summaryrefslogtreecommitdiff
path: root/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp')
-rw-r--r--llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp1434
1 files changed, 1434 insertions, 0 deletions
diff --git a/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp b/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp
new file mode 100644
index 0000000000000..2df71a5e5e741
--- /dev/null
+++ b/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp
@@ -0,0 +1,1434 @@
+//===-- RuntimeDyld.cpp - Run-time dynamic linker for MC-JIT ----*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// Implementation of the MC-JIT runtime dynamic linker.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/ExecutionEngine/RuntimeDyld.h"
+#include "RuntimeDyldCOFF.h"
+#include "RuntimeDyldELF.h"
+#include "RuntimeDyldImpl.h"
+#include "RuntimeDyldMachO.h"
+#include "llvm/Object/COFF.h"
+#include "llvm/Object/ELFObjectFile.h"
+#include "llvm/Support/Alignment.h"
+#include "llvm/Support/MSVCErrorWorkarounds.h"
+#include "llvm/Support/ManagedStatic.h"
+#include "llvm/Support/MathExtras.h"
+#include <mutex>
+
+#include <future>
+
+using namespace llvm;
+using namespace llvm::object;
+
+#define DEBUG_TYPE "dyld"
+
+namespace {
+
+enum RuntimeDyldErrorCode {
+ GenericRTDyldError = 1
+};
+
+// FIXME: This class is only here to support the transition to llvm::Error. It
+// will be removed once this transition is complete. Clients should prefer to
+// deal with the Error value directly, rather than converting to error_code.
+class RuntimeDyldErrorCategory : public std::error_category {
+public:
+ const char *name() const noexcept override { return "runtimedyld"; }
+
+ std::string message(int Condition) const override {
+ switch (static_cast<RuntimeDyldErrorCode>(Condition)) {
+ case GenericRTDyldError: return "Generic RuntimeDyld error";
+ }
+ llvm_unreachable("Unrecognized RuntimeDyldErrorCode");
+ }
+};
+
+static ManagedStatic<RuntimeDyldErrorCategory> RTDyldErrorCategory;
+
+}
+
+char RuntimeDyldError::ID = 0;
+
+void RuntimeDyldError::log(raw_ostream &OS) const {
+ OS << ErrMsg << "\n";
+}
+
+std::error_code RuntimeDyldError::convertToErrorCode() const {
+ return std::error_code(GenericRTDyldError, *RTDyldErrorCategory);
+}
+
+// Empty out-of-line virtual destructor as the key function.
+RuntimeDyldImpl::~RuntimeDyldImpl() {}
+
+// Pin LoadedObjectInfo's vtables to this file.
+void RuntimeDyld::LoadedObjectInfo::anchor() {}
+
+namespace llvm {
+
+void RuntimeDyldImpl::registerEHFrames() {}
+
+void RuntimeDyldImpl::deregisterEHFrames() {
+ MemMgr.deregisterEHFrames();
+}
+
+#ifndef NDEBUG
+static void dumpSectionMemory(const SectionEntry &S, StringRef State) {
+ dbgs() << "----- Contents of section " << S.getName() << " " << State
+ << " -----";
+
+ if (S.getAddress() == nullptr) {
+ dbgs() << "\n <section not emitted>\n";
+ return;
+ }
+
+ const unsigned ColsPerRow = 16;
+
+ uint8_t *DataAddr = S.getAddress();
+ uint64_t LoadAddr = S.getLoadAddress();
+
+ unsigned StartPadding = LoadAddr & (ColsPerRow - 1);
+ unsigned BytesRemaining = S.getSize();
+
+ if (StartPadding) {
+ dbgs() << "\n" << format("0x%016" PRIx64,
+ LoadAddr & ~(uint64_t)(ColsPerRow - 1)) << ":";
+ while (StartPadding--)
+ dbgs() << " ";
+ }
+
+ while (BytesRemaining > 0) {
+ if ((LoadAddr & (ColsPerRow - 1)) == 0)
+ dbgs() << "\n" << format("0x%016" PRIx64, LoadAddr) << ":";
+
+ dbgs() << " " << format("%02x", *DataAddr);
+
+ ++DataAddr;
+ ++LoadAddr;
+ --BytesRemaining;
+ }
+
+ dbgs() << "\n";
+}
+#endif
+
+// Resolve the relocations for all symbols we currently know about.
+void RuntimeDyldImpl::resolveRelocations() {
+ std::lock_guard<sys::Mutex> locked(lock);
+
+ // Print out the sections prior to relocation.
+ LLVM_DEBUG(for (int i = 0, e = Sections.size(); i != e; ++i)
+ dumpSectionMemory(Sections[i], "before relocations"););
+
+ // First, resolve relocations associated with external symbols.
+ if (auto Err = resolveExternalSymbols()) {
+ HasError = true;
+ ErrorStr = toString(std::move(Err));
+ }
+
+ resolveLocalRelocations();
+
+ // Print out sections after relocation.
+ LLVM_DEBUG(for (int i = 0, e = Sections.size(); i != e; ++i)
+ dumpSectionMemory(Sections[i], "after relocations"););
+}
+
+void RuntimeDyldImpl::resolveLocalRelocations() {
+ // Iterate over all outstanding relocations
+ for (auto it = Relocations.begin(), e = Relocations.end(); it != e; ++it) {
+ // The Section here (Sections[i]) refers to the section in which the
+ // symbol for the relocation is located. The SectionID in the relocation
+ // entry provides the section to which the relocation will be applied.
+ int Idx = it->first;
+ uint64_t Addr = Sections[Idx].getLoadAddress();
+ LLVM_DEBUG(dbgs() << "Resolving relocations Section #" << Idx << "\t"
+ << format("%p", (uintptr_t)Addr) << "\n");
+ resolveRelocationList(it->second, Addr);
+ }
+ Relocations.clear();
+}
+
+void RuntimeDyldImpl::mapSectionAddress(const void *LocalAddress,
+ uint64_t TargetAddress) {
+ std::lock_guard<sys::Mutex> locked(lock);
+ for (unsigned i = 0, e = Sections.size(); i != e; ++i) {
+ if (Sections[i].getAddress() == LocalAddress) {
+ reassignSectionAddress(i, TargetAddress);
+ return;
+ }
+ }
+ llvm_unreachable("Attempting to remap address of unknown section!");
+}
+
+static Error getOffset(const SymbolRef &Sym, SectionRef Sec,
+ uint64_t &Result) {
+ Expected<uint64_t> AddressOrErr = Sym.getAddress();
+ if (!AddressOrErr)
+ return AddressOrErr.takeError();
+ Result = *AddressOrErr - Sec.getAddress();
+ return Error::success();
+}
+
+Expected<RuntimeDyldImpl::ObjSectionToIDMap>
+RuntimeDyldImpl::loadObjectImpl(const object::ObjectFile &Obj) {
+ std::lock_guard<sys::Mutex> locked(lock);
+
+ // Save information about our target
+ Arch = (Triple::ArchType)Obj.getArch();
+ IsTargetLittleEndian = Obj.isLittleEndian();
+ setMipsABI(Obj);
+
+ // Compute the memory size required to load all sections to be loaded
+ // and pass this information to the memory manager
+ if (MemMgr.needsToReserveAllocationSpace()) {
+ uint64_t CodeSize = 0, RODataSize = 0, RWDataSize = 0;
+ uint32_t CodeAlign = 1, RODataAlign = 1, RWDataAlign = 1;
+ if (auto Err = computeTotalAllocSize(Obj,
+ CodeSize, CodeAlign,
+ RODataSize, RODataAlign,
+ RWDataSize, RWDataAlign))
+ return std::move(Err);
+ MemMgr.reserveAllocationSpace(CodeSize, CodeAlign, RODataSize, RODataAlign,
+ RWDataSize, RWDataAlign);
+ }
+
+ // Used sections from the object file
+ ObjSectionToIDMap LocalSections;
+
+ // Common symbols requiring allocation, with their sizes and alignments
+ CommonSymbolList CommonSymbolsToAllocate;
+
+ uint64_t CommonSize = 0;
+ uint32_t CommonAlign = 0;
+
+ // First, collect all weak and common symbols. We need to know if stronger
+ // definitions occur elsewhere.
+ JITSymbolResolver::LookupSet ResponsibilitySet;
+ {
+ JITSymbolResolver::LookupSet Symbols;
+ for (auto &Sym : Obj.symbols()) {
+ uint32_t Flags = Sym.getFlags();
+ if ((Flags & SymbolRef::SF_Common) || (Flags & SymbolRef::SF_Weak)) {
+ // Get symbol name.
+ if (auto NameOrErr = Sym.getName())
+ Symbols.insert(*NameOrErr);
+ else
+ return NameOrErr.takeError();
+ }
+ }
+
+ if (auto ResultOrErr = Resolver.getResponsibilitySet(Symbols))
+ ResponsibilitySet = std::move(*ResultOrErr);
+ else
+ return ResultOrErr.takeError();
+ }
+
+ // Parse symbols
+ LLVM_DEBUG(dbgs() << "Parse symbols:\n");
+ for (symbol_iterator I = Obj.symbol_begin(), E = Obj.symbol_end(); I != E;
+ ++I) {
+ uint32_t Flags = I->getFlags();
+
+ // Skip undefined symbols.
+ if (Flags & SymbolRef::SF_Undefined)
+ continue;
+
+ // Get the symbol type.
+ object::SymbolRef::Type SymType;
+ if (auto SymTypeOrErr = I->getType())
+ SymType = *SymTypeOrErr;
+ else
+ return SymTypeOrErr.takeError();
+
+ // Get symbol name.
+ StringRef Name;
+ if (auto NameOrErr = I->getName())
+ Name = *NameOrErr;
+ else
+ return NameOrErr.takeError();
+
+ // Compute JIT symbol flags.
+ auto JITSymFlags = getJITSymbolFlags(*I);
+ if (!JITSymFlags)
+ return JITSymFlags.takeError();
+
+ // If this is a weak definition, check to see if there's a strong one.
+ // If there is, skip this symbol (we won't be providing it: the strong
+ // definition will). If there's no strong definition, make this definition
+ // strong.
+ if (JITSymFlags->isWeak() || JITSymFlags->isCommon()) {
+ // First check whether there's already a definition in this instance.
+ if (GlobalSymbolTable.count(Name))
+ continue;
+
+ // If we're not responsible for this symbol, skip it.
+ if (!ResponsibilitySet.count(Name))
+ continue;
+
+ // Otherwise update the flags on the symbol to make this definition
+ // strong.
+ if (JITSymFlags->isWeak())
+ *JITSymFlags &= ~JITSymbolFlags::Weak;
+ if (JITSymFlags->isCommon()) {
+ *JITSymFlags &= ~JITSymbolFlags::Common;
+ uint32_t Align = I->getAlignment();
+ uint64_t Size = I->getCommonSize();
+ if (!CommonAlign)
+ CommonAlign = Align;
+ CommonSize = alignTo(CommonSize, Align) + Size;
+ CommonSymbolsToAllocate.push_back(*I);
+ }
+ }
+
+ if (Flags & SymbolRef::SF_Absolute &&
+ SymType != object::SymbolRef::ST_File) {
+ uint64_t Addr = 0;
+ if (auto AddrOrErr = I->getAddress())
+ Addr = *AddrOrErr;
+ else
+ return AddrOrErr.takeError();
+
+ unsigned SectionID = AbsoluteSymbolSection;
+
+ LLVM_DEBUG(dbgs() << "\tType: " << SymType << " (absolute) Name: " << Name
+ << " SID: " << SectionID
+ << " Offset: " << format("%p", (uintptr_t)Addr)
+ << " flags: " << Flags << "\n");
+ GlobalSymbolTable[Name] = SymbolTableEntry(SectionID, Addr, *JITSymFlags);
+ } else if (SymType == object::SymbolRef::ST_Function ||
+ SymType == object::SymbolRef::ST_Data ||
+ SymType == object::SymbolRef::ST_Unknown ||
+ SymType == object::SymbolRef::ST_Other) {
+
+ section_iterator SI = Obj.section_end();
+ if (auto SIOrErr = I->getSection())
+ SI = *SIOrErr;
+ else
+ return SIOrErr.takeError();
+
+ if (SI == Obj.section_end())
+ continue;
+
+ // Get symbol offset.
+ uint64_t SectOffset;
+ if (auto Err = getOffset(*I, *SI, SectOffset))
+ return std::move(Err);
+
+ bool IsCode = SI->isText();
+ unsigned SectionID;
+ if (auto SectionIDOrErr =
+ findOrEmitSection(Obj, *SI, IsCode, LocalSections))
+ SectionID = *SectionIDOrErr;
+ else
+ return SectionIDOrErr.takeError();
+
+ LLVM_DEBUG(dbgs() << "\tType: " << SymType << " Name: " << Name
+ << " SID: " << SectionID
+ << " Offset: " << format("%p", (uintptr_t)SectOffset)
+ << " flags: " << Flags << "\n");
+ GlobalSymbolTable[Name] =
+ SymbolTableEntry(SectionID, SectOffset, *JITSymFlags);
+ }
+ }
+
+ // Allocate common symbols
+ if (auto Err = emitCommonSymbols(Obj, CommonSymbolsToAllocate, CommonSize,
+ CommonAlign))
+ return std::move(Err);
+
+ // Parse and process relocations
+ LLVM_DEBUG(dbgs() << "Parse relocations:\n");
+ for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
+ SI != SE; ++SI) {
+ StubMap Stubs;
+
+ Expected<section_iterator> RelSecOrErr = SI->getRelocatedSection();
+ if (!RelSecOrErr)
+ return RelSecOrErr.takeError();
+
+ section_iterator RelocatedSection = *RelSecOrErr;
+ if (RelocatedSection == SE)
+ continue;
+
+ relocation_iterator I = SI->relocation_begin();
+ relocation_iterator E = SI->relocation_end();
+
+ if (I == E && !ProcessAllSections)
+ continue;
+
+ bool IsCode = RelocatedSection->isText();
+ unsigned SectionID = 0;
+ if (auto SectionIDOrErr = findOrEmitSection(Obj, *RelocatedSection, IsCode,
+ LocalSections))
+ SectionID = *SectionIDOrErr;
+ else
+ return SectionIDOrErr.takeError();
+
+ LLVM_DEBUG(dbgs() << "\tSectionID: " << SectionID << "\n");
+
+ for (; I != E;)
+ if (auto IOrErr = processRelocationRef(SectionID, I, Obj, LocalSections, Stubs))
+ I = *IOrErr;
+ else
+ return IOrErr.takeError();
+
+ // If there is a NotifyStubEmitted callback set, call it to register any
+ // stubs created for this section.
+ if (NotifyStubEmitted) {
+ StringRef FileName = Obj.getFileName();
+ StringRef SectionName = Sections[SectionID].getName();
+ for (auto &KV : Stubs) {
+
+ auto &VR = KV.first;
+ uint64_t StubAddr = KV.second;
+
+ // If this is a named stub, just call NotifyStubEmitted.
+ if (VR.SymbolName) {
+ NotifyStubEmitted(FileName, SectionName, VR.SymbolName, SectionID,
+ StubAddr);
+ continue;
+ }
+
+ // Otherwise we will have to try a reverse lookup on the globla symbol table.
+ for (auto &GSTMapEntry : GlobalSymbolTable) {
+ StringRef SymbolName = GSTMapEntry.first();
+ auto &GSTEntry = GSTMapEntry.second;
+ if (GSTEntry.getSectionID() == VR.SectionID &&
+ GSTEntry.getOffset() == VR.Offset) {
+ NotifyStubEmitted(FileName, SectionName, SymbolName, SectionID,
+ StubAddr);
+ break;
+ }
+ }
+ }
+ }
+ }
+
+ // Process remaining sections
+ if (ProcessAllSections) {
+ LLVM_DEBUG(dbgs() << "Process remaining sections:\n");
+ for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
+ SI != SE; ++SI) {
+
+ /* Ignore already loaded sections */
+ if (LocalSections.find(*SI) != LocalSections.end())
+ continue;
+
+ bool IsCode = SI->isText();
+ if (auto SectionIDOrErr =
+ findOrEmitSection(Obj, *SI, IsCode, LocalSections))
+ LLVM_DEBUG(dbgs() << "\tSectionID: " << (*SectionIDOrErr) << "\n");
+ else
+ return SectionIDOrErr.takeError();
+ }
+ }
+
+ // Give the subclasses a chance to tie-up any loose ends.
+ if (auto Err = finalizeLoad(Obj, LocalSections))
+ return std::move(Err);
+
+// for (auto E : LocalSections)
+// llvm::dbgs() << "Added: " << E.first.getRawDataRefImpl() << " -> " << E.second << "\n";
+
+ return LocalSections;
+}
+
+// A helper method for computeTotalAllocSize.
+// Computes the memory size required to allocate sections with the given sizes,
+// assuming that all sections are allocated with the given alignment
+static uint64_t
+computeAllocationSizeForSections(std::vector<uint64_t> &SectionSizes,
+ uint64_t Alignment) {
+ uint64_t TotalSize = 0;
+ for (size_t Idx = 0, Cnt = SectionSizes.size(); Idx < Cnt; Idx++) {
+ uint64_t AlignedSize =
+ (SectionSizes[Idx] + Alignment - 1) / Alignment * Alignment;
+ TotalSize += AlignedSize;
+ }
+ return TotalSize;
+}
+
+static bool isRequiredForExecution(const SectionRef Section) {
+ const ObjectFile *Obj = Section.getObject();
+ if (isa<object::ELFObjectFileBase>(Obj))
+ return ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC;
+ if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj)) {
+ const coff_section *CoffSection = COFFObj->getCOFFSection(Section);
+ // Avoid loading zero-sized COFF sections.
+ // In PE files, VirtualSize gives the section size, and SizeOfRawData
+ // may be zero for sections with content. In Obj files, SizeOfRawData
+ // gives the section size, and VirtualSize is always zero. Hence
+ // the need to check for both cases below.
+ bool HasContent =
+ (CoffSection->VirtualSize > 0) || (CoffSection->SizeOfRawData > 0);
+ bool IsDiscardable =
+ CoffSection->Characteristics &
+ (COFF::IMAGE_SCN_MEM_DISCARDABLE | COFF::IMAGE_SCN_LNK_INFO);
+ return HasContent && !IsDiscardable;
+ }
+
+ assert(isa<MachOObjectFile>(Obj));
+ return true;
+}
+
+static bool isReadOnlyData(const SectionRef Section) {
+ const ObjectFile *Obj = Section.getObject();
+ if (isa<object::ELFObjectFileBase>(Obj))
+ return !(ELFSectionRef(Section).getFlags() &
+ (ELF::SHF_WRITE | ELF::SHF_EXECINSTR));
+ if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj))
+ return ((COFFObj->getCOFFSection(Section)->Characteristics &
+ (COFF::IMAGE_SCN_CNT_INITIALIZED_DATA
+ | COFF::IMAGE_SCN_MEM_READ
+ | COFF::IMAGE_SCN_MEM_WRITE))
+ ==
+ (COFF::IMAGE_SCN_CNT_INITIALIZED_DATA
+ | COFF::IMAGE_SCN_MEM_READ));
+
+ assert(isa<MachOObjectFile>(Obj));
+ return false;
+}
+
+static bool isZeroInit(const SectionRef Section) {
+ const ObjectFile *Obj = Section.getObject();
+ if (isa<object::ELFObjectFileBase>(Obj))
+ return ELFSectionRef(Section).getType() == ELF::SHT_NOBITS;
+ if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj))
+ return COFFObj->getCOFFSection(Section)->Characteristics &
+ COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA;
+
+ auto *MachO = cast<MachOObjectFile>(Obj);
+ unsigned SectionType = MachO->getSectionType(Section);
+ return SectionType == MachO::S_ZEROFILL ||
+ SectionType == MachO::S_GB_ZEROFILL;
+}
+
+// Compute an upper bound of the memory size that is required to load all
+// sections
+Error RuntimeDyldImpl::computeTotalAllocSize(const ObjectFile &Obj,
+ uint64_t &CodeSize,
+ uint32_t &CodeAlign,
+ uint64_t &RODataSize,
+ uint32_t &RODataAlign,
+ uint64_t &RWDataSize,
+ uint32_t &RWDataAlign) {
+ // Compute the size of all sections required for execution
+ std::vector<uint64_t> CodeSectionSizes;
+ std::vector<uint64_t> ROSectionSizes;
+ std::vector<uint64_t> RWSectionSizes;
+
+ // Collect sizes of all sections to be loaded;
+ // also determine the max alignment of all sections
+ for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
+ SI != SE; ++SI) {
+ const SectionRef &Section = *SI;
+
+ bool IsRequired = isRequiredForExecution(Section) || ProcessAllSections;
+
+ // Consider only the sections that are required to be loaded for execution
+ if (IsRequired) {
+ uint64_t DataSize = Section.getSize();
+ uint64_t Alignment64 = Section.getAlignment();
+ unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
+ bool IsCode = Section.isText();
+ bool IsReadOnly = isReadOnlyData(Section);
+
+ Expected<StringRef> NameOrErr = Section.getName();
+ if (!NameOrErr)
+ return NameOrErr.takeError();
+ StringRef Name = *NameOrErr;
+
+ uint64_t StubBufSize = computeSectionStubBufSize(Obj, Section);
+
+ uint64_t PaddingSize = 0;
+ if (Name == ".eh_frame")
+ PaddingSize += 4;
+ if (StubBufSize != 0)
+ PaddingSize += getStubAlignment() - 1;
+
+ uint64_t SectionSize = DataSize + PaddingSize + StubBufSize;
+
+ // The .eh_frame section (at least on Linux) needs an extra four bytes
+ // padded
+ // with zeroes added at the end. For MachO objects, this section has a
+ // slightly different name, so this won't have any effect for MachO
+ // objects.
+ if (Name == ".eh_frame")
+ SectionSize += 4;
+
+ if (!SectionSize)
+ SectionSize = 1;
+
+ if (IsCode) {
+ CodeAlign = std::max(CodeAlign, Alignment);
+ CodeSectionSizes.push_back(SectionSize);
+ } else if (IsReadOnly) {
+ RODataAlign = std::max(RODataAlign, Alignment);
+ ROSectionSizes.push_back(SectionSize);
+ } else {
+ RWDataAlign = std::max(RWDataAlign, Alignment);
+ RWSectionSizes.push_back(SectionSize);
+ }
+ }
+ }
+
+ // Compute Global Offset Table size. If it is not zero we
+ // also update alignment, which is equal to a size of a
+ // single GOT entry.
+ if (unsigned GotSize = computeGOTSize(Obj)) {
+ RWSectionSizes.push_back(GotSize);
+ RWDataAlign = std::max<uint32_t>(RWDataAlign, getGOTEntrySize());
+ }
+
+ // Compute the size of all common symbols
+ uint64_t CommonSize = 0;
+ uint32_t CommonAlign = 1;
+ for (symbol_iterator I = Obj.symbol_begin(), E = Obj.symbol_end(); I != E;
+ ++I) {
+ uint32_t Flags = I->getFlags();
+ if (Flags & SymbolRef::SF_Common) {
+ // Add the common symbols to a list. We'll allocate them all below.
+ uint64_t Size = I->getCommonSize();
+ uint32_t Align = I->getAlignment();
+ // If this is the first common symbol, use its alignment as the alignment
+ // for the common symbols section.
+ if (CommonSize == 0)
+ CommonAlign = Align;
+ CommonSize = alignTo(CommonSize, Align) + Size;
+ }
+ }
+ if (CommonSize != 0) {
+ RWSectionSizes.push_back(CommonSize);
+ RWDataAlign = std::max(RWDataAlign, CommonAlign);
+ }
+
+ // Compute the required allocation space for each different type of sections
+ // (code, read-only data, read-write data) assuming that all sections are
+ // allocated with the max alignment. Note that we cannot compute with the
+ // individual alignments of the sections, because then the required size
+ // depends on the order, in which the sections are allocated.
+ CodeSize = computeAllocationSizeForSections(CodeSectionSizes, CodeAlign);
+ RODataSize = computeAllocationSizeForSections(ROSectionSizes, RODataAlign);
+ RWDataSize = computeAllocationSizeForSections(RWSectionSizes, RWDataAlign);
+
+ return Error::success();
+}
+
+// compute GOT size
+unsigned RuntimeDyldImpl::computeGOTSize(const ObjectFile &Obj) {
+ size_t GotEntrySize = getGOTEntrySize();
+ if (!GotEntrySize)
+ return 0;
+
+ size_t GotSize = 0;
+ for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
+ SI != SE; ++SI) {
+
+ for (const RelocationRef &Reloc : SI->relocations())
+ if (relocationNeedsGot(Reloc))
+ GotSize += GotEntrySize;
+ }
+
+ return GotSize;
+}
+
+// compute stub buffer size for the given section
+unsigned RuntimeDyldImpl::computeSectionStubBufSize(const ObjectFile &Obj,
+ const SectionRef &Section) {
+ unsigned StubSize = getMaxStubSize();
+ if (StubSize == 0) {
+ return 0;
+ }
+ // FIXME: this is an inefficient way to handle this. We should computed the
+ // necessary section allocation size in loadObject by walking all the sections
+ // once.
+ unsigned StubBufSize = 0;
+ for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
+ SI != SE; ++SI) {
+
+ Expected<section_iterator> RelSecOrErr = SI->getRelocatedSection();
+ if (!RelSecOrErr)
+ report_fatal_error(toString(RelSecOrErr.takeError()));
+
+ section_iterator RelSecI = *RelSecOrErr;
+ if (!(RelSecI == Section))
+ continue;
+
+ for (const RelocationRef &Reloc : SI->relocations())
+ if (relocationNeedsStub(Reloc))
+ StubBufSize += StubSize;
+ }
+
+ // Get section data size and alignment
+ uint64_t DataSize = Section.getSize();
+ uint64_t Alignment64 = Section.getAlignment();
+
+ // Add stubbuf size alignment
+ unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
+ unsigned StubAlignment = getStubAlignment();
+ unsigned EndAlignment = (DataSize | Alignment) & -(DataSize | Alignment);
+ if (StubAlignment > EndAlignment)
+ StubBufSize += StubAlignment - EndAlignment;
+ return StubBufSize;
+}
+
+uint64_t RuntimeDyldImpl::readBytesUnaligned(uint8_t *Src,
+ unsigned Size) const {
+ uint64_t Result = 0;
+ if (IsTargetLittleEndian) {
+ Src += Size - 1;
+ while (Size--)
+ Result = (Result << 8) | *Src--;
+ } else
+ while (Size--)
+ Result = (Result << 8) | *Src++;
+
+ return Result;
+}
+
+void RuntimeDyldImpl::writeBytesUnaligned(uint64_t Value, uint8_t *Dst,
+ unsigned Size) const {
+ if (IsTargetLittleEndian) {
+ while (Size--) {
+ *Dst++ = Value & 0xFF;
+ Value >>= 8;
+ }
+ } else {
+ Dst += Size - 1;
+ while (Size--) {
+ *Dst-- = Value & 0xFF;
+ Value >>= 8;
+ }
+ }
+}
+
+Expected<JITSymbolFlags>
+RuntimeDyldImpl::getJITSymbolFlags(const SymbolRef &SR) {
+ return JITSymbolFlags::fromObjectSymbol(SR);
+}
+
+Error RuntimeDyldImpl::emitCommonSymbols(const ObjectFile &Obj,
+ CommonSymbolList &SymbolsToAllocate,
+ uint64_t CommonSize,
+ uint32_t CommonAlign) {
+ if (SymbolsToAllocate.empty())
+ return Error::success();
+
+ // Allocate memory for the section
+ unsigned SectionID = Sections.size();
+ uint8_t *Addr = MemMgr.allocateDataSection(CommonSize, CommonAlign, SectionID,
+ "<common symbols>", false);
+ if (!Addr)
+ report_fatal_error("Unable to allocate memory for common symbols!");
+ uint64_t Offset = 0;
+ Sections.push_back(
+ SectionEntry("<common symbols>", Addr, CommonSize, CommonSize, 0));
+ memset(Addr, 0, CommonSize);
+
+ LLVM_DEBUG(dbgs() << "emitCommonSection SectionID: " << SectionID
+ << " new addr: " << format("%p", Addr)
+ << " DataSize: " << CommonSize << "\n");
+
+ // Assign the address of each symbol
+ for (auto &Sym : SymbolsToAllocate) {
+ uint32_t Alignment = Sym.getAlignment();
+ uint64_t Size = Sym.getCommonSize();
+ StringRef Name;
+ if (auto NameOrErr = Sym.getName())
+ Name = *NameOrErr;
+ else
+ return NameOrErr.takeError();
+ if (Alignment) {
+ // This symbol has an alignment requirement.
+ uint64_t AlignOffset =
+ offsetToAlignment((uint64_t)Addr, Align(Alignment));
+ Addr += AlignOffset;
+ Offset += AlignOffset;
+ }
+ auto JITSymFlags = getJITSymbolFlags(Sym);
+
+ if (!JITSymFlags)
+ return JITSymFlags.takeError();
+
+ LLVM_DEBUG(dbgs() << "Allocating common symbol " << Name << " address "
+ << format("%p", Addr) << "\n");
+ GlobalSymbolTable[Name] =
+ SymbolTableEntry(SectionID, Offset, std::move(*JITSymFlags));
+ Offset += Size;
+ Addr += Size;
+ }
+
+ return Error::success();
+}
+
+Expected<unsigned>
+RuntimeDyldImpl::emitSection(const ObjectFile &Obj,
+ const SectionRef &Section,
+ bool IsCode) {
+ StringRef data;
+ uint64_t Alignment64 = Section.getAlignment();
+
+ unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
+ unsigned PaddingSize = 0;
+ unsigned StubBufSize = 0;
+ bool IsRequired = isRequiredForExecution(Section);
+ bool IsVirtual = Section.isVirtual();
+ bool IsZeroInit = isZeroInit(Section);
+ bool IsReadOnly = isReadOnlyData(Section);
+ uint64_t DataSize = Section.getSize();
+
+ // An alignment of 0 (at least with ELF) is identical to an alignment of 1,
+ // while being more "polite". Other formats do not support 0-aligned sections
+ // anyway, so we should guarantee that the alignment is always at least 1.
+ Alignment = std::max(1u, Alignment);
+
+ Expected<StringRef> NameOrErr = Section.getName();
+ if (!NameOrErr)
+ return NameOrErr.takeError();
+ StringRef Name = *NameOrErr;
+
+ StubBufSize = computeSectionStubBufSize(Obj, Section);
+
+ // The .eh_frame section (at least on Linux) needs an extra four bytes padded
+ // with zeroes added at the end. For MachO objects, this section has a
+ // slightly different name, so this won't have any effect for MachO objects.
+ if (Name == ".eh_frame")
+ PaddingSize = 4;
+
+ uintptr_t Allocate;
+ unsigned SectionID = Sections.size();
+ uint8_t *Addr;
+ const char *pData = nullptr;
+
+ // If this section contains any bits (i.e. isn't a virtual or bss section),
+ // grab a reference to them.
+ if (!IsVirtual && !IsZeroInit) {
+ // In either case, set the location of the unrelocated section in memory,
+ // since we still process relocations for it even if we're not applying them.
+ if (Expected<StringRef> E = Section.getContents())
+ data = *E;
+ else
+ return E.takeError();
+ pData = data.data();
+ }
+
+ // If there are any stubs then the section alignment needs to be at least as
+ // high as stub alignment or padding calculations may by incorrect when the
+ // section is remapped.
+ if (StubBufSize != 0) {
+ Alignment = std::max(Alignment, getStubAlignment());
+ PaddingSize += getStubAlignment() - 1;
+ }
+
+ // Some sections, such as debug info, don't need to be loaded for execution.
+ // Process those only if explicitly requested.
+ if (IsRequired || ProcessAllSections) {
+ Allocate = DataSize + PaddingSize + StubBufSize;
+ if (!Allocate)
+ Allocate = 1;
+ Addr = IsCode ? MemMgr.allocateCodeSection(Allocate, Alignment, SectionID,
+ Name)
+ : MemMgr.allocateDataSection(Allocate, Alignment, SectionID,
+ Name, IsReadOnly);
+ if (!Addr)
+ report_fatal_error("Unable to allocate section memory!");
+
+ // Zero-initialize or copy the data from the image
+ if (IsZeroInit || IsVirtual)
+ memset(Addr, 0, DataSize);
+ else
+ memcpy(Addr, pData, DataSize);
+
+ // Fill in any extra bytes we allocated for padding
+ if (PaddingSize != 0) {
+ memset(Addr + DataSize, 0, PaddingSize);
+ // Update the DataSize variable to include padding.
+ DataSize += PaddingSize;
+
+ // Align DataSize to stub alignment if we have any stubs (PaddingSize will
+ // have been increased above to account for this).
+ if (StubBufSize > 0)
+ DataSize &= -(uint64_t)getStubAlignment();
+ }
+
+ LLVM_DEBUG(dbgs() << "emitSection SectionID: " << SectionID << " Name: "
+ << Name << " obj addr: " << format("%p", pData)
+ << " new addr: " << format("%p", Addr) << " DataSize: "
+ << DataSize << " StubBufSize: " << StubBufSize
+ << " Allocate: " << Allocate << "\n");
+ } else {
+ // Even if we didn't load the section, we need to record an entry for it
+ // to handle later processing (and by 'handle' I mean don't do anything
+ // with these sections).
+ Allocate = 0;
+ Addr = nullptr;
+ LLVM_DEBUG(
+ dbgs() << "emitSection SectionID: " << SectionID << " Name: " << Name
+ << " obj addr: " << format("%p", data.data()) << " new addr: 0"
+ << " DataSize: " << DataSize << " StubBufSize: " << StubBufSize
+ << " Allocate: " << Allocate << "\n");
+ }
+
+ Sections.push_back(
+ SectionEntry(Name, Addr, DataSize, Allocate, (uintptr_t)pData));
+
+ // Debug info sections are linked as if their load address was zero
+ if (!IsRequired)
+ Sections.back().setLoadAddress(0);
+
+ return SectionID;
+}
+
+Expected<unsigned>
+RuntimeDyldImpl::findOrEmitSection(const ObjectFile &Obj,
+ const SectionRef &Section,
+ bool IsCode,
+ ObjSectionToIDMap &LocalSections) {
+
+ unsigned SectionID = 0;
+ ObjSectionToIDMap::iterator i = LocalSections.find(Section);
+ if (i != LocalSections.end())
+ SectionID = i->second;
+ else {
+ if (auto SectionIDOrErr = emitSection(Obj, Section, IsCode))
+ SectionID = *SectionIDOrErr;
+ else
+ return SectionIDOrErr.takeError();
+ LocalSections[Section] = SectionID;
+ }
+ return SectionID;
+}
+
+void RuntimeDyldImpl::addRelocationForSection(const RelocationEntry &RE,
+ unsigned SectionID) {
+ Relocations[SectionID].push_back(RE);
+}
+
+void RuntimeDyldImpl::addRelocationForSymbol(const RelocationEntry &RE,
+ StringRef SymbolName) {
+ // Relocation by symbol. If the symbol is found in the global symbol table,
+ // create an appropriate section relocation. Otherwise, add it to
+ // ExternalSymbolRelocations.
+ RTDyldSymbolTable::const_iterator Loc = GlobalSymbolTable.find(SymbolName);
+ if (Loc == GlobalSymbolTable.end()) {
+ ExternalSymbolRelocations[SymbolName].push_back(RE);
+ } else {
+ // Copy the RE since we want to modify its addend.
+ RelocationEntry RECopy = RE;
+ const auto &SymInfo = Loc->second;
+ RECopy.Addend += SymInfo.getOffset();
+ Relocations[SymInfo.getSectionID()].push_back(RECopy);
+ }
+}
+
+uint8_t *RuntimeDyldImpl::createStubFunction(uint8_t *Addr,
+ unsigned AbiVariant) {
+ if (Arch == Triple::aarch64 || Arch == Triple::aarch64_be ||
+ Arch == Triple::aarch64_32) {
+ // This stub has to be able to access the full address space,
+ // since symbol lookup won't necessarily find a handy, in-range,
+ // PLT stub for functions which could be anywhere.
+ // Stub can use ip0 (== x16) to calculate address
+ writeBytesUnaligned(0xd2e00010, Addr, 4); // movz ip0, #:abs_g3:<addr>
+ writeBytesUnaligned(0xf2c00010, Addr+4, 4); // movk ip0, #:abs_g2_nc:<addr>
+ writeBytesUnaligned(0xf2a00010, Addr+8, 4); // movk ip0, #:abs_g1_nc:<addr>
+ writeBytesUnaligned(0xf2800010, Addr+12, 4); // movk ip0, #:abs_g0_nc:<addr>
+ writeBytesUnaligned(0xd61f0200, Addr+16, 4); // br ip0
+
+ return Addr;
+ } else if (Arch == Triple::arm || Arch == Triple::armeb) {
+ // TODO: There is only ARM far stub now. We should add the Thumb stub,
+ // and stubs for branches Thumb - ARM and ARM - Thumb.
+ writeBytesUnaligned(0xe51ff004, Addr, 4); // ldr pc, [pc, #-4]
+ return Addr + 4;
+ } else if (IsMipsO32ABI || IsMipsN32ABI) {
+ // 0: 3c190000 lui t9,%hi(addr).
+ // 4: 27390000 addiu t9,t9,%lo(addr).
+ // 8: 03200008 jr t9.
+ // c: 00000000 nop.
+ const unsigned LuiT9Instr = 0x3c190000, AdduiT9Instr = 0x27390000;
+ const unsigned NopInstr = 0x0;
+ unsigned JrT9Instr = 0x03200008;
+ if ((AbiVariant & ELF::EF_MIPS_ARCH) == ELF::EF_MIPS_ARCH_32R6 ||
+ (AbiVariant & ELF::EF_MIPS_ARCH) == ELF::EF_MIPS_ARCH_64R6)
+ JrT9Instr = 0x03200009;
+
+ writeBytesUnaligned(LuiT9Instr, Addr, 4);
+ writeBytesUnaligned(AdduiT9Instr, Addr + 4, 4);
+ writeBytesUnaligned(JrT9Instr, Addr + 8, 4);
+ writeBytesUnaligned(NopInstr, Addr + 12, 4);
+ return Addr;
+ } else if (IsMipsN64ABI) {
+ // 0: 3c190000 lui t9,%highest(addr).
+ // 4: 67390000 daddiu t9,t9,%higher(addr).
+ // 8: 0019CC38 dsll t9,t9,16.
+ // c: 67390000 daddiu t9,t9,%hi(addr).
+ // 10: 0019CC38 dsll t9,t9,16.
+ // 14: 67390000 daddiu t9,t9,%lo(addr).
+ // 18: 03200008 jr t9.
+ // 1c: 00000000 nop.
+ const unsigned LuiT9Instr = 0x3c190000, DaddiuT9Instr = 0x67390000,
+ DsllT9Instr = 0x19CC38;
+ const unsigned NopInstr = 0x0;
+ unsigned JrT9Instr = 0x03200008;
+ if ((AbiVariant & ELF::EF_MIPS_ARCH) == ELF::EF_MIPS_ARCH_64R6)
+ JrT9Instr = 0x03200009;
+
+ writeBytesUnaligned(LuiT9Instr, Addr, 4);
+ writeBytesUnaligned(DaddiuT9Instr, Addr + 4, 4);
+ writeBytesUnaligned(DsllT9Instr, Addr + 8, 4);
+ writeBytesUnaligned(DaddiuT9Instr, Addr + 12, 4);
+ writeBytesUnaligned(DsllT9Instr, Addr + 16, 4);
+ writeBytesUnaligned(DaddiuT9Instr, Addr + 20, 4);
+ writeBytesUnaligned(JrT9Instr, Addr + 24, 4);
+ writeBytesUnaligned(NopInstr, Addr + 28, 4);
+ return Addr;
+ } else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le) {
+ // Depending on which version of the ELF ABI is in use, we need to
+ // generate one of two variants of the stub. They both start with
+ // the same sequence to load the target address into r12.
+ writeInt32BE(Addr, 0x3D800000); // lis r12, highest(addr)
+ writeInt32BE(Addr+4, 0x618C0000); // ori r12, higher(addr)
+ writeInt32BE(Addr+8, 0x798C07C6); // sldi r12, r12, 32
+ writeInt32BE(Addr+12, 0x658C0000); // oris r12, r12, h(addr)
+ writeInt32BE(Addr+16, 0x618C0000); // ori r12, r12, l(addr)
+ if (AbiVariant == 2) {
+ // PowerPC64 stub ELFv2 ABI: The address points to the function itself.
+ // The address is already in r12 as required by the ABI. Branch to it.
+ writeInt32BE(Addr+20, 0xF8410018); // std r2, 24(r1)
+ writeInt32BE(Addr+24, 0x7D8903A6); // mtctr r12
+ writeInt32BE(Addr+28, 0x4E800420); // bctr
+ } else {
+ // PowerPC64 stub ELFv1 ABI: The address points to a function descriptor.
+ // Load the function address on r11 and sets it to control register. Also
+ // loads the function TOC in r2 and environment pointer to r11.
+ writeInt32BE(Addr+20, 0xF8410028); // std r2, 40(r1)
+ writeInt32BE(Addr+24, 0xE96C0000); // ld r11, 0(r12)
+ writeInt32BE(Addr+28, 0xE84C0008); // ld r2, 0(r12)
+ writeInt32BE(Addr+32, 0x7D6903A6); // mtctr r11
+ writeInt32BE(Addr+36, 0xE96C0010); // ld r11, 16(r2)
+ writeInt32BE(Addr+40, 0x4E800420); // bctr
+ }
+ return Addr;
+ } else if (Arch == Triple::systemz) {
+ writeInt16BE(Addr, 0xC418); // lgrl %r1,.+8
+ writeInt16BE(Addr+2, 0x0000);
+ writeInt16BE(Addr+4, 0x0004);
+ writeInt16BE(Addr+6, 0x07F1); // brc 15,%r1
+ // 8-byte address stored at Addr + 8
+ return Addr;
+ } else if (Arch == Triple::x86_64) {
+ *Addr = 0xFF; // jmp
+ *(Addr+1) = 0x25; // rip
+ // 32-bit PC-relative address of the GOT entry will be stored at Addr+2
+ } else if (Arch == Triple::x86) {
+ *Addr = 0xE9; // 32-bit pc-relative jump.
+ }
+ return Addr;
+}
+
+// Assign an address to a symbol name and resolve all the relocations
+// associated with it.
+void RuntimeDyldImpl::reassignSectionAddress(unsigned SectionID,
+ uint64_t Addr) {
+ // The address to use for relocation resolution is not
+ // the address of the local section buffer. We must be doing
+ // a remote execution environment of some sort. Relocations can't
+ // be applied until all the sections have been moved. The client must
+ // trigger this with a call to MCJIT::finalize() or
+ // RuntimeDyld::resolveRelocations().
+ //
+ // Addr is a uint64_t because we can't assume the pointer width
+ // of the target is the same as that of the host. Just use a generic
+ // "big enough" type.
+ LLVM_DEBUG(
+ dbgs() << "Reassigning address for section " << SectionID << " ("
+ << Sections[SectionID].getName() << "): "
+ << format("0x%016" PRIx64, Sections[SectionID].getLoadAddress())
+ << " -> " << format("0x%016" PRIx64, Addr) << "\n");
+ Sections[SectionID].setLoadAddress(Addr);
+}
+
+void RuntimeDyldImpl::resolveRelocationList(const RelocationList &Relocs,
+ uint64_t Value) {
+ for (unsigned i = 0, e = Relocs.size(); i != e; ++i) {
+ const RelocationEntry &RE = Relocs[i];
+ // Ignore relocations for sections that were not loaded
+ if (Sections[RE.SectionID].getAddress() == nullptr)
+ continue;
+ resolveRelocation(RE, Value);
+ }
+}
+
+void RuntimeDyldImpl::applyExternalSymbolRelocations(
+ const StringMap<JITEvaluatedSymbol> ExternalSymbolMap) {
+ while (!ExternalSymbolRelocations.empty()) {
+
+ StringMap<RelocationList>::iterator i = ExternalSymbolRelocations.begin();
+
+ StringRef Name = i->first();
+ if (Name.size() == 0) {
+ // This is an absolute symbol, use an address of zero.
+ LLVM_DEBUG(dbgs() << "Resolving absolute relocations."
+ << "\n");
+ RelocationList &Relocs = i->second;
+ resolveRelocationList(Relocs, 0);
+ } else {
+ uint64_t Addr = 0;
+ JITSymbolFlags Flags;
+ RTDyldSymbolTable::const_iterator Loc = GlobalSymbolTable.find(Name);
+ if (Loc == GlobalSymbolTable.end()) {
+ auto RRI = ExternalSymbolMap.find(Name);
+ assert(RRI != ExternalSymbolMap.end() && "No result for symbol");
+ Addr = RRI->second.getAddress();
+ Flags = RRI->second.getFlags();
+ // The call to getSymbolAddress may have caused additional modules to
+ // be loaded, which may have added new entries to the
+ // ExternalSymbolRelocations map. Consquently, we need to update our
+ // iterator. This is also why retrieval of the relocation list
+ // associated with this symbol is deferred until below this point.
+ // New entries may have been added to the relocation list.
+ i = ExternalSymbolRelocations.find(Name);
+ } else {
+ // We found the symbol in our global table. It was probably in a
+ // Module that we loaded previously.
+ const auto &SymInfo = Loc->second;
+ Addr = getSectionLoadAddress(SymInfo.getSectionID()) +
+ SymInfo.getOffset();
+ Flags = SymInfo.getFlags();
+ }
+
+ // FIXME: Implement error handling that doesn't kill the host program!
+ if (!Addr)
+ report_fatal_error("Program used external function '" + Name +
+ "' which could not be resolved!");
+
+ // If Resolver returned UINT64_MAX, the client wants to handle this symbol
+ // manually and we shouldn't resolve its relocations.
+ if (Addr != UINT64_MAX) {
+
+ // Tweak the address based on the symbol flags if necessary.
+ // For example, this is used by RuntimeDyldMachOARM to toggle the low bit
+ // if the target symbol is Thumb.
+ Addr = modifyAddressBasedOnFlags(Addr, Flags);
+
+ LLVM_DEBUG(dbgs() << "Resolving relocations Name: " << Name << "\t"
+ << format("0x%lx", Addr) << "\n");
+ // This list may have been updated when we called getSymbolAddress, so
+ // don't change this code to get the list earlier.
+ RelocationList &Relocs = i->second;
+ resolveRelocationList(Relocs, Addr);
+ }
+ }
+
+ ExternalSymbolRelocations.erase(i);
+ }
+}
+
+Error RuntimeDyldImpl::resolveExternalSymbols() {
+ StringMap<JITEvaluatedSymbol> ExternalSymbolMap;
+
+ // Resolution can trigger emission of more symbols, so iterate until
+ // we've resolved *everything*.
+ {
+ JITSymbolResolver::LookupSet ResolvedSymbols;
+
+ while (true) {
+ JITSymbolResolver::LookupSet NewSymbols;
+
+ for (auto &RelocKV : ExternalSymbolRelocations) {
+ StringRef Name = RelocKV.first();
+ if (!Name.empty() && !GlobalSymbolTable.count(Name) &&
+ !ResolvedSymbols.count(Name))
+ NewSymbols.insert(Name);
+ }
+
+ if (NewSymbols.empty())
+ break;
+
+#ifdef _MSC_VER
+ using ExpectedLookupResult =
+ MSVCPExpected<JITSymbolResolver::LookupResult>;
+#else
+ using ExpectedLookupResult = Expected<JITSymbolResolver::LookupResult>;
+#endif
+
+ auto NewSymbolsP = std::make_shared<std::promise<ExpectedLookupResult>>();
+ auto NewSymbolsF = NewSymbolsP->get_future();
+ Resolver.lookup(NewSymbols,
+ [=](Expected<JITSymbolResolver::LookupResult> Result) {
+ NewSymbolsP->set_value(std::move(Result));
+ });
+
+ auto NewResolverResults = NewSymbolsF.get();
+
+ if (!NewResolverResults)
+ return NewResolverResults.takeError();
+
+ assert(NewResolverResults->size() == NewSymbols.size() &&
+ "Should have errored on unresolved symbols");
+
+ for (auto &RRKV : *NewResolverResults) {
+ assert(!ResolvedSymbols.count(RRKV.first) && "Redundant resolution?");
+ ExternalSymbolMap.insert(RRKV);
+ ResolvedSymbols.insert(RRKV.first);
+ }
+ }
+ }
+
+ applyExternalSymbolRelocations(ExternalSymbolMap);
+
+ return Error::success();
+}
+
+void RuntimeDyldImpl::finalizeAsync(
+ std::unique_ptr<RuntimeDyldImpl> This,
+ unique_function<void(Error)> OnEmitted,
+ std::unique_ptr<MemoryBuffer> UnderlyingBuffer) {
+
+ auto SharedThis = std::shared_ptr<RuntimeDyldImpl>(std::move(This));
+ auto PostResolveContinuation =
+ [SharedThis, OnEmitted = std::move(OnEmitted),
+ UnderlyingBuffer = std::move(UnderlyingBuffer)](
+ Expected<JITSymbolResolver::LookupResult> Result) mutable {
+ if (!Result) {
+ OnEmitted(Result.takeError());
+ return;
+ }
+
+ /// Copy the result into a StringMap, where the keys are held by value.
+ StringMap<JITEvaluatedSymbol> Resolved;
+ for (auto &KV : *Result)
+ Resolved[KV.first] = KV.second;
+
+ SharedThis->applyExternalSymbolRelocations(Resolved);
+ SharedThis->resolveLocalRelocations();
+ SharedThis->registerEHFrames();
+ std::string ErrMsg;
+ if (SharedThis->MemMgr.finalizeMemory(&ErrMsg))
+ OnEmitted(make_error<StringError>(std::move(ErrMsg),
+ inconvertibleErrorCode()));
+ else
+ OnEmitted(Error::success());
+ };
+
+ JITSymbolResolver::LookupSet Symbols;
+
+ for (auto &RelocKV : SharedThis->ExternalSymbolRelocations) {
+ StringRef Name = RelocKV.first();
+ assert(!Name.empty() && "Symbol has no name?");
+ assert(!SharedThis->GlobalSymbolTable.count(Name) &&
+ "Name already processed. RuntimeDyld instances can not be re-used "
+ "when finalizing with finalizeAsync.");
+ Symbols.insert(Name);
+ }
+
+ if (!Symbols.empty()) {
+ SharedThis->Resolver.lookup(Symbols, std::move(PostResolveContinuation));
+ } else
+ PostResolveContinuation(std::map<StringRef, JITEvaluatedSymbol>());
+}
+
+//===----------------------------------------------------------------------===//
+// RuntimeDyld class implementation
+
+uint64_t RuntimeDyld::LoadedObjectInfo::getSectionLoadAddress(
+ const object::SectionRef &Sec) const {
+
+ auto I = ObjSecToIDMap.find(Sec);
+ if (I != ObjSecToIDMap.end())
+ return RTDyld.Sections[I->second].getLoadAddress();
+
+ return 0;
+}
+
+void RuntimeDyld::MemoryManager::anchor() {}
+void JITSymbolResolver::anchor() {}
+void LegacyJITSymbolResolver::anchor() {}
+
+RuntimeDyld::RuntimeDyld(RuntimeDyld::MemoryManager &MemMgr,
+ JITSymbolResolver &Resolver)
+ : MemMgr(MemMgr), Resolver(Resolver) {
+ // FIXME: There's a potential issue lurking here if a single instance of
+ // RuntimeDyld is used to load multiple objects. The current implementation
+ // associates a single memory manager with a RuntimeDyld instance. Even
+ // though the public class spawns a new 'impl' instance for each load,
+ // they share a single memory manager. This can become a problem when page
+ // permissions are applied.
+ Dyld = nullptr;
+ ProcessAllSections = false;
+}
+
+RuntimeDyld::~RuntimeDyld() {}
+
+static std::unique_ptr<RuntimeDyldCOFF>
+createRuntimeDyldCOFF(
+ Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM,
+ JITSymbolResolver &Resolver, bool ProcessAllSections,
+ RuntimeDyld::NotifyStubEmittedFunction NotifyStubEmitted) {
+ std::unique_ptr<RuntimeDyldCOFF> Dyld =
+ RuntimeDyldCOFF::create(Arch, MM, Resolver);
+ Dyld->setProcessAllSections(ProcessAllSections);
+ Dyld->setNotifyStubEmitted(std::move(NotifyStubEmitted));
+ return Dyld;
+}
+
+static std::unique_ptr<RuntimeDyldELF>
+createRuntimeDyldELF(Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM,
+ JITSymbolResolver &Resolver, bool ProcessAllSections,
+ RuntimeDyld::NotifyStubEmittedFunction NotifyStubEmitted) {
+ std::unique_ptr<RuntimeDyldELF> Dyld =
+ RuntimeDyldELF::create(Arch, MM, Resolver);
+ Dyld->setProcessAllSections(ProcessAllSections);
+ Dyld->setNotifyStubEmitted(std::move(NotifyStubEmitted));
+ return Dyld;
+}
+
+static std::unique_ptr<RuntimeDyldMachO>
+createRuntimeDyldMachO(
+ Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM,
+ JITSymbolResolver &Resolver,
+ bool ProcessAllSections,
+ RuntimeDyld::NotifyStubEmittedFunction NotifyStubEmitted) {
+ std::unique_ptr<RuntimeDyldMachO> Dyld =
+ RuntimeDyldMachO::create(Arch, MM, Resolver);
+ Dyld->setProcessAllSections(ProcessAllSections);
+ Dyld->setNotifyStubEmitted(std::move(NotifyStubEmitted));
+ return Dyld;
+}
+
+std::unique_ptr<RuntimeDyld::LoadedObjectInfo>
+RuntimeDyld::loadObject(const ObjectFile &Obj) {
+ if (!Dyld) {
+ if (Obj.isELF())
+ Dyld =
+ createRuntimeDyldELF(static_cast<Triple::ArchType>(Obj.getArch()),
+ MemMgr, Resolver, ProcessAllSections,
+ std::move(NotifyStubEmitted));
+ else if (Obj.isMachO())
+ Dyld = createRuntimeDyldMachO(
+ static_cast<Triple::ArchType>(Obj.getArch()), MemMgr, Resolver,
+ ProcessAllSections, std::move(NotifyStubEmitted));
+ else if (Obj.isCOFF())
+ Dyld = createRuntimeDyldCOFF(
+ static_cast<Triple::ArchType>(Obj.getArch()), MemMgr, Resolver,
+ ProcessAllSections, std::move(NotifyStubEmitted));
+ else
+ report_fatal_error("Incompatible object format!");
+ }
+
+ if (!Dyld->isCompatibleFile(Obj))
+ report_fatal_error("Incompatible object format!");
+
+ auto LoadedObjInfo = Dyld->loadObject(Obj);
+ MemMgr.notifyObjectLoaded(*this, Obj);
+ return LoadedObjInfo;
+}
+
+void *RuntimeDyld::getSymbolLocalAddress(StringRef Name) const {
+ if (!Dyld)
+ return nullptr;
+ return Dyld->getSymbolLocalAddress(Name);
+}
+
+unsigned RuntimeDyld::getSymbolSectionID(StringRef Name) const {
+ assert(Dyld && "No RuntimeDyld instance attached");
+ return Dyld->getSymbolSectionID(Name);
+}
+
+JITEvaluatedSymbol RuntimeDyld::getSymbol(StringRef Name) const {
+ if (!Dyld)
+ return nullptr;
+ return Dyld->getSymbol(Name);
+}
+
+std::map<StringRef, JITEvaluatedSymbol> RuntimeDyld::getSymbolTable() const {
+ if (!Dyld)
+ return std::map<StringRef, JITEvaluatedSymbol>();
+ return Dyld->getSymbolTable();
+}
+
+void RuntimeDyld::resolveRelocations() { Dyld->resolveRelocations(); }
+
+void RuntimeDyld::reassignSectionAddress(unsigned SectionID, uint64_t Addr) {
+ Dyld->reassignSectionAddress(SectionID, Addr);
+}
+
+void RuntimeDyld::mapSectionAddress(const void *LocalAddress,
+ uint64_t TargetAddress) {
+ Dyld->mapSectionAddress(LocalAddress, TargetAddress);
+}
+
+bool RuntimeDyld::hasError() { return Dyld->hasError(); }
+
+StringRef RuntimeDyld::getErrorString() { return Dyld->getErrorString(); }
+
+void RuntimeDyld::finalizeWithMemoryManagerLocking() {
+ bool MemoryFinalizationLocked = MemMgr.FinalizationLocked;
+ MemMgr.FinalizationLocked = true;
+ resolveRelocations();
+ registerEHFrames();
+ if (!MemoryFinalizationLocked) {
+ MemMgr.finalizeMemory();
+ MemMgr.FinalizationLocked = false;
+ }
+}
+
+StringRef RuntimeDyld::getSectionContent(unsigned SectionID) const {
+ assert(Dyld && "No Dyld instance attached");
+ return Dyld->getSectionContent(SectionID);
+}
+
+uint64_t RuntimeDyld::getSectionLoadAddress(unsigned SectionID) const {
+ assert(Dyld && "No Dyld instance attached");
+ return Dyld->getSectionLoadAddress(SectionID);
+}
+
+void RuntimeDyld::registerEHFrames() {
+ if (Dyld)
+ Dyld->registerEHFrames();
+}
+
+void RuntimeDyld::deregisterEHFrames() {
+ if (Dyld)
+ Dyld->deregisterEHFrames();
+}
+// FIXME: Kill this with fire once we have a new JIT linker: this is only here
+// so that we can re-use RuntimeDyld's implementation without twisting the
+// interface any further for ORC's purposes.
+void jitLinkForORC(object::ObjectFile &Obj,
+ std::unique_ptr<MemoryBuffer> UnderlyingBuffer,
+ RuntimeDyld::MemoryManager &MemMgr,
+ JITSymbolResolver &Resolver, bool ProcessAllSections,
+ unique_function<Error(
+ std::unique_ptr<RuntimeDyld::LoadedObjectInfo> LoadedObj,
+ std::map<StringRef, JITEvaluatedSymbol>)>
+ OnLoaded,
+ unique_function<void(Error)> OnEmitted) {
+
+ RuntimeDyld RTDyld(MemMgr, Resolver);
+ RTDyld.setProcessAllSections(ProcessAllSections);
+
+ auto Info = RTDyld.loadObject(Obj);
+
+ if (RTDyld.hasError()) {
+ OnEmitted(make_error<StringError>(RTDyld.getErrorString(),
+ inconvertibleErrorCode()));
+ return;
+ }
+
+ if (auto Err = OnLoaded(std::move(Info), RTDyld.getSymbolTable()))
+ OnEmitted(std::move(Err));
+
+ RuntimeDyldImpl::finalizeAsync(std::move(RTDyld.Dyld), std::move(OnEmitted),
+ std::move(UnderlyingBuffer));
+}
+
+} // end namespace llvm