diff options
Diffstat (limited to 'llvm/lib/IR/BasicBlock.cpp')
| -rw-r--r-- | llvm/lib/IR/BasicBlock.cpp | 496 | 
1 files changed, 496 insertions, 0 deletions
| diff --git a/llvm/lib/IR/BasicBlock.cpp b/llvm/lib/IR/BasicBlock.cpp new file mode 100644 index 0000000000000..bdee6990f9324 --- /dev/null +++ b/llvm/lib/IR/BasicBlock.cpp @@ -0,0 +1,496 @@ +//===-- BasicBlock.cpp - Implement BasicBlock related methods -------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This file implements the BasicBlock class for the IR library. +// +//===----------------------------------------------------------------------===// + +#include "llvm/IR/BasicBlock.h" +#include "SymbolTableListTraitsImpl.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/IR/CFG.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/IntrinsicInst.h" +#include "llvm/IR/LLVMContext.h" +#include "llvm/IR/Type.h" +#include <algorithm> + +using namespace llvm; + +ValueSymbolTable *BasicBlock::getValueSymbolTable() { +  if (Function *F = getParent()) +    return F->getValueSymbolTable(); +  return nullptr; +} + +LLVMContext &BasicBlock::getContext() const { +  return getType()->getContext(); +} + +// Explicit instantiation of SymbolTableListTraits since some of the methods +// are not in the public header file... +template class llvm::SymbolTableListTraits<Instruction>; + +BasicBlock::BasicBlock(LLVMContext &C, const Twine &Name, Function *NewParent, +                       BasicBlock *InsertBefore) +  : Value(Type::getLabelTy(C), Value::BasicBlockVal), Parent(nullptr) { + +  if (NewParent) +    insertInto(NewParent, InsertBefore); +  else +    assert(!InsertBefore && +           "Cannot insert block before another block with no function!"); + +  setName(Name); +} + +void BasicBlock::insertInto(Function *NewParent, BasicBlock *InsertBefore) { +  assert(NewParent && "Expected a parent"); +  assert(!Parent && "Already has a parent"); + +  if (InsertBefore) +    NewParent->getBasicBlockList().insert(InsertBefore->getIterator(), this); +  else +    NewParent->getBasicBlockList().push_back(this); +} + +BasicBlock::~BasicBlock() { +  // If the address of the block is taken and it is being deleted (e.g. because +  // it is dead), this means that there is either a dangling constant expr +  // hanging off the block, or an undefined use of the block (source code +  // expecting the address of a label to keep the block alive even though there +  // is no indirect branch).  Handle these cases by zapping the BlockAddress +  // nodes.  There are no other possible uses at this point. +  if (hasAddressTaken()) { +    assert(!use_empty() && "There should be at least one blockaddress!"); +    Constant *Replacement = +      ConstantInt::get(llvm::Type::getInt32Ty(getContext()), 1); +    while (!use_empty()) { +      BlockAddress *BA = cast<BlockAddress>(user_back()); +      BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement, +                                                       BA->getType())); +      BA->destroyConstant(); +    } +  } + +  assert(getParent() == nullptr && "BasicBlock still linked into the program!"); +  dropAllReferences(); +  InstList.clear(); +} + +void BasicBlock::setParent(Function *parent) { +  // Set Parent=parent, updating instruction symtab entries as appropriate. +  InstList.setSymTabObject(&Parent, parent); +} + +iterator_range<filter_iterator<BasicBlock::const_iterator, +                               std::function<bool(const Instruction &)>>> +BasicBlock::instructionsWithoutDebug() const { +  std::function<bool(const Instruction &)> Fn = [](const Instruction &I) { +    return !isa<DbgInfoIntrinsic>(I); +  }; +  return make_filter_range(*this, Fn); +} + +iterator_range<filter_iterator<BasicBlock::iterator, +                               std::function<bool(Instruction &)>>> +BasicBlock::instructionsWithoutDebug() { +  std::function<bool(Instruction &)> Fn = [](Instruction &I) { +    return !isa<DbgInfoIntrinsic>(I); +  }; +  return make_filter_range(*this, Fn); +} + +filter_iterator<BasicBlock::const_iterator, +                std::function<bool(const Instruction &)>>::difference_type +BasicBlock::sizeWithoutDebug() const { +  return std::distance(instructionsWithoutDebug().begin(), +                       instructionsWithoutDebug().end()); +} + +void BasicBlock::removeFromParent() { +  getParent()->getBasicBlockList().remove(getIterator()); +} + +iplist<BasicBlock>::iterator BasicBlock::eraseFromParent() { +  return getParent()->getBasicBlockList().erase(getIterator()); +} + +/// Unlink this basic block from its current function and +/// insert it into the function that MovePos lives in, right before MovePos. +void BasicBlock::moveBefore(BasicBlock *MovePos) { +  MovePos->getParent()->getBasicBlockList().splice( +      MovePos->getIterator(), getParent()->getBasicBlockList(), getIterator()); +} + +/// Unlink this basic block from its current function and +/// insert it into the function that MovePos lives in, right after MovePos. +void BasicBlock::moveAfter(BasicBlock *MovePos) { +  MovePos->getParent()->getBasicBlockList().splice( +      ++MovePos->getIterator(), getParent()->getBasicBlockList(), +      getIterator()); +} + +const Module *BasicBlock::getModule() const { +  return getParent()->getParent(); +} + +const Instruction *BasicBlock::getTerminator() const { +  if (InstList.empty() || !InstList.back().isTerminator()) +    return nullptr; +  return &InstList.back(); +} + +const CallInst *BasicBlock::getTerminatingMustTailCall() const { +  if (InstList.empty()) +    return nullptr; +  const ReturnInst *RI = dyn_cast<ReturnInst>(&InstList.back()); +  if (!RI || RI == &InstList.front()) +    return nullptr; + +  const Instruction *Prev = RI->getPrevNode(); +  if (!Prev) +    return nullptr; + +  if (Value *RV = RI->getReturnValue()) { +    if (RV != Prev) +      return nullptr; + +    // Look through the optional bitcast. +    if (auto *BI = dyn_cast<BitCastInst>(Prev)) { +      RV = BI->getOperand(0); +      Prev = BI->getPrevNode(); +      if (!Prev || RV != Prev) +        return nullptr; +    } +  } + +  if (auto *CI = dyn_cast<CallInst>(Prev)) { +    if (CI->isMustTailCall()) +      return CI; +  } +  return nullptr; +} + +const CallInst *BasicBlock::getTerminatingDeoptimizeCall() const { +  if (InstList.empty()) +    return nullptr; +  auto *RI = dyn_cast<ReturnInst>(&InstList.back()); +  if (!RI || RI == &InstList.front()) +    return nullptr; + +  if (auto *CI = dyn_cast_or_null<CallInst>(RI->getPrevNode())) +    if (Function *F = CI->getCalledFunction()) +      if (F->getIntrinsicID() == Intrinsic::experimental_deoptimize) +        return CI; + +  return nullptr; +} + +const Instruction* BasicBlock::getFirstNonPHI() const { +  for (const Instruction &I : *this) +    if (!isa<PHINode>(I)) +      return &I; +  return nullptr; +} + +const Instruction* BasicBlock::getFirstNonPHIOrDbg() const { +  for (const Instruction &I : *this) +    if (!isa<PHINode>(I) && !isa<DbgInfoIntrinsic>(I)) +      return &I; +  return nullptr; +} + +const Instruction* BasicBlock::getFirstNonPHIOrDbgOrLifetime() const { +  for (const Instruction &I : *this) { +    if (isa<PHINode>(I) || isa<DbgInfoIntrinsic>(I)) +      continue; + +    if (I.isLifetimeStartOrEnd()) +      continue; + +    return &I; +  } +  return nullptr; +} + +BasicBlock::const_iterator BasicBlock::getFirstInsertionPt() const { +  const Instruction *FirstNonPHI = getFirstNonPHI(); +  if (!FirstNonPHI) +    return end(); + +  const_iterator InsertPt = FirstNonPHI->getIterator(); +  if (InsertPt->isEHPad()) ++InsertPt; +  return InsertPt; +} + +void BasicBlock::dropAllReferences() { +  for (Instruction &I : *this) +    I.dropAllReferences(); +} + +/// If this basic block has a single predecessor block, +/// return the block, otherwise return a null pointer. +const BasicBlock *BasicBlock::getSinglePredecessor() const { +  const_pred_iterator PI = pred_begin(this), E = pred_end(this); +  if (PI == E) return nullptr;         // No preds. +  const BasicBlock *ThePred = *PI; +  ++PI; +  return (PI == E) ? ThePred : nullptr /*multiple preds*/; +} + +/// If this basic block has a unique predecessor block, +/// return the block, otherwise return a null pointer. +/// Note that unique predecessor doesn't mean single edge, there can be +/// multiple edges from the unique predecessor to this block (for example +/// a switch statement with multiple cases having the same destination). +const BasicBlock *BasicBlock::getUniquePredecessor() const { +  const_pred_iterator PI = pred_begin(this), E = pred_end(this); +  if (PI == E) return nullptr; // No preds. +  const BasicBlock *PredBB = *PI; +  ++PI; +  for (;PI != E; ++PI) { +    if (*PI != PredBB) +      return nullptr; +    // The same predecessor appears multiple times in the predecessor list. +    // This is OK. +  } +  return PredBB; +} + +bool BasicBlock::hasNPredecessors(unsigned N) const { +  return hasNItems(pred_begin(this), pred_end(this), N); +} + +bool BasicBlock::hasNPredecessorsOrMore(unsigned N) const { +  return hasNItemsOrMore(pred_begin(this), pred_end(this), N); +} + +const BasicBlock *BasicBlock::getSingleSuccessor() const { +  succ_const_iterator SI = succ_begin(this), E = succ_end(this); +  if (SI == E) return nullptr; // no successors +  const BasicBlock *TheSucc = *SI; +  ++SI; +  return (SI == E) ? TheSucc : nullptr /* multiple successors */; +} + +const BasicBlock *BasicBlock::getUniqueSuccessor() const { +  succ_const_iterator SI = succ_begin(this), E = succ_end(this); +  if (SI == E) return nullptr; // No successors +  const BasicBlock *SuccBB = *SI; +  ++SI; +  for (;SI != E; ++SI) { +    if (*SI != SuccBB) +      return nullptr; +    // The same successor appears multiple times in the successor list. +    // This is OK. +  } +  return SuccBB; +} + +iterator_range<BasicBlock::phi_iterator> BasicBlock::phis() { +  PHINode *P = empty() ? nullptr : dyn_cast<PHINode>(&*begin()); +  return make_range<phi_iterator>(P, nullptr); +} + +/// This method is used to notify a BasicBlock that the +/// specified Predecessor of the block is no longer able to reach it.  This is +/// actually not used to update the Predecessor list, but is actually used to +/// update the PHI nodes that reside in the block.  Note that this should be +/// called while the predecessor still refers to this block. +/// +void BasicBlock::removePredecessor(BasicBlock *Pred, +                                   bool KeepOneInputPHIs) { +  assert((hasNUsesOrMore(16)||// Reduce cost of this assertion for complex CFGs. +          find(pred_begin(this), pred_end(this), Pred) != pred_end(this)) && +         "removePredecessor: BB is not a predecessor!"); + +  if (InstList.empty()) return; +  PHINode *APN = dyn_cast<PHINode>(&front()); +  if (!APN) return;   // Quick exit. + +  // If there are exactly two predecessors, then we want to nuke the PHI nodes +  // altogether.  However, we cannot do this, if this in this case: +  // +  //  Loop: +  //    %x = phi [X, Loop] +  //    %x2 = add %x, 1         ;; This would become %x2 = add %x2, 1 +  //    br Loop                 ;; %x2 does not dominate all uses +  // +  // This is because the PHI node input is actually taken from the predecessor +  // basic block.  The only case this can happen is with a self loop, so we +  // check for this case explicitly now. +  // +  unsigned max_idx = APN->getNumIncomingValues(); +  assert(max_idx != 0 && "PHI Node in block with 0 predecessors!?!?!"); +  if (max_idx == 2) { +    BasicBlock *Other = APN->getIncomingBlock(APN->getIncomingBlock(0) == Pred); + +    // Disable PHI elimination! +    if (this == Other) max_idx = 3; +  } + +  // <= Two predecessors BEFORE I remove one? +  if (max_idx <= 2 && !KeepOneInputPHIs) { +    // Yup, loop through and nuke the PHI nodes +    while (PHINode *PN = dyn_cast<PHINode>(&front())) { +      // Remove the predecessor first. +      PN->removeIncomingValue(Pred, !KeepOneInputPHIs); + +      // If the PHI _HAD_ two uses, replace PHI node with its now *single* value +      if (max_idx == 2) { +        if (PN->getIncomingValue(0) != PN) +          PN->replaceAllUsesWith(PN->getIncomingValue(0)); +        else +          // We are left with an infinite loop with no entries: kill the PHI. +          PN->replaceAllUsesWith(UndefValue::get(PN->getType())); +        getInstList().pop_front();    // Remove the PHI node +      } + +      // If the PHI node already only had one entry, it got deleted by +      // removeIncomingValue. +    } +  } else { +    // Okay, now we know that we need to remove predecessor #pred_idx from all +    // PHI nodes.  Iterate over each PHI node fixing them up +    PHINode *PN; +    for (iterator II = begin(); (PN = dyn_cast<PHINode>(II)); ) { +      ++II; +      PN->removeIncomingValue(Pred, false); +      // If all incoming values to the Phi are the same, we can replace the Phi +      // with that value. +      Value* PNV = nullptr; +      if (!KeepOneInputPHIs && (PNV = PN->hasConstantValue())) +        if (PNV != PN) { +          PN->replaceAllUsesWith(PNV); +          PN->eraseFromParent(); +        } +    } +  } +} + +bool BasicBlock::canSplitPredecessors() const { +  const Instruction *FirstNonPHI = getFirstNonPHI(); +  if (isa<LandingPadInst>(FirstNonPHI)) +    return true; +  // This is perhaps a little conservative because constructs like +  // CleanupBlockInst are pretty easy to split.  However, SplitBlockPredecessors +  // cannot handle such things just yet. +  if (FirstNonPHI->isEHPad()) +    return false; +  return true; +} + +bool BasicBlock::isLegalToHoistInto() const { +  auto *Term = getTerminator(); +  // No terminator means the block is under construction. +  if (!Term) +    return true; + +  // If the block has no successors, there can be no instructions to hoist. +  assert(Term->getNumSuccessors() > 0); + +  // Instructions should not be hoisted across exception handling boundaries. +  return !Term->isExceptionalTerminator(); +} + +/// This splits a basic block into two at the specified +/// instruction.  Note that all instructions BEFORE the specified iterator stay +/// as part of the original basic block, an unconditional branch is added to +/// the new BB, and the rest of the instructions in the BB are moved to the new +/// BB, including the old terminator.  This invalidates the iterator. +/// +/// Note that this only works on well formed basic blocks (must have a +/// terminator), and 'I' must not be the end of instruction list (which would +/// cause a degenerate basic block to be formed, having a terminator inside of +/// the basic block). +/// +BasicBlock *BasicBlock::splitBasicBlock(iterator I, const Twine &BBName) { +  assert(getTerminator() && "Can't use splitBasicBlock on degenerate BB!"); +  assert(I != InstList.end() && +         "Trying to get me to create degenerate basic block!"); + +  BasicBlock *New = BasicBlock::Create(getContext(), BBName, getParent(), +                                       this->getNextNode()); + +  // Save DebugLoc of split point before invalidating iterator. +  DebugLoc Loc = I->getDebugLoc(); +  // Move all of the specified instructions from the original basic block into +  // the new basic block. +  New->getInstList().splice(New->end(), this->getInstList(), I, end()); + +  // Add a branch instruction to the newly formed basic block. +  BranchInst *BI = BranchInst::Create(New, this); +  BI->setDebugLoc(Loc); + +  // Now we must loop through all of the successors of the New block (which +  // _were_ the successors of the 'this' block), and update any PHI nodes in +  // successors.  If there were PHI nodes in the successors, then they need to +  // know that incoming branches will be from New, not from Old (this). +  // +  New->replaceSuccessorsPhiUsesWith(this, New); +  return New; +} + +void BasicBlock::replacePhiUsesWith(BasicBlock *Old, BasicBlock *New) { +  // N.B. This might not be a complete BasicBlock, so don't assume +  // that it ends with a non-phi instruction. +  for (iterator II = begin(), IE = end(); II != IE; ++II) { +    PHINode *PN = dyn_cast<PHINode>(II); +    if (!PN) +      break; +    PN->replaceIncomingBlockWith(Old, New); +  } +} + +void BasicBlock::replaceSuccessorsPhiUsesWith(BasicBlock *Old, +                                              BasicBlock *New) { +  Instruction *TI = getTerminator(); +  if (!TI) +    // Cope with being called on a BasicBlock that doesn't have a terminator +    // yet. Clang's CodeGenFunction::EmitReturnBlock() likes to do this. +    return; +  llvm::for_each(successors(TI), [Old, New](BasicBlock *Succ) { +    Succ->replacePhiUsesWith(Old, New); +  }); +} + +void BasicBlock::replaceSuccessorsPhiUsesWith(BasicBlock *New) { +  this->replaceSuccessorsPhiUsesWith(this, New); +} + +/// Return true if this basic block is a landing pad. I.e., it's +/// the destination of the 'unwind' edge of an invoke instruction. +bool BasicBlock::isLandingPad() const { +  return isa<LandingPadInst>(getFirstNonPHI()); +} + +/// Return the landingpad instruction associated with the landing pad. +const LandingPadInst *BasicBlock::getLandingPadInst() const { +  return dyn_cast<LandingPadInst>(getFirstNonPHI()); +} + +Optional<uint64_t> BasicBlock::getIrrLoopHeaderWeight() const { +  const Instruction *TI = getTerminator(); +  if (MDNode *MDIrrLoopHeader = +      TI->getMetadata(LLVMContext::MD_irr_loop)) { +    MDString *MDName = cast<MDString>(MDIrrLoopHeader->getOperand(0)); +    if (MDName->getString().equals("loop_header_weight")) { +      auto *CI = mdconst::extract<ConstantInt>(MDIrrLoopHeader->getOperand(1)); +      return Optional<uint64_t>(CI->getValue().getZExtValue()); +    } +  } +  return Optional<uint64_t>(); +} + +BasicBlock::iterator llvm::skipDebugIntrinsics(BasicBlock::iterator It) { +  while (isa<DbgInfoIntrinsic>(It)) +    ++It; +  return It; +} | 
