diff options
Diffstat (limited to 'llvm/lib/CodeGen/TargetSchedule.cpp')
| -rw-r--r-- | llvm/lib/CodeGen/TargetSchedule.cpp | 359 | 
1 files changed, 359 insertions, 0 deletions
| diff --git a/llvm/lib/CodeGen/TargetSchedule.cpp b/llvm/lib/CodeGen/TargetSchedule.cpp new file mode 100644 index 0000000000000..ce59452fd1b8f --- /dev/null +++ b/llvm/lib/CodeGen/TargetSchedule.cpp @@ -0,0 +1,359 @@ +//===- llvm/Target/TargetSchedule.cpp - Sched Machine Model ---------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This file implements a wrapper around MCSchedModel that allows the interface +// to benefit from information currently only available in TargetInstrInfo. +// +//===----------------------------------------------------------------------===// + +#include "llvm/CodeGen/TargetSchedule.h" +#include "llvm/CodeGen/MachineFunction.h" +#include "llvm/CodeGen/MachineInstr.h" +#include "llvm/CodeGen/MachineOperand.h" +#include "llvm/CodeGen/TargetInstrInfo.h" +#include "llvm/CodeGen/TargetRegisterInfo.h" +#include "llvm/CodeGen/TargetSubtargetInfo.h" +#include "llvm/MC/MCInstrDesc.h" +#include "llvm/MC/MCInstrItineraries.h" +#include "llvm/MC/MCSchedule.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/raw_ostream.h" +#include <algorithm> +#include <cassert> +#include <cstdint> + +using namespace llvm; + +static cl::opt<bool> EnableSchedModel("schedmodel", cl::Hidden, cl::init(true), +  cl::desc("Use TargetSchedModel for latency lookup")); + +static cl::opt<bool> EnableSchedItins("scheditins", cl::Hidden, cl::init(true), +  cl::desc("Use InstrItineraryData for latency lookup")); + +bool TargetSchedModel::hasInstrSchedModel() const { +  return EnableSchedModel && SchedModel.hasInstrSchedModel(); +} + +bool TargetSchedModel::hasInstrItineraries() const { +  return EnableSchedItins && !InstrItins.isEmpty(); +} + +static unsigned gcd(unsigned Dividend, unsigned Divisor) { +  // Dividend and Divisor will be naturally swapped as needed. +  while (Divisor) { +    unsigned Rem = Dividend % Divisor; +    Dividend = Divisor; +    Divisor = Rem; +  }; +  return Dividend; +} + +static unsigned lcm(unsigned A, unsigned B) { +  unsigned LCM = (uint64_t(A) * B) / gcd(A, B); +  assert((LCM >= A && LCM >= B) && "LCM overflow"); +  return LCM; +} + +void TargetSchedModel::init(const TargetSubtargetInfo *TSInfo) { +  STI = TSInfo; +  SchedModel = TSInfo->getSchedModel(); +  TII = TSInfo->getInstrInfo(); +  STI->initInstrItins(InstrItins); + +  unsigned NumRes = SchedModel.getNumProcResourceKinds(); +  ResourceFactors.resize(NumRes); +  ResourceLCM = SchedModel.IssueWidth; +  for (unsigned Idx = 0; Idx < NumRes; ++Idx) { +    unsigned NumUnits = SchedModel.getProcResource(Idx)->NumUnits; +    if (NumUnits > 0) +      ResourceLCM = lcm(ResourceLCM, NumUnits); +  } +  MicroOpFactor = ResourceLCM / SchedModel.IssueWidth; +  for (unsigned Idx = 0; Idx < NumRes; ++Idx) { +    unsigned NumUnits = SchedModel.getProcResource(Idx)->NumUnits; +    ResourceFactors[Idx] = NumUnits ? (ResourceLCM / NumUnits) : 0; +  } +} + +/// Returns true only if instruction is specified as single issue. +bool TargetSchedModel::mustBeginGroup(const MachineInstr *MI, +                                     const MCSchedClassDesc *SC) const { +  if (hasInstrSchedModel()) { +    if (!SC) +      SC = resolveSchedClass(MI); +    if (SC->isValid()) +      return SC->BeginGroup; +  } +  return false; +} + +bool TargetSchedModel::mustEndGroup(const MachineInstr *MI, +                                     const MCSchedClassDesc *SC) const { +  if (hasInstrSchedModel()) { +    if (!SC) +      SC = resolveSchedClass(MI); +    if (SC->isValid()) +      return SC->EndGroup; +  } +  return false; +} + +unsigned TargetSchedModel::getNumMicroOps(const MachineInstr *MI, +                                          const MCSchedClassDesc *SC) const { +  if (hasInstrItineraries()) { +    int UOps = InstrItins.getNumMicroOps(MI->getDesc().getSchedClass()); +    return (UOps >= 0) ? UOps : TII->getNumMicroOps(&InstrItins, *MI); +  } +  if (hasInstrSchedModel()) { +    if (!SC) +      SC = resolveSchedClass(MI); +    if (SC->isValid()) +      return SC->NumMicroOps; +  } +  return MI->isTransient() ? 0 : 1; +} + +// The machine model may explicitly specify an invalid latency, which +// effectively means infinite latency. Since users of the TargetSchedule API +// don't know how to handle this, we convert it to a very large latency that is +// easy to distinguish when debugging the DAG but won't induce overflow. +static unsigned capLatency(int Cycles) { +  return Cycles >= 0 ? Cycles : 1000; +} + +/// Return the MCSchedClassDesc for this instruction. Some SchedClasses require +/// evaluation of predicates that depend on instruction operands or flags. +const MCSchedClassDesc *TargetSchedModel:: +resolveSchedClass(const MachineInstr *MI) const { +  // Get the definition's scheduling class descriptor from this machine model. +  unsigned SchedClass = MI->getDesc().getSchedClass(); +  const MCSchedClassDesc *SCDesc = SchedModel.getSchedClassDesc(SchedClass); +  if (!SCDesc->isValid()) +    return SCDesc; + +#ifndef NDEBUG +  unsigned NIter = 0; +#endif +  while (SCDesc->isVariant()) { +    assert(++NIter < 6 && "Variants are nested deeper than the magic number"); + +    SchedClass = STI->resolveSchedClass(SchedClass, MI, this); +    SCDesc = SchedModel.getSchedClassDesc(SchedClass); +  } +  return SCDesc; +} + +/// Find the def index of this operand. This index maps to the machine model and +/// is independent of use operands. Def operands may be reordered with uses or +/// merged with uses without affecting the def index (e.g. before/after +/// regalloc). However, an instruction's def operands must never be reordered +/// with respect to each other. +static unsigned findDefIdx(const MachineInstr *MI, unsigned DefOperIdx) { +  unsigned DefIdx = 0; +  for (unsigned i = 0; i != DefOperIdx; ++i) { +    const MachineOperand &MO = MI->getOperand(i); +    if (MO.isReg() && MO.isDef()) +      ++DefIdx; +  } +  return DefIdx; +} + +/// Find the use index of this operand. This is independent of the instruction's +/// def operands. +/// +/// Note that uses are not determined by the operand's isUse property, which +/// is simply the inverse of isDef. Here we consider any readsReg operand to be +/// a "use". The machine model allows an operand to be both a Def and Use. +static unsigned findUseIdx(const MachineInstr *MI, unsigned UseOperIdx) { +  unsigned UseIdx = 0; +  for (unsigned i = 0; i != UseOperIdx; ++i) { +    const MachineOperand &MO = MI->getOperand(i); +    if (MO.isReg() && MO.readsReg() && !MO.isDef()) +      ++UseIdx; +  } +  return UseIdx; +} + +// Top-level API for clients that know the operand indices. +unsigned TargetSchedModel::computeOperandLatency( +  const MachineInstr *DefMI, unsigned DefOperIdx, +  const MachineInstr *UseMI, unsigned UseOperIdx) const { + +  if (!hasInstrSchedModel() && !hasInstrItineraries()) +    return TII->defaultDefLatency(SchedModel, *DefMI); + +  if (hasInstrItineraries()) { +    int OperLatency = 0; +    if (UseMI) { +      OperLatency = TII->getOperandLatency(&InstrItins, *DefMI, DefOperIdx, +                                           *UseMI, UseOperIdx); +    } +    else { +      unsigned DefClass = DefMI->getDesc().getSchedClass(); +      OperLatency = InstrItins.getOperandCycle(DefClass, DefOperIdx); +    } +    if (OperLatency >= 0) +      return OperLatency; + +    // No operand latency was found. +    unsigned InstrLatency = TII->getInstrLatency(&InstrItins, *DefMI); + +    // Expected latency is the max of the stage latency and itinerary props. +    // Rather than directly querying InstrItins stage latency, we call a TII +    // hook to allow subtargets to specialize latency. This hook is only +    // applicable to the InstrItins model. InstrSchedModel should model all +    // special cases without TII hooks. +    InstrLatency = +        std::max(InstrLatency, TII->defaultDefLatency(SchedModel, *DefMI)); +    return InstrLatency; +  } +  // hasInstrSchedModel() +  const MCSchedClassDesc *SCDesc = resolveSchedClass(DefMI); +  unsigned DefIdx = findDefIdx(DefMI, DefOperIdx); +  if (DefIdx < SCDesc->NumWriteLatencyEntries) { +    // Lookup the definition's write latency in SubtargetInfo. +    const MCWriteLatencyEntry *WLEntry = +      STI->getWriteLatencyEntry(SCDesc, DefIdx); +    unsigned WriteID = WLEntry->WriteResourceID; +    unsigned Latency = capLatency(WLEntry->Cycles); +    if (!UseMI) +      return Latency; + +    // Lookup the use's latency adjustment in SubtargetInfo. +    const MCSchedClassDesc *UseDesc = resolveSchedClass(UseMI); +    if (UseDesc->NumReadAdvanceEntries == 0) +      return Latency; +    unsigned UseIdx = findUseIdx(UseMI, UseOperIdx); +    int Advance = STI->getReadAdvanceCycles(UseDesc, UseIdx, WriteID); +    if (Advance > 0 && (unsigned)Advance > Latency) // unsigned wrap +      return 0; +    return Latency - Advance; +  } +  // If DefIdx does not exist in the model (e.g. implicit defs), then return +  // unit latency (defaultDefLatency may be too conservative). +#ifndef NDEBUG +  if (SCDesc->isValid() && !DefMI->getOperand(DefOperIdx).isImplicit() +      && !DefMI->getDesc().OpInfo[DefOperIdx].isOptionalDef() +      && SchedModel.isComplete()) { +    errs() << "DefIdx " << DefIdx << " exceeds machine model writes for " +           << *DefMI << " (Try with MCSchedModel.CompleteModel set to false)"; +    llvm_unreachable("incomplete machine model"); +  } +#endif +  // FIXME: Automatically giving all implicit defs defaultDefLatency is +  // undesirable. We should only do it for defs that are known to the MC +  // desc like flags. Truly implicit defs should get 1 cycle latency. +  return DefMI->isTransient() ? 0 : TII->defaultDefLatency(SchedModel, *DefMI); +} + +unsigned +TargetSchedModel::computeInstrLatency(const MCSchedClassDesc &SCDesc) const { +  return capLatency(MCSchedModel::computeInstrLatency(*STI, SCDesc)); +} + +unsigned TargetSchedModel::computeInstrLatency(unsigned Opcode) const { +  assert(hasInstrSchedModel() && "Only call this function with a SchedModel"); +  unsigned SCIdx = TII->get(Opcode).getSchedClass(); +  return capLatency(SchedModel.computeInstrLatency(*STI, SCIdx)); +} + +unsigned TargetSchedModel::computeInstrLatency(const MCInst &Inst) const { +  if (hasInstrSchedModel()) +    return capLatency(SchedModel.computeInstrLatency(*STI, *TII, Inst)); +  return computeInstrLatency(Inst.getOpcode()); +} + +unsigned +TargetSchedModel::computeInstrLatency(const MachineInstr *MI, +                                      bool UseDefaultDefLatency) const { +  // For the itinerary model, fall back to the old subtarget hook. +  // Allow subtargets to compute Bundle latencies outside the machine model. +  if (hasInstrItineraries() || MI->isBundle() || +      (!hasInstrSchedModel() && !UseDefaultDefLatency)) +    return TII->getInstrLatency(&InstrItins, *MI); + +  if (hasInstrSchedModel()) { +    const MCSchedClassDesc *SCDesc = resolveSchedClass(MI); +    if (SCDesc->isValid()) +      return computeInstrLatency(*SCDesc); +  } +  return TII->defaultDefLatency(SchedModel, *MI); +} + +unsigned TargetSchedModel:: +computeOutputLatency(const MachineInstr *DefMI, unsigned DefOperIdx, +                     const MachineInstr *DepMI) const { +  if (!SchedModel.isOutOfOrder()) +    return 1; + +  // Out-of-order processor can dispatch WAW dependencies in the same cycle. + +  // Treat predication as a data dependency for out-of-order cpus. In-order +  // cpus do not need to treat predicated writes specially. +  // +  // TODO: The following hack exists because predication passes do not +  // correctly append imp-use operands, and readsReg() strangely returns false +  // for predicated defs. +  Register Reg = DefMI->getOperand(DefOperIdx).getReg(); +  const MachineFunction &MF = *DefMI->getMF(); +  const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); +  if (!DepMI->readsRegister(Reg, TRI) && TII->isPredicated(*DepMI)) +    return computeInstrLatency(DefMI); + +  // If we have a per operand scheduling model, check if this def is writing +  // an unbuffered resource. If so, it treated like an in-order cpu. +  if (hasInstrSchedModel()) { +    const MCSchedClassDesc *SCDesc = resolveSchedClass(DefMI); +    if (SCDesc->isValid()) { +      for (const MCWriteProcResEntry *PRI = STI->getWriteProcResBegin(SCDesc), +             *PRE = STI->getWriteProcResEnd(SCDesc); PRI != PRE; ++PRI) { +        if (!SchedModel.getProcResource(PRI->ProcResourceIdx)->BufferSize) +          return 1; +      } +    } +  } +  return 0; +} + +double +TargetSchedModel::computeReciprocalThroughput(const MachineInstr *MI) const { +  if (hasInstrItineraries()) { +    unsigned SchedClass = MI->getDesc().getSchedClass(); +    return MCSchedModel::getReciprocalThroughput(SchedClass, +                                                 *getInstrItineraries()); +  } + +  if (hasInstrSchedModel()) +    return MCSchedModel::getReciprocalThroughput(*STI, *resolveSchedClass(MI)); + +  return 0.0; +} + +double +TargetSchedModel::computeReciprocalThroughput(unsigned Opcode) const { +  unsigned SchedClass = TII->get(Opcode).getSchedClass(); +  if (hasInstrItineraries()) +    return MCSchedModel::getReciprocalThroughput(SchedClass, +                                                 *getInstrItineraries()); +  if (hasInstrSchedModel()) { +    const MCSchedClassDesc &SCDesc = *SchedModel.getSchedClassDesc(SchedClass); +    if (SCDesc.isValid() && !SCDesc.isVariant()) +      return MCSchedModel::getReciprocalThroughput(*STI, SCDesc); +  } + +  return 0.0; +} + +double +TargetSchedModel::computeReciprocalThroughput(const MCInst &MI) const { +  if (hasInstrSchedModel()) +    return SchedModel.getReciprocalThroughput(*STI, *TII, MI); +  return computeReciprocalThroughput(MI.getOpcode()); +} + | 
