diff options
Diffstat (limited to 'llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp')
| -rw-r--r-- | llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp | 1434 | 
1 files changed, 1434 insertions, 0 deletions
diff --git a/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp b/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp new file mode 100644 index 0000000000000..2df71a5e5e741 --- /dev/null +++ b/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp @@ -0,0 +1,1434 @@ +//===-- RuntimeDyld.cpp - Run-time dynamic linker for MC-JIT ----*- C++ -*-===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// Implementation of the MC-JIT runtime dynamic linker. +// +//===----------------------------------------------------------------------===// + +#include "llvm/ExecutionEngine/RuntimeDyld.h" +#include "RuntimeDyldCOFF.h" +#include "RuntimeDyldELF.h" +#include "RuntimeDyldImpl.h" +#include "RuntimeDyldMachO.h" +#include "llvm/Object/COFF.h" +#include "llvm/Object/ELFObjectFile.h" +#include "llvm/Support/Alignment.h" +#include "llvm/Support/MSVCErrorWorkarounds.h" +#include "llvm/Support/ManagedStatic.h" +#include "llvm/Support/MathExtras.h" +#include <mutex> + +#include <future> + +using namespace llvm; +using namespace llvm::object; + +#define DEBUG_TYPE "dyld" + +namespace { + +enum RuntimeDyldErrorCode { +  GenericRTDyldError = 1 +}; + +// FIXME: This class is only here to support the transition to llvm::Error. It +// will be removed once this transition is complete. Clients should prefer to +// deal with the Error value directly, rather than converting to error_code. +class RuntimeDyldErrorCategory : public std::error_category { +public: +  const char *name() const noexcept override { return "runtimedyld"; } + +  std::string message(int Condition) const override { +    switch (static_cast<RuntimeDyldErrorCode>(Condition)) { +      case GenericRTDyldError: return "Generic RuntimeDyld error"; +    } +    llvm_unreachable("Unrecognized RuntimeDyldErrorCode"); +  } +}; + +static ManagedStatic<RuntimeDyldErrorCategory> RTDyldErrorCategory; + +} + +char RuntimeDyldError::ID = 0; + +void RuntimeDyldError::log(raw_ostream &OS) const { +  OS << ErrMsg << "\n"; +} + +std::error_code RuntimeDyldError::convertToErrorCode() const { +  return std::error_code(GenericRTDyldError, *RTDyldErrorCategory); +} + +// Empty out-of-line virtual destructor as the key function. +RuntimeDyldImpl::~RuntimeDyldImpl() {} + +// Pin LoadedObjectInfo's vtables to this file. +void RuntimeDyld::LoadedObjectInfo::anchor() {} + +namespace llvm { + +void RuntimeDyldImpl::registerEHFrames() {} + +void RuntimeDyldImpl::deregisterEHFrames() { +  MemMgr.deregisterEHFrames(); +} + +#ifndef NDEBUG +static void dumpSectionMemory(const SectionEntry &S, StringRef State) { +  dbgs() << "----- Contents of section " << S.getName() << " " << State +         << " -----"; + +  if (S.getAddress() == nullptr) { +    dbgs() << "\n          <section not emitted>\n"; +    return; +  } + +  const unsigned ColsPerRow = 16; + +  uint8_t *DataAddr = S.getAddress(); +  uint64_t LoadAddr = S.getLoadAddress(); + +  unsigned StartPadding = LoadAddr & (ColsPerRow - 1); +  unsigned BytesRemaining = S.getSize(); + +  if (StartPadding) { +    dbgs() << "\n" << format("0x%016" PRIx64, +                             LoadAddr & ~(uint64_t)(ColsPerRow - 1)) << ":"; +    while (StartPadding--) +      dbgs() << "   "; +  } + +  while (BytesRemaining > 0) { +    if ((LoadAddr & (ColsPerRow - 1)) == 0) +      dbgs() << "\n" << format("0x%016" PRIx64, LoadAddr) << ":"; + +    dbgs() << " " << format("%02x", *DataAddr); + +    ++DataAddr; +    ++LoadAddr; +    --BytesRemaining; +  } + +  dbgs() << "\n"; +} +#endif + +// Resolve the relocations for all symbols we currently know about. +void RuntimeDyldImpl::resolveRelocations() { +  std::lock_guard<sys::Mutex> locked(lock); + +  // Print out the sections prior to relocation. +  LLVM_DEBUG(for (int i = 0, e = Sections.size(); i != e; ++i) +                 dumpSectionMemory(Sections[i], "before relocations");); + +  // First, resolve relocations associated with external symbols. +  if (auto Err = resolveExternalSymbols()) { +    HasError = true; +    ErrorStr = toString(std::move(Err)); +  } + +  resolveLocalRelocations(); + +  // Print out sections after relocation. +  LLVM_DEBUG(for (int i = 0, e = Sections.size(); i != e; ++i) +                 dumpSectionMemory(Sections[i], "after relocations");); +} + +void RuntimeDyldImpl::resolveLocalRelocations() { +  // Iterate over all outstanding relocations +  for (auto it = Relocations.begin(), e = Relocations.end(); it != e; ++it) { +    // The Section here (Sections[i]) refers to the section in which the +    // symbol for the relocation is located.  The SectionID in the relocation +    // entry provides the section to which the relocation will be applied. +    int Idx = it->first; +    uint64_t Addr = Sections[Idx].getLoadAddress(); +    LLVM_DEBUG(dbgs() << "Resolving relocations Section #" << Idx << "\t" +                      << format("%p", (uintptr_t)Addr) << "\n"); +    resolveRelocationList(it->second, Addr); +  } +  Relocations.clear(); +} + +void RuntimeDyldImpl::mapSectionAddress(const void *LocalAddress, +                                        uint64_t TargetAddress) { +  std::lock_guard<sys::Mutex> locked(lock); +  for (unsigned i = 0, e = Sections.size(); i != e; ++i) { +    if (Sections[i].getAddress() == LocalAddress) { +      reassignSectionAddress(i, TargetAddress); +      return; +    } +  } +  llvm_unreachable("Attempting to remap address of unknown section!"); +} + +static Error getOffset(const SymbolRef &Sym, SectionRef Sec, +                       uint64_t &Result) { +  Expected<uint64_t> AddressOrErr = Sym.getAddress(); +  if (!AddressOrErr) +    return AddressOrErr.takeError(); +  Result = *AddressOrErr - Sec.getAddress(); +  return Error::success(); +} + +Expected<RuntimeDyldImpl::ObjSectionToIDMap> +RuntimeDyldImpl::loadObjectImpl(const object::ObjectFile &Obj) { +  std::lock_guard<sys::Mutex> locked(lock); + +  // Save information about our target +  Arch = (Triple::ArchType)Obj.getArch(); +  IsTargetLittleEndian = Obj.isLittleEndian(); +  setMipsABI(Obj); + +  // Compute the memory size required to load all sections to be loaded +  // and pass this information to the memory manager +  if (MemMgr.needsToReserveAllocationSpace()) { +    uint64_t CodeSize = 0, RODataSize = 0, RWDataSize = 0; +    uint32_t CodeAlign = 1, RODataAlign = 1, RWDataAlign = 1; +    if (auto Err = computeTotalAllocSize(Obj, +                                         CodeSize, CodeAlign, +                                         RODataSize, RODataAlign, +                                         RWDataSize, RWDataAlign)) +      return std::move(Err); +    MemMgr.reserveAllocationSpace(CodeSize, CodeAlign, RODataSize, RODataAlign, +                                  RWDataSize, RWDataAlign); +  } + +  // Used sections from the object file +  ObjSectionToIDMap LocalSections; + +  // Common symbols requiring allocation, with their sizes and alignments +  CommonSymbolList CommonSymbolsToAllocate; + +  uint64_t CommonSize = 0; +  uint32_t CommonAlign = 0; + +  // First, collect all weak and common symbols. We need to know if stronger +  // definitions occur elsewhere. +  JITSymbolResolver::LookupSet ResponsibilitySet; +  { +    JITSymbolResolver::LookupSet Symbols; +    for (auto &Sym : Obj.symbols()) { +      uint32_t Flags = Sym.getFlags(); +      if ((Flags & SymbolRef::SF_Common) || (Flags & SymbolRef::SF_Weak)) { +        // Get symbol name. +        if (auto NameOrErr = Sym.getName()) +          Symbols.insert(*NameOrErr); +        else +          return NameOrErr.takeError(); +      } +    } + +    if (auto ResultOrErr = Resolver.getResponsibilitySet(Symbols)) +      ResponsibilitySet = std::move(*ResultOrErr); +    else +      return ResultOrErr.takeError(); +  } + +  // Parse symbols +  LLVM_DEBUG(dbgs() << "Parse symbols:\n"); +  for (symbol_iterator I = Obj.symbol_begin(), E = Obj.symbol_end(); I != E; +       ++I) { +    uint32_t Flags = I->getFlags(); + +    // Skip undefined symbols. +    if (Flags & SymbolRef::SF_Undefined) +      continue; + +    // Get the symbol type. +    object::SymbolRef::Type SymType; +    if (auto SymTypeOrErr = I->getType()) +      SymType = *SymTypeOrErr; +    else +      return SymTypeOrErr.takeError(); + +    // Get symbol name. +    StringRef Name; +    if (auto NameOrErr = I->getName()) +      Name = *NameOrErr; +    else +      return NameOrErr.takeError(); + +    // Compute JIT symbol flags. +    auto JITSymFlags = getJITSymbolFlags(*I); +    if (!JITSymFlags) +      return JITSymFlags.takeError(); + +    // If this is a weak definition, check to see if there's a strong one. +    // If there is, skip this symbol (we won't be providing it: the strong +    // definition will). If there's no strong definition, make this definition +    // strong. +    if (JITSymFlags->isWeak() || JITSymFlags->isCommon()) { +      // First check whether there's already a definition in this instance. +      if (GlobalSymbolTable.count(Name)) +        continue; + +      // If we're not responsible for this symbol, skip it. +      if (!ResponsibilitySet.count(Name)) +        continue; + +      // Otherwise update the flags on the symbol to make this definition +      // strong. +      if (JITSymFlags->isWeak()) +        *JITSymFlags &= ~JITSymbolFlags::Weak; +      if (JITSymFlags->isCommon()) { +        *JITSymFlags &= ~JITSymbolFlags::Common; +        uint32_t Align = I->getAlignment(); +        uint64_t Size = I->getCommonSize(); +        if (!CommonAlign) +          CommonAlign = Align; +        CommonSize = alignTo(CommonSize, Align) + Size; +        CommonSymbolsToAllocate.push_back(*I); +      } +    } + +    if (Flags & SymbolRef::SF_Absolute && +        SymType != object::SymbolRef::ST_File) { +      uint64_t Addr = 0; +      if (auto AddrOrErr = I->getAddress()) +        Addr = *AddrOrErr; +      else +        return AddrOrErr.takeError(); + +      unsigned SectionID = AbsoluteSymbolSection; + +      LLVM_DEBUG(dbgs() << "\tType: " << SymType << " (absolute) Name: " << Name +                        << " SID: " << SectionID +                        << " Offset: " << format("%p", (uintptr_t)Addr) +                        << " flags: " << Flags << "\n"); +      GlobalSymbolTable[Name] = SymbolTableEntry(SectionID, Addr, *JITSymFlags); +    } else if (SymType == object::SymbolRef::ST_Function || +               SymType == object::SymbolRef::ST_Data || +               SymType == object::SymbolRef::ST_Unknown || +               SymType == object::SymbolRef::ST_Other) { + +      section_iterator SI = Obj.section_end(); +      if (auto SIOrErr = I->getSection()) +        SI = *SIOrErr; +      else +        return SIOrErr.takeError(); + +      if (SI == Obj.section_end()) +        continue; + +      // Get symbol offset. +      uint64_t SectOffset; +      if (auto Err = getOffset(*I, *SI, SectOffset)) +        return std::move(Err); + +      bool IsCode = SI->isText(); +      unsigned SectionID; +      if (auto SectionIDOrErr = +              findOrEmitSection(Obj, *SI, IsCode, LocalSections)) +        SectionID = *SectionIDOrErr; +      else +        return SectionIDOrErr.takeError(); + +      LLVM_DEBUG(dbgs() << "\tType: " << SymType << " Name: " << Name +                        << " SID: " << SectionID +                        << " Offset: " << format("%p", (uintptr_t)SectOffset) +                        << " flags: " << Flags << "\n"); +      GlobalSymbolTable[Name] = +          SymbolTableEntry(SectionID, SectOffset, *JITSymFlags); +    } +  } + +  // Allocate common symbols +  if (auto Err = emitCommonSymbols(Obj, CommonSymbolsToAllocate, CommonSize, +                                   CommonAlign)) +    return std::move(Err); + +  // Parse and process relocations +  LLVM_DEBUG(dbgs() << "Parse relocations:\n"); +  for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end(); +       SI != SE; ++SI) { +    StubMap Stubs; + +    Expected<section_iterator> RelSecOrErr = SI->getRelocatedSection(); +    if (!RelSecOrErr) +      return RelSecOrErr.takeError(); + +    section_iterator RelocatedSection = *RelSecOrErr; +    if (RelocatedSection == SE) +      continue; + +    relocation_iterator I = SI->relocation_begin(); +    relocation_iterator E = SI->relocation_end(); + +    if (I == E && !ProcessAllSections) +      continue; + +    bool IsCode = RelocatedSection->isText(); +    unsigned SectionID = 0; +    if (auto SectionIDOrErr = findOrEmitSection(Obj, *RelocatedSection, IsCode, +                                                LocalSections)) +      SectionID = *SectionIDOrErr; +    else +      return SectionIDOrErr.takeError(); + +    LLVM_DEBUG(dbgs() << "\tSectionID: " << SectionID << "\n"); + +    for (; I != E;) +      if (auto IOrErr = processRelocationRef(SectionID, I, Obj, LocalSections, Stubs)) +        I = *IOrErr; +      else +        return IOrErr.takeError(); + +    // If there is a NotifyStubEmitted callback set, call it to register any +    // stubs created for this section. +    if (NotifyStubEmitted) { +      StringRef FileName = Obj.getFileName(); +      StringRef SectionName = Sections[SectionID].getName(); +      for (auto &KV : Stubs) { + +        auto &VR = KV.first; +        uint64_t StubAddr = KV.second; + +        // If this is a named stub, just call NotifyStubEmitted. +        if (VR.SymbolName) { +          NotifyStubEmitted(FileName, SectionName, VR.SymbolName, SectionID, +                            StubAddr); +          continue; +        } + +        // Otherwise we will have to try a reverse lookup on the globla symbol table. +        for (auto &GSTMapEntry : GlobalSymbolTable) { +          StringRef SymbolName = GSTMapEntry.first(); +          auto &GSTEntry = GSTMapEntry.second; +          if (GSTEntry.getSectionID() == VR.SectionID && +              GSTEntry.getOffset() == VR.Offset) { +            NotifyStubEmitted(FileName, SectionName, SymbolName, SectionID, +                              StubAddr); +            break; +          } +        } +      } +    } +  } + +  // Process remaining sections +  if (ProcessAllSections) { +    LLVM_DEBUG(dbgs() << "Process remaining sections:\n"); +    for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end(); +         SI != SE; ++SI) { + +      /* Ignore already loaded sections */ +      if (LocalSections.find(*SI) != LocalSections.end()) +        continue; + +      bool IsCode = SI->isText(); +      if (auto SectionIDOrErr = +              findOrEmitSection(Obj, *SI, IsCode, LocalSections)) +        LLVM_DEBUG(dbgs() << "\tSectionID: " << (*SectionIDOrErr) << "\n"); +      else +        return SectionIDOrErr.takeError(); +    } +  } + +  // Give the subclasses a chance to tie-up any loose ends. +  if (auto Err = finalizeLoad(Obj, LocalSections)) +    return std::move(Err); + +//   for (auto E : LocalSections) +//     llvm::dbgs() << "Added: " << E.first.getRawDataRefImpl() << " -> " << E.second << "\n"; + +  return LocalSections; +} + +// A helper method for computeTotalAllocSize. +// Computes the memory size required to allocate sections with the given sizes, +// assuming that all sections are allocated with the given alignment +static uint64_t +computeAllocationSizeForSections(std::vector<uint64_t> &SectionSizes, +                                 uint64_t Alignment) { +  uint64_t TotalSize = 0; +  for (size_t Idx = 0, Cnt = SectionSizes.size(); Idx < Cnt; Idx++) { +    uint64_t AlignedSize = +        (SectionSizes[Idx] + Alignment - 1) / Alignment * Alignment; +    TotalSize += AlignedSize; +  } +  return TotalSize; +} + +static bool isRequiredForExecution(const SectionRef Section) { +  const ObjectFile *Obj = Section.getObject(); +  if (isa<object::ELFObjectFileBase>(Obj)) +    return ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC; +  if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj)) { +    const coff_section *CoffSection = COFFObj->getCOFFSection(Section); +    // Avoid loading zero-sized COFF sections. +    // In PE files, VirtualSize gives the section size, and SizeOfRawData +    // may be zero for sections with content. In Obj files, SizeOfRawData +    // gives the section size, and VirtualSize is always zero. Hence +    // the need to check for both cases below. +    bool HasContent = +        (CoffSection->VirtualSize > 0) || (CoffSection->SizeOfRawData > 0); +    bool IsDiscardable = +        CoffSection->Characteristics & +        (COFF::IMAGE_SCN_MEM_DISCARDABLE | COFF::IMAGE_SCN_LNK_INFO); +    return HasContent && !IsDiscardable; +  } + +  assert(isa<MachOObjectFile>(Obj)); +  return true; +} + +static bool isReadOnlyData(const SectionRef Section) { +  const ObjectFile *Obj = Section.getObject(); +  if (isa<object::ELFObjectFileBase>(Obj)) +    return !(ELFSectionRef(Section).getFlags() & +             (ELF::SHF_WRITE | ELF::SHF_EXECINSTR)); +  if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj)) +    return ((COFFObj->getCOFFSection(Section)->Characteristics & +             (COFF::IMAGE_SCN_CNT_INITIALIZED_DATA +             | COFF::IMAGE_SCN_MEM_READ +             | COFF::IMAGE_SCN_MEM_WRITE)) +             == +             (COFF::IMAGE_SCN_CNT_INITIALIZED_DATA +             | COFF::IMAGE_SCN_MEM_READ)); + +  assert(isa<MachOObjectFile>(Obj)); +  return false; +} + +static bool isZeroInit(const SectionRef Section) { +  const ObjectFile *Obj = Section.getObject(); +  if (isa<object::ELFObjectFileBase>(Obj)) +    return ELFSectionRef(Section).getType() == ELF::SHT_NOBITS; +  if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj)) +    return COFFObj->getCOFFSection(Section)->Characteristics & +            COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA; + +  auto *MachO = cast<MachOObjectFile>(Obj); +  unsigned SectionType = MachO->getSectionType(Section); +  return SectionType == MachO::S_ZEROFILL || +         SectionType == MachO::S_GB_ZEROFILL; +} + +// Compute an upper bound of the memory size that is required to load all +// sections +Error RuntimeDyldImpl::computeTotalAllocSize(const ObjectFile &Obj, +                                             uint64_t &CodeSize, +                                             uint32_t &CodeAlign, +                                             uint64_t &RODataSize, +                                             uint32_t &RODataAlign, +                                             uint64_t &RWDataSize, +                                             uint32_t &RWDataAlign) { +  // Compute the size of all sections required for execution +  std::vector<uint64_t> CodeSectionSizes; +  std::vector<uint64_t> ROSectionSizes; +  std::vector<uint64_t> RWSectionSizes; + +  // Collect sizes of all sections to be loaded; +  // also determine the max alignment of all sections +  for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end(); +       SI != SE; ++SI) { +    const SectionRef &Section = *SI; + +    bool IsRequired = isRequiredForExecution(Section) || ProcessAllSections; + +    // Consider only the sections that are required to be loaded for execution +    if (IsRequired) { +      uint64_t DataSize = Section.getSize(); +      uint64_t Alignment64 = Section.getAlignment(); +      unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL; +      bool IsCode = Section.isText(); +      bool IsReadOnly = isReadOnlyData(Section); + +      Expected<StringRef> NameOrErr = Section.getName(); +      if (!NameOrErr) +        return NameOrErr.takeError(); +      StringRef Name = *NameOrErr; + +      uint64_t StubBufSize = computeSectionStubBufSize(Obj, Section); + +      uint64_t PaddingSize = 0; +      if (Name == ".eh_frame") +        PaddingSize += 4; +      if (StubBufSize != 0) +        PaddingSize += getStubAlignment() - 1; + +      uint64_t SectionSize = DataSize + PaddingSize + StubBufSize; + +      // The .eh_frame section (at least on Linux) needs an extra four bytes +      // padded +      // with zeroes added at the end.  For MachO objects, this section has a +      // slightly different name, so this won't have any effect for MachO +      // objects. +      if (Name == ".eh_frame") +        SectionSize += 4; + +      if (!SectionSize) +        SectionSize = 1; + +      if (IsCode) { +        CodeAlign = std::max(CodeAlign, Alignment); +        CodeSectionSizes.push_back(SectionSize); +      } else if (IsReadOnly) { +        RODataAlign = std::max(RODataAlign, Alignment); +        ROSectionSizes.push_back(SectionSize); +      } else { +        RWDataAlign = std::max(RWDataAlign, Alignment); +        RWSectionSizes.push_back(SectionSize); +      } +    } +  } + +  // Compute Global Offset Table size. If it is not zero we +  // also update alignment, which is equal to a size of a +  // single GOT entry. +  if (unsigned GotSize = computeGOTSize(Obj)) { +    RWSectionSizes.push_back(GotSize); +    RWDataAlign = std::max<uint32_t>(RWDataAlign, getGOTEntrySize()); +  } + +  // Compute the size of all common symbols +  uint64_t CommonSize = 0; +  uint32_t CommonAlign = 1; +  for (symbol_iterator I = Obj.symbol_begin(), E = Obj.symbol_end(); I != E; +       ++I) { +    uint32_t Flags = I->getFlags(); +    if (Flags & SymbolRef::SF_Common) { +      // Add the common symbols to a list.  We'll allocate them all below. +      uint64_t Size = I->getCommonSize(); +      uint32_t Align = I->getAlignment(); +      // If this is the first common symbol, use its alignment as the alignment +      // for the common symbols section. +      if (CommonSize == 0) +        CommonAlign = Align; +      CommonSize = alignTo(CommonSize, Align) + Size; +    } +  } +  if (CommonSize != 0) { +    RWSectionSizes.push_back(CommonSize); +    RWDataAlign = std::max(RWDataAlign, CommonAlign); +  } + +  // Compute the required allocation space for each different type of sections +  // (code, read-only data, read-write data) assuming that all sections are +  // allocated with the max alignment. Note that we cannot compute with the +  // individual alignments of the sections, because then the required size +  // depends on the order, in which the sections are allocated. +  CodeSize = computeAllocationSizeForSections(CodeSectionSizes, CodeAlign); +  RODataSize = computeAllocationSizeForSections(ROSectionSizes, RODataAlign); +  RWDataSize = computeAllocationSizeForSections(RWSectionSizes, RWDataAlign); + +  return Error::success(); +} + +// compute GOT size +unsigned RuntimeDyldImpl::computeGOTSize(const ObjectFile &Obj) { +  size_t GotEntrySize = getGOTEntrySize(); +  if (!GotEntrySize) +    return 0; + +  size_t GotSize = 0; +  for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end(); +       SI != SE; ++SI) { + +    for (const RelocationRef &Reloc : SI->relocations()) +      if (relocationNeedsGot(Reloc)) +        GotSize += GotEntrySize; +  } + +  return GotSize; +} + +// compute stub buffer size for the given section +unsigned RuntimeDyldImpl::computeSectionStubBufSize(const ObjectFile &Obj, +                                                    const SectionRef &Section) { +  unsigned StubSize = getMaxStubSize(); +  if (StubSize == 0) { +    return 0; +  } +  // FIXME: this is an inefficient way to handle this. We should computed the +  // necessary section allocation size in loadObject by walking all the sections +  // once. +  unsigned StubBufSize = 0; +  for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end(); +       SI != SE; ++SI) { + +    Expected<section_iterator> RelSecOrErr = SI->getRelocatedSection(); +    if (!RelSecOrErr) +      report_fatal_error(toString(RelSecOrErr.takeError())); + +    section_iterator RelSecI = *RelSecOrErr; +    if (!(RelSecI == Section)) +      continue; + +    for (const RelocationRef &Reloc : SI->relocations()) +      if (relocationNeedsStub(Reloc)) +        StubBufSize += StubSize; +  } + +  // Get section data size and alignment +  uint64_t DataSize = Section.getSize(); +  uint64_t Alignment64 = Section.getAlignment(); + +  // Add stubbuf size alignment +  unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL; +  unsigned StubAlignment = getStubAlignment(); +  unsigned EndAlignment = (DataSize | Alignment) & -(DataSize | Alignment); +  if (StubAlignment > EndAlignment) +    StubBufSize += StubAlignment - EndAlignment; +  return StubBufSize; +} + +uint64_t RuntimeDyldImpl::readBytesUnaligned(uint8_t *Src, +                                             unsigned Size) const { +  uint64_t Result = 0; +  if (IsTargetLittleEndian) { +    Src += Size - 1; +    while (Size--) +      Result = (Result << 8) | *Src--; +  } else +    while (Size--) +      Result = (Result << 8) | *Src++; + +  return Result; +} + +void RuntimeDyldImpl::writeBytesUnaligned(uint64_t Value, uint8_t *Dst, +                                          unsigned Size) const { +  if (IsTargetLittleEndian) { +    while (Size--) { +      *Dst++ = Value & 0xFF; +      Value >>= 8; +    } +  } else { +    Dst += Size - 1; +    while (Size--) { +      *Dst-- = Value & 0xFF; +      Value >>= 8; +    } +  } +} + +Expected<JITSymbolFlags> +RuntimeDyldImpl::getJITSymbolFlags(const SymbolRef &SR) { +  return JITSymbolFlags::fromObjectSymbol(SR); +} + +Error RuntimeDyldImpl::emitCommonSymbols(const ObjectFile &Obj, +                                         CommonSymbolList &SymbolsToAllocate, +                                         uint64_t CommonSize, +                                         uint32_t CommonAlign) { +  if (SymbolsToAllocate.empty()) +    return Error::success(); + +  // Allocate memory for the section +  unsigned SectionID = Sections.size(); +  uint8_t *Addr = MemMgr.allocateDataSection(CommonSize, CommonAlign, SectionID, +                                             "<common symbols>", false); +  if (!Addr) +    report_fatal_error("Unable to allocate memory for common symbols!"); +  uint64_t Offset = 0; +  Sections.push_back( +      SectionEntry("<common symbols>", Addr, CommonSize, CommonSize, 0)); +  memset(Addr, 0, CommonSize); + +  LLVM_DEBUG(dbgs() << "emitCommonSection SectionID: " << SectionID +                    << " new addr: " << format("%p", Addr) +                    << " DataSize: " << CommonSize << "\n"); + +  // Assign the address of each symbol +  for (auto &Sym : SymbolsToAllocate) { +    uint32_t Alignment = Sym.getAlignment(); +    uint64_t Size = Sym.getCommonSize(); +    StringRef Name; +    if (auto NameOrErr = Sym.getName()) +      Name = *NameOrErr; +    else +      return NameOrErr.takeError(); +    if (Alignment) { +      // This symbol has an alignment requirement. +      uint64_t AlignOffset = +          offsetToAlignment((uint64_t)Addr, Align(Alignment)); +      Addr += AlignOffset; +      Offset += AlignOffset; +    } +    auto JITSymFlags = getJITSymbolFlags(Sym); + +    if (!JITSymFlags) +      return JITSymFlags.takeError(); + +    LLVM_DEBUG(dbgs() << "Allocating common symbol " << Name << " address " +                      << format("%p", Addr) << "\n"); +    GlobalSymbolTable[Name] = +        SymbolTableEntry(SectionID, Offset, std::move(*JITSymFlags)); +    Offset += Size; +    Addr += Size; +  } + +  return Error::success(); +} + +Expected<unsigned> +RuntimeDyldImpl::emitSection(const ObjectFile &Obj, +                             const SectionRef &Section, +                             bool IsCode) { +  StringRef data; +  uint64_t Alignment64 = Section.getAlignment(); + +  unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL; +  unsigned PaddingSize = 0; +  unsigned StubBufSize = 0; +  bool IsRequired = isRequiredForExecution(Section); +  bool IsVirtual = Section.isVirtual(); +  bool IsZeroInit = isZeroInit(Section); +  bool IsReadOnly = isReadOnlyData(Section); +  uint64_t DataSize = Section.getSize(); + +  // An alignment of 0 (at least with ELF) is identical to an alignment of 1, +  // while being more "polite".  Other formats do not support 0-aligned sections +  // anyway, so we should guarantee that the alignment is always at least 1. +  Alignment = std::max(1u, Alignment); + +  Expected<StringRef> NameOrErr = Section.getName(); +  if (!NameOrErr) +    return NameOrErr.takeError(); +  StringRef Name = *NameOrErr; + +  StubBufSize = computeSectionStubBufSize(Obj, Section); + +  // The .eh_frame section (at least on Linux) needs an extra four bytes padded +  // with zeroes added at the end.  For MachO objects, this section has a +  // slightly different name, so this won't have any effect for MachO objects. +  if (Name == ".eh_frame") +    PaddingSize = 4; + +  uintptr_t Allocate; +  unsigned SectionID = Sections.size(); +  uint8_t *Addr; +  const char *pData = nullptr; + +  // If this section contains any bits (i.e. isn't a virtual or bss section), +  // grab a reference to them. +  if (!IsVirtual && !IsZeroInit) { +    // In either case, set the location of the unrelocated section in memory, +    // since we still process relocations for it even if we're not applying them. +    if (Expected<StringRef> E = Section.getContents()) +      data = *E; +    else +      return E.takeError(); +    pData = data.data(); +  } + +  // If there are any stubs then the section alignment needs to be at least as +  // high as stub alignment or padding calculations may by incorrect when the +  // section is remapped. +  if (StubBufSize != 0) { +    Alignment = std::max(Alignment, getStubAlignment()); +    PaddingSize += getStubAlignment() - 1; +  } + +  // Some sections, such as debug info, don't need to be loaded for execution. +  // Process those only if explicitly requested. +  if (IsRequired || ProcessAllSections) { +    Allocate = DataSize + PaddingSize + StubBufSize; +    if (!Allocate) +      Allocate = 1; +    Addr = IsCode ? MemMgr.allocateCodeSection(Allocate, Alignment, SectionID, +                                               Name) +                  : MemMgr.allocateDataSection(Allocate, Alignment, SectionID, +                                               Name, IsReadOnly); +    if (!Addr) +      report_fatal_error("Unable to allocate section memory!"); + +    // Zero-initialize or copy the data from the image +    if (IsZeroInit || IsVirtual) +      memset(Addr, 0, DataSize); +    else +      memcpy(Addr, pData, DataSize); + +    // Fill in any extra bytes we allocated for padding +    if (PaddingSize != 0) { +      memset(Addr + DataSize, 0, PaddingSize); +      // Update the DataSize variable to include padding. +      DataSize += PaddingSize; + +      // Align DataSize to stub alignment if we have any stubs (PaddingSize will +      // have been increased above to account for this). +      if (StubBufSize > 0) +        DataSize &= -(uint64_t)getStubAlignment(); +    } + +    LLVM_DEBUG(dbgs() << "emitSection SectionID: " << SectionID << " Name: " +                      << Name << " obj addr: " << format("%p", pData) +                      << " new addr: " << format("%p", Addr) << " DataSize: " +                      << DataSize << " StubBufSize: " << StubBufSize +                      << " Allocate: " << Allocate << "\n"); +  } else { +    // Even if we didn't load the section, we need to record an entry for it +    // to handle later processing (and by 'handle' I mean don't do anything +    // with these sections). +    Allocate = 0; +    Addr = nullptr; +    LLVM_DEBUG( +        dbgs() << "emitSection SectionID: " << SectionID << " Name: " << Name +               << " obj addr: " << format("%p", data.data()) << " new addr: 0" +               << " DataSize: " << DataSize << " StubBufSize: " << StubBufSize +               << " Allocate: " << Allocate << "\n"); +  } + +  Sections.push_back( +      SectionEntry(Name, Addr, DataSize, Allocate, (uintptr_t)pData)); + +  // Debug info sections are linked as if their load address was zero +  if (!IsRequired) +    Sections.back().setLoadAddress(0); + +  return SectionID; +} + +Expected<unsigned> +RuntimeDyldImpl::findOrEmitSection(const ObjectFile &Obj, +                                   const SectionRef &Section, +                                   bool IsCode, +                                   ObjSectionToIDMap &LocalSections) { + +  unsigned SectionID = 0; +  ObjSectionToIDMap::iterator i = LocalSections.find(Section); +  if (i != LocalSections.end()) +    SectionID = i->second; +  else { +    if (auto SectionIDOrErr = emitSection(Obj, Section, IsCode)) +      SectionID = *SectionIDOrErr; +    else +      return SectionIDOrErr.takeError(); +    LocalSections[Section] = SectionID; +  } +  return SectionID; +} + +void RuntimeDyldImpl::addRelocationForSection(const RelocationEntry &RE, +                                              unsigned SectionID) { +  Relocations[SectionID].push_back(RE); +} + +void RuntimeDyldImpl::addRelocationForSymbol(const RelocationEntry &RE, +                                             StringRef SymbolName) { +  // Relocation by symbol.  If the symbol is found in the global symbol table, +  // create an appropriate section relocation.  Otherwise, add it to +  // ExternalSymbolRelocations. +  RTDyldSymbolTable::const_iterator Loc = GlobalSymbolTable.find(SymbolName); +  if (Loc == GlobalSymbolTable.end()) { +    ExternalSymbolRelocations[SymbolName].push_back(RE); +  } else { +    // Copy the RE since we want to modify its addend. +    RelocationEntry RECopy = RE; +    const auto &SymInfo = Loc->second; +    RECopy.Addend += SymInfo.getOffset(); +    Relocations[SymInfo.getSectionID()].push_back(RECopy); +  } +} + +uint8_t *RuntimeDyldImpl::createStubFunction(uint8_t *Addr, +                                             unsigned AbiVariant) { +  if (Arch == Triple::aarch64 || Arch == Triple::aarch64_be || +      Arch == Triple::aarch64_32) { +    // This stub has to be able to access the full address space, +    // since symbol lookup won't necessarily find a handy, in-range, +    // PLT stub for functions which could be anywhere. +    // Stub can use ip0 (== x16) to calculate address +    writeBytesUnaligned(0xd2e00010, Addr,    4); // movz ip0, #:abs_g3:<addr> +    writeBytesUnaligned(0xf2c00010, Addr+4,  4); // movk ip0, #:abs_g2_nc:<addr> +    writeBytesUnaligned(0xf2a00010, Addr+8,  4); // movk ip0, #:abs_g1_nc:<addr> +    writeBytesUnaligned(0xf2800010, Addr+12, 4); // movk ip0, #:abs_g0_nc:<addr> +    writeBytesUnaligned(0xd61f0200, Addr+16, 4); // br ip0 + +    return Addr; +  } else if (Arch == Triple::arm || Arch == Triple::armeb) { +    // TODO: There is only ARM far stub now. We should add the Thumb stub, +    // and stubs for branches Thumb - ARM and ARM - Thumb. +    writeBytesUnaligned(0xe51ff004, Addr, 4); // ldr pc, [pc, #-4] +    return Addr + 4; +  } else if (IsMipsO32ABI || IsMipsN32ABI) { +    // 0:   3c190000        lui     t9,%hi(addr). +    // 4:   27390000        addiu   t9,t9,%lo(addr). +    // 8:   03200008        jr      t9. +    // c:   00000000        nop. +    const unsigned LuiT9Instr = 0x3c190000, AdduiT9Instr = 0x27390000; +    const unsigned NopInstr = 0x0; +    unsigned JrT9Instr = 0x03200008; +    if ((AbiVariant & ELF::EF_MIPS_ARCH) == ELF::EF_MIPS_ARCH_32R6 || +        (AbiVariant & ELF::EF_MIPS_ARCH) == ELF::EF_MIPS_ARCH_64R6) +      JrT9Instr = 0x03200009; + +    writeBytesUnaligned(LuiT9Instr, Addr, 4); +    writeBytesUnaligned(AdduiT9Instr, Addr + 4, 4); +    writeBytesUnaligned(JrT9Instr, Addr + 8, 4); +    writeBytesUnaligned(NopInstr, Addr + 12, 4); +    return Addr; +  } else if (IsMipsN64ABI) { +    // 0:   3c190000        lui     t9,%highest(addr). +    // 4:   67390000        daddiu  t9,t9,%higher(addr). +    // 8:   0019CC38        dsll    t9,t9,16. +    // c:   67390000        daddiu  t9,t9,%hi(addr). +    // 10:  0019CC38        dsll    t9,t9,16. +    // 14:  67390000        daddiu  t9,t9,%lo(addr). +    // 18:  03200008        jr      t9. +    // 1c:  00000000        nop. +    const unsigned LuiT9Instr = 0x3c190000, DaddiuT9Instr = 0x67390000, +                   DsllT9Instr = 0x19CC38; +    const unsigned NopInstr = 0x0; +    unsigned JrT9Instr = 0x03200008; +    if ((AbiVariant & ELF::EF_MIPS_ARCH) == ELF::EF_MIPS_ARCH_64R6) +      JrT9Instr = 0x03200009; + +    writeBytesUnaligned(LuiT9Instr, Addr, 4); +    writeBytesUnaligned(DaddiuT9Instr, Addr + 4, 4); +    writeBytesUnaligned(DsllT9Instr, Addr + 8, 4); +    writeBytesUnaligned(DaddiuT9Instr, Addr + 12, 4); +    writeBytesUnaligned(DsllT9Instr, Addr + 16, 4); +    writeBytesUnaligned(DaddiuT9Instr, Addr + 20, 4); +    writeBytesUnaligned(JrT9Instr, Addr + 24, 4); +    writeBytesUnaligned(NopInstr, Addr + 28, 4); +    return Addr; +  } else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le) { +    // Depending on which version of the ELF ABI is in use, we need to +    // generate one of two variants of the stub.  They both start with +    // the same sequence to load the target address into r12. +    writeInt32BE(Addr,    0x3D800000); // lis   r12, highest(addr) +    writeInt32BE(Addr+4,  0x618C0000); // ori   r12, higher(addr) +    writeInt32BE(Addr+8,  0x798C07C6); // sldi  r12, r12, 32 +    writeInt32BE(Addr+12, 0x658C0000); // oris  r12, r12, h(addr) +    writeInt32BE(Addr+16, 0x618C0000); // ori   r12, r12, l(addr) +    if (AbiVariant == 2) { +      // PowerPC64 stub ELFv2 ABI: The address points to the function itself. +      // The address is already in r12 as required by the ABI.  Branch to it. +      writeInt32BE(Addr+20, 0xF8410018); // std   r2,  24(r1) +      writeInt32BE(Addr+24, 0x7D8903A6); // mtctr r12 +      writeInt32BE(Addr+28, 0x4E800420); // bctr +    } else { +      // PowerPC64 stub ELFv1 ABI: The address points to a function descriptor. +      // Load the function address on r11 and sets it to control register. Also +      // loads the function TOC in r2 and environment pointer to r11. +      writeInt32BE(Addr+20, 0xF8410028); // std   r2,  40(r1) +      writeInt32BE(Addr+24, 0xE96C0000); // ld    r11, 0(r12) +      writeInt32BE(Addr+28, 0xE84C0008); // ld    r2,  0(r12) +      writeInt32BE(Addr+32, 0x7D6903A6); // mtctr r11 +      writeInt32BE(Addr+36, 0xE96C0010); // ld    r11, 16(r2) +      writeInt32BE(Addr+40, 0x4E800420); // bctr +    } +    return Addr; +  } else if (Arch == Triple::systemz) { +    writeInt16BE(Addr,    0xC418);     // lgrl %r1,.+8 +    writeInt16BE(Addr+2,  0x0000); +    writeInt16BE(Addr+4,  0x0004); +    writeInt16BE(Addr+6,  0x07F1);     // brc 15,%r1 +    // 8-byte address stored at Addr + 8 +    return Addr; +  } else if (Arch == Triple::x86_64) { +    *Addr      = 0xFF; // jmp +    *(Addr+1)  = 0x25; // rip +    // 32-bit PC-relative address of the GOT entry will be stored at Addr+2 +  } else if (Arch == Triple::x86) { +    *Addr      = 0xE9; // 32-bit pc-relative jump. +  } +  return Addr; +} + +// Assign an address to a symbol name and resolve all the relocations +// associated with it. +void RuntimeDyldImpl::reassignSectionAddress(unsigned SectionID, +                                             uint64_t Addr) { +  // The address to use for relocation resolution is not +  // the address of the local section buffer. We must be doing +  // a remote execution environment of some sort. Relocations can't +  // be applied until all the sections have been moved.  The client must +  // trigger this with a call to MCJIT::finalize() or +  // RuntimeDyld::resolveRelocations(). +  // +  // Addr is a uint64_t because we can't assume the pointer width +  // of the target is the same as that of the host. Just use a generic +  // "big enough" type. +  LLVM_DEBUG( +      dbgs() << "Reassigning address for section " << SectionID << " (" +             << Sections[SectionID].getName() << "): " +             << format("0x%016" PRIx64, Sections[SectionID].getLoadAddress()) +             << " -> " << format("0x%016" PRIx64, Addr) << "\n"); +  Sections[SectionID].setLoadAddress(Addr); +} + +void RuntimeDyldImpl::resolveRelocationList(const RelocationList &Relocs, +                                            uint64_t Value) { +  for (unsigned i = 0, e = Relocs.size(); i != e; ++i) { +    const RelocationEntry &RE = Relocs[i]; +    // Ignore relocations for sections that were not loaded +    if (Sections[RE.SectionID].getAddress() == nullptr) +      continue; +    resolveRelocation(RE, Value); +  } +} + +void RuntimeDyldImpl::applyExternalSymbolRelocations( +    const StringMap<JITEvaluatedSymbol> ExternalSymbolMap) { +  while (!ExternalSymbolRelocations.empty()) { + +    StringMap<RelocationList>::iterator i = ExternalSymbolRelocations.begin(); + +    StringRef Name = i->first(); +    if (Name.size() == 0) { +      // This is an absolute symbol, use an address of zero. +      LLVM_DEBUG(dbgs() << "Resolving absolute relocations." +                        << "\n"); +      RelocationList &Relocs = i->second; +      resolveRelocationList(Relocs, 0); +    } else { +      uint64_t Addr = 0; +      JITSymbolFlags Flags; +      RTDyldSymbolTable::const_iterator Loc = GlobalSymbolTable.find(Name); +      if (Loc == GlobalSymbolTable.end()) { +        auto RRI = ExternalSymbolMap.find(Name); +        assert(RRI != ExternalSymbolMap.end() && "No result for symbol"); +        Addr = RRI->second.getAddress(); +        Flags = RRI->second.getFlags(); +        // The call to getSymbolAddress may have caused additional modules to +        // be loaded, which may have added new entries to the +        // ExternalSymbolRelocations map.  Consquently, we need to update our +        // iterator.  This is also why retrieval of the relocation list +        // associated with this symbol is deferred until below this point. +        // New entries may have been added to the relocation list. +        i = ExternalSymbolRelocations.find(Name); +      } else { +        // We found the symbol in our global table.  It was probably in a +        // Module that we loaded previously. +        const auto &SymInfo = Loc->second; +        Addr = getSectionLoadAddress(SymInfo.getSectionID()) + +               SymInfo.getOffset(); +        Flags = SymInfo.getFlags(); +      } + +      // FIXME: Implement error handling that doesn't kill the host program! +      if (!Addr) +        report_fatal_error("Program used external function '" + Name + +                           "' which could not be resolved!"); + +      // If Resolver returned UINT64_MAX, the client wants to handle this symbol +      // manually and we shouldn't resolve its relocations. +      if (Addr != UINT64_MAX) { + +        // Tweak the address based on the symbol flags if necessary. +        // For example, this is used by RuntimeDyldMachOARM to toggle the low bit +        // if the target symbol is Thumb. +        Addr = modifyAddressBasedOnFlags(Addr, Flags); + +        LLVM_DEBUG(dbgs() << "Resolving relocations Name: " << Name << "\t" +                          << format("0x%lx", Addr) << "\n"); +        // This list may have been updated when we called getSymbolAddress, so +        // don't change this code to get the list earlier. +        RelocationList &Relocs = i->second; +        resolveRelocationList(Relocs, Addr); +      } +    } + +    ExternalSymbolRelocations.erase(i); +  } +} + +Error RuntimeDyldImpl::resolveExternalSymbols() { +  StringMap<JITEvaluatedSymbol> ExternalSymbolMap; + +  // Resolution can trigger emission of more symbols, so iterate until +  // we've resolved *everything*. +  { +    JITSymbolResolver::LookupSet ResolvedSymbols; + +    while (true) { +      JITSymbolResolver::LookupSet NewSymbols; + +      for (auto &RelocKV : ExternalSymbolRelocations) { +        StringRef Name = RelocKV.first(); +        if (!Name.empty() && !GlobalSymbolTable.count(Name) && +            !ResolvedSymbols.count(Name)) +          NewSymbols.insert(Name); +      } + +      if (NewSymbols.empty()) +        break; + +#ifdef _MSC_VER +      using ExpectedLookupResult = +          MSVCPExpected<JITSymbolResolver::LookupResult>; +#else +      using ExpectedLookupResult = Expected<JITSymbolResolver::LookupResult>; +#endif + +      auto NewSymbolsP = std::make_shared<std::promise<ExpectedLookupResult>>(); +      auto NewSymbolsF = NewSymbolsP->get_future(); +      Resolver.lookup(NewSymbols, +                      [=](Expected<JITSymbolResolver::LookupResult> Result) { +                        NewSymbolsP->set_value(std::move(Result)); +                      }); + +      auto NewResolverResults = NewSymbolsF.get(); + +      if (!NewResolverResults) +        return NewResolverResults.takeError(); + +      assert(NewResolverResults->size() == NewSymbols.size() && +             "Should have errored on unresolved symbols"); + +      for (auto &RRKV : *NewResolverResults) { +        assert(!ResolvedSymbols.count(RRKV.first) && "Redundant resolution?"); +        ExternalSymbolMap.insert(RRKV); +        ResolvedSymbols.insert(RRKV.first); +      } +    } +  } + +  applyExternalSymbolRelocations(ExternalSymbolMap); + +  return Error::success(); +} + +void RuntimeDyldImpl::finalizeAsync( +    std::unique_ptr<RuntimeDyldImpl> This, +    unique_function<void(Error)> OnEmitted, +    std::unique_ptr<MemoryBuffer> UnderlyingBuffer) { + +  auto SharedThis = std::shared_ptr<RuntimeDyldImpl>(std::move(This)); +  auto PostResolveContinuation = +      [SharedThis, OnEmitted = std::move(OnEmitted), +       UnderlyingBuffer = std::move(UnderlyingBuffer)]( +          Expected<JITSymbolResolver::LookupResult> Result) mutable { +        if (!Result) { +          OnEmitted(Result.takeError()); +          return; +        } + +        /// Copy the result into a StringMap, where the keys are held by value. +        StringMap<JITEvaluatedSymbol> Resolved; +        for (auto &KV : *Result) +          Resolved[KV.first] = KV.second; + +        SharedThis->applyExternalSymbolRelocations(Resolved); +        SharedThis->resolveLocalRelocations(); +        SharedThis->registerEHFrames(); +        std::string ErrMsg; +        if (SharedThis->MemMgr.finalizeMemory(&ErrMsg)) +          OnEmitted(make_error<StringError>(std::move(ErrMsg), +                                            inconvertibleErrorCode())); +        else +          OnEmitted(Error::success()); +      }; + +  JITSymbolResolver::LookupSet Symbols; + +  for (auto &RelocKV : SharedThis->ExternalSymbolRelocations) { +    StringRef Name = RelocKV.first(); +    assert(!Name.empty() && "Symbol has no name?"); +    assert(!SharedThis->GlobalSymbolTable.count(Name) && +           "Name already processed. RuntimeDyld instances can not be re-used " +           "when finalizing with finalizeAsync."); +    Symbols.insert(Name); +  } + +  if (!Symbols.empty()) { +    SharedThis->Resolver.lookup(Symbols, std::move(PostResolveContinuation)); +  } else +    PostResolveContinuation(std::map<StringRef, JITEvaluatedSymbol>()); +} + +//===----------------------------------------------------------------------===// +// RuntimeDyld class implementation + +uint64_t RuntimeDyld::LoadedObjectInfo::getSectionLoadAddress( +                                          const object::SectionRef &Sec) const { + +  auto I = ObjSecToIDMap.find(Sec); +  if (I != ObjSecToIDMap.end()) +    return RTDyld.Sections[I->second].getLoadAddress(); + +  return 0; +} + +void RuntimeDyld::MemoryManager::anchor() {} +void JITSymbolResolver::anchor() {} +void LegacyJITSymbolResolver::anchor() {} + +RuntimeDyld::RuntimeDyld(RuntimeDyld::MemoryManager &MemMgr, +                         JITSymbolResolver &Resolver) +    : MemMgr(MemMgr), Resolver(Resolver) { +  // FIXME: There's a potential issue lurking here if a single instance of +  // RuntimeDyld is used to load multiple objects.  The current implementation +  // associates a single memory manager with a RuntimeDyld instance.  Even +  // though the public class spawns a new 'impl' instance for each load, +  // they share a single memory manager.  This can become a problem when page +  // permissions are applied. +  Dyld = nullptr; +  ProcessAllSections = false; +} + +RuntimeDyld::~RuntimeDyld() {} + +static std::unique_ptr<RuntimeDyldCOFF> +createRuntimeDyldCOFF( +                     Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM, +                     JITSymbolResolver &Resolver, bool ProcessAllSections, +                     RuntimeDyld::NotifyStubEmittedFunction NotifyStubEmitted) { +  std::unique_ptr<RuntimeDyldCOFF> Dyld = +    RuntimeDyldCOFF::create(Arch, MM, Resolver); +  Dyld->setProcessAllSections(ProcessAllSections); +  Dyld->setNotifyStubEmitted(std::move(NotifyStubEmitted)); +  return Dyld; +} + +static std::unique_ptr<RuntimeDyldELF> +createRuntimeDyldELF(Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM, +                     JITSymbolResolver &Resolver, bool ProcessAllSections, +                     RuntimeDyld::NotifyStubEmittedFunction NotifyStubEmitted) { +  std::unique_ptr<RuntimeDyldELF> Dyld = +      RuntimeDyldELF::create(Arch, MM, Resolver); +  Dyld->setProcessAllSections(ProcessAllSections); +  Dyld->setNotifyStubEmitted(std::move(NotifyStubEmitted)); +  return Dyld; +} + +static std::unique_ptr<RuntimeDyldMachO> +createRuntimeDyldMachO( +                     Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM, +                     JITSymbolResolver &Resolver, +                     bool ProcessAllSections, +                     RuntimeDyld::NotifyStubEmittedFunction NotifyStubEmitted) { +  std::unique_ptr<RuntimeDyldMachO> Dyld = +    RuntimeDyldMachO::create(Arch, MM, Resolver); +  Dyld->setProcessAllSections(ProcessAllSections); +  Dyld->setNotifyStubEmitted(std::move(NotifyStubEmitted)); +  return Dyld; +} + +std::unique_ptr<RuntimeDyld::LoadedObjectInfo> +RuntimeDyld::loadObject(const ObjectFile &Obj) { +  if (!Dyld) { +    if (Obj.isELF()) +      Dyld = +          createRuntimeDyldELF(static_cast<Triple::ArchType>(Obj.getArch()), +                               MemMgr, Resolver, ProcessAllSections, +                               std::move(NotifyStubEmitted)); +    else if (Obj.isMachO()) +      Dyld = createRuntimeDyldMachO( +               static_cast<Triple::ArchType>(Obj.getArch()), MemMgr, Resolver, +               ProcessAllSections, std::move(NotifyStubEmitted)); +    else if (Obj.isCOFF()) +      Dyld = createRuntimeDyldCOFF( +               static_cast<Triple::ArchType>(Obj.getArch()), MemMgr, Resolver, +               ProcessAllSections, std::move(NotifyStubEmitted)); +    else +      report_fatal_error("Incompatible object format!"); +  } + +  if (!Dyld->isCompatibleFile(Obj)) +    report_fatal_error("Incompatible object format!"); + +  auto LoadedObjInfo = Dyld->loadObject(Obj); +  MemMgr.notifyObjectLoaded(*this, Obj); +  return LoadedObjInfo; +} + +void *RuntimeDyld::getSymbolLocalAddress(StringRef Name) const { +  if (!Dyld) +    return nullptr; +  return Dyld->getSymbolLocalAddress(Name); +} + +unsigned RuntimeDyld::getSymbolSectionID(StringRef Name) const { +  assert(Dyld && "No RuntimeDyld instance attached"); +  return Dyld->getSymbolSectionID(Name); +} + +JITEvaluatedSymbol RuntimeDyld::getSymbol(StringRef Name) const { +  if (!Dyld) +    return nullptr; +  return Dyld->getSymbol(Name); +} + +std::map<StringRef, JITEvaluatedSymbol> RuntimeDyld::getSymbolTable() const { +  if (!Dyld) +    return std::map<StringRef, JITEvaluatedSymbol>(); +  return Dyld->getSymbolTable(); +} + +void RuntimeDyld::resolveRelocations() { Dyld->resolveRelocations(); } + +void RuntimeDyld::reassignSectionAddress(unsigned SectionID, uint64_t Addr) { +  Dyld->reassignSectionAddress(SectionID, Addr); +} + +void RuntimeDyld::mapSectionAddress(const void *LocalAddress, +                                    uint64_t TargetAddress) { +  Dyld->mapSectionAddress(LocalAddress, TargetAddress); +} + +bool RuntimeDyld::hasError() { return Dyld->hasError(); } + +StringRef RuntimeDyld::getErrorString() { return Dyld->getErrorString(); } + +void RuntimeDyld::finalizeWithMemoryManagerLocking() { +  bool MemoryFinalizationLocked = MemMgr.FinalizationLocked; +  MemMgr.FinalizationLocked = true; +  resolveRelocations(); +  registerEHFrames(); +  if (!MemoryFinalizationLocked) { +    MemMgr.finalizeMemory(); +    MemMgr.FinalizationLocked = false; +  } +} + +StringRef RuntimeDyld::getSectionContent(unsigned SectionID) const { +  assert(Dyld && "No Dyld instance attached"); +  return Dyld->getSectionContent(SectionID); +} + +uint64_t RuntimeDyld::getSectionLoadAddress(unsigned SectionID) const { +  assert(Dyld && "No Dyld instance attached"); +  return Dyld->getSectionLoadAddress(SectionID); +} + +void RuntimeDyld::registerEHFrames() { +  if (Dyld) +    Dyld->registerEHFrames(); +} + +void RuntimeDyld::deregisterEHFrames() { +  if (Dyld) +    Dyld->deregisterEHFrames(); +} +// FIXME: Kill this with fire once we have a new JIT linker: this is only here +// so that we can re-use RuntimeDyld's implementation without twisting the +// interface any further for ORC's purposes. +void jitLinkForORC(object::ObjectFile &Obj, +                   std::unique_ptr<MemoryBuffer> UnderlyingBuffer, +                   RuntimeDyld::MemoryManager &MemMgr, +                   JITSymbolResolver &Resolver, bool ProcessAllSections, +                   unique_function<Error( +                       std::unique_ptr<RuntimeDyld::LoadedObjectInfo> LoadedObj, +                       std::map<StringRef, JITEvaluatedSymbol>)> +                       OnLoaded, +                   unique_function<void(Error)> OnEmitted) { + +  RuntimeDyld RTDyld(MemMgr, Resolver); +  RTDyld.setProcessAllSections(ProcessAllSections); + +  auto Info = RTDyld.loadObject(Obj); + +  if (RTDyld.hasError()) { +    OnEmitted(make_error<StringError>(RTDyld.getErrorString(), +                                      inconvertibleErrorCode())); +    return; +  } + +  if (auto Err = OnLoaded(std::move(Info), RTDyld.getSymbolTable())) +    OnEmitted(std::move(Err)); + +  RuntimeDyldImpl::finalizeAsync(std::move(RTDyld.Dyld), std::move(OnEmitted), +                                 std::move(UnderlyingBuffer)); +} + +} // end namespace llvm  | 
