getOperand(0); +    SDValue Y = Vec.getOperand(1); + +    // Vec's operand 0 is using indices from 0 to N-1 and +    // operand 1 from N to 2N - 1, where N is the number of +    // elements in the vectors. +    int XOffset = -1; +    if (InsertVal.getOperand(0) == X) { +      XOffset = 0; +    } else if (InsertVal.getOperand(0) == Y) { +      XOffset = X.getValueType().getVectorNumElements(); +    } + +    if (XOffset != -1) { +      SmallVector<int, 16> NewMask(Mask.begin(), Mask.end()); + +      auto *ExtrIndex = cast<ConstantSDNode>(InsertVal.getOperand(1)); +      NewMask[InsIndex] = XOffset + ExtrIndex->getZExtValue(); +      assert(NewMask[InsIndex] < +                 (int)(2 * Vec.getValueType().getVectorNumElements()) && +             NewMask[InsIndex] >= 0 && "NewMask[InsIndex] is out of bound"); + +      SDValue LegalShuffle = +              TLI.buildLegalVectorShuffle(Vec.getValueType(), SDLoc(N), X, +                                          Y, NewMask, DAG); +      if (LegalShuffle) +        return LegalShuffle; +    } +  } + +  // insert_vector_elt V, (bitcast X from vector type), IdxC --> +  // bitcast(shuffle (bitcast V), (extended X), Mask) +  // Note: We do not use an insert_subvector node because that requires a +  // legal subvector type. +  if (InsertVal.getOpcode() != ISD::BITCAST || !InsertVal.hasOneUse() || +      !InsertVal.getOperand(0).getValueType().isVector()) +    return SDValue(); + +  SDValue SubVec = InsertVal.getOperand(0); +  SDValue DestVec = N->getOperand(0); +  EVT SubVecVT = SubVec.getValueType(); +  EVT VT = DestVec.getValueType(); +  unsigned NumSrcElts = SubVecVT.getVectorNumElements(); +  unsigned ExtendRatio = VT.getSizeInBits() / SubVecVT.getSizeInBits(); +  unsigned NumMaskVals = ExtendRatio * NumSrcElts; + +  // Step 1: Create a shuffle mask that implements this insert operation. The +  // vector that we are inserting into will be operand 0 of the shuffle, so +  // those elements are just 'i'. The inserted subvector is in the first +  // positions of operand 1 of the shuffle. Example: +  // insert v4i32 V, (v2i16 X), 2 --> shuffle v8i16 V', X', {0,1,2,3,8,9,6,7} +  SmallVector<int, 16> Mask(NumMaskVals); +  for (unsigned i = 0; i != NumMaskVals; ++i) { +    if (i / NumSrcElts == InsIndex) +      Mask[i] = (i % NumSrcElts) + NumMaskVals; +    else +      Mask[i] = i; +  } + +  // Bail out if the target can not handle the shuffle we want to create. +  EVT SubVecEltVT = SubVecVT.getVectorElementType(); +  EVT ShufVT = EVT::getVectorVT(*DAG.getContext(), SubVecEltVT, NumMaskVals); +  if (!TLI.isShuffleMaskLegal(Mask, ShufVT)) +    return SDValue(); + +  // Step 2: Create a wide vector from the inserted source vector by appending +  // undefined elements. This is the same size as our destination vector. +  SDLoc DL(N); +  SmallVector<SDValue, 8> ConcatOps(ExtendRatio, DAG.getUNDEF(SubVecVT)); +  ConcatOps[0] = SubVec; +  SDValue PaddedSubV = DAG.getNode(ISD::CONCAT_VECTORS, DL, ShufVT, ConcatOps); + +  // Step 3: Shuffle in the padded subvector. +  SDValue DestVecBC = DAG.getBitcast(ShufVT, DestVec); +  SDValue Shuf = DAG.getVectorShuffle(ShufVT, DL, DestVecBC, PaddedSubV, Mask); +  AddToWorklist(PaddedSubV.getNode()); +  AddToWorklist(DestVecBC.getNode()); +  AddToWorklist(Shuf.getNode()); +  return DAG.getBitcast(VT, Shuf); +} + +SDValue DAGCombiner::visitINSERT_VECTOR_ELT(SDNode *N) { +  SDValue InVec = N->getOperand(0); +  SDValue InVal = N->getOperand(1); +  SDValue EltNo = N->getOperand(2); +  SDLoc DL(N); + +  // If the inserted element is an UNDEF, just use the input vector. +  if (InVal.isUndef()) +    return InVec; + +  EVT VT = InVec.getValueType(); +  unsigned NumElts = VT.getVectorNumElements(); + +  // Remove redundant insertions: +  // (insert_vector_elt x (extract_vector_elt x idx) idx) -> x +  if (InVal.getOpcode() == ISD::EXTRACT_VECTOR_ELT && +      InVec == InVal.getOperand(0) && EltNo == InVal.getOperand(1)) +    return InVec; + +  auto *IndexC = dyn_cast<ConstantSDNode>(EltNo); +  if (!IndexC) { +    // If this is variable insert to undef vector, it might be better to splat: +    // inselt undef, InVal, EltNo --> build_vector < InVal, InVal, ... > +    if (InVec.isUndef() && TLI.shouldSplatInsEltVarIndex(VT)) { +      SmallVector<SDValue, 8> Ops(NumElts, InVal); +      return DAG.getBuildVector(VT, DL, Ops); +    } +    return SDValue(); +  } + +  // We must know which element is being inserted for folds below here. +  unsigned Elt = IndexC->getZExtValue(); +  if (SDValue Shuf = combineInsertEltToShuffle(N, Elt)) +    return Shuf; + +  // Canonicalize insert_vector_elt dag nodes. +  // Example: +  // (insert_vector_elt (insert_vector_elt A, Idx0), Idx1) +  // -> (insert_vector_elt (insert_vector_elt A, Idx1), Idx0) +  // +  // Do this only if the child insert_vector node has one use; also +  // do this only if indices are both constants and Idx1 < Idx0. +  if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT && InVec.hasOneUse() +      && isa<ConstantSDNode>(InVec.getOperand(2))) { +    unsigned OtherElt = InVec.getConstantOperandVal(2); +    if (Elt < OtherElt) { +      // Swap nodes. +      SDValue NewOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, +                                  InVec.getOperand(0), InVal, EltNo); +      AddToWorklist(NewOp.getNode()); +      return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(InVec.getNode()), +                         VT, NewOp, InVec.getOperand(1), InVec.getOperand(2)); +    } +  } + +  // If we can't generate a legal BUILD_VECTOR, exit +  if (LegalOperations && !TLI.isOperationLegal(ISD::BUILD_VECTOR, VT)) +    return SDValue(); + +  // Check that the operand is a BUILD_VECTOR (or UNDEF, which can essentially +  // be converted to a BUILD_VECTOR).  Fill in the Ops vector with the +  // vector elements. +  SmallVector<SDValue, 8> Ops; +  // Do not combine these two vectors if the output vector will not replace +  // the input vector. +  if (InVec.getOpcode() == ISD::BUILD_VECTOR && InVec.hasOneUse()) { +    Ops.append(InVec.getNode()->op_begin(), +               InVec.getNode()->op_end()); +  } else if (InVec.isUndef()) { +    Ops.append(NumElts, DAG.getUNDEF(InVal.getValueType())); +  } else { +    return SDValue(); +  } +  assert(Ops.size() == NumElts && "Unexpected vector size"); + +  // Insert the element +  if (Elt < Ops.size()) { +    // All the operands of BUILD_VECTOR must have the same type; +    // we enforce that here. +    EVT OpVT = Ops[0].getValueType(); +    Ops[Elt] = OpVT.isInteger() ? DAG.getAnyExtOrTrunc(InVal, DL, OpVT) : InVal; +  } + +  // Return the new vector +  return DAG.getBuildVector(VT, DL, Ops); +} + +SDValue DAGCombiner::scalarizeExtractedVectorLoad(SDNode *EVE, EVT InVecVT, +                                                  SDValue EltNo, +                                                  LoadSDNode *OriginalLoad) { +  assert(OriginalLoad->isSimple()); + +  EVT ResultVT = EVE->getValueType(0); +  EVT VecEltVT = InVecVT.getVectorElementType(); +  unsigned Align = OriginalLoad->getAlignment(); +  unsigned NewAlign = DAG.getDataLayout().getABITypeAlignment( +      VecEltVT.getTypeForEVT(*DAG.getContext())); + +  if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, VecEltVT)) +    return SDValue(); + +  ISD::LoadExtType ExtTy = ResultVT.bitsGT(VecEltVT) ? +    ISD::NON_EXTLOAD : ISD::EXTLOAD; +  if (!TLI.shouldReduceLoadWidth(OriginalLoad, ExtTy, VecEltVT)) +    return SDValue(); + +  Align = NewAlign; + +  SDValue NewPtr = OriginalLoad->getBasePtr(); +  SDValue Offset; +  EVT PtrType = NewPtr.getValueType(); +  MachinePointerInfo MPI; +  SDLoc DL(EVE); +  if (auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo)) { +    int Elt = ConstEltNo->getZExtValue(); +    unsigned PtrOff = VecEltVT.getSizeInBits() * Elt / 8; +    Offset = DAG.getConstant(PtrOff, DL, PtrType); +    MPI = OriginalLoad->getPointerInfo().getWithOffset(PtrOff); +  } else { +    Offset = DAG.getZExtOrTrunc(EltNo, DL, PtrType); +    Offset = DAG.getNode( +        ISD::MUL, DL, PtrType, Offset, +        DAG.getConstant(VecEltVT.getStoreSize(), DL, PtrType)); +    // Discard the pointer info except the address space because the memory +    // operand can't represent this new access since the offset is variable. +    MPI = MachinePointerInfo(OriginalLoad->getPointerInfo().getAddrSpace()); +  } +  NewPtr = DAG.getNode(ISD::ADD, DL, PtrType, NewPtr, Offset); + +  // The replacement we need to do here is a little tricky: we need to +  // replace an extractelement of a load with a load. +  // Use ReplaceAllUsesOfValuesWith to do the replacement. +  // Note that this replacement assumes that the extractvalue is the only +  // use of the load; that's okay because we don't want to perform this +  // transformation in other cases anyway. +  SDValue Load; +  SDValue Chain; +  if (ResultVT.bitsGT(VecEltVT)) { +    // If the result type of vextract is wider than the load, then issue an +    // extending load instead. +    ISD::LoadExtType ExtType = TLI.isLoadExtLegal(ISD::ZEXTLOAD, ResultVT, +                                                  VecEltVT) +                                   ? ISD::ZEXTLOAD +                                   : ISD::EXTLOAD; +    Load = DAG.getExtLoad(ExtType, SDLoc(EVE), ResultVT, +                          OriginalLoad->getChain(), NewPtr, MPI, VecEltVT, +                          Align, OriginalLoad->getMemOperand()->getFlags(), +                          OriginalLoad->getAAInfo()); +    Chain = Load.getValue(1); +  } else { +    Load = DAG.getLoad(VecEltVT, SDLoc(EVE), OriginalLoad->getChain(), NewPtr, +                       MPI, Align, OriginalLoad->getMemOperand()->getFlags(), +                       OriginalLoad->getAAInfo()); +    Chain = Load.getValue(1); +    if (ResultVT.bitsLT(VecEltVT)) +      Load = DAG.getNode(ISD::TRUNCATE, SDLoc(EVE), ResultVT, Load); +    else +      Load = DAG.getBitcast(ResultVT, Load); +  } +  WorklistRemover DeadNodes(*this); +  SDValue From[] = { SDValue(EVE, 0), SDValue(OriginalLoad, 1) }; +  SDValue To[] = { Load, Chain }; +  DAG.ReplaceAllUsesOfValuesWith(From, To, 2); +  // Make sure to revisit this node to clean it up; it will usually be dead. +  AddToWorklist(EVE); +  // Since we're explicitly calling ReplaceAllUses, add the new node to the +  // worklist explicitly as well. +  AddUsersToWorklist(Load.getNode()); // Add users too +  AddToWorklist(Load.getNode()); +  ++OpsNarrowed; +  return SDValue(EVE, 0); +} + +/// Transform a vector binary operation into a scalar binary operation by moving +/// the math/logic after an extract element of a vector. +static SDValue scalarizeExtractedBinop(SDNode *ExtElt, SelectionDAG &DAG, +                                       bool LegalOperations) { +  const TargetLowering &TLI = DAG.getTargetLoweringInfo(); +  SDValue Vec = ExtElt->getOperand(0); +  SDValue Index = ExtElt->getOperand(1); +  auto *IndexC = dyn_cast<ConstantSDNode>(Index); +  if (!IndexC || !TLI.isBinOp(Vec.getOpcode()) || !Vec.hasOneUse() || +      Vec.getNode()->getNumValues() != 1) +    return SDValue(); + +  // Targets may want to avoid this to prevent an expensive register transfer. +  if (!TLI.shouldScalarizeBinop(Vec)) +    return SDValue(); + +  // Extracting an element of a vector constant is constant-folded, so this +  // transform is just replacing a vector op with a scalar op while moving the +  // extract. +  SDValue Op0 = Vec.getOperand(0); +  SDValue Op1 = Vec.getOperand(1); +  if (isAnyConstantBuildVector(Op0, true) || +      isAnyConstantBuildVector(Op1, true)) { +    // extractelt (binop X, C), IndexC --> binop (extractelt X, IndexC), C' +    // extractelt (binop C, X), IndexC --> binop C', (extractelt X, IndexC) +    SDLoc DL(ExtElt); +    EVT VT = ExtElt->getValueType(0); +    SDValue Ext0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, Op0, Index); +    SDValue Ext1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, Op1, Index); +    return DAG.getNode(Vec.getOpcode(), DL, VT, Ext0, Ext1); +  } + +  return SDValue(); +} + +SDValue DAGCombiner::visitEXTRACT_VECTOR_ELT(SDNode *N) { +  SDValue VecOp = N->getOperand(0); +  SDValue Index = N->getOperand(1); +  EVT ScalarVT = N->getValueType(0); +  EVT VecVT = VecOp.getValueType(); +  if (VecOp.isUndef()) +    return DAG.getUNDEF(ScalarVT); + +  // extract_vector_elt (insert_vector_elt vec, val, idx), idx) -> val +  // +  // This only really matters if the index is non-constant since other combines +  // on the constant elements already work. +  SDLoc DL(N); +  if (VecOp.getOpcode() == ISD::INSERT_VECTOR_ELT && +      Index == VecOp.getOperand(2)) { +    SDValue Elt = VecOp.getOperand(1); +    return VecVT.isInteger() ? DAG.getAnyExtOrTrunc(Elt, DL, ScalarVT) : Elt; +  } + +  // (vextract (scalar_to_vector val, 0) -> val +  if (VecOp.getOpcode() == ISD::SCALAR_TO_VECTOR) { +    // Check if the result type doesn't match the inserted element type. A +    // SCALAR_TO_VECTOR may truncate the inserted element and the +    // EXTRACT_VECTOR_ELT may widen the extracted vector. +    SDValue InOp = VecOp.getOperand(0); +    if (InOp.getValueType() != ScalarVT) { +      assert(InOp.getValueType().isInteger() && ScalarVT.isInteger()); +      return DAG.getSExtOrTrunc(InOp, DL, ScalarVT); +    } +    return InOp; +  } + +  // extract_vector_elt of out-of-bounds element -> UNDEF +  auto *IndexC = dyn_cast<ConstantSDNode>(Index); +  unsigned NumElts = VecVT.getVectorNumElements(); +  if (IndexC && IndexC->getAPIntValue().uge(NumElts)) +    return DAG.getUNDEF(ScalarVT); + +  // extract_vector_elt (build_vector x, y), 1 -> y +  if (IndexC && VecOp.getOpcode() == ISD::BUILD_VECTOR && +      TLI.isTypeLegal(VecVT) && +      (VecOp.hasOneUse() || TLI.aggressivelyPreferBuildVectorSources(VecVT))) { +    SDValue Elt = VecOp.getOperand(IndexC->getZExtValue()); +    EVT InEltVT = Elt.getValueType(); + +    // Sometimes build_vector's scalar input types do not match result type. +    if (ScalarVT == InEltVT) +      return Elt; + +    // TODO: It may be useful to truncate if free if the build_vector implicitly +    // converts. +  } + +  // TODO: These transforms should not require the 'hasOneUse' restriction, but +  // there are regressions on multiple targets without it. We can end up with a +  // mess of scalar and vector code if we reduce only part of the DAG to scalar. +  if (IndexC && VecOp.getOpcode() == ISD::BITCAST && VecVT.isInteger() && +      VecOp.hasOneUse()) { +    // The vector index of the LSBs of the source depend on the endian-ness. +    bool IsLE = DAG.getDataLayout().isLittleEndian(); +    unsigned ExtractIndex = IndexC->getZExtValue(); +    // extract_elt (v2i32 (bitcast i64:x)), BCTruncElt -> i32 (trunc i64:x) +    unsigned BCTruncElt = IsLE ? 0 : NumElts - 1; +    SDValue BCSrc = VecOp.getOperand(0); +    if (ExtractIndex == BCTruncElt && BCSrc.getValueType().isScalarInteger()) +      return DAG.getNode(ISD::TRUNCATE, DL, ScalarVT, BCSrc); + +    if (LegalTypes && BCSrc.getValueType().isInteger() && +        BCSrc.getOpcode() == ISD::SCALAR_TO_VECTOR) { +      // ext_elt (bitcast (scalar_to_vec i64 X to v2i64) to v4i32), TruncElt --> +      // trunc i64 X to i32 +      SDValue X = BCSrc.getOperand(0); +      assert(X.getValueType().isScalarInteger() && ScalarVT.isScalarInteger() && +             "Extract element and scalar to vector can't change element type " +             "from FP to integer."); +      unsigned XBitWidth = X.getValueSizeInBits(); +      unsigned VecEltBitWidth = VecVT.getScalarSizeInBits(); +      BCTruncElt = IsLE ? 0 : XBitWidth / VecEltBitWidth - 1; + +      // An extract element return value type can be wider than its vector +      // operand element type. In that case, the high bits are undefined, so +      // it's possible that we may need to extend rather than truncate. +      if (ExtractIndex == BCTruncElt && XBitWidth > VecEltBitWidth) { +        assert(XBitWidth % VecEltBitWidth == 0 && +               "Scalar bitwidth must be a multiple of vector element bitwidth"); +        return DAG.getAnyExtOrTrunc(X, DL, ScalarVT); +      } +    } +  } + +  if (SDValue BO = scalarizeExtractedBinop(N, DAG, LegalOperations)) +    return BO; + +  // Transform: (EXTRACT_VECTOR_ELT( VECTOR_SHUFFLE )) -> EXTRACT_VECTOR_ELT. +  // We only perform this optimization before the op legalization phase because +  // we may introduce new vector instructions which are not backed by TD +  // patterns. For example on AVX, extracting elements from a wide vector +  // without using extract_subvector. However, if we can find an underlying +  // scalar value, then we can always use that. +  if (IndexC && VecOp.getOpcode() == ISD::VECTOR_SHUFFLE) { +    auto *Shuf = cast<ShuffleVectorSDNode>(VecOp); +    // Find the new index to extract from. +    int OrigElt = Shuf->getMaskElt(IndexC->getZExtValue()); + +    // Extracting an undef index is undef. +    if (OrigElt == -1) +      return DAG.getUNDEF(ScalarVT); + +    // Select the right vector half to extract from. +    SDValue SVInVec; +    if (OrigElt < (int)NumElts) { +      SVInVec = VecOp.getOperand(0); +    } else { +      SVInVec = VecOp.getOperand(1); +      OrigElt -= NumElts; +    } + +    if (SVInVec.getOpcode() == ISD::BUILD_VECTOR) { +      SDValue InOp = SVInVec.getOperand(OrigElt); +      if (InOp.getValueType() != ScalarVT) { +        assert(InOp.getValueType().isInteger() && ScalarVT.isInteger()); +        InOp = DAG.getSExtOrTrunc(InOp, DL, ScalarVT); +      } + +      return InOp; +    } + +    // FIXME: We should handle recursing on other vector shuffles and +    // scalar_to_vector here as well. + +    if (!LegalOperations || +        // FIXME: Should really be just isOperationLegalOrCustom. +        TLI.isOperationLegal(ISD::EXTRACT_VECTOR_ELT, VecVT) || +        TLI.isOperationExpand(ISD::VECTOR_SHUFFLE, VecVT)) { +      EVT IndexTy = TLI.getVectorIdxTy(DAG.getDataLayout()); +      return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ScalarVT, SVInVec, +                         DAG.getConstant(OrigElt, DL, IndexTy)); +    } +  } + +  // If only EXTRACT_VECTOR_ELT nodes use the source vector we can +  // simplify it based on the (valid) extraction indices. +  if (llvm::all_of(VecOp->uses(), [&](SDNode *Use) { +        return Use->getOpcode() == ISD::EXTRACT_VECTOR_ELT && +               Use->getOperand(0) == VecOp && +               isa<ConstantSDNode>(Use->getOperand(1)); +      })) { +    APInt DemandedElts = APInt::getNullValue(NumElts); +    for (SDNode *Use : VecOp->uses()) { +      auto *CstElt = cast<ConstantSDNode>(Use->getOperand(1)); +      if (CstElt->getAPIntValue().ult(NumElts)) +        DemandedElts.setBit(CstElt->getZExtValue()); +    } +    if (SimplifyDemandedVectorElts(VecOp, DemandedElts, true)) { +      // We simplified the vector operand of this extract element. If this +      // extract is not dead, visit it again so it is folded properly. +      if (N->getOpcode() != ISD::DELETED_NODE) +        AddToWorklist(N); +      return SDValue(N, 0); +    } +  } + +  // Everything under here is trying to match an extract of a loaded value. +  // If the result of load has to be truncated, then it's not necessarily +  // profitable. +  bool BCNumEltsChanged = false; +  EVT ExtVT = VecVT.getVectorElementType(); +  EVT LVT = ExtVT; +  if (ScalarVT.bitsLT(LVT) && !TLI.isTruncateFree(LVT, ScalarVT)) +    return SDValue(); + +  if (VecOp.getOpcode() == ISD::BITCAST) { +    // Don't duplicate a load with other uses. +    if (!VecOp.hasOneUse()) +      return SDValue(); + +    EVT BCVT = VecOp.getOperand(0).getValueType(); +    if (!BCVT.isVector() || ExtVT.bitsGT(BCVT.getVectorElementType())) +      return SDValue(); +    if (NumElts != BCVT.getVectorNumElements()) +      BCNumEltsChanged = true; +    VecOp = VecOp.getOperand(0); +    ExtVT = BCVT.getVectorElementType(); +  } + +  // extract (vector load $addr), i --> load $addr + i * size +  if (!LegalOperations && !IndexC && VecOp.hasOneUse() && +      ISD::isNormalLoad(VecOp.getNode()) && +      !Index->hasPredecessor(VecOp.getNode())) { +    auto *VecLoad = dyn_cast<LoadSDNode>(VecOp); +    if (VecLoad && VecLoad->isSimple()) +      return scalarizeExtractedVectorLoad(N, VecVT, Index, VecLoad); +  } + +  // Perform only after legalization to ensure build_vector / vector_shuffle +  // optimizations have already been done. +  if (!LegalOperations || !IndexC) +    return SDValue(); + +  // (vextract (v4f32 load $addr), c) -> (f32 load $addr+c*size) +  // (vextract (v4f32 s2v (f32 load $addr)), c) -> (f32 load $addr+c*size) +  // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), 0) -> (f32 load $addr) +  int Elt = IndexC->getZExtValue(); +  LoadSDNode *LN0 = nullptr; +  if (ISD::isNormalLoad(VecOp.getNode())) { +    LN0 = cast<LoadSDNode>(VecOp); +  } else if (VecOp.getOpcode() == ISD::SCALAR_TO_VECTOR && +             VecOp.getOperand(0).getValueType() == ExtVT && +             ISD::isNormalLoad(VecOp.getOperand(0).getNode())) { +    // Don't duplicate a load with other uses. +    if (!VecOp.hasOneUse()) +      return SDValue(); + +    LN0 = cast<LoadSDNode>(VecOp.getOperand(0)); +  } +  if (auto *Shuf = dyn_cast<ShuffleVectorSDNode>(VecOp)) { +    // (vextract (vector_shuffle (load $addr), v2, <1, u, u, u>), 1) +    // => +    // (load $addr+1*size) + +    // Don't duplicate a load with other uses. +    if (!VecOp.hasOneUse()) +      return SDValue(); + +    // If the bit convert changed the number of elements, it is unsafe +    // to examine the mask. +    if (BCNumEltsChanged) +      return SDValue(); + +    // Select the input vector, guarding against out of range extract vector. +    int Idx = (Elt > (int)NumElts) ? -1 : Shuf->getMaskElt(Elt); +    VecOp = (Idx < (int)NumElts) ? VecOp.getOperand(0) : VecOp.getOperand(1); + +    if (VecOp.getOpcode() == ISD::BITCAST) { +      // Don't duplicate a load with other uses. +      if (!VecOp.hasOneUse()) +        return SDValue(); + +      VecOp = VecOp.getOperand(0); +    } +    if (ISD::isNormalLoad(VecOp.getNode())) { +      LN0 = cast<LoadSDNode>(VecOp); +      Elt = (Idx < (int)NumElts) ? Idx : Idx - (int)NumElts; +      Index = DAG.getConstant(Elt, DL, Index.getValueType()); +    } +  } + +  // Make sure we found a non-volatile load and the extractelement is +  // the only use. +  if (!LN0 || !LN0->hasNUsesOfValue(1,0) || !LN0->isSimple()) +    return SDValue(); + +  // If Idx was -1 above, Elt is going to be -1, so just return undef. +  if (Elt == -1) +    return DAG.getUNDEF(LVT); + +  return scalarizeExtractedVectorLoad(N, VecVT, Index, LN0); +} + +// Simplify (build_vec (ext )) to (bitcast (build_vec )) +SDValue DAGCombiner::reduceBuildVecExtToExtBuildVec(SDNode *N) { +  // We perform this optimization post type-legalization because +  // the type-legalizer often scalarizes integer-promoted vectors. +  // Performing this optimization before may create bit-casts which +  // will be type-legalized to complex code sequences. +  // We perform this optimization only before the operation legalizer because we +  // may introduce illegal operations. +  if (Level != AfterLegalizeVectorOps && Level != AfterLegalizeTypes) +    return SDValue(); + +  unsigned NumInScalars = N->getNumOperands(); +  SDLoc DL(N); +  EVT VT = N->getValueType(0); + +  // Check to see if this is a BUILD_VECTOR of a bunch of values +  // which come from any_extend or zero_extend nodes. If so, we can create +  // a new BUILD_VECTOR using bit-casts which may enable other BUILD_VECTOR +  // optimizations. We do not handle sign-extend because we can't fill the sign +  // using shuffles. +  EVT SourceType = MVT::Other; +  bool AllAnyExt = true; + +  for (unsigned i = 0; i != NumInScalars; ++i) { +    SDValue In = N->getOperand(i); +    // Ignore undef inputs. +    if (In.isUndef()) continue; + +    bool AnyExt  = In.getOpcode() == ISD::ANY_EXTEND; +    bool ZeroExt = In.getOpcode() == ISD::ZERO_EXTEND; + +    // Abort if the element is not an extension. +    if (!ZeroExt && !AnyExt) { +      SourceType = MVT::Other; +      break; +    } + +    // The input is a ZeroExt or AnyExt. Check the original type. +    EVT InTy = In.getOperand(0).getValueType(); + +    // Check that all of the widened source types are the same. +    if (SourceType == MVT::Other) +      // First time. +      SourceType = InTy; +    else if (InTy != SourceType) { +      // Multiple income types. Abort. +      SourceType = MVT::Other; +      break; +    } + +    // Check if all of the extends are ANY_EXTENDs. +    AllAnyExt &= AnyExt; +  } + +  // In order to have valid types, all of the inputs must be extended from the +  // same source type and all of the inputs must be any or zero extend. +  // Scalar sizes must be a power of two. +  EVT OutScalarTy = VT.getScalarType(); +  bool ValidTypes = SourceType != MVT::Other && +                 isPowerOf2_32(OutScalarTy.getSizeInBits()) && +                 isPowerOf2_32(SourceType.getSizeInBits()); + +  // Create a new simpler BUILD_VECTOR sequence which other optimizations can +  // turn into a single shuffle instruction. +  if (!ValidTypes) +    return SDValue(); + +  bool isLE = DAG.getDataLayout().isLittleEndian(); +  unsigned ElemRatio = OutScalarTy.getSizeInBits()/SourceType.getSizeInBits(); +  assert(ElemRatio > 1 && "Invalid element size ratio"); +  SDValue Filler = AllAnyExt ? DAG.getUNDEF(SourceType): +                               DAG.getConstant(0, DL, SourceType); + +  unsigned NewBVElems = ElemRatio * VT.getVectorNumElements(); +  SmallVector<SDValue, 8> Ops(NewBVElems, Filler); + +  // Populate the new build_vector +  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { +    SDValue Cast = N->getOperand(i); +    assert((Cast.getOpcode() == ISD::ANY_EXTEND || +            Cast.getOpcode() == ISD::ZERO_EXTEND || +            Cast.isUndef()) && "Invalid cast opcode"); +    SDValue In; +    if (Cast.isUndef()) +      In = DAG.getUNDEF(SourceType); +    else +      In = Cast->getOperand(0); +    unsigned Index = isLE ? (i * ElemRatio) : +                            (i * ElemRatio + (ElemRatio - 1)); + +    assert(Index < Ops.size() && "Invalid index"); +    Ops[Index] = In; +  } + +  // The type of the new BUILD_VECTOR node. +  EVT VecVT = EVT::getVectorVT(*DAG.getContext(), SourceType, NewBVElems); +  assert(VecVT.getSizeInBits() == VT.getSizeInBits() && +         "Invalid vector size"); +  // Check if the new vector type is legal. +  if (!isTypeLegal(VecVT) || +      (!TLI.isOperationLegal(ISD::BUILD_VECTOR, VecVT) && +       TLI.isOperationLegal(ISD::BUILD_VECTOR, VT))) +    return SDValue(); + +  // Make the new BUILD_VECTOR. +  SDValue BV = DAG.getBuildVector(VecVT, DL, Ops); + +  // The new BUILD_VECTOR node has the potential to be further optimized. +  AddToWorklist(BV.getNode()); +  // Bitcast to the desired type. +  return DAG.getBitcast(VT, BV); +} + +SDValue DAGCombiner::createBuildVecShuffle(const SDLoc &DL, SDNode *N, +                                           ArrayRef<int> VectorMask, +                                           SDValue VecIn1, SDValue VecIn2, +                                           unsigned LeftIdx, bool DidSplitVec) { +  MVT IdxTy = TLI.getVectorIdxTy(DAG.getDataLayout()); +  SDValue ZeroIdx = DAG.getConstant(0, DL, IdxTy); + +  EVT VT = N->getValueType(0); +  EVT InVT1 = VecIn1.getValueType(); +  EVT InVT2 = VecIn2.getNode() ? VecIn2.getValueType() : InVT1; + +  unsigned NumElems = VT.getVectorNumElements(); +  unsigned ShuffleNumElems = NumElems; + +  // If we artificially split a vector in two already, then the offsets in the +  // operands will all be based off of VecIn1, even those in VecIn2. +  unsigned Vec2Offset = DidSplitVec ? 0 : InVT1.getVectorNumElements(); + +  // We can't generate a shuffle node with mismatched input and output types. +  // Try to make the types match the type of the output. +  if (InVT1 != VT || InVT2 != VT) { +    if ((VT.getSizeInBits() % InVT1.getSizeInBits() == 0) && InVT1 == InVT2) { +      // If the output vector length is a multiple of both input lengths, +      // we can concatenate them and pad the rest with undefs. +      unsigned NumConcats = VT.getSizeInBits() / InVT1.getSizeInBits(); +      assert(NumConcats >= 2 && "Concat needs at least two inputs!"); +      SmallVector<SDValue, 2> ConcatOps(NumConcats, DAG.getUNDEF(InVT1)); +      ConcatOps[0] = VecIn1; +      ConcatOps[1] = VecIn2 ? VecIn2 : DAG.getUNDEF(InVT1); +      VecIn1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps); +      VecIn2 = SDValue(); +    } else if (InVT1.getSizeInBits() == VT.getSizeInBits() * 2) { +      if (!TLI.isExtractSubvectorCheap(VT, InVT1, NumElems)) +        return SDValue(); + +      if (!VecIn2.getNode()) { +        // If we only have one input vector, and it's twice the size of the +        // output, split it in two. +        VecIn2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, VecIn1, +                             DAG.getConstant(NumElems, DL, IdxTy)); +        VecIn1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, VecIn1, ZeroIdx); +        // Since we now have shorter input vectors, adjust the offset of the +        // second vector's start. +        Vec2Offset = NumElems; +      } else if (InVT2.getSizeInBits() <= InVT1.getSizeInBits()) { +        // VecIn1 is wider than the output, and we have another, possibly +        // smaller input. Pad the smaller input with undefs, shuffle at the +        // input vector width, and extract the output. +        // The shuffle type is different than VT, so check legality again. +        if (LegalOperations && +            !TLI.isOperationLegal(ISD::VECTOR_SHUFFLE, InVT1)) +          return SDValue(); + +        // Legalizing INSERT_SUBVECTOR is tricky - you basically have to +        // lower it back into a BUILD_VECTOR. So if the inserted type is +        // illegal, don't even try. +        if (InVT1 != InVT2) { +          if (!TLI.isTypeLegal(InVT2)) +            return SDValue(); +          VecIn2 = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InVT1, +                               DAG.getUNDEF(InVT1), VecIn2, ZeroIdx); +        } +        ShuffleNumElems = NumElems * 2; +      } else { +        // Both VecIn1 and VecIn2 are wider than the output, and VecIn2 is wider +        // than VecIn1. We can't handle this for now - this case will disappear +        // when we start sorting the vectors by type. +        return SDValue(); +      } +    } else if (InVT2.getSizeInBits() * 2 == VT.getSizeInBits() && +               InVT1.getSizeInBits() == VT.getSizeInBits()) { +      SmallVector<SDValue, 2> ConcatOps(2, DAG.getUNDEF(InVT2)); +      ConcatOps[0] = VecIn2; +      VecIn2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps); +    } else { +      // TODO: Support cases where the length mismatch isn't exactly by a +      // factor of 2. +      // TODO: Move this check upwards, so that if we have bad type +      // mismatches, we don't create any DAG nodes. +      return SDValue(); +    } +  } + +  // Initialize mask to undef. +  SmallVector<int, 8> Mask(ShuffleNumElems, -1); + +  // Only need to run up to the number of elements actually used, not the +  // total number of elements in the shuffle - if we are shuffling a wider +  // vector, the high lanes should be set to undef. +  for (unsigned i = 0; i != NumElems; ++i) { +    if (VectorMask[i] <= 0) +      continue; + +    unsigned ExtIndex = N->getOperand(i).getConstantOperandVal(1); +    if (VectorMask[i] == (int)LeftIdx) { +      Mask[i] = ExtIndex; +    } else if (VectorMask[i] == (int)LeftIdx + 1) { +      Mask[i] = Vec2Offset + ExtIndex; +    } +  } + +  // The type the input vectors may have changed above. +  InVT1 = VecIn1.getValueType(); + +  // If we already have a VecIn2, it should have the same type as VecIn1. +  // If we don't, get an undef/zero vector of the appropriate type. +  VecIn2 = VecIn2.getNode() ? VecIn2 : DAG.getUNDEF(InVT1); +  assert(InVT1 == VecIn2.getValueType() && "Unexpected second input type."); + +  SDValue Shuffle = DAG.getVectorShuffle(InVT1, DL, VecIn1, VecIn2, Mask); +  if (ShuffleNumElems > NumElems) +    Shuffle = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Shuffle, ZeroIdx); + +  return Shuffle; +} + +static SDValue reduceBuildVecToShuffleWithZero(SDNode *BV, SelectionDAG &DAG) { +  assert(BV->getOpcode() == ISD::BUILD_VECTOR && "Expected build vector"); + +  // First, determine where the build vector is not undef. +  // TODO: We could extend this to handle zero elements as well as undefs. +  int NumBVOps = BV->getNumOperands(); +  int ZextElt = -1; +  for (int i = 0; i != NumBVOps; ++i) { +    SDValue Op = BV->getOperand(i); +    if (Op.isUndef()) +      continue; +    if (ZextElt == -1) +      ZextElt = i; +    else +      return SDValue(); +  } +  // Bail out if there's no non-undef element. +  if (ZextElt == -1) +    return SDValue(); + +  // The build vector contains some number of undef elements and exactly +  // one other element. That other element must be a zero-extended scalar +  // extracted from a vector at a constant index to turn this into a shuffle. +  // Also, require that the build vector does not implicitly truncate/extend +  // its elements. +  // TODO: This could be enhanced to allow ANY_EXTEND as well as ZERO_EXTEND. +  EVT VT = BV->getValueType(0); +  SDValue Zext = BV->getOperand(ZextElt); +  if (Zext.getOpcode() != ISD::ZERO_EXTEND || !Zext.hasOneUse() || +      Zext.getOperand(0).getOpcode() != ISD::EXTRACT_VECTOR_ELT || +      !isa<ConstantSDNode>(Zext.getOperand(0).getOperand(1)) || +      Zext.getValueSizeInBits() != VT.getScalarSizeInBits()) +    return SDValue(); + +  // The zero-extend must be a multiple of the source size, and we must be +  // building a vector of the same size as the source of the extract element. +  SDValue Extract = Zext.getOperand(0); +  unsigned DestSize = Zext.getValueSizeInBits(); +  unsigned SrcSize = Extract.getValueSizeInBits(); +  if (DestSize % SrcSize != 0 || +      Extract.getOperand(0).getValueSizeInBits() != VT.getSizeInBits()) +    return SDValue(); + +  // Create a shuffle mask that will combine the extracted element with zeros +  // and undefs. +  int ZextRatio = DestSize / SrcSize; +  int NumMaskElts = NumBVOps * ZextRatio; +  SmallVector<int, 32> ShufMask(NumMaskElts, -1); +  for (int i = 0; i != NumMaskElts; ++i) { +    if (i / ZextRatio == ZextElt) { +      // The low bits of the (potentially translated) extracted element map to +      // the source vector. The high bits map to zero. We will use a zero vector +      // as the 2nd source operand of the shuffle, so use the 1st element of +      // that vector (mask value is number-of-elements) for the high bits. +      if (i % ZextRatio == 0) +        ShufMask[i] = Extract.getConstantOperandVal(1); +      else +        ShufMask[i] = NumMaskElts; +    } + +    // Undef elements of the build vector remain undef because we initialize +    // the shuffle mask with -1. +  } + +  // buildvec undef, ..., (zext (extractelt V, IndexC)), undef... --> +  // bitcast (shuffle V, ZeroVec, VectorMask) +  SDLoc DL(BV); +  EVT VecVT = Extract.getOperand(0).getValueType(); +  SDValue ZeroVec = DAG.getConstant(0, DL, VecVT); +  const TargetLowering &TLI = DAG.getTargetLoweringInfo(); +  SDValue Shuf = TLI.buildLegalVectorShuffle(VecVT, DL, Extract.getOperand(0), +                                             ZeroVec, ShufMask, DAG); +  if (!Shuf) +    return SDValue(); +  return DAG.getBitcast(VT, Shuf); +} + +// Check to see if this is a BUILD_VECTOR of a bunch of EXTRACT_VECTOR_ELT +// operations. If the types of the vectors we're extracting from allow it, +// turn this into a vector_shuffle node. +SDValue DAGCombiner::reduceBuildVecToShuffle(SDNode *N) { +  SDLoc DL(N); +  EVT VT = N->getValueType(0); + +  // Only type-legal BUILD_VECTOR nodes are converted to shuffle nodes. +  if (!isTypeLegal(VT)) +    return SDValue(); + +  if (SDValue V = reduceBuildVecToShuffleWithZero(N, DAG)) +    return V; + +  // May only combine to shuffle after legalize if shuffle is legal. +  if (LegalOperations && !TLI.isOperationLegal(ISD::VECTOR_SHUFFLE, VT)) +    return SDValue(); + +  bool UsesZeroVector = false; +  unsigned NumElems = N->getNumOperands(); + +  // Record, for each element of the newly built vector, which input vector +  // that element comes from. -1 stands for undef, 0 for the zero vector, +  // and positive values for the input vectors. +  // VectorMask maps each element to its vector number, and VecIn maps vector +  // numbers to their initial SDValues. + +  SmallVector<int, 8> VectorMask(NumElems, -1); +  SmallVector<SDValue, 8> VecIn; +  VecIn.push_back(SDValue()); + +  for (unsigned i = 0; i != NumElems; ++i) { +    SDValue Op = N->getOperand(i); + +    if (Op.isUndef()) +      continue; + +    // See if we can use a blend with a zero vector. +    // TODO: Should we generalize this to a blend with an arbitrary constant +    // vector? +    if (isNullConstant(Op) || isNullFPConstant(Op)) { +      UsesZeroVector = true; +      VectorMask[i] = 0; +      continue; +    } + +    // Not an undef or zero. If the input is something other than an +    // EXTRACT_VECTOR_ELT with an in-range constant index, bail out. +    if (Op.getOpcode() != ISD::EXTRACT_VECTOR_ELT || +        !isa<ConstantSDNode>(Op.getOperand(1))) +      return SDValue(); +    SDValue ExtractedFromVec = Op.getOperand(0); + +    const APInt &ExtractIdx = Op.getConstantOperandAPInt(1); +    if (ExtractIdx.uge(ExtractedFromVec.getValueType().getVectorNumElements())) +      return SDValue(); + +    // All inputs must have the same element type as the output. +    if (VT.getVectorElementType() != +        ExtractedFromVec.getValueType().getVectorElementType()) +      return SDValue(); + +    // Have we seen this input vector before? +    // The vectors are expected to be tiny (usually 1 or 2 elements), so using +    // a map back from SDValues to numbers isn't worth it. +    unsigned Idx = std::distance( +        VecIn.begin(), std::find(VecIn.begin(), VecIn.end(), ExtractedFromVec)); +    if (Idx == VecIn.size()) +      VecIn.push_back(ExtractedFromVec); + +    VectorMask[i] = Idx; +  } + +  // If we didn't find at least one input vector, bail out. +  if (VecIn.size() < 2) +    return SDValue(); + +  // If all the Operands of BUILD_VECTOR extract from same +  // vector, then split the vector efficiently based on the maximum +  // vector access index and adjust the VectorMask and +  // VecIn accordingly. +  bool DidSplitVec = false; +  if (VecIn.size() == 2) { +    unsigned MaxIndex = 0; +    unsigned NearestPow2 = 0; +    SDValue Vec = VecIn.back(); +    EVT InVT = Vec.getValueType(); +    MVT IdxTy = TLI.getVectorIdxTy(DAG.getDataLayout()); +    SmallVector<unsigned, 8> IndexVec(NumElems, 0); + +    for (unsigned i = 0; i < NumElems; i++) { +      if (VectorMask[i] <= 0) +        continue; +      unsigned Index = N->getOperand(i).getConstantOperandVal(1); +      IndexVec[i] = Index; +      MaxIndex = std::max(MaxIndex, Index); +    } + +    NearestPow2 = PowerOf2Ceil(MaxIndex); +    if (InVT.isSimple() && NearestPow2 > 2 && MaxIndex < NearestPow2 && +        NumElems * 2 < NearestPow2) { +      unsigned SplitSize = NearestPow2 / 2; +      EVT SplitVT = EVT::getVectorVT(*DAG.getContext(), +                                     InVT.getVectorElementType(), SplitSize); +      if (TLI.isTypeLegal(SplitVT)) { +        SDValue VecIn2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, Vec, +                                     DAG.getConstant(SplitSize, DL, IdxTy)); +        SDValue VecIn1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, Vec, +                                     DAG.getConstant(0, DL, IdxTy)); +        VecIn.pop_back(); +        VecIn.push_back(VecIn1); +        VecIn.push_back(VecIn2); +        DidSplitVec = true; + +        for (unsigned i = 0; i < NumElems; i++) { +          if (VectorMask[i] <= 0) +            continue; +          VectorMask[i] = (IndexVec[i] < SplitSize) ? 1 : 2; +        } +      } +    } +  } + +  // TODO: We want to sort the vectors by descending length, so that adjacent +  // pairs have similar length, and the longer vector is always first in the +  // pair. + +  // TODO: Should this fire if some of the input vectors has illegal type (like +  // it does now), or should we let legalization run its course first? + +  // Shuffle phase: +  // Take pairs of vectors, and shuffle them so that the result has elements +  // from these vectors in the correct places. +  // For example, given: +  // t10: i32 = extract_vector_elt t1, Constant:i64<0> +  // t11: i32 = extract_vector_elt t2, Constant:i64<0> +  // t12: i32 = extract_vector_elt t3, Constant:i64<0> +  // t13: i32 = extract_vector_elt t1, Constant:i64<1> +  // t14: v4i32 = BUILD_VECTOR t10, t11, t12, t13 +  // We will generate: +  // t20: v4i32 = vector_shuffle<0,4,u,1> t1, t2 +  // t21: v4i32 = vector_shuffle<u,u,0,u> t3, undef +  SmallVector<SDValue, 4> Shuffles; +  for (unsigned In = 0, Len = (VecIn.size() / 2); In < Len; ++In) { +    unsigned LeftIdx = 2 * In + 1; +    SDValue VecLeft = VecIn[LeftIdx]; +    SDValue VecRight = +        (LeftIdx + 1) < VecIn.size() ? VecIn[LeftIdx + 1] : SDValue(); + +    if (SDValue Shuffle = createBuildVecShuffle(DL, N, VectorMask, VecLeft, +                                                VecRight, LeftIdx, DidSplitVec)) +      Shuffles.push_back(Shuffle); +    else +      return SDValue(); +  } + +  // If we need the zero vector as an "ingredient" in the blend tree, add it +  // to the list of shuffles. +  if (UsesZeroVector) +    Shuffles.push_back(VT.isInteger() ? DAG.getConstant(0, DL, VT) +                                      : DAG.getConstantFP(0.0, DL, VT)); + +  // If we only have one shuffle, we're done. +  if (Shuffles.size() == 1) +    return Shuffles[0]; + +  // Update the vector mask to point to the post-shuffle vectors. +  for (int &Vec : VectorMask) +    if (Vec == 0) +      Vec = Shuffles.size() - 1; +    else +      Vec = (Vec - 1) / 2; + +  // More than one shuffle. Generate a binary tree of blends, e.g. if from +  // the previous step we got the set of shuffles t10, t11, t12, t13, we will +  // generate: +  // t10: v8i32 = vector_shuffle<0,8,u,u,u,u,u,u> t1, t2 +  // t11: v8i32 = vector_shuffle<u,u,0,8,u,u,u,u> t3, t4 +  // t12: v8i32 = vector_shuffle<u,u,u,u,0,8,u,u> t5, t6 +  // t13: v8i32 = vector_shuffle<u,u,u,u,u,u,0,8> t7, t8 +  // t20: v8i32 = vector_shuffle<0,1,10,11,u,u,u,u> t10, t11 +  // t21: v8i32 = vector_shuffle<u,u,u,u,4,5,14,15> t12, t13 +  // t30: v8i32 = vector_shuffle<0,1,2,3,12,13,14,15> t20, t21 + +  // Make sure the initial size of the shuffle list is even. +  if (Shuffles.size() % 2) +    Shuffles.push_back(DAG.getUNDEF(VT)); + +  for (unsigned CurSize = Shuffles.size(); CurSize > 1; CurSize /= 2) { +    if (CurSize % 2) { +      Shuffles[CurSize] = DAG.getUNDEF(VT); +      CurSize++; +    } +    for (unsigned In = 0, Len = CurSize / 2; In < Len; ++In) { +      int Left = 2 * In; +      int Right = 2 * In + 1; +      SmallVector<int, 8> Mask(NumElems, -1); +      for (unsigned i = 0; i != NumElems; ++i) { +        if (VectorMask[i] == Left) { +          Mask[i] = i; +          VectorMask[i] = In; +        } else if (VectorMask[i] == Right) { +          Mask[i] = i + NumElems; +          VectorMask[i] = In; +        } +      } + +      Shuffles[In] = +          DAG.getVectorShuffle(VT, DL, Shuffles[Left], Shuffles[Right], Mask); +    } +  } +  return Shuffles[0]; +} + +// Try to turn a build vector of zero extends of extract vector elts into a +// a vector zero extend and possibly an extract subvector. +// TODO: Support sign extend? +// TODO: Allow undef elements? +SDValue DAGCombiner::convertBuildVecZextToZext(SDNode *N) { +  if (LegalOperations) +    return SDValue(); + +  EVT VT = N->getValueType(0); + +  bool FoundZeroExtend = false; +  SDValue Op0 = N->getOperand(0); +  auto checkElem = [&](SDValue Op) -> int64_t { +    unsigned Opc = Op.getOpcode(); +    FoundZeroExtend |= (Opc == ISD::ZERO_EXTEND); +    if ((Opc == ISD::ZERO_EXTEND || Opc == ISD::ANY_EXTEND) && +        Op.getOperand(0).getOpcode() == ISD::EXTRACT_VECTOR_ELT && +        Op0.getOperand(0).getOperand(0) == Op.getOperand(0).getOperand(0)) +      if (auto *C = dyn_cast<ConstantSDNode>(Op.getOperand(0).getOperand(1))) +        return C->getZExtValue(); +    return -1; +  }; + +  // Make sure the first element matches +  // (zext (extract_vector_elt X, C)) +  int64_t Offset = checkElem(Op0); +  if (Offset < 0) +    return SDValue(); + +  unsigned NumElems = N->getNumOperands(); +  SDValue In = Op0.getOperand(0).getOperand(0); +  EVT InSVT = In.getValueType().getScalarType(); +  EVT InVT = EVT::getVectorVT(*DAG.getContext(), InSVT, NumElems); + +  // Don't create an illegal input type after type legalization. +  if (LegalTypes && !TLI.isTypeLegal(InVT)) +    return SDValue(); + +  // Ensure all the elements come from the same vector and are adjacent. +  for (unsigned i = 1; i != NumElems; ++i) { +    if ((Offset + i) != checkElem(N->getOperand(i))) +      return SDValue(); +  } + +  SDLoc DL(N); +  In = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InVT, In, +                   Op0.getOperand(0).getOperand(1)); +  return DAG.getNode(FoundZeroExtend ? ISD::ZERO_EXTEND : ISD::ANY_EXTEND, DL, +                     VT, In); +} + +SDValue DAGCombiner::visitBUILD_VECTOR(SDNode *N) { +  EVT VT = N->getValueType(0); + +  // A vector built entirely of undefs is undef. +  if (ISD::allOperandsUndef(N)) +    return DAG.getUNDEF(VT); + +  // If this is a splat of a bitcast from another vector, change to a +  // concat_vector. +  // For example: +  //   (build_vector (i64 (bitcast (v2i32 X))), (i64 (bitcast (v2i32 X)))) -> +  //     (v2i64 (bitcast (concat_vectors (v2i32 X), (v2i32 X)))) +  // +  // If X is a build_vector itself, the concat can become a larger build_vector. +  // TODO: Maybe this is useful for non-splat too? +  if (!LegalOperations) { +    if (SDValue Splat = cast<BuildVectorSDNode>(N)->getSplatValue()) { +      Splat = peekThroughBitcasts(Splat); +      EVT SrcVT = Splat.getValueType(); +      if (SrcVT.isVector()) { +        unsigned NumElts = N->getNumOperands() * SrcVT.getVectorNumElements(); +        EVT NewVT = EVT::getVectorVT(*DAG.getContext(), +                                     SrcVT.getVectorElementType(), NumElts); +        if (!LegalTypes || TLI.isTypeLegal(NewVT)) { +          SmallVector<SDValue, 8> Ops(N->getNumOperands(), Splat); +          SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), +                                       NewVT, Ops); +          return DAG.getBitcast(VT, Concat); +        } +      } +    } +  } + +  // A splat of a single element is a SPLAT_VECTOR if supported on the target. +  if (TLI.getOperationAction(ISD::SPLAT_VECTOR, VT) != TargetLowering::Expand) +    if (SDValue V = cast<BuildVectorSDNode>(N)->getSplatValue()) { +      assert(!V.isUndef() && "Splat of undef should have been handled earlier"); +      return DAG.getNode(ISD::SPLAT_VECTOR, SDLoc(N), VT, V); +    } + +  // Check if we can express BUILD VECTOR via subvector extract. +  if (!LegalTypes && (N->getNumOperands() > 1)) { +    SDValue Op0 = N->getOperand(0); +    auto checkElem = [&](SDValue Op) -> uint64_t { +      if ((Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT) && +          (Op0.getOperand(0) == Op.getOperand(0))) +        if (auto CNode = dyn_cast<ConstantSDNode>(Op.getOperand(1))) +          return CNode->getZExtValue(); +      return -1; +    }; + +    int Offset = checkElem(Op0); +    for (unsigned i = 0; i < N->getNumOperands(); ++i) { +      if (Offset + i != checkElem(N->getOperand(i))) { +        Offset = -1; +        break; +      } +    } + +    if ((Offset == 0) && +        (Op0.getOperand(0).getValueType() == N->getValueType(0))) +      return Op0.getOperand(0); +    if ((Offset != -1) && +        ((Offset % N->getValueType(0).getVectorNumElements()) == +         0)) // IDX must be multiple of output size. +      return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N), N->getValueType(0), +                         Op0.getOperand(0), Op0.getOperand(1)); +  } + +  if (SDValue V = convertBuildVecZextToZext(N)) +    return V; + +  if (SDValue V = reduceBuildVecExtToExtBuildVec(N)) +    return V; + +  if (SDValue V = reduceBuildVecToShuffle(N)) +    return V; + +  return SDValue(); +} + +static SDValue combineConcatVectorOfScalars(SDNode *N, SelectionDAG &DAG) { +  const TargetLowering &TLI = DAG.getTargetLoweringInfo(); +  EVT OpVT = N->getOperand(0).getValueType(); + +  // If the operands are legal vectors, leave them alone. +  if (TLI.isTypeLegal(OpVT)) +    return SDValue(); + +  SDLoc DL(N); +  EVT VT = N->getValueType(0); +  SmallVector<SDValue, 8> Ops; + +  EVT SVT = EVT::getIntegerVT(*DAG.getContext(), OpVT.getSizeInBits()); +  SDValue ScalarUndef = DAG.getNode(ISD::UNDEF, DL, SVT); + +  // Keep track of what we encounter. +  bool AnyInteger = false; +  bool AnyFP = false; +  for (const SDValue &Op : N->ops()) { +    if (ISD::BITCAST == Op.getOpcode() && +        !Op.getOperand(0).getValueType().isVector()) +      Ops.push_back(Op.getOperand(0)); +    else if (ISD::UNDEF == Op.getOpcode()) +      Ops.push_back(ScalarUndef); +    else +      return SDValue(); + +    // Note whether we encounter an integer or floating point scalar. +    // If it's neither, bail out, it could be something weird like x86mmx. +    EVT LastOpVT = Ops.back().getValueType(); +    if (LastOpVT.isFloatingPoint()) +      AnyFP = true; +    else if (LastOpVT.isInteger()) +      AnyInteger = true; +    else +      return SDValue(); +  } + +  // If any of the operands is a floating point scalar bitcast to a vector, +  // use floating point types throughout, and bitcast everything. +  // Replace UNDEFs by another scalar UNDEF node, of the final desired type. +  if (AnyFP) { +    SVT = EVT::getFloatingPointVT(OpVT.getSizeInBits()); +    ScalarUndef = DAG.getNode(ISD::UNDEF, DL, SVT); +    if (AnyInteger) { +      for (SDValue &Op : Ops) { +        if (Op.getValueType() == SVT) +          continue; +        if (Op.isUndef()) +          Op = ScalarUndef; +        else +          Op = DAG.getBitcast(SVT, Op); +      } +    } +  } + +  EVT VecVT = EVT::getVectorVT(*DAG.getContext(), SVT, +                               VT.getSizeInBits() / SVT.getSizeInBits()); +  return DAG.getBitcast(VT, DAG.getBuildVector(VecVT, DL, Ops)); +} + +// Check to see if this is a CONCAT_VECTORS of a bunch of EXTRACT_SUBVECTOR +// operations. If so, and if the EXTRACT_SUBVECTOR vector inputs come from at +// most two distinct vectors the same size as the result, attempt to turn this +// into a legal shuffle. +static SDValue combineConcatVectorOfExtracts(SDNode *N, SelectionDAG &DAG) { +  EVT VT = N->getValueType(0); +  EVT OpVT = N->getOperand(0).getValueType(); +  int NumElts = VT.getVectorNumElements(); +  int NumOpElts = OpVT.getVectorNumElements(); + +  SDValue SV0 = DAG.getUNDEF(VT), SV1 = DAG.getUNDEF(VT); +  SmallVector<int, 8> Mask; + +  for (SDValue Op : N->ops()) { +    Op = peekThroughBitcasts(Op); + +    // UNDEF nodes convert to UNDEF shuffle mask values. +    if (Op.isUndef()) { +      Mask.append((unsigned)NumOpElts, -1); +      continue; +    } + +    if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR) +      return SDValue(); + +    // What vector are we extracting the subvector from and at what index? +    SDValue ExtVec = Op.getOperand(0); + +    // We want the EVT of the original extraction to correctly scale the +    // extraction index. +    EVT ExtVT = ExtVec.getValueType(); +    ExtVec = peekThroughBitcasts(ExtVec); + +    // UNDEF nodes convert to UNDEF shuffle mask values. +    if (ExtVec.isUndef()) { +      Mask.append((unsigned)NumOpElts, -1); +      continue; +    } + +    if (!isa<ConstantSDNode>(Op.getOperand(1))) +      return SDValue(); +    int ExtIdx = Op.getConstantOperandVal(1); + +    // Ensure that we are extracting a subvector from a vector the same +    // size as the result. +    if (ExtVT.getSizeInBits() != VT.getSizeInBits()) +      return SDValue(); + +    // Scale the subvector index to account for any bitcast. +    int NumExtElts = ExtVT.getVectorNumElements(); +    if (0 == (NumExtElts % NumElts)) +      ExtIdx /= (NumExtElts / NumElts); +    else if (0 == (NumElts % NumExtElts)) +      ExtIdx *= (NumElts / NumExtElts); +    else +      return SDValue(); + +    // At most we can reference 2 inputs in the final shuffle. +    if (SV0.isUndef() || SV0 == ExtVec) { +      SV0 = ExtVec; +      for (int i = 0; i != NumOpElts; ++i) +        Mask.push_back(i + ExtIdx); +    } else if (SV1.isUndef() || SV1 == ExtVec) { +      SV1 = ExtVec; +      for (int i = 0; i != NumOpElts; ++i) +        Mask.push_back(i + ExtIdx + NumElts); +    } else { +      return SDValue(); +    } +  } + +  const TargetLowering &TLI = DAG.getTargetLoweringInfo(); +  return TLI.buildLegalVectorShuffle(VT, SDLoc(N), DAG.getBitcast(VT, SV0), +                                     DAG.getBitcast(VT, SV1), Mask, DAG); +} + +SDValue DAGCombiner::visitCONCAT_VECTORS(SDNode *N) { +  // If we only have one input vector, we don't need to do any concatenation. +  if (N->getNumOperands() == 1) +    return N->getOperand(0); + +  // Check if all of the operands are undefs. +  EVT VT = N->getValueType(0); +  if (ISD::allOperandsUndef(N)) +    return DAG.getUNDEF(VT); + +  // Optimize concat_vectors where all but the first of the vectors are undef. +  if (std::all_of(std::next(N->op_begin()), N->op_end(), [](const SDValue &Op) { +        return Op.isUndef(); +      })) { +    SDValue In = N->getOperand(0); +    assert(In.getValueType().isVector() && "Must concat vectors"); + +    // If the input is a concat_vectors, just make a larger concat by padding +    // with smaller undefs. +    if (In.getOpcode() == ISD::CONCAT_VECTORS && In.hasOneUse()) { +      unsigned NumOps = N->getNumOperands() * In.getNumOperands(); +      SmallVector<SDValue, 4> Ops(In->op_begin(), In->op_end()); +      Ops.resize(NumOps, DAG.getUNDEF(Ops[0].getValueType())); +      return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Ops); +    } + +    SDValue Scalar = peekThroughOneUseBitcasts(In); + +    // concat_vectors(scalar_to_vector(scalar), undef) -> +    //     scalar_to_vector(scalar) +    if (!LegalOperations && Scalar.getOpcode() == ISD::SCALAR_TO_VECTOR && +         Scalar.hasOneUse()) { +      EVT SVT = Scalar.getValueType().getVectorElementType(); +      if (SVT == Scalar.getOperand(0).getValueType()) +        Scalar = Scalar.getOperand(0); +    } + +    // concat_vectors(scalar, undef) -> scalar_to_vector(scalar) +    if (!Scalar.getValueType().isVector()) { +      // If the bitcast type isn't legal, it might be a trunc of a legal type; +      // look through the trunc so we can still do the transform: +      //   concat_vectors(trunc(scalar), undef) -> scalar_to_vector(scalar) +      if (Scalar->getOpcode() == ISD::TRUNCATE && +          !TLI.isTypeLegal(Scalar.getValueType()) && +          TLI.isTypeLegal(Scalar->getOperand(0).getValueType())) +        Scalar = Scalar->getOperand(0); + +      EVT SclTy = Scalar.getValueType(); + +      if (!SclTy.isFloatingPoint() && !SclTy.isInteger()) +        return SDValue(); + +      // Bail out if the vector size is not a multiple of the scalar size. +      if (VT.getSizeInBits() % SclTy.getSizeInBits()) +        return SDValue(); + +      unsigned VNTNumElms = VT.getSizeInBits() / SclTy.getSizeInBits(); +      if (VNTNumElms < 2) +        return SDValue(); + +      EVT NVT = EVT::getVectorVT(*DAG.getContext(), SclTy, VNTNumElms); +      if (!TLI.isTypeLegal(NVT) || !TLI.isTypeLegal(Scalar.getValueType())) +        return SDValue(); + +      SDValue Res = DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(N), NVT, Scalar); +      return DAG.getBitcast(VT, Res); +    } +  } + +  // Fold any combination of BUILD_VECTOR or UNDEF nodes into one BUILD_VECTOR. +  // We have already tested above for an UNDEF only concatenation. +  // fold (concat_vectors (BUILD_VECTOR A, B, ...), (BUILD_VECTOR C, D, ...)) +  // -> (BUILD_VECTOR A, B, ..., C, D, ...) +  auto IsBuildVectorOrUndef = [](const SDValue &Op) { +    return ISD::UNDEF == Op.getOpcode() || ISD::BUILD_VECTOR == Op.getOpcode(); +  }; +  if (llvm::all_of(N->ops(), IsBuildVectorOrUndef)) { +    SmallVector<SDValue, 8> Opnds; +    EVT SVT = VT.getScalarType(); + +    EVT MinVT = SVT; +    if (!SVT.isFloatingPoint()) { +      // If BUILD_VECTOR are from built from integer, they may have different +      // operand types. Get the smallest type and truncate all operands to it. +      bool FoundMinVT = false; +      for (const SDValue &Op : N->ops()) +        if (ISD::BUILD_VECTOR == Op.getOpcode()) { +          EVT OpSVT = Op.getOperand(0).getValueType(); +          MinVT = (!FoundMinVT || OpSVT.bitsLE(MinVT)) ? OpSVT : MinVT; +          FoundMinVT = true; +        } +      assert(FoundMinVT && "Concat vector type mismatch"); +    } + +    for (const SDValue &Op : N->ops()) { +      EVT OpVT = Op.getValueType(); +      unsigned NumElts = OpVT.getVectorNumElements(); + +      if (ISD::UNDEF == Op.getOpcode()) +        Opnds.append(NumElts, DAG.getUNDEF(MinVT)); + +      if (ISD::BUILD_VECTOR == Op.getOpcode()) { +        if (SVT.isFloatingPoint()) { +          assert(SVT == OpVT.getScalarType() && "Concat vector type mismatch"); +          Opnds.append(Op->op_begin(), Op->op_begin() + NumElts); +        } else { +          for (unsigned i = 0; i != NumElts; ++i) +            Opnds.push_back( +                DAG.getNode(ISD::TRUNCATE, SDLoc(N), MinVT, Op.getOperand(i))); +        } +      } +    } + +    assert(VT.getVectorNumElements() == Opnds.size() && +           "Concat vector type mismatch"); +    return DAG.getBuildVector(VT, SDLoc(N), Opnds); +  } + +  // Fold CONCAT_VECTORS of only bitcast scalars (or undef) to BUILD_VECTOR. +  if (SDValue V = combineConcatVectorOfScalars(N, DAG)) +    return V; + +  // Fold CONCAT_VECTORS of EXTRACT_SUBVECTOR (or undef) to VECTOR_SHUFFLE. +  if (Level < AfterLegalizeVectorOps && TLI.isTypeLegal(VT)) +    if (SDValue V = combineConcatVectorOfExtracts(N, DAG)) +      return V; + +  // Type legalization of vectors and DAG canonicalization of SHUFFLE_VECTOR +  // nodes often generate nop CONCAT_VECTOR nodes. +  // Scan the CONCAT_VECTOR operands and look for a CONCAT operations that +  // place the incoming vectors at the exact same location. +  SDValue SingleSource = SDValue(); +  unsigned PartNumElem = N->getOperand(0).getValueType().getVectorNumElements(); + +  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { +    SDValue Op = N->getOperand(i); + +    if (Op.isUndef()) +      continue; + +    // Check if this is the identity extract: +    if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR) +      return SDValue(); + +    // Find the single incoming vector for the extract_subvector. +    if (SingleSource.getNode()) { +      if (Op.getOperand(0) != SingleSource) +        return SDValue(); +    } else { +      SingleSource = Op.getOperand(0); + +      // Check the source type is the same as the type of the result. +      // If not, this concat may extend the vector, so we can not +      // optimize it away. +      if (SingleSource.getValueType() != N->getValueType(0)) +        return SDValue(); +    } + +    auto *CS = dyn_cast<ConstantSDNode>(Op.getOperand(1)); +    // The extract index must be constant. +    if (!CS) +      return SDValue(); + +    // Check that we are reading from the identity index. +    unsigned IdentityIndex = i * PartNumElem; +    if (CS->getAPIntValue() != IdentityIndex) +      return SDValue(); +  } + +  if (SingleSource.getNode()) +    return SingleSource; + +  return SDValue(); +} + +// Helper that peeks through INSERT_SUBVECTOR/CONCAT_VECTORS to find +// if the subvector can be sourced for free. +static SDValue getSubVectorSrc(SDValue V, SDValue Index, EVT SubVT) { +  if (V.getOpcode() == ISD::INSERT_SUBVECTOR && +      V.getOperand(1).getValueType() == SubVT && V.getOperand(2) == Index) { +    return V.getOperand(1); +  } +  auto *IndexC = dyn_cast<ConstantSDNode>(Index); +  if (IndexC && V.getOpcode() == ISD::CONCAT_VECTORS && +      V.getOperand(0).getValueType() == SubVT && +      (IndexC->getZExtValue() % SubVT.getVectorNumElements()) == 0) { +    uint64_t SubIdx = IndexC->getZExtValue() / SubVT.getVectorNumElements(); +    return V.getOperand(SubIdx); +  } +  return SDValue(); +} + +static SDValue narrowInsertExtractVectorBinOp(SDNode *Extract, +                                              SelectionDAG &DAG) { +  const TargetLowering &TLI = DAG.getTargetLoweringInfo(); +  SDValue BinOp = Extract->getOperand(0); +  unsigned BinOpcode = BinOp.getOpcode(); +  if (!TLI.isBinOp(BinOpcode) || BinOp.getNode()->getNumValues() != 1) +    return SDValue(); + +  EVT VecVT = BinOp.getValueType(); +  SDValue Bop0 = BinOp.getOperand(0), Bop1 = BinOp.getOperand(1); +  if (VecVT != Bop0.getValueType() || VecVT != Bop1.getValueType()) +    return SDValue(); + +  SDValue Index = Extract->getOperand(1); +  EVT SubVT = Extract->getValueType(0); +  if (!TLI.isOperationLegalOrCustom(BinOpcode, SubVT)) +    return SDValue(); + +  SDValue Sub0 = getSubVectorSrc(Bop0, Index, SubVT); +  SDValue Sub1 = getSubVectorSrc(Bop1, Index, SubVT); + +  // TODO: We could handle the case where only 1 operand is being inserted by +  //       creating an extract of the other operand, but that requires checking +  //       number of uses and/or costs. +  if (!Sub0 || !Sub1) +    return SDValue(); + +  // We are inserting both operands of the wide binop only to extract back +  // to the narrow vector size. Eliminate all of the insert/extract: +  // ext (binop (ins ?, X, Index), (ins ?, Y, Index)), Index --> binop X, Y +  return DAG.getNode(BinOpcode, SDLoc(Extract), SubVT, Sub0, Sub1, +                     BinOp->getFlags()); +} + +/// If we are extracting a subvector produced by a wide binary operator try +/// to use a narrow binary operator and/or avoid concatenation and extraction. +static SDValue narrowExtractedVectorBinOp(SDNode *Extract, SelectionDAG &DAG) { +  // TODO: Refactor with the caller (visitEXTRACT_SUBVECTOR), so we can share +  // some of these bailouts with other transforms. + +  if (SDValue V = narrowInsertExtractVectorBinOp(Extract, DAG)) +    return V; + +  // The extract index must be a constant, so we can map it to a concat operand. +  auto *ExtractIndexC = dyn_cast<ConstantSDNode>(Extract->getOperand(1)); +  if (!ExtractIndexC) +    return SDValue(); + +  // We are looking for an optionally bitcasted wide vector binary operator +  // feeding an extract subvector. +  const TargetLowering &TLI = DAG.getTargetLoweringInfo(); +  SDValue BinOp = peekThroughBitcasts(Extract->getOperand(0)); +  unsigned BOpcode = BinOp.getOpcode(); +  if (!TLI.isBinOp(BOpcode) || BinOp.getNode()->getNumValues() != 1) +    return SDValue(); + +  // The binop must be a vector type, so we can extract some fraction of it. +  EVT WideBVT = BinOp.getValueType(); +  if (!WideBVT.isVector()) +    return SDValue(); + +  EVT VT = Extract->getValueType(0); +  unsigned ExtractIndex = ExtractIndexC->getZExtValue(); +  assert(ExtractIndex % VT.getVectorNumElements() == 0 && +         "Extract index is not a multiple of the vector length."); + +  // Bail out if this is not a proper multiple width extraction. +  unsigned WideWidth = WideBVT.getSizeInBits(); +  unsigned NarrowWidth = VT.getSizeInBits(); +  if (WideWidth % NarrowWidth != 0) +    return SDValue(); + +  // Bail out if we are extracting a fraction of a single operation. This can +  // occur because we potentially looked through a bitcast of the binop. +  unsigned NarrowingRatio = WideWidth / NarrowWidth; +  unsigned WideNumElts = WideBVT.getVectorNumElements(); +  if (WideNumElts % NarrowingRatio != 0) +    return SDValue(); + +  // Bail out if the target does not support a narrower version of the binop. +  EVT NarrowBVT = EVT::getVectorVT(*DAG.getContext(), WideBVT.getScalarType(), +                                   WideNumElts / NarrowingRatio); +  if (!TLI.isOperationLegalOrCustomOrPromote(BOpcode, NarrowBVT)) +    return SDValue(); + +  // If extraction is cheap, we don't need to look at the binop operands +  // for concat ops. The narrow binop alone makes this transform profitable. +  // We can't just reuse the original extract index operand because we may have +  // bitcasted. +  unsigned ConcatOpNum = ExtractIndex / VT.getVectorNumElements(); +  unsigned ExtBOIdx = ConcatOpNum * NarrowBVT.getVectorNumElements(); +  EVT ExtBOIdxVT = Extract->getOperand(1).getValueType(); +  if (TLI.isExtractSubvectorCheap(NarrowBVT, WideBVT, ExtBOIdx) && +      BinOp.hasOneUse() && Extract->getOperand(0)->hasOneUse()) { +    // extract (binop B0, B1), N --> binop (extract B0, N), (extract B1, N) +    SDLoc DL(Extract); +    SDValue NewExtIndex = DAG.getConstant(ExtBOIdx, DL, ExtBOIdxVT); +    SDValue X = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NarrowBVT, +                            BinOp.getOperand(0), NewExtIndex); +    SDValue Y = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NarrowBVT, +                            BinOp.getOperand(1), NewExtIndex); +    SDValue NarrowBinOp = DAG.getNode(BOpcode, DL, NarrowBVT, X, Y, +                                      BinOp.getNode()->getFlags()); +    return DAG.getBitcast(VT, NarrowBinOp); +  } + +  // Only handle the case where we are doubling and then halving. A larger ratio +  // may require more than two narrow binops to replace the wide binop. +  if (NarrowingRatio != 2) +    return SDValue(); + +  // TODO: The motivating case for this transform is an x86 AVX1 target. That +  // target has temptingly almost legal versions of bitwise logic ops in 256-bit +  // flavors, but no other 256-bit integer support. This could be extended to +  // handle any binop, but that may require fixing/adding other folds to avoid +  // codegen regressions. +  if (BOpcode != ISD::AND && BOpcode != ISD::OR && BOpcode != ISD::XOR) +    return SDValue(); + +  // We need at least one concatenation operation of a binop operand to make +  // this transform worthwhile. The concat must double the input vector sizes. +  auto GetSubVector = [ConcatOpNum](SDValue V) -> SDValue { +    if (V.getOpcode() == ISD::CONCAT_VECTORS && V.getNumOperands() == 2) +      return V.getOperand(ConcatOpNum); +    return SDValue(); +  }; +  SDValue SubVecL = GetSubVector(peekThroughBitcasts(BinOp.getOperand(0))); +  SDValue SubVecR = GetSubVector(peekThroughBitcasts(BinOp.getOperand(1))); + +  if (SubVecL || SubVecR) { +    // If a binop operand was not the result of a concat, we must extract a +    // half-sized operand for our new narrow binop: +    // extract (binop (concat X1, X2), (concat Y1, Y2)), N --> binop XN, YN +    // extract (binop (concat X1, X2), Y), N --> binop XN, (extract Y, IndexC) +    // extract (binop X, (concat Y1, Y2)), N --> binop (extract X, IndexC), YN +    SDLoc DL(Extract); +    SDValue IndexC = DAG.getConstant(ExtBOIdx, DL, ExtBOIdxVT); +    SDValue X = SubVecL ? DAG.getBitcast(NarrowBVT, SubVecL) +                        : DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NarrowBVT, +                                      BinOp.getOperand(0), IndexC); + +    SDValue Y = SubVecR ? DAG.getBitcast(NarrowBVT, SubVecR) +                        : DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NarrowBVT, +                                      BinOp.getOperand(1), IndexC); + +    SDValue NarrowBinOp = DAG.getNode(BOpcode, DL, NarrowBVT, X, Y); +    return DAG.getBitcast(VT, NarrowBinOp); +  } + +  return SDValue(); +} + +/// If we are extracting a subvector from a wide vector load, convert to a +/// narrow load to eliminate the extraction: +/// (extract_subvector (load wide vector)) --> (load narrow vector) +static SDValue narrowExtractedVectorLoad(SDNode *Extract, SelectionDAG &DAG) { +  // TODO: Add support for big-endian. The offset calculation must be adjusted. +  if (DAG.getDataLayout().isBigEndian()) +    return SDValue(); + +  auto *Ld = dyn_cast<LoadSDNode>(Extract->getOperand(0)); +  auto *ExtIdx = dyn_cast<ConstantSDNode>(Extract->getOperand(1)); +  if (!Ld || Ld->getExtensionType() || !Ld->isSimple() || +      !ExtIdx) +    return SDValue(); + +  // Allow targets to opt-out. +  EVT VT = Extract->getValueType(0); +  const TargetLowering &TLI = DAG.getTargetLoweringInfo(); +  if (!TLI.shouldReduceLoadWidth(Ld, Ld->getExtensionType(), VT)) +    return SDValue(); + +  // The narrow load will be offset from the base address of the old load if +  // we are extracting from something besides index 0 (little-endian). +  SDLoc DL(Extract); +  SDValue BaseAddr = Ld->getOperand(1); +  unsigned Offset = ExtIdx->getZExtValue() * VT.getScalarType().getStoreSize(); + +  // TODO: Use "BaseIndexOffset" to make this more effective. +  SDValue NewAddr = DAG.getMemBasePlusOffset(BaseAddr, Offset, DL); +  MachineFunction &MF = DAG.getMachineFunction(); +  MachineMemOperand *MMO = MF.getMachineMemOperand(Ld->getMemOperand(), Offset, +                                                   VT.getStoreSize()); +  SDValue NewLd = DAG.getLoad(VT, DL, Ld->getChain(), NewAddr, MMO); +  DAG.makeEquivalentMemoryOrdering(Ld, NewLd); +  return NewLd; +} + +SDValue DAGCombiner::visitEXTRACT_SUBVECTOR(SDNode *N) { +  EVT NVT = N->getValueType(0); +  SDValue V = N->getOperand(0); + +  // Extract from UNDEF is UNDEF. +  if (V.isUndef()) +    return DAG.getUNDEF(NVT); + +  if (TLI.isOperationLegalOrCustomOrPromote(ISD::LOAD, NVT)) +    if (SDValue NarrowLoad = narrowExtractedVectorLoad(N, DAG)) +      return NarrowLoad; + +  // Combine an extract of an extract into a single extract_subvector. +  // ext (ext X, C), 0 --> ext X, C +  SDValue Index = N->getOperand(1); +  if (isNullConstant(Index) && V.getOpcode() == ISD::EXTRACT_SUBVECTOR && +      V.hasOneUse() && isa<ConstantSDNode>(V.getOperand(1))) { +    if (TLI.isExtractSubvectorCheap(NVT, V.getOperand(0).getValueType(), +                                    V.getConstantOperandVal(1)) && +        TLI.isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, NVT)) { +      return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N), NVT, V.getOperand(0), +                         V.getOperand(1)); +    } +  } + +  // Try to move vector bitcast after extract_subv by scaling extraction index: +  // extract_subv (bitcast X), Index --> bitcast (extract_subv X, Index') +  if (isa<ConstantSDNode>(Index) && V.getOpcode() == ISD::BITCAST && +      V.getOperand(0).getValueType().isVector()) { +    SDValue SrcOp = V.getOperand(0); +    EVT SrcVT = SrcOp.getValueType(); +    unsigned SrcNumElts = SrcVT.getVectorNumElements(); +    unsigned DestNumElts = V.getValueType().getVectorNumElements(); +    if ((SrcNumElts % DestNumElts) == 0) { +      unsigned SrcDestRatio = SrcNumElts / DestNumElts; +      unsigned NewExtNumElts = NVT.getVectorNumElements() * SrcDestRatio; +      EVT NewExtVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getScalarType(), +                                      NewExtNumElts); +      if (TLI.isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, NewExtVT)) { +        unsigned IndexValScaled = N->getConstantOperandVal(1) * SrcDestRatio; +        SDLoc DL(N); +        SDValue NewIndex = DAG.getIntPtrConstant(IndexValScaled, DL); +        SDValue NewExtract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NewExtVT, +                                         V.getOperand(0), NewIndex); +        return DAG.getBitcast(NVT, NewExtract); +      } +    } +    // TODO - handle (DestNumElts % SrcNumElts) == 0 +  } + +  // Combine: +  //    (extract_subvec (concat V1, V2, ...), i) +  // Into: +  //    Vi if possible +  // Only operand 0 is checked as 'concat' assumes all inputs of the same +  // type. +  if (V.getOpcode() == ISD::CONCAT_VECTORS && isa<ConstantSDNode>(Index) && +      V.getOperand(0).getValueType() == NVT) { +    unsigned Idx = N->getConstantOperandVal(1); +    unsigned NumElems = NVT.getVectorNumElements(); +    assert((Idx % NumElems) == 0 && +           "IDX in concat is not a multiple of the result vector length."); +    return V->getOperand(Idx / NumElems); +  } + +  V = peekThroughBitcasts(V); + +  // If the input is a build vector. Try to make a smaller build vector. +  if (V.getOpcode() == ISD::BUILD_VECTOR) { +    if (auto *IdxC = dyn_cast<ConstantSDNode>(Index)) { +      EVT InVT = V.getValueType(); +      unsigned ExtractSize = NVT.getSizeInBits(); +      unsigned EltSize = InVT.getScalarSizeInBits(); +      // Only do this if we won't split any elements. +      if (ExtractSize % EltSize == 0) { +        unsigned NumElems = ExtractSize / EltSize; +        EVT EltVT = InVT.getVectorElementType(); +        EVT ExtractVT = NumElems == 1 ? EltVT +                                      : EVT::getVectorVT(*DAG.getContext(), +                                                         EltVT, NumElems); +        if ((Level < AfterLegalizeDAG || +             (NumElems == 1 || +              TLI.isOperationLegal(ISD::BUILD_VECTOR, ExtractVT))) && +            (!LegalTypes || TLI.isTypeLegal(ExtractVT))) { +          unsigned IdxVal = IdxC->getZExtValue(); +          IdxVal *= NVT.getScalarSizeInBits(); +          IdxVal /= EltSize; + +          if (NumElems == 1) { +            SDValue Src = V->getOperand(IdxVal); +            if (EltVT != Src.getValueType()) +              Src = DAG.getNode(ISD::TRUNCATE, SDLoc(N), InVT, Src); +            return DAG.getBitcast(NVT, Src); +          } + +          // Extract the pieces from the original build_vector. +          SDValue BuildVec = DAG.getBuildVector( +              ExtractVT, SDLoc(N), V->ops().slice(IdxVal, NumElems)); +          return DAG.getBitcast(NVT, BuildVec); +        } +      } +    } +  } + +  if (V.getOpcode() == ISD::INSERT_SUBVECTOR) { +    // Handle only simple case where vector being inserted and vector +    // being extracted are of same size. +    EVT SmallVT = V.getOperand(1).getValueType(); +    if (!NVT.bitsEq(SmallVT)) +      return SDValue(); + +    // Only handle cases where both indexes are constants. +    auto *ExtIdx = dyn_cast<ConstantSDNode>(Index); +    auto *InsIdx = dyn_cast<ConstantSDNode>(V.getOperand(2)); +    if (InsIdx && ExtIdx) { +      // Combine: +      //    (extract_subvec (insert_subvec V1, V2, InsIdx), ExtIdx) +      // Into: +      //    indices are equal or bit offsets are equal => V1 +      //    otherwise => (extract_subvec V1, ExtIdx) +      if (InsIdx->getZExtValue() * SmallVT.getScalarSizeInBits() == +          ExtIdx->getZExtValue() * NVT.getScalarSizeInBits()) +        return DAG.getBitcast(NVT, V.getOperand(1)); +      return DAG.getNode( +          ISD::EXTRACT_SUBVECTOR, SDLoc(N), NVT, +          DAG.getBitcast(N->getOperand(0).getValueType(), V.getOperand(0)), +          Index); +    } +  } + +  if (SDValue NarrowBOp = narrowExtractedVectorBinOp(N, DAG)) +    return NarrowBOp; + +  if (SimplifyDemandedVectorElts(SDValue(N, 0))) +    return SDValue(N, 0); + +  return SDValue(); +} + +/// Try to convert a wide shuffle of concatenated vectors into 2 narrow shuffles +/// followed by concatenation. Narrow vector ops may have better performance +/// than wide ops, and this can unlock further narrowing of other vector ops. +/// Targets can invert this transform later if it is not profitable. +static SDValue foldShuffleOfConcatUndefs(ShuffleVectorSDNode *Shuf, +                                         SelectionDAG &DAG) { +  SDValue N0 = Shuf->getOperand(0), N1 = Shuf->getOperand(1); +  if (N0.getOpcode() != ISD::CONCAT_VECTORS || N0.getNumOperands() != 2 || +      N1.getOpcode() != ISD::CONCAT_VECTORS || N1.getNumOperands() != 2 || +      !N0.getOperand(1).isUndef() || !N1.getOperand(1).isUndef()) +    return SDValue(); + +  // Split the wide shuffle mask into halves. Any mask element that is accessing +  // operand 1 is offset down to account for narrowing of the vectors. +  ArrayRef<int> Mask = Shuf->getMask(); +  EVT VT = Shuf->getValueType(0); +  unsigned NumElts = VT.getVectorNumElements(); +  unsigned HalfNumElts = NumElts / 2; +  SmallVector<int, 16> Mask0(HalfNumElts, -1); +  SmallVector<int, 16> Mask1(HalfNumElts, -1); +  for (unsigned i = 0; i != NumElts; ++i) { +    if (Mask[i] == -1) +      continue; +    int M = Mask[i] < (int)NumElts ? Mask[i] : Mask[i] - (int)HalfNumElts; +    if (i < HalfNumElts) +      Mask0[i] = M; +    else +      Mask1[i - HalfNumElts] = M; +  } + +  // Ask the target if this is a valid transform. +  const TargetLowering &TLI = DAG.getTargetLoweringInfo(); +  EVT HalfVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), +                                HalfNumElts); +  if (!TLI.isShuffleMaskLegal(Mask0, HalfVT) || +      !TLI.isShuffleMaskLegal(Mask1, HalfVT)) +    return SDValue(); + +  // shuffle (concat X, undef), (concat Y, undef), Mask --> +  // concat (shuffle X, Y, Mask0), (shuffle X, Y, Mask1) +  SDValue X = N0.getOperand(0), Y = N1.getOperand(0); +  SDLoc DL(Shuf); +  SDValue Shuf0 = DAG.getVectorShuffle(HalfVT, DL, X, Y, Mask0); +  SDValue Shuf1 = DAG.getVectorShuffle(HalfVT, DL, X, Y, Mask1); +  return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Shuf0, Shuf1); +} + +// Tries to turn a shuffle of two CONCAT_VECTORS into a single concat, +// or turn a shuffle of a single concat into simpler shuffle then concat. +static SDValue partitionShuffleOfConcats(SDNode *N, SelectionDAG &DAG) { +  EVT VT = N->getValueType(0); +  unsigned NumElts = VT.getVectorNumElements(); + +  SDValue N0 = N->getOperand(0); +  SDValue N1 = N->getOperand(1); +  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); +  ArrayRef<int> Mask = SVN->getMask(); + +  SmallVector<SDValue, 4> Ops; +  EVT ConcatVT = N0.getOperand(0).getValueType(); +  unsigned NumElemsPerConcat = ConcatVT.getVectorNumElements(); +  unsigned NumConcats = NumElts / NumElemsPerConcat; + +  auto IsUndefMaskElt = [](int i) { return i == -1; }; + +  // Special case: shuffle(concat(A,B)) can be more efficiently represented +  // as concat(shuffle(A,B),UNDEF) if the shuffle doesn't set any of the high +  // half vector elements. +  if (NumElemsPerConcat * 2 == NumElts && N1.isUndef() && +      llvm::all_of(Mask.slice(NumElemsPerConcat, NumElemsPerConcat), +                   IsUndefMaskElt)) { +    N0 = DAG.getVectorShuffle(ConcatVT, SDLoc(N), N0.getOperand(0), +                              N0.getOperand(1), +                              Mask.slice(0, NumElemsPerConcat)); +    N1 = DAG.getUNDEF(ConcatVT); +    return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, N0, N1); +  } + +  // Look at every vector that's inserted. We're looking for exact +  // subvector-sized copies from a concatenated vector +  for (unsigned I = 0; I != NumConcats; ++I) { +    unsigned Begin = I * NumElemsPerConcat; +    ArrayRef<int> SubMask = Mask.slice(Begin, NumElemsPerConcat); + +    // Make sure we're dealing with a copy. +    if (llvm::all_of(SubMask, IsUndefMaskElt)) { +      Ops.push_back(DAG.getUNDEF(ConcatVT)); +      continue; +    } + +    int OpIdx = -1; +    for (int i = 0; i != (int)NumElemsPerConcat; ++i) { +      if (IsUndefMaskElt(SubMask[i])) +        continue; +      if ((SubMask[i] % (int)NumElemsPerConcat) != i) +        return SDValue(); +      int EltOpIdx = SubMask[i] / NumElemsPerConcat; +      if (0 <= OpIdx && EltOpIdx != OpIdx) +        return SDValue(); +      OpIdx = EltOpIdx; +    } +    assert(0 <= OpIdx && "Unknown concat_vectors op"); + +    if (OpIdx < (int)N0.getNumOperands()) +      Ops.push_back(N0.getOperand(OpIdx)); +    else +      Ops.push_back(N1.getOperand(OpIdx - N0.getNumOperands())); +  } + +  return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Ops); +} + +// Attempt to combine a shuffle of 2 inputs of 'scalar sources' - +// BUILD_VECTOR or SCALAR_TO_VECTOR into a single BUILD_VECTOR. +// +// SHUFFLE(BUILD_VECTOR(), BUILD_VECTOR()) -> BUILD_VECTOR() is always +// a simplification in some sense, but it isn't appropriate in general: some +// BUILD_VECTORs are substantially cheaper than others. The general case +// of a BUILD_VECTOR requires inserting each element individually (or +// performing the equivalent in a temporary stack variable). A BUILD_VECTOR of +// all constants is a single constant pool load.  A BUILD_VECTOR where each +// element is identical is a splat.  A BUILD_VECTOR where most of the operands +// are undef lowers to a small number of element insertions. +// +// To deal with this, we currently use a bunch of mostly arbitrary heuristics. +// We don't fold shuffles where one side is a non-zero constant, and we don't +// fold shuffles if the resulting (non-splat) BUILD_VECTOR would have duplicate +// non-constant operands. This seems to work out reasonably well in practice. +static SDValue combineShuffleOfScalars(ShuffleVectorSDNode *SVN, +                                       SelectionDAG &DAG, +                                       const TargetLowering &TLI) { +  EVT VT = SVN->getValueType(0); +  unsigned NumElts = VT.getVectorNumElements(); +  SDValue N0 = SVN->getOperand(0); +  SDValue N1 = SVN->getOperand(1); + +  if (!N0->hasOneUse()) +    return SDValue(); + +  // If only one of N1,N2 is constant, bail out if it is not ALL_ZEROS as +  // discussed above. +  if (!N1.isUndef()) { +    if (!N1->hasOneUse()) +      return SDValue(); + +    bool N0AnyConst = isAnyConstantBuildVector(N0); +    bool N1AnyConst = isAnyConstantBuildVector(N1); +    if (N0AnyConst && !N1AnyConst && !ISD::isBuildVectorAllZeros(N0.getNode())) +      return SDValue(); +    if (!N0AnyConst && N1AnyConst && !ISD::isBuildVectorAllZeros(N1.getNode())) +      return SDValue(); +  } + +  // If both inputs are splats of the same value then we can safely merge this +  // to a single BUILD_VECTOR with undef elements based on the shuffle mask. +  bool IsSplat = false; +  auto *BV0 = dyn_cast<BuildVectorSDNode>(N0); +  auto *BV1 = dyn_cast<BuildVectorSDNode>(N1); +  if (BV0 && BV1) +    if (SDValue Splat0 = BV0->getSplatValue()) +      IsSplat = (Splat0 == BV1->getSplatValue()); + +  SmallVector<SDValue, 8> Ops; +  SmallSet<SDValue, 16> DuplicateOps; +  for (int M : SVN->getMask()) { +    SDValue Op = DAG.getUNDEF(VT.getScalarType()); +    if (M >= 0) { +      int Idx = M < (int)NumElts ? M : M - NumElts; +      SDValue &S = (M < (int)NumElts ? N0 : N1); +      if (S.getOpcode() == ISD::BUILD_VECTOR) { +        Op = S.getOperand(Idx); +      } else if (S.getOpcode() == ISD::SCALAR_TO_VECTOR) { +        SDValue Op0 = S.getOperand(0); +        Op = Idx == 0 ? Op0 : DAG.getUNDEF(Op0.getValueType()); +      } else { +        // Operand can't be combined - bail out. +        return SDValue(); +      } +    } + +    // Don't duplicate a non-constant BUILD_VECTOR operand unless we're +    // generating a splat; semantically, this is fine, but it's likely to +    // generate low-quality code if the target can't reconstruct an appropriate +    // shuffle. +    if (!Op.isUndef() && !isa<ConstantSDNode>(Op) && !isa<ConstantFPSDNode>(Op)) +      if (!IsSplat && !DuplicateOps.insert(Op).second) +        return SDValue(); + +    Ops.push_back(Op); +  } + +  // BUILD_VECTOR requires all inputs to be of the same type, find the +  // maximum type and extend them all. +  EVT SVT = VT.getScalarType(); +  if (SVT.isInteger()) +    for (SDValue &Op : Ops) +      SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT); +  if (SVT != VT.getScalarType()) +    for (SDValue &Op : Ops) +      Op = TLI.isZExtFree(Op.getValueType(), SVT) +               ? DAG.getZExtOrTrunc(Op, SDLoc(SVN), SVT) +               : DAG.getSExtOrTrunc(Op, SDLoc(SVN), SVT); +  return DAG.getBuildVector(VT, SDLoc(SVN), Ops); +} + +// Match shuffles that can be converted to any_vector_extend_in_reg. +// This is often generated during legalization. +// e.g. v4i32 <0,u,1,u> -> (v2i64 any_vector_extend_in_reg(v4i32 src)) +// TODO Add support for ZERO_EXTEND_VECTOR_INREG when we have a test case. +static SDValue combineShuffleToVectorExtend(ShuffleVectorSDNode *SVN, +                                            SelectionDAG &DAG, +                                            const TargetLowering &TLI, +                                            bool LegalOperations) { +  EVT VT = SVN->getValueType(0); +  bool IsBigEndian = DAG.getDataLayout().isBigEndian(); + +  // TODO Add support for big-endian when we have a test case. +  if (!VT.isInteger() || IsBigEndian) +    return SDValue(); + +  unsigned NumElts = VT.getVectorNumElements(); +  unsigned EltSizeInBits = VT.getScalarSizeInBits(); +  ArrayRef<int> Mask = SVN->getMask(); +  SDValue N0 = SVN->getOperand(0); + +  // shuffle<0,-1,1,-1> == (v2i64 anyextend_vector_inreg(v4i32)) +  auto isAnyExtend = [&Mask, &NumElts](unsigned Scale) { +    for (unsigned i = 0; i != NumElts; ++i) { +      if (Mask[i] < 0) +        continue; +      if ((i % Scale) == 0 && Mask[i] == (int)(i / Scale)) +        continue; +      return false; +    } +    return true; +  }; + +  // Attempt to match a '*_extend_vector_inreg' shuffle, we just search for +  // power-of-2 extensions as they are the most likely. +  for (unsigned Scale = 2; Scale < NumElts; Scale *= 2) { +    // Check for non power of 2 vector sizes +    if (NumElts % Scale != 0) +      continue; +    if (!isAnyExtend(Scale)) +      continue; + +    EVT OutSVT = EVT::getIntegerVT(*DAG.getContext(), EltSizeInBits * Scale); +    EVT OutVT = EVT::getVectorVT(*DAG.getContext(), OutSVT, NumElts / Scale); +    // Never create an illegal type. Only create unsupported operations if we +    // are pre-legalization. +    if (TLI.isTypeLegal(OutVT)) +      if (!LegalOperations || +          TLI.isOperationLegalOrCustom(ISD::ANY_EXTEND_VECTOR_INREG, OutVT)) +        return DAG.getBitcast(VT, +                              DAG.getNode(ISD::ANY_EXTEND_VECTOR_INREG, +                                          SDLoc(SVN), OutVT, N0)); +  } + +  return SDValue(); +} + +// Detect 'truncate_vector_inreg' style shuffles that pack the lower parts of +// each source element of a large type into the lowest elements of a smaller +// destination type. This is often generated during legalization. +// If the source node itself was a '*_extend_vector_inreg' node then we should +// then be able to remove it. +static SDValue combineTruncationShuffle(ShuffleVectorSDNode *SVN, +                                        SelectionDAG &DAG) { +  EVT VT = SVN->getValueType(0); +  bool IsBigEndian = DAG.getDataLayout().isBigEndian(); + +  // TODO Add support for big-endian when we have a test case. +  if (!VT.isInteger() || IsBigEndian) +    return SDValue(); + +  SDValue N0 = peekThroughBitcasts(SVN->getOperand(0)); + +  unsigned Opcode = N0.getOpcode(); +  if (Opcode != ISD::ANY_EXTEND_VECTOR_INREG && +      Opcode != ISD::SIGN_EXTEND_VECTOR_INREG && +      Opcode != ISD::ZERO_EXTEND_VECTOR_INREG) +    return SDValue(); + +  SDValue N00 = N0.getOperand(0); +  ArrayRef<int> Mask = SVN->getMask(); +  unsigned NumElts = VT.getVectorNumElements(); +  unsigned EltSizeInBits = VT.getScalarSizeInBits(); +  unsigned ExtSrcSizeInBits = N00.getScalarValueSizeInBits(); +  unsigned ExtDstSizeInBits = N0.getScalarValueSizeInBits(); + +  if (ExtDstSizeInBits % ExtSrcSizeInBits != 0) +    return SDValue(); +  unsigned ExtScale = ExtDstSizeInBits / ExtSrcSizeInBits; + +  // (v4i32 truncate_vector_inreg(v2i64)) == shuffle<0,2-1,-1> +  // (v8i16 truncate_vector_inreg(v4i32)) == shuffle<0,2,4,6,-1,-1,-1,-1> +  // (v8i16 truncate_vector_inreg(v2i64)) == shuffle<0,4,-1,-1,-1,-1,-1,-1> +  auto isTruncate = [&Mask, &NumElts](unsigned Scale) { +    for (unsigned i = 0; i != NumElts; ++i) { +      if (Mask[i] < 0) +        continue; +      if ((i * Scale) < NumElts && Mask[i] == (int)(i * Scale)) +        continue; +      return false; +    } +    return true; +  }; + +  // At the moment we just handle the case where we've truncated back to the +  // same size as before the extension. +  // TODO: handle more extension/truncation cases as cases arise. +  if (EltSizeInBits != ExtSrcSizeInBits) +    return SDValue(); + +  // We can remove *extend_vector_inreg only if the truncation happens at +  // the same scale as the extension. +  if (isTruncate(ExtScale)) +    return DAG.getBitcast(VT, N00); + +  return SDValue(); +} + +// Combine shuffles of splat-shuffles of the form: +// shuffle (shuffle V, undef, splat-mask), undef, M +// If splat-mask contains undef elements, we need to be careful about +// introducing undef's in the folded mask which are not the result of composing +// the masks of the shuffles. +static SDValue combineShuffleOfSplatVal(ShuffleVectorSDNode *Shuf, +                                        SelectionDAG &DAG) { +  if (!Shuf->getOperand(1).isUndef()) +    return SDValue(); +  auto *Splat = dyn_cast<ShuffleVectorSDNode>(Shuf->getOperand(0)); +  if (!Splat || !Splat->isSplat()) +    return SDValue(); + +  ArrayRef<int> ShufMask = Shuf->getMask(); +  ArrayRef<int> SplatMask = Splat->getMask(); +  assert(ShufMask.size() == SplatMask.size() && "Mask length mismatch"); + +  // Prefer simplifying to the splat-shuffle, if possible. This is legal if +  // every undef mask element in the splat-shuffle has a corresponding undef +  // element in the user-shuffle's mask or if the composition of mask elements +  // would result in undef. +  // Examples for (shuffle (shuffle v, undef, SplatMask), undef, UserMask): +  // * UserMask=[0,2,u,u], SplatMask=[2,u,2,u] -> [2,2,u,u] +  //   In this case it is not legal to simplify to the splat-shuffle because we +  //   may be exposing the users of the shuffle an undef element at index 1 +  //   which was not there before the combine. +  // * UserMask=[0,u,2,u], SplatMask=[2,u,2,u] -> [2,u,2,u] +  //   In this case the composition of masks yields SplatMask, so it's ok to +  //   simplify to the splat-shuffle. +  // * UserMask=[3,u,2,u], SplatMask=[2,u,2,u] -> [u,u,2,u] +  //   In this case the composed mask includes all undef elements of SplatMask +  //   and in addition sets element zero to undef. It is safe to simplify to +  //   the splat-shuffle. +  auto CanSimplifyToExistingSplat = [](ArrayRef<int> UserMask, +                                       ArrayRef<int> SplatMask) { +    for (unsigned i = 0, e = UserMask.size(); i != e; ++i) +      if (UserMask[i] != -1 && SplatMask[i] == -1 && +          SplatMask[UserMask[i]] != -1) +        return false; +    return true; +  }; +  if (CanSimplifyToExistingSplat(ShufMask, SplatMask)) +    return Shuf->getOperand(0); + +  // Create a new shuffle with a mask that is composed of the two shuffles' +  // masks. +  SmallVector<int, 32> NewMask; +  for (int Idx : ShufMask) +    NewMask.push_back(Idx == -1 ? -1 : SplatMask[Idx]); + +  return DAG.getVectorShuffle(Splat->getValueType(0), SDLoc(Splat), +                              Splat->getOperand(0), Splat->getOperand(1), +                              NewMask); +} + +/// If the shuffle mask is taking exactly one element from the first vector +/// operand and passing through all other elements from the second vector +/// operand, return the index of the mask element that is choosing an element +/// from the first operand. Otherwise, return -1. +static int getShuffleMaskIndexOfOneElementFromOp0IntoOp1(ArrayRef<int> Mask) { +  int MaskSize = Mask.size(); +  int EltFromOp0 = -1; +  // TODO: This does not match if there are undef elements in the shuffle mask. +  // Should we ignore undefs in the shuffle mask instead? The trade-off is +  // removing an instruction (a shuffle), but losing the knowledge that some +  // vector lanes are not needed. +  for (int i = 0; i != MaskSize; ++i) { +    if (Mask[i] >= 0 && Mask[i] < MaskSize) { +      // We're looking for a shuffle of exactly one element from operand 0. +      if (EltFromOp0 != -1) +        return -1; +      EltFromOp0 = i; +    } else if (Mask[i] != i + MaskSize) { +      // Nothing from operand 1 can change lanes. +      return -1; +    } +  } +  return EltFromOp0; +} + +/// If a shuffle inserts exactly one element from a source vector operand into +/// another vector operand and we can access the specified element as a scalar, +/// then we can eliminate the shuffle. +static SDValue replaceShuffleOfInsert(ShuffleVectorSDNode *Shuf, +                                      SelectionDAG &DAG) { +  // First, check if we are taking one element of a vector and shuffling that +  // element into another vector. +  ArrayRef<int> Mask = Shuf->getMask(); +  SmallVector<int, 16> CommutedMask(Mask.begin(), Mask.end()); +  SDValue Op0 = Shuf->getOperand(0); +  SDValue Op1 = Shuf->getOperand(1); +  int ShufOp0Index = getShuffleMaskIndexOfOneElementFromOp0IntoOp1(Mask); +  if (ShufOp0Index == -1) { +    // Commute mask and check again. +    ShuffleVectorSDNode::commuteMask(CommutedMask); +    ShufOp0Index = getShuffleMaskIndexOfOneElementFromOp0IntoOp1(CommutedMask); +    if (ShufOp0Index == -1) +      return SDValue(); +    // Commute operands to match the commuted shuffle mask. +    std::swap(Op0, Op1); +    Mask = CommutedMask; +  } + +  // The shuffle inserts exactly one element from operand 0 into operand 1. +  // Now see if we can access that element as a scalar via a real insert element +  // instruction. +  // TODO: We can try harder to locate the element as a scalar. Examples: it +  // could be an operand of SCALAR_TO_VECTOR, BUILD_VECTOR, or a constant. +  assert(Mask[ShufOp0Index] >= 0 && Mask[ShufOp0Index] < (int)Mask.size() && +         "Shuffle mask value must be from operand 0"); +  if (Op0.getOpcode() != ISD::INSERT_VECTOR_ELT) +    return SDValue(); + +  auto *InsIndexC = dyn_cast<ConstantSDNode>(Op0.getOperand(2)); +  if (!InsIndexC || InsIndexC->getSExtValue() != Mask[ShufOp0Index]) +    return SDValue(); + +  // There's an existing insertelement with constant insertion index, so we +  // don't need to check the legality/profitability of a replacement operation +  // that differs at most in the constant value. The target should be able to +  // lower any of those in a similar way. If not, legalization will expand this +  // to a scalar-to-vector plus shuffle. +  // +  // Note that the shuffle may move the scalar from the position that the insert +  // element used. Therefore, our new insert element occurs at the shuffle's +  // mask index value, not the insert's index value. +  // shuffle (insertelt v1, x, C), v2, mask --> insertelt v2, x, C' +  SDValue NewInsIndex = DAG.getConstant(ShufOp0Index, SDLoc(Shuf), +                                        Op0.getOperand(2).getValueType()); +  return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(Shuf), Op0.getValueType(), +                     Op1, Op0.getOperand(1), NewInsIndex); +} + +/// If we have a unary shuffle of a shuffle, see if it can be folded away +/// completely. This has the potential to lose undef knowledge because the first +/// shuffle may not have an undef mask element where the second one does. So +/// only call this after doing simplifications based on demanded elements. +static SDValue simplifyShuffleOfShuffle(ShuffleVectorSDNode *Shuf) { +  // shuf (shuf0 X, Y, Mask0), undef, Mask +  auto *Shuf0 = dyn_cast<ShuffleVectorSDNode>(Shuf->getOperand(0)); +  if (!Shuf0 || !Shuf->getOperand(1).isUndef()) +    return SDValue(); + +  ArrayRef<int> Mask = Shuf->getMask(); +  ArrayRef<int> Mask0 = Shuf0->getMask(); +  for (int i = 0, e = (int)Mask.size(); i != e; ++i) { +    // Ignore undef elements. +    if (Mask[i] == -1) +      continue; +    assert(Mask[i] >= 0 && Mask[i] < e && "Unexpected shuffle mask value"); + +    // Is the element of the shuffle operand chosen by this shuffle the same as +    // the element chosen by the shuffle operand itself? +    if (Mask0[Mask[i]] != Mask0[i]) +      return SDValue(); +  } +  // Every element of this shuffle is identical to the result of the previous +  // shuffle, so we can replace this value. +  return Shuf->getOperand(0); +} + +SDValue DAGCombiner::visitVECTOR_SHUFFLE(SDNode *N) { +  EVT VT = N->getValueType(0); +  unsigned NumElts = VT.getVectorNumElements(); + +  SDValue N0 = N->getOperand(0); +  SDValue N1 = N->getOperand(1); + +  assert(N0.getValueType() == VT && "Vector shuffle must be normalized in DAG"); + +  // Canonicalize shuffle undef, undef -> undef +  if (N0.isUndef() && N1.isUndef()) +    return DAG.getUNDEF(VT); + +  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); + +  // Canonicalize shuffle v, v -> v, undef +  if (N0 == N1) { +    SmallVector<int, 8> NewMask; +    for (unsigned i = 0; i != NumElts; ++i) { +      int Idx = SVN->getMaskElt(i); +      if (Idx >= (int)NumElts) Idx -= NumElts; +      NewMask.push_back(Idx); +    } +    return DAG.getVectorShuffle(VT, SDLoc(N), N0, DAG.getUNDEF(VT), NewMask); +  } + +  // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask. +  if (N0.isUndef()) +    return DAG.getCommutedVectorShuffle(*SVN); + +  // Remove references to rhs if it is undef +  if (N1.isUndef()) { +    bool Changed = false; +    SmallVector<int, 8> NewMask; +    for (unsigned i = 0; i != NumElts; ++i) { +      int Idx = SVN->getMaskElt(i); +      if (Idx >= (int)NumElts) { +        Idx = -1; +        Changed = true; +      } +      NewMask.push_back(Idx); +    } +    if (Changed) +      return DAG.getVectorShuffle(VT, SDLoc(N), N0, N1, NewMask); +  } + +  if (SDValue InsElt = replaceShuffleOfInsert(SVN, DAG)) +    return InsElt; + +  // A shuffle of a single vector that is a splatted value can always be folded. +  if (SDValue V = combineShuffleOfSplatVal(SVN, DAG)) +    return V; + +  // If it is a splat, check if the argument vector is another splat or a +  // build_vector. +  if (SVN->isSplat() && SVN->getSplatIndex() < (int)NumElts) { +    int SplatIndex = SVN->getSplatIndex(); +    if (N0.hasOneUse() && TLI.isExtractVecEltCheap(VT, SplatIndex) && +        TLI.isBinOp(N0.getOpcode()) && N0.getNode()->getNumValues() == 1) { +      // splat (vector_bo L, R), Index --> +      // splat (scalar_bo (extelt L, Index), (extelt R, Index)) +      SDValue L = N0.getOperand(0), R = N0.getOperand(1); +      SDLoc DL(N); +      EVT EltVT = VT.getScalarType(); +      SDValue Index = DAG.getIntPtrConstant(SplatIndex, DL); +      SDValue ExtL = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, L, Index); +      SDValue ExtR = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, R, Index); +      SDValue NewBO = DAG.getNode(N0.getOpcode(), DL, EltVT, ExtL, ExtR, +                                  N0.getNode()->getFlags()); +      SDValue Insert = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, NewBO); +      SmallVector<int, 16> ZeroMask(VT.getVectorNumElements(), 0); +      return DAG.getVectorShuffle(VT, DL, Insert, DAG.getUNDEF(VT), ZeroMask); +    } + +    // If this is a bit convert that changes the element type of the vector but +    // not the number of vector elements, look through it.  Be careful not to +    // look though conversions that change things like v4f32 to v2f64. +    SDNode *V = N0.getNode(); +    if (V->getOpcode() == ISD::BITCAST) { +      SDValue ConvInput = V->getOperand(0); +      if (ConvInput.getValueType().isVector() && +          ConvInput.getValueType().getVectorNumElements() == NumElts) +        V = ConvInput.getNode(); +    } + +    if (V->getOpcode() == ISD::BUILD_VECTOR) { +      assert(V->getNumOperands() == NumElts && +             "BUILD_VECTOR has wrong number of operands"); +      SDValue Base; +      bool AllSame = true; +      for (unsigned i = 0; i != NumElts; ++i) { +        if (!V->getOperand(i).isUndef()) { +          Base = V->getOperand(i); +          break; +        } +      } +      // Splat of <u, u, u, u>, return <u, u, u, u> +      if (!Base.getNode()) +        return N0; +      for (unsigned i = 0; i != NumElts; ++i) { +        if (V->getOperand(i) != Base) { +          AllSame = false; +          break; +        } +      } +      // Splat of <x, x, x, x>, return <x, x, x, x> +      if (AllSame) +        return N0; + +      // Canonicalize any other splat as a build_vector. +      SDValue Splatted = V->getOperand(SplatIndex); +      SmallVector<SDValue, 8> Ops(NumElts, Splatted); +      SDValue NewBV = DAG.getBuildVector(V->getValueType(0), SDLoc(N), Ops); + +      // We may have jumped through bitcasts, so the type of the +      // BUILD_VECTOR may not match the type of the shuffle. +      if (V->getValueType(0) != VT) +        NewBV = DAG.getBitcast(VT, NewBV); +      return NewBV; +    } +  } + +  // Simplify source operands based on shuffle mask. +  if (SimplifyDemandedVectorElts(SDValue(N, 0))) +    return SDValue(N, 0); + +  // This is intentionally placed after demanded elements simplification because +  // it could eliminate knowledge of undef elements created by this shuffle. +  if (SDValue ShufOp = simplifyShuffleOfShuffle(SVN)) +    return ShufOp; + +  // Match shuffles that can be converted to any_vector_extend_in_reg. +  if (SDValue V = combineShuffleToVectorExtend(SVN, DAG, TLI, LegalOperations)) +    return V; + +  // Combine "truncate_vector_in_reg" style shuffles. +  if (SDValue V = combineTruncationShuffle(SVN, DAG)) +    return V; + +  if (N0.getOpcode() == ISD::CONCAT_VECTORS && +      Level < AfterLegalizeVectorOps && +      (N1.isUndef() || +      (N1.getOpcode() == ISD::CONCAT_VECTORS && +       N0.getOperand(0).getValueType() == N1.getOperand(0).getValueType()))) { +    if (SDValue V = partitionShuffleOfConcats(N, DAG)) +      return V; +  } + +  // Attempt to combine a shuffle of 2 inputs of 'scalar sources' - +  // BUILD_VECTOR or SCALAR_TO_VECTOR into a single BUILD_VECTOR. +  if (Level < AfterLegalizeDAG && TLI.isTypeLegal(VT)) +    if (SDValue Res = combineShuffleOfScalars(SVN, DAG, TLI)) +      return Res; + +  // If this shuffle only has a single input that is a bitcasted shuffle, +  // attempt to merge the 2 shuffles and suitably bitcast the inputs/output +  // back to their original types. +  if (N0.getOpcode() == ISD::BITCAST && N0.hasOneUse() && +      N1.isUndef() && Level < AfterLegalizeVectorOps && +      TLI.isTypeLegal(VT)) { +    auto ScaleShuffleMask = [](ArrayRef<int> Mask, int Scale) { +      if (Scale == 1) +        return SmallVector<int, 8>(Mask.begin(), Mask.end()); + +      SmallVector<int, 8> NewMask; +      for (int M : Mask) +        for (int s = 0; s != Scale; ++s) +          NewMask.push_back(M < 0 ? -1 : Scale * M + s); +      return NewMask; +    }; + +    SDValue BC0 = peekThroughOneUseBitcasts(N0); +    if (BC0.getOpcode() == ISD::VECTOR_SHUFFLE && BC0.hasOneUse()) { +      EVT SVT = VT.getScalarType(); +      EVT InnerVT = BC0->getValueType(0); +      EVT InnerSVT = InnerVT.getScalarType(); + +      // Determine which shuffle works with the smaller scalar type. +      EVT ScaleVT = SVT.bitsLT(InnerSVT) ? VT : InnerVT; +      EVT ScaleSVT = ScaleVT.getScalarType(); + +      if (TLI.isTypeLegal(ScaleVT) && +          0 == (InnerSVT.getSizeInBits() % ScaleSVT.getSizeInBits()) && +          0 == (SVT.getSizeInBits() % ScaleSVT.getSizeInBits())) { +        int InnerScale = InnerSVT.getSizeInBits() / ScaleSVT.getSizeInBits(); +        int OuterScale = SVT.getSizeInBits() / ScaleSVT.getSizeInBits(); + +        // Scale the shuffle masks to the smaller scalar type. +        ShuffleVectorSDNode *InnerSVN = cast<ShuffleVectorSDNode>(BC0); +        SmallVector<int, 8> InnerMask = +            ScaleShuffleMask(InnerSVN->getMask(), InnerScale); +        SmallVector<int, 8> OuterMask = +            ScaleShuffleMask(SVN->getMask(), OuterScale); + +        // Merge the shuffle masks. +        SmallVector<int, 8> NewMask; +        for (int M : OuterMask) +          NewMask.push_back(M < 0 ? -1 : InnerMask[M]); + +        // Test for shuffle mask legality over both commutations. +        SDValue SV0 = BC0->getOperand(0); +        SDValue SV1 = BC0->getOperand(1); +        bool LegalMask = TLI.isShuffleMaskLegal(NewMask, ScaleVT); +        if (!LegalMask) { +          std::swap(SV0, SV1); +          ShuffleVectorSDNode::commuteMask(NewMask); +          LegalMask = TLI.isShuffleMaskLegal(NewMask, ScaleVT); +        } + +        if (LegalMask) { +          SV0 = DAG.getBitcast(ScaleVT, SV0); +          SV1 = DAG.getBitcast(ScaleVT, SV1); +          return DAG.getBitcast( +              VT, DAG.getVectorShuffle(ScaleVT, SDLoc(N), SV0, SV1, NewMask)); +        } +      } +    } +  } + +  // Canonicalize shuffles according to rules: +  //  shuffle(A, shuffle(A, B)) -> shuffle(shuffle(A,B), A) +  //  shuffle(B, shuffle(A, B)) -> shuffle(shuffle(A,B), B) +  //  shuffle(B, shuffle(A, Undef)) -> shuffle(shuffle(A, Undef), B) +  if (N1.getOpcode() == ISD::VECTOR_SHUFFLE && +      N0.getOpcode() != ISD::VECTOR_SHUFFLE && Level < AfterLegalizeDAG && +      TLI.isTypeLegal(VT)) { +    // The incoming shuffle must be of the same type as the result of the +    // current shuffle. +    assert(N1->getOperand(0).getValueType() == VT && +           "Shuffle types don't match"); + +    SDValue SV0 = N1->getOperand(0); +    SDValue SV1 = N1->getOperand(1); +    bool HasSameOp0 = N0 == SV0; +    bool IsSV1Undef = SV1.isUndef(); +    if (HasSameOp0 || IsSV1Undef || N0 == SV1) +      // Commute the operands of this shuffle so that next rule +      // will trigger. +      return DAG.getCommutedVectorShuffle(*SVN); +  } + +  // Try to fold according to rules: +  //   shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, B, M2) +  //   shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, C, M2) +  //   shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, C, M2) +  // Don't try to fold shuffles with illegal type. +  // Only fold if this shuffle is the only user of the other shuffle. +  if (N0.getOpcode() == ISD::VECTOR_SHUFFLE && N->isOnlyUserOf(N0.getNode()) && +      Level < AfterLegalizeDAG && TLI.isTypeLegal(VT)) { +    ShuffleVectorSDNode *OtherSV = cast<ShuffleVectorSDNode>(N0); + +    // Don't try to fold splats; they're likely to simplify somehow, or they +    // might be free. +    if (OtherSV->isSplat()) +      return SDValue(); + +    // The incoming shuffle must be of the same type as the result of the +    // current shuffle. +    assert(OtherSV->getOperand(0).getValueType() == VT && +           "Shuffle types don't match"); + +    SDValue SV0, SV1; +    SmallVector<int, 4> Mask; +    // Compute the combined shuffle mask for a shuffle with SV0 as the first +    // operand, and SV1 as the second operand. +    for (unsigned i = 0; i != NumElts; ++i) { +      int Idx = SVN->getMaskElt(i); +      if (Idx < 0) { +        // Propagate Undef. +        Mask.push_back(Idx); +        continue; +      } + +      SDValue CurrentVec; +      if (Idx < (int)NumElts) { +        // This shuffle index refers to the inner shuffle N0. Lookup the inner +        // shuffle mask to identify which vector is actually referenced. +        Idx = OtherSV->getMaskElt(Idx); +        if (Idx < 0) { +          // Propagate Undef. +          Mask.push_back(Idx); +          continue; +        } + +        CurrentVec = (Idx < (int) NumElts) ? OtherSV->getOperand(0) +                                           : OtherSV->getOperand(1); +      } else { +        // This shuffle index references an element within N1. +        CurrentVec = N1; +      } + +      // Simple case where 'CurrentVec' is UNDEF. +      if (CurrentVec.isUndef()) { +        Mask.push_back(-1); +        continue; +      } + +      // Canonicalize the shuffle index. We don't know yet if CurrentVec +      // will be the first or second operand of the combined shuffle. +      Idx = Idx % NumElts; +      if (!SV0.getNode() || SV0 == CurrentVec) { +        // Ok. CurrentVec is the left hand side. +        // Update the mask accordingly. +        SV0 = CurrentVec; +        Mask.push_back(Idx); +        continue; +      } + +      // Bail out if we cannot convert the shuffle pair into a single shuffle. +      if (SV1.getNode() && SV1 != CurrentVec) +        return SDValue(); + +      // Ok. CurrentVec is the right hand side. +      // Update the mask accordingly. +      SV1 = CurrentVec; +      Mask.push_back(Idx + NumElts); +    } + +    // Check if all indices in Mask are Undef. In case, propagate Undef. +    bool isUndefMask = true; +    for (unsigned i = 0; i != NumElts && isUndefMask; ++i) +      isUndefMask &= Mask[i] < 0; + +    if (isUndefMask) +      return DAG.getUNDEF(VT); + +    if (!SV0.getNode()) +      SV0 = DAG.getUNDEF(VT); +    if (!SV1.getNode()) +      SV1 = DAG.getUNDEF(VT); + +    // Avoid introducing shuffles with illegal mask. +    //   shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, B, M2) +    //   shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, C, M2) +    //   shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, C, M2) +    //   shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, A, M2) +    //   shuffle(shuffle(A, B, M0), C, M1) -> shuffle(C, A, M2) +    //   shuffle(shuffle(A, B, M0), C, M1) -> shuffle(C, B, M2) +    return TLI.buildLegalVectorShuffle(VT, SDLoc(N), SV0, SV1, Mask, DAG); +  } + +  if (SDValue V = foldShuffleOfConcatUndefs(SVN, DAG)) +    return V; + +  return SDValue(); +} + +SDValue DAGCombiner::visitSCALAR_TO_VECTOR(SDNode *N) { +  SDValue InVal = N->getOperand(0); +  EVT VT = N->getValueType(0); + +  // Replace a SCALAR_TO_VECTOR(EXTRACT_VECTOR_ELT(V,C0)) pattern +  // with a VECTOR_SHUFFLE and possible truncate. +  if (InVal.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { +    SDValue InVec = InVal->getOperand(0); +    SDValue EltNo = InVal->getOperand(1); +    auto InVecT = InVec.getValueType(); +    if (ConstantSDNode *C0 = dyn_cast<ConstantSDNode>(EltNo)) { +      SmallVector<int, 8> NewMask(InVecT.getVectorNumElements(), -1); +      int Elt = C0->getZExtValue(); +      NewMask[0] = Elt; +      // If we have an implict truncate do truncate here as long as it's legal. +      // if it's not legal, this should +      if (VT.getScalarType() != InVal.getValueType() && +          InVal.getValueType().isScalarInteger() && +          isTypeLegal(VT.getScalarType())) { +        SDValue Val = +            DAG.getNode(ISD::TRUNCATE, SDLoc(InVal), VT.getScalarType(), InVal); +        return DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(N), VT, Val); +      } +      if (VT.getScalarType() == InVecT.getScalarType() && +          VT.getVectorNumElements() <= InVecT.getVectorNumElements()) { +        SDValue LegalShuffle = +          TLI.buildLegalVectorShuffle(InVecT, SDLoc(N), InVec, +                                      DAG.getUNDEF(InVecT), NewMask, DAG); +        if (LegalShuffle) { +          // If the initial vector is the correct size this shuffle is a +          // valid result. +          if (VT == InVecT) +            return LegalShuffle; +          // If not we must truncate the vector. +          if (VT.getVectorNumElements() != InVecT.getVectorNumElements()) { +            MVT IdxTy = TLI.getVectorIdxTy(DAG.getDataLayout()); +            SDValue ZeroIdx = DAG.getConstant(0, SDLoc(N), IdxTy); +            EVT SubVT = +                EVT::getVectorVT(*DAG.getContext(), InVecT.getVectorElementType(), +                                 VT.getVectorNumElements()); +            return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N), SubVT, +                               LegalShuffle, ZeroIdx); +          } +        } +      } +    } +  } + +  return SDValue(); +} + +SDValue DAGCombiner::visitINSERT_SUBVECTOR(SDNode *N) { +  EVT VT = N->getValueType(0); +  SDValue N0 = N->getOperand(0); +  SDValue N1 = N->getOperand(1); +  SDValue N2 = N->getOperand(2); + +  // If inserting an UNDEF, just return the original vector. +  if (N1.isUndef()) +    return N0; + +  // If this is an insert of an extracted vector into an undef vector, we can +  // just use the input to the extract. +  if (N0.isUndef() && N1.getOpcode() == ISD::EXTRACT_SUBVECTOR && +      N1.getOperand(1) == N2 && N1.getOperand(0).getValueType() == VT) +    return N1.getOperand(0); + +  // If we are inserting a bitcast value into an undef, with the same +  // number of elements, just use the bitcast input of the extract. +  // i.e. INSERT_SUBVECTOR UNDEF (BITCAST N1) N2 -> +  //        BITCAST (INSERT_SUBVECTOR UNDEF N1 N2) +  if (N0.isUndef() && N1.getOpcode() == ISD::BITCAST && +      N1.getOperand(0).getOpcode() == ISD::EXTRACT_SUBVECTOR && +      N1.getOperand(0).getOperand(1) == N2 && +      N1.getOperand(0).getOperand(0).getValueType().getVectorNumElements() == +          VT.getVectorNumElements() && +      N1.getOperand(0).getOperand(0).getValueType().getSizeInBits() == +          VT.getSizeInBits()) { +    return DAG.getBitcast(VT, N1.getOperand(0).getOperand(0)); +  } + +  // If both N1 and N2 are bitcast values on which insert_subvector +  // would makes sense, pull the bitcast through. +  // i.e. INSERT_SUBVECTOR (BITCAST N0) (BITCAST N1) N2 -> +  //        BITCAST (INSERT_SUBVECTOR N0 N1 N2) +  if (N0.getOpcode() == ISD::BITCAST && N1.getOpcode() == ISD::BITCAST) { +    SDValue CN0 = N0.getOperand(0); +    SDValue CN1 = N1.getOperand(0); +    EVT CN0VT = CN0.getValueType(); +    EVT CN1VT = CN1.getValueType(); +    if (CN0VT.isVector() && CN1VT.isVector() && +        CN0VT.getVectorElementType() == CN1VT.getVectorElementType() && +        CN0VT.getVectorNumElements() == VT.getVectorNumElements()) { +      SDValue NewINSERT = DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N), +                                      CN0.getValueType(), CN0, CN1, N2); +      return DAG.getBitcast(VT, NewINSERT); +    } +  } + +  // Combine INSERT_SUBVECTORs where we are inserting to the same index. +  // INSERT_SUBVECTOR( INSERT_SUBVECTOR( Vec, SubOld, Idx ), SubNew, Idx ) +  // --> INSERT_SUBVECTOR( Vec, SubNew, Idx ) +  if (N0.getOpcode() == ISD::INSERT_SUBVECTOR && +      N0.getOperand(1).getValueType() == N1.getValueType() && +      N0.getOperand(2) == N2) +    return DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N), VT, N0.getOperand(0), +                       N1, N2); + +  // Eliminate an intermediate insert into an undef vector: +  // insert_subvector undef, (insert_subvector undef, X, 0), N2 --> +  // insert_subvector undef, X, N2 +  if (N0.isUndef() && N1.getOpcode() == ISD::INSERT_SUBVECTOR && +      N1.getOperand(0).isUndef() && isNullConstant(N1.getOperand(2))) +    return DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N), VT, N0, +                       N1.getOperand(1), N2); + +  if (!isa<ConstantSDNode>(N2)) +    return SDValue(); + +  uint64_t InsIdx = cast<ConstantSDNode>(N2)->getZExtValue(); + +  // Push subvector bitcasts to the output, adjusting the index as we go. +  // insert_subvector(bitcast(v), bitcast(s), c1) +  // -> bitcast(insert_subvector(v, s, c2)) +  if ((N0.isUndef() || N0.getOpcode() == ISD::BITCAST) && +      N1.getOpcode() == ISD::BITCAST) { +    SDValue N0Src = peekThroughBitcasts(N0); +    SDValue N1Src = peekThroughBitcasts(N1); +    EVT N0SrcSVT = N0Src.getValueType().getScalarType(); +    EVT N1SrcSVT = N1Src.getValueType().getScalarType(); +    if ((N0.isUndef() || N0SrcSVT == N1SrcSVT) && +        N0Src.getValueType().isVector() && N1Src.getValueType().isVector()) { +      EVT NewVT; +      SDLoc DL(N); +      SDValue NewIdx; +      MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); +      LLVMContext &Ctx = *DAG.getContext(); +      unsigned NumElts = VT.getVectorNumElements(); +      unsigned EltSizeInBits = VT.getScalarSizeInBits(); +      if ((EltSizeInBits % N1SrcSVT.getSizeInBits()) == 0) { +        unsigned Scale = EltSizeInBits / N1SrcSVT.getSizeInBits(); +        NewVT = EVT::getVectorVT(Ctx, N1SrcSVT, NumElts * Scale); +        NewIdx = DAG.getConstant(InsIdx * Scale, DL, IdxVT); +      } else if ((N1SrcSVT.getSizeInBits() % EltSizeInBits) == 0) { +        unsigned Scale = N1SrcSVT.getSizeInBits() / EltSizeInBits; +        if ((NumElts % Scale) == 0 && (InsIdx % Scale) == 0) { +          NewVT = EVT::getVectorVT(Ctx, N1SrcSVT, NumElts / Scale); +          NewIdx = DAG.getConstant(InsIdx / Scale, DL, IdxVT); +        } +      } +      if (NewIdx && hasOperation(ISD::INSERT_SUBVECTOR, NewVT)) { +        SDValue Res = DAG.getBitcast(NewVT, N0Src); +        Res = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, NewVT, Res, N1Src, NewIdx); +        return DAG.getBitcast(VT, Res); +      } +    } +  } + +  // Canonicalize insert_subvector dag nodes. +  // Example: +  // (insert_subvector (insert_subvector A, Idx0), Idx1) +  // -> (insert_subvector (insert_subvector A, Idx1), Idx0) +  if (N0.getOpcode() == ISD::INSERT_SUBVECTOR && N0.hasOneUse() && +      N1.getValueType() == N0.getOperand(1).getValueType() && +      isa<ConstantSDNode>(N0.getOperand(2))) { +    unsigned OtherIdx = N0.getConstantOperandVal(2); +    if (InsIdx < OtherIdx) { +      // Swap nodes. +      SDValue NewOp = DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N), VT, +                                  N0.getOperand(0), N1, N2); +      AddToWorklist(NewOp.getNode()); +      return DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N0.getNode()), +                         VT, NewOp, N0.getOperand(1), N0.getOperand(2)); +    } +  } + +  // If the input vector is a concatenation, and the insert replaces +  // one of the pieces, we can optimize into a single concat_vectors. +  if (N0.getOpcode() == ISD::CONCAT_VECTORS && N0.hasOneUse() && +      N0.getOperand(0).getValueType() == N1.getValueType()) { +    unsigned Factor = N1.getValueType().getVectorNumElements(); + +    SmallVector<SDValue, 8> Ops(N0->op_begin(), N0->op_end()); +    Ops[cast<ConstantSDNode>(N2)->getZExtValue() / Factor] = N1; + +    return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Ops); +  } + +  // Simplify source operands based on insertion. +  if (SimplifyDemandedVectorElts(SDValue(N, 0))) +    return SDValue(N, 0); + +  return SDValue(); +} + +SDValue DAGCombiner::visitFP_TO_FP16(SDNode *N) { +  SDValue N0 = N->getOperand(0); + +  // fold (fp_to_fp16 (fp16_to_fp op)) -> op +  if (N0->getOpcode() == ISD::FP16_TO_FP) +    return N0->getOperand(0); + +  return SDValue(); +} + +SDValue DAGCombiner::visitFP16_TO_FP(SDNode *N) { +  SDValue N0 = N->getOperand(0); + +  // fold fp16_to_fp(op & 0xffff) -> fp16_to_fp(op) +  if (N0->getOpcode() == ISD::AND) { +    ConstantSDNode *AndConst = getAsNonOpaqueConstant(N0.getOperand(1)); +    if (AndConst && AndConst->getAPIntValue() == 0xffff) { +      return DAG.getNode(ISD::FP16_TO_FP, SDLoc(N), N->getValueType(0), +                         N0.getOperand(0)); +    } +  } + +  return SDValue(); +} + +SDValue DAGCombiner::visitVECREDUCE(SDNode *N) { +  SDValue N0 = N->getOperand(0); +  EVT VT = N0.getValueType(); +  unsigned Opcode = N->getOpcode(); + +  // VECREDUCE over 1-element vector is just an extract. +  if (VT.getVectorNumElements() == 1) { +    SDLoc dl(N); +    SDValue Res = DAG.getNode( +        ISD::EXTRACT_VECTOR_ELT, dl, VT.getVectorElementType(), N0, +        DAG.getConstant(0, dl, TLI.getVectorIdxTy(DAG.getDataLayout()))); +    if (Res.getValueType() != N->getValueType(0)) +      Res = DAG.getNode(ISD::ANY_EXTEND, dl, N->getValueType(0), Res); +    return Res; +  } + +  // On an boolean vector an and/or reduction is the same as a umin/umax +  // reduction. Convert them if the latter is legal while the former isn't. +  if (Opcode == ISD::VECREDUCE_AND || Opcode == ISD::VECREDUCE_OR) { +    unsigned NewOpcode = Opcode == ISD::VECREDUCE_AND +        ? ISD::VECREDUCE_UMIN : ISD::VECREDUCE_UMAX; +    if (!TLI.isOperationLegalOrCustom(Opcode, VT) && +        TLI.isOperationLegalOrCustom(NewOpcode, VT) && +        DAG.ComputeNumSignBits(N0) == VT.getScalarSizeInBits()) +      return DAG.getNode(NewOpcode, SDLoc(N), N->getValueType(0), N0); +  } + +  return SDValue(); +} + +/// Returns a vector_shuffle if it able to transform an AND to a vector_shuffle +/// with the destination vector and a zero vector. +/// e.g. AND V, <0xffffffff, 0, 0xffffffff, 0>. ==> +///      vector_shuffle V, Zero, <0, 4, 2, 4> +SDValue DAGCombiner::XformToShuffleWithZero(SDNode *N) { +  assert(N->getOpcode() == ISD::AND && "Unexpected opcode!"); + +  EVT VT = N->getValueType(0); +  SDValue LHS = N->getOperand(0); +  SDValue RHS = peekThroughBitcasts(N->getOperand(1)); +  SDLoc DL(N); + +  // Make sure we're not running after operation legalization where it +  // may have custom lowered the vector shuffles. +  if (LegalOperations) +    return SDValue(); + +  if (RHS.getOpcode() != ISD::BUILD_VECTOR) +    return SDValue(); + +  EVT RVT = RHS.getValueType(); +  unsigned NumElts = RHS.getNumOperands(); + +  // Attempt to create a valid clear mask, splitting the mask into +  // sub elements and checking to see if each is +  // all zeros or all ones - suitable for shuffle masking. +  auto BuildClearMask = [&](int Split) { +    int NumSubElts = NumElts * Split; +    int NumSubBits = RVT.getScalarSizeInBits() / Split; + +    SmallVector<int, 8> Indices; +    for (int i = 0; i != NumSubElts; ++i) { +      int EltIdx = i / Split; +      int SubIdx = i % Split; +      SDValue Elt = RHS.getOperand(EltIdx); +      if (Elt.isUndef()) { +        Indices.push_back(-1); +        continue; +      } + +      APInt Bits; +      if (isa<ConstantSDNode>(Elt)) +        Bits = cast<ConstantSDNode>(Elt)->getAPIntValue(); +      else if (isa<ConstantFPSDNode>(Elt)) +        Bits = cast<ConstantFPSDNode>(Elt)->getValueAPF().bitcastToAPInt(); +      else +        return SDValue(); + +      // Extract the sub element from the constant bit mask. +      if (DAG.getDataLayout().isBigEndian()) { +        Bits.lshrInPlace((Split - SubIdx - 1) * NumSubBits); +      } else { +        Bits.lshrInPlace(SubIdx * NumSubBits); +      } + +      if (Split > 1) +        Bits = Bits.trunc(NumSubBits); + +      if (Bits.isAllOnesValue()) +        Indices.push_back(i); +      else if (Bits == 0) +        Indices.push_back(i + NumSubElts); +      else +        return SDValue(); +    } + +    // Let's see if the target supports this vector_shuffle. +    EVT ClearSVT = EVT::getIntegerVT(*DAG.getContext(), NumSubBits); +    EVT ClearVT = EVT::getVectorVT(*DAG.getContext(), ClearSVT, NumSubElts); +    if (!TLI.isVectorClearMaskLegal(Indices, ClearVT)) +      return SDValue(); + +    SDValue Zero = DAG.getConstant(0, DL, ClearVT); +    return DAG.getBitcast(VT, DAG.getVectorShuffle(ClearVT, DL, +                                                   DAG.getBitcast(ClearVT, LHS), +                                                   Zero, Indices)); +  }; + +  // Determine maximum split level (byte level masking). +  int MaxSplit = 1; +  if (RVT.getScalarSizeInBits() % 8 == 0) +    MaxSplit = RVT.getScalarSizeInBits() / 8; + +  for (int Split = 1; Split <= MaxSplit; ++Split) +    if (RVT.getScalarSizeInBits() % Split == 0) +      if (SDValue S = BuildClearMask(Split)) +        return S; + +  return SDValue(); +} + +/// If a vector binop is performed on splat values, it may be profitable to +/// extract, scalarize, and insert/splat. +static SDValue scalarizeBinOpOfSplats(SDNode *N, SelectionDAG &DAG) { +  SDValue N0 = N->getOperand(0); +  SDValue N1 = N->getOperand(1); +  unsigned Opcode = N->getOpcode(); +  EVT VT = N->getValueType(0); +  EVT EltVT = VT.getVectorElementType(); +  const TargetLowering &TLI = DAG.getTargetLoweringInfo(); + +  // TODO: Remove/replace the extract cost check? If the elements are available +  //       as scalars, then there may be no extract cost. Should we ask if +  //       inserting a scalar back into a vector is cheap instead? +  int Index0, Index1; +  SDValue Src0 = DAG.getSplatSourceVector(N0, Index0); +  SDValue Src1 = DAG.getSplatSourceVector(N1, Index1); +  if (!Src0 || !Src1 || Index0 != Index1 || +      Src0.getValueType().getVectorElementType() != EltVT || +      Src1.getValueType().getVectorElementType() != EltVT || +      !TLI.isExtractVecEltCheap(VT, Index0) || +      !TLI.isOperationLegalOrCustom(Opcode, EltVT)) +    return SDValue(); + +  SDLoc DL(N); +  SDValue IndexC = +      DAG.getConstant(Index0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())); +  SDValue X = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, N0, IndexC); +  SDValue Y = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, N1, IndexC); +  SDValue ScalarBO = DAG.getNode(Opcode, DL, EltVT, X, Y, N->getFlags()); + +  // If all lanes but 1 are undefined, no need to splat the scalar result. +  // TODO: Keep track of undefs and use that info in the general case. +  if (N0.getOpcode() == ISD::BUILD_VECTOR && N0.getOpcode() == N1.getOpcode() && +      count_if(N0->ops(), [](SDValue V) { return !V.isUndef(); }) == 1 && +      count_if(N1->ops(), [](SDValue V) { return !V.isUndef(); }) == 1) { +    // bo (build_vec ..undef, X, undef...), (build_vec ..undef, Y, undef...) --> +    // build_vec ..undef, (bo X, Y), undef... +    SmallVector<SDValue, 8> Ops(VT.getVectorNumElements(), DAG.getUNDEF(EltVT)); +    Ops[Index0] = ScalarBO; +    return DAG.getBuildVector(VT, DL, Ops); +  } + +  // bo (splat X, Index), (splat Y, Index) --> splat (bo X, Y), Index +  SmallVector<SDValue, 8> Ops(VT.getVectorNumElements(), ScalarBO); +  return DAG.getBuildVector(VT, DL, Ops); +} + +/// Visit a binary vector operation, like ADD. +SDValue DAGCombiner::SimplifyVBinOp(SDNode *N) { +  assert(N->getValueType(0).isVector() && +         "SimplifyVBinOp only works on vectors!"); + +  SDValue LHS = N->getOperand(0); +  SDValue RHS = N->getOperand(1); +  SDValue Ops[] = {LHS, RHS}; +  EVT VT = N->getValueType(0); +  unsigned Opcode = N->getOpcode(); + +  // See if we can constant fold the vector operation. +  if (SDValue Fold = DAG.FoldConstantVectorArithmetic( +          Opcode, SDLoc(LHS), LHS.getValueType(), Ops, N->getFlags())) +    return Fold; + +  // Move unary shuffles with identical masks after a vector binop: +  // VBinOp (shuffle A, Undef, Mask), (shuffle B, Undef, Mask)) +  //   --> shuffle (VBinOp A, B), Undef, Mask +  // This does not require type legality checks because we are creating the +  // same types of operations that are in the original sequence. We do have to +  // restrict ops like integer div that have immediate UB (eg, div-by-zero) +  // though. This code is adapted from the identical transform in instcombine. +  if (Opcode != ISD::UDIV && Opcode != ISD::SDIV && +      Opcode != ISD::UREM && Opcode != ISD::SREM && +      Opcode != ISD::UDIVREM && Opcode != ISD::SDIVREM) { +    auto *Shuf0 = dyn_cast<ShuffleVectorSDNode>(LHS); +    auto *Shuf1 = dyn_cast<ShuffleVectorSDNode>(RHS); +    if (Shuf0 && Shuf1 && Shuf0->getMask().equals(Shuf1->getMask()) && +        LHS.getOperand(1).isUndef() && RHS.getOperand(1).isUndef() && +        (LHS.hasOneUse() || RHS.hasOneUse() || LHS == RHS)) { +      SDLoc DL(N); +      SDValue NewBinOp = DAG.getNode(Opcode, DL, VT, LHS.getOperand(0), +                                     RHS.getOperand(0), N->getFlags()); +      SDValue UndefV = LHS.getOperand(1); +      return DAG.getVectorShuffle(VT, DL, NewBinOp, UndefV, Shuf0->getMask()); +    } +  } + +  // The following pattern is likely to emerge with vector reduction ops. Moving +  // the binary operation ahead of insertion may allow using a narrower vector +  // instruction that has better performance than the wide version of the op: +  // VBinOp (ins undef, X, Z), (ins undef, Y, Z) --> ins VecC, (VBinOp X, Y), Z +  if (LHS.getOpcode() == ISD::INSERT_SUBVECTOR && LHS.getOperand(0).isUndef() && +      RHS.getOpcode() == ISD::INSERT_SUBVECTOR && RHS.getOperand(0).isUndef() && +      LHS.getOperand(2) == RHS.getOperand(2) && +      (LHS.hasOneUse() || RHS.hasOneUse())) { +    SDValue X = LHS.getOperand(1); +    SDValue Y = RHS.getOperand(1); +    SDValue Z = LHS.getOperand(2); +    EVT NarrowVT = X.getValueType(); +    if (NarrowVT == Y.getValueType() && +        TLI.isOperationLegalOrCustomOrPromote(Opcode, NarrowVT)) { +      // (binop undef, undef) may not return undef, so compute that result. +      SDLoc DL(N); +      SDValue VecC = +          DAG.getNode(Opcode, DL, VT, DAG.getUNDEF(VT), DAG.getUNDEF(VT)); +      SDValue NarrowBO = DAG.getNode(Opcode, DL, NarrowVT, X, Y); +      return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, VecC, NarrowBO, Z); +    } +  } + +  // Make sure all but the first op are undef or constant. +  auto ConcatWithConstantOrUndef = [](SDValue Concat) { +    return Concat.getOpcode() == ISD::CONCAT_VECTORS && +           std::all_of(std::next(Concat->op_begin()), Concat->op_end(), +                     [](const SDValue &Op) { +                       return Op.isUndef() || +                              ISD::isBuildVectorOfConstantSDNodes(Op.getNode()); +                     }); +  }; + +  // The following pattern is likely to emerge with vector reduction ops. Moving +  // the binary operation ahead of the concat may allow using a narrower vector +  // instruction that has better performance than the wide version of the op: +  // VBinOp (concat X, undef/constant), (concat Y, undef/constant) --> +  //   concat (VBinOp X, Y), VecC +  if (ConcatWithConstantOrUndef(LHS) && ConcatWithConstantOrUndef(RHS) && +      (LHS.hasOneUse() || RHS.hasOneUse())) { +    EVT NarrowVT = LHS.getOperand(0).getValueType(); +    if (NarrowVT == RHS.getOperand(0).getValueType() && +        TLI.isOperationLegalOrCustomOrPromote(Opcode, NarrowVT)) { +      SDLoc DL(N); +      unsigned NumOperands = LHS.getNumOperands(); +      SmallVector<SDValue, 4> ConcatOps; +      for (unsigned i = 0; i != NumOperands; ++i) { +        // This constant fold for operands 1 and up. +        ConcatOps.push_back(DAG.getNode(Opcode, DL, NarrowVT, LHS.getOperand(i), +                                        RHS.getOperand(i))); +      } + +      return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps); +    } +  } + +  if (SDValue V = scalarizeBinOpOfSplats(N, DAG)) +    return V; + +  return SDValue(); +} + +SDValue DAGCombiner::SimplifySelect(const SDLoc &DL, SDValue N0, SDValue N1, +                                    SDValue N2) { +  assert(N0.getOpcode() ==ISD::SETCC && "First argument must be a SetCC node!"); + +  SDValue SCC = SimplifySelectCC(DL, N0.getOperand(0), N0.getOperand(1), N1, N2, +                                 cast<CondCodeSDNode>(N0.getOperand(2))->get()); + +  // If we got a simplified select_cc node back from SimplifySelectCC, then +  // break it down into a new SETCC node, and a new SELECT node, and then return +  // the SELECT node, since we were called with a SELECT node. +  if (SCC.getNode()) { +    // Check to see if we got a select_cc back (to turn into setcc/select). +    // Otherwise, just return whatever node we got back, like fabs. +    if (SCC.getOpcode() == ISD::SELECT_CC) { +      const SDNodeFlags Flags = N0.getNode()->getFlags(); +      SDValue SETCC = DAG.getNode(ISD::SETCC, SDLoc(N0), +                                  N0.getValueType(), +                                  SCC.getOperand(0), SCC.getOperand(1), +                                  SCC.getOperand(4), Flags); +      AddToWorklist(SETCC.getNode()); +      SDValue SelectNode = DAG.getSelect(SDLoc(SCC), SCC.getValueType(), SETCC, +                                         SCC.getOperand(2), SCC.getOperand(3)); +      SelectNode->setFlags(Flags); +      return SelectNode; +    } + +    return SCC; +  } +  return SDValue(); +} + +/// Given a SELECT or a SELECT_CC node, where LHS and RHS are the two values +/// being selected between, see if we can simplify the select.  Callers of this +/// should assume that TheSelect is deleted if this returns true.  As such, they +/// should return the appropriate thing (e.g. the node) back to the top-level of +/// the DAG combiner loop to avoid it being looked at. +bool DAGCombiner::SimplifySelectOps(SDNode *TheSelect, SDValue LHS, +                                    SDValue RHS) { +  // fold (select (setcc x, [+-]0.0, *lt), NaN, (fsqrt x)) +  // The select + setcc is redundant, because fsqrt returns NaN for X < 0. +  if (const ConstantFPSDNode *NaN = isConstOrConstSplatFP(LHS)) { +    if (NaN->isNaN() && RHS.getOpcode() == ISD::FSQRT) { +      // We have: (select (setcc ?, ?, ?), NaN, (fsqrt ?)) +      SDValue Sqrt = RHS; +      ISD::CondCode CC; +      SDValue CmpLHS; +      const ConstantFPSDNode *Zero = nullptr; + +      if (TheSelect->getOpcode() == ISD::SELECT_CC) { +        CC = cast<CondCodeSDNode>(TheSelect->getOperand(4))->get(); +        CmpLHS = TheSelect->getOperand(0); +        Zero = isConstOrConstSplatFP(TheSelect->getOperand(1)); +      } else { +        // SELECT or VSELECT +        SDValue Cmp = TheSelect->getOperand(0); +        if (Cmp.getOpcode() == ISD::SETCC) { +          CC = cast<CondCodeSDNode>(Cmp.getOperand(2))->get(); +          CmpLHS = Cmp.getOperand(0); +          Zero = isConstOrConstSplatFP(Cmp.getOperand(1)); +        } +      } +      if (Zero && Zero->isZero() && +          Sqrt.getOperand(0) == CmpLHS && (CC == ISD::SETOLT || +          CC == ISD::SETULT || CC == ISD::SETLT)) { +        // We have: (select (setcc x, [+-]0.0, *lt), NaN, (fsqrt x)) +        CombineTo(TheSelect, Sqrt); +        return true; +      } +    } +  } +  // Cannot simplify select with vector condition +  if (TheSelect->getOperand(0).getValueType().isVector()) return false; + +  // If this is a select from two identical things, try to pull the operation +  // through the select. +  if (LHS.getOpcode() != RHS.getOpcode() || +      !LHS.hasOneUse() || !RHS.hasOneUse()) +    return false; + +  // If this is a load and the token chain is identical, replace the select +  // of two loads with a load through a select of the address to load from. +  // This triggers in things like "select bool X, 10.0, 123.0" after the FP +  // constants have been dropped into the constant pool. +  if (LHS.getOpcode() == ISD::LOAD) { +    LoadSDNode *LLD = cast<LoadSDNode>(LHS); +    LoadSDNode *RLD = cast<LoadSDNode>(RHS); + +    // Token chains must be identical. +    if (LHS.getOperand(0) != RHS.getOperand(0) || +        // Do not let this transformation reduce the number of volatile loads. +        // Be conservative for atomics for the moment +        // TODO: This does appear to be legal for unordered atomics (see D66309) +        !LLD->isSimple() || !RLD->isSimple() || +        // FIXME: If either is a pre/post inc/dec load, +        // we'd need to split out the address adjustment. +        LLD->isIndexed() || RLD->isIndexed() || +        // If this is an EXTLOAD, the VT's must match. +        LLD->getMemoryVT() != RLD->getMemoryVT() || +        // If this is an EXTLOAD, the kind of extension must match. +        (LLD->getExtensionType() != RLD->getExtensionType() && +         // The only exception is if one of the extensions is anyext. +         LLD->getExtensionType() != ISD::EXTLOAD && +         RLD->getExtensionType() != ISD::EXTLOAD) || +        // FIXME: this discards src value information.  This is +        // over-conservative. It would be beneficial to be able to remember +        // both potential memory locations.  Since we are discarding +        // src value info, don't do the transformation if the memory +        // locations are not in the default address space. +        LLD->getPointerInfo().getAddrSpace() != 0 || +        RLD->getPointerInfo().getAddrSpace() != 0 || +        // We can't produce a CMOV of a TargetFrameIndex since we won't +        // generate the address generation required. +        LLD->getBasePtr().getOpcode() == ISD::TargetFrameIndex || +        RLD->getBasePtr().getOpcode() == ISD::TargetFrameIndex || +        !TLI.isOperationLegalOrCustom(TheSelect->getOpcode(), +                                      LLD->getBasePtr().getValueType())) +      return false; + +    // The loads must not depend on one another. +    if (LLD->isPredecessorOf(RLD) || RLD->isPredecessorOf(LLD)) +      return false; + +    // Check that the select condition doesn't reach either load.  If so, +    // folding this will induce a cycle into the DAG.  If not, this is safe to +    // xform, so create a select of the addresses. + +    SmallPtrSet<const SDNode *, 32> Visited; +    SmallVector<const SDNode *, 16> Worklist; + +    // Always fail if LLD and RLD are not independent. TheSelect is a +    // predecessor to all Nodes in question so we need not search past it. + +    Visited.insert(TheSelect); +    Worklist.push_back(LLD); +    Worklist.push_back(RLD); + +    if (SDNode::hasPredecessorHelper(LLD, Visited, Worklist) || +        SDNode::hasPredecessorHelper(RLD, Visited, Worklist)) +      return false; + +    SDValue Addr; +    if (TheSelect->getOpcode() == ISD::SELECT) { +      // We cannot do this optimization if any pair of {RLD, LLD} is a +      // predecessor to {RLD, LLD, CondNode}. As we've already compared the +      // Loads, we only need to check if CondNode is a successor to one of the +      // loads. We can further avoid this if there's no use of their chain +      // value. +      SDNode *CondNode = TheSelect->getOperand(0).getNode(); +      Worklist.push_back(CondNode); + +      if ((LLD->hasAnyUseOfValue(1) && +           SDNode::hasPredecessorHelper(LLD, Visited, Worklist)) || +          (RLD->hasAnyUseOfValue(1) && +           SDNode::hasPredecessorHelper(RLD, Visited, Worklist))) +        return false; + +      Addr = DAG.getSelect(SDLoc(TheSelect), +                           LLD->getBasePtr().getValueType(), +                           TheSelect->getOperand(0), LLD->getBasePtr(), +                           RLD->getBasePtr()); +    } else {  // Otherwise SELECT_CC +      // We cannot do this optimization if any pair of {RLD, LLD} is a +      // predecessor to {RLD, LLD, CondLHS, CondRHS}. As we've already compared +      // the Loads, we only need to check if CondLHS/CondRHS is a successor to +      // one of the loads. We can further avoid this if there's no use of their +      // chain value. + +      SDNode *CondLHS = TheSelect->getOperand(0).getNode(); +      SDNode *CondRHS = TheSelect->getOperand(1).getNode(); +      Worklist.push_back(CondLHS); +      Worklist.push_back(CondRHS); + +      if ((LLD->hasAnyUseOfValue(1) && +           SDNode::hasPredecessorHelper(LLD, Visited, Worklist)) || +          (RLD->hasAnyUseOfValue(1) && +           SDNode::hasPredecessorHelper(RLD, Visited, Worklist))) +        return false; + +      Addr = DAG.getNode(ISD::SELECT_CC, SDLoc(TheSelect), +                         LLD->getBasePtr().getValueType(), +                         TheSelect->getOperand(0), +                         TheSelect->getOperand(1), +                         LLD->getBasePtr(), RLD->getBasePtr(), +                         TheSelect->getOperand(4)); +    } + +    SDValue Load; +    // It is safe to replace the two loads if they have different alignments, +    // but the new load must be the minimum (most restrictive) alignment of the +    // inputs. +    unsigned Alignment = std::min(LLD->getAlignment(), RLD->getAlignment()); +    MachineMemOperand::Flags MMOFlags = LLD->getMemOperand()->getFlags(); +    if (!RLD->isInvariant()) +      MMOFlags &= ~MachineMemOperand::MOInvariant; +    if (!RLD->isDereferenceable()) +      MMOFlags &= ~MachineMemOperand::MODereferenceable; +    if (LLD->getExtensionType() == ISD::NON_EXTLOAD) { +      // FIXME: Discards pointer and AA info. +      Load = DAG.getLoad(TheSelect->getValueType(0), SDLoc(TheSelect), +                         LLD->getChain(), Addr, MachinePointerInfo(), Alignment, +                         MMOFlags); +    } else { +      // FIXME: Discards pointer and AA info. +      Load = DAG.getExtLoad( +          LLD->getExtensionType() == ISD::EXTLOAD ? RLD->getExtensionType() +                                                  : LLD->getExtensionType(), +          SDLoc(TheSelect), TheSelect->getValueType(0), LLD->getChain(), Addr, +          MachinePointerInfo(), LLD->getMemoryVT(), Alignment, MMOFlags); +    } + +    // Users of the select now use the result of the load. +    CombineTo(TheSelect, Load); + +    // Users of the old loads now use the new load's chain.  We know the +    // old-load value is dead now. +    CombineTo(LHS.getNode(), Load.getValue(0), Load.getValue(1)); +    CombineTo(RHS.getNode(), Load.getValue(0), Load.getValue(1)); +    return true; +  } + +  return false; +} + +/// Try to fold an expression of the form (N0 cond N1) ? N2 : N3 to a shift and +/// bitwise 'and'. +SDValue DAGCombiner::foldSelectCCToShiftAnd(const SDLoc &DL, SDValue N0, +                                            SDValue N1, SDValue N2, SDValue N3, +                                            ISD::CondCode CC) { +  // If this is a select where the false operand is zero and the compare is a +  // check of the sign bit, see if we can perform the "gzip trick": +  // select_cc setlt X, 0, A, 0 -> and (sra X, size(X)-1), A +  // select_cc setgt X, 0, A, 0 -> and (not (sra X, size(X)-1)), A +  EVT XType = N0.getValueType(); +  EVT AType = N2.getValueType(); +  if (!isNullConstant(N3) || !XType.bitsGE(AType)) +    return SDValue(); + +  // If the comparison is testing for a positive value, we have to invert +  // the sign bit mask, so only do that transform if the target has a bitwise +  // 'and not' instruction (the invert is free). +  if (CC == ISD::SETGT && TLI.hasAndNot(N2)) { +    // (X > -1) ? A : 0 +    // (X >  0) ? X : 0 <-- This is canonical signed max. +    if (!(isAllOnesConstant(N1) || (isNullConstant(N1) && N0 == N2))) +      return SDValue(); +  } else if (CC == ISD::SETLT) { +    // (X <  0) ? A : 0 +    // (X <  1) ? X : 0 <-- This is un-canonicalized signed min. +    if (!(isNullConstant(N1) || (isOneConstant(N1) && N0 == N2))) +      return SDValue(); +  } else { +    return SDValue(); +  } + +  // and (sra X, size(X)-1), A -> "and (srl X, C2), A" iff A is a single-bit +  // constant. +  EVT ShiftAmtTy = getShiftAmountTy(N0.getValueType()); +  auto *N2C = dyn_cast<ConstantSDNode>(N2.getNode()); +  if (N2C && ((N2C->getAPIntValue() & (N2C->getAPIntValue() - 1)) == 0)) { +    unsigned ShCt = XType.getSizeInBits() - N2C->getAPIntValue().logBase2() - 1; +    SDValue ShiftAmt = DAG.getConstant(ShCt, DL, ShiftAmtTy); +    SDValue Shift = DAG.getNode(ISD::SRL, DL, XType, N0, ShiftAmt); +    AddToWorklist(Shift.getNode()); + +    if (XType.bitsGT(AType)) { +      Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift); +      AddToWorklist(Shift.getNode()); +    } + +    if (CC == ISD::SETGT) +      Shift = DAG.getNOT(DL, Shift, AType); + +    return DAG.getNode(ISD::AND, DL, AType, Shift, N2); +  } + +  SDValue ShiftAmt = DAG.getConstant(XType.getSizeInBits() - 1, DL, ShiftAmtTy); +  SDValue Shift = DAG.getNode(ISD::SRA, DL, XType, N0, ShiftAmt); +  AddToWorklist(Shift.getNode()); + +  if (XType.bitsGT(AType)) { +    Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift); +    AddToWorklist(Shift.getNode()); +  } + +  if (CC == ISD::SETGT) +    Shift = DAG.getNOT(DL, Shift, AType); + +  return DAG.getNode(ISD::AND, DL, AType, Shift, N2); +} + +/// Turn "(a cond b) ? 1.0f : 2.0f" into "load (tmp + ((a cond b) ? 0 : 4)" +/// where "tmp" is a constant pool entry containing an array with 1.0 and 2.0 +/// in it. This may be a win when the constant is not otherwise available +/// because it replaces two constant pool loads with one. +SDValue DAGCombiner::convertSelectOfFPConstantsToLoadOffset( +    const SDLoc &DL, SDValue N0, SDValue N1, SDValue N2, SDValue N3, +    ISD::CondCode CC) { +  if (!TLI.reduceSelectOfFPConstantLoads(N0.getValueType())) +    return SDValue(); + +  // If we are before legalize types, we want the other legalization to happen +  // first (for example, to avoid messing with soft float). +  auto *TV = dyn_cast<ConstantFPSDNode>(N2); +  auto *FV = dyn_cast<ConstantFPSDNode>(N3); +  EVT VT = N2.getValueType(); +  if (!TV || !FV || !TLI.isTypeLegal(VT)) +    return SDValue(); + +  // If a constant can be materialized without loads, this does not make sense. +  if (TLI.getOperationAction(ISD::ConstantFP, VT) == TargetLowering::Legal || +      TLI.isFPImmLegal(TV->getValueAPF(), TV->getValueType(0), ForCodeSize) || +      TLI.isFPImmLegal(FV->getValueAPF(), FV->getValueType(0), ForCodeSize)) +    return SDValue(); + +  // If both constants have multiple uses, then we won't need to do an extra +  // load. The values are likely around in registers for other users. +  if (!TV->hasOneUse() && !FV->hasOneUse()) +    return SDValue(); + +  Constant *Elts[] = { const_cast<ConstantFP*>(FV->getConstantFPValue()), +                       const_cast<ConstantFP*>(TV->getConstantFPValue()) }; +  Type *FPTy = Elts[0]->getType(); +  const DataLayout &TD = DAG.getDataLayout(); + +  // Create a ConstantArray of the two constants. +  Constant *CA = ConstantArray::get(ArrayType::get(FPTy, 2), Elts); +  SDValue CPIdx = DAG.getConstantPool(CA, TLI.getPointerTy(DAG.getDataLayout()), +                                      TD.getPrefTypeAlignment(FPTy)); +  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); + +  // Get offsets to the 0 and 1 elements of the array, so we can select between +  // them. +  SDValue Zero = DAG.getIntPtrConstant(0, DL); +  unsigned EltSize = (unsigned)TD.getTypeAllocSize(Elts[0]->getType()); +  SDValue One = DAG.getIntPtrConstant(EltSize, SDLoc(FV)); +  SDValue Cond = +      DAG.getSetCC(DL, getSetCCResultType(N0.getValueType()), N0, N1, CC); +  AddToWorklist(Cond.getNode()); +  SDValue CstOffset = DAG.getSelect(DL, Zero.getValueType(), Cond, One, Zero); +  AddToWorklist(CstOffset.getNode()); +  CPIdx = DAG.getNode(ISD::ADD, DL, CPIdx.getValueType(), CPIdx, CstOffset); +  AddToWorklist(CPIdx.getNode()); +  return DAG.getLoad(TV->getValueType(0), DL, DAG.getEntryNode(), CPIdx, +                     MachinePointerInfo::getConstantPool( +                         DAG.getMachineFunction()), Alignment); +} + +/// Simplify an expression of the form (N0 cond N1) ? N2 : N3 +/// where 'cond' is the comparison specified by CC. +SDValue DAGCombiner::SimplifySelectCC(const SDLoc &DL, SDValue N0, SDValue N1, +                                      SDValue N2, SDValue N3, ISD::CondCode CC, +                                      bool NotExtCompare) { +  // (x ? y : y) -> y. +  if (N2 == N3) return N2; + +  EVT CmpOpVT = N0.getValueType(); +  EVT CmpResVT = getSetCCResultType(CmpOpVT); +  EVT VT = N2.getValueType(); +  auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode()); +  auto *N2C = dyn_cast<ConstantSDNode>(N2.getNode()); +  auto *N3C = dyn_cast<ConstantSDNode>(N3.getNode()); + +  // Determine if the condition we're dealing with is constant. +  if (SDValue SCC = DAG.FoldSetCC(CmpResVT, N0, N1, CC, DL)) { +    AddToWorklist(SCC.getNode()); +    if (auto *SCCC = dyn_cast<ConstantSDNode>(SCC)) { +      // fold select_cc true, x, y -> x +      // fold select_cc false, x, y -> y +      return !(SCCC->isNullValue()) ? N2 : N3; +    } +  } + +  if (SDValue V = +          convertSelectOfFPConstantsToLoadOffset(DL, N0, N1, N2, N3, CC)) +    return V; + +  if (SDValue V = foldSelectCCToShiftAnd(DL, N0, N1, N2, N3, CC)) +    return V; + +  // fold (select_cc seteq (and x, y), 0, 0, A) -> (and (shr (shl x)) A) +  // where y is has a single bit set. +  // A plaintext description would be, we can turn the SELECT_CC into an AND +  // when the condition can be materialized as an all-ones register.  Any +  // single bit-test can be materialized as an all-ones register with +  // shift-left and shift-right-arith. +  // TODO: The operation legality checks could be loosened to include "custom", +  //       but that may cause regressions for targets that do not have shift +  //       instructions. +  if (CC == ISD::SETEQ && N0->getOpcode() == ISD::AND && +      N0->getValueType(0) == VT && isNullConstant(N1) && isNullConstant(N2) && +      TLI.isOperationLegal(ISD::SHL, VT) && +      TLI.isOperationLegal(ISD::SRA, VT)) { +    SDValue AndLHS = N0->getOperand(0); +    auto *ConstAndRHS = dyn_cast<ConstantSDNode>(N0->getOperand(1)); +    if (ConstAndRHS && ConstAndRHS->getAPIntValue().countPopulation() == 1) { +      // Shift the tested bit over the sign bit. +      const APInt &AndMask = ConstAndRHS->getAPIntValue(); +      SDValue ShlAmt = +        DAG.getConstant(AndMask.countLeadingZeros(), SDLoc(AndLHS), +                        getShiftAmountTy(AndLHS.getValueType())); +      SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(N0), VT, AndLHS, ShlAmt); + +      // Now arithmetic right shift it all the way over, so the result is either +      // all-ones, or zero. +      SDValue ShrAmt = +        DAG.getConstant(AndMask.getBitWidth() - 1, SDLoc(Shl), +                        getShiftAmountTy(Shl.getValueType())); +      SDValue Shr = DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl, ShrAmt); + +      return DAG.getNode(ISD::AND, DL, VT, Shr, N3); +    } +  } + +  // fold select C, 16, 0 -> shl C, 4 +  bool Fold = N2C && isNullConstant(N3) && N2C->getAPIntValue().isPowerOf2(); +  bool Swap = N3C && isNullConstant(N2) && N3C->getAPIntValue().isPowerOf2(); + +  if ((Fold || Swap) && +      TLI.getBooleanContents(CmpOpVT) == +          TargetLowering::ZeroOrOneBooleanContent && +      (!LegalOperations || TLI.isOperationLegal(ISD::SETCC, CmpOpVT))) { + +    if (Swap) { +      CC = ISD::getSetCCInverse(CC, CmpOpVT.isInteger()); +      std::swap(N2C, N3C); +    } + +    // If the caller doesn't want us to simplify this into a zext of a compare, +    // don't do it. +    if (NotExtCompare && N2C->isOne()) +      return SDValue(); + +    SDValue Temp, SCC; +    // zext (setcc n0, n1) +    if (LegalTypes) { +      SCC = DAG.getSetCC(DL, CmpResVT, N0, N1, CC); +      if (VT.bitsLT(SCC.getValueType())) +        Temp = DAG.getZeroExtendInReg(SCC, SDLoc(N2), VT); +      else +        Temp = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N2), VT, SCC); +    } else { +      SCC = DAG.getSetCC(SDLoc(N0), MVT::i1, N0, N1, CC); +      Temp = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N2), VT, SCC); +    } + +    AddToWorklist(SCC.getNode()); +    AddToWorklist(Temp.getNode()); + +    if (N2C->isOne()) +      return Temp; + +    // shl setcc result by log2 n2c +    return DAG.getNode(ISD::SHL, DL, N2.getValueType(), Temp, +                       DAG.getConstant(N2C->getAPIntValue().logBase2(), +                                       SDLoc(Temp), +                                       getShiftAmountTy(Temp.getValueType()))); +  } + +  // select_cc seteq X, 0, sizeof(X), ctlz(X) -> ctlz(X) +  // select_cc seteq X, 0, sizeof(X), ctlz_zero_undef(X) -> ctlz(X) +  // select_cc seteq X, 0, sizeof(X), cttz(X) -> cttz(X) +  // select_cc seteq X, 0, sizeof(X), cttz_zero_undef(X) -> cttz(X) +  // select_cc setne X, 0, ctlz(X), sizeof(X) -> ctlz(X) +  // select_cc setne X, 0, ctlz_zero_undef(X), sizeof(X) -> ctlz(X) +  // select_cc setne X, 0, cttz(X), sizeof(X) -> cttz(X) +  // select_cc setne X, 0, cttz_zero_undef(X), sizeof(X) -> cttz(X) +  if (N1C && N1C->isNullValue() && (CC == ISD::SETEQ || CC == ISD::SETNE)) { +    SDValue ValueOnZero = N2; +    SDValue Count = N3; +    // If the condition is NE instead of E, swap the operands. +    if (CC == ISD::SETNE) +      std::swap(ValueOnZero, Count); +    // Check if the value on zero is a constant equal to the bits in the type. +    if (auto *ValueOnZeroC = dyn_cast<ConstantSDNode>(ValueOnZero)) { +      if (ValueOnZeroC->getAPIntValue() == VT.getSizeInBits()) { +        // If the other operand is cttz/cttz_zero_undef of N0, and cttz is +        // legal, combine to just cttz. +        if ((Count.getOpcode() == ISD::CTTZ || +             Count.getOpcode() == ISD::CTTZ_ZERO_UNDEF) && +            N0 == Count.getOperand(0) && +            (!LegalOperations || TLI.isOperationLegal(ISD::CTTZ, VT))) +          return DAG.getNode(ISD::CTTZ, DL, VT, N0); +        // If the other operand is ctlz/ctlz_zero_undef of N0, and ctlz is +        // legal, combine to just ctlz. +        if ((Count.getOpcode() == ISD::CTLZ || +             Count.getOpcode() == ISD::CTLZ_ZERO_UNDEF) && +            N0 == Count.getOperand(0) && +            (!LegalOperations || TLI.isOperationLegal(ISD::CTLZ, VT))) +          return DAG.getNode(ISD::CTLZ, DL, VT, N0); +      } +    } +  } + +  return SDValue(); +} + +/// This is a stub for TargetLowering::SimplifySetCC. +SDValue DAGCombiner::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, +                                   ISD::CondCode Cond, const SDLoc &DL, +                                   bool foldBooleans) { +  TargetLowering::DAGCombinerInfo +    DagCombineInfo(DAG, Level, false, this); +  return TLI.SimplifySetCC(VT, N0, N1, Cond, foldBooleans, DagCombineInfo, DL); +} + +/// Given an ISD::SDIV node expressing a divide by constant, return +/// a DAG expression to select that will generate the same value by multiplying +/// by a magic number. +/// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". +SDValue DAGCombiner::BuildSDIV(SDNode *N) { +  // when optimising for minimum size, we don't want to expand a div to a mul +  // and a shift. +  if (DAG.getMachineFunction().getFunction().hasMinSize()) +    return SDValue(); + +  SmallVector<SDNode *, 8> Built; +  if (SDValue S = TLI.BuildSDIV(N, DAG, LegalOperations, Built)) { +    for (SDNode *N : Built) +      AddToWorklist(N); +    return S; +  } + +  return SDValue(); +} + +/// Given an ISD::SDIV node expressing a divide by constant power of 2, return a +/// DAG expression that will generate the same value by right shifting. +SDValue DAGCombiner::BuildSDIVPow2(SDNode *N) { +  ConstantSDNode *C = isConstOrConstSplat(N->getOperand(1)); +  if (!C) +    return SDValue(); + +  // Avoid division by zero. +  if (C->isNullValue()) +    return SDValue(); + +  SmallVector<SDNode *, 8> Built; +  if (SDValue S = TLI.BuildSDIVPow2(N, C->getAPIntValue(), DAG, Built)) { +    for (SDNode *N : Built) +      AddToWorklist(N); +    return S; +  } + +  return SDValue(); +} + +/// Given an ISD::UDIV node expressing a divide by constant, return a DAG +/// expression that will generate the same value by multiplying by a magic +/// number. +/// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". +SDValue DAGCombiner::BuildUDIV(SDNode *N) { +  // when optimising for minimum size, we don't want to expand a div to a mul +  // and a shift. +  if (DAG.getMachineFunction().getFunction().hasMinSize()) +    return SDValue(); + +  SmallVector<SDNode *, 8> Built; +  if (SDValue S = TLI.BuildUDIV(N, DAG, LegalOperations, Built)) { +    for (SDNode *N : Built) +      AddToWorklist(N); +    return S; +  } + +  return SDValue(); +} + +/// Determines the LogBase2 value for a non-null input value using the +/// transform: LogBase2(V) = (EltBits - 1) - ctlz(V). +SDValue DAGCombiner::BuildLogBase2(SDValue V, const SDLoc &DL) { +  EVT VT = V.getValueType(); +  unsigned EltBits = VT.getScalarSizeInBits(); +  SDValue Ctlz = DAG.getNode(ISD::CTLZ, DL, VT, V); +  SDValue Base = DAG.getConstant(EltBits - 1, DL, VT); +  SDValue LogBase2 = DAG.getNode(ISD::SUB, DL, VT, Base, Ctlz); +  return LogBase2; +} + +/// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i) +/// For the reciprocal, we need to find the zero of the function: +///   F(X) = A X - 1 [which has a zero at X = 1/A] +///     => +///   X_{i+1} = X_i (2 - A X_i) = X_i + X_i (1 - A X_i) [this second form +///     does not require additional intermediate precision] +/// For the last iteration, put numerator N into it to gain more precision: +///   Result = N X_i + X_i (N - N A X_i) +SDValue DAGCombiner::BuildDivEstimate(SDValue N, SDValue Op, +                                      SDNodeFlags Flags) { +  if (Level >= AfterLegalizeDAG) +    return SDValue(); + +  // TODO: Handle half and/or extended types? +  EVT VT = Op.getValueType(); +  if (VT.getScalarType() != MVT::f32 && VT.getScalarType() != MVT::f64) +    return SDValue(); + +  // If estimates are explicitly disabled for this function, we're done. +  MachineFunction &MF = DAG.getMachineFunction(); +  int Enabled = TLI.getRecipEstimateDivEnabled(VT, MF); +  if (Enabled == TLI.ReciprocalEstimate::Disabled) +    return SDValue(); + +  // Estimates may be explicitly enabled for this type with a custom number of +  // refinement steps. +  int Iterations = TLI.getDivRefinementSteps(VT, MF); +  if (SDValue Est = TLI.getRecipEstimate(Op, DAG, Enabled, Iterations)) { +    AddToWorklist(Est.getNode()); + +    SDLoc DL(Op); +    if (Iterations) { +      SDValue FPOne = DAG.getConstantFP(1.0, DL, VT); + +      // Newton iterations: Est = Est + Est (N - Arg * Est) +      // If this is the last iteration, also multiply by the numerator. +      for (int i = 0; i < Iterations; ++i) { +        SDValue MulEst = Est; + +        if (i == Iterations - 1) { +          MulEst = DAG.getNode(ISD::FMUL, DL, VT, N, Est, Flags); +          AddToWorklist(MulEst.getNode()); +        } + +        SDValue NewEst = DAG.getNode(ISD::FMUL, DL, VT, Op, MulEst, Flags); +        AddToWorklist(NewEst.getNode()); + +        NewEst = DAG.getNode(ISD::FSUB, DL, VT, +                             (i == Iterations - 1 ? N : FPOne), NewEst, Flags); +        AddToWorklist(NewEst.getNode()); + +        NewEst = DAG.getNode(ISD::FMUL, DL, VT, Est, NewEst, Flags); +        AddToWorklist(NewEst.getNode()); + +        Est = DAG.getNode(ISD::FADD, DL, VT, MulEst, NewEst, Flags); +        AddToWorklist(Est.getNode()); +      } +    } else { +      // If no iterations are available, multiply with N. +      Est = DAG.getNode(ISD::FMUL, DL, VT, Est, N, Flags); +      AddToWorklist(Est.getNode()); +    } + +    return Est; +  } + +  return SDValue(); +} + +/// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i) +/// For the reciprocal sqrt, we need to find the zero of the function: +///   F(X) = 1/X^2 - A [which has a zero at X = 1/sqrt(A)] +///     => +///   X_{i+1} = X_i (1.5 - A X_i^2 / 2) +/// As a result, we precompute A/2 prior to the iteration loop. +SDValue DAGCombiner::buildSqrtNROneConst(SDValue Arg, SDValue Est, +                                         unsigned Iterations, +                                         SDNodeFlags Flags, bool Reciprocal) { +  EVT VT = Arg.getValueType(); +  SDLoc DL(Arg); +  SDValue ThreeHalves = DAG.getConstantFP(1.5, DL, VT); + +  // We now need 0.5 * Arg which we can write as (1.5 * Arg - Arg) so that +  // this entire sequence requires only one FP constant. +  SDValue HalfArg = DAG.getNode(ISD::FMUL, DL, VT, ThreeHalves, Arg, Flags); +  HalfArg = DAG.getNode(ISD::FSUB, DL, VT, HalfArg, Arg, Flags); + +  // Newton iterations: Est = Est * (1.5 - HalfArg * Est * Est) +  for (unsigned i = 0; i < Iterations; ++i) { +    SDValue NewEst = DAG.getNode(ISD::FMUL, DL, VT, Est, Est, Flags); +    NewEst = DAG.getNode(ISD::FMUL, DL, VT, HalfArg, NewEst, Flags); +    NewEst = DAG.getNode(ISD::FSUB, DL, VT, ThreeHalves, NewEst, Flags); +    Est = DAG.getNode(ISD::FMUL, DL, VT, Est, NewEst, Flags); +  } + +  // If non-reciprocal square root is requested, multiply the result by Arg. +  if (!Reciprocal) +    Est = DAG.getNode(ISD::FMUL, DL, VT, Est, Arg, Flags); + +  return Est; +} + +/// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i) +/// For the reciprocal sqrt, we need to find the zero of the function: +///   F(X) = 1/X^2 - A [which has a zero at X = 1/sqrt(A)] +///     => +///   X_{i+1} = (-0.5 * X_i) * (A * X_i * X_i + (-3.0)) +SDValue DAGCombiner::buildSqrtNRTwoConst(SDValue Arg, SDValue Est, +                                         unsigned Iterations, +                                         SDNodeFlags Flags, bool Reciprocal) { +  EVT VT = Arg.getValueType(); +  SDLoc DL(Arg); +  SDValue MinusThree = DAG.getConstantFP(-3.0, DL, VT); +  SDValue MinusHalf = DAG.getConstantFP(-0.5, DL, VT); + +  // This routine must enter the loop below to work correctly +  // when (Reciprocal == false). +  assert(Iterations > 0); + +  // Newton iterations for reciprocal square root: +  // E = (E * -0.5) * ((A * E) * E + -3.0) +  for (unsigned i = 0; i < Iterations; ++i) { +    SDValue AE = DAG.getNode(ISD::FMUL, DL, VT, Arg, Est, Flags); +    SDValue AEE = DAG.getNode(ISD::FMUL, DL, VT, AE, Est, Flags); +    SDValue RHS = DAG.getNode(ISD::FADD, DL, VT, AEE, MinusThree, Flags); + +    // When calculating a square root at the last iteration build: +    // S = ((A * E) * -0.5) * ((A * E) * E + -3.0) +    // (notice a common subexpression) +    SDValue LHS; +    if (Reciprocal || (i + 1) < Iterations) { +      // RSQRT: LHS = (E * -0.5) +      LHS = DAG.getNode(ISD::FMUL, DL, VT, Est, MinusHalf, Flags); +    } else { +      // SQRT: LHS = (A * E) * -0.5 +      LHS = DAG.getNode(ISD::FMUL, DL, VT, AE, MinusHalf, Flags); +    } + +    Est = DAG.getNode(ISD::FMUL, DL, VT, LHS, RHS, Flags); +  } + +  return Est; +} + +/// Build code to calculate either rsqrt(Op) or sqrt(Op). In the latter case +/// Op*rsqrt(Op) is actually computed, so additional postprocessing is needed if +/// Op can be zero. +SDValue DAGCombiner::buildSqrtEstimateImpl(SDValue Op, SDNodeFlags Flags, +                                           bool Reciprocal) { +  if (Level >= AfterLegalizeDAG) +    return SDValue(); + +  // TODO: Handle half and/or extended types? +  EVT VT = Op.getValueType(); +  if (VT.getScalarType() != MVT::f32 && VT.getScalarType() != MVT::f64) +    return SDValue(); + +  // If estimates are explicitly disabled for this function, we're done. +  MachineFunction &MF = DAG.getMachineFunction(); +  int Enabled = TLI.getRecipEstimateSqrtEnabled(VT, MF); +  if (Enabled == TLI.ReciprocalEstimate::Disabled) +    return SDValue(); + +  // Estimates may be explicitly enabled for this type with a custom number of +  // refinement steps. +  int Iterations = TLI.getSqrtRefinementSteps(VT, MF); + +  bool UseOneConstNR = false; +  if (SDValue Est = +      TLI.getSqrtEstimate(Op, DAG, Enabled, Iterations, UseOneConstNR, +                          Reciprocal)) { +    AddToWorklist(Est.getNode()); + +    if (Iterations) { +      Est = UseOneConstNR +            ? buildSqrtNROneConst(Op, Est, Iterations, Flags, Reciprocal) +            : buildSqrtNRTwoConst(Op, Est, Iterations, Flags, Reciprocal); + +      if (!Reciprocal) { +        // The estimate is now completely wrong if the input was exactly 0.0 or +        // possibly a denormal. Force the answer to 0.0 for those cases. +        SDLoc DL(Op); +        EVT CCVT = getSetCCResultType(VT); +        ISD::NodeType SelOpcode = VT.isVector() ? ISD::VSELECT : ISD::SELECT; +        const Function &F = DAG.getMachineFunction().getFunction(); +        Attribute Denorms = F.getFnAttribute("denormal-fp-math"); +        if (Denorms.getValueAsString().equals("ieee")) { +          // fabs(X) < SmallestNormal ? 0.0 : Est +          const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT); +          APFloat SmallestNorm = APFloat::getSmallestNormalized(FltSem); +          SDValue NormC = DAG.getConstantFP(SmallestNorm, DL, VT); +          SDValue FPZero = DAG.getConstantFP(0.0, DL, VT); +          SDValue Fabs = DAG.getNode(ISD::FABS, DL, VT, Op); +          SDValue IsDenorm = DAG.getSetCC(DL, CCVT, Fabs, NormC, ISD::SETLT); +          Est = DAG.getNode(SelOpcode, DL, VT, IsDenorm, FPZero, Est); +        } else { +          // X == 0.0 ? 0.0 : Est +          SDValue FPZero = DAG.getConstantFP(0.0, DL, VT); +          SDValue IsZero = DAG.getSetCC(DL, CCVT, Op, FPZero, ISD::SETEQ); +          Est = DAG.getNode(SelOpcode, DL, VT, IsZero, FPZero, Est); +        } +      } +    } +    return Est; +  } + +  return SDValue(); +} + +SDValue DAGCombiner::buildRsqrtEstimate(SDValue Op, SDNodeFlags Flags) { +  return buildSqrtEstimateImpl(Op, Flags, true); +} + +SDValue DAGCombiner::buildSqrtEstimate(SDValue Op, SDNodeFlags Flags) { +  return buildSqrtEstimateImpl(Op, Flags, false); +} + +/// Return true if there is any possibility that the two addresses overlap. +bool DAGCombiner::isAlias(SDNode *Op0, SDNode *Op1) const { + +  struct MemUseCharacteristics { +    bool IsVolatile; +    bool IsAtomic; +    SDValue BasePtr; +    int64_t Offset; +    Optional<int64_t> NumBytes; +    MachineMemOperand *MMO; +  }; + +  auto getCharacteristics = [](SDNode *N) -> MemUseCharacteristics { +    if (const auto *LSN = dyn_cast<LSBaseSDNode>(N)) { +      int64_t Offset = 0; +      if (auto *C = dyn_cast<ConstantSDNode>(LSN->getOffset())) +        Offset = (LSN->getAddressingMode() == ISD::PRE_INC) +                     ? C->getSExtValue() +                     : (LSN->getAddressingMode() == ISD::PRE_DEC) +                           ? -1 * C->getSExtValue() +                           : 0; +      return {LSN->isVolatile(), LSN->isAtomic(), LSN->getBasePtr(), +              Offset /*base offset*/, +              Optional<int64_t>(LSN->getMemoryVT().getStoreSize()), +              LSN->getMemOperand()}; +    } +    if (const auto *LN = cast<LifetimeSDNode>(N)) +      return {false /*isVolatile*/, /*isAtomic*/ false, LN->getOperand(1), +              (LN->hasOffset()) ? LN->getOffset() : 0, +              (LN->hasOffset()) ? Optional<int64_t>(LN->getSize()) +                                : Optional<int64_t>(), +              (MachineMemOperand *)nullptr}; +    // Default. +    return {false /*isvolatile*/, /*isAtomic*/ false, SDValue(), +            (int64_t)0 /*offset*/, +            Optional<int64_t>() /*size*/, (MachineMemOperand *)nullptr}; +  }; + +  MemUseCharacteristics MUC0 = getCharacteristics(Op0), +                        MUC1 = getCharacteristics(Op1); + +  // If they are to the same address, then they must be aliases. +  if (MUC0.BasePtr.getNode() && MUC0.BasePtr == MUC1.BasePtr && +      MUC0.Offset == MUC1.Offset) +    return true; + +  // If they are both volatile then they cannot be reordered. +  if (MUC0.IsVolatile && MUC1.IsVolatile) +    return true; + +  // Be conservative about atomics for the moment +  // TODO: This is way overconservative for unordered atomics (see D66309) +  if (MUC0.IsAtomic && MUC1.IsAtomic) +    return true; + +  if (MUC0.MMO && MUC1.MMO) { +    if ((MUC0.MMO->isInvariant() && MUC1.MMO->isStore()) || +        (MUC1.MMO->isInvariant() && MUC0.MMO->isStore())) +      return false; +  } + +  // Try to prove that there is aliasing, or that there is no aliasing. Either +  // way, we can return now. If nothing can be proved, proceed with more tests. +  bool IsAlias; +  if (BaseIndexOffset::computeAliasing(Op0, MUC0.NumBytes, Op1, MUC1.NumBytes, +                                       DAG, IsAlias)) +    return IsAlias; + +  // The following all rely on MMO0 and MMO1 being valid. Fail conservatively if +  // either are not known. +  if (!MUC0.MMO || !MUC1.MMO) +    return true; + +  // If one operation reads from invariant memory, and the other may store, they +  // cannot alias. These should really be checking the equivalent of mayWrite, +  // but it only matters for memory nodes other than load /store. +  if ((MUC0.MMO->isInvariant() && MUC1.MMO->isStore()) || +      (MUC1.MMO->isInvariant() && MUC0.MMO->isStore())) +    return false; + +  // If we know required SrcValue1 and SrcValue2 have relatively large +  // alignment compared to the size and offset of the access, we may be able +  // to prove they do not alias. This check is conservative for now to catch +  // cases created by splitting vector types. +  int64_t SrcValOffset0 = MUC0.MMO->getOffset(); +  int64_t SrcValOffset1 = MUC1.MMO->getOffset(); +  unsigned OrigAlignment0 = MUC0.MMO->getBaseAlignment(); +  unsigned OrigAlignment1 = MUC1.MMO->getBaseAlignment(); +  if (OrigAlignment0 == OrigAlignment1 && SrcValOffset0 != SrcValOffset1 && +      MUC0.NumBytes.hasValue() && MUC1.NumBytes.hasValue() && +      *MUC0.NumBytes == *MUC1.NumBytes && OrigAlignment0 > *MUC0.NumBytes) { +    int64_t OffAlign0 = SrcValOffset0 % OrigAlignment0; +    int64_t OffAlign1 = SrcValOffset1 % OrigAlignment1; + +    // There is no overlap between these relatively aligned accesses of +    // similar size. Return no alias. +    if ((OffAlign0 + *MUC0.NumBytes) <= OffAlign1 || +        (OffAlign1 + *MUC1.NumBytes) <= OffAlign0) +      return false; +  } + +  bool UseAA = CombinerGlobalAA.getNumOccurrences() > 0 +                   ? CombinerGlobalAA +                   : DAG.getSubtarget().useAA(); +#ifndef NDEBUG +  if (CombinerAAOnlyFunc.getNumOccurrences() && +      CombinerAAOnlyFunc != DAG.getMachineFunction().getName()) +    UseAA = false; +#endif + +  if (UseAA && AA && MUC0.MMO->getValue() && MUC1.MMO->getValue()) { +    // Use alias analysis information. +    int64_t MinOffset = std::min(SrcValOffset0, SrcValOffset1); +    int64_t Overlap0 = *MUC0.NumBytes + SrcValOffset0 - MinOffset; +    int64_t Overlap1 = *MUC1.NumBytes + SrcValOffset1 - MinOffset; +    AliasResult AAResult = AA->alias( +        MemoryLocation(MUC0.MMO->getValue(), Overlap0, +                       UseTBAA ? MUC0.MMO->getAAInfo() : AAMDNodes()), +        MemoryLocation(MUC1.MMO->getValue(), Overlap1, +                       UseTBAA ? MUC1.MMO->getAAInfo() : AAMDNodes())); +    if (AAResult == NoAlias) +      return false; +  } + +  // Otherwise we have to assume they alias. +  return true; +} + +/// Walk up chain skipping non-aliasing memory nodes, +/// looking for aliasing nodes and adding them to the Aliases vector. +void DAGCombiner::GatherAllAliases(SDNode *N, SDValue OriginalChain, +                                   SmallVectorImpl<SDValue> &Aliases) { +  SmallVector<SDValue, 8> Chains;     // List of chains to visit. +  SmallPtrSet<SDNode *, 16> Visited;  // Visited node set. + +  // Get alias information for node. +  // TODO: relax aliasing for unordered atomics (see D66309) +  const bool IsLoad = isa<LoadSDNode>(N) && cast<LoadSDNode>(N)->isSimple(); + +  // Starting off. +  Chains.push_back(OriginalChain); +  unsigned Depth = 0; + +  // Attempt to improve chain by a single step +  std::function<bool(SDValue &)> ImproveChain = [&](SDValue &C) -> bool { +    switch (C.getOpcode()) { +    case ISD::EntryToken: +      // No need to mark EntryToken. +      C = SDValue(); +      return true; +    case ISD::LOAD: +    case ISD::STORE: { +      // Get alias information for C. +      // TODO: Relax aliasing for unordered atomics (see D66309) +      bool IsOpLoad = isa<LoadSDNode>(C.getNode()) && +                      cast<LSBaseSDNode>(C.getNode())->isSimple(); +      if ((IsLoad && IsOpLoad) || !isAlias(N, C.getNode())) { +        // Look further up the chain. +        C = C.getOperand(0); +        return true; +      } +      // Alias, so stop here. +      return false; +    } + +    case ISD::CopyFromReg: +      // Always forward past past CopyFromReg. +      C = C.getOperand(0); +      return true; + +    case ISD::LIFETIME_START: +    case ISD::LIFETIME_END: { +      // We can forward past any lifetime start/end that can be proven not to +      // alias the memory access. +      if (!isAlias(N, C.getNode())) { +        // Look further up the chain. +        C = C.getOperand(0); +        return true; +      } +      return false; +    } +    default: +      return false; +    } +  }; + +  // Look at each chain and determine if it is an alias.  If so, add it to the +  // aliases list.  If not, then continue up the chain looking for the next +  // candidate. +  while (!Chains.empty()) { +    SDValue Chain = Chains.pop_back_val(); + +    // Don't bother if we've seen Chain before. +    if (!Visited.insert(Chain.getNode()).second) +      continue; + +    // For TokenFactor nodes, look at each operand and only continue up the +    // chain until we reach the depth limit. +    // +    // FIXME: The depth check could be made to return the last non-aliasing +    // chain we found before we hit a tokenfactor rather than the original +    // chain. +    if (Depth > TLI.getGatherAllAliasesMaxDepth()) { +      Aliases.clear(); +      Aliases.push_back(OriginalChain); +      return; +    } + +    if (Chain.getOpcode() == ISD::TokenFactor) { +      // We have to check each of the operands of the token factor for "small" +      // token factors, so we queue them up.  Adding the operands to the queue +      // (stack) in reverse order maintains the original order and increases the +      // likelihood that getNode will find a matching token factor (CSE.) +      if (Chain.getNumOperands() > 16) { +        Aliases.push_back(Chain); +        continue; +      } +      for (unsigned n = Chain.getNumOperands(); n;) +        Chains.push_back(Chain.getOperand(--n)); +      ++Depth; +      continue; +    } +    // Everything else +    if (ImproveChain(Chain)) { +      // Updated Chain Found, Consider new chain if one exists. +      if (Chain.getNode()) +        Chains.push_back(Chain); +      ++Depth; +      continue; +    } +    // No Improved Chain Possible, treat as Alias. +    Aliases.push_back(Chain); +  } +} + +/// Walk up chain skipping non-aliasing memory nodes, looking for a better chain +/// (aliasing node.) +SDValue DAGCombiner::FindBetterChain(SDNode *N, SDValue OldChain) { +  if (OptLevel == CodeGenOpt::None) +    return OldChain; + +  // Ops for replacing token factor. +  SmallVector<SDValue, 8> Aliases; + +  // Accumulate all the aliases to this node. +  GatherAllAliases(N, OldChain, Aliases); + +  // If no operands then chain to entry token. +  if (Aliases.size() == 0) +    return DAG.getEntryNode(); + +  // If a single operand then chain to it.  We don't need to revisit it. +  if (Aliases.size() == 1) +    return Aliases[0]; + +  // Construct a custom tailored token factor. +  return DAG.getTokenFactor(SDLoc(N), Aliases); +} + +namespace { +// TODO: Replace with with std::monostate when we move to C++17. +struct UnitT { } Unit; +bool operator==(const UnitT &, const UnitT &) { return true; } +bool operator!=(const UnitT &, const UnitT &) { return false; } +} // namespace + +// This function tries to collect a bunch of potentially interesting +// nodes to improve the chains of, all at once. This might seem +// redundant, as this function gets called when visiting every store +// node, so why not let the work be done on each store as it's visited? +// +// I believe this is mainly important because MergeConsecutiveStores +// is unable to deal with merging stores of different sizes, so unless +// we improve the chains of all the potential candidates up-front +// before running MergeConsecutiveStores, it might only see some of +// the nodes that will eventually be candidates, and then not be able +// to go from a partially-merged state to the desired final +// fully-merged state. + +bool DAGCombiner::parallelizeChainedStores(StoreSDNode *St) { +  SmallVector<StoreSDNode *, 8> ChainedStores; +  StoreSDNode *STChain = St; +  // Intervals records which offsets from BaseIndex have been covered. In +  // the common case, every store writes to the immediately previous address +  // space and thus merged with the previous interval at insertion time. + +  using IMap = +      llvm::IntervalMap<int64_t, UnitT, 8, IntervalMapHalfOpenInfo<int64_t>>; +  IMap::Allocator A; +  IMap Intervals(A); + +  // This holds the base pointer, index, and the offset in bytes from the base +  // pointer. +  const BaseIndexOffset BasePtr = BaseIndexOffset::match(St, DAG); + +  // We must have a base and an offset. +  if (!BasePtr.getBase().getNode()) +    return false; + +  // Do not handle stores to undef base pointers. +  if (BasePtr.getBase().isUndef()) +    return false; + +  // Add ST's interval. +  Intervals.insert(0, (St->getMemoryVT().getSizeInBits() + 7) / 8, Unit); + +  while (StoreSDNode *Chain = dyn_cast<StoreSDNode>(STChain->getChain())) { +    // If the chain has more than one use, then we can't reorder the mem ops. +    if (!SDValue(Chain, 0)->hasOneUse()) +      break; +    // TODO: Relax for unordered atomics (see D66309) +    if (!Chain->isSimple() || Chain->isIndexed()) +      break; + +    // Find the base pointer and offset for this memory node. +    const BaseIndexOffset Ptr = BaseIndexOffset::match(Chain, DAG); +    // Check that the base pointer is the same as the original one. +    int64_t Offset; +    if (!BasePtr.equalBaseIndex(Ptr, DAG, Offset)) +      break; +    int64_t Length = (Chain->getMemoryVT().getSizeInBits() + 7) / 8; +    // Make sure we don't overlap with other intervals by checking the ones to +    // the left or right before inserting. +    auto I = Intervals.find(Offset); +    // If there's a next interval, we should end before it. +    if (I != Intervals.end() && I.start() < (Offset + Length)) +      break; +    // If there's a previous interval, we should start after it. +    if (I != Intervals.begin() && (--I).stop() <= Offset) +      break; +    Intervals.insert(Offset, Offset + Length, Unit); + +    ChainedStores.push_back(Chain); +    STChain = Chain; +  } + +  // If we didn't find a chained store, exit. +  if (ChainedStores.size() == 0) +    return false; + +  // Improve all chained stores (St and ChainedStores members) starting from +  // where the store chain ended and return single TokenFactor. +  SDValue NewChain = STChain->getChain(); +  SmallVector<SDValue, 8> TFOps; +  for (unsigned I = ChainedStores.size(); I;) { +    StoreSDNode *S = ChainedStores[--I]; +    SDValue BetterChain = FindBetterChain(S, NewChain); +    S = cast<StoreSDNode>(DAG.UpdateNodeOperands( +        S, BetterChain, S->getOperand(1), S->getOperand(2), S->getOperand(3))); +    TFOps.push_back(SDValue(S, 0)); +    ChainedStores[I] = S; +  } + +  // Improve St's chain. Use a new node to avoid creating a loop from CombineTo. +  SDValue BetterChain = FindBetterChain(St, NewChain); +  SDValue NewST; +  if (St->isTruncatingStore()) +    NewST = DAG.getTruncStore(BetterChain, SDLoc(St), St->getValue(), +                              St->getBasePtr(), St->getMemoryVT(), +                              St->getMemOperand()); +  else +    NewST = DAG.getStore(BetterChain, SDLoc(St), St->getValue(), +                         St->getBasePtr(), St->getMemOperand()); + +  TFOps.push_back(NewST); + +  // If we improved every element of TFOps, then we've lost the dependence on +  // NewChain to successors of St and we need to add it back to TFOps. Do so at +  // the beginning to keep relative order consistent with FindBetterChains. +  auto hasImprovedChain = [&](SDValue ST) -> bool { +    return ST->getOperand(0) != NewChain; +  }; +  bool AddNewChain = llvm::all_of(TFOps, hasImprovedChain); +  if (AddNewChain) +    TFOps.insert(TFOps.begin(), NewChain); + +  SDValue TF = DAG.getTokenFactor(SDLoc(STChain), TFOps); +  CombineTo(St, TF); + +  // Add TF and its operands to the worklist. +  AddToWorklist(TF.getNode()); +  for (const SDValue &Op : TF->ops()) +    AddToWorklist(Op.getNode()); +  AddToWorklist(STChain); +  return true; +} + +bool DAGCombiner::findBetterNeighborChains(StoreSDNode *St) { +  if (OptLevel == CodeGenOpt::None) +    return false; + +  const BaseIndexOffset BasePtr = BaseIndexOffset::match(St, DAG); + +  // We must have a base and an offset. +  if (!BasePtr.getBase().getNode()) +    return false; + +  // Do not handle stores to undef base pointers. +  if (BasePtr.getBase().isUndef()) +    return false; + +  // Directly improve a chain of disjoint stores starting at St. +  if (parallelizeChainedStores(St)) +    return true; + +  // Improve St's Chain.. +  SDValue BetterChain = FindBetterChain(St, St->getChain()); +  if (St->getChain() != BetterChain) { +    replaceStoreChain(St, BetterChain); +    return true; +  } +  return false; +} + +/// This is the entry point for the file. +void SelectionDAG::Combine(CombineLevel Level, AliasAnalysis *AA, +                           CodeGenOpt::Level OptLevel) { +  /// This is the main entry point to this class. +  DAGCombiner(*this, AA, OptLevel).Run(Level); +}  | 
